\(\int \frac {\sqrt {1-x^6} (1+2 x^6)}{x^2 (-1-x^2+x^6)} \, dx\) [371]

   Optimal result
   Rubi [F]
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 34, antiderivative size = 30 \[ \int \frac {\sqrt {1-x^6} \left (1+2 x^6\right )}{x^2 \left (-1-x^2+x^6\right )} \, dx=\frac {\sqrt {1-x^6}}{x}+\arctan \left (\frac {x}{\sqrt {1-x^6}}\right ) \]

[Out]

(-x^6+1)^(1/2)/x+arctan(x/(-x^6+1)^(1/2))

Rubi [F]

\[ \int \frac {\sqrt {1-x^6} \left (1+2 x^6\right )}{x^2 \left (-1-x^2+x^6\right )} \, dx=\int \frac {\sqrt {1-x^6} \left (1+2 x^6\right )}{x^2 \left (-1-x^2+x^6\right )} \, dx \]

[In]

Int[(Sqrt[1 - x^6]*(1 + 2*x^6))/(x^2*(-1 - x^2 + x^6)),x]

[Out]

Sqrt[1 - x^6]/x + (3*(1 + Sqrt[3])*x*Sqrt[1 - x^6])/(2*(1 - (1 + Sqrt[3])*x^2)) - (3*3^(1/4)*x*(1 - x^2)*Sqrt[
(1 + x^2 + x^4)/(1 - (1 + Sqrt[3])*x^2)^2]*EllipticE[ArcCos[(1 - (1 - Sqrt[3])*x^2)/(1 - (1 + Sqrt[3])*x^2)],
(2 + Sqrt[3])/4])/(2*Sqrt[-((x^2*(1 - x^2))/(1 - (1 + Sqrt[3])*x^2)^2)]*Sqrt[1 - x^6]) - (3^(3/4)*(1 - Sqrt[3]
)*x*(1 - x^2)*Sqrt[(1 + x^2 + x^4)/(1 - (1 + Sqrt[3])*x^2)^2]*EllipticF[ArcCos[(1 - (1 - Sqrt[3])*x^2)/(1 - (1
 + Sqrt[3])*x^2)], (2 + Sqrt[3])/4])/(4*Sqrt[-((x^2*(1 - x^2))/(1 - (1 + Sqrt[3])*x^2)^2)]*Sqrt[1 - x^6]) + De
fer[Int][Sqrt[1 - x^6]/(1 + x^2 - x^6), x] + 3*Defer[Int][(x^4*Sqrt[1 - x^6])/(-1 - x^2 + x^6), x]

Rubi steps \begin{align*} \text {integral}& = \int \left (-\frac {\sqrt {1-x^6}}{x^2}+\frac {\left (-1+3 x^4\right ) \sqrt {1-x^6}}{-1-x^2+x^6}\right ) \, dx \\ & = -\int \frac {\sqrt {1-x^6}}{x^2} \, dx+\int \frac {\left (-1+3 x^4\right ) \sqrt {1-x^6}}{-1-x^2+x^6} \, dx \\ & = \frac {\sqrt {1-x^6}}{x}+3 \int \frac {x^4}{\sqrt {1-x^6}} \, dx+\int \left (\frac {\sqrt {1-x^6}}{1+x^2-x^6}+\frac {3 x^4 \sqrt {1-x^6}}{-1-x^2+x^6}\right ) \, dx \\ & = \frac {\sqrt {1-x^6}}{x}-\frac {3}{2} \int \frac {-1+\sqrt {3}-2 x^4}{\sqrt {1-x^6}} \, dx+3 \int \frac {x^4 \sqrt {1-x^6}}{-1-x^2+x^6} \, dx-\frac {1}{2} \left (3 \left (1-\sqrt {3}\right )\right ) \int \frac {1}{\sqrt {1-x^6}} \, dx+\int \frac {\sqrt {1-x^6}}{1+x^2-x^6} \, dx \\ & = \frac {\sqrt {1-x^6}}{x}+\frac {3 \left (1+\sqrt {3}\right ) x \sqrt {1-x^6}}{2 \left (1-\left (1+\sqrt {3}\right ) x^2\right )}-\frac {3 \sqrt [4]{3} x \left (1-x^2\right ) \sqrt {\frac {1+x^2+x^4}{\left (1-\left (1+\sqrt {3}\right ) x^2\right )^2}} E\left (\arccos \left (\frac {1-\left (1-\sqrt {3}\right ) x^2}{1-\left (1+\sqrt {3}\right ) x^2}\right )|\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{2 \sqrt {-\frac {x^2 \left (1-x^2\right )}{\left (1-\left (1+\sqrt {3}\right ) x^2\right )^2}} \sqrt {1-x^6}}-\frac {3^{3/4} \left (1-\sqrt {3}\right ) x \left (1-x^2\right ) \sqrt {\frac {1+x^2+x^4}{\left (1-\left (1+\sqrt {3}\right ) x^2\right )^2}} \operatorname {EllipticF}\left (\arccos \left (\frac {1-\left (1-\sqrt {3}\right ) x^2}{1-\left (1+\sqrt {3}\right ) x^2}\right ),\frac {1}{4} \left (2+\sqrt {3}\right )\right )}{4 \sqrt {-\frac {x^2 \left (1-x^2\right )}{\left (1-\left (1+\sqrt {3}\right ) x^2\right )^2}} \sqrt {1-x^6}}+3 \int \frac {x^4 \sqrt {1-x^6}}{-1-x^2+x^6} \, dx+\int \frac {\sqrt {1-x^6}}{1+x^2-x^6} \, dx \\ \end{align*}

