\(\int e^{a+b x+c x^2} (b+2 c x) (a+b x+c x^2)^3 \, dx\) [620]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [A] (verification not implemented)
   Maxima [C] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 31, antiderivative size = 90 \[ \int e^{a+b x+c x^2} (b+2 c x) \left (a+b x+c x^2\right )^3 \, dx=-6 e^{a+b x+c x^2}+6 e^{a+b x+c x^2} \left (a+b x+c x^2\right )-3 e^{a+b x+c x^2} \left (a+b x+c x^2\right )^2+e^{a+b x+c x^2} \left (a+b x+c x^2\right )^3 \]

[Out]

-6*exp(c*x^2+b*x+a)+6*exp(c*x^2+b*x+a)*(c*x^2+b*x+a)-3*exp(c*x^2+b*x+a)*(c*x^2+b*x+a)^2+exp(c*x^2+b*x+a)*(c*x^
2+b*x+a)^3

Rubi [A] (verified)

Time = 0.11 (sec) , antiderivative size = 90, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.097, Rules used = {6839, 2207, 2225} \[ \int e^{a+b x+c x^2} (b+2 c x) \left (a+b x+c x^2\right )^3 \, dx=e^{a+b x+c x^2} \left (a+b x+c x^2\right )^3-3 e^{a+b x+c x^2} \left (a+b x+c x^2\right )^2+6 e^{a+b x+c x^2} \left (a+b x+c x^2\right )-6 e^{a+b x+c x^2} \]

[In]

Int[E^(a + b*x + c*x^2)*(b + 2*c*x)*(a + b*x + c*x^2)^3,x]

[Out]

-6*E^(a + b*x + c*x^2) + 6*E^(a + b*x + c*x^2)*(a + b*x + c*x^2) - 3*E^(a + b*x + c*x^2)*(a + b*x + c*x^2)^2 +
 E^(a + b*x + c*x^2)*(a + b*x + c*x^2)^3

Rule 2207

Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(c + d*x)^m*
((b*F^(g*(e + f*x)))^n/(f*g*n*Log[F])), x] - Dist[d*(m/(f*g*n*Log[F])), Int[(c + d*x)^(m - 1)*(b*F^(g*(e + f*x
)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && GtQ[m, 0] && IntegerQ[2*m] &&  !TrueQ[$UseGamma]

Rule 2225

Int[((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.), x_Symbol] :> Simp[(F^(c*(a + b*x)))^n/(b*c*n*Log[F]), x] /; Fre
eQ[{F, a, b, c, n}, x]

Rule 6839

Int[(F_)^(v_)*(u_)*(w_)^(m_.), x_Symbol] :> With[{q = DerivativeDivides[v, u, x]}, Dist[q, Subst[Int[x^m*F^x,
x], x, v], x] /;  !FalseQ[q]] /; FreeQ[{F, m}, x] && EqQ[w, v]

Rubi steps \begin{align*} \text {integral}& = \text {Subst}\left (\int e^x x^3 \, dx,x,a+b x+c x^2\right ) \\ & = e^{a+b x+c x^2} \left (a+b x+c x^2\right )^3-3 \text {Subst}\left (\int e^x x^2 \, dx,x,a+b x+c x^2\right ) \\ & = -3 e^{a+b x+c x^2} \left (a+b x+c x^2\right )^2+e^{a+b x+c x^2} \left (a+b x+c x^2\right )^3+6 \text {Subst}\left (\int e^x x \, dx,x,a+b x+c x^2\right ) \\ & = 6 e^{a+b x+c x^2} \left (a+b x+c x^2\right )-3 e^{a+b x+c x^2} \left (a+b x+c x^2\right )^2+e^{a+b x+c x^2} \left (a+b x+c x^2\right )^3-6 \text {Subst}\left (\int e^x \, dx,x,a+b x+c x^2\right ) \\ & = -6 e^{a+b x+c x^2}+6 e^{a+b x+c x^2} \left (a+b x+c x^2\right )-3 e^{a+b x+c x^2} \left (a+b x+c x^2\right )^2+e^{a+b x+c x^2} \left (a+b x+c x^2\right )^3 \\ \end{align*}

