3.3.46 \(\int (c e+d e x)^2 (a+b \text {ArcSin}(c+d x))^{3/2} \, dx\) [246]

Optimal. Leaf size=361 \[ \frac {b e^2 \sqrt {1-(c+d x)^2} \sqrt {a+b \text {ArcSin}(c+d x)}}{3 d}+\frac {b e^2 (c+d x)^2 \sqrt {1-(c+d x)^2} \sqrt {a+b \text {ArcSin}(c+d x)}}{6 d}+\frac {e^2 (c+d x)^3 (a+b \text {ArcSin}(c+d x))^{3/2}}{3 d}-\frac {3 b^{3/2} e^2 \sqrt {\frac {\pi }{2}} \cos \left (\frac {a}{b}\right ) \text {FresnelC}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \text {ArcSin}(c+d x)}}{\sqrt {b}}\right )}{8 d}+\frac {b^{3/2} e^2 \sqrt {\frac {\pi }{6}} \cos \left (\frac {3 a}{b}\right ) \text {FresnelC}\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \text {ArcSin}(c+d x)}}{\sqrt {b}}\right )}{24 d}-\frac {3 b^{3/2} e^2 \sqrt {\frac {\pi }{2}} S\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \text {ArcSin}(c+d x)}}{\sqrt {b}}\right ) \sin \left (\frac {a}{b}\right )}{8 d}+\frac {b^{3/2} e^2 \sqrt {\frac {\pi }{6}} S\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \text {ArcSin}(c+d x)}}{\sqrt {b}}\right ) \sin \left (\frac {3 a}{b}\right )}{24 d} \]

[Out]

1/3*e^2*(d*x+c)^3*(a+b*arcsin(d*x+c))^(3/2)/d+1/144*b^(3/2)*e^2*cos(3*a/b)*FresnelC(6^(1/2)/Pi^(1/2)*(a+b*arcs
in(d*x+c))^(1/2)/b^(1/2))*6^(1/2)*Pi^(1/2)/d+1/144*b^(3/2)*e^2*FresnelS(6^(1/2)/Pi^(1/2)*(a+b*arcsin(d*x+c))^(
1/2)/b^(1/2))*sin(3*a/b)*6^(1/2)*Pi^(1/2)/d-3/16*b^(3/2)*e^2*cos(a/b)*FresnelC(2^(1/2)/Pi^(1/2)*(a+b*arcsin(d*
x+c))^(1/2)/b^(1/2))*2^(1/2)*Pi^(1/2)/d-3/16*b^(3/2)*e^2*FresnelS(2^(1/2)/Pi^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b
^(1/2))*sin(a/b)*2^(1/2)*Pi^(1/2)/d+1/3*b*e^2*(1-(d*x+c)^2)^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/d+1/6*b*e^2*(d*x+c
)^2*(1-(d*x+c)^2)^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/d

________________________________________________________________________________________

Rubi [A]
time = 0.67, antiderivative size = 361, normalized size of antiderivative = 1.00, number of steps used = 24, number of rules used = 13, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.520, Rules used = {4889, 12, 4725, 4795, 4767, 4719, 3387, 3386, 3432, 3385, 3433, 4731, 4491} \begin {gather*} -\frac {3 \sqrt {\frac {\pi }{2}} b^{3/2} e^2 \cos \left (\frac {a}{b}\right ) \text {FresnelC}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \text {ArcSin}(c+d x)}}{\sqrt {b}}\right )}{8 d}+\frac {\sqrt {\frac {\pi }{6}} b^{3/2} e^2 \cos \left (\frac {3 a}{b}\right ) \text {FresnelC}\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \text {ArcSin}(c+d x)}}{\sqrt {b}}\right )}{24 d}-\frac {3 \sqrt {\frac {\pi }{2}} b^{3/2} e^2 \sin \left (\frac {a}{b}\right ) S\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \text {ArcSin}(c+d x)}}{\sqrt {b}}\right )}{8 d}+\frac {\sqrt {\frac {\pi }{6}} b^{3/2} e^2 \sin \left (\frac {3 a}{b}\right ) S\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \text {ArcSin}(c+d x)}}{\sqrt {b}}\right )}{24 d}+\frac {e^2 (c+d x)^3 (a+b \text {ArcSin}(c+d x))^{3/2}}{3 d}+\frac {b e^2 \sqrt {1-(c+d x)^2} (c+d x)^2 \sqrt {a+b \text {ArcSin}(c+d x)}}{6 d}+\frac {b e^2 \sqrt {1-(c+d x)^2} \sqrt {a+b \text {ArcSin}(c+d x)}}{3 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(c*e + d*e*x)^2*(a + b*ArcSin[c + d*x])^(3/2),x]

[Out]

