3.4.91 \(\int \frac {\sqrt {\frac {a}{x^3}}}{\sqrt {1+x^3}} \, dx\) [391]

Optimal. Leaf size=312 \[ -2 \sqrt {\frac {a}{x^3}} x \sqrt {1+x^3}+\frac {2 \left (1+\sqrt {3}\right ) \sqrt {\frac {a}{x^3}} x^2 \sqrt {1+x^3}}{1+\left (1+\sqrt {3}\right ) x}-\frac {2 \sqrt [4]{3} \sqrt {\frac {a}{x^3}} x^2 (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\left (1+\sqrt {3}\right ) x\right )^2}} E\left (\cos ^{-1}\left (\frac {1+\left (1-\sqrt {3}\right ) x}{1+\left (1+\sqrt {3}\right ) x}\right )|\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{\sqrt {\frac {x (1+x)}{\left (1+\left (1+\sqrt {3}\right ) x\right )^2}} \sqrt {1+x^3}}-\frac {\left (1-\sqrt {3}\right ) \sqrt {\frac {a}{x^3}} x^2 (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\left (1+\sqrt {3}\right ) x\right )^2}} F\left (\cos ^{-1}\left (\frac {1+\left (1-\sqrt {3}\right ) x}{1+\left (1+\sqrt {3}\right ) x}\right )|\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{\sqrt [4]{3} \sqrt {\frac {x (1+x)}{\left (1+\left (1+\sqrt {3}\right ) x\right )^2}} \sqrt {1+x^3}} \]

[Out]

-2*x*(a/x^3)^(1/2)*(x^3+1)^(1/2)+2*x^2*(1+3^(1/2))*(a/x^3)^(1/2)*(x^3+1)^(1/2)/(1+x*(1+3^(1/2)))-2*3^(1/4)*x^2
*(1+x)*((1+x*(1-3^(1/2)))^2/(1+x*(1+3^(1/2)))^2)^(1/2)/(1+x*(1-3^(1/2)))*(1+x*(1+3^(1/2)))*EllipticE((1-(1+x*(
1-3^(1/2)))^2/(1+x*(1+3^(1/2)))^2)^(1/2),1/4*6^(1/2)+1/4*2^(1/2))*(a/x^3)^(1/2)*((x^2-x+1)/(1+x*(1+3^(1/2)))^2
)^(1/2)/(x^3+1)^(1/2)/(x*(1+x)/(1+x*(1+3^(1/2)))^2)^(1/2)-1/3*x^2*(1+x)*((1+x*(1-3^(1/2)))^2/(1+x*(1+3^(1/2)))
^2)^(1/2)/(1+x*(1-3^(1/2)))*(1+x*(1+3^(1/2)))*EllipticF((1-(1+x*(1-3^(1/2)))^2/(1+x*(1+3^(1/2)))^2)^(1/2),1/4*
6^(1/2)+1/4*2^(1/2))*(1-3^(1/2))*(a/x^3)^(1/2)*((x^2-x+1)/(1+x*(1+3^(1/2)))^2)^(1/2)*3^(3/4)/(x^3+1)^(1/2)/(x*
(1+x)/(1+x*(1+3^(1/2)))^2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.19, antiderivative size = 312, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 6, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.316, Rules used = {15, 331, 335, 314, 231, 1895} \begin {gather*} -\frac {\left (1-\sqrt {3}\right ) (x+1) \sqrt {\frac {x^2-x+1}{\left (\left (1+\sqrt {3}\right ) x+1\right )^2}} x^2 \sqrt {\frac {a}{x^3}} F\left (\text {ArcCos}\left (\frac {\left (1-\sqrt {3}\right ) x+1}{\left (1+\sqrt {3}\right ) x+1}\right )|\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{\sqrt [4]{3} \sqrt {\frac {x (x+1)}{\left (\left (1+\sqrt {3}\right ) x+1\right )^2}} \sqrt {x^3+1}}-\frac {2 \sqrt [4]{3} (x+1) \sqrt {\frac {x^2-x+1}{\left (\left (1+\sqrt {3}\right ) x+1\right )^2}} x^2 \sqrt {\frac {a}{x^3}} E\left (\text {ArcCos}\left (\frac {\left (1-\sqrt {3}\right ) x+1}{\left (1+\sqrt {3}\right ) x+1}\right )|\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{\sqrt {\frac {x (x+1)}{\left (\left (1+\sqrt {3}\right ) x+1\right )^2}} \sqrt {x^3+1}}-2 \sqrt {x^3+1} x \sqrt {\frac {a}{x^3}}+\frac {2 \left (1+\sqrt {3}\right ) \sqrt {x^3+1} x^2 \sqrt {\frac {a}{x^3}}}{\left (1+\sqrt {3}\right ) x+1} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[a/x^3]/Sqrt[1 + x^3],x]