Mathematica [A] (verified)

Time = 0.17 (sec) , antiderivative size = 49, normalized size of antiderivative = 0.54 \[ \int e^{a+b x+c x^2} (b+2 c x) \left (a+b x+c x^2\right )^3 \, dx=e^{a+x (b+c x)} \left (-6+6 (a+x (b+c x))-3 (a+x (b+c x))^2+(a+x (b+c x))^3\right ) \]

[In]

Integrate[E^(a + b*x + c*x^2)*(b + 2*c*x)*(a + b*x + c*x^2)^3,x]

[Out]

E^(a + x*(b + c*x))*(-6 + 6*(a + x*(b + c*x)) - 3*(a + x*(b + c*x))^2 + (a + x*(b + c*x))^3)

Maple [A] (verified)

Time = 0.69 (sec) , antiderivative size = 87, normalized size of antiderivative = 0.97

method result size
derivativedivides \(-6 \,{\mathrm e}^{c \,x^{2}+b x +a}+6 \,{\mathrm e}^{c \,x^{2}+b x +a} \left (c \,x^{2}+b x +a \right )-3 \,{\mathrm e}^{c \,x^{2}+b x +a} \left (c \,x^{2}+b x +a \right )^{2}+{\mathrm e}^{c \,x^{2}+b x +a} \left (c \,x^{2}+b x +a \right )^{3}\) \(87\)
default \(-6 \,{\mathrm e}^{c \,x^{2}+b x +a}+6 \,{\mathrm e}^{c \,x^{2}+b x +a} \left (c \,x^{2}+b x +a \right )-3 \,{\mathrm e}^{c \,x^{2}+b x +a} \left (c \,x^{2}+b x +a \right )^{2}+{\mathrm e}^{c \,x^{2}+b x +a} \left (c \,x^{2}+b x +a \right )^{3}\) \(87\)
gosper \(\left (c^{3} x^{6}+3 b \,c^{2} x^{5}+3 a \,c^{2} x^{4}+3 b^{2} c \,x^{4}+6 a b c \,x^{3}+b^{3} x^{3}-3 c^{2} x^{4}+3 a^{2} c \,x^{2}+3 a \,b^{2} x^{2}-6 b c \,x^{3}+3 a^{2} b x -6 a c \,x^{2}-3 b^{2} x^{2}+a^{3}-6 a b x +6 c \,x^{2}-3 a^{2}+6 b x +6 a -6\right ) {\mathrm e}^{c \,x^{2}+b x +a}\) \(145\)
risch \(\left (c^{3} x^{6}+3 b \,c^{2} x^{5}+3 a \,c^{2} x^{4}+3 b^{2} c \,x^{4}+6 a b c \,x^{3}+b^{3} x^{3}-3 c^{2} x^{4}+3 a^{2} c \,x^{2}+3 a \,b^{2} x^{2}-6 b c \,x^{3}+3 a^{2} b x -6 a c \,x^{2}-3 b^{2} x^{2}+a^{3}-6 a b x +6 c \,x^{2}-3 a^{2}+6 b x +6 a -6\right ) {\mathrm e}^{c \,x^{2}+b x +a}\) \(145\)
norman \(\left (a^{3}-3 a^{2}+6 a -6\right ) {\mathrm e}^{c \,x^{2}+b x +a}+c^{3} x^{6} {\mathrm e}^{c \,x^{2}+b x +a}+\left (3 a \,c^{2}+3 b^{2} c -3 c^{2}\right ) x^{4} {\mathrm e}^{c \,x^{2}+b x +a}+\left (3 a^{2} c +3 a \,b^{2}-6 c a -3 b^{2}+6 c \right ) x^{2} {\mathrm e}^{c \,x^{2}+b x +a}+b \left (6 c a +b^{2}-6 c \right ) x^{3} {\mathrm e}^{c \,x^{2}+b x +a}+3 b \,c^{2} x^{5} {\mathrm e}^{c \,x^{2}+b x +a}+3 b \left (a^{2}-2 a +2\right ) x \,{\mathrm e}^{c \,x^{2}+b x +a}\) \(188\)
parallelrisch \(c^{3} x^{6} {\mathrm e}^{c \,x^{2}+b x +a}+3 b \,c^{2} x^{5} {\mathrm e}^{c \,x^{2}+b x +a}+3 x^{4} {\mathrm e}^{c \,x^{2}+b x +a} a \,c^{2}+3 x^{4} {\mathrm e}^{c \,x^{2}+b x +a} b^{2} c -3 x^{4} {\mathrm e}^{c \,x^{2}+b x +a} c^{2}+6 x^{3} {\mathrm e}^{c \,x^{2}+b x +a} a b c +x^{3} {\mathrm e}^{c \,x^{2}+b x +a} b^{3}-6 x^{3} {\mathrm e}^{c \,x^{2}+b x +a} b c +3 x^{2} {\mathrm e}^{c \,x^{2}+b x +a} a^{2} c +3 x^{2} {\mathrm e}^{c \,x^{2}+b x +a} a \,b^{2}-6 x^{2} {\mathrm e}^{c \,x^{2}+b x +a} a c -3 x^{2} {\mathrm e}^{c \,x^{2}+b x +a} b^{2}+3 x \,{\mathrm e}^{c \,x^{2}+b x +a} a^{2} b +6 x^{2} {\mathrm e}^{c \,x^{2}+b x +a} c -6 x \,{\mathrm e}^{c \,x^{2}+b x +a} a b +{\mathrm e}^{c \,x^{2}+b x +a} a^{3}+6 x \,{\mathrm e}^{c \,x^{2}+b x +a} b -3 \,{\mathrm e}^{c \,x^{2}+b x +a} a^{2}+6 a \,{\mathrm e}^{c \,x^{2}+b x +a}-6 \,{\mathrm e}^{c \,x^{2}+b x +a}\) \(355\)
parts \(\text {Expression too large to display}\) \(1562\)

