3.4.22 \(\int \frac {\sqrt {a+\frac {b}{c+d x^2}}}{x^3} \, dx\) [322]

Optimal. Leaf size=104 \[ -\frac {\left (c+d x^2\right ) \sqrt {\frac {b+a c+a d x^2}{c+d x^2}}}{2 c x^2}+\frac {b d \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {\frac {b+a c+a d x^2}{c+d x^2}}}{\sqrt {b+a c}}\right )}{2 c^{3/2} \sqrt {b+a c}} \]

[Out]

1/2*b*d*arctanh(c^(1/2)*((a*d*x^2+a*c+b)/(d*x^2+c))^(1/2)/(a*c+b)^(1/2))/c^(3/2)/(a*c+b)^(1/2)-1/2*(d*x^2+c)*(
(a*d*x^2+a*c+b)/(d*x^2+c))^(1/2)/c/x^2

________________________________________________________________________________________

Rubi [A]
time = 0.13, antiderivative size = 104, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.238, Rules used = {1985, 1981, 1980, 294, 214} \begin {gather*} \frac {b d \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {\frac {a c+a d x^2+b}{c+d x^2}}}{\sqrt {a c+b}}\right )}{2 c^{3/2} \sqrt {a c+b}}-\frac {\left (c+d x^2\right ) \sqrt {\frac {a c+a d x^2+b}{c+d x^2}}}{2 c x^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b/(c + d*x^2)]/x^3,x]

[Out]

-1/2*((c + d*x^2)*Sqrt[(b + a*c + a*d*x^2)/(c + d*x^2)])/(c*x^2) + (b*d*ArcTanh[(Sqrt[c]*Sqrt[(b + a*c + a*d*x
^2)/(c + d*x^2)])/Sqrt[b + a*c]])/(2*c^(3/2)*Sqrt[b + a*c])

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 294

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^
n)^(p + 1)/(b*n*(p + 1))), x] - Dist[c^n*((m - n + 1)/(b*n*(p + 1))), Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x
], x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  !ILtQ[(m + n*(p + 1) + 1)/n, 0]
&& IntBinomialQ[a, b, c, n, m, p, x]

Rule 1980

Int[(x_)^(m_.)*(((e_.)*((a_.) + (b_.)*(x_)))/((c_) + (d_.)*(x_)))^(p_), x_Symbol] :> With[{q = Denominator[p]}
, Dist[q*e*(b*c - a*d), Subst[Int[x^(q*(p + 1) - 1)*(((-a)*e + c*x^q)^m/(b*e - d*x^q)^(m + 2)), x], x, (e*((a
+ b*x)/(c + d*x)))^(1/q)], x]] /; FreeQ[{a, b, c, d, e, m}, x] && FractionQ[p] && IntegerQ[m]

Rule 1981

Int[(x_)^(m_.)*(((e_.)*((a_.) + (b_.)*(x_)^(n_.)))/((c_) + (d_.)*(x_)^(n_.)))^(p_), x_Symbol] :> Dist[1/n, Sub
st[Int[x^(Simplify[(m + 1)/n] - 1)*(e*((a + b*x)/(c + d*x)))^p, x], x, x^n], x] /; FreeQ[{a, b, c, d, e, m, n,
 p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 1985

Int[(u_.)*((a_) + (b_.)/((c_) + (d_.)*(x_)^(n_)))^(p_), x_Symbol] :> Int[u*((b + a*c + a*d*x^n)/(c + d*x^n))^p
, x] /; FreeQ[{a, b, c, d, n, p}, x]

