3.4.21 \(\int \frac {\sqrt {a+\frac {b}{c+d x^2}}}{x} \, dx\) [321]

Optimal. Leaf size=96 \[ \sqrt {a} \tanh ^{-1}\left (\frac {\sqrt {\frac {b+a c+a d x^2}{c+d x^2}}}{\sqrt {a}}\right )-\frac {\sqrt {b+a c} \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {\frac {b+a c+a d x^2}{c+d x^2}}}{\sqrt {b+a c}}\right )}{\sqrt {c}} \]

[Out]

arctanh(((a*d*x^2+a*c+b)/(d*x^2+c))^(1/2)/a^(1/2))*a^(1/2)-arctanh(c^(1/2)*((a*d*x^2+a*c+b)/(d*x^2+c))^(1/2)/(
a*c+b)^(1/2))*(a*c+b)^(1/2)/c^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.16, antiderivative size = 96, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.238, Rules used = {1985, 1981, 1980, 492, 214} \begin {gather*} \sqrt {a} \tanh ^{-1}\left (\frac {\sqrt {\frac {a c+a d x^2+b}{c+d x^2}}}{\sqrt {a}}\right )-\frac {\sqrt {a c+b} \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {\frac {a c+a d x^2+b}{c+d x^2}}}{\sqrt {a c+b}}\right )}{\sqrt {c}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b/(c + d*x^2)]/x,x]

[Out]

Sqrt[a]*ArcTanh[Sqrt[(b + a*c + a*d*x^2)/(c + d*x^2)]/Sqrt[a]] - (Sqrt[b + a*c]*ArcTanh[(Sqrt[c]*Sqrt[(b + a*c
 + a*d*x^2)/(c + d*x^2)])/Sqrt[b + a*c]])/Sqrt[c]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 492

Int[((e_.)*(x_))^(m_.)/(((a_) + (b_.)*(x_)^(n_))*((c_) + (d_.)*(x_)^(n_))), x_Symbol] :> Dist[(-a)*(e^n/(b*c -
 a*d)), Int[(e*x)^(m - n)/(a + b*x^n), x], x] + Dist[c*(e^n/(b*c - a*d)), Int[(e*x)^(m - n)/(c + d*x^n), x], x
] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LeQ[n, m, 2*n - 1]

Rule 1980

Int[(x_)^(m_.)*(((e_.)*((a_.) + (b_.)*(x_)))/((c_) + (d_.)*(x_)))^(p_), x_Symbol] :> With[{q = Denominator[p]}
, Dist[q*e*(b*c - a*d), Subst[Int[x^(q*(p + 1) - 1)*(((-a)*e + c*x^q)^m/(b*e - d*x^q)^(m + 2)), x], x, (e*((a
+ b*x)/(c + d*x)))^(1/q)], x]] /; FreeQ[{a, b, c, d, e, m}, x] && FractionQ[p] && IntegerQ[m]

Rule 1981

Int[(x_)^(m_.)*(((e_.)*((a_.) + (b_.)*(x_)^(n_.)))/((c_) + (d_.)*(x_)^(n_.)))^(p_), x_Symbol] :> Dist[1/n, Sub
st[Int[x^(Simplify[(m + 1)/n] - 1)*(e*((a + b*x)/(c + d*x)))^p, x], x, x^n], x] /; FreeQ[{a, b, c, d, e, m, n,
 p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 1985

Int[(u_.)*((a_) + (b_.)/((c_) + (d_.)*(x_)^(n_)))^(p_), x_Symbol] :> Int[u*((b + a*c + a*d*x^n)/(c + d*x^n))^p
, x] /; FreeQ[{a, b, c, d, n, p}, x]