[In]

int(exp(c*x^2+b*x+a)*(2*c*x+b)*(c*x^2+b*x+a)^3,x,method=_RETURNVERBOSE)

[Out]

-6*exp(c*x^2+b*x+a)+6*exp(c*x^2+b*x+a)*(c*x^2+b*x+a)-3*exp(c*x^2+b*x+a)*(c*x^2+b*x+a)^2+exp(c*x^2+b*x+a)*(c*x^
2+b*x+a)^3

Fricas [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 109, normalized size of antiderivative = 1.21 \[ \int e^{a+b x+c x^2} (b+2 c x) \left (a+b x+c x^2\right )^3 \, dx={\left (c^{3} x^{6} + 3 \, b c^{2} x^{5} + 3 \, {\left (b^{2} c + {\left (a - 1\right )} c^{2}\right )} x^{4} + {\left (b^{3} + 6 \, {\left (a - 1\right )} b c\right )} x^{3} + a^{3} + 3 \, {\left (a^{2} - 2 \, a + 2\right )} b x + 3 \, {\left ({\left (a - 1\right )} b^{2} + {\left (a^{2} - 2 \, a + 2\right )} c\right )} x^{2} - 3 \, a^{2} + 6 \, a - 6\right )} e^{\left (c x^{2} + b x + a\right )} \]

[In]

integrate(exp(c*x^2+b*x+a)*(2*c*x+b)*(c*x^2+b*x+a)^3,x, algorithm="fricas")

[Out]