(b*e^2*Sqrt[1 - (c + d*x)^2]*Sqrt[a + b*ArcSin[c + d*x]])/(3*d) + (b*e^2*(c + d*x)^2*Sqrt[1 - (c + d*x)^2]*Sqr
t[a + b*ArcSin[c + d*x]])/(6*d) + (e^2*(c + d*x)^3*(a + b*ArcSin[c + d*x])^(3/2))/(3*d) - (3*b^(3/2)*e^2*Sqrt[
Pi/2]*Cos[a/b]*FresnelC[(Sqrt[2/Pi]*Sqrt[a + b*ArcSin[c + d*x]])/Sqrt[b]])/(8*d) + (b^(3/2)*e^2*Sqrt[Pi/6]*Cos
[(3*a)/b]*FresnelC[(Sqrt[6/Pi]*Sqrt[a + b*ArcSin[c + d*x]])/Sqrt[b]])/(24*d) - (3*b^(3/2)*e^2*Sqrt[Pi/2]*Fresn
elS[(Sqrt[2/Pi]*Sqrt[a + b*ArcSin[c + d*x]])/Sqrt[b]]*Sin[a/b])/(8*d) + (b^(3/2)*e^2*Sqrt[Pi/6]*FresnelS[(Sqrt
[6/Pi]*Sqrt[a + b*ArcSin[c + d*x]])/Sqrt[b]]*Sin[(3*a)/b])/(24*d)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 3385

Int[sin[Pi/2 + (e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[Cos[f*(x^2/d)],
x], x, Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]

Rule 3386

Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[Sin[f*(x^2/d)], x], x,
Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]

Rule 3387

Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[c*(f/d) +
f*x]/Sqrt[c + d*x], x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[c*(f/d) + f*x]/Sqrt[c + d*x], x], x] /; FreeQ[{c
, d, e, f}, x] && ComplexFreeQ[f] && NeQ[d*e - c*f, 0]

Rule 3432

Int[Sin[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]/(f*Rt[d, 2]))*FresnelS[Sqrt[2/Pi]*Rt[d, 2
]*(e + f*x)], x] /; FreeQ[{d, e, f}, x]

Rule 3433

Int[Cos[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]/(f*Rt[d, 2]))*FresnelC[Sqrt[2/Pi]*Rt[d, 2
]*(e + f*x)], x] /; FreeQ[{d, e, f}, x]

Rule 4491

Int[Cos[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sin[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Int[E
xpandTrigReduce[(c + d*x)^m, Sin[a + b*x]^n*Cos[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0]
&& IGtQ[p, 0]

Rule 4719

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Dist[1/(b*c), Subst[Int[x^n*Cos[-a/b + x/b], x], x,
a + b*ArcSin[c*x]], x] /; FreeQ[{a, b, c, n}, x]

Rule 4725

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)*((a + b*ArcSin[c*x])^n/(m
+ 1)), x] - Dist[b*c*(n/(m + 1)), Int[x^(m + 1)*((a + b*ArcSin[c*x])^(n - 1)/Sqrt[1 - c^2*x^2]), x], x] /; Fre
eQ[{a, b, c}, x] && IGtQ[m, 0] && GtQ[n, 0]

Rule 4731

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Dist[1/(b*c^(m + 1)), Subst[Int[x^n*Sin[-
a/b + x/b]^m*Cos[-a/b + x/b], x], x, a + b*ArcSin[c*x]], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[m, 0]

Rule 4767

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x^2)^(
p + 1)*((a + b*ArcSin[c*x])^n/(2*e*(p + 1))), x] + Dist[b*(n/(2*c*(p + 1)))*Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p
], Int[(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSin[c*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2*
d + e, 0] && GtQ[n, 0] && NeQ[p, -1]

Rule 4795

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[f
*(f*x)^(m - 1)*(d + e*x^2)^(p + 1)*((a + b*ArcSin[c*x])^n/(e*(m + 2*p + 1))), x] + (Dist[f^2*((m - 1)/(c^2*(m
+ 2*p + 1))), Int[(f*x)^(m - 2)*(d + e*x^2)^p*(a + b*ArcSin[c*x])^n, x], x] + Dist[b*f*(n/(c*(m + 2*p + 1)))*S
imp[(d + e*x^2)^p/(1 - c^2*x^2)^p], Int[(f*x)^(m - 1)*(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSin[c*x])^(n - 1), x],
 x]) /; FreeQ[{a, b, c, d, e, f, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && IGtQ[m, 1] && NeQ[m + 2*p + 1, 0]

Rule 4889

Int[((a_.) + ArcSin[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[1/d, Subst[I
nt[((d*e - c*f)/d + f*(x/d))^m*(a + b*ArcSin[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]

