\(\int \frac {(c e+d e x)^2}{\sqrt {a+b \arcsin (c+d x)}} \, dx\) [261]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [F(-2)]
   Sympy [F]
   Maxima [F]
   Giac [C] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 243 \[ \int \frac {(c e+d e x)^2}{\sqrt {a+b \arcsin (c+d x)}} \, dx=\frac {e^2 \sqrt {\frac {\pi }{2}} \cos \left (\frac {a}{b}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c+d x)}}{\sqrt {b}}\right )}{2 \sqrt {b} d}-\frac {e^2 \sqrt {\frac {\pi }{6}} \cos \left (\frac {3 a}{b}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \arcsin (c+d x)}}{\sqrt {b}}\right )}{2 \sqrt {b} d}+\frac {e^2 \sqrt {\frac {\pi }{2}} \operatorname {FresnelS}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c+d x)}}{\sqrt {b}}\right ) \sin \left (\frac {a}{b}\right )}{2 \sqrt {b} d}-\frac {e^2 \sqrt {\frac {\pi }{6}} \operatorname {FresnelS}\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \arcsin (c+d x)}}{\sqrt {b}}\right ) \sin \left (\frac {3 a}{b}\right )}{2 \sqrt {b} d} \]

[Out]

-1/12*e^2*cos(3*a/b)*FresnelC(6^(1/2)/Pi^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b^(1/2))*6^(1/2)*Pi^(1/2)/d/b^(1/2)-1
/12*e^2*FresnelS(6^(1/2)/Pi^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b^(1/2))*sin(3*a/b)*6^(1/2)*Pi^(1/2)/d/b^(1/2)+1/4
*e^2*cos(a/b)*FresnelC(2^(1/2)/Pi^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b^(1/2))*2^(1/2)*Pi^(1/2)/d/b^(1/2)+1/4*e^2*
FresnelS(2^(1/2)/Pi^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b^(1/2))*sin(a/b)*2^(1/2)*Pi^(1/2)/d/b^(1/2)

Rubi [A] (verified)

Time = 0.31 (sec) , antiderivative size = 243, normalized size of antiderivative = 1.00, number of steps used = 15, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.360, Rules used = {4889, 12, 4731, 4491, 3387, 3386, 3432, 3385, 3433} \[ \int \frac {(c e+d e x)^2}{\sqrt {a+b \arcsin (c+d x)}} \, dx=\frac {\sqrt {\frac {\pi }{2}} e^2 \cos \left (\frac {a}{b}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c+d x)}}{\sqrt {b}}\right )}{2 \sqrt {b} d}-\frac {\sqrt {\frac {\pi }{6}} e^2 \cos \left (\frac {3 a}{b}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \arcsin (c+d x)}}{\sqrt {b}}\right )}{2 \sqrt {b} d}+\frac {\sqrt {\frac {\pi }{2}} e^2 \sin \left (\frac {a}{b}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c+d x)}}{\sqrt {b}}\right )}{2 \sqrt {b} d}-\frac {\sqrt {\frac {\pi }{6}} e^2 \sin \left (\frac {3 a}{b}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \arcsin (c+d x)}}{\sqrt {b}}\right )}{2 \sqrt {b} d} \]

[In]

Int[(c*e + d*e*x)^2/Sqrt[a + b*ArcSin[c + d*x]],x]

[Out]

(e^2*Sqrt[Pi/2]*Cos[a/b]*FresnelC[(Sqrt[2/Pi]*Sqrt[a + b*ArcSin[c + d*x]])/Sqrt[b]])/(2*Sqrt[b]*d) - (e^2*Sqrt
[Pi/6]*Cos[(3*a)/b]*FresnelC[(Sqrt[6/Pi]*Sqrt[a + b*ArcSin[c + d*x]])/Sqrt[b]])/(2*Sqrt[b]*d) + (e^2*Sqrt[Pi/2
]*FresnelS[(Sqrt[2/Pi]*Sqrt[a + b*ArcSin[c + d*x]])/Sqrt[b]]*Sin[a/b])/(2*Sqrt[b]*d) - (e^2*Sqrt[Pi/6]*Fresnel
S[(Sqrt[6/Pi]*Sqrt[a + b*ArcSin[c + d*x]])/Sqrt[b]]*Sin[(3*a)/b])/(2*Sqrt[b]*d)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 3385

