3.2.51 \(\int \frac {\tanh (a+2 \log (x))}{x^2} \, dx\) [151]

Optimal. Leaf size=147 \[ \frac {1}{x}-\frac {e^{a/2} \text {ArcTan}\left (1-\sqrt {2} e^{a/2} x\right )}{\sqrt {2}}+\frac {e^{a/2} \text {ArcTan}\left (1+\sqrt {2} e^{a/2} x\right )}{\sqrt {2}}+\frac {e^{a/2} \log \left (1-\sqrt {2} e^{a/2} x+e^a x^2\right )}{2 \sqrt {2}}-\frac {e^{a/2} \log \left (1+\sqrt {2} e^{a/2} x+e^a x^2\right )}{2 \sqrt {2}} \]

[Out]

1/x+1/2*exp(1/2*a)*arctan(-1+exp(1/2*a)*x*2^(1/2))*2^(1/2)+1/2*exp(1/2*a)*arctan(1+exp(1/2*a)*x*2^(1/2))*2^(1/
2)+1/4*exp(1/2*a)*ln(1+exp(a)*x^2-exp(1/2*a)*x*2^(1/2))*2^(1/2)-1/4*exp(1/2*a)*ln(1+exp(a)*x^2+exp(1/2*a)*x*2^
(1/2))*2^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.07, antiderivative size = 147, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 8, integrand size = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.727, Rules used = {5656, 464, 303, 1176, 631, 210, 1179, 642} \begin {gather*} -\frac {e^{a/2} \text {ArcTan}\left (1-\sqrt {2} e^{a/2} x\right )}{\sqrt {2}}+\frac {e^{a/2} \text {ArcTan}\left (\sqrt {2} e^{a/2} x+1\right )}{\sqrt {2}}+\frac {e^{a/2} \log \left (e^a x^2-\sqrt {2} e^{a/2} x+1\right )}{2 \sqrt {2}}-\frac {e^{a/2} \log \left (e^a x^2+\sqrt {2} e^{a/2} x+1\right )}{2 \sqrt {2}}+\frac {1}{x} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Tanh[a + 2*Log[x]]/x^2,x]

[Out]

x^(-1) - (E^(a/2)*ArcTan[1 - Sqrt[2]*E^(a/2)*x])/Sqrt[2] + (E^(a/2)*ArcTan[1 + Sqrt[2]*E^(a/2)*x])/Sqrt[2] + (
E^(a/2)*Log[1 - Sqrt[2]*E^(a/2)*x + E^a*x^2])/(2*Sqrt[2]) - (E^(a/2)*Log[1 + Sqrt[2]*E^(a/2)*x + E^a*x^2])/(2*
Sqrt[2])

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 303

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]},
Dist[1/(2*s), Int[(r + s*x^2)/(a + b*x^4), x], x] - Dist[1/(2*s), Int[(r - s*x^2)/(a + b*x^4), x], x]] /; Free
Q[{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ,
 b]]))

Rule 464

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[c*(e*x)^(m +
 1)*((a + b*x^n)^(p + 1)/(a*e*(m + 1))), x] + Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(a*e^n*(m + 1)), In
t[(e*x)^(m + n)*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && (IntegerQ[n] ||
GtQ[e, 0]) && ((GtQ[n, 0] && LtQ[m, -1]) || (LtQ[n, 0] && GtQ[m + n, -1])) &&  !ILtQ[p, -1]

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1176

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[2*(d/e), 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1179

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[-2*(d/e), 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 5656

Int[((e_.)*(x_))^(m_.)*Tanh[((a_.) + Log[x_]*(b_.))*(d_.)]^(p_.), x_Symbol] :> Int[(e*x)^m*((-1 + E^(2*a*d)*x^
(2*b*d))^p/(1 + E^(2*a*d)*x^(2*b*d))^p), x] /; FreeQ[{a, b, d, e, m, p}, x]

Rubi steps

\begin {align*} \int \frac {\tanh (a+2 \log (x))}{x^2} \, dx &=\int \frac {\tanh (a+2 \log (x))}{x^2} \, dx\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.
time = 0.13, size = 59, normalized size = 0.40 \begin {gather*} \frac {2-x \text {RootSum}\left [\cosh (a)+\sinh (a)+\cosh (a) \text {$\#$1}^4-\sinh (a) \text {$\#$1}^4\&,\frac {\log (x)+\log \left (\frac {1}{x}-\text {$\#$1}\right )}{\text {$\#$1}^3}\&\right ] (\cosh (a)+\sinh (a))^2}{2 x} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Tanh[a + 2*Log[x]]/x^2,x]