Rubi steps

\begin {align*} \int (c e+d e x)^2 \left (a+b \sin ^{-1}(c+d x)\right )^{3/2} \, dx &=\frac {\text {Subst}\left (\int e^2 x^2 \left (a+b \sin ^{-1}(x)\right )^{3/2} \, dx,x,c+d x\right )}{d}\\ &=\frac {e^2 \text {Subst}\left (\int x^2 \left (a+b \sin ^{-1}(x)\right )^{3/2} \, dx,x,c+d x\right )}{d}\\ &=\frac {e^2 (c+d x)^3 \left (a+b \sin ^{-1}(c+d x)\right )^{3/2}}{3 d}-\frac {\left (b e^2\right ) \text {Subst}\left (\int \frac {x^3 \sqrt {a+b \sin ^{-1}(x)}}{\sqrt {1-x^2}} \, dx,x,c+d x\right )}{2 d}\\ &=\frac {b e^2 (c+d x)^2 \sqrt {1-(c+d x)^2} \sqrt {a+b \sin ^{-1}(c+d x)}}{6 d}+\frac {e^2 (c+d x)^3 \left (a+b \sin ^{-1}(c+d x)\right )^{3/2}}{3 d}-\frac {\left (b e^2\right ) \text {Subst}\left (\int \frac {x \sqrt {a+b \sin ^{-1}(x)}}{\sqrt {1-x^2}} \, dx,x,c+d x\right )}{3 d}-\frac {\left (b^2 e^2\right ) \text {Subst}\left (\int \frac {x^2}{\sqrt {a+b \sin ^{-1}(x)}} \, dx,x,c+d x\right )}{12 d}\\ &=\frac {b e^2 \sqrt {1-(c+d x)^2} \sqrt {a+b \sin ^{-1}(c+d x)}}{3 d}+\frac {b e^2 (c+d x)^2 \sqrt {1-(c+d x)^2} \sqrt {a+b \sin ^{-1}(c+d x)}}{6 d}+\frac {e^2 (c+d x)^3 \left (a+b \sin ^{-1}(c+d x)\right )^{3/2}}{3 d}-\frac {\left (b^2 e^2\right ) \text {Subst}\left (\int \frac {\cos (x) \sin ^2(x)}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c+d x)\right )}{12 d}-\frac {\left (b^2 e^2\right ) \text {Subst}\left (\int \frac {1}{\sqrt {a+b \sin ^{-1}(x)}} \, dx,x,c+d x\right )}{6 d}\\ &=\frac {b e^2 \sqrt {1-(c+d x)^2} \sqrt {a+b \sin ^{-1}(c+d x)}}{3 d}+\frac {b e^2 (c+d x)^2 \sqrt {1-(c+d x)^2} \sqrt {a+b \sin ^{-1}(c+d x)}}{6 d}+\frac {e^2 (c+d x)^3 \left (a+b \sin ^{-1}(c+d x)\right )^{3/2}}{3 d}-\frac {\left (b e^2\right ) \text {Subst}\left (\int \frac {\cos \left (\frac {a}{b}-\frac {x}{b}\right )}{\sqrt {x}} \, dx,x,a+b \sin ^{-1}(c+d x)\right )}{6 d}-\frac {\left (b^2 e^2\right ) \text {Subst}\left (\int \left (\frac {\cos (x)}{4 \sqrt {a+b x}}-\frac {\cos (3 x)}{4 \sqrt {a+b x}}\right ) \, dx,x,\sin ^{-1}(c+d x)\right )}{12 d}\\ &=\frac {b e^2 \sqrt {1-(c+d x)^2} \sqrt {a+b \sin ^{-1}(c+d x)}}{3 d}+\frac {b e^2 (c+d x)^2 \sqrt {1-(c+d x)^2} \sqrt {a+b \sin ^{-1}(c+d x)}}{6 d}+\frac {e^2 (c+d x)^3 \left (a+b \sin ^{-1}(c+d x)\right )^{3/2}}{3 d}-\frac {\left (b^2 e^2\right ) \text {Subst}\left (\int \frac {\cos (x)}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c+d x)\right )}{48 d}+\frac {\left (b^2 e^2\right ) \text {Subst}\left (\int \frac {\cos (3 x)}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c+d x)\right )}{48 d}-\frac {\left (b e^2 \cos \left (\frac {a}{b}\right )\right ) \text {Subst}\left (\int \frac {\cos \left (\frac {x}{b}\right )}{\sqrt {x}} \, dx,x,a+b \sin ^{-1}(c+d x)\right )}{6 d}-\frac {\left (b e^2 \sin \left (\frac {a}{b}\right )\right ) \text {Subst}\left (\int \frac {\sin \left (\frac {x}{b}\right )}{\sqrt {x}} \, dx,x,a+b \sin ^{-1}(c+d x)\right )}{6 d}\\ &=\frac {b e^2 \sqrt {1-(c+d x)^2} \sqrt {a+b \sin ^{-1}(c+d x)}}{3 d}+\frac {b e^2 (c+d x)^2 \sqrt {1-(c+d x)^2} \sqrt {a+b \sin ^{-1}(c+d x)}}{6 d}+\frac {e^2 (c+d x)^3 \left (a+b \sin ^{-1}(c+d x)\right )^{3/2}}{3 d}-\frac {\left (b e^2 \cos \left (\frac {a}{b}\right )\right ) \text {Subst}\left (\int \cos \left (\frac {x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c+d x)}\right )}{3 d}-\frac {\left (b^2 e^2 \cos \left (\frac {a}{b}\right )\right ) \text {Subst}\left (\int \frac {\cos \left (\frac {a}{b}+x\right )}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c+d x)\right )}{48 d}+\frac {\left (b^2 e^2 \cos \left (\frac {3 a}{b}\right )\right ) \text {Subst}\left (\int \frac {\cos \left (\frac {3 a}{b}+3 x\right )}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c+d