Int[sin[Pi/2 + (e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[Cos[f*(x^2/d)],
x], x, Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]

Rule 3386

Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[Sin[f*(x^2/d)], x], x,
Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]

Rule 3387

Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[c*(f/d) +
f*x]/Sqrt[c + d*x], x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[c*(f/d) + f*x]/Sqrt[c + d*x], x], x] /; FreeQ[{c
, d, e, f}, x] && ComplexFreeQ[f] && NeQ[d*e - c*f, 0]

Rule 3432

Int[Sin[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]/(f*Rt[d, 2]))*FresnelS[Sqrt[2/Pi]*Rt[d, 2
]*(e + f*x)], x] /; FreeQ[{d, e, f}, x]

Rule 3433

Int[Cos[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]/(f*Rt[d, 2]))*FresnelC[Sqrt[2/Pi]*Rt[d, 2
]*(e + f*x)], x] /; FreeQ[{d, e, f}, x]

Rule 4491

Int[Cos[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sin[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Int[E
xpandTrigReduce[(c + d*x)^m, Sin[a + b*x]^n*Cos[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0]
&& IGtQ[p, 0]

Rule 4731

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Dist[1/(b*c^(m + 1)), Subst[Int[x^n*Sin[-
a/b + x/b]^m*Cos[-a/b + x/b], x], x, a + b*ArcSin[c*x]], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[m, 0]

