\(\int \frac {d+e x}{(a+c x^4)^2} \, dx\) [403]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (verified)
   Fricas [C] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 15, antiderivative size = 241 \[ \int \frac {d+e x}{\left (a+c x^4\right )^2} \, dx=\frac {x (d+e x)}{4 a \left (a+c x^4\right )}+\frac {e \arctan \left (\frac {\sqrt {c} x^2}{\sqrt {a}}\right )}{4 a^{3/2} \sqrt {c}}-\frac {3 d \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{8 \sqrt {2} a^{7/4} \sqrt [4]{c}}+\frac {3 d \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{8 \sqrt {2} a^{7/4} \sqrt [4]{c}}-\frac {3 d \log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {c} x^2\right )}{16 \sqrt {2} a^{7/4} \sqrt [4]{c}}+\frac {3 d \log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {c} x^2\right )}{16 \sqrt {2} a^{7/4} \sqrt [4]{c}} \]

[Out]

1/4*x*(e*x+d)/a/(c*x^4+a)+3/16*d*arctan(-1+c^(1/4)*x*2^(1/2)/a^(1/4))/a^(7/4)/c^(1/4)*2^(1/2)+3/16*d*arctan(1+
c^(1/4)*x*2^(1/2)/a^(1/4))/a^(7/4)/c^(1/4)*2^(1/2)-3/32*d*ln(-a^(1/4)*c^(1/4)*x*2^(1/2)+a^(1/2)+x^2*c^(1/2))/a
^(7/4)/c^(1/4)*2^(1/2)+3/32*d*ln(a^(1/4)*c^(1/4)*x*2^(1/2)+a^(1/2)+x^2*c^(1/2))/a^(7/4)/c^(1/4)*2^(1/2)+1/4*e*
arctan(x^2*c^(1/2)/a^(1/2))/a^(3/2)/c^(1/2)

Rubi [A] (verified)

Time = 0.14 (sec) , antiderivative size = 241, normalized size of antiderivative = 1.00, number of steps used = 14, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.667, Rules used = {1869, 1890, 217, 1179, 642, 1176, 631, 210, 281, 211} \[ \int \frac {d+e x}{\left (a+c x^4\right )^2} \, dx=-\frac {3 d \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{8 \sqrt {2} a^{7/4} \sqrt [4]{c}}+\frac {3 d \arctan \left (\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}+1\right )}{8 \sqrt {2} a^{7/4} \sqrt [4]{c}}+\frac {e \arctan \left (\frac {\sqrt {c} x^2}{\sqrt {a}}\right )}{4 a^{3/2} \sqrt {c}}-\frac {3 d \log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {a}+\sqrt {c} x^2\right )}{16 \sqrt {2} a^{7/4} \sqrt [4]{c}}+\frac {3 d \log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {a}+\sqrt {c} x^2\right )}{16 \sqrt {2} a^{7/4} \sqrt [4]{c}}+\frac {x (d+e x)}{4 a \left (a+c x^4\right )} \]

[In]

Int[(d + e*x)/(a + c*x^4)^2,x]

[Out]

(x*(d + e*x))/(4*a*(a + c*x^4)) + (e*ArcTan[(Sqrt[c]*x^2)/Sqrt[a]])/(4*a^(3/2)*Sqrt[c]) - (3*d*ArcTan[1 - (Sqr
t[2]*c^(1/4)*x)/a^(1/4)])/(8*Sqrt[2]*a^(7/4)*c^(1/4)) + (3*d*ArcTan[1 + (Sqrt[2]*c^(1/4)*x)/a^(1/4)])/(8*Sqrt[
2]*a^(7/4)*c^(1/4)) - (3*d*Log[Sqrt[a] - Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2])/(16*Sqrt[2]*a^(7/4)*c^(1/4)
) + (3*d*Log[Sqrt[a] + Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2])/(16*Sqrt[2]*a^(7/4)*c^(1/4))