x)\right )}{48 d}-\frac {\left (b e^2 \sin \left (\frac {a}{b}\right )\right ) \text {Subst}\left (\int \sin \left (\frac {x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c+d x)}\right )}{3 d}-\frac {\left (b^2 e^2 \sin \left (\frac {a}{b}\right )\right ) \text {Subst}\left (\int \frac {\sin \left (\frac {a}{b}+x\right )}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c+d x)\right )}{48 d}+\frac {\left (b^2 e^2 \sin \left (\frac {3 a}{b}\right )\right ) \text {Subst}\left (\int \frac {\sin \left (\frac {3 a}{b}+3 x\right )}{\sqrt {a+b x}} \, dx,x,\sin ^{-1}(c+d x)\right )}{48 d}\\ &=\frac {b e^2 \sqrt {1-(c+d x)^2} \sqrt {a+b \sin ^{-1}(c+d x)}}{3 d}+\frac {b e^2 (c+d x)^2 \sqrt {1-(c+d x)^2} \sqrt {a+b \sin ^{-1}(c+d x)}}{6 d}+\frac {e^2 (c+d x)^3 \left (a+b \sin ^{-1}(c+d x)\right )^{3/2}}{3 d}-\frac {b^{3/2} e^2 \sqrt {\frac {\pi }{2}} \cos \left (\frac {a}{b}\right ) C\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b}}\right )}{3 d}-\frac {b^{3/2} e^2 \sqrt {\frac {\pi }{2}} S\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b}}\right ) \sin \left (\frac {a}{b}\right )}{3 d}-\frac {\left (b e^2 \cos \left (\frac {a}{b}\right )\right ) \text {Subst}\left (\int \cos \left (\frac {x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c+d x)}\right )}{24 d}+\frac {\left (b e^2 \cos \left (\frac {3 a}{b}\right )\right ) \text {Subst}\left (\int \cos \left (\frac {3 x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c+d x)}\right )}{24 d}-\frac {\left (b e^2 \sin \left (\frac {a}{b}\right )\right ) \text {Subst}\left (\int \sin \left (\frac {x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c+d x)}\right )}{24 d}+\frac {\left (b e^2 \sin \left (\frac {3 a}{b}\right )\right ) \text {Subst}\left (\int \sin \left (\frac {3 x^2}{b}\right ) \, dx,x,\sqrt {a+b \sin ^{-1}(c+d x)}\right )}{24 d}\\ &=\frac {b e^2 \sqrt {1-(c+d x)^2} \sqrt {a+b \sin ^{-1}(c+d x)}}{3 d}+\frac {b e^2 (c+d x)^2 \sqrt {1-(c+d x)^2} \sqrt {a+b \sin ^{-1}(c+d x)}}{6 d}+\frac {e^2 (c+d x)^3 \left (a+b \sin ^{-1}(c+d x)\right )^{3/2}}{3 d}-\frac {3 b^{3/2} e^2 \sqrt {\frac {\pi }{2}} \cos \left (\frac {a}{b}\right ) C\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b}}\right )}{8 d}+\frac {b^{3/2} e^2 \sqrt {\frac {\pi }{6}} \cos \left (\frac {3 a}{b}\right ) C\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b}}\right )}{24 d}-\frac {3 b^{3/2} e^2 \sqrt {\frac {\pi }{2}} S\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b}}\right ) \sin \left (\frac {a}{b}\right )}{8 d}+\frac {b^{3/2} e^2 \sqrt {\frac {\pi }{6}} S\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \sin ^{-1}(c+d x)}}{\sqrt {b}}\right ) \sin \left (\frac {3 a}{b}\right )}{24 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 0.19, size = 268, normalized size = 0.74 \begin {gather*} \frac {b e^2 e^{-\frac {3 i a}{b}} \sqrt {a+b \text {ArcSin}(c+d x)} \left (27 e^{\frac {2 i a}{b}} \sqrt {\frac {i (a+b \text {ArcSin}(c+d x))}{b}} \text {Gamma}\left (\frac {5}{2},-\frac {i (a+b \text {ArcSin}(c+d x))}{b}\right )+27 e^{\frac {4 i a}{b}} \sqrt {-\frac {i (a+b \text {ArcSin}(c+d x))}{b}} \text {Gamma}\left (\frac {5}{2},\frac {i (a+b \text {ArcSin}(c+d x))}{b}\right )-\sqrt {3} \left (\sqrt {\frac {i (a+b \text {ArcSin}(c+d x))}{b}} \text {Gamma}\left (\frac {5}{2},-\frac {3 i (a+b \text {ArcSin}(c+d x))}{b}\right )+e^{\frac {6 i a}{b}} \sqrt {-\frac {i (a+b \text {ArcSin}(c+d x))}{b}} \text {Gamma}\left (\frac {5}{2},\frac {3 i (a+b \text {ArcSin}(c+d x))}{b}\right )\right )\right )}{216 d \sqrt {\frac {(a+b \text {ArcSin}(c+d x))^2}{b^2}}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(c*e + d*e*x)^2*(a + b*ArcSin[c + d*x])^(3/2),x]