Rubi steps

\begin {align*} \int \frac {\sqrt {a+\frac {b}{c+d x^2}}}{x} \, dx &=\frac {\left (\sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}\right ) \int \frac {\sqrt {b+a \left (c+d x^2\right )}}{x \sqrt {c+d x^2}} \, dx}{\sqrt {b+a \left (c+d x^2\right )}}\\ &=\frac {\left (\sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}\right ) \int \frac {\sqrt {b+a c+a d x^2}}{x \sqrt {c+d x^2}} \, dx}{\sqrt {b+a \left (c+d x^2\right )}}\\ &=\frac {\left (\sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}\right ) \text {Subst}\left (\int \frac {\sqrt {b+a c+a d x}}{x \sqrt {c+d x}} \, dx,x,x^2\right )}{2 \sqrt {b+a \left (c+d x^2\right )}}\\ &=-\frac {\left ((-b-a c) \sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}\right ) \text {Subst}\left (\int \frac {1}{x \sqrt {c+d x} \sqrt {b+a c+a d x}} \, dx,x,x^2\right )}{2 \sqrt {b+a \left (c+d x^2\right )}}+\frac {\left (a d \sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {c+d x} \sqrt {b+a c+a d x}} \, dx,x,x^2\right )}{2 \sqrt {b+a \left (c+d x^2\right )}}\\ &=\frac {\left (a \sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {b+a x^2}} \, dx,x,\sqrt {c+d x^2}\right )}{\sqrt {b+a \left (c+d x^2\right )}}-\frac {\left ((-b-a c) \sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}\right ) \text {Subst}\left (\int \frac {1}{-c-(-b-a c) x^2} \, dx,x,\frac {\sqrt {c+d x^2}}{\sqrt {b+a \left (c+d x^2\right )}}\right )}{\sqrt {b+a \left (c+d x^2\right )}}\\ &=-\frac {\sqrt {b+a c} \sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}} \tanh ^{-1}\left (\frac {\sqrt {b+a c} \sqrt {c+d x^2}}{\sqrt {c} \sqrt {b+a \left (c+d x^2\right )}}\right )}{\sqrt {c} \sqrt {b+a \left (c+d x^2\right )}}+\frac {\left (a \sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}\right ) \text {Subst}\left (\int \frac {1}{1-a x^2} \, dx,x,\frac {\sqrt {c+d x^2}}{\sqrt {b+a \left (c+d x^2\right )}}\right )}{\sqrt {b+a \left (c+d x^2\right )}}\\ &=\frac {\sqrt {a} \sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}} \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {c+d x^2}}{\sqrt {b+a \left (c+d x^2\right )}}\right )}{\sqrt {b+a \left (c+d x^2\right )}}-\frac {\sqrt {b+a c} \sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}} \tanh ^{-1}\left (\frac {\sqrt {b+a c} \sqrt {c+d x^2}}{\sqrt {c} \sqrt {b+a \left (c+d x^2\right )}}\right )}{\sqrt {c} \sqrt {b+a \left (c+d x^2\right )}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.14, size = 102, normalized size = 1.06 \begin {gather*} -\frac {\sqrt {-b-a c} \tan ^{-1}\left (\frac {\sqrt {c} \sqrt {\frac {b+a c+a d x^2}{c+d x^2}}}{\sqrt {-b-a c}}\right )}{\sqrt {c}}+\sqrt {a} \tanh ^{-1}\left (\frac {\sqrt {\frac {b+a c+a d x^2}{c+d x^2}}}{\sqrt {a}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + b/(c + d*x^2)]/x,x]

[Out]

-((Sqrt[-b - a*c]*ArcTan[(Sqrt[c]*Sqrt[(b + a*c + a*d*x^2)/(c + d*x^2)])/Sqrt[-b - a*c]])/Sqrt[c]) + Sqrt[a]*A
rcTanh[Sqrt[(b + a*c + a*d*x^2)/(c + d*x^2)]/Sqrt[a]]

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(234\) vs. \(2(80)=160\).
time = 0.05, size = 235, normalized size = 2.45

method result size
default \(-\frac {\sqrt {\frac {a d \,x^{2}+a c +b}{d \,x^{2}+c}}\, \left (d \,x^{2}+c \right ) \left (-\ln \left (\frac {2 a \,d^{2} x^{2}+2 a c d +2 \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}\, \sqrt {a \,d^{2}}+b d}{2 \sqrt {a \,d^{2}}}\right ) a c d +\sqrt {c^{2} a +b c}\, \ln \left (\frac {2 a c d \,x^{2}+b d \,x^{2}+2 c^{2} a +2 \sqrt {c^{2} a +b c}\, \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}+2 b c}{x^{2}}\right ) \sqrt {a \,d^{2}}\right )}{2 \sqrt {\left (d \,x^{2}+c \right ) \left (a d \,x^{2}+a c +b \right )}\, c \sqrt {a \,d^{2}}}\) \(235\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b/(d*x^2+c))^(1/2)/x,x,method=_RETURNVERBOSE)

[Out]

-1/2*((a*d*x^2+a*c+b)/(d*x^2+c))^(1/2)*(d*x^2+c)*(-ln(1/2*(2*a*d^2*x^2+2*a*c*d+2*(a*d^2*x^4+2*a*c*d*x^2+b*d*x^
2+a*c^2+b*c)^(1/2)*(a*d^2)^(1/2)+b*d)/(a*d^2)^(1/2))*a*c*d+(a*c^2+b*c)^(1/2)*ln((2*a*c*d*x^2+b*d*x^2+2*c^2*a+2
*(a*c^2+b*c)^(1/2)*(a*d^2*x^4+2*a*c*d*x^2+b*d*x^2+a*c^2+b*c)^(1/2)+2*b*c)/x^2)*(a*d^2)^(1/2))/((d*x^2+c)*(a*d*
x^2+a*c+b))^(1/2)/c/(a*d^2)^(1/2)