Mathematica [A] (verified)

Time = 2.82 (sec) , antiderivative size = 30, normalized size of antiderivative = 1.00 \[ \int \frac {\sqrt {1-x^6} \left (1+2 x^6\right )}{x^2 \left (-1-x^2+x^6\right )} \, dx=\frac {\sqrt {1-x^6}}{x}+\arctan \left (\frac {x}{\sqrt {1-x^6}}\right ) \]

[In]

Integrate[(Sqrt[1 - x^6]*(1 + 2*x^6))/(x^2*(-1 - x^2 + x^6)),x]

[Out]

Sqrt[1 - x^6]/x + ArcTan[x/Sqrt[1 - x^6]]

Maple [A] (verified)

Time = 3.33 (sec) , antiderivative size = 32, normalized size of antiderivative = 1.07

method result size
pseudoelliptic \(\frac {-\arctan \left (\frac {\sqrt {-x^{6}+1}}{x}\right ) x +\sqrt {-x^{6}+1}}{x}\) \(32\)
trager \(\frac {\sqrt {-x^{6}+1}}{x}+\frac {\operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) \ln \left (\frac {-\operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) x^{6}-\operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) x^{2}+2 \sqrt {-x^{6}+1}\, x +\operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right )}{x^{6}-x^{2}-1}\right )}{2}\) \(78\)
risch \(-\frac {x^{6}-1}{x \sqrt {-x^{6}+1}}+\frac {\operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) \ln \left (-\frac {-\operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) x^{6}-\operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right ) x^{2}+2 \sqrt {-x^{6}+1}\, x +\operatorname {RootOf}\left (\textit {\_Z}^{2}+1\right )}{x^{6}-x^{2}-1}\right )}{2}\) \(85\)

[In]

int((-x^6+1)^(1/2)*(2*x^6+1)/x^2/(x^6-x^2-1),x,method=_RETURNVERBOSE)

[Out]

(-arctan((-x^6+1)^(1/2)/x)*x+(-x^6+1)^(1/2))/x

Fricas [A] (verification not implemented)

none

Time = 0.52 (sec) , antiderivative size = 42, normalized size of antiderivative = 1.40 \[ \int \frac {\sqrt {1-x^6} \left (1+2 x^6\right )}{x^2 \left (-1-x^2+x^6\right )} \, dx=-\frac {x \arctan \left (\frac {2 \, \sqrt {-x^{6} + 1} x}{x^{6} + x^{2} - 1}\right ) - 2 \, \sqrt {-x^{6} + 1}}{2 \, x} \]

[In]

integrate((-x^6+1)^(1/2)*(2*x^6+1)/x^2/(x^6-x^2-1),x, algorithm="fricas")

[Out]

-1/2*(x*arctan(2*sqrt(-x^6 + 1)*x/(x^6 + x^2 - 1)) - 2*sqrt(-x^6 + 1))/x

Sympy [F(-1)]

Timed out. \[ \int \frac {\sqrt {1-x^6} \left (1+2 x^6\right )}{x^2 \left (-1-x^2+x^6\right )} \, dx=\text {Timed out} \]

[In]

integrate((-x**6+1)**(1/2)*(2*x**6+1)/x**2/(x**6-x**2-1),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {\sqrt {1-x^6} \left (1+2 x^6\right )}{x^2 \left (-1-x^2+x^6\right )} \, dx=\int { \frac {{\left (2 \, x^{6} + 1\right )} \sqrt {-x^{6} + 1}}{{\left (x^{6} - x^{2} - 1\right )} x^{2}} \,d x } \]

[In]

integrate((-x^6+1)^(1/2)*(2*x^6+1)/x^2/(x^6-x^2-1),x, algorithm="maxima")

[Out]

integrate((2*x^6 + 1)*sqrt(-x^6 + 1)/((x^6 - x^2 - 1)*x^2), x)

Giac [F]

\[ \int \frac {\sqrt {1-x^6} \left (1+2 x^6\right )}{x^2 \left (-1-x^2+x^6\right )} \, dx=\int { \frac {{\left (2 \, x^{6} + 1\right )} \sqrt {-x^{6} + 1}}{{\left (x^{6} - x^{2} - 1\right )} x^{2}} \,d x } \]

[In]

integrate((-x^6+1)^(1/2)*(2*x^6+1)/x^2/(x^6-x^2-1),x, algorithm="giac")

[Out]

integrate((2*x^6 + 1)*sqrt(-x^6 + 1)/((x^6 - x^2 - 1)*x^2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {1-x^6} \left (1+2 x^6\right )}{x^2 \left (-1-x^2+x^6\right )} \, dx=\int -\frac {\sqrt {1-x^6}\,\left (2\,x^6+1\right )}{x^2\,\left (-x^6+x^2+1\right )} \,d x \]

[In]

int(-((1 - x^6)^(1/2)*(2*x^6 + 1))/(x^2*(x^2 - x^6 + 1)),x)

[Out]

int(-((1 - x^6)^(1/2)*(2*x^6 + 1))/(x^2*(x^2 - x^6 + 1)), x)