[Out]

(b*e^2*Sqrt[a + b*ArcSin[c + d*x]]*(27*E^(((2*I)*a)/b)*Sqrt[(I*(a + b*ArcSin[c + d*x]))/b]*Gamma[5/2, ((-I)*(a
 + b*ArcSin[c + d*x]))/b] + 27*E^(((4*I)*a)/b)*Sqrt[((-I)*(a + b*ArcSin[c + d*x]))/b]*Gamma[5/2, (I*(a + b*Arc
Sin[c + d*x]))/b] - Sqrt[3]*(Sqrt[(I*(a + b*ArcSin[c + d*x]))/b]*Gamma[5/2, ((-3*I)*(a + b*ArcSin[c + d*x]))/b
] + E^(((6*I)*a)/b)*Sqrt[((-I)*(a + b*ArcSin[c + d*x]))/b]*Gamma[5/2, ((3*I)*(a + b*ArcSin[c + d*x]))/b])))/(2
16*d*E^(((3*I)*a)/b)*Sqrt[(a + b*ArcSin[c + d*x])^2/b^2])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(599\) vs. \(2(289)=578\).
time = 0.56, size = 600, normalized size = 1.66

method result size
default \(-\frac {e^{2} \left (27 \sqrt {a +b \arcsin \left (d x +c \right )}\, \cos \left (\frac {a}{b}\right ) \FresnelC \left (\frac {\sqrt {2}\, \sqrt {a +b \arcsin \left (d x +c \right )}}{\sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, b}\right ) \sqrt {-\frac {1}{b}}\, \sqrt {\pi }\, \sqrt {2}\, b^{2}-27 \sqrt {a +b \arcsin \left (d x +c \right )}\, \sin \left (\frac {a}{b}\right ) \mathrm {S}\left (\frac {\sqrt {2}\, \sqrt {a +b \arcsin \left (d x +c \right )}}{\sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, b}\right ) \sqrt {-\frac {1}{b}}\, \sqrt {\pi }\, \sqrt {2}\, b^{2}-\sqrt {\pi }\, \sqrt {2}\, \sqrt {-\frac {3}{b}}\, \sqrt {a +b \arcsin \left (d x +c \right )}\, \cos \left (\frac {3 a}{b}\right ) \FresnelC \left (\frac {3 \sqrt {2}\, \sqrt {a +b \arcsin \left (d x +c \right )}}{\sqrt {\pi }\, \sqrt {-\frac {3}{b}}\, b}\right ) b^{2}+\sqrt {\pi }\, \sqrt {2}\, \sqrt {-\frac {3}{b}}\, \sqrt {a +b \arcsin \left (d x +c \right )}\, \sin \left (\frac {3 a}{b}\right ) \mathrm {S}\left (\frac {3 \sqrt {2}\, \sqrt {a +b \arcsin \left (d x +c \right )}}{\sqrt {\pi }\, \sqrt {-\frac {3}{b}}\, b}\right ) b^{2}+36 \arcsin \left (d x +c \right )^{2} \sin \left (-\frac {a +b \arcsin \left (d x +c \right )}{b}+\frac {a}{b}\right ) b^{2}-12 \arcsin \left (d x +c \right )^{2} \sin \left (-\frac {3 \left (a +b \arcsin \left (d x +c \right )\right )}{b}+\frac {3 a}{b}\right ) b^{2}+72 \arcsin \left (d x +c \right ) \sin \left (-\frac {a +b \arcsin \left (d x +c \right )}{b}+\frac {a}{b}\right ) a b -54 \arcsin \left (d x +c \right ) \cos \left (-\frac {a +b \arcsin \left (d x +c \right )}{b}+\frac {a}{b}\right ) b^{2}-24 \arcsin \left (d x +c \right ) \sin \left (-\frac {3 \left (a +b \arcsin \left (d x +c \right )\right )}{b}+\frac {3 a}{b}\right ) a b +6 \arcsin \left (d x +c \right ) \cos \left (-\frac {3 \left (a +b \arcsin \left (d x +c \right )\right )}{b}+\frac {3 a}{b}\right ) b^{2}+36 \sin \left (-\frac {a +b \arcsin \left (d x +c \right )}{b}+\frac {a}{b}\right ) a^{2}-54 \cos \left (-\frac {a +b \arcsin \left (d x +c \right )}{b}+\frac {a}{b}\right ) a b -12 \sin \left (-\frac {3 \left (a +b \arcsin \left (d x +c \right )\right )}{b}+\frac {3 a}{b}\right ) a^{2}+6 \cos \left (-\frac {3 \left (a +b \arcsin \left (d x +c \right )\right )}{b}+\frac {3 a}{b}\right ) a b \right )}{144 d \sqrt {a +b \arcsin \left (d x +c \right )}}\) \(600\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*e*x+c*e)^2*(a+b*arcsin(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

