3.4.58 \(\int \frac {1}{x (a+\frac {b}{c+d x^2})^{3/2}} \, dx\) [358]

Optimal. Leaf size=134 \[ -\frac {b}{a (b+a c) \sqrt {\frac {b+a c+a d x^2}{c+d x^2}}}+\frac {\tanh ^{-1}\left (\frac {\sqrt {\frac {b+a c+a d x^2}{c+d x^2}}}{\sqrt {a}}\right )}{a^{3/2}}-\frac {c^{3/2} \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {\frac {b+a c+a d x^2}{c+d x^2}}}{\sqrt {b+a c}}\right )}{(b+a c)^{3/2}} \]

[Out]

arctanh(((a*d*x^2+a*c+b)/(d*x^2+c))^(1/2)/a^(1/2))/a^(3/2)-c^(3/2)*arctanh(c^(1/2)*((a*d*x^2+a*c+b)/(d*x^2+c))
^(1/2)/(a*c+b)^(1/2))/(a*c+b)^(3/2)-b/a/(a*c+b)/((a*d*x^2+a*c+b)/(d*x^2+c))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.23, antiderivative size = 134, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 6, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {1985, 1981, 1980, 491, 536, 214} \begin {gather*} \frac {\tanh ^{-1}\left (\frac {\sqrt {\frac {a c+a d x^2+b}{c+d x^2}}}{\sqrt {a}}\right )}{a^{3/2}}-\frac {c^{3/2} \tanh ^{-1}\left (\frac {\sqrt {c} \sqrt {\frac {a c+a d x^2+b}{c+d x^2}}}{\sqrt {a c+b}}\right )}{(a c+b)^{3/2}}-\frac {b}{a (a c+b) \sqrt {\frac {a c+a d x^2+b}{c+d x^2}}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(x*(a + b/(c + d*x^2))^(3/2)),x]

[Out]

-(b/(a*(b + a*c)*Sqrt[(b + a*c + a*d*x^2)/(c + d*x^2)])) + ArcTanh[Sqrt[(b + a*c + a*d*x^2)/(c + d*x^2)]/Sqrt[
a]]/a^(3/2) - (c^(3/2)*ArcTanh[(Sqrt[c]*Sqrt[(b + a*c + a*d*x^2)/(c + d*x^2)])/Sqrt[b + a*c]])/(b + a*c)^(3/2)

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 491

Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(e*x)^(m
+ 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(a*c*e*(m + 1))), x] - Dist[1/(a*c*e^n*(m + 1)), Int[(e*x)^(m +
n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[(b*c + a*d)*(m + n + 1) + n*(b*c*p + a*d*q) + b*d*(m + n*(p + q + 2) + 1)*
x^n, x], x], x] /; FreeQ[{a, b, c, d, e, p, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[m, -1] && IntBino
mialQ[a, b, c, d, e, m, n, p, q, x]

Rule 536

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*((c_) + (d_.)*(x_)^(n_))), x_Symbol] :> Dist[(b*e - a*f
)/(b*c - a*d), Int[1/(a + b*x^n), x], x] - Dist[(d*e - c*f)/(b*c - a*d), Int[1/(c + d*x^n), x], x] /; FreeQ[{a
, b, c, d, e, f, n}, x]

Rule 1980

Int[(x_)^(m_.)*(((e_.)*((a_.) + (b_.)*(x_)))/((c_) + (d_.)*(x_)))^(p_), x_Symbol] :> With[{q = Denominator[p]}
, Dist[q*e*(b*c - a*d), Subst[Int[x^(q*(p + 1) - 1)*(((-a)*e + c*x^q)^m/(b*e - d*x^q)^(m + 2)), x], x, (e*((a
+ b*x)/(c + d*x)))^(1/q)], x]] /; FreeQ[{a, b, c, d, e, m}, x] && FractionQ[p] && IntegerQ[m]

Rule 1981

Int[(x_)^(m_.)*(((e_.)*((a_.) + (b_.)*(x_)^(n_.)))/((c_) + (d_.)*(x_)^(n_.)))^(p_), x_Symbol] :> Dist[1/n, Sub
st[Int[x^(Simplify[(m + 1)/n] - 1)*(e*((a + b*x)/(c + d*x)))^p, x], x, x^n], x] /; FreeQ[{a, b, c, d, e, m, n,
 p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 1985