(c^3*x^6 + 3*b*c^2*x^5 + 3*(b^2*c + (a - 1)*c^2)*x^4 + (b^3 + 6*(a - 1)*b*c)*x^3 + a^3 + 3*(a^2 - 2*a + 2)*b*x
 + 3*((a - 1)*b^2 + (a^2 - 2*a + 2)*c)*x^2 - 3*a^2 + 6*a - 6)*e^(c*x^2 + b*x + a)

Sympy [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 160, normalized size of antiderivative = 1.78 \[ \int e^{a+b x+c x^2} (b+2 c x) \left (a+b x+c x^2\right )^3 \, dx=\left (a^{3} + 3 a^{2} b x + 3 a^{2} c x^{2} - 3 a^{2} + 3 a b^{2} x^{2} + 6 a b c x^{3} - 6 a b x + 3 a c^{2} x^{4} - 6 a c x^{2} + 6 a + b^{3} x^{3} + 3 b^{2} c x^{4} - 3 b^{2} x^{2} + 3 b c^{2} x^{5} - 6 b c x^{3} + 6 b x + c^{3} x^{6} - 3 c^{2} x^{4} + 6 c x^{2} - 6\right ) e^{a + b x + c x^{2}} \]

[In]

integrate(exp(c*x**2+b*x+a)*(2*c*x+b)*(c*x**2+b*x+a)**3,x)

[Out]

(a**3 + 3*a**2*b*x + 3*a**2*c*x**2 - 3*a**2 + 3*a*b**2*x**2 + 6*a*b*c*x**3 - 6*a*b*x + 3*a*c**2*x**4 - 6*a*c*x
**2 + 6*a + b**3*x**3 + 3*b**2*c*x**4 - 3*b**2*x**2 + 3*b*c**2*x**5 - 6*b*c*x**3 + 6*b*x + c**3*x**6 - 3*c**2*
x**4 + 6*c*x**2 - 6)*exp(a + b*x + c*x**2)

Maxima [C] (verification not implemented)

Result contains higher order function than in optimal. Order 4 vs. order 3.

Time = 0.89 (sec) , antiderivative size = 2381, normalized size of antiderivative = 26.46 \[ \int e^{a+b x+c x^2} (b+2 c x) \left (a+b x+c x^2\right )^3 \, dx=\text {Too large to display} \]

[In]

integrate(exp(c*x^2+b*x+a)*(2*c*x+b)*(c*x^2+b*x+a)^3,x, algorithm="maxima")

[Out]