Rubi steps

\begin {align*} \int \frac {\sqrt {a+\frac {b}{c+d x^2}}}{x^3} \, dx &=\frac {\left (\sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}\right ) \int \frac {\sqrt {b+a \left (c+d x^2\right )}}{x^3 \sqrt {c+d x^2}} \, dx}{\sqrt {b+a \left (c+d x^2\right )}}\\ &=\frac {\left (\sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}\right ) \int \frac {\sqrt {b+a c+a d x^2}}{x^3 \sqrt {c+d x^2}} \, dx}{\sqrt {b+a \left (c+d x^2\right )}}\\ &=\frac {\left (\sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}\right ) \text {Subst}\left (\int \frac {\sqrt {b+a c+a d x}}{x^2 \sqrt {c+d x}} \, dx,x,x^2\right )}{2 \sqrt {b+a \left (c+d x^2\right )}}\\ &=-\frac {\left (c+d x^2\right ) \sqrt {a+\frac {b}{c+d x^2}}}{2 c x^2}-\frac {\left (b d \sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}\right ) \text {Subst}\left (\int \frac {1}{x \sqrt {c+d x} \sqrt {b+a c+a d x}} \, dx,x,x^2\right )}{4 c \sqrt {b+a \left (c+d x^2\right )}}\\ &=-\frac {\left (c+d x^2\right ) \sqrt {a+\frac {b}{c+d x^2}}}{2 c x^2}-\frac {\left (b d \sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}\right ) \text {Subst}\left (\int \frac {1}{-c-(-b-a c) x^2} \, dx,x,\frac {\sqrt {c+d x^2}}{\sqrt {b+a \left (c+d x^2\right )}}\right )}{2 c \sqrt {b+a \left (c+d x^2\right )}}\\ &=-\frac {\left (c+d x^2\right ) \sqrt {a+\frac {b}{c+d x^2}}}{2 c x^2}+\frac {b d \sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}} \tanh ^{-1}\left (\frac {\sqrt {b+a c} \sqrt {c+d x^2}}{\sqrt {c} \sqrt {b+a \left (c+d x^2\right )}}\right )}{2 c^{3/2} \sqrt {b+a c} \sqrt {b+a \left (c+d x^2\right )}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.21, size = 110, normalized size = 1.06 \begin {gather*} -\frac {\left (c+d x^2\right ) \sqrt {\frac {b+a c+a d x^2}{c+d x^2}}}{2 c x^2}-\frac {b d \tan ^{-1}\left (\frac {\sqrt {c} \sqrt {\frac {b+a c+a d x^2}{c+d x^2}}}{\sqrt {-b-a c}}\right )}{2 c^{3/2} \sqrt {-b-a c}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + b/(c + d*x^2)]/x^3,x]

[Out]

-1/2*((c + d*x^2)*Sqrt[(b + a*c + a*d*x^2)/(c + d*x^2)])/(c*x^2) - (b*d*ArcTan[(Sqrt[c]*Sqrt[(b + a*c + a*d*x^
2)/(c + d*x^2)])/Sqrt[-b - a*c]])/(2*c^(3/2)*Sqrt[-b - a*c])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(453\) vs. \(2(88)=176\).
time = 0.08, size = 454, normalized size = 4.37

method result size
risch \(-\frac {\left (d \,x^{2}+c \right ) \sqrt {\frac {a d \,x^{2}+a c +b}{d \,x^{2}+c}}}{2 c \,x^{2}}+\frac {b d \ln \left (\frac {2 c^{2} a +2 b c +\left (2 a c d +b d \right ) x^{2}+2 \sqrt {c^{2} a +b c}\, \sqrt {c^{2} a +b c +\left (2 a c d +b d \right ) x^{2}+a \,d^{2} x^{4}}}{x^{2}}\right ) \sqrt {\frac {a d \,x^{2}+a c +b}{d \,x^{2}+c}}\, \sqrt {\left (d \,x^{2}+c \right ) \left (a d \,x^{2}+a c +b \right )}}{4 c \sqrt {c^{2} a +b c}\, \left (a d \,x^{2}+a c +b \right )}\) \(189\)
default \(-\frac {\sqrt {\frac {a d \,x^{2}+a c +b}{d \,x^{2}+c}}\, \left (d \,x^{2}+c \right ) \left (-2 a \,d^{2} \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}\, x^{4} \sqrt {c^{2} a +b c}-\ln \left (\frac {2 a c d \,x^{2}+b d \,x^{2}+2 c^{2} a +2 \sqrt {c^{2} a +b c}\, \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}+2 b c}{x^{2}}\right ) a b \,c^{2} d \,x^{2}-4 \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}\, a c d \,x^{2} \sqrt {c^{2} a +b c}-\ln \left (\frac {2 a c d \,x^{2}+b d \,x^{2}+2 c^{2} a +2 \sqrt {c^{2} a +b c}\, \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}+2 b c}{x^{2}}\right ) b^{2} c d \,x^{2}-2 \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}\, b d \,x^{2} \sqrt {c^{2} a +b c}+2 \left (a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c \right )^{\frac {3}{2}} \sqrt {c^{2} a +b c}\right )}{4 \sqrt {\left (d \,x^{2}+c \right ) \left (a d \,x^{2}+a c +b \right )}\, c^{2} \left (a c +b \right ) x^{2} \sqrt {c^{2} a +b c}}\) \(454\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b/(d*x^2+c))^(1/2)/x^3,x,method=_RETURNVERBOSE)

[Out]