Int[(u_.)*((a_) + (b_.)/((c_) + (d_.)*(x_)^(n_)))^(p_), x_Symbol] :> Int[u*((b + a*c + a*d*x^n)/(c + d*x^n))^p
, x] /; FreeQ[{a, b, c, d, n, p}, x]

Rubi steps

\begin {align*} \int \frac {1}{x \left (a+\frac {b}{c+d x^2}\right )^{3/2}} \, dx &=\frac {\sqrt {b+a \left (c+d x^2\right )} \int \frac {\left (c+d x^2\right )^{3/2}}{x \left (b+a \left (c+d x^2\right )\right )^{3/2}} \, dx}{\sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}}\\ &=\frac {\sqrt {b+a \left (c+d x^2\right )} \int \frac {\left (c+d x^2\right )^{3/2}}{x \left (b+a c+a d x^2\right )^{3/2}} \, dx}{\sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}}\\ &=\frac {\sqrt {b+a \left (c+d x^2\right )} \text {Subst}\left (\int \frac {(c+d x)^{3/2}}{x (b+a c+a d x)^{3/2}} \, dx,x,x^2\right )}{2 \sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}}\\ &=-\frac {b}{a (b+a c) \sqrt {a+\frac {b}{c+d x^2}}}+\frac {\sqrt {b+a \left (c+d x^2\right )} \text {Subst}\left (\int \frac {\frac {1}{2} a c^2 d+\frac {1}{2} (b+a c) d^2 x}{x \sqrt {c+d x} \sqrt {b+a c+a d x}} \, dx,x,x^2\right )}{a (b+a c) d \sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}}\\ &=-\frac {b}{a (b+a c) \sqrt {a+\frac {b}{c+d x^2}}}+\frac {\left (c^2 \sqrt {b+a \left (c+d x^2\right )}\right ) \text {Subst}\left (\int \frac {1}{x \sqrt {c+d x} \sqrt {b+a c+a d x}} \, dx,x,x^2\right )}{2 (b+a c) \sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}}+\frac {\left (d \sqrt {b+a \left (c+d x^2\right )}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {c+d x} \sqrt {b+a c+a d x}} \, dx,x,x^2\right )}{2 a \sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}}\\ &=-\frac {b}{a (b+a c) \sqrt {a+\frac {b}{c+d x^2}}}+\frac {\sqrt {b+a \left (c+d x^2\right )} \text {Subst}\left (\int \frac {1}{\sqrt {b+a x^2}} \, dx,x,\sqrt {c+d x^2}\right )}{a \sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}}+\frac {\left (c^2 \sqrt {b+a \left (c+d x^2\right )}\right ) \text {Subst}\left (\int \frac {1}{-c-(-b-a c) x^2} \, dx,x,\frac {\sqrt {c+d x^2}}{\sqrt {b+a \left (c+d x^2\right )}}\right )}{(b+a c) \sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}}\\ &=-\frac {b}{a (b+a c) \sqrt {a+\frac {b}{c+d x^2}}}-\frac {c^{3/2} \sqrt {b+a \left (c+d x^2\right )} \tanh ^{-1}\left (\frac {\sqrt {b+a c} \sqrt {c+d x^2}}{\sqrt {c} \sqrt {b+a \left (c+d x^2\right )}}\right )}{(b+a c)^{3/2} \sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}}+\frac {\sqrt {b+a \left (c+d x^2\right )} \text {Subst}\left (\int \frac {1}{1-a x^2} \, dx,x,\frac {\sqrt {c+d x^2}}{\sqrt {b+a \left (c+d x^2\right )}}\right )}{a \sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}}\\ &=-\frac {b}{a (b+a c) \sqrt {a+\frac {b}{c+d x^2}}}+\frac {\sqrt {b+a \left (c+d x^2\right )} \tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {c+d x^2}}{\sqrt {b+a \left (c+d x^2\right )}}\right )}{a^{3/2} \sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}}-\frac {c^{3/2} \sqrt {b+a \left (c+d x^2\right )} \tanh ^{-1}\left (\frac {\sqrt {b+a c} \sqrt {c+d x^2}}{\sqrt {c} \sqrt {b+a \left (c+d x^2\right )}}\right )}{(b+a c)^{3/2} \sqrt {c+d x^2} \sqrt {a+\frac {b}{c+d x^2}}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.42, size = 140, normalized size = 1.04 \begin {gather*} -\frac {b}{a (b+a c) \sqrt {\frac {b+a c+a d x^2}{c+d x^2}}}-\frac {c^{3/2} \tan ^{-1}\left (\frac {\sqrt {c} \sqrt {\frac {b+a c+a d x^2}{c+d x^2}}}{\sqrt {-b-a c}}\right )}{(-b-a c)^{3/2}}+\frac {\tanh ^{-1}\left (\frac {\sqrt {\frac {b+a c+a d x^2}{c+d x^2}}}{\sqrt {a}}\right )}{a^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(x*(a + b/(c + d*x^2))^(3/2)),x]

