3.4.92 \(\int \frac {\sqrt {\frac {a}{x^4}}}{\sqrt {1+x^3}} \, dx\) [392]

Optimal. Leaf size=281 \[ -\sqrt {\frac {a}{x^4}} x \sqrt {1+x^3}+\frac {\sqrt {\frac {a}{x^4}} x^2 \sqrt {1+x^3}}{1+\sqrt {3}+x}-\frac {\sqrt [4]{3} \sqrt {2-\sqrt {3}} \sqrt {\frac {a}{x^4}} x^2 (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} E\left (\sin ^{-1}\left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right )|-7-4 \sqrt {3}\right )}{2 \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}}+\frac {\sqrt {2} \sqrt {\frac {a}{x^4}} x^2 (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right )|-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}} \]

[Out]

-x*(a/x^4)^(1/2)*(x^3+1)^(1/2)+x^2*(a/x^4)^(1/2)*(x^3+1)^(1/2)/(1+x+3^(1/2))+1/3*x^2*(1+x)*EllipticF((1+x-3^(1
/2))/(1+x+3^(1/2)),I*3^(1/2)+2*I)*2^(1/2)*(a/x^4)^(1/2)*((x^2-x+1)/(1+x+3^(1/2))^2)^(1/2)*3^(3/4)/(x^3+1)^(1/2
)/((1+x)/(1+x+3^(1/2))^2)^(1/2)-1/2*3^(1/4)*x^2*(1+x)*EllipticE((1+x-3^(1/2))/(1+x+3^(1/2)),I*3^(1/2)+2*I)*(a/
x^4)^(1/2)*(1/2*6^(1/2)-1/2*2^(1/2))*((x^2-x+1)/(1+x+3^(1/2))^2)^(1/2)/(x^3+1)^(1/2)/((1+x)/(1+x+3^(1/2))^2)^(
1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.06, antiderivative size = 281, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.263, Rules used = {15, 331, 309, 224, 1891} \begin {gather*} \frac {\sqrt {2} (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} x^2 \sqrt {\frac {a}{x^4}} F\left (\text {ArcSin}\left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right )|-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1}}-\frac {\sqrt [4]{3} \sqrt {2-\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} x^2 \sqrt {\frac {a}{x^4}} E\left (\text {ArcSin}\left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right )|-7-4 \sqrt {3}\right )}{2 \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1}}-\sqrt {x^3+1} x \sqrt {\frac {a}{x^4}}+\frac {\sqrt {x^3+1} x^2 \sqrt {\frac {a}{x^4}}}{x+\sqrt {3}+1} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[a/x^4]/Sqrt[1 + x^3],x]

[Out]

-(Sqrt[a/x^4]*x*Sqrt[1 + x^3]) + (Sqrt[a/x^4]*x^2*Sqrt[1 + x^3])/(1 + Sqrt[3] + x) - (3^(1/4)*Sqrt[2 - Sqrt[3]
]*Sqrt[a/x^4]*x^2*(1 + x)*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*EllipticE[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt
[3] + x)], -7 - 4*Sqrt[3]])/(2*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2]*Sqrt[1 + x^3]) + (Sqrt[2]*Sqrt[a/x^4]*x^2*(1
+ x)*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*EllipticF[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqr
t[3]])/(3^(1/4)*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2]*Sqrt[1 + x^3])

Rule 15

Int[(u_.)*((a_.)*(x_)^(n_))^(m_), x_Symbol] :> Dist[a^IntPart[m]*((a*x^n)^FracPart[m]/x^(n*FracPart[m])), Int[
u*x^(m*n), x], x] /; FreeQ[{a, m, n}, x] &&  !IntegerQ[m]

Rule 224

Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt
[2 + Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sq
rt[s*((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 - Sqrt[3])*s + r*x)/((1 + Sqrt[3])*s + r*x)
], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 309

Int[(x_)/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Dist[(-(
1 - Sqrt[3]))*(s/r), Int[1/Sqrt[a + b*x^3], x], x] + Dist[1/r, Int[((1 - Sqrt[3])*s + r*x)/Sqrt[a + b*x^3], x]
, x]] /; FreeQ[{a, b}, x] && PosQ[a]

Rule 331

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a + b*x^n)^(p + 1)/(a*c
*(m + 1))), x] - Dist[b*((m + n*(p + 1) + 1)/(a*c^n*(m + 1))), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 1891

Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Simplify[(1 - Sqrt[3])*(d/c)]]
, s = Denom[Simplify[(1 - Sqrt[3])*(d/c)]]}, Simp[2*d*s^3*(Sqrt[a + b*x^3]/(a*r^2*((1 + Sqrt[3])*s + r*x))), x
] - Simp[3^(1/4)*Sqrt[2 - Sqrt[3]]*d*s*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(r^2
*Sqrt[a + b*x^3]*Sqrt[s*((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticE[ArcSin[((1 - Sqrt[3])*s + r*x)/((1
+ Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b, c, d}, x] && PosQ[a] && EqQ[b*c^3 - 2*(5 - 3*Sqrt[3
])*a*d^3, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {\frac {a}{x^4}}}{\sqrt {1+x^3}} \, dx &=\left (\sqrt {\frac {a}{x^4}} x^2\right ) \int \frac {1}{x^2 \sqrt {1+x^3}} \, dx\\ &=-\sqrt {\frac {a}{x^4}} x \sqrt {1+x^3}+\frac {1}{2} \left (\sqrt {\frac {a}{x^4}} x^2\right ) \int \frac {x}{\sqrt {1+x^3}} \, dx\\ &=-\sqrt {\frac {a}{x^4}} x \sqrt {1+x^3}+\frac {1}{2} \left (\sqrt {\frac {a}{x^4}} x^2\right ) \int \frac {1-\sqrt {3}+x}{\sqrt {1+x^3}} \, dx+\left (\sqrt {\frac {1}{2} \left (2-\sqrt {3}\right )} \sqrt {\frac {a}{x^4}} x^2\right ) \int \frac {1}{\sqrt {1+x^3}} \, dx\\ &=-\sqrt {\frac {a}{x^4}} x \sqrt {1+x^3}+\frac {\sqrt {\frac {a}{x^4}} x^2 \sqrt {1+x^3}}{1+\sqrt {3}+x}-\frac {\sqrt [4]{3} \sqrt {2-\sqrt {3}} \sqrt {\frac {a}{x^4}} x^2 (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} E\left (\sin ^{-1}\left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right )|-7-4 \sqrt {3}\right )}{2 \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}}+\frac {\sqrt {2} \sqrt {\frac {a}{x^4}} x^2 (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} F\left (\sin ^{-1}\left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right )|-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 10.02, size = 27, normalized size = 0.10 \begin {gather*} -\sqrt {\frac {a}{x^4}} x \, _2F_1\left (-\frac {1}{3},\frac {1}{2};\frac {2}{3};-x^3\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a/x^4]/Sqrt[1 + x^3],x]

[Out]

-(Sqrt[a/x^4]*x*Hypergeometric2F1[-1/3, 1/2, 2/3, -x^3])