[Out]

-2*Sqrt[a/x^3]*x*Sqrt[1 + x^3] + (2*(1 + Sqrt[3])*Sqrt[a/x^3]*x^2*Sqrt[1 + x^3])/(1 + (1 + Sqrt[3])*x) - (2*3^
(1/4)*Sqrt[a/x^3]*x^2*(1 + x)*Sqrt[(1 - x + x^2)/(1 + (1 + Sqrt[3])*x)^2]*EllipticE[ArcCos[(1 + (1 - Sqrt[3])*
x)/(1 + (1 + Sqrt[3])*x)], (2 + Sqrt[3])/4])/(Sqrt[(x*(1 + x))/(1 + (1 + Sqrt[3])*x)^2]*Sqrt[1 + x^3]) - ((1 -
 Sqrt[3])*Sqrt[a/x^3]*x^2*(1 + x)*Sqrt[(1 - x + x^2)/(1 + (1 + Sqrt[3])*x)^2]*EllipticF[ArcCos[(1 + (1 - Sqrt[
3])*x)/(1 + (1 + Sqrt[3])*x)], (2 + Sqrt[3])/4])/(3^(1/4)*Sqrt[(x*(1 + x))/(1 + (1 + Sqrt[3])*x)^2]*Sqrt[1 + x
^3])

Rule 15

Int[(u_.)*((a_.)*(x_)^(n_))^(m_), x_Symbol] :> Dist[a^IntPart[m]*((a*x^n)^FracPart[m]/x^(n*FracPart[m])), Int[
u*x^(m*n), x], x] /; FreeQ[{a, m, n}, x] &&  !IntegerQ[m]

Rule 231

Int[1/Sqrt[(a_) + (b_.)*(x_)^6], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[x*(s +
 r*x^2)*(Sqrt[(s^2 - r*s*x^2 + r^2*x^4)/(s + (1 + Sqrt[3])*r*x^2)^2]/(2*3^(1/4)*s*Sqrt[a + b*x^6]*Sqrt[r*x^2*(
(s + r*x^2)/(s + (1 + Sqrt[3])*r*x^2)^2)]))*EllipticF[ArcCos[(s + (1 - Sqrt[3])*r*x^2)/(s + (1 + Sqrt[3])*r*x^
2)], (2 + Sqrt[3])/4], x]] /; FreeQ[{a, b}, x]

Rule 314

Int[(x_)^4/Sqrt[(a_) + (b_.)*(x_)^6], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Dist[(
Sqrt[3] - 1)*(s^2/(2*r^2)), Int[1/Sqrt[a + b*x^6], x], x] - Dist[1/(2*r^2), Int[((Sqrt[3] - 1)*s^2 - 2*r^2*x^4
)/Sqrt[a + b*x^6], x], x]] /; FreeQ[{a, b}, x]

Rule 331

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a + b*x^n)^(p + 1)/(a*c
*(m + 1))), x] - Dist[b*((m + n*(p + 1) + 1)/(a*c^n*(m + 1))), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 335