1/2*sqrt(pi)*a^3*b*erf(sqrt(-c)*x - 1/2*b/sqrt(-c))*e^(a - 1/4*b^2/c)/sqrt(-c) - 3/4*(sqrt(pi)*(2*c*x + b)*b*(
erf(1/2*sqrt(-(2*c*x + b)^2/c)) - 1)/(sqrt(-(2*c*x + b)^2/c)*c^(3/2)) - 2*e^(1/4*(2*c*x + b)^2/c)/sqrt(c))*a^2
*b^2*e^(a - 1/4*b^2/c)/sqrt(c) + 3/8*(sqrt(pi)*(2*c*x + b)*b^2*(erf(1/2*sqrt(-(2*c*x + b)^2/c)) - 1)/(sqrt(-(2
*c*x + b)^2/c)*c^(5/2)) - 4*b*e^(1/4*(2*c*x + b)^2/c)/c^(3/2) - 4*(2*c*x + b)^3*gamma(3/2, -1/4*(2*c*x + b)^2/
c)/((-(2*c*x + b)^2/c)^(3/2)*c^(5/2)))*a*b^3*e^(a - 1/4*b^2/c)/sqrt(c) - 1/16*(sqrt(pi)*(2*c*x + b)*b^3*(erf(1
/2*sqrt(-(2*c*x + b)^2/c)) - 1)/(sqrt(-(2*c*x + b)^2/c)*c^(7/2)) - 6*b^2*e^(1/4*(2*c*x + b)^2/c)/c^(5/2) - 12*
(2*c*x + b)^3*b*gamma(3/2, -1/4*(2*c*x + b)^2/c)/((-(2*c*x + b)^2/c)^(3/2)*c^(7/2)) + 8*gamma(2, -1/4*(2*c*x +
 b)^2/c)/c^(3/2))*b^4*e^(a - 1/4*b^2/c)/sqrt(c) - 1/2*(sqrt(pi)*(2*c*x + b)*b*(erf(1/2*sqrt(-(2*c*x + b)^2/c))
 - 1)/(sqrt(-(2*c*x + b)^2/c)*c^(3/2)) - 2*e^(1/4*(2*c*x + b)^2/c)/sqrt(c))*a^3*sqrt(c)*e^(a - 1/4*b^2/c) + 9/
8*(sqrt(pi)*(2*c*x + b)*b^2*(erf(1/2*sqrt(-(2*c*x + b)^2/c)) - 1)/(sqrt(-(2*c*x + b)^2/c)*c^(5/2)) - 4*b*e^(1/
4*(2*c*x + b)^2/c)/c^(3/2) - 4*(2*c*x + b)^3*gamma(3/2, -1/4*(2*c*x + b)^2/c)/((-(2*c*x + b)^2/c)^(3/2)*c^(5/2
)))*a^2*b*sqrt(c)*e^(a - 1/4*b^2/c) - 3/4*(sqrt(pi)*(2*c*x + b)*b^3*(erf(1/2*sqrt(-(2*c*x + b)^2/c)) - 1)/(sqr
t(-(2*c*x + b)^2/c)*c^(7/2)) - 6*b^2*e^(1/4*(2*c*x + b)^2/c)/c^(5/2) - 12*(2*c*x + b)^3*b*gamma(3/2, -1/4*(2*c
*x + b)^2/c)/((-(2*c*x + b)^2/c)^(3/2)*c^(7/2)) + 8*gamma(2, -1/4*(2*c*x + b)^2/c)/c^(3/2))*a*b^2*sqrt(c)*e^(a
 - 1/4*b^2/c) + 5/32*(sqrt(pi)*(2*c*x + b)*b^4*(erf(1/2*sqrt(-(2*c*x + b)^2/c)) - 1)/(sqrt(-(2*c*x + b)^2/c)*c
^(9/2)) - 8*b^3*e^(1/4*(2*c*x + b)^2/c)/c^(7/2) - 24*(2*c*x + b)^3*b^2*gamma(3/2, -1/4*(2*c*x + b)^2/c)/((-(2*
c*x + b)^2/c)^(3/2)*c^(9/2)) + 32*b*gamma(2, -1/4*(2*c*x + b)^2/c)/c^(5/2) - 16*(2*c*x + b)^5*gamma(5/2, -1/4*
(2*c*x + b)^2/c)/((-(2*c*x + b)^2/c)^(5/2)*c^(9/2)))*b^3*sqrt(c)*e^(a - 1/4*b^2/c) - 3/8*(sqrt(pi)*(2*c*x + b)
*b^3*(erf(1/2*sqrt(-(2*c*x + b)^2/c)) - 1)/(sqrt(-(2*c*x + b)^2/c)*c^(7/2)) - 6*b^2*e^(1/4*(2*c*x + b)^2/c)/c^
(5/2) - 12*(2*c*x + b)^3*b*gamma(3/2, -1/4*(2*c*x + b)^2/c)/((-(2*c*x + b)^2/c)^(3/2)*c^(7/2)) + 8*gamma(2, -1
/4*(2*c*x + b)^2/c)/c^(3/2))*a^2*c^(3/2)*e^(a - 1/4*b^2/c) + 15/32*(sqrt(pi)*(2*c*x + b)*b^4*(erf(1/2*sqrt(-(2