Rule 4889

Int[((a_.) + ArcSin[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[1/d, Subst[I
nt[((d*e - c*f)/d + f*(x/d))^m*(a + b*ArcSin[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {e^2 x^2}{\sqrt {a+b \arcsin (x)}} \, dx,x,c+d x\right )}{d} \\ & = \frac {e^2 \text {Subst}\left (\int \frac {x^2}{\sqrt {a+b \arcsin (x)}} \, dx,x,c+d x\right )}{d} \\ & = \frac {e^2 \text {Subst}\left (\int \frac {\cos \left (\frac {a}{b}-\frac {x}{b}\right ) \sin ^2\left (\frac {a}{b}-\frac {x}{b}\right )}{\sqrt {x}} \, dx,x,a+b \arcsin (c+d x)\right )}{b d} \\ & = \frac {e^2 \text {Subst}\left (\int \left (-\frac {\cos \left (\frac {3 a}{b}-\frac {3 x}{b}\right )}{4 \sqrt {x}}+\frac {\cos \left (\frac {a}{b}-\frac {x}{b}\right )}{4 \sqrt {x}}\right ) \, dx,x,a+b \arcsin (c+d x)\right )}{b d} \\ & = -\frac {e^2 \text {Subst}\left (\int \frac {\cos \left (\frac {3 a}{b}-\frac {3 x}{b}\right )}{\sqrt {x}} \, dx,x,a+b \arcsin (c+d x)\right )}{4 b d}+\frac {e^2 \text {Subst}\left (\int \frac {\cos \left (\frac {a}{b}-\frac {x}{b}\right )}{\sqrt {x}} \, dx,x,a+b \arcsin (c+d x)\right )}{4 b d} \\ & = \frac {\left (e^2 \cos \left (\frac {a}{b}\right )\right ) \text {Subst}\left (\int \frac {\cos \left (\frac {x}{b}\right )}{\sqrt {x}} \, dx,x,a+b \arcsin (c+d x)\right )}{4 b d}-\frac {\left (e^2 \cos \left (\frac {3 a}{b}\right )\right ) \text {Subst}\left (\int \frac {\cos \left (\frac {3 x}{b}\right )}{\sqrt {x}} \, dx,x,a+b \arcsin (c+d x)\right )}{4 b d}+\frac {\left (e^2 \sin \left (\frac {a}{b}\right )\right ) \text {Subst}\left (\int \frac {\sin \left (\frac {x}{b}\right )}{\sqrt {x}} \, dx,x,a+b \arcsin (c+d x)\right )}{4 b d}-\frac {\left (e^2 \sin \left (\frac {3 a}{b}\right )\right ) \text {Subst}\left (\int \frac {\sin \left (\frac {3 x}{b}\right )}{\sqrt {x}} \, dx,x,a+b \arcsin (c+d x)\right )}{4 b d} \\ & = \frac {\left (e^2 \cos \left (\frac {a}{b}\right )\right ) \text {Subst}\left (\int \cos \left (\frac {x^2}{b}\right ) \, dx,x,\sqrt {a+b \arcsin (c+d x)}\right )}{2 b d}-\frac {\left (e^2 \cos \left (\frac {3 a}{b}\right )\right ) \text {Subst}\left (\int \cos \left (\frac {3 x^2}{b}\right ) \, dx,x,\sqrt {a+b \arcsin (c+d x)}\right )}{2 b d}+\frac {\left (e^2 \sin \left (\frac {a}{b}\right )\right ) \text {Subst}\left (\int \sin \left (\frac {x^2}{b}\right ) \, dx,x,\sqrt {a+b \arcsin (c+d x)}\right )}{2 b d}-\frac {\left (e^2 \sin \left (\frac {3 a}{b}\right )\right ) \text {Subst}\left (\int \sin \left (\frac {3 x^2}{b}\right ) \, dx,x,\sqrt {a+b \arcsin (c+d x)}\right )}{2 b d} \\ & = \frac {e^2 \sqrt {\frac {\pi }{2}} \cos \left (\frac {a}{b}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c+d x)}}{\sqrt {b}}\right )}{2 \sqrt {b} d}-\frac {e^2 \sqrt {\frac {\pi }{6}} \cos \left (\frac {3 a}{b}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \arcsin (c+d x)}}{\sqrt {b}}\right )}{2 \sqrt {b} d}+\frac {e^2 \sqrt {\frac {\pi }{2}} \operatorname {FresnelS}\left (\frac {\sqrt {\frac {2}{\pi }} \sqrt {a+b \arcsin (c+d x)}}{\sqrt {b}}\right ) \sin \left (\frac {a}{b}\right )}{2 \sqrt {b} d}-\frac {e^2 \sqrt {\frac {\pi }{6}} \operatorname {FresnelS}\left (\frac {\sqrt {\frac {6}{\pi }} \sqrt {a+b \arcsin (c+d x)}}{\sqrt {b}}\right ) \sin \left (\frac {3 a}{b}\right )}{2 \sqrt {b} d} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.28 (sec) , antiderivative size = 249, normalized size of antiderivative = 1.02 \[ \int \frac {(c e+d e x)^2}{\sqrt {a+b \arcsin (c+d x)}} \, dx=-\frac {i e^2 e^{-\frac {3 i a}{b}} \left (3 e^{\frac {2 i a}{b}} \sqrt {-\frac {i (a+b \arcsin (c+d x))}{b}} \Gamma \left (\frac {1}{2},-\frac {i (a+b \arcsin (c+d x))}{b}\right )-3 e^{\frac {4 i a}{b}} \sqrt {\frac {i (a+b \arcsin (c+d x))}{b}} \Gamma \left (\frac {1}{2},\frac {i (a+b \arcsin (c+d x))}{b}\right )+\sqrt {3} \left (-\sqrt {-\frac {i (a+b \arcsin (c+d x))}{b}} \Gamma \left (\frac {1}{2},-\frac {3 i (a+b \arcsin (c+d x))}{b}\right )+e^{\frac {6 i a}{b}} \sqrt {\frac {i (a+b \arcsin (c+d x))}{b}} \Gamma \left (\frac {1}{2},\frac {3 i (a+b \arcsin (c+d x))}{b}\right )\right )\right )}{24 d \sqrt {a+b \arcsin (c+d x)}} \]

[In]

Integrate[(c*e + d*e*x)^2/Sqrt[a + b*ArcSin[c + d*x]],x]

[Out]