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 1895

Int[((c_) + (d_.)*(x_)^4)/Sqrt[(a_) + (b_.)*(x_)^6], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/
a, 3]]}, Simp[(1 + Sqrt[3])*d*s^3*x*(Sqrt[a + b*x^6]/(2*a*r^2*(s + (1 + Sqrt[3])*r*x^2))), x] - Simp[3^(1/4)*d
*s*x*(s + r*x^2)*(Sqrt[(s^2 - r*s*x^2 + r^2*x^4)/(s + (1 + Sqrt[3])*r*x^2)^2]/(2*r^2*Sqrt[(r*x^2*(s + r*x^2))/
(s + (1 + Sqrt[3])*r*x^2)^2]*Sqrt[a + b*x^6]))*EllipticE[ArcCos[(s + (1 - Sqrt[3])*r*x^2)/(s + (1 + Sqrt[3])*r
*x^2)], (2 + Sqrt[3])/4], x]] /; FreeQ[{a, b, c, d}, x] && EqQ[2*Rt[b/a, 3]^2*c - (1 - Sqrt[3])*d, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {\frac {a}{x^3}}}{\sqrt {1+x^3}} \, dx &=\left (\sqrt {\frac {a}{x^3}} x^{3/2}\right ) \int \frac {1}{x^{3/2} \sqrt {1+x^3}} \, dx\\ &=-2 \sqrt {\frac {a}{x^3}} x \sqrt {1+x^3}+\left (2 \sqrt {\frac {a}{x^3}} x^{3/2}\right ) \int \frac {x^{3/2}}{\sqrt {1+x^3}} \, dx\\ &=-2 \sqrt {\frac {a}{x^3}} x \sqrt {1+x^3}+\left (4 \sqrt {\frac {a}{x^3}} x^{3/2}\right ) \text {Subst}\left (\int \frac {x^4}{\sqrt {1+x^6}} \, dx,x,\sqrt {x}\right )\\ &=-2 \sqrt {\frac {a}{x^3}} x \sqrt {1+x^3}-\left (2 \sqrt {\frac {a}{x^3}} x^{3/2}\right ) \text {Subst}\left (\int \frac {-1+\sqrt {3}-2 x^4}{\sqrt {1+x^6}} \, dx,x,\sqrt {x}\right )+\left (2 \left (-1+\sqrt {3}\right ) \sqrt {\frac {a}{x^3}} x^{3/2}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1+x^6}} \, dx,x,\sqrt {x}\right )\\ &=-2 \sqrt {\frac {a}{x^3}} x \sqrt {1+x^3}+\frac {2 \left (1+\sqrt {3}\right ) \sqrt {\frac {a}{x^3}} x^2 \sqrt {1+x^3}}{1+\left (1+\sqrt {3}\right ) x}-\frac {2 \sqrt [4]{3} \sqrt {\frac {a}{x^3}} x^2 (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\left (1+\sqrt {3}\right ) x\right )^2}} E\left (\cos ^{-1}\left (\frac {1+\left (1-\sqrt {3}\right ) x}{1+\left (1+\sqrt {3}\right ) x}\right )|\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{\sqrt {\frac {x (1+x)}{\left (1+\left (1+\sqrt {3}\right ) x\right )^2}} \sqrt {1+x^3}}-\frac {\left (1-\sqrt {3}\right ) \sqrt {\frac {a}{x^3}} x^2 (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\left (1+\sqrt {3}\right ) x\right )^2}} F\left (\cos ^{-1}\left (\frac {1+\left (1-\sqrt {3}\right ) x}{1+\left (1+\sqrt {3}\right ) x}\right )|\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{\sqrt [4]{3} \sqrt {\frac {x (1+x)}{\left (1+\left (1+\sqrt {3}\right ) x\right )^2}} \sqrt {1+x^3}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 10.01, size = 27, normalized size = 0.09 \begin {gather*} -2 \sqrt {\frac {a}{x^3}} x \, _2F_1\left (-\frac {1}{6},\frac {1}{2};\frac {5}{6};-x^3\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a/x^3]/Sqrt[1 + x^3],x]

[Out]

-2*Sqrt[a/x^3]*x*Hypergeometric2F1[-1/6, 1/2, 5/6, -x^3]

________________________________________________________________________________________

Maple [C] Result contains complex when optimal does not.
time = 0.39, size = 1784, normalized size = 5.72

method result size
meijerg \(-2 \sqrt {\frac {a}{x^{3}}}\, x \hypergeom \left (\left [-\frac {1}{6}, \frac {1}{2}\right ], \left [\frac {5}{6}\right ], -x^{3}\right )\) \(22\)
risch \(-2 x \sqrt {\frac {a}{x^{3}}}\, \sqrt {x^{3}+1}+\frac {2 \left (x \left (x -\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right )+\left (-\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {\left (\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) x}{\left (\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (1+x \right )}}\, \left (1+x \right )^{2} \sqrt {-\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{\left (\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \left (1+x \right )}}\, \sqrt {-\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{\left (\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (1+x \right )}}\, \left (-\frac {\left (\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \EllipticF \left (\sqrt {\frac {\left (\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) x}{\left (\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (1+x \right )}}, \sqrt {\frac {\left (-\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) \left (-\frac {1}{2}-\frac {i \sqrt {3}}{2}\right )}{\left (-\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (-\frac {3}{2}-\frac {i \sqrt {3}}{2}\right )}}\right )}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}-\left (-\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \EllipticE \left (\sqrt {\frac {\left (\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) x}{\left (\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (1+x \right )}}, \sqrt {\frac {\left (-\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) \left (-\frac {1}{2}-\frac {i \sqrt {3}}{2}\right )}{\left (-\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (-\frac {3}{2}-\frac {i \sqrt {3}}{2}\right )}}\right )\right )\right ) \sqrt {\frac {a}{x^{3}}}\, x \sqrt {x \left (x^{3}+1\right ) a}}{\sqrt {a x \left (1+x \right ) \left (x -\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right )}\, \sqrt {x^{3}+1}}\) \(355\)
default \(\text {Expression too large to display}\) \(1784\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a/x^3)^(1/2)/(x^3+1)^(1/2),x,method=_RETURNVERBOSE)