[Out]

-(b/(a*(b + a*c)*Sqrt[(b + a*c + a*d*x^2)/(c + d*x^2)])) - (c^(3/2)*ArcTan[(Sqrt[c]*Sqrt[(b + a*c + a*d*x^2)/(
c + d*x^2)])/Sqrt[-b - a*c]])/(-b - a*c)^(3/2) + ArcTanh[Sqrt[(b + a*c + a*d*x^2)/(c + d*x^2)]/Sqrt[a]]/a^(3/2
)

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(1013\) vs. \(2(116)=232\).
time = 0.07, size = 1014, normalized size = 7.57

method result size
default \(\frac {\sqrt {\frac {a d \,x^{2}+a c +b}{d \,x^{2}+c}}\, \left (d \,x^{2}+c \right ) \left (\ln \left (\frac {2 a \,d^{2} x^{2}+2 a c d +2 \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}\, \sqrt {a \,d^{2}}+b d}{2 \sqrt {a \,d^{2}}}\right ) a^{3} c^{2} d^{2} x^{2}+2 \ln \left (\frac {2 a \,d^{2} x^{2}+2 a c d +2 \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}\, \sqrt {a \,d^{2}}+b d}{2 \sqrt {a \,d^{2}}}\right ) a^{2} b c \,d^{2} x^{2}-\sqrt {a \,d^{2}}\, \sqrt {c^{2} a +b c}\, \ln \left (\frac {2 a c d \,x^{2}+b d \,x^{2}+2 c^{2} a +2 \sqrt {c^{2} a +b c}\, \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}+2 b c}{x^{2}}\right ) a^{2} c d \,x^{2}+\ln \left (\frac {2 a \,d^{2} x^{2}+2 a c d +2 \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}\, \sqrt {a \,d^{2}}+b d}{2 \sqrt {a \,d^{2}}}\right ) a^{3} c^{3} d +\ln \left (\frac {2 a \,d^{2} x^{2}+2 a c d +2 \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}\, \sqrt {a \,d^{2}}+b d}{2 \sqrt {a \,d^{2}}}\right ) a \,b^{2} d^{2} x^{2}+3 \ln \left (\frac {2 a \,d^{2} x^{2}+2 a c d +2 \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}\, \sqrt {a \,d^{2}}+b d}{2 \sqrt {a \,d^{2}}}\right ) a^{2} b \,c^{2} d -\sqrt {a \,d^{2}}\, \sqrt {c^{2} a +b c}\, \ln \left (\frac {2 a c d \,x^{2}+b d \,x^{2}+2 c^{2} a +2 \sqrt {c^{2} a +b c}\, \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}+2 b c}{x^{2}}\right ) a^{2} c^{2}+3 \ln \left (\frac {2 a \,d^{2} x^{2}+2 a c d +2 \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}\, \sqrt {a \,d^{2}}+b d}{2 \sqrt {a \,d^{2}}}\right ) b^{2} c a d -\sqrt {a \,d^{2}}\, \sqrt {c^{2} a +b c}\, \ln \left (\frac {2 a c d \,x^{2}+b d \,x^{2}+2 c^{2} a +2 \sqrt {c^{2} a +b c}\, \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}+2 b c}{x^{2}}\right ) a b c +\ln \left (\frac {2 a \,d^{2} x^{2}+2 