\(\int x^8 (b+a x^4)^{3/4} \, dx\) [1462]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [C] (verification not implemented)
   Sympy [C] (verification not implemented)
   Maxima [B] (verification not implemented)
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 15, antiderivative size = 103 \[ \int x^8 \left (b+a x^4\right )^{3/4} \, dx=\frac {\left (b+a x^4\right )^{3/4} \left (-15 b^2 x+12 a b x^5+32 a^2 x^9\right )}{384 a^2}+\frac {5 b^3 \arctan \left (\frac {\sqrt [4]{a} x}{\sqrt [4]{b+a x^4}}\right )}{256 a^{9/4}}+\frac {5 b^3 \text {arctanh}\left (\frac {\sqrt [4]{a} x}{\sqrt [4]{b+a x^4}}\right )}{256 a^{9/4}} \]

[Out]

1/384*(a*x^4+b)^(3/4)*(32*a^2*x^9+12*a*b*x^5-15*b^2*x)/a^2+5/256*b^3*arctan(a^(1/4)*x/(a*x^4+b)^(1/4))/a^(9/4)
+5/256*b^3*arctanh(a^(1/4)*x/(a*x^4+b)^(1/4))/a^(9/4)

Rubi [A] (verified)

Time = 0.03 (sec) , antiderivative size = 125, normalized size of antiderivative = 1.21, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {285, 327, 246, 218, 212, 209} \[ \int x^8 \left (b+a x^4\right )^{3/4} \, dx=\frac {5 b^3 \arctan \left (\frac {\sqrt [4]{a} x}{\sqrt [4]{a x^4+b}}\right )}{256 a^{9/4}}+\frac {5 b^3 \text {arctanh}\left (\frac {\sqrt [4]{a} x}{\sqrt [4]{a x^4+b}}\right )}{256 a^{9/4}}-\frac {5 b^2 x \left (a x^4+b\right )^{3/4}}{128 a^2}+\frac {1}{12} x^9 \left (a x^4+b\right )^{3/4}+\frac {b x^5 \left (a x^4+b\right )^{3/4}}{32 a} \]

[In]

Int[x^8*(b + a*x^4)^(3/4),x]

[Out]

(-5*b^2*x*(b + a*x^4)^(3/4))/(128*a^2) + (b*x^5*(b + a*x^4)^(3/4))/(32*a) + (x^9*(b + a*x^4)^(3/4))/12 + (5*b^
3*ArcTan[(a^(1/4)*x)/(b + a*x^4)^(1/4)])/(256*a^(9/4)) + (5*b^3*ArcTanh[(a^(1/4)*x)/(b + a*x^4)^(1/4)])/(256*a
^(9/4))

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 218

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]},
Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !Gt
Q[a/b, 0]

Rule 246

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[a^(p + 1/n), Subst[Int[1/(1 - b*x^n)^(p + 1/n + 1), x], x
, x/(a + b*x^n)^(1/n)], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[-1, p, 0] && NeQ[p, -2^(-1)] && IntegerQ[p
 + 1/n]

Rule 285

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a + b*x^n)^p/(c*(m + n
*p + 1))), x] + Dist[a*n*(p/(m + n*p + 1)), Int[(c*x)^m*(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b, c, m}, x]
&& IGtQ[n, 0] && GtQ[p, 0] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 327