((-1/24*I)*e^2*(3*E^(((2*I)*a)/b)*Sqrt[((-I)*(a + b*ArcSin[c + d*x]))/b]*Gamma[1/2, ((-I)*(a + b*ArcSin[c + d*
x]))/b] - 3*E^(((4*I)*a)/b)*Sqrt[(I*(a + b*ArcSin[c + d*x]))/b]*Gamma[1/2, (I*(a + b*ArcSin[c + d*x]))/b] + Sq
rt[3]*(-(Sqrt[((-I)*(a + b*ArcSin[c + d*x]))/b]*Gamma[1/2, ((-3*I)*(a + b*ArcSin[c + d*x]))/b]) + E^(((6*I)*a)
/b)*Sqrt[(I*(a + b*ArcSin[c + d*x]))/b]*Gamma[1/2, ((3*I)*(a + b*ArcSin[c + d*x]))/b])))/(d*E^(((3*I)*a)/b)*Sq
rt[a + b*ArcSin[c + d*x]])

Maple [A] (verified)

Time = 1.09 (sec) , antiderivative size = 207, normalized size of antiderivative = 0.85

method result size
default \(-\frac {e^{2} \sqrt {2}\, \sqrt {\pi }\, \sqrt {-\frac {3}{b}}\, \left (\cos \left (\frac {a}{b}\right ) \operatorname {FresnelC}\left (\frac {\sqrt {2}\, \sqrt {a +b \arcsin \left (d x +c \right )}}{\sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, b}\right ) \sqrt {-\frac {1}{b}}\, \sqrt {-\frac {3}{b}}\, b -\sin \left (\frac {a}{b}\right ) \operatorname {FresnelS}\left (\frac {\sqrt {2}\, \sqrt {a +b \arcsin \left (d x +c \right )}}{\sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, b}\right ) \sqrt {-\frac {1}{b}}\, \sqrt {-\frac {3}{b}}\, b +\cos \left (\frac {3 a}{b}\right ) \operatorname {FresnelC}\left (\frac {3 \sqrt {2}\, \sqrt {a +b \arcsin \left (d x +c \right )}}{\sqrt {\pi }\, \sqrt {-\frac {3}{b}}\, b}\right )-\sin \left (\frac {3 a}{b}\right ) \operatorname {FresnelS}\left (\frac {3 \sqrt {2}\, \sqrt {a +b \arcsin \left (d x +c \right )}}{\sqrt {\pi }\, \sqrt {-\frac {3}{b}}\, b}\right )\right )}{12 d}\) \(207\)

[In]

int((d*e*x+c*e)^2/(a+b*arcsin(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/12*e^2/d*2^(1/2)*Pi^(1/2)*(-3/b)^(1/2)*(cos(a/b)*FresnelC(2^(1/2)/Pi^(1/2)/(-1/b)^(1/2)*(a+b*arcsin(d*x+c))
^(1/2)/b)*(-1/b)^(1/2)*(-3/b)^(1/2)*b-sin(a/b)*FresnelS(2^(1/2)/Pi^(1/2)/(-1/b)^(1/2)*(a+b*arcsin(d*x+c))^(1/2
)/b)*(-1/b)^(1/2)*(-3/b)^(1/2)*b+cos(3*a/b)*FresnelC(3*2^(1/2)/Pi^(1/2)/(-3/b)^(1/2)*(a+b*arcsin(d*x+c))^(1/2)
/b)-sin(3*a/b)*FresnelS(3*2^(1/2)/Pi^(1/2)/(-3/b)^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b))

Fricas [F(-2)]

Exception generated. \[ \int \frac {(c e+d e x)^2}{\sqrt {a+b \arcsin (c+d x)}} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate((d*e*x+c*e)^2/(a+b*arcsin(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (co
nstant residues)

Sympy [F]

\[ \int \frac {(c e+d e x)^2}{\sqrt {a+b \arcsin (c+d x)}} \, dx=e^{2} \left (\int \frac {c^{2}}{\sqrt {a + b \operatorname {asin}{\left (c + d x \right )}}}\, dx + \int \frac {d^{2} x^{2}}{\sqrt {a + b \operatorname {asin}{\left (c + d x \right )}}}\, dx + \int \frac {2 c d x}{\sqrt {a + b \operatorname {asin}{\left (c + d x \right )}}}\, dx\right ) \]