[Out]

2*(a/x^3)^(1/2)*x*(-4*I*(x*(x^3+1))^(1/2)*((I*3^(1/2)+3)*x/(1+I*3^(1/2))/(1+x))^(1/2)*((I*3^(1/2)+2*x-1)/(-1+I
*3^(1/2))/(1+x))^(1/2)*((I*3^(1/2)-2*x+1)/(1+I*3^(1/2))/(1+x))^(1/2)*EllipticE(((I*3^(1/2)+3)*x/(1+I*3^(1/2))/
(1+x))^(1/2),((-3+I*3^(1/2))*(1+I*3^(1/2))/(-1+I*3^(1/2))/(I*3^(1/2)+3))^(1/2))*3^(1/2)*x-I*(-x*(1+x)*(I*3^(1/
2)+2*x-1)*(I*3^(1/2)-2*x+1))^(1/2)*3^(1/2)+4*(x*(x^3+1))^(1/2)*((I*3^(1/2)+3)*x/(1+I*3^(1/2))/(1+x))^(1/2)*((I
*3^(1/2)+2*x-1)/(-1+I*3^(1/2))/(1+x))^(1/2)*((I*3^(1/2)-2*x+1)/(1+I*3^(1/2))/(1+x))^(1/2)*EllipticF(((I*3^(1/2
)+3)*x/(1+I*3^(1/2))/(1+x))^(1/2),((-3+I*3^(1/2))*(1+I*3^(1/2))/(-1+I*3^(1/2))/(I*3^(1/2)+3))^(1/2))*x^2+2*I*(
x*(x^3+1))^(1/2)*3^(1/2)*x^3-6*(x*(x^3+1))^(1/2)*((I*3^(1/2)+3)*x/(1+I*3^(1/2))/(1+x))^(1/2)*((I*3^(1/2)+2*x-1
)/(-1+I*3^(1/2))/(1+x))^(1/2)*((I*3^(1/2)-2*x+1)/(1+I*3^(1/2))/(1+x))^(1/2)*EllipticE(((I*3^(1/2)+3)*x/(1+I*3^
(1/2))/(1+x))^(1/2),((-3+I*3^(1/2))*(1+I*3^(1/2))/(-1+I*3^(1/2))/(I*3^(1/2)+3))^(1/2))*x^2+8*(x*(x^3+1))^(1/2)
*((I*3^(1/2)+3)*x/(1+I*3^(1/2))/(1+x))^(1/2)*((I*3^(1/2)+2*x-1)/(-1+I*3^(1/2))/(1+x))^(1/2)*((I*3^(1/2)-2*x+1)
/(1+I*3^(1/2))/(1+x))^(1/2)*EllipticF(((I*3^(1/2)+3)*x/(1+I*3^(1/2))/(1+x))^(1/2),((-3+I*3^(1/2))*(1+I*3^(1/2)
)/(-1+I*3^(1/2))/(I*3^(1/2)+3))^(1/2))*x-12*(x*(x^3+1))^(1/2)*((I*3^(1/2)+3)*x/(1+I*3^(1/2))/(1+x))^(1/2)*((I*
3^(1/2)+2*x-1)/(-1+I*3^(1/2))/(1+x))^(1/2)*((I*3^(1/2)-2*x+1)/(1+I*3^(1/2))/(1+x))^(1/2)*EllipticE(((I*3^(1/2)
+3)*x/(1+I*3^(1/2))/(1+x))^(1/2),((-3+I*3^(1/2))*(1+I*3^(1/2))/(-1+I*3^(1/2))/(I*3^(1/2)+3))^(1/2))*x-2*I*(x*(
x^3+1))^(1/2)*((I*3^(1/2)+3)*x/(1+I*3^(1/2))/(1+x))^(1/2)*((I*3^(1/2)+2*x-1)/(-1+I*3^(1/2))/(1+x))^(1/2)*((I*3
^(1/2)-2*x+1)/(1+I*3^(1/2))/(1+x))^(1/2)*EllipticE(((I*3^(1/2)+3)*x/(1+I*3^(1/2))/(1+x))^(1/2),((-3+I*3^(1/2))
*(1+I*3^(1/2))/(-1+I*3^(1/2))/(I*3^(1/2)+3))^(1/2))*3^(1/2)*x^2-2*I*(x*(x^3+1))^(1/2)*((I*3^(1/2)+3)*x/(1+I*3^
(1/2))/(1+x))^(1/2)*((I*3^(1/2)+2*x-1)/(-1+I*3^(1/2))/(1+x))^(1/2)*((I*3^(1/2)-2*x+1)/(1+I*3^(1/2))/(1+x))^(1/
2)*EllipticE(((I*3^(1/2)+3)*x/(1+I*3^(1/2))/(1+x))^(1/2),((-3+I*3^(1/2))*(1+I*3^(1/2))/(-1+I*3^(1/2))/(I*3^(1/
2)+3))^(1/2))*3^(1/2)+4*(x*(x^3+1))^(1/2)*((I*3^(1/2)+3)*x/(1+I*3^(1/2))/(1+x))^(1/2)*((I*3^(1/2)+2*x-1)/(-1+I
