3.4.57 \(\int \frac {x}{(a+\frac {b}{c+d x^2})^{3/2}} \, dx\) [357]

Optimal. Leaf size=100 \[ \frac {3 b}{2 a^2 d \sqrt {a+\frac {b}{c+d x^2}}}+\frac {c+d x^2}{2 a d \sqrt {a+\frac {b}{c+d x^2}}}-\frac {3 b \tanh ^{-1}\left (\frac {\sqrt {a+\frac {b}{c+d x^2}}}{\sqrt {a}}\right )}{2 a^{5/2} d} \]

[Out]

-3/2*b*arctanh((a+b/(d*x^2+c))^(1/2)/a^(1/2))/a^(5/2)/d+3/2*b/a^2/d/(a+b/(d*x^2+c))^(1/2)+1/2*(d*x^2+c)/a/d/(a
+b/(d*x^2+c))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.05, antiderivative size = 100, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.316, Rules used = {1605, 248, 44, 53, 65, 214} \begin {gather*} -\frac {3 b \tanh ^{-1}\left (\frac {\sqrt {a+\frac {b}{c+d x^2}}}{\sqrt {a}}\right )}{2 a^{5/2} d}+\frac {3 b}{2 a^2 d \sqrt {a+\frac {b}{c+d x^2}}}+\frac {c+d x^2}{2 a d \sqrt {a+\frac {b}{c+d x^2}}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[x/(a + b/(c + d*x^2))^(3/2),x]

[Out]

(3*b)/(2*a^2*d*Sqrt[a + b/(c + d*x^2)]) + (c + d*x^2)/(2*a*d*Sqrt[a + b/(c + d*x^2)]) - (3*b*ArcTanh[Sqrt[a +
b/(c + d*x^2)]/Sqrt[a]])/(2*a^(5/2)*d)

Rule 44

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^(n + 1
)/((b*c - a*d)*(m + 1))), x] - Dist[d*((m + n + 2)/((b*c - a*d)*(m + 1))), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, -1] &&  !IntegerQ[n] && LtQ[n, 0]

Rule 53

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^(n + 1
)/((b*c - a*d)*(m + 1))), x] - Dist[d*((m + n + 2)/((b*c - a*d)*(m + 1))), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0] || (NeQ[
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d, m, n, x]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 248

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Subst[Int[(a + b/x^n)^p/x^2, x], x, 1/x] /; FreeQ[{a, b, p},
x] && ILtQ[n, 0]

Rule 1605

Int[((a_.) + (b_.)*(Pq_)^(n_.))^(p_.)*(Qr_), x_Symbol] :> With[{q = Expon[Pq, x], r = Expon[Qr, x]}, Dist[Coef
f[Qr, x, r]/(q*Coeff[Pq, x, q]), Subst[Int[(a + b*x^n)^p, x], x, Pq], x] /; EqQ[r, q - 1] && EqQ[Coeff[Qr, x,
r]*D[Pq, x], q*Coeff[Pq, x, q]*Qr]] /; FreeQ[{a, b, n, p}, x] && PolyQ[Pq, x] && PolyQ[Qr, x]

Rubi steps

\begin {align*} \int \frac {x}{\left (a+\frac {b}{c+d x^2}\right )^{3/2}} \, dx &=\frac {\text {Subst}\left (\int \frac {1}{\left (a+\frac {b}{x}\right )^{3/2}} \, dx,x,c+d x^2\right )}{2 d}\\ &=-\frac {\text {Subst}\left (\int \frac {1}{x^2 (a+b x)^{3/2}} \, dx,x,\frac {1}{c+d x^2}\right )}{2 d}\\ &=-\frac {c+d x^2}{a d \sqrt {a+\frac {b}{c+d x^2}}}-\frac {3 \text {Subst}\left (\int \frac {1}{x^2 \sqrt {a+b x}} \, dx,x,\frac {1}{c+d x^2}\right )}{2 a d}\\ &=-\frac {c+d x^2}{a d \sqrt {a+\frac {b}{c+d x^2}}}+\frac {3 \left (c+d x^2\right ) \sqrt {a+\frac {b}{c+d x^2}}}{2 a^2 d}+\frac {(3 b) \text {Subst}\left (\int \frac {1}{x \sqrt {a+b x}} \, dx,x,\frac {1}{c+d x^2}\right )}{4 a^2 d}\\ &=-\frac {c+d x^2}{a d \sqrt {a+\frac {b}{c+d x^2}}}+\frac {3 \left (c+d x^2\right ) \sqrt {a+\frac {b}{c+d x^2}}}{2 a^2 d}+\frac {3 \text {Subst}\left (\int \frac {1}{-\frac {a}{b}+\frac {x^2}{b}} \, dx,x,\sqrt {a+\frac {b}{c+d x^2}}\right )}{2 a^2 d}\\ &=-\frac {c+d x^2}{a d \sqrt {a+\frac {b}{c+d x^2}}}+\frac {3 \left (c+d x^2\right ) \sqrt {a+\frac {b}{c+d x^2}}}{2 a^2 d}-\frac {3 b \tanh ^{-1}\left (\frac {\sqrt {a+\frac {b}{c+d x^2}}}{\sqrt {a}}\right )}{2 a^{5/2} d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.17, size = 114, normalized size = 1.14 \begin {gather*} \frac {\left (c+d x^2\right ) \sqrt {\frac {b+a c+a d x^2}{c+d x^2}} \left (3 b+a c+a d x^2\right )}{2 a^2 d \left (b+a c+a d x^2\right )}-\frac {3 b \tanh ^{-1}\left (\frac {\sqrt {\frac {b+a c+a d x^2}{c+d x^2}}}{\sqrt {a}}\right )}{2 a^{5/2} d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[x/(a + b/(c + d*x^2))^(3/2),x]