________________________________________________________________________________________

Maxima [A]
time = 0.53, size = 159, normalized size = 1.66 \begin {gather*} \frac {{\left (a c + b\right )} \log \left (\frac {c \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}} - \sqrt {{\left (a c + b\right )} c}}{c \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}} + \sqrt {{\left (a c + b\right )} c}}\right )}{2 \, \sqrt {{\left (a c + b\right )} c}} - \frac {1}{2} \, \sqrt {a} \log \left (-\frac {\sqrt {a} - \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}}}{\sqrt {a} + \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}}}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/(d*x^2+c))^(1/2)/x,x, algorithm="maxima")

[Out]

1/2*(a*c + b)*log((c*sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c)) - sqrt((a*c + b)*c))/(c*sqrt((a*d*x^2 + a*c + b)/(d
*x^2 + c)) + sqrt((a*c + b)*c)))/sqrt((a*c + b)*c) - 1/2*sqrt(a)*log(-(sqrt(a) - sqrt((a*d*x^2 + a*c + b)/(d*x
^2 + c)))/(sqrt(a) + sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c))))

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 177 vs. \(2 (80) = 160\).
time = 0.42, size = 927, normalized size = 9.66 \begin {gather*} \left [\frac {1}{4} \, \sqrt {a} \log \left (8 \, a^{2} d^{2} x^{4} + 8 \, a^{2} c^{2} + 8 \, {\left (2 \, a^{2} c + a b\right )} d x^{2} + 8 \, a b c + b^{2} + 4 \, {\left (2 \, a d^{2} x^{4} + {\left (4 \, a c + b\right )} d x^{2} + 2 \, a c^{2} + b c\right )} \sqrt {a} \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}}\right ) + \frac {1}{4} \, \sqrt {\frac {a c + b}{c}} \log \left (\frac {{\left (8 \, a^{2} c^{2} + 8 \, a b c + b^{2}\right )} d^{2} x^{4} + 8 \, a^{2} c^{4} + 16 \, a b c^{3} + 8 \, b^{2} c^{2} + 8 \, {\left (2 \, a^{2} c^{3} + 3 \, a b c^{2} + b^{2} c\right )} d x^{2} - 4 \, {\left ({\left (2 \, a c^{2} + b c\right )} d^{2} x^{4} + 2 \, a c^{4} + 2 \, b c^{3} + {\left (4 \, a c^{3} + 3 \, b c^{2}\right )} d x^{2}\right )} \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}} \sqrt {\frac {a c + b}{c}}}{x^{4}}\right ), -\frac {1}{2} \, \sqrt {-a} \arctan \left (\frac {{\left (2 \, a d x^{2} + 2 \, a c + b\right )} \sqrt {-a} \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}}}{2 \, {\left (a^{2} d x^{2} + a^{2} c + a b\right )}}\right ) + \frac {1}{4} \, \sqrt {\frac {a c + b}{c}} \log \left (\frac {{\left (8 \, a^{2} c^{2} + 8 \, a b c + b^{2}\right )} d^{2} x^{4} + 8 \, a^{2} c^{4} + 16 \, a b c^{3} + 8 \, b^{2} c^{2} + 8 \, {\left (2 \, a^{2} c^{3} + 3 \, a b c^{2} + b^{2} c\right )} d x^{2} - 4 \, {\left ({\left (2 \, a c^{2} + b c\right )} d^{2} x^{4} + 2 \, a c^{4} + 2 \, b c^{3} + {\left (4 \, a c^{3} + 3 \, b c^{2}\right )} d x^{2}\right )} \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}} \sqrt {\frac {a c + b}{c}}}{x^{4}}\right ), \frac {1}{2} \, \sqrt {-\frac {a c + b}{c}} \arctan \left (\frac {{\left ({\left (2 \, a c + b\right )} d x^{2} + 2 \, a c^{2} + 2 \, b c\right )} \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}} \sqrt {-\frac {a c + b}{c}}}{2 \, {\left (a^{2} c^{2} + {\left (a^{2} c + a b\right )} d x^{2} + 2 \, a b c + b^{2}\right )}}\right ) + \frac {1}{4} \, \sqrt {a} \log \left (8 \, a^{2} d^{2} x^{4} + 8 \, a^{2} c^{2} + 8 \, {\left (2 \, a^{2} c + a b\right )} d x^{2} + 8 \, a b c + b^{2} + 4 \, {\left (2 \, a d^{2} x^{4} + {\left (4 \, a c + b\right )} d x^{2} + 2 \, a c^{2} + b c\right )} \sqrt {a} \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}}\right ), -\frac {1}{2} \, \sqrt {-a} \arctan \left (\frac {{\left (2 \, a d x^{2} + 2 \, a c + b\right )} \sqrt {-a} \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}}}{2 \, {\left (a^{2} d x^{2} + a^{2} c + a b\right )}}\right ) + \frac {1}{2} \, \sqrt {-\frac {a c + b}{c}} \arctan \left (\frac {{\left ({\left (2 \, a c + b\right )} d x^{2} + 2 \, a c^{2} + 2 \, b c\right )} \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}} \sqrt {-\frac {a c + b}{c}}}{2 \, {\left (a^{2} c^{2} + {\left (a^{2} c + a b\right )} d x^{2} + 2 \, a b c + b^{2}\right )}}\right )\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/(d*x^2+c))^(1/2)/x,x, algorithm="fricas")

