3.1.39 \(\int \tanh ^{-1}(\tanh (a+b x)) \, dx\) [39]

Optimal. Leaf size=16 \[ \frac {\tanh ^{-1}(\tanh (a+b x))^2}{2 b} \]

[Out]

1/2*arctanh(tanh(b*x+a))^2/b

________________________________________________________________________________________

Rubi [A]
time = 0.00, antiderivative size = 16, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.286, Rules used = {2188, 30} \begin {gather*} \frac {\tanh ^{-1}(\tanh (a+b x))^2}{2 b} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[ArcTanh[Tanh[a + b*x]],x]

[Out]

ArcTanh[Tanh[a + b*x]]^2/(2*b)

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 2188

Int[(u_)^(m_.), x_Symbol] :> With[{c = Simplify[D[u, x]]}, Dist[1/c, Subst[Int[x^m, x], x, u], x]] /; FreeQ[m,
 x] && PiecewiseLinearQ[u, x]

Rubi steps

\begin {align*} \int \tanh ^{-1}(\tanh (a+b x)) \, dx &=\frac {\text {Subst}\left (\int x \, dx,x,\tanh ^{-1}(\tanh (a+b x))\right )}{b}\\ &=\frac {\tanh ^{-1}(\tanh (a+b x))^2}{2 b}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.01, size = 18, normalized size = 1.12 \begin {gather*} -\frac {b x^2}{2}+x \tanh ^{-1}(\tanh (a+b x)) \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[ArcTanh[Tanh[a + b*x]],x]

[Out]

-1/2*(b*x^2) + x*ArcTanh[Tanh[a + b*x]]

________________________________________________________________________________________

Maple [A]
time = 0.10, size = 15, normalized size = 0.94

method result size
derivativedivides \(\frac {\arctanh \left (\tanh \left (b x +a \right )\right )^{2}}{2 b}\) \(15\)
default \(\frac {\arctanh \left (\tanh \left (b x +a \right )\right )^{2}}{2 b}\) \(15\)
risch \(x \ln \left ({\mathrm e}^{b x +a}\right )-\frac {i \pi \,\mathrm {csgn}\left (\frac {i}{{\mathrm e}^{2 b x +2 a}+1}\right ) \mathrm {csgn}\left (i {\mathrm e}^{2 b x +2 a}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{2 b x +2 a}}{{\mathrm e}^{2 b x +2 a}+1}\right ) x}{4}+\frac {i \pi \,\mathrm {csgn}\left (\frac {i}{{\mathrm e}^{2 b x +2 a}+1}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{2 b x +2 a}}{{\mathrm e}^{2 b x +2 a}+1}\right )^{2} x}{4}-\frac {i \pi \mathrm {csgn}\left (i {\mathrm e}^{2 b x +2 a}\right )^{3} x}{4}+\frac {i \pi \mathrm {csgn}\left (i {\mathrm e}^{2 b x +2 a}\right )^{2} \mathrm {csgn}\left (i {\mathrm e}^{b x +a}\right ) x}{2}+\frac {i \pi \,\mathrm {csgn}\left (i {\mathrm e}^{2 b x +2 a}\right ) \mathrm {csgn}\left (\frac {i {\mathrm e}^{2 b x +2 a}}{{\mathrm e}^{2 b x +2 a}+1}\right )^{2} x}{4}-\frac {i \pi \,\mathrm {csgn}\left (i {\mathrm e}^{2 b x +2 a}\right ) \mathrm {csgn}\left (i {\mathrm e}^{b x +a}\right )^{2} x}{4}-\frac {i \pi \mathrm {csgn}\left (\frac {i {\mathrm e}^{2 b x +2 a}}{{\mathrm e}^{2 b x +2 a}+1}\right )^{3} x}{4}-\frac {b \,x^{2}}{2}\) \(287\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(arctanh(tanh(b*x+a)),x,method=_RETURNVERBOSE)

[Out]

1/2*arctanh(tanh(b*x+a))^2/b

________________________________________________________________________________________

Maxima [A]
time = 0.29, size = 16, normalized size = 1.00 \begin {gather*} -\frac {1}{2} \, b x^{2} + x \operatorname {artanh}\left (\tanh \left (b x + a\right )\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(tanh(b*x+a)),x, algorithm="maxima")

[Out]

-1/2*b*x^2 + x*arctanh(tanh(b*x + a))

________________________________________________________________________________________

Fricas [A]
time = 0.33, size = 10, normalized size = 0.62 \begin {gather*} \frac {1}{2} \, b x^{2} + a x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(tanh(b*x+a)),x, algorithm="fricas")

[Out]

1/2*b*x^2 + a*x

________________________________________________________________________________________

Sympy [A]
time = 0.06, size = 19, normalized size = 1.19 \begin {gather*} \begin {cases} \frac {\operatorname {atanh}^{2}{\left (\tanh {\left (a + b x \right )} \right )}}{2 b} & \text {for}\: b \neq 0 \\x \operatorname {atanh}{\left (\tanh {\left (a \right )} \right )} & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(atanh(tanh(b*x+a)),x)

[Out]

Piecewise((atanh(tanh(a + b*x))**2/(2*b), Ne(b, 0)), (x*atanh(tanh(a)), True))

________________________________________________________________________________________

Giac [A]
time = 0.39, size = 10, normalized size = 0.62 \begin {gather*} \frac {1}{2} \, b x^{2} + a x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arctanh(tanh(b*x+a)),x, algorithm="giac")

[Out]

1/2*b*x^2 + a*x

________________________________________________________________________________________

Mupad [B]
time = 0.05, size = 16, normalized size = 1.00 \begin {gather*} x\,\mathrm {atanh}\left (\mathrm {tanh}\left (a+b\,x\right )\right )-\frac {b\,x^2}{2} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(atanh(tanh(a + b*x)),x)

[Out]

x*atanh(tanh(a + b*x)) - (b*x^2)/2

________________________________________________________________________________________