[Out]

(2 - x*RootSum[Cosh[a] + Sinh[a] + Cosh[a]*#1^4 - Sinh[a]*#1^4 & , (Log[x] + Log[x^(-1) - #1])/#1^3 & ]*(Cosh[
a] + Sinh[a])^2)/(2*x)

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 9 vs. order 3.
time = 0.61, size = 42, normalized size = 0.29

method result size
risch \(\frac {1}{x}+\frac {\left (\munderset {\textit {\_R} =\RootOf \left (\textit {\_Z}^{4}+{\mathrm e}^{2 a}\right )}{\sum }\textit {\_R} \ln \left (\left (5 \textit {\_R}^{4}+4 \,{\mathrm e}^{2 a}\right ) x -\textit {\_R}^{3}\right )\right )}{2}\) \(42\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tanh(a+2*ln(x))/x^2,x,method=_RETURNVERBOSE)

[Out]

1/x+1/2*sum(_R*ln((5*_R^4+4*exp(2*a))*x-_R^3),_R=RootOf(_Z^4+exp(2*a)))

________________________________________________________________________________________

Maxima [A]
time = 0.48, size = 125, normalized size = 0.85 \begin {gather*} -\frac {1}{2} \, \sqrt {2} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} e^{\left (\frac {1}{2} \, a\right )} + \frac {2}{x}\right )} e^{\left (-\frac {1}{2} \, a\right )}\right ) e^{\left (\frac {1}{2} \, a\right )} - \frac {1}{2} \, \sqrt {2} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} e^{\left (\frac {1}{2} \, a\right )} - \frac {2}{x}\right )} e^{\left (-\frac {1}{2} \, a\right )}\right ) e^{\left (\frac {1}{2} \, a\right )} - \frac {1}{4} \, \sqrt {2} e^{\left (\frac {1}{2} \, a\right )} \log \left (\frac {\sqrt {2} e^{\left (\frac {1}{2} \, a\right )}}{x} + \frac {1}{x^{2}} + e^{a}\right ) + \frac {1}{4} \, \sqrt {2} e^{\left (\frac {1}{2} \, a\right )} \log \left (-\frac {\sqrt {2} e^{\left (\frac {1}{2} \, a\right )}}{x} + \frac {1}{x^{2}} + e^{a}\right ) + \frac {1}{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(a+2*log(x))/x^2,x, algorithm="maxima")

[Out]

-1/2*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2)*e^(1/2*a) + 2/x)*e^(-1/2*a))*e^(1/2*a) - 1/2*sqrt(2)*arctan(-1/2*sqrt
(2)*(sqrt(2)*e^(1/2*a) - 2/x)*e^(-1/2*a))*e^(1/2*a) - 1/4*sqrt(2)*e^(1/2*a)*log(sqrt(2)*e^(1/2*a)/x + 1/x^2 +
e^a) + 1/4*sqrt(2)*e^(1/2*a)*log(-sqrt(2)*e^(1/2*a)/x + 1/x^2 + e^a) + 1/x

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 204 vs. \(2 (101) = 202\).
time = 0.38, size = 204, normalized size = 1.39 \begin {gather*} -\frac {4 \, \sqrt {2} x \arctan \left (-{\left (\sqrt {2} x e^{\left (\frac {5}{2} \, a\right )} - \sqrt {2} \sqrt {x^{2} e^{\left (4 \, a\right )} + \sqrt {2} x e^{\left (\frac {7}{2} \, a\right )} + e^{\left (3 \, a\right )}} e^{\left (\frac {1}{2} \, a\right )} + e^{\left (2 \, a\right )}\right )} e^{\left (-2 \, a\right )}\right ) e^{\left (\frac {1}{2} \, a\right )} + 4 \, \sqrt {2} x \arctan \left (-{\left (\sqrt {2} x e^{\left (\frac {5}{2} \, a\right )} - \sqrt {2} \sqrt {x^{2} e^{\left (4 \, a\right )} - \sqrt {2} x e^{\left (\frac {7}{2} \, a\right )} + e^{\left (3 \, a\right )}} e^{\left (\frac {1}{2} \, a\right )} - e^{\left (2 \, a\right )}\right )} e^{\left (-2 \, a\right )}\right ) e^{\left (\frac {1}{2} \, a\right )} + \sqrt {2} x e^{\left (\frac {1}{2} \, a\right )} \log \left (x^{2} e^{\left (4 \, a\right )} + \sqrt {2} x e^{\left (\frac {7}{2} \, a\right )} + e^{\left (3 \, a\right )}\right ) - \sqrt {2} x e^{\left (\frac {1}{2} \, a\right )} \log \left (x^{2} e^{\left (4 \, a\right )} - \sqrt {2} x e^{\left (\frac {7}{2} \, a\right )} + e^{\left (3 \, a\right )}\right ) - 4}{4 \, x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(a+2*log(x))/x^2,x, algorithm="fricas")