[Out]

[1/4*sqrt(a)*log(8*a^2*d^2*x^4 + 8*a^2*c^2 + 8*(2*a^2*c + a*b)*d*x^2 + 8*a*b*c + b^2 + 4*(2*a*d^2*x^4 + (4*a*c
 + b)*d*x^2 + 2*a*c^2 + b*c)*sqrt(a)*sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c))) + 1/4*sqrt((a*c + b)/c)*log(((8*a^
2*c^2 + 8*a*b*c + b^2)*d^2*x^4 + 8*a^2*c^4 + 16*a*b*c^3 + 8*b^2*c^2 + 8*(2*a^2*c^3 + 3*a*b*c^2 + b^2*c)*d*x^2
- 4*((2*a*c^2 + b*c)*d^2*x^4 + 2*a*c^4 + 2*b*c^3 + (4*a*c^3 + 3*b*c^2)*d*x^2)*sqrt((a*d*x^2 + a*c + b)/(d*x^2
+ c))*sqrt((a*c + b)/c))/x^4), -1/2*sqrt(-a)*arctan(1/2*(2*a*d*x^2 + 2*a*c + b)*sqrt(-a)*sqrt((a*d*x^2 + a*c +
 b)/(d*x^2 + c))/(a^2*d*x^2 + a^2*c + a*b)) + 1/4*sqrt((a*c + b)/c)*log(((8*a^2*c^2 + 8*a*b*c + b^2)*d^2*x^4 +
 8*a^2*c^4 + 16*a*b*c^3 + 8*b^2*c^2 + 8*(2*a^2*c^3 + 3*a*b*c^2 + b^2*c)*d*x^2 - 4*((2*a*c^2 + b*c)*d^2*x^4 + 2
*a*c^4 + 2*b*c^3 + (4*a*c^3 + 3*b*c^2)*d*x^2)*sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c))*sqrt((a*c + b)/c))/x^4), 1
/2*sqrt(-(a*c + b)/c)*arctan(1/2*((2*a*c + b)*d*x^2 + 2*a*c^2 + 2*b*c)*sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c))*s
qrt(-(a*c + b)/c)/(a^2*c^2 + (a^2*c + a*b)*d*x^2 + 2*a*b*c + b^2)) + 1/4*sqrt(a)*log(8*a^2*d^2*x^4 + 8*a^2*c^2
 + 8*(2*a^2*c + a*b)*d*x^2 + 8*a*b*c + b^2 + 4*(2*a*d^2*x^4 + (4*a*c + b)*d*x^2 + 2*a*c^2 + b*c)*sqrt(a)*sqrt(
(a*d*x^2 + a*c + b)/(d*x^2 + c))), -1/2*sqrt(-a)*arctan(1/2*(2*a*d*x^2 + 2*a*c + b)*sqrt(-a)*sqrt((a*d*x^2 + a
*c + b)/(d*x^2 + c))/(a^2*d*x^2 + a^2*c + a*b)) + 1/2*sqrt(-(a*c + b)/c)*arctan(1/2*((2*a*c + b)*d*x^2 + 2*a*c
^2 + 2*b*c)*sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c))*sqrt(-(a*c + b)/c)/(a^2*c^2 + (a^2*c + a*b)*d*x^2 + 2*a*b*c
+ b^2))]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {\frac {a c + a d x^{2} + b}{c + d x^{2}}}}{x}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/(d*x**2+c))**(1/2)/x,x)

[Out]

Integral(sqrt((a*c + a*d*x**2 + b)/(c + d*x**2))/x, x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/(d*x^2+c))^(1/2)/x,x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Warning, integration of abs or sign assumes constant sign by intervals (correct if the argument is real):Ch
eck [abs(sa

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\sqrt {a+\frac {b}{d\,x^2+c}}}{x} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b/(c + d*x^2))^(1/2)/x,x)

[Out]

int((a + b/(c + d*x^2))^(1/2)/x, x)

________________________________________________________________________________________