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 217

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]}, Di
st[1/(2*r), Int[(r - s*x^2)/(a + b*x^4), x], x] + Dist[1/(2*r), Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[
{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ, b
]]))

Rule 281

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m + 1, n]}, Dist[1/k, Subst[Int[x^((m
 + 1)/k - 1)*(a + b*x^(n/k))^p, x], x, x^k], x] /; k != 1] /; FreeQ[{a, b, p}, x] && IGtQ[n, 0] && IntegerQ[m]

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1176

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[2*(d/e), 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1179

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[-2*(d/e), 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 1869

Int[(Pq_)*((a_) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[(-x)*Pq*((a + b*x^n)^(p + 1)/(a*n*(p + 1))), x] +
Dist[1/(a*n*(p + 1)), Int[ExpandToSum[n*(p + 1)*Pq + D[x*Pq, x], x]*(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b
}, x] && PolyQ[Pq, x] && IGtQ[n, 0] && LtQ[p, -1] && LtQ[Expon[Pq, x], n - 1]

Rule 1890

Int[(Pq_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = Sum[x^ii*((Coeff[Pq, x, ii] + Coeff[Pq, x, n/2 + ii
]*x^(n/2))/(a + b*x^n)), {ii, 0, n/2 - 1}]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b}, x] && PolyQ[Pq, x] && IGtQ
[n/2, 0] && Expon[Pq, x] < n

Rubi steps \begin{align*} \text {integral}& = \frac {x (d+e x)}{4 a \left (a+c x^4\right )}-\frac {\int \frac {-3 d-2 e x}{a+c x^4} \, dx}{4 a} \\ & = \frac {x (d+e x)}{4 a \left (a+c x^4\right )}-\frac {\int \left (-\frac {3 d}{a+c x^4}-\frac {2 e x}{a+c x^4}\right ) \, dx}{4 a} \\ & = \frac {x (d+e x)}{4 a \left (a+c x^4\right )}+\frac {(3 d) \int \frac {1}{a+c x^4} \, dx}{4 a}+\frac {e \int \frac {x}{a+c x^4} \, dx}{2 a} \\ & = \frac {x (d+e x)}{4 a \left (a+c x^4\right )}+\frac {(3 d) \int \frac {\sqrt {a}-\sqrt {c} x^2}{a+c x^4} \, dx}{8 a^{3/2}}+\frac {(3 d) \int \frac {\sqrt {a}+\sqrt {c} x^2}{a+c x^4} \, dx}{8 a^{3/2}}+\frac {e \text {Subst}\left (\int \frac {1}{a+c x^2} \, dx,x,x^2\right )}{4 a} \\ & = \frac {x (d+e x)}{4 a \left (a+c x^4\right )}+\frac {e \tan ^{-1}\left (\frac {\sqrt {c} x^2}{\sqrt {a}}\right )}{4 a^{3/2} \sqrt {c}}+\frac {(3 d) \int \frac {1}{\frac {\sqrt {a}}{\sqrt {c}}-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+x^2} \, dx}{16 a^{3/2} \sqrt {c}}+\frac {(3 d) \int \frac {1}{\frac {\sqrt {a}}{\sqrt {c}}+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}+x^2} \, dx}{16 a^{3/2} \sqrt {c}}-\frac {(3 d) \int \frac {\frac {\sqrt {2} \sqrt [4]{a}}{\sqrt [4]{c}}+2 x}{-\frac {\sqrt {a}}{\sqrt {c}}-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}-x^2} \, dx}{16 \sqrt {2} a^{7/4} \sqrt [4]{c}}-\frac {(3 d) \int \frac {\frac {\sqrt {2} \sqrt [4]{a}}{\sqrt [4]{c}}-2 x}{-\frac {\sqrt {a}}{\sqrt {c}}+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{c}}-x^2} \, dx}{16 \sqrt {2} a^{7/4} \sqrt [4]{c}} \\ & = \frac {x (d+e x)}{4 a \left (a+c x^4\right )}+\frac {e \tan ^{-1}\left (\frac {\sqrt {c} x^2}{\sqrt {a}}\right )}{4 a^{3/2} \sqrt {c}}-\frac {3 d \log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {c} x^2\right )}{16 \sqrt {2} a^{7/4} \sqrt [4]{c}}+\frac {3 d \log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {c} x^2\right )}{16 \sqrt {2} a^{7/4} \sqrt [4]{c}}+\frac {(3 d) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{8 \sqrt {2} a^{7/4} \sqrt [4]{c}}-\frac {(3 d) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{8 \sqrt {2} a^{7/4} \sqrt [4]{c}} \\ & = \frac {x (d+e x)}{4 a \left (a+c x^4\right )}+\frac {e \tan ^{-1}\left (\frac {\sqrt {c} x^2}{\sqrt {a}}\right )}{4 a^{3/2} \sqrt {c}}-\frac {3 d \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{8 \sqrt {2} a^{7/4} \sqrt [4]{c}}+\frac {3 d \tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{8 \sqrt {2} a^{7/4} \sqrt [4]{c}}-\frac {3 d \log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {c} x^2\right )}{16 \sqrt {2} a^{7/4} \sqrt [4]{c}}+\frac {3 d \log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {c} x^2\right )}{16 \sqrt {2} a^{7/4} \sqrt [4]{c}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.14 (sec) , antiderivative size = 224, normalized size of antiderivative = 0.93 \[ \int \frac {d+e x}{\left (a+c x^4\right )^2} \, dx=\frac {\frac {8 a^{3/4} x (d+e x)}{a+c x^4}-\frac {2 \left (3 \sqrt {2} \sqrt [4]{c} d+4 \sqrt [4]{a} e\right ) \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{\sqrt {c}}+\frac {2 \left (3 \sqrt {2} \sqrt [4]{c} d-4 \sqrt [4]{a} e\right ) \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{c} x}{\sqrt [4]{a}}\right )}{\sqrt {c}}-\frac {3 \sqrt {2} d \log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {c} x^2\right )}{\sqrt [4]{c}}+\frac {3 \sqrt {2} d \log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{c} x+\sqrt {c} x^2\right )}{\sqrt [4]{c}}}{32 a^{7/4}} \]

