3.2.52 \(\int \frac {\tanh (a+2 \log (x))}{x^3} \, dx\) [152]

Optimal. Leaf size=20 \[ \frac {1}{2 x^2}+e^a \text {ArcTan}\left (e^a x^2\right ) \]

[Out]

1/2/x^2+exp(a)*arctan(exp(a)*x^2)

________________________________________________________________________________________

Rubi [A]
time = 0.02, antiderivative size = 20, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.364, Rules used = {5656, 464, 281, 209} \begin {gather*} e^a \text {ArcTan}\left (e^a x^2\right )+\frac {1}{2 x^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Tanh[a + 2*Log[x]]/x^3,x]

[Out]

1/(2*x^2) + E^a*ArcTan[E^a*x^2]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 281

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m + 1, n]}, Dist[1/k, Subst[Int[x^((m
 + 1)/k - 1)*(a + b*x^(n/k))^p, x], x, x^k], x] /; k != 1] /; FreeQ[{a, b, p}, x] && IGtQ[n, 0] && IntegerQ[m]

Rule 464

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[c*(e*x)^(m +
 1)*((a + b*x^n)^(p + 1)/(a*e*(m + 1))), x] + Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(a*e^n*(m + 1)), In
t[(e*x)^(m + n)*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && (IntegerQ[n] ||
GtQ[e, 0]) && ((GtQ[n, 0] && LtQ[m, -1]) || (LtQ[n, 0] && GtQ[m + n, -1])) &&  !ILtQ[p, -1]

Rule 5656

Int[((e_.)*(x_))^(m_.)*Tanh[((a_.) + Log[x_]*(b_.))*(d_.)]^(p_.), x_Symbol] :> Int[(e*x)^m*((-1 + E^(2*a*d)*x^
(2*b*d))^p/(1 + E^(2*a*d)*x^(2*b*d))^p), x] /; FreeQ[{a, b, d, e, m, p}, x]

Rubi steps

\begin {align*} \int \frac {\tanh (a+2 \log (x))}{x^3} \, dx &=\int \frac {\tanh (a+2 \log (x))}{x^3} \, dx\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.11, size = 40, normalized size = 2.00 \begin {gather*} \frac {1}{2 x^2}-\text {ArcTan}\left (\frac {\cosh (a)-\sinh (a)}{x^2}\right ) \cosh (a)-\text {ArcTan}\left (\frac {\cosh (a)-\sinh (a)}{x^2}\right ) \sinh (a) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Tanh[a + 2*Log[x]]/x^3,x]

[Out]

1/(2*x^2) - ArcTan[(Cosh[a] - Sinh[a])/x^2]*Cosh[a] - ArcTan[(Cosh[a] - Sinh[a])/x^2]*Sinh[a]

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 9 vs. order 3.
time = 0.62, size = 44, normalized size = 2.20

method result size
risch \(\frac {1}{2 x^{2}}+\frac {\left (\munderset {\textit {\_R} =\RootOf \left ({\mathrm e}^{2 a}+\textit {\_Z}^{2}\right )}{\sum }\textit {\_R} \ln \left (\left (4 \,{\mathrm e}^{2 a}+5 \textit {\_R}^{2}\right ) x^{2}-\textit {\_R} \right )\right )}{2}\) \(44\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tanh(a+2*ln(x))/x^3,x,method=_RETURNVERBOSE)

[Out]

1/2/x^2+1/2*sum(_R*ln((4*exp(2*a)+5*_R^2)*x^2-_R),_R=RootOf(exp(2*a)+_Z^2))

________________________________________________________________________________________

Maxima [A]
time = 0.47, size = 19, normalized size = 0.95 \begin {gather*} -\arctan \left (\frac {e^{\left (-a\right )}}{x^{2}}\right ) e^{a} + \frac {1}{2 \, x^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(a+2*log(x))/x^3,x, algorithm="maxima")

[Out]

-arctan(e^(-a)/x^2)*e^a + 1/2/x^2

________________________________________________________________________________________

Fricas [A]
time = 0.35, size = 21, normalized size = 1.05 \begin {gather*} \frac {2 \, x^{2} \arctan \left (x^{2} e^{a}\right ) e^{a} + 1}{2 \, x^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(a+2*log(x))/x^3,x, algorithm="fricas")

[Out]

1/2*(2*x^2*arctan(x^2*e^a)*e^a + 1)/x^2

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\tanh {\left (a + 2 \log {\left (x \right )} \right )}}{x^{3}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(a+2*ln(x))/x**3,x)

[Out]

Integral(tanh(a + 2*log(x))/x**3, x)

________________________________________________________________________________________

Giac [A]
time = 0.42, size = 16, normalized size = 0.80 \begin {gather*} \arctan \left (x^{2} e^{a}\right ) e^{a} + \frac {1}{2 \, x^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(a+2*log(x))/x^3,x, algorithm="giac")

[Out]

arctan(x^2*e^a)*e^a + 1/2/x^2

________________________________________________________________________________________

Mupad [B]
time = 1.05, size = 24, normalized size = 1.20 \begin {gather*} \mathrm {atan}\left (x^2\,\sqrt {{\mathrm {e}}^{2\,a}}\right )\,\sqrt {{\mathrm {e}}^{2\,a}}+\frac {1}{2\,x^2} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tanh(a + 2*log(x))/x^3,x)

[Out]

atan(x^2*exp(2*a)^(1/2))*exp(2*a)^(1/2) + 1/(2*x^2)

________________________________________________________________________________________