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^n
)^(p + 1)/(b*(m + n*p + 1))), x] - Dist[a*c^n*((m - n + 1)/(b*(m + n*p + 1))), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rubi steps \begin{align*} \text {integral}& = \frac {1}{12} x^9 \left (b+a x^4\right )^{3/4}+\frac {1}{4} b \int \frac {x^8}{\sqrt [4]{b+a x^4}} \, dx \\ & = \frac {b x^5 \left (b+a x^4\right )^{3/4}}{32 a}+\frac {1}{12} x^9 \left (b+a x^4\right )^{3/4}-\frac {\left (5 b^2\right ) \int \frac {x^4}{\sqrt [4]{b+a x^4}} \, dx}{32 a} \\ & = -\frac {5 b^2 x \left (b+a x^4\right )^{3/4}}{128 a^2}+\frac {b x^5 \left (b+a x^4\right )^{3/4}}{32 a}+\frac {1}{12} x^9 \left (b+a x^4\right )^{3/4}+\frac {\left (5 b^3\right ) \int \frac {1}{\sqrt [4]{b+a x^4}} \, dx}{128 a^2} \\ & = -\frac {5 b^2 x \left (b+a x^4\right )^{3/4}}{128 a^2}+\frac {b x^5 \left (b+a x^4\right )^{3/4}}{32 a}+\frac {1}{12} x^9 \left (b+a x^4\right )^{3/4}+\frac {\left (5 b^3\right ) \text {Subst}\left (\int \frac {1}{1-a x^4} \, dx,x,\frac {x}{\sqrt [4]{b+a x^4}}\right )}{128 a^2} \\ & = -\frac {5 b^2 x \left (b+a x^4\right )^{3/4}}{128 a^2}+\frac {b x^5 \left (b+a x^4\right )^{3/4}}{32 a}+\frac {1}{12} x^9 \left (b+a x^4\right )^{3/4}+\frac {\left (5 b^3\right ) \text {Subst}\left (\int \frac {1}{1-\sqrt {a} x^2} \, dx,x,\frac {x}{\sqrt [4]{b+a x^4}}\right )}{256 a^2}+\frac {\left (5 b^3\right ) \text {Subst}\left (\int \frac {1}{1+\sqrt {a} x^2} \, dx,x,\frac {x}{\sqrt [4]{b+a x^4}}\right )}{256 a^2} \\ & = -\frac {5 b^2 x \left (b+a x^4\right )^{3/4}}{128 a^2}+\frac {b x^5 \left (b+a x^4\right )^{3/4}}{32 a}+\frac {1}{12} x^9 \left (b+a x^4\right )^{3/4}+\frac {5 b^3 \arctan \left (\frac {\sqrt [4]{a} x}{\sqrt [4]{b+a x^4}}\right )}{256 a^{9/4}}+\frac {5 b^3 \text {arctanh}\left (\frac {\sqrt [4]{a} x}{\sqrt [4]{b+a x^4}}\right )}{256 a^{9/4}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.37 (sec) , antiderivative size = 98, normalized size of antiderivative = 0.95 \[ \int x^8 \left (b+a x^4\right )^{3/4} \, dx=\frac {2 \sqrt [4]{a} x \left (b+a x^4\right )^{3/4} \left (-15 b^2+12 a b x^4+32 a^2 x^8\right )+15 b^3 \arctan \left (\frac {\sqrt [4]{a} x}{\sqrt [4]{b+a x^4}}\right )+15 b^3 \text {arctanh}\left (\frac {\sqrt [4]{a} x}{\sqrt [4]{b+a x^4}}\right )}{768 a^{9/4}} \]

[In]

Integrate[x^8*(b + a*x^4)^(3/4),x]

[Out]

(2*a^(1/4)*x*(b + a*x^4)^(3/4)*(-15*b^2 + 12*a*b*x^4 + 32*a^2*x^8) + 15*b^3*ArcTan[(a^(1/4)*x)/(b + a*x^4)^(1/
4)] + 15*b^3*ArcTanh[(a^(1/4)*x)/(b + a*x^4)^(1/4)])/(768*a^(9/4))

Maple [A] (verified)

Time = 0.30 (sec) , antiderivative size = 126, normalized size of antiderivative = 1.22

method result size
pseudoelliptic \(\frac {128 a^{\frac {9}{4}} \left (a \,x^{4}+b \right )^{\frac {3}{4}} x^{9}+48 a^{\frac {5}{4}} b \,x^{5} \left (a \,x^{4}+b \right )^{\frac {3}{4}}-60 b^{2} x \,a^{\frac {1}{4}} \left (a \,x^{4}+b \right )^{\frac {3}{4}}-30 \arctan \left (\frac {\left (a \,x^{4}+b \right )^{\frac {1}{4}}}{a^{\frac {1}{4}} x}\right ) b^{3}+15 \ln \left (\frac {-a^{\frac {1}{4}} x -\left (a \,x^{4}+b \right )^{\frac {1}{4}}}{a^{\frac {1}{4}} x -\left (a \,x^{4}+b \right )^{\frac {1}{4}}}\right ) b^{3}}{1536 a^{\frac {9}{4}}}\) \(126\)