-1/144/d*e^2*(27*(a+b*arcsin(d*x+c))^(1/2)*cos(a/b)*FresnelC(2^(1/2)/Pi^(1/2)/(-1/b)^(1/2)*(a+b*arcsin(d*x+c))
^(1/2)/b)*(-1/b)^(1/2)*Pi^(1/2)*2^(1/2)*b^2-27*(a+b*arcsin(d*x+c))^(1/2)*sin(a/b)*FresnelS(2^(1/2)/Pi^(1/2)/(-
1/b)^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b)*(-1/b)^(1/2)*Pi^(1/2)*2^(1/2)*b^2-Pi^(1/2)*2^(1/2)*(-3/b)^(1/2)*(a+b*a
rcsin(d*x+c))^(1/2)*cos(3*a/b)*FresnelC(3*2^(1/2)/Pi^(1/2)/(-3/b)^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b)*b^2+Pi^(1
/2)*2^(1/2)*(-3/b)^(1/2)*(a+b*arcsin(d*x+c))^(1/2)*sin(3*a/b)*FresnelS(3*2^(1/2)/Pi^(1/2)/(-3/b)^(1/2)*(a+b*ar
csin(d*x+c))^(1/2)/b)*b^2+36*arcsin(d*x+c)^2*sin(-(a+b*arcsin(d*x+c))/b+a/b)*b^2-12*arcsin(d*x+c)^2*sin(-3*(a+
b*arcsin(d*x+c))/b+3*a/b)*b^2+72*arcsin(d*x+c)*sin(-(a+b*arcsin(d*x+c))/b+a/b)*a*b-54*arcsin(d*x+c)*cos(-(a+b*
arcsin(d*x+c))/b+a/b)*b^2-24*arcsin(d*x+c)*sin(-3*(a+b*arcsin(d*x+c))/b+3*a/b)*a*b+6*arcsin(d*x+c)*cos(-3*(a+b
*arcsin(d*x+c))/b+3*a/b)*b^2+36*sin(-(a+b*arcsin(d*x+c))/b+a/b)*a^2-54*cos(-(a+b*arcsin(d*x+c))/b+a/b)*a*b-12*
sin(-3*(a+b*arcsin(d*x+c))/b+3*a/b)*a^2+6*cos(-3*(a+b*arcsin(d*x+c))/b+3*a/b)*a*b)/(a+b*arcsin(d*x+c))^(1/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)^2*(a+b*arcsin(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate((d*x*e + c*e)^2*(b*arcsin(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

Fricas [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)^2*(a+b*arcsin(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (co
nstant residues)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} e^{2} \left (\int a c^{2} \sqrt {a + b \operatorname {asin}{\left (c + d x \right )}}\, dx + \int a d^{2} x^{2} \sqrt {a + b \operatorname {asin}{\left (c + d x \right )}}\, dx + \int b c^{2} \sqrt {a + b \operatorname {asin}{\left (c + d x \right )}} \operatorname {asin}{\left (c + d x \right )}\, dx + \int 2 a c d x \sqrt {a + b \operatorname {asin}{\left (c + d x \right )}}\, dx + \int b d^{2} x^{2} \sqrt {a + b \operatorname {asin}{\left (c + d x \right )}} \operatorname {asin}{\left (c + d x \right )}\, dx + \int 2 b c d x \sqrt {a + b \operatorname {asin}{\left (c + d x \right )}} \operatorname {asin}{\left (c + d x \right )}\, dx\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)**2*(a+b*asin(d*x+c))**(3/2),x)

[Out]

e**2*(Integral(a*c**2*sqrt(a + b*asin(c + d*x)), x) + Integral(a*d**2*x**2*sqrt(a + b*asin(c + d*x)), x) + Int
egral(b*c**2*sqrt(a + b*asin(c + d*x))*asin(c + d*x), x) + Integral(2*a*c*d*x*sqrt(a + b*asin(c + d*x)), x) +
Integral(b*d**2*x**2*sqrt(a + b*asin(c + d*x))*asin(c + d*x), x) + Integral(2*b*c*d*x*sqrt(a + b*asin(c + d*x)
)*asin(c + d*x), x))

________________________________________________________________________________________

Giac [C] Result contains complex when optimal does not.
time = 1.47, size = 2199, normalized size = 6.09 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*e*x+c*e)^2*(a+b*arcsin(d*x+c))^(3/2),x, algorithm="giac")

[Out]