a c d +2 \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+c^{2} a +b c}\, \sqrt {a \,d^{2}}+b d}{2 \sqrt {a \,d^{2}}}\right ) b^{3} d -2 \sqrt {a \,d^{2}}\, \sqrt {\left (d \,x^{2}+c \right ) \left (a d \,x^{2}+a c +b \right )}\, a b c -2 \sqrt {a \,d^{2}}\, \sqrt {\left (d \,x^{2}+c \right ) \left (a d \,x^{2}+a c +b \right )}\, b^{2}\right )}{2 a \sqrt {\left (d \,x^{2}+c \right ) \left (a d \,x^{2}+a c +b \right )}\, \left (a c +b \right )^{2} \sqrt {a \,d^{2}}\, \left (a d \,x^{2}+a c +b \right )}\) \(1014\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x/(a+b/(d*x^2+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/2*((a*d*x^2+a*c+b)/(d*x^2+c))^(1/2)*(d*x^2+c)/a*(ln(1/2*(2*a*d^2*x^2+2*a*c*d+2*(a*d^2*x^4+2*a*c*d*x^2+b*d*x^
2+a*c^2+b*c)^(1/2)*(a*d^2)^(1/2)+b*d)/(a*d^2)^(1/2))*a^3*c^2*d^2*x^2+2*ln(1/2*(2*a*d^2*x^2+2*a*c*d+2*(a*d^2*x^
4+2*a*c*d*x^2+b*d*x^2+a*c^2+b*c)^(1/2)*(a*d^2)^(1/2)+b*d)/(a*d^2)^(1/2))*a^2*b*c*d^2*x^2-(a*d^2)^(1/2)*(a*c^2+
b*c)^(1/2)*ln((2*a*c*d*x^2+b*d*x^2+2*c^2*a+2*(a*c^2+b*c)^(1/2)*(a*d^2*x^4+2*a*c*d*x^2+b*d*x^2+a*c^2+b*c)^(1/2)
+2*b*c)/x^2)*a^2*c*d*x^2+ln(1/2*(2*a*d^2*x^2+2*a*c*d+2*(a*d^2*x^4+2*a*c*d*x^2+b*d*x^2+a*c^2+b*c)^(1/2)*(a*d^2)
^(1/2)+b*d)/(a*d^2)^(1/2))*a^3*c^3*d+ln(1/2*(2*a*d^2*x^2+2*a*c*d+2*(a*d^2*x^4+2*a*c*d*x^2+b*d*x^2+a*c^2+b*c)^(
1/2)*(a*d^2)^(1/2)+b*d)/(a*d^2)^(1/2))*a*b^2*d^2*x^2+3*ln(1/2*(2*a*d^2*x^2+2*a*c*d+2*(a*d^2*x^4+2*a*c*d*x^2+b*
d*x^2+a*c^2+b*c)^(1/2)*(a*d^2)^(1/2)+b*d)/(a*d^2)^(1/2))*a^2*b*c^2*d-(a*d^2)^(1/2)*(a*c^2+b*c)^(1/2)*ln((2*a*c
*d*x^2+b*d*x^2+2*c^2*a+2*(a*c^2+b*c)^(1/2)*(a*d^2*x^4+2*a*c*d*x^2+b*d*x^2+a*c^2+b*c)^(1/2)+2*b*c)/x^2)*a^2*c^2
+3*ln(1/2*(2*a*d^2*x^2+2*a*c*d+2*(a*d^2*x^4+2*a*c*d*x^2+b*d*x^2+a*c^2+b*c)^(1/2)*(a*d^2)^(1/2)+b*d)/(a*d^2)^(1
/2))*b^2*c*a*d-(a*d^2)^(1/2)*(a*c^2+b*c)^(1/2)*ln((2*a*c*d*x^2+b*d*x^2+2*c^2*a+2*(a*c^2+b*c)^(1/2)*(a*d^2*x^4+
2*a*c*d*x^2+b*d*x^2+a*c^2+b*c)^(1/2)+2*b*c)/x^2)*a*b*c+ln(1/2*(2*a*d^2*x^2+2*a*c*d+2*(a*d^2*x^4+2*a*c*d*x^2+b*
d*x^2+a*c^2+b*c)^(1/2)*(a*d^2)^(1/2)+b*d)/(a*d^2)^(1/2))*b^3*d-2*(a*d^2)^(1/2)*((d*x^2+c)*(a*d*x^2+a*c+b))^(1/
2)*a*b*c-2*(a*d^2)^(1/2)*((d*x^2+c)*(a*d*x^2+a*c+b))^(1/2)*b^2)/((d*x^2+c)*(a*d*x^2+a*c+b))^(1/2)/(a*c+b)^2/(a
*d^2)^(1/2)/(a*d*x^2+a*c+b)