[Out]

((c + d*x^2)*Sqrt[(b + a*c + a*d*x^2)/(c + d*x^2)]*(3*b + a*c + a*d*x^2))/(2*a^2*d*(b + a*c + a*d*x^2)) - (3*b
*ArcTanh[Sqrt[(b + a*c + a*d*x^2)/(c + d*x^2)]/Sqrt[a]])/(2*a^(5/2)*d)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(477\) vs. \(2(84)=168\).
time = 0.27, size = 478, normalized size = 4.78

method result size
risch \(\frac {a d \,x^{2}+a c +b}{2 d \,a^{2} \sqrt {\frac {a d \,x^{2}+a c +b}{d \,x^{2}+c}}}+\frac {\left (-\frac {3 b \ln \left (\frac {a c d +\frac {1}{2} b d +a \,d^{2} x^{2}}{\sqrt {a \,d^{2}}}+\sqrt {c^{2} a +b c +\left (2 a c d +b d \right ) x^{2}+a \,d^{2} x^{4}}\right )}{4 a^{2} \sqrt {a \,d^{2}}}+\frac {b \,x^{2}}{a^{2} \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}}+\frac {b c}{a^{2} d \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}}\right ) \sqrt {\left (d \,x^{2}+c \right ) \left (a d \,x^{2}+a c +b \right )}}{\sqrt {\frac {a d \,x^{2}+a c +b}{d \,x^{2}+c}}\, \left (d \,x^{2}+c \right )}\) \(254\)
derivativedivides \(-\frac {\sqrt {\frac {a \left (d \,x^{2}+c \right )+b}{d \,x^{2}+c}}\, \left (d \,x^{2}+c \right ) \left (-6 \sqrt {\left (d \,x^{2}+c \right ) \left (a \left (d \,x^{2}+c \right )+b \right )}\, a^{\frac {5}{2}} \left (d \,x^{2}+c \right )^{2}+3 \ln \left (\frac {2 \sqrt {\left (d \,x^{2}+c \right ) \left (a \left (d \,x^{2}+c \right )+b \right )}\, \sqrt {a}+2 a \left (d \,x^{2}+c \right )+b}{2 \sqrt {a}}\right ) a^{2} b \left (d \,x^{2}+c \right )^{2}+4 a^{\frac {3}{2}} \left (\left (d \,x^{2}+c \right ) \left (a \left (d \,x^{2}+c \right )+b \right )\right )^{\frac {3}{2}}-12 \sqrt {\left (d \,x^{2}+c \right ) \left (a \left (d \,x^{2}+c \right )+b \right )}\, a^{\frac {3}{2}} b \left (d \,x^{2}+c \right )+6 \ln \left (\frac {2 \sqrt {\left (d \,x^{2}+c \right ) \left (a \left (d \,x^{2}+c \right )+b \right )}\, \sqrt {a}+2 a \left (d \,x^{2}+c \right )+b}{2 \sqrt {a}}\right ) a \,b^{2} \left (d \,x^{2}+c \right )-6 \sqrt {\left (d \,x^{2}+c \right ) \left (a \left (d \,x^{2}+c \right )+b \right )}\, \sqrt {a}\, b^{2}+3 \ln \left (\frac {2 \sqrt {\left (d \,x^{2}+c \right ) \left (a \left (d \,x^{2}+c \right )+b \right )}\, \sqrt {a}+2 a \left (d \,x^{2}+c \right )+b}{2 \sqrt {a}}\right ) b^{3}\right )}{4 d \,a^{\frac {5}{2}} \sqrt {\left (d \,x^{2}+c \right ) \left (a \left (d \,x^{2}+c \right )+b \right )}\, \left (a \left (d \,x^{2}+c \right )+b \right )^{2}}\) \(363\)