[In]

int(x^8*(a*x^4+b)^(3/4),x,method=_RETURNVERBOSE)

[Out]

1/1536*(128*a^(9/4)*(a*x^4+b)^(3/4)*x^9+48*a^(5/4)*b*x^5*(a*x^4+b)^(3/4)-60*b^2*x*a^(1/4)*(a*x^4+b)^(3/4)-30*a
rctan(1/a^(1/4)/x*(a*x^4+b)^(1/4))*b^3+15*ln((-a^(1/4)*x-(a*x^4+b)^(1/4))/(a^(1/4)*x-(a*x^4+b)^(1/4)))*b^3)/a^
(9/4)

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.26 (sec) , antiderivative size = 234, normalized size of antiderivative = 2.27 \[ \int x^8 \left (b+a x^4\right )^{3/4} \, dx=\frac {15 \, \left (\frac {b^{12}}{a^{9}}\right )^{\frac {1}{4}} a^{2} \log \left (\frac {125 \, {\left ({\left (a x^{4} + b\right )}^{\frac {1}{4}} b^{9} + \left (\frac {b^{12}}{a^{9}}\right )^{\frac {3}{4}} a^{7} x\right )}}{x}\right ) - 15 i \, \left (\frac {b^{12}}{a^{9}}\right )^{\frac {1}{4}} a^{2} \log \left (\frac {125 \, {\left ({\left (a x^{4} + b\right )}^{\frac {1}{4}} b^{9} + i \, \left (\frac {b^{12}}{a^{9}}\right )^{\frac {3}{4}} a^{7} x\right )}}{x}\right ) + 15 i \, \left (\frac {b^{12}}{a^{9}}\right )^{\frac {1}{4}} a^{2} \log \left (\frac {125 \, {\left ({\left (a x^{4} + b\right )}^{\frac {1}{4}} b^{9} - i \, \left (\frac {b^{12}}{a^{9}}\right )^{\frac {3}{4}} a^{7} x\right )}}{x}\right ) - 15 \, \left (\frac {b^{12}}{a^{9}}\right )^{\frac {1}{4}} a^{2} \log \left (\frac {125 \, {\left ({\left (a x^{4} + b\right )}^{\frac {1}{4}} b^{9} - \left (\frac {b^{12}}{a^{9}}\right )^{\frac {3}{4}} a^{7} x\right )}}{x}\right ) + 4 \, {\left (32 \, a^{2} x^{9} + 12 \, a b x^{5} - 15 \, b^{2} x\right )} {\left (a x^{4} + b\right )}^{\frac {3}{4}}}{1536 \, a^{2}} \]

[In]

integrate(x^8*(a*x^4+b)^(3/4),x, algorithm="fricas")

[Out]

1/1536*(15*(b^12/a^9)^(1/4)*a^2*log(125*((a*x^4 + b)^(1/4)*b^9 + (b^12/a^9)^(3/4)*a^7*x)/x) - 15*I*(b^12/a^9)^
(1/4)*a^2*log(125*((a*x^4 + b)^(1/4)*b^9 + I*(b^12/a^9)^(3/4)*a^7*x)/x) + 15*I*(b^12/a^9)^(1/4)*a^2*log(125*((
a*x^4 + b)^(1/4)*b^9 - I*(b^12/a^9)^(3/4)*a^7*x)/x) - 15*(b^12/a^9)^(1/4)*a^2*log(125*((a*x^4 + b)^(1/4)*b^9 -
 (b^12/a^9)^(3/4)*a^7*x)/x) + 4*(32*a^2*x^9 + 12*a*b*x^5 - 15*b^2*x)*(a*x^4 + b)^(3/4))/a^2

Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 3.90 (sec) , antiderivative size = 39, normalized size of antiderivative = 0.38 \[ \int x^8 \left (b+a x^4\right )^{3/4} \, dx=\frac {b^{\frac {3}{4}} x^{9} \Gamma \left (\frac {9}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {3}{4}, \frac {9}{4} \\ \frac {13}{4} \end {matrix}\middle | {\frac {a x^{4} e^{i \pi }}{b}} \right )}}{4 \Gamma \left (\frac {13}{4}\right )} \]

[In]

integrate(x**8*(a*x**4+b)**(3/4),x)

[Out]

b**(3/4)*x**9*gamma(9/4)*hyper((-3/4, 9/4), (13/4,), a*x**4*exp_polar(I*pi)/b)/(4*gamma(13/4))

Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 189 vs. \(2 (83) = 166\).

Time = 0.29 (sec) , antiderivative size = 189, normalized size of antiderivative = 1.83 \[ \int x^8 \left (b+a x^4\right )^{3/4} \, dx=-\frac {5 \, b^{3} {\left (\frac {2 \, \arctan \left (\frac {{\left (a x^{4} + b\right )}^{\frac {1}{4}}}{a^{\frac {1}{4}} x}\right )}{a^{\frac {1}{4}}} + \frac {\log \left (-\frac {a^{\frac {1}{4}} - \frac {{\left (a x^{4} + b\right )}^{\frac {1}{4}}}{x}}{a^{\frac {1}{4}} + \frac {{\left (a x^{4} + b\right )}^{\frac {1}{4}}}{x}}\right )}{a^{\frac {1}{4}}}\right )}}{512 \, a^{2}} - \frac {\frac {5 \, {\left (a x^{4} + b\right )}^{\frac {3}{4}} a^{2} b^{3}}{x^{3}} + \frac {42 \, {\left (a x^{4} + b\right )}^{\frac {7}{4}} a b^{3}}{x^{7}} - \frac {15 \, {\left (a x^{4} + b\right )}^{\frac {11}{4}} b^{3}}{x^{11}}}{384 \, {\left (a^{5} - \frac {3 \, {\left (a x^{4} + b\right )} a^{4}}{x^{4}} + \frac {3 \, {\left (a x^{4} + b\right )}^{2} a^{3}}{x^{8}} - \frac {{\left (a x^{4} + b\right )}^{3} a^{2}}{x^{12}}\right )}} \]

[In]

integrate(x^8*(a*x^4+b)^(3/4),x, algorithm="maxima")

[Out]

-5/512*b^3*(2*arctan((a*x^4 + b)^(1/4)/(a^(1/4)*x))/a^(1/4) + log(-(a^(1/4) - (a*x^4 + b)^(1/4)/x)/(a^(1/4) +
(a*x^4 + b)^(1/4)/x))/a^(1/4))/a^2 - 1/384*(5*(a*x^4 + b)^(3/4)*a^2*b^3/x^3 + 42*(a*x^4 + b)^(7/4)*a*b^3/x^7 -
 15*(a*x^4 + b)^(11/4)*b^3/x^11)/(a^5 - 3*(a*x^4 + b)*a^4/x^4 + 3*(a*x^4 + b)^2*a^3/x^8 - (a*x^4 + b)^3*a^2/x^
12)

Giac [F]

\[ \int x^8 \left (b+a x^4\right )^{3/4} \, dx=\int { {\left (a x^{4} + b\right )}^{\frac {3}{4}} x^{8} \,d x } \]

[In]

integrate(x^8*(a*x^4+b)^(3/4),x, algorithm="giac")

[Out]

integrate((a*x^4 + b)^(3/4)*x^8, x)

Mupad [F(-1)]

Timed out. \[ \int x^8 \left (b+a x^4\right )^{3/4} \, dx=\int x^8\,{\left (a\,x^4+b\right )}^{3/4} \,d x \]

[In]

int(x^8*(b + a*x^4)^(3/4),x)

[Out]

int(x^8*(b + a*x^4)^(3/4), x)