[Out]

-1/4*(4*sqrt(2)*x*arctan(-(sqrt(2)*x*e^(5/2*a) - sqrt(2)*sqrt(x^2*e^(4*a) + sqrt(2)*x*e^(7/2*a) + e^(3*a))*e^(
1/2*a) + e^(2*a))*e^(-2*a))*e^(1/2*a) + 4*sqrt(2)*x*arctan(-(sqrt(2)*x*e^(5/2*a) - sqrt(2)*sqrt(x^2*e^(4*a) -
sqrt(2)*x*e^(7/2*a) + e^(3*a))*e^(1/2*a) - e^(2*a))*e^(-2*a))*e^(1/2*a) + sqrt(2)*x*e^(1/2*a)*log(x^2*e^(4*a)
+ sqrt(2)*x*e^(7/2*a) + e^(3*a)) - sqrt(2)*x*e^(1/2*a)*log(x^2*e^(4*a) - sqrt(2)*x*e^(7/2*a) + e^(3*a)) - 4)/x

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\tanh {\left (a + 2 \log {\left (x \right )} \right )}}{x^{2}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(a+2*ln(x))/x**2,x)

[Out]

Integral(tanh(a + 2*log(x))/x**2, x)

________________________________________________________________________________________

Giac [A]
time = 0.43, size = 121, normalized size = 0.82 \begin {gather*} \frac {1}{2} \, \sqrt {2} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} e^{\left (-\frac {1}{2} \, a\right )} + 2 \, x\right )} e^{\left (\frac {1}{2} \, a\right )}\right ) e^{\left (\frac {1}{2} \, a\right )} + \frac {1}{2} \, \sqrt {2} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} e^{\left (-\frac {1}{2} \, a\right )} - 2 \, x\right )} e^{\left (\frac {1}{2} \, a\right )}\right ) e^{\left (\frac {1}{2} \, a\right )} - \frac {1}{4} \, \sqrt {2} e^{\left (\frac {1}{2} \, a\right )} \log \left (\sqrt {2} x e^{\left (-\frac {1}{2} \, a\right )} + x^{2} + e^{\left (-a\right )}\right ) + \frac {1}{4} \, \sqrt {2} e^{\left (\frac {1}{2} \, a\right )} \log \left (-\sqrt {2} x e^{\left (-\frac {1}{2} \, a\right )} + x^{2} + e^{\left (-a\right )}\right ) + \frac {1}{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(a+2*log(x))/x^2,x, algorithm="giac")

[Out]

1/2*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2)*e^(-1/2*a) + 2*x)*e^(1/2*a))*e^(1/2*a) + 1/2*sqrt(2)*arctan(-1/2*sqrt(
2)*(sqrt(2)*e^(-1/2*a) - 2*x)*e^(1/2*a))*e^(1/2*a) - 1/4*sqrt(2)*e^(1/2*a)*log(sqrt(2)*x*e^(-1/2*a) + x^2 + e^
(-a)) + 1/4*sqrt(2)*e^(1/2*a)*log(-sqrt(2)*x*e^(-1/2*a) + x^2 + e^(-a)) + 1/x

________________________________________________________________________________________

Mupad [B]
time = 1.09, size = 45, normalized size = 0.31 \begin {gather*} \mathrm {atan}\left (x\,{\left (-{\mathrm {e}}^{2\,a}\right )}^{1/4}\right )\,{\left (-{\mathrm {e}}^{2\,a}\right )}^{1/4}-\mathrm {atanh}\left (x\,{\left (-{\mathrm {e}}^{2\,a}\right )}^{1/4}\right )\,{\left (-{\mathrm {e}}^{2\,a}\right )}^{1/4}+\frac {1}{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tanh(a + 2*log(x))/x^2,x)

[Out]

atan(x*(-exp(2*a))^(1/4))*(-exp(2*a))^(1/4) - atanh(x*(-exp(2*a))^(1/4))*(-exp(2*a))^(1/4) + 1/x

________________________________________________________________________________________