[In]

Integrate[(d + e*x)/(a + c*x^4)^2,x]

[Out]

((8*a^(3/4)*x*(d + e*x))/(a + c*x^4) - (2*(3*Sqrt[2]*c^(1/4)*d + 4*a^(1/4)*e)*ArcTan[1 - (Sqrt[2]*c^(1/4)*x)/a
^(1/4)])/Sqrt[c] + (2*(3*Sqrt[2]*c^(1/4)*d - 4*a^(1/4)*e)*ArcTan[1 + (Sqrt[2]*c^(1/4)*x)/a^(1/4)])/Sqrt[c] - (
3*Sqrt[2]*d*Log[Sqrt[a] - Sqrt[2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2])/c^(1/4) + (3*Sqrt[2]*d*Log[Sqrt[a] + Sqrt[
2]*a^(1/4)*c^(1/4)*x + Sqrt[c]*x^2])/c^(1/4))/(32*a^(7/4))

Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.87 (sec) , antiderivative size = 66, normalized size of antiderivative = 0.27

method result size
risch \(\frac {\frac {e \,x^{2}}{4 a}+\frac {d x}{4 a}}{c \,x^{4}+a}+\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{4}+a \right )}{\sum }\frac {\left (2 e \textit {\_R} +3 d \right ) \ln \left (x -\textit {\_R} \right )}{\textit {\_R}^{3}}}{16 a c}\) \(66\)
default \(d \left (\frac {x}{4 a \left (c \,x^{4}+a \right )}+\frac {3 \left (\frac {a}{c}\right )^{\frac {1}{4}} \sqrt {2}\, \left (\ln \left (\frac {x^{2}+\left (\frac {a}{c}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {a}{c}}}{x^{2}-\left (\frac {a}{c}\right )^{\frac {1}{4}} x \sqrt {2}+\sqrt {\frac {a}{c}}}\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{c}\right )^{\frac {1}{4}}}+1\right )+2 \arctan \left (\frac {\sqrt {2}\, x}{\left (\frac {a}{c}\right )^{\frac {1}{4}}}-1\right )\right )}{32 a^{2}}\right )+e \left (\frac {x^{2}}{4 a \left (c \,x^{4}+a \right )}+\frac {\arctan \left (x^{2} \sqrt {\frac {c}{a}}\right )}{4 a \sqrt {a c}}\right )\) \(163\)

[In]

int((e*x+d)/(c*x^4+a)^2,x,method=_RETURNVERBOSE)

[Out]

(1/4*e/a*x^2+1/4*d/a*x)/(c*x^4+a)+1/16/a/c*sum((2*_R*e+3*d)/_R^3*ln(x-_R),_R=RootOf(_Z^4*c+a))

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 1.36 (sec) , antiderivative size = 43065, normalized size of antiderivative = 178.69 \[ \int \frac {d+e x}{\left (a+c x^4\right )^2} \, dx=\text {Too large to display} \]

[In]

integrate((e*x+d)/(c*x^4+a)^2,x, algorithm="fricas")

[Out]

Too large to include

Sympy [A] (verification not implemented)

Time = 0.61 (sec) , antiderivative size = 155, normalized size of antiderivative = 0.64 \[ \int \frac {d+e x}{\left (a+c x^4\right )^2} \, dx=\operatorname {RootSum} {\left (65536 t^{4} a^{7} c^{2} + 2048 t^{2} a^{4} c e^{2} - 1152 t a^{2} c d^{2} e + 16 a e^{4} + 81 c d^{4}, \left ( t \mapsto t \log {\left (x + \frac {- 32768 t^{3} a^{6} c e^{2} - 4608 t^{2} a^{4} c d^{2} e - 512 t a^{3} e^{4} - 1296 t a^{2} c d^{4} + 360 a d^{2} e^{3}}{192 a d e^{4} - 243 c d^{5}} \right )} \right )\right )} + \frac {d x + e x^{2}}{4 a^{2} + 4 a c x^{4}} \]

[In]

integrate((e*x+d)/(c*x**4+a)**2,x)

[Out]

RootSum(65536*_t**4*a**7*c**2 + 2048*_t**2*a**4*c*e**2 - 1152*_t*a**2*c*d**2*e + 16*a*e**4 + 81*c*d**4, Lambda
(_t, _t*log(x + (-32768*_t**3*a**6*c*e**2 - 4608*_t**2*a**4*c*d**2*e - 512*_t*a**3*e**4 - 1296*_t*a**2*c*d**4
+ 360*a*d**2*e**3)/(192*a*d*e**4 - 243*c*d**5)))) + (d*x + e*x**2)/(4*a**2 + 4*a*c*x**4)

Maxima [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 238, normalized size of antiderivative = 0.99 \[ \int \frac {d+e x}{\left (a+c x^4\right )^2} \, dx=\frac {e x^{2} + d x}{4 \, {\left (a c x^{4} + a^{2}\right )}} + \frac {\frac {3 \, \sqrt {2} d \log \left (\sqrt {c} x^{2} + \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}} x + \sqrt {a}\right )}{a^{\frac {3}{4}} c^{\frac {1}{4}}} - \frac {3 \, \sqrt {2} d \log \left (\sqrt {c} x^{2} - \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}} x + \sqrt {a}\right )}{a^{\frac {3}{4}} c^{\frac {1}{4}}} + \frac {2 \, {\left (3 \, \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}} d - 4 \, \sqrt {a} e\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, \sqrt {c} x + \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {c}}}\right )}{a^{\frac {3}{4}} \sqrt {\sqrt {a} \sqrt {c}} c^{\frac {1}{4}}} + \frac {2 \, {\left (3 \, \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}} d + 4 \, \sqrt {a} e\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, \sqrt {c} x - \sqrt {2} a^{\frac {1}{4}} c^{\frac {1}{4}}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {c}}}\right )}{a^{\frac {3}{4}} \sqrt {\sqrt {a} \sqrt {c}} c^{\frac {1}{4}}}}{32 \, a} \]