________________________________________________________________________________________

Maple [A]
time = 0.32, size = 353, normalized size = 1.26

method result size
meijerg \(-\sqrt {\frac {a}{x^{4}}}\, x \hypergeom \left (\left [-\frac {1}{3}, \frac {1}{2}\right ], \left [\frac {2}{3}\right ], -x^{3}\right )\) \(22\)
risch \(-x \sqrt {\frac {a}{x^{4}}}\, \sqrt {x^{3}+1}-\frac {i \sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \sqrt {\frac {1+x}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {-i \left (x -\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \left (\left (\frac {3}{2}+\frac {i \sqrt {3}}{2}\right ) \EllipticE \left (\frac {\sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )-\EllipticF \left (\frac {\sqrt {3}\, \sqrt {i \left (x -\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \sqrt {\frac {i \sqrt {3}}{\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )\right ) \sqrt {\frac {a}{x^{4}}}\, x^{2} \sqrt {a \left (x^{3}+1\right )}}{3 \sqrt {a \,x^{3}+a}\, \sqrt {x^{3}+1}}\) \(204\)
default \(\frac {\sqrt {\frac {a}{x^{4}}}\, x \left (i \sqrt {3}\, \sqrt {-\frac {2 \left (1+x \right )}{-3+i \sqrt {3}}}\, \sqrt {\frac {i \sqrt {3}-2 x +1}{i \sqrt {3}+3}}\, \sqrt {\frac {i \sqrt {3}+2 x -1}{-3+i \sqrt {3}}}\, \EllipticF \left (\sqrt {-\frac {2 \left (1+x \right )}{-3+i \sqrt {3}}}, \sqrt {-\frac {-3+i \sqrt {3}}{i \sqrt {3}+3}}\right ) x -6 \sqrt {-\frac {2 \left (1+x \right )}{-3+i \sqrt {3}}}\, \sqrt {\frac {i \sqrt {3}-2 x +1}{i \sqrt {3}+3}}\, \sqrt {\frac {i \sqrt {3}+2 x -1}{-3+i \sqrt {3}}}\, \EllipticE \left (\sqrt {-\frac {2 \left (1+x \right )}{-3+i \sqrt {3}}}, \sqrt {-\frac {-3+i \sqrt {3}}{i \sqrt {3}+3}}\right ) x +3 \sqrt {-\frac {2 \left (1+x \right )}{-3+i \sqrt {3}}}\, \sqrt {\frac {i \sqrt {3}-2 x +1}{i \sqrt {3}+3}}\, \sqrt {\frac {i \sqrt {3}+2 x -1}{-3+i \sqrt {3}}}\, \EllipticF \left (\sqrt {-\frac {2 \left (1+x \right )}{-3+i \sqrt {3}}}, \sqrt {-\frac {-3+i \sqrt {3}}{i \sqrt {3}+3}}\right ) x -2 x^{3}-2\right )}{2 \sqrt {x^{3}+1}}\) \(353\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a/x^4)^(1/2)/(x^3+1)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/2*(a/x^4)^(1/2)*x*(I*3^(1/2)*(-2*(1+x)/(-3+I*3^(1/2)))^(1/2)*((I*3^(1/2)-2*x+1)/(I*3^(1/2)+3))^(1/2)*((I*3^(
1/2)+2*x-1)/(-3+I*3^(1/2)))^(1/2)*EllipticF((-2*(1+x)/(-3+I*3^(1/2)))^(1/2),(-(-3+I*3^(1/2))/(I*3^(1/2)+3))^(1
/2))*x-6*(-2*(1+x)/(-3+I*3^(1/2)))^(1/2)*((I*3^(1/2)-2*x+1)/(I*3^(1/2)+3))^(1/2)*((I*3^(1/2)+2*x-1)/(-3+I*3^(1
/2)))^(1/2)*EllipticE((-2*(1+x)/(-3+I*3^(1/2)))^(1/2),(-(-3+I*3^(1/2))/(I*3^(1/2)+3))^(1/2))*x+3*(-2*(1+x)/(-3
+I*3^(1/2)))^(1/2)*((I*3^(1/2)-2*x+1)/(I*3^(1/2)+3))^(1/2)*((I*3^(1/2)+2*x-1)/(-3+I*3^(1/2)))^(1/2)*EllipticF(
(-2*(1+x)/(-3+I*3^(1/2)))^(1/2),(-(-3+I*3^(1/2))/(I*3^(1/2)+3))^(1/2))*x-2*x^3-2)/(x^3+1)^(1/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a/x^4)^(1/2)/(x^3+1)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(a/x^4)/sqrt(x^3 + 1), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.08, size = 37, normalized size = 0.13 \begin {gather*} -x^{2} \sqrt {\frac {a}{x^{4}}} {\rm weierstrassZeta}\left (0, -4, {\rm weierstrassPInverse}\left (0, -4, x\right )\right ) - \sqrt {x^{3} + 1} x \sqrt {\frac {a}{x^{4}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a/x^4)^(1/2)/(x^3+1)^(1/2),x, algorithm="fricas")

[Out]

-x^2*sqrt(a/x^4)*weierstrassZeta(0, -4, weierstrassPInverse(0, -4, x)) - sqrt(x^3 + 1)*x*sqrt(a/x^4)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {\frac {a}{x^{4}}}}{\sqrt {\left (x + 1\right ) \left (x^{2} - x + 1\right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a/x**4)**(1/2)/(x**3+1)**(1/2),x)

[Out]

Integral(sqrt(a/x**4)/sqrt((x + 1)*(x**2 - x + 1)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a/x^4)^(1/2)/(x^3+1)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(a/x^4)/sqrt(x^3 + 1), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {\sqrt {\frac {a}{x^4}}}{\sqrt {x^3+1}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a/x^4)^(1/2)/(x^3 + 1)^(1/2),x)

[Out]

int((a/x^4)^(1/2)/(x^3 + 1)^(1/2), x)

________________________________________________________________________________________