*3^(1/2))/(1+x))^(1/2)*((I*3^(1/2)-2*x+1)/(1+I*3^(1/2))/(1+x))^(1/2)*EllipticF(((I*3^(1/2)+3)*x/(1+I*3^(1/2))/
(1+x))^(1/2),((-3+I*3^(1/2))*(1+I*3^(1/2))/(-1+I*3^(1/2))/(I*3^(1/2)+3))^(1/2))-6*(x*(x^3+1))^(1/2)*((I*3^(1/2
)+3)*x/(1+I*3^(1/2))/(1+x))^(1/2)*((I*3^(1/2)+2*x-1)/(-1+I*3^(1/2))/(1+x))^(1/2)*((I*3^(1/2)-2*x+1)/(1+I*3^(1/
2))/(1+x))^(1/2)*EllipticE(((I*3^(1/2)+3)*x/(1+I*3^(1/2))/(1+x))^(1/2),((-3+I*3^(1/2))*(1+I*3^(1/2))/(-1+I*3^(
1/2))/(I*3^(1/2)+3))^(1/2))+2*I*(x*(x^3+1))^(1/2)*3^(1/2)*x-2*I*(x*(x^3+1))^(1/2)*3^(1/2)*x^2+6*(x*(x^3+1))^(1
/2)*x^3-3*(-x*(1+x)*(I*3^(1/2)+2*x-1)*(I*3^(1/2)-2*x+1))^(1/2)*x^3-6*(x*(x^3+1))^(1/2)*x^2-I*(-x*(1+x)*(I*3^(1
/2)+2*x-1)*(I*3^(1/2)-2*x+1))^(1/2)*3^(1/2)*x^3+6*(x*(x^3+1))^(1/2)*x-3*(-x*(1+x)*(I*3^(1/2)+2*x-1)*(I*3^(1/2)
-2*x+1))^(1/2))/(x^3+1)^(1/2)/(I*3^(1/2)+3)/(-x*(1+x)*(I*3^(1/2)+2*x-1)*(I*3^(1/2)-2*x+1))^(1/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a/x^3)^(1/2)/(x^3+1)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(a/x^3)/sqrt(x^3 + 1), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.07, size = 14, normalized size = 0.04 \begin {gather*} 2 \, \sqrt {a} {\rm weierstrassZeta}\left (0, -4, {\rm weierstrassPInverse}\left (0, -4, \frac {1}{x}\right )\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a/x^3)^(1/2)/(x^3+1)^(1/2),x, algorithm="fricas")

[Out]

2*sqrt(a)*weierstrassZeta(0, -4, weierstrassPInverse(0, -4, 1/x))

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {\frac {a}{x^{3}}}}{\sqrt {\left (x + 1\right ) \left (x^{2} - x + 1\right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a/x**3)**(1/2)/(x**3+1)**(1/2),x)

[Out]

Integral(sqrt(a/x**3)/sqrt((x + 1)*(x**2 - x + 1)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a/x^3)^(1/2)/(x^3+1)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(a/x^3)/sqrt(x^3 + 1), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {\sqrt {\frac {a}{x^3}}}{\sqrt {x^3+1}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a/x^3)^(1/2)/(x^3 + 1)^(1/2),x)

[Out]

int((a/x^3)^(1/2)/(x^3 + 1)^(1/2), x)

________________________________________________________________________________________