________________________________________________________________________________________

Maxima [A]
time = 0.53, size = 201, normalized size = 1.50 \begin {gather*} \frac {c^{2} \log \left (\frac {c \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}} - \sqrt {{\left (a c + b\right )} c}}{c \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}} + \sqrt {{\left (a c + b\right )} c}}\right )}{2 \, \sqrt {{\left (a c + b\right )} c} {\left (a c + b\right )}} - \frac {b}{{\left (a^{2} c + a b\right )} \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}}} - \frac {\log \left (-\frac {\sqrt {a} - \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}}}{\sqrt {a} + \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}}}\right )}{2 \, a^{\frac {3}{2}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(a+b/(d*x^2+c))^(3/2),x, algorithm="maxima")

[Out]

1/2*c^2*log((c*sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c)) - sqrt((a*c + b)*c))/(c*sqrt((a*d*x^2 + a*c + b)/(d*x^2 +
 c)) + sqrt((a*c + b)*c)))/(sqrt((a*c + b)*c)*(a*c + b)) - b/((a^2*c + a*b)*sqrt((a*d*x^2 + a*c + b)/(d*x^2 +
c))) - 1/2*log(-(sqrt(a) - sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c)))/(sqrt(a) + sqrt((a*d*x^2 + a*c + b)/(d*x^2 +
 c))))/a^(3/2)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 294 vs. \(2 (116) = 232\).
time = 0.51, size = 1477, normalized size = 11.02 \begin {gather*} \left [\frac {{\left (a^{2} c^{2} + {\left (a^{2} c + a b\right )} d x^{2} + 2 \, a b c + b^{2}\right )} \sqrt {a} \log \left (8 \, a^{2} d^{2} x^{4} + 8 \, a^{2} c^{2} + 8 \, {\left (2 \, a^{2} c + a b\right )} d x^{2} + 8 \, a b c + b^{2} + 4 \, {\left (2 \, a d^{2} x^{4} + {\left (4 \, a c + b\right )} d x^{2} + 2 \, a c^{2} + b c\right )} \sqrt {a} \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}}\right ) + {\left (a^{3} c d x^{2} + a^{3} c^{2} + a^{2} b c\right )} \sqrt {\frac {c}{a c + b}} \log \left (\frac {{\left (8 \, a^{2} c^{2} + 8 \, a b c + b^{2}\right )} d^{2} x^{4} + 8 \, a^{2} c^{4} + 16 \, a b c^{3} + 8 \, b^{2} c^{2} + 8 \, {\left (2 \, a^{2} c^{3} + 3 \, a b c^{2} + b^{2} c\right )} d x^{2} - 4 \, {\left ({\left (2 \, a^{2} c^{2} + 3 \, a b c + b^{2}\right )} d^{2} x^{4} + 2 \, a^{2} c^{4} + 4 \, a b c^{3} + 2 \, b^{2} c^{2} + {\left (4 \, a^{2} c^{3} + 7 \, a b c^{2} + 3 \, b^{2} c\right )} d x^{2}\right )} \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}} \sqrt {\frac {c}{a c + b}}}{x^{4}}\right ) - 4 \, {\left (a b d x^{2} + a b c\right )} \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}}}{4 \, {\left (a^{4} c^{2} + 2 \, a^{3} b c + a^{2} b^{2} + {\left (a^{4} c + a^{3} b\right )} d x^{2}\right )}}, -\frac {2 \, {\left (a^{2} c^{2} + {\left (a^{2} c + a b\right )} d x^{2} + 2 \, a b c + b^{2}\right )} \sqrt {-a} \arctan \left (\frac {{\left (2 \, a d x^{2} + 2 \, a c + b\right )} \sqrt {-a} \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}}}{2 \, {\left (a^{2} d x^{2} + a^{2} c + a b\right )}}\right ) - {\left (a^{3} c d x^{2} + a^{3} c^{2} + a^{2} b c\right )} \sqrt {\frac {c}{a c + b}} \log \left (\frac {{\left (8 \, a^{2} c^{2} + 8 \, a b c + b^{2}\right )} d^{2} x^{4} + 8 \, a^{2} c^{4} + 16 \, a b c^{3} + 8 \, b^{2} c^{2} + 8 \, {\left (2 \, a^{2} c^{3} + 3 \, a b c^{2} + b^{2} c\right )} d x^{2} - 4 \, {\left ({\left (2 \, a^{2} c^{2} + 3 \, a b c + b^{2}\right )} d^{2} x^{4} + 2 \, a^{2} c^{4} + 4 \, a b c^{3} + 2 \, b^{2} c^{2} + {\left (4 \, a^{2} c^{3} + 7 \, a b c^{2} + 3 \, b^{2} c\right )} d x^{2}\right )} \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}} \sqrt {\frac {c}{a c + b}}}{x^{4}}\right ) + 4 \, {\left (a b d x^{2} + a b c\right )} \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}}}{4 \, {\left (a^{4} c^{2} + 2 \, a^{3} b c + a^{2} b^{2} + {\left (a^{4} c + a^{3} b\right )} d x^{2}\right )}}, \frac {2 \, {\left (a^{3} c d x^{2} + a^{3} c^{2} + a^{2} b c\right )} \sqrt {-\frac {c}{a c + b}} \arctan \left (\frac {{\left ({\left (2 \, a c + b\right )} d x^{2} + 2 \, a c^{2} + 2 \, b c\right )} \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}} \sqrt {-\frac {c}{a c + b}}}{2 \, {\left (a c d x^{2} + a c^{2} + b c\right )}}\right ) + {\left (a^{2} c^{2} + {\left (a^{2} c + a b\right )} d x^{2} + 2 \, a b c + b^{2}\right )} \sqrt {a} \log \left (8 \, a^{2} d^{2} x^{4} + 8 \, a^{2} c^{2} + 8 \, {\left (2 \, a^{2} c + a b\right )} d x^{2} + 8 \, a b c + b^{2} + 4 \, {\left (2 \, a d^{2} x^{4} + {\left (4 \, a c + b\right )} d x^{2} + 2 \, a c^{2} + b c\right )} \sqrt {a} \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}}\right ) - 4 \, {\left (a b d x^{2} + a b c\right )} \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}}}{4 \, {\left (a^{4} c^{2} + 2 \, a^{3} b c + a^{2} b^{2} + {\left (a^{4} c + a^{3} b\right )} d x^{2}\right )}}, -\frac {{\left (a^{2} c^{2} + {\left (a^{2} c + a b\right )} d x^{2} + 2 \, a b c + b^{2}\right )} \sqrt {-a} \arctan \left (\frac {{\left (2 \, a d x^{2} + 2 \, a c + b\right )} \sqrt {-a} \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}}}{2 \, {\left (a^{2} d x^{2} + a^{2} c + a b\right )}}\right ) - {\left (a^{3} c d x^{2} + a^{3} c^{2} + a^{2} b c\right )} \sqrt {-\frac {c}{a c + b}} \arctan \left (\frac {{\left ({\left (2 \, a c + b\right )} d x^{2} + 2 \, a c^{2} + 2 \, b c\right )} \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}} \sqrt {-\frac {c}{a c + b}}}{2 \, {\left (a c d x^{2} + a c^{2} + b c\right )}}\right ) + 2 \, {\left (a b d x^{2} + a b c\right )} \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}}}{2 \, {\left (a^{4} c^{2} + 2 \, a^{3} b c + a^{2} b^{2} + {\left (a^{4} c + a^{3} b\right )} d x^{2}\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(a+b/(d*x^2+c))^(3/2),x, algorithm="fricas")