*c*x + b)^2/c)) - 1)/(sqrt(-(2*c*x + b)^2/c)*c^(9/2)) - 8*b^3*e^(1/4*(2*c*x + b)^2/c)/c^(7/2) - 24*(2*c*x + b)
^3*b^2*gamma(3/2, -1/4*(2*c*x + b)^2/c)/((-(2*c*x + b)^2/c)^(3/2)*c^(9/2)) + 32*b*gamma(2, -1/4*(2*c*x + b)^2/
c)/c^(5/2) - 16*(2*c*x + b)^5*gamma(5/2, -1/4*(2*c*x + b)^2/c)/((-(2*c*x + b)^2/c)^(5/2)*c^(9/2)))*a*b*c^(3/2)
*e^(a - 1/4*b^2/c) - 9/64*(sqrt(pi)*(2*c*x + b)*b^5*(erf(1/2*sqrt(-(2*c*x + b)^2/c)) - 1)/(sqrt(-(2*c*x + b)^2
/c)*c^(11/2)) - 10*b^4*e^(1/4*(2*c*x + b)^2/c)/c^(9/2) - 40*(2*c*x + b)^3*b^3*gamma(3/2, -1/4*(2*c*x + b)^2/c)
/((-(2*c*x + b)^2/c)^(3/2)*c^(11/2)) + 80*b^2*gamma(2, -1/4*(2*c*x + b)^2/c)/c^(7/2) - 80*(2*c*x + b)^5*b*gamm
a(5/2, -1/4*(2*c*x + b)^2/c)/((-(2*c*x + b)^2/c)^(5/2)*c^(11/2)) - 32*gamma(3, -1/4*(2*c*x + b)^2/c)/c^(5/2))*
b^2*c^(3/2)*e^(a - 1/4*b^2/c) - 3/32*(sqrt(pi)*(2*c*x + b)*b^5*(erf(1/2*sqrt(-(2*c*x + b)^2/c)) - 1)/(sqrt(-(2
*c*x + b)^2/c)*c^(11/2)) - 10*b^4*e^(1/4*(2*c*x + b)^2/c)/c^(9/2) - 40*(2*c*x + b)^3*b^3*gamma(3/2, -1/4*(2*c*
x + b)^2/c)/((-(2*c*x + b)^2/c)^(3/2)*c^(11/2)) + 80*b^2*gamma(2, -1/4*(2*c*x + b)^2/c)/c^(7/2) - 80*(2*c*x +
b)^5*b*gamma(5/2, -1/4*(2*c*x + b)^2/c)/((-(2*c*x + b)^2/c)^(5/2)*c^(11/2)) - 32*gamma(3, -1/4*(2*c*x + b)^2/c
)/c^(5/2))*a*c^(5/2)*e^(a - 1/4*b^2/c) + 7/128*(sqrt(pi)*(2*c*x + b)*b^6*(erf(1/2*sqrt(-(2*c*x + b)^2/c)) - 1)
/(sqrt(-(2*c*x + b)^2/c)*c^(13/2)) - 12*b^5*e^(1/4*(2*c*x + b)^2/c)/c^(11/2) - 60*(2*c*x + b)^3*b^4*gamma(3/2,
 -1/4*(2*c*x + b)^2/c)/((-(2*c*x + b)^2/c)^(3/2)*c^(13/2)) + 160*b^3*gamma(2, -1/4*(2*c*x + b)^2/c)/c^(9/2) -
240*(2*c*x + b)^5*b^2*gamma(5/2, -1/4*(2*c*x + b)^2/c)/((-(2*c*x + b)^2/c)^(5/2)*c^(13/2)) - 192*b*gamma(3, -1
/4*(2*c*x + b)^2/c)/c^(7/2) - 64*(2*c*x + b)^7*gamma(7/2, -1/4*(2*c*x + b)^2/c)/((-(2*c*x + b)^2/c)^(7/2)*c^(1
3/2)))*b*c^(5/2)*e^(a - 1/4*b^2/c) - 1/128*(sqrt(pi)*(2*c*x + b)*b^7*(erf(1/2*sqrt(-(2*c*x + b)^2/c)) - 1)/(sq
rt(-(2*c*x + b)^2/c)*c^(15/2)) - 14*b^6*e^(1/4*(2*c*x + b)^2/c)/c^(13/2) - 84*(2*c*x + b)^3*b^5*gamma(3/2, -1/
4*(2*c*x + b)^2/c)/((-(2*c*x + b)^2/c)^(3/2)*c^(15/2)) + 280*b^4*gamma(2, -1/4*(2*c*x + b)^2/c)/c^(11/2) - 560
*(2*c*x + b)^5*b^3*gamma(5/2, -1/4*(2*c*x + b)^2/c)/((-(2*c*x + b)^2/c)^(5/2)*c^(15/2)) - 672*b^2*gamma(3, -1/
4*(2*c*x + b)^2/c)/c^(9/2) - 448*(2*c*x + b)^7*b*gamma(7/2, -1/4*(2*c*x + b)^2/c)/((-(2*c*x + b)^2/c)^(7/2)*c^
(15/2)) + 128*gamma(4, -1/4*(2*c*x + b)^2/c)/c^(7/2))*c^(7/2)*e^(a - 1/4*b^2/c)