default \(\frac {\sqrt {\frac {a d \,x^{2}+a c +b}{d \,x^{2}+c}}\, \left (d \,x^{2}+c \right ) \left (-3 \ln \left (\frac {2 a \,d^{2} x^{2}+2 a c d +2 \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}\, \sqrt {a \,d^{2}}+b d}{2 \sqrt {a \,d^{2}}}\right ) a b \,d^{2} x^{2}+2 \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}\, \sqrt {a \,d^{2}}\, a d \,x^{2}-3 \ln \left (\frac {2 a \,d^{2} x^{2}+2 a c d +2 \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}\, \sqrt {a \,d^{2}}+b d}{2 \sqrt {a \,d^{2}}}\right ) a b c d -3 \ln \left (\frac {2 a \,d^{2} x^{2}+2 a c d +2 \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}\, \sqrt {a \,d^{2}}+b d}{2 \sqrt {a \,d^{2}}}\right ) b^{2} d +2 \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}\, \sqrt {a \,d^{2}}\, a c +4 \sqrt {a \,d^{2}}\, \sqrt {\left (d \,x^{2}+c \right ) \left (a d \,x^{2}+a c +b \right )}\, b +2 \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}\, \sqrt {a \,d^{2}}\, b \right )}{4 a^{2} d \sqrt {\left (d \,x^{2}+c \right ) \left (a d \,x^{2}+a c +b \right )}\, \sqrt {a \,d^{2}}\, \left (a d \,x^{2}+a c +b \right )}\) \(478\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(a+b/(d*x^2+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/4*((a*d*x^2+a*c+b)/(d*x^2+c))^(1/2)*(d*x^2+c)/a^2/d*(-3*ln(1/2*(2*a*d^2*x^2+2*a*c*d+2*(a*d^2*x^4+2*a*c*d*x^2
+b*d*x^2+a*c^2+b*c)^(1/2)*(a*d^2)^(1/2)+b*d)/(a*d^2)^(1/2))*a*b*d^2*x^2+2*(a*d^2*x^4+2*a*c*d*x^2+b*d*x^2+a*c^2
+b*c)^(1/2)*(a*d^2)^(1/2)*a*d*x^2-3*ln(1/2*(2*a*d^2*x^2+2*a*c*d+2*(a*d^2*x^4+2*a*c*d*x^2+b*d*x^2+a*c^2+b*c)^(1
/2)*(a*d^2)^(1/2)+b*d)/(a*d^2)^(1/2))*a*b*c*d-3*ln(1/2*(2*a*d^2*x^2+2*a*c*d+2*(a*d^2*x^4+2*a*c*d*x^2+b*d*x^2+a
*c^2+b*c)^(1/2)*(a*d^2)^(1/2)+b*d)/(a*d^2)^(1/2))*b^2*d+2*(a*d^2*x^4+2*a*c*d*x^2+b*d*x^2+a*c^2+b*c)^(1/2)*(a*d
^2)^(1/2)*a*c+4*(a*d^2)^(1/2)*((d*x^2+c)*(a*d*x^2+a*c+b))^(1/2)*b+2*(a*d^2*x^4+2*a*c*d*x^2+b*d*x^2+a*c^2+b*c)^
(1/2)*(a*d^2)^(1/2)*b)/((d*x^2+c)*(a*d*x^2+a*c+b))^(1/2)/(a*d^2)^(1/2)/(a*d*x^2+a*c+b)

________________________________________________________________________________________

Maxima [A]
time = 0.53, size = 161, normalized size = 1.61 \begin {gather*} \frac {2 \, a b - \frac {3 \, {\left (a d x^{2} + a c + b\right )} b}{d x^{2} + c}}{2 \, {\left (a^{3} d \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}} - a^{2} d \left (\frac {a d x^{2} + a c + b}{d x^{2} + c}\right )^{\frac {3}{2}}\right )}} + \frac {3 \, b \log \left (-\frac {\sqrt {a} - \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}}}{\sqrt {a} + \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}}}\right )}{4 \, a^{\frac {5}{2}} d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(a+b/(d*x^2+c))^(3/2),x, algorithm="maxima")