[In]

integrate((e*x+d)/(c*x^4+a)^2,x, algorithm="maxima")

[Out]

1/4*(e*x^2 + d*x)/(a*c*x^4 + a^2) + 1/32*(3*sqrt(2)*d*log(sqrt(c)*x^2 + sqrt(2)*a^(1/4)*c^(1/4)*x + sqrt(a))/(
a^(3/4)*c^(1/4)) - 3*sqrt(2)*d*log(sqrt(c)*x^2 - sqrt(2)*a^(1/4)*c^(1/4)*x + sqrt(a))/(a^(3/4)*c^(1/4)) + 2*(3
*sqrt(2)*a^(1/4)*c^(1/4)*d - 4*sqrt(a)*e)*arctan(1/2*sqrt(2)*(2*sqrt(c)*x + sqrt(2)*a^(1/4)*c^(1/4))/sqrt(sqrt
(a)*sqrt(c)))/(a^(3/4)*sqrt(sqrt(a)*sqrt(c))*c^(1/4)) + 2*(3*sqrt(2)*a^(1/4)*c^(1/4)*d + 4*sqrt(a)*e)*arctan(1
/2*sqrt(2)*(2*sqrt(c)*x - sqrt(2)*a^(1/4)*c^(1/4))/sqrt(sqrt(a)*sqrt(c)))/(a^(3/4)*sqrt(sqrt(a)*sqrt(c))*c^(1/
4)))/a

Giac [A] (verification not implemented)

none

Time = 0.30 (sec) , antiderivative size = 238, normalized size of antiderivative = 0.99 \[ \int \frac {d+e x}{\left (a+c x^4\right )^2} \, dx=\frac {3 \, \sqrt {2} \left (a c^{3}\right )^{\frac {1}{4}} d \log \left (x^{2} + \sqrt {2} x \left (\frac {a}{c}\right )^{\frac {1}{4}} + \sqrt {\frac {a}{c}}\right )}{32 \, a^{2} c} - \frac {3 \, \sqrt {2} \left (a c^{3}\right )^{\frac {1}{4}} d \log \left (x^{2} - \sqrt {2} x \left (\frac {a}{c}\right )^{\frac {1}{4}} + \sqrt {\frac {a}{c}}\right )}{32 \, a^{2} c} + \frac {e x^{2} + d x}{4 \, {\left (c x^{4} + a\right )} a} + \frac {\sqrt {2} {\left (2 \, \sqrt {2} \sqrt {a c} c e + 3 \, \left (a c^{3}\right )^{\frac {1}{4}} c d\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, x + \sqrt {2} \left (\frac {a}{c}\right )^{\frac {1}{4}}\right )}}{2 \, \left (\frac {a}{c}\right )^{\frac {1}{4}}}\right )}{16 \, a^{2} c^{2}} + \frac {\sqrt {2} {\left (2 \, \sqrt {2} \sqrt {a c} c e + 3 \, \left (a c^{3}\right )^{\frac {1}{4}} c d\right )} \arctan \left (\frac {\sqrt {2} {\left (2 \, x - \sqrt {2} \left (\frac {a}{c}\right )^{\frac {1}{4}}\right )}}{2 \, \left (\frac {a}{c}\right )^{\frac {1}{4}}}\right )}{16 \, a^{2} c^{2}} \]

[In]

integrate((e*x+d)/(c*x^4+a)^2,x, algorithm="giac")

[Out]