-1/4*((a*d*x^2+a*c+b)/(d*x^2+c))^(1/2)*(d*x^2+c)*(-2*a*d^2*(a*d^2*x^4+2*a*c*d*x^2+b*d*x^2+a*c^2+b*c)^(1/2)*x^4
*(a*c^2+b*c)^(1/2)-ln((2*a*c*d*x^2+b*d*x^2+2*c^2*a+2*(a*c^2+b*c)^(1/2)*(a*d^2*x^4+2*a*c*d*x^2+b*d*x^2+a*c^2+b*
c)^(1/2)+2*b*c)/x^2)*a*b*c^2*d*x^2-4*(a*d^2*x^4+2*a*c*d*x^2+b*d*x^2+a*c^2+b*c)^(1/2)*a*c*d*x^2*(a*c^2+b*c)^(1/
2)-ln((2*a*c*d*x^2+b*d*x^2+2*c^2*a+2*(a*c^2+b*c)^(1/2)*(a*d^2*x^4+2*a*c*d*x^2+b*d*x^2+a*c^2+b*c)^(1/2)+2*b*c)/
x^2)*b^2*c*d*x^2-2*(a*d^2*x^4+2*a*c*d*x^2+b*d*x^2+a*c^2+b*c)^(1/2)*b*d*x^2*(a*c^2+b*c)^(1/2)+2*(a*d^2*x^4+2*a*
c*d*x^2+b*d*x^2+a*c^2+b*c)^(3/2)*(a*c^2+b*c)^(1/2))/((d*x^2+c)*(a*d*x^2+a*c+b))^(1/2)/c^2/(a*c+b)/x^2/(a*c^2+b
*c)^(1/2)

________________________________________________________________________________________

Maxima [A]
time = 0.50, size = 156, normalized size = 1.50 \begin {gather*} -\frac {b d \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}}}{2 \, {\left (a c^{2} + b c - \frac {{\left (a d x^{2} + a c + b\right )} c^{2}}{d x^{2} + c}\right )}} - \frac {b d \log \left (\frac {c \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}} - \sqrt {{\left (a c + b\right )} c}}{c \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}} + \sqrt {{\left (a c + b\right )} c}}\right )}{4 \, \sqrt {{\left (a c + b\right )} c} c} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/(d*x^2+c))^(1/2)/x^3,x, algorithm="maxima")

[Out]

-1/2*b*d*sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c))/(a*c^2 + b*c - (a*d*x^2 + a*c + b)*c^2/(d*x^2 + c)) - 1/4*b*d*l
og((c*sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c)) - sqrt((a*c + b)*c))/(c*sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c)) + sq
rt((a*c + b)*c)))/(sqrt((a*c + b)*c)*c)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 188 vs. \(2 (88) = 176\).
time = 0.39, size = 433, normalized size = 4.16 \begin {gather*} \left [\frac {\sqrt {a c^{2} + b c} b d x^{2} \log \left (\frac {{\left (8 \, a^{2} c^{2} + 8 \, a b c + b^{2}\right )} d^{2} x^{4} + 8 \, a^{2} c^{4} + 16 \, a b c^{3} + 8 \, b^{2} c^{2} + 8 \, {\left (2 \, a^{2} c^{3} + 3 \, a b c^{2} + b^{2} c\right )} d x^{2} + 4 \, {\left ({\left (2 \, a c + b\right )} d^{2} x^{4} + 2 \, a c^{3} + {\left (4 \, a c^{2} + 3 \, b c\right )} d x^{2} + 2 \, b c^{2}\right )} \sqrt {a c^{2} + b c} \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}}}{x^{4}}\right ) - 4 \, {\left (a c^{3} + {\left (a c^{2} + b c\right )} d x^{2} + b c^{2}\right )} \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}}}{8 \, {\left (a c^{3} + b c^{2}\right )} x^{2}}, -\frac {\sqrt {-a c^{2} - b c} b d x^{2} \arctan \left (\frac {{\left ({\left (2 \, a c + b\right )} d x^{2} + 2 \, a c^{2} + 2 \, b c\right )} \sqrt {-a c^{2} - b c} \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}}}{2 \, {\left (a^{2} c^{3} + 2 \, a b c^{2} + {\left (a^{2} c^{2} + a b c\right )} d x^{2} + b^{2} c\right )}}\right ) + 2 \, {\left (a c^{3} + {\left (a c^{2} + b c\right )} d x^{2} + b c^{2}\right )} \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}}}{4 \, {\left (a c^{3} + b c^{2}\right )} x^{2}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/(d*x^2+c))^(1/2)/x^3,x, algorithm="fricas")