[Out]

1/2*(2*a*b - 3*(a*d*x^2 + a*c + b)*b/(d*x^2 + c))/(a^3*d*sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c)) - a^2*d*((a*d*x
^2 + a*c + b)/(d*x^2 + c))^(3/2)) + 3/4*b*log(-(sqrt(a) - sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c)))/(sqrt(a) + sq
rt((a*d*x^2 + a*c + b)/(d*x^2 + c))))/(a^(5/2)*d)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 178 vs. \(2 (84) = 168\).
time = 0.40, size = 395, normalized size = 3.95 \begin {gather*} \left [\frac {3 \, {\left (a b d x^{2} + a b c + b^{2}\right )} \sqrt {a} \log \left (8 \, a^{2} d^{2} x^{4} + 8 \, a^{2} c^{2} + 8 \, {\left (2 \, a^{2} c + a b\right )} d x^{2} + 8 \, a b c + b^{2} - 4 \, {\left (2 \, a d^{2} x^{4} + {\left (4 \, a c + b\right )} d x^{2} + 2 \, a c^{2} + b c\right )} \sqrt {a} \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}}\right ) + 4 \, {\left (a^{2} d^{2} x^{4} + a^{2} c^{2} + {\left (2 \, a^{2} c + 3 \, a b\right )} d x^{2} + 3 \, a b c\right )} \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}}}{8 \, {\left (a^{4} d^{2} x^{2} + {\left (a^{4} c + a^{3} b\right )} d\right )}}, \frac {3 \, {\left (a b d x^{2} + a b c + b^{2}\right )} \sqrt {-a} \arctan \left (\frac {{\left (2 \, a d x^{2} + 2 \, a c + b\right )} \sqrt {-a} \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}}}{2 \, {\left (a^{2} d x^{2} + a^{2} c + a b\right )}}\right ) + 2 \, {\left (a^{2} d^{2} x^{4} + a^{2} c^{2} + {\left (2 \, a^{2} c + 3 \, a b\right )} d x^{2} + 3 \, a b c\right )} \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}}}{4 \, {\left (a^{4} d^{2} x^{2} + {\left (a^{4} c + a^{3} b\right )} d\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(a+b/(d*x^2+c))^(3/2),x, algorithm="fricas")

[Out]

[1/8*(3*(a*b*d*x^2 + a*b*c + b^2)*sqrt(a)*log(8*a^2*d^2*x^4 + 8*a^2*c^2 + 8*(2*a^2*c + a*b)*d*x^2 + 8*a*b*c +
b^2 - 4*(2*a*d^2*x^4 + (4*a*c + b)*d*x^2 + 2*a*c^2 + b*c)*sqrt(a)*sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c))) + 4*(
a^2*d^2*x^4 + a^2*c^2 + (2*a^2*c + 3*a*b)*d*x^2 + 3*a*b*c)*sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c)))/(a^4*d^2*x^2
 + (a^4*c + a^3*b)*d), 1/4*(3*(a*b*d*x^2 + a*b*c + b^2)*sqrt(-a)*arctan(1/2*(2*a*d*x^2 + 2*a*c + b)*sqrt(-a)*s
qrt((a*d*x^2 + a*c + b)/(d*x^2 + c))/(a^2*d*x^2 + a^2*c + a*b)) + 2*(a^2*d^2*x^4 + a^2*c^2 + (2*a^2*c + 3*a*b)
*d*x^2 + 3*a*b*c)*sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c)))/(a^4*d^2*x^2 + (a^4*c + a^3*b)*d)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {x}{\left (\frac {a c + a d x^{2} + b}{c + d x^{2}}\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(a+b/(d*x**2+c))**(3/2),x)

[Out]

Integral(x/((a*c + a*d*x**2 + b)/(c + d*x**2))**(3/2), x)