Giac [A] (verification not implemented)

none

Time = 0.32 (sec) , antiderivative size = 53, normalized size of antiderivative = 0.59 \[ \int e^{a+b x+c x^2} (b+2 c x) \left (a+b x+c x^2\right )^3 \, dx={\left ({\left (c x^{2} + b x + a\right )}^{3} + 6 \, c x^{2} - 3 \, {\left (c x^{2} + b x + a\right )}^{2} + 6 \, b x + 6 \, a - 6\right )} e^{\left (c x^{2} + b x + a\right )} \]

[In]

integrate(exp(c*x^2+b*x+a)*(2*c*x+b)*(c*x^2+b*x+a)^3,x, algorithm="giac")

[Out]

((c*x^2 + b*x + a)^3 + 6*c*x^2 - 3*(c*x^2 + b*x + a)^2 + 6*b*x + 6*a - 6)*e^(c*x^2 + b*x + a)

Mupad [B] (verification not implemented)

Time = 0.46 (sec) , antiderivative size = 145, normalized size of antiderivative = 1.61 \[ \int e^{a+b x+c x^2} (b+2 c x) \left (a+b x+c x^2\right )^3 \, dx={\mathrm {e}}^{b\,x}\,{\mathrm {e}}^a\,{\mathrm {e}}^{c\,x^2}\,\left (a^3+3\,a^2\,b\,x+3\,a^2\,c\,x^2-3\,a^2+3\,a\,b^2\,x^2+6\,a\,b\,c\,x^3-6\,a\,b\,x+3\,a\,c^2\,x^4-6\,a\,c\,x^2+6\,a+b^3\,x^3+3\,b^2\,c\,x^4-3\,b^2\,x^2+3\,b\,c^2\,x^5-6\,b\,c\,x^3+6\,b\,x+c^3\,x^6-3\,c^2\,x^4+6\,c\,x^2-6\right ) \]

[In]

int(exp(a + b*x + c*x^2)*(b + 2*c*x)*(a + b*x + c*x^2)^3,x)

[Out]

exp(b*x)*exp(a)*exp(c*x^2)*(6*a + 6*b*x + 6*c*x^2 - 3*a^2 + a^3 - 3*b^2*x^2 + b^3*x^3 - 3*c^2*x^4 + c^3*x^6 +
3*a*b^2*x^2 + 3*a^2*c*x^2 + 3*a*c^2*x^4 + 3*b^2*c*x^4 + 3*b*c^2*x^5 - 6*a*b*x + 3*a^2*b*x - 6*a*c*x^2 - 6*b*c*
x^3 + 6*a*b*c*x^3 - 6)