[Out]

[1/8*(sqrt(a*c^2 + b*c)*b*d*x^2*log(((8*a^2*c^2 + 8*a*b*c + b^2)*d^2*x^4 + 8*a^2*c^4 + 16*a*b*c^3 + 8*b^2*c^2
+ 8*(2*a^2*c^3 + 3*a*b*c^2 + b^2*c)*d*x^2 + 4*((2*a*c + b)*d^2*x^4 + 2*a*c^3 + (4*a*c^2 + 3*b*c)*d*x^2 + 2*b*c
^2)*sqrt(a*c^2 + b*c)*sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c)))/x^4) - 4*(a*c^3 + (a*c^2 + b*c)*d*x^2 + b*c^2)*sq
rt((a*d*x^2 + a*c + b)/(d*x^2 + c)))/((a*c^3 + b*c^2)*x^2), -1/4*(sqrt(-a*c^2 - b*c)*b*d*x^2*arctan(1/2*((2*a*
c + b)*d*x^2 + 2*a*c^2 + 2*b*c)*sqrt(-a*c^2 - b*c)*sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c))/(a^2*c^3 + 2*a*b*c^2
+ (a^2*c^2 + a*b*c)*d*x^2 + b^2*c)) + 2*(a*c^3 + (a*c^2 + b*c)*d*x^2 + b*c^2)*sqrt((a*d*x^2 + a*c + b)/(d*x^2
+ c)))/((a*c^3 + b*c^2)*x^2)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {\frac {a c + a d x^{2} + b}{c + d x^{2}}}}{x^{3}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/(d*x**2+c))**(1/2)/x**3,x)

[Out]

Integral(sqrt((a*c + a*d*x**2 + b)/(c + d*x**2))/x**3, x)

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 281 vs. \(2 (88) = 176\).
time = 5.76, size = 281, normalized size = 2.70 \begin {gather*} -\frac {1}{2} \, {\left (\frac {b d \arctan \left (-\frac {\sqrt {a d^{2}} x^{2} - \sqrt {a d^{2} x^{4} + 2 \, a c d x^{2} + b d x^{2} + a c^{2} + b c}}{\sqrt {-a c^{2} - b c}}\right )}{\sqrt {-a c^{2} - b c} c} + \frac {2 \, a^{\frac {3}{2}} c^{2} {\left | d \right |} + 2 \, {\left (\sqrt {a d^{2}} x^{2} - \sqrt {a d^{2} x^{4} + 2 \, a c d x^{2} + b d x^{2} + a c^{2} + b c}\right )} a c d + 2 \, \sqrt {a} b c {\left | d \right |} + {\left (\sqrt {a d^{2}} x^{2} - \sqrt {a d^{2} x^{4} + 2 \, a c d x^{2} + b d x^{2} + a c^{2} + b c}\right )} b d}{{\left (a c^{2} - {\left (\sqrt {a d^{2}} x^{2} - \sqrt {a d^{2} x^{4} + 2 \, a c d x^{2} + b d x^{2} + a c^{2} + b c}\right )}^{2} + b c\right )} c}\right )} \mathrm {sgn}\left (d x^{2} + c\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b/(d*x^2+c))^(1/2)/x^3,x, algorithm="giac")

[Out]

-1/2*(b*d*arctan(-(sqrt(a*d^2)*x^2 - sqrt(a*d^2*x^4 + 2*a*c*d*x^2 + b*d*x^2 + a*c^2 + b*c))/sqrt(-a*c^2 - b*c)
)/(sqrt(-a*c^2 - b*c)*c) + (2*a^(3/2)*c^2*abs(d) + 2*(sqrt(a*d^2)*x^2 - sqrt(a*d^2*x^4 + 2*a*c*d*x^2 + b*d*x^2
 + a*c^2 + b*c))*a*c*d + 2*sqrt(a)*b*c*abs(d) + (sqrt(a*d^2)*x^2 - sqrt(a*d^2*x^4 + 2*a*c*d*x^2 + b*d*x^2 + a*
c^2 + b*c))*b*d)/((a*c^2 - (sqrt(a*d^2)*x^2 - sqrt(a*d^2*x^4 + 2*a*c*d*x^2 + b*d*x^2 + a*c^2 + b*c))^2 + b*c)*
c))*sgn(d*x^2 + c)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\sqrt {a+\frac {b}{d\,x^2+c}}}{x^3} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b/(c + d*x^2))^(1/2)/x^3,x)

[Out]

int((a + b/(c + d*x^2))^(1/2)/x^3, x)

________________________________________________________________________________________