3.2.89 \(\int (e x)^m \tanh (d (a+b \log (c x^n))) \, dx\) [189]

Optimal. Leaf size=88 \[ \frac {(e x)^{1+m}}{e (1+m)}-\frac {2 (e x)^{1+m} \, _2F_1\left (1,\frac {1+m}{2 b d n};1+\frac {1+m}{2 b d n};-e^{2 a d} \left (c x^n\right )^{2 b d}\right )}{e (1+m)} \]

[Out]

(e*x)^(1+m)/e/(1+m)-2*(e*x)^(1+m)*hypergeom([1, 1/2*(1+m)/b/d/n],[1+1/2*(1+m)/b/d/n],-exp(2*a*d)*(c*x^n)^(2*b*
d))/e/(1+m)

________________________________________________________________________________________

Rubi [A]
time = 0.05, antiderivative size = 88, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.210, Rules used = {5658, 5656, 470, 371} \begin {gather*} \frac {(e x)^{m+1}}{e (m+1)}-\frac {2 (e x)^{m+1} \, _2F_1\left (1,\frac {m+1}{2 b d n};\frac {m+1}{2 b d n}+1;-e^{2 a d} \left (c x^n\right )^{2 b d}\right )}{e (m+1)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(e*x)^m*Tanh[d*(a + b*Log[c*x^n])],x]

[Out]

(e*x)^(1 + m)/(e*(1 + m)) - (2*(e*x)^(1 + m)*Hypergeometric2F1[1, (1 + m)/(2*b*d*n), 1 + (1 + m)/(2*b*d*n), -(
E^(2*a*d)*(c*x^n)^(2*b*d))])/(e*(1 + m))

Rule 371

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[a^p*((c*x)^(m + 1)/(c*(m + 1)))*Hyperg
eometric2F1[-p, (m + 1)/n, (m + 1)/n + 1, (-b)*(x^n/a)], x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] &&
 (ILtQ[p, 0] || GtQ[a, 0])

Rule 470

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[d*(e*x)^(m +
 1)*((a + b*x^n)^(p + 1)/(b*e*(m + n*(p + 1) + 1))), x] - Dist[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(b*(m +
 n*(p + 1) + 1)), Int[(e*x)^m*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && NeQ[b*c - a*d, 0]
 && NeQ[m + n*(p + 1) + 1, 0]

Rule 5656

Int[((e_.)*(x_))^(m_.)*Tanh[((a_.) + Log[x_]*(b_.))*(d_.)]^(p_.), x_Symbol] :> Int[(e*x)^m*((-1 + E^(2*a*d)*x^
(2*b*d))^p/(1 + E^(2*a*d)*x^(2*b*d))^p), x] /; FreeQ[{a, b, d, e, m, p}, x]

Rule 5658

Int[((e_.)*(x_))^(m_.)*Tanh[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]^(p_.), x_Symbol] :> Dist[(e*x)^(m + 1
)/(e*n*(c*x^n)^((m + 1)/n)), Subst[Int[x^((m + 1)/n - 1)*Tanh[d*(a + b*Log[x])]^p, x], x, c*x^n], x] /; FreeQ[
{a, b, c, d, e, m, n, p}, x] && (NeQ[c, 1] || NeQ[n, 1])

Rubi steps

\begin {align*} \int (e x)^m \tanh \left (d \left (a+b \log \left (c x^n\right )\right )\right ) \, dx &=\int (e x)^m \tanh \left (d \left (a+b \log \left (c x^n\right )\right )\right ) \, dx\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 9.63, size = 160, normalized size = 1.82 \begin {gather*} \frac {x (e x)^m \left (-\, _2F_1\left (1,\frac {1+m}{2 b d n};1+\frac {1+m}{2 b d n};-e^{2 d \left (a+b \log \left (c x^n\right )\right )}\right )+\frac {e^{2 a d} (1+m) \left (c x^n\right )^{2 b d} \, _2F_1\left (1,\frac {1+m+2 b d n}{2 b d n};\frac {1+m+4 b d n}{2 b d n};-e^{2 a d} \left (c x^n\right )^{2 b d}\right )}{1+m+2 b d n}\right )}{1+m} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(e*x)^m*Tanh[d*(a + b*Log[c*x^n])],x]

[Out]

(x*(e*x)^m*(-Hypergeometric2F1[1, (1 + m)/(2*b*d*n), 1 + (1 + m)/(2*b*d*n), -E^(2*d*(a + b*Log[c*x^n]))] + (E^
(2*a*d)*(1 + m)*(c*x^n)^(2*b*d)*Hypergeometric2F1[1, (1 + m + 2*b*d*n)/(2*b*d*n), (1 + m + 4*b*d*n)/(2*b*d*n),
 -(E^(2*a*d)*(c*x^n)^(2*b*d))])/(1 + m + 2*b*d*n)))/(1 + m)

________________________________________________________________________________________

Maple [F]
time = 0.50, size = 0, normalized size = 0.00 \[\int \left (e x \right )^{m} \tanh \left (d \left (a +b \ln \left (c \,x^{n}\right )\right )\right )\, dx\]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*x)^m*tanh(d*(a+b*ln(c*x^n))),x)

[Out]

int((e*x)^m*tanh(d*(a+b*ln(c*x^n))),x)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)^m*tanh(d*(a+b*log(c*x^n))),x, algorithm="maxima")

[Out]

x*e^(m*log(x) + m)/(m + 1) - 2*integrate(e^(m*log(x) + m)/(c^(2*b*d)*e^(2*b*d*log(x^n) + 2*a*d) + 1), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)^m*tanh(d*(a+b*log(c*x^n))),x, algorithm="fricas")

[Out]

integral((x*e)^m*tanh(b*d*log(c*x^n) + a*d), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \left (e x\right )^{m} \tanh {\left (a d + b d \log {\left (c x^{n} \right )} \right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)**m*tanh(d*(a+b*ln(c*x**n))),x)

[Out]

Integral((e*x)**m*tanh(a*d + b*d*log(c*x**n)), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*x)^m*tanh(d*(a+b*log(c*x^n))),x, algorithm="giac")

[Out]

integrate((e*x)^m*tanh((b*log(c*x^n) + a)*d), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \mathrm {tanh}\left (d\,\left (a+b\,\ln \left (c\,x^n\right )\right )\right )\,{\left (e\,x\right )}^m \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tanh(d*(a + b*log(c*x^n)))*(e*x)^m,x)

[Out]

int(tanh(d*(a + b*log(c*x^n)))*(e*x)^m, x)

________________________________________________________________________________________