1/8*sqrt(2)*sqrt(pi)*a^2*b^2*e^2*erf(-1/2*I*sqrt(2)*sqrt(b*arcsin(d*x + c) + a)/sqrt(abs(b)) - 1/2*sqrt(2)*sqr
t(b*arcsin(d*x + c) + a)*sqrt(abs(b))/b)*e^(I*a/b)/((I*b^3/sqrt(abs(b)) + b^2*sqrt(abs(b)))*d) + 1/8*I*sqrt(2)
*sqrt(pi)*a*b^3*e^2*erf(-1/2*I*sqrt(2)*sqrt(b*arcsin(d*x + c) + a)/sqrt(abs(b)) - 1/2*sqrt(2)*sqrt(b*arcsin(d*
x + c) + a)*sqrt(abs(b))/b)*e^(I*a/b)/((I*b^3/sqrt(abs(b)) + b^2*sqrt(abs(b)))*d) + 1/8*sqrt(2)*sqrt(pi)*a^2*b
^2*e^2*erf(1/2*I*sqrt(2)*sqrt(b*arcsin(d*x + c) + a)/sqrt(abs(b)) - 1/2*sqrt(2)*sqrt(b*arcsin(d*x + c) + a)*sq
rt(abs(b))/b)*e^(-I*a/b)/((-I*b^3/sqrt(abs(b)) + b^2*sqrt(abs(b)))*d) - 1/8*I*sqrt(2)*sqrt(pi)*a*b^3*e^2*erf(1
/2*I*sqrt(2)*sqrt(b*arcsin(d*x + c) + a)/sqrt(abs(b)) - 1/2*sqrt(2)*sqrt(b*arcsin(d*x + c) + a)*sqrt(abs(b))/b
)*e^(-I*a/b)/((-I*b^3/sqrt(abs(b)) + b^2*sqrt(abs(b)))*d) - 1/4*sqrt(pi)*a^2*b^(3/2)*e^2*erf(-1/2*sqrt(6)*sqrt
(b*arcsin(d*x + c) + a)/sqrt(b) - 1/2*I*sqrt(6)*sqrt(b*arcsin(d*x + c) + a)*sqrt(b)/abs(b))*e^(3*I*a/b)/((sqrt
(6)*b^2 + I*sqrt(6)*b^3/abs(b))*d) - 1/12*I*sqrt(pi)*a*b^(5/2)*e^2*erf(-1/2*sqrt(6)*sqrt(b*arcsin(d*x + c) + a
)/sqrt(b) - 1/2*I*sqrt(6)*sqrt(b*arcsin(d*x + c) + a)*sqrt(b)/abs(b))*e^(3*I*a/b)/((sqrt(6)*b^2 + I*sqrt(6)*b^
3/abs(b))*d) - 1/8*I*sqrt(2)*sqrt(pi)*a*b^2*e^2*erf(-1/2*I*sqrt(2)*sqrt(b*arcsin(d*x + c) + a)/sqrt(abs(b)) -
1/2*sqrt(2)*sqrt(b*arcsin(d*x + c) + a)*sqrt(abs(b))/b)*e^(I*a/b)/((I*b^2/sqrt(abs(b)) + b*sqrt(abs(b)))*d) +
3/32*sqrt(2)*sqrt(pi)*b^3*e^2*erf(-1/2*I*sqrt(2)*sqrt(b*arcsin(d*x + c) + a)/sqrt(abs(b)) - 1/2*sqrt(2)*sqrt(b
*arcsin(d*x + c) + a)*sqrt(abs(b))/b)*e^(I*a/b)/((I*b^2/sqrt(abs(b)) + b*sqrt(abs(b)))*d) + 1/8*I*sqrt(2)*sqrt
(pi)*a*b^2*e^2*erf(1/2*I*sqrt(2)*sqrt(b*arcsin(d*x + c) + a)/sqrt(abs(b)) - 1/2*sqrt(2)*sqrt(b*arcsin(d*x + c)
 + a)*sqrt(abs(b))/b)*e^(-I*a/b)/((-I*b^2/sqrt(abs(b)) + b*sqrt(abs(b)))*d) + 3/32*sqrt(2)*sqrt(pi)*b^3*e^2*er
f(1/2*I*sqrt(2)*sqrt(b*arcsin(d*x + c) + a)/sqrt(abs(b)) - 1/2*sqrt(2)*sqrt(b*arcsin(d*x + c) + a)*sqrt(abs(b)
)/b)*e^(-I*a/b)/((-I*b^2/sqrt(abs(b)) + b*sqrt(abs(b)))*d) - 1/4*sqrt(pi)*a^2*b^(3/2)*e^2*erf(-1/2*sqrt(6)*sqr
t(b*arcsin(d*x + c) + a)/sqrt(b) + 1/2*I*sqrt(6)*sqrt(b*arcsin(d*x + c) + a)*sqrt(b)/abs(b))*e^(-3*I*a/b)/((sq
rt(6)*b^2 - I*sqrt(6)*b^3/abs(b))*d) + 1/12*I*sqrt(pi)*a*b^(5/2)*e^2*erf(-1/2*sqrt(6)*sqrt(b*arcsin(d*x + c) +
 a)/sqrt(b) + 1/2*I*sqrt(6)*sqrt(b*arcsin(d*x + c) + a)*sqrt(b)/abs(b))*e^(-3*I*a/b)/((sqrt(6)*b^2 - I*sqrt(6)
*b^3/abs(b))*d) + 1/4*sqrt(pi)*a^2*b*e^2*erf(-1/2*sqrt(6)*sqrt(b*arcsin(d*x + c) + a)/sqrt(b) - 1/2*I*sqrt(6)*
sqrt(b*arcsin(d*x + c) + a)*sqrt(b)/abs(b))*e^(3*I*a/b)/((sqrt(6)*b^(3/2) + I*sqrt(6)*b^(5/2)/abs(b))*d) + 1/1