[Out]

[1/4*((a^2*c^2 + (a^2*c + a*b)*d*x^2 + 2*a*b*c + b^2)*sqrt(a)*log(8*a^2*d^2*x^4 + 8*a^2*c^2 + 8*(2*a^2*c + a*b
)*d*x^2 + 8*a*b*c + b^2 + 4*(2*a*d^2*x^4 + (4*a*c + b)*d*x^2 + 2*a*c^2 + b*c)*sqrt(a)*sqrt((a*d*x^2 + a*c + b)
/(d*x^2 + c))) + (a^3*c*d*x^2 + a^3*c^2 + a^2*b*c)*sqrt(c/(a*c + b))*log(((8*a^2*c^2 + 8*a*b*c + b^2)*d^2*x^4
+ 8*a^2*c^4 + 16*a*b*c^3 + 8*b^2*c^2 + 8*(2*a^2*c^3 + 3*a*b*c^2 + b^2*c)*d*x^2 - 4*((2*a^2*c^2 + 3*a*b*c + b^2
)*d^2*x^4 + 2*a^2*c^4 + 4*a*b*c^3 + 2*b^2*c^2 + (4*a^2*c^3 + 7*a*b*c^2 + 3*b^2*c)*d*x^2)*sqrt((a*d*x^2 + a*c +
 b)/(d*x^2 + c))*sqrt(c/(a*c + b)))/x^4) - 4*(a*b*d*x^2 + a*b*c)*sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c)))/(a^4*c
^2 + 2*a^3*b*c + a^2*b^2 + (a^4*c + a^3*b)*d*x^2), -1/4*(2*(a^2*c^2 + (a^2*c + a*b)*d*x^2 + 2*a*b*c + b^2)*sqr
t(-a)*arctan(1/2*(2*a*d*x^2 + 2*a*c + b)*sqrt(-a)*sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c))/(a^2*d*x^2 + a^2*c + a
*b)) - (a^3*c*d*x^2 + a^3*c^2 + a^2*b*c)*sqrt(c/(a*c + b))*log(((8*a^2*c^2 + 8*a*b*c + b^2)*d^2*x^4 + 8*a^2*c^
4 + 16*a*b*c^3 + 8*b^2*c^2 + 8*(2*a^2*c^3 + 3*a*b*c^2 + b^2*c)*d*x^2 - 4*((2*a^2*c^2 + 3*a*b*c + b^2)*d^2*x^4
+ 2*a^2*c^4 + 4*a*b*c^3 + 2*b^2*c^2 + (4*a^2*c^3 + 7*a*b*c^2 + 3*b^2*c)*d*x^2)*sqrt((a*d*x^2 + a*c + b)/(d*x^2
 + c))*sqrt(c/(a*c + b)))/x^4) + 4*(a*b*d*x^2 + a*b*c)*sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c)))/(a^4*c^2 + 2*a^3
*b*c + a^2*b^2 + (a^4*c + a^3*b)*d*x^2), 1/4*(2*(a^3*c*d*x^2 + a^3*c^2 + a^2*b*c)*sqrt(-c/(a*c + b))*arctan(1/
2*((2*a*c + b)*d*x^2 + 2*a*c^2 + 2*b*c)*sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c))*sqrt(-c/(a*c + b))/(a*c*d*x^2 +
a*c^2 + b*c)) + (a^2*c^2 + (a^2*c + a*b)*d*x^2 + 2*a*b*c + b^2)*sqrt(a)*log(8*a^2*d^2*x^4 + 8*a^2*c^2 + 8*(2*a
^2*c + a*b)*d*x^2 + 8*a*b*c + b^2 + 4*(2*a*d^2*x^4 + (4*a*c + b)*d*x^2 + 2*a*c^2 + b*c)*sqrt(a)*sqrt((a*d*x^2
+ a*c + b)/(d*x^2 + c))) - 4*(a*b*d*x^2 + a*b*c)*sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c)))/(a^4*c^2 + 2*a^3*b*c +
 a^2*b^2 + (a^4*c + a^3*b)*d*x^2), -1/2*((a^2*c^2 + (a^2*c + a*b)*d*x^2 + 2*a*b*c + b^2)*sqrt(-a)*arctan(1/2*(
2*a*d*x^2 + 2*a*c + b)*sqrt(-a)*sqrt((a*d*x^2 + a*c + b)/(d*x^2 + c))/(a^2*d*x^2 + a^2*c + a*b)) - (a^3*c*d*x^
2 + a^3*c^2 + a^2*b*c)*sqrt(-c/(a*c + b))*arctan(1/2*((2*a*c + b)*d*x^2 + 2*a*c^2 + 2*b*c)*sqrt((a*d*x^2 + a*c
 + b)/(d*x^2 + c))*sqrt(-c/(a*c + b))/(a*c*d*x^2 + a*c^2 + b*c)) + 2*(a*b*d*x^2 + a*b*c)*sqrt((a*d*x^2 + a*c +
 b)/(d*x^2 + c)))/(a^4*c^2 + 2*a^3*b*c + a^2*b^2 + (a^4*c + a^3*b)*d*x^2)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{x \left (\frac {a c + a d x^{2} + b}{c + d x^{2}}\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(a+b/(d*x**2+c))**(3/2),x)

[Out]

Integral(1/(x*((a*c + a*d*x**2 + b)/(c + d*x**2))**(3/2)), x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(a+b/(d*x^2+c))^(3/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Warning, integration of abs or sign assumes constant sign by intervals (correct if the argument is real):Ch
eck [abs(sa

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {1}{x\,{\left (a+\frac {b}{d\,x^2+c}\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x*(a + b/(c + d*x^2))^(3/2)),x)

[Out]

int(1/(x*(a + b/(c + d*x^2))^(3/2)), x)

________________________________________________________________________________________