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 449 vs. \(2 (84) = 168\).
time = 4.84, size = 449, normalized size = 4.49 \begin {gather*} \frac {b \log \left ({\left | -2 \, a^{\frac {7}{2}} c^{3} d - 6 \, {\left (\sqrt {a d^{2}} x^{2} - \sqrt {a d^{2} x^{4} + 2 \, a c d x^{2} + b d x^{2} + a c^{2} + b c}\right )} a^{3} c^{2} {\left | d \right |} - 6 \, {\left (\sqrt {a d^{2}} x^{2} - \sqrt {a d^{2} x^{4} + 2 \, a c d x^{2} + b d x^{2} + a c^{2} + b c}\right )}^{2} a^{\frac {5}{2}} c d - 5 \, a^{\frac {5}{2}} b c^{2} d - 2 \, {\left (\sqrt {a d^{2}} x^{2} - \sqrt {a d^{2} x^{4} + 2 \, a c d x^{2} + b d x^{2} + a c^{2} + b c}\right )}^{3} a^{2} {\left | d \right |} - 10 \, {\left (\sqrt {a d^{2}} x^{2} - \sqrt {a d^{2} x^{4} + 2 \, a c d x^{2} + b d x^{2} + a c^{2} + b c}\right )} a^{2} b c {\left | d \right |} - 5 \, {\left (\sqrt {a d^{2}} x^{2} - \sqrt {a d^{2} x^{4} + 2 \, a c d x^{2} + b d x^{2} + a c^{2} + b c}\right )}^{2} a^{\frac {3}{2}} b d - 4 \, a^{\frac {3}{2}} b^{2} c d - 4 \, {\left (\sqrt {a d^{2}} x^{2} - \sqrt {a d^{2} x^{4} + 2 \, a c d x^{2} + b d x^{2} + a c^{2} + b c}\right )} a b^{2} {\left | d \right |} - \sqrt {a} b^{3} d \right |}\right )}{4 \, a^{\frac {5}{2}} {\left | d \right |} \mathrm {sgn}\left (d x^{2} + c\right )} + \frac {\sqrt {a d^{2} x^{4} + 2 \, a c d x^{2} + b d x^{2} + a c^{2} + b c}}{2 \, a^{2} d \mathrm {sgn}\left (d x^{2} + c\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x/(a+b/(d*x^2+c))^(3/2),x, algorithm="giac")

[Out]

1/4*b*log(abs(-2*a^(7/2)*c^3*d - 6*(sqrt(a*d^2)*x^2 - sqrt(a*d^2*x^4 + 2*a*c*d*x^2 + b*d*x^2 + a*c^2 + b*c))*a
^3*c^2*abs(d) - 6*(sqrt(a*d^2)*x^2 - sqrt(a*d^2*x^4 + 2*a*c*d*x^2 + b*d*x^2 + a*c^2 + b*c))^2*a^(5/2)*c*d - 5*
a^(5/2)*b*c^2*d - 2*(sqrt(a*d^2)*x^2 - sqrt(a*d^2*x^4 + 2*a*c*d*x^2 + b*d*x^2 + a*c^2 + b*c))^3*a^2*abs(d) - 1
0*(sqrt(a*d^2)*x^2 - sqrt(a*d^2*x^4 + 2*a*c*d*x^2 + b*d*x^2 + a*c^2 + b*c))*a^2*b*c*abs(d) - 5*(sqrt(a*d^2)*x^
2 - sqrt(a*d^2*x^4 + 2*a*c*d*x^2 + b*d*x^2 + a*c^2 + b*c))^2*a^(3/2)*b*d - 4*a^(3/2)*b^2*c*d - 4*(sqrt(a*d^2)*
x^2 - sqrt(a*d^2*x^4 + 2*a*c*d*x^2 + b*d*x^2 + a*c^2 + b*c))*a*b^2*abs(d) - sqrt(a)*b^3*d))/(a^(5/2)*abs(d)*sg
n(d*x^2 + c)) + 1/2*sqrt(a*d^2*x^4 + 2*a*c*d*x^2 + b*d*x^2 + a*c^2 + b*c)/(a^2*d*sgn(d*x^2 + c))

________________________________________________________________________________________

Mupad [B]
time = 3.93, size = 61, normalized size = 0.61 \begin {gather*} \frac {{\left (\frac {a\,\left (d\,x^2+c\right )}{b}+1\right )}^{3/2}\,\left (d\,x^2+c\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {3}{2},\frac {5}{2};\ \frac {7}{2};\ -\frac {a\,\left (d\,x^2+c\right )}{b}\right )}{5\,d\,{\left (a+\frac {b}{d\,x^2+c}\right )}^{3/2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x/(a + b/(c + d*x^2))^(3/2),x)

[Out]

(((a*(c + d*x^2))/b + 1)^(3/2)*(c + d*x^2)*hypergeom([3/2, 5/2], 7/2, -(a*(c + d*x^2))/b))/(5*d*(a + b/(c + d*
x^2))^(3/2))

________________________________________________________________________________________