2*I*sqrt(pi)*a*b^2*e^2*erf(-1/2*sqrt(6)*sqrt(b*arcsin(d*x + c) + a)/sqrt(b) - 1/2*I*sqrt(6)*sqrt(b*arcsin(d*x
+ c) + a)*sqrt(b)/abs(b))*e^(3*I*a/b)/((sqrt(6)*b^(3/2) + I*sqrt(6)*b^(5/2)/abs(b))*d) - 1/4*sqrt(pi)*a^2*b*e^
2*erf(-1/2*I*sqrt(2)*sqrt(b*arcsin(d*x + c) + a)/sqrt(abs(b)) - 1/2*sqrt(2)*sqrt(b*arcsin(d*x + c) + a)*sqrt(a
bs(b))/b)*e^(I*a/b)/((I*sqrt(2)*b^2/sqrt(abs(b)) + sqrt(2)*b*sqrt(abs(b)))*d) - 1/4*sqrt(pi)*a^2*b*e^2*erf(1/2
*I*sqrt(2)*sqrt(b*arcsin(d*x + c) + a)/sqrt(abs(b)) - 1/2*sqrt(2)*sqrt(b*arcsin(d*x + c) + a)*sqrt(abs(b))/b)*
e^(-I*a/b)/((-I*sqrt(2)*b^2/sqrt(abs(b)) + sqrt(2)*b*sqrt(abs(b)))*d) + 1/4*sqrt(pi)*a^2*b*e^2*erf(-1/2*sqrt(6
)*sqrt(b*arcsin(d*x + c) + a)/sqrt(b) + 1/2*I*sqrt(6)*sqrt(b*arcsin(d*x + c) + a)*sqrt(b)/abs(b))*e^(-3*I*a/b)
/((sqrt(6)*b^(3/2) - I*sqrt(6)*b^(5/2)/abs(b))*d) - 1/12*I*sqrt(pi)*a*b^2*e^2*erf(-1/2*sqrt(6)*sqrt(b*arcsin(d
*x + c) + a)/sqrt(b) + 1/2*I*sqrt(6)*sqrt(b*arcsin(d*x + c) + a)*sqrt(b)/abs(b))*e^(-3*I*a/b)/((sqrt(6)*b^(3/2
) - I*sqrt(6)*b^(5/2)/abs(b))*d) - 1/48*sqrt(pi)*b^(5/2)*e^2*erf(-1/2*sqrt(6)*sqrt(b*arcsin(d*x + c) + a)/sqrt
(b) - 1/2*I*sqrt(6)*sqrt(b*arcsin(d*x + c) + a)*sqrt(b)/abs(b))*e^(3*I*a/b)/((sqrt(6)*b + I*sqrt(6)*b^2/abs(b)
)*d) - 1/48*sqrt(pi)*b^(5/2)*e^2*erf(-1/2*sqrt(6)*sqrt(b*arcsin(d*x + c) + a)/sqrt(b) + 1/2*I*sqrt(6)*sqrt(b*a
rcsin(d*x + c) + a)*sqrt(b)/abs(b))*e^(-3*I*a/b)/((sqrt(6)*b - I*sqrt(6)*b^2/abs(b))*d) + 1/24*I*sqrt(b*arcsin
(d*x + c) + a)*b*e^2*arcsin(d*x + c)*e^(3*I*arcsin(d*x + c))/d - 1/8*I*sqrt(b*arcsin(d*x + c) + a)*b*e^2*arcsi
n(d*x + c)*e^(I*arcsin(d*x + c))/d + 1/8*I*sqrt(b*arcsin(d*x + c) + a)*b*e^2*arcsin(d*x + c)*e^(-I*arcsin(d*x
+ c))/d - 1/24*I*sqrt(b*arcsin(d*x + c) + a)*b*e^2*arcsin(d*x + c)*e^(-3*I*arcsin(d*x + c))/d + 1/24*I*sqrt(b*
arcsin(d*x + c) + a)*a*e^2*e^(3*I*arcsin(d*x + c))/d - 1/48*sqrt(b*arcsin(d*x + c) + a)*b*e^2*e^(3*I*arcsin(d*
x + c))/d - 1/8*I*sqrt(b*arcsin(d*x + c) + a)*a*e^2*e^(I*arcsin(d*x + c))/d + 3/16*sqrt(b*arcsin(d*x + c) + a)
*b*e^2*e^(I*arcsin(d*x + c))/d + 1/8*I*sqrt(b*arcsin(d*x + c) + a)*a*e^2*e^(-I*arcsin(d*x + c))/d + 3/16*sqrt(
b*arcsin(d*x + c) + a)*b*e^2*e^(-I*arcsin(d*x + c))/d - 1/24*I*sqrt(b*arcsin(d*x + c) + a)*a*e^2*e^(-3*I*arcsi
n(d*x + c))/d - 1/48*sqrt(b*arcsin(d*x + c) + a)*b*e^2*e^(-3*I*arcsin(d*x + c))/d

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int {\left (c\,e+d\,e\,x\right )}^2\,{\left (a+b\,\mathrm {asin}\left (c+d\,x\right )\right )}^{3/2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*e + d*e*x)^2*(a + b*asin(c + d*x))^(3/2),x)

[Out]

int((c*e + d*e*x)^2*(a + b*asin(c + d*x))^(3/2), x)

________________________________________________________________________________________