3/32*sqrt(2)*(a*c^3)^(1/4)*d*log(x^2 + sqrt(2)*x*(a/c)^(1/4) + sqrt(a/c))/(a^2*c) - 3/32*sqrt(2)*(a*c^3)^(1/4)
*d*log(x^2 - sqrt(2)*x*(a/c)^(1/4) + sqrt(a/c))/(a^2*c) + 1/4*(e*x^2 + d*x)/((c*x^4 + a)*a) + 1/16*sqrt(2)*(2*
sqrt(2)*sqrt(a*c)*c*e + 3*(a*c^3)^(1/4)*c*d)*arctan(1/2*sqrt(2)*(2*x + sqrt(2)*(a/c)^(1/4))/(a/c)^(1/4))/(a^2*
c^2) + 1/16*sqrt(2)*(2*sqrt(2)*sqrt(a*c)*c*e + 3*(a*c^3)^(1/4)*c*d)*arctan(1/2*sqrt(2)*(2*x - sqrt(2)*(a/c)^(1
/4))/(a/c)^(1/4))/(a^2*c^2)

Mupad [B] (verification not implemented)

Time = 0.16 (sec) , antiderivative size = 282, normalized size of antiderivative = 1.17 \[ \int \frac {d+e x}{\left (a+c x^4\right )^2} \, dx=\left (\sum _{k=1}^4\ln \left (\frac {c^2\,\left (3\,d\,e^2+2\,e^3\,x-{\mathrm {root}\left (65536\,a^7\,c^2\,z^4+2048\,a^4\,c\,e^2\,z^2-1152\,a^2\,c\,d^2\,e\,z+81\,c\,d^4+16\,a\,e^4,z,k\right )}^2\,a^3\,c\,d\,192+{\mathrm {root}\left (65536\,a^7\,c^2\,z^4+2048\,a^4\,c\,e^2\,z^2-1152\,a^2\,c\,d^2\,e\,z+81\,c\,d^4+16\,a\,e^4,z,k\right )}^2\,a^3\,c\,e\,x\,128-\mathrm {root}\left (65536\,a^7\,c^2\,z^4+2048\,a^4\,c\,e^2\,z^2-1152\,a^2\,c\,d^2\,e\,z+81\,c\,d^4+16\,a\,e^4,z,k\right )\,a\,c\,d^2\,x\,36\right )}{a^3\,16}\right )\,\mathrm {root}\left (65536\,a^7\,c^2\,z^4+2048\,a^4\,c\,e^2\,z^2-1152\,a^2\,c\,d^2\,e\,z+81\,c\,d^4+16\,a\,e^4,z,k\right )\right )+\frac {\frac {e\,x^2}{4\,a}+\frac {d\,x}{4\,a}}{c\,x^4+a} \]

[In]

int((d + e*x)/(a + c*x^4)^2,x)

[Out]

symsum(log((c^2*(3*d*e^2 + 2*e^3*x - 192*root(65536*a^7*c^2*z^4 + 2048*a^4*c*e^2*z^2 - 1152*a^2*c*d^2*e*z + 81
*c*d^4 + 16*a*e^4, z, k)^2*a^3*c*d + 128*root(65536*a^7*c^2*z^4 + 2048*a^4*c*e^2*z^2 - 1152*a^2*c*d^2*e*z + 81
*c*d^4 + 16*a*e^4, z, k)^2*a^3*c*e*x - 36*root(65536*a^7*c^2*z^4 + 2048*a^4*c*e^2*z^2 - 1152*a^2*c*d^2*e*z + 8
1*c*d^4 + 16*a*e^4, z, k)*a*c*d^2*x))/(16*a^3))*root(65536*a^7*c^2*z^4 + 2048*a^4*c*e^2*z^2 - 1152*a^2*c*d^2*e
*z + 81*c*d^4 + 16*a*e^4, z, k), k, 1, 4) + ((e*x^2)/(4*a) + (d*x)/(4*a))/(a + c*x^4)