[In]

integrate((d*e*x+c*e)**2/(a+b*asin(d*x+c))**(1/2),x)

[Out]

e**2*(Integral(c**2/sqrt(a + b*asin(c + d*x)), x) + Integral(d**2*x**2/sqrt(a + b*asin(c + d*x)), x) + Integra
l(2*c*d*x/sqrt(a + b*asin(c + d*x)), x))

Maxima [F]

\[ \int \frac {(c e+d e x)^2}{\sqrt {a+b \arcsin (c+d x)}} \, dx=\int { \frac {{\left (d e x + c e\right )}^{2}}{\sqrt {b \arcsin \left (d x + c\right ) + a}} \,d x } \]

[In]

integrate((d*e*x+c*e)^2/(a+b*arcsin(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((d*e*x + c*e)^2/sqrt(b*arcsin(d*x + c) + a), x)

Giac [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.74 (sec) , antiderivative size = 345, normalized size of antiderivative = 1.42 \[ \int \frac {(c e+d e x)^2}{\sqrt {a+b \arcsin (c+d x)}} \, dx=\frac {\sqrt {\pi } e^{2} \operatorname {erf}\left (-\frac {\sqrt {6} \sqrt {b \arcsin \left (d x + c\right ) + a}}{2 \, \sqrt {b}} - \frac {i \, \sqrt {6} \sqrt {b \arcsin \left (d x + c\right ) + a} \sqrt {b}}{2 \, {\left | b \right |}}\right ) e^{\left (\frac {3 i \, a}{b}\right )}}{4 \, {\left (\sqrt {6} \sqrt {b} + \frac {i \, \sqrt {6} b^{\frac {3}{2}}}{{\left | b \right |}}\right )} d} - \frac {\sqrt {\pi } e^{2} \operatorname {erf}\left (-\frac {i \, \sqrt {2} \sqrt {b \arcsin \left (d x + c\right ) + a}}{2 \, \sqrt {{\left | b \right |}}} - \frac {\sqrt {2} \sqrt {b \arcsin \left (d x + c\right ) + a} \sqrt {{\left | b \right |}}}{2 \, b}\right ) e^{\left (\frac {i \, a}{b}\right )}}{4 \, d {\left (\frac {i \, \sqrt {2} b}{\sqrt {{\left | b \right |}}} + \sqrt {2} \sqrt {{\left | b \right |}}\right )}} - \frac {\sqrt {\pi } e^{2} \operatorname {erf}\left (\frac {i \, \sqrt {2} \sqrt {b \arcsin \left (d x + c\right ) + a}}{2 \, \sqrt {{\left | b \right |}}} - \frac {\sqrt {2} \sqrt {b \arcsin \left (d x + c\right ) + a} \sqrt {{\left | b \right |}}}{2 \, b}\right ) e^{\left (-\frac {i \, a}{b}\right )}}{4 \, d {\left (-\frac {i \, \sqrt {2} b}{\sqrt {{\left | b \right |}}} + \sqrt {2} \sqrt {{\left | b \right |}}\right )}} + \frac {\sqrt {\pi } e^{2} \operatorname {erf}\left (-\frac {\sqrt {6} \sqrt {b \arcsin \left (d x + c\right ) + a}}{2 \, \sqrt {b}} + \frac {i \, \sqrt {6} \sqrt {b \arcsin \left (d x + c\right ) + a} \sqrt {b}}{2 \, {\left | b \right |}}\right ) e^{\left (-\frac {3 i \, a}{b}\right )}}{4 \, {\left (\sqrt {6} \sqrt {b} - \frac {i \, \sqrt {6} b^{\frac {3}{2}}}{{\left | b \right |}}\right )} d} \]

[In]

integrate((d*e*x+c*e)^2/(a+b*arcsin(d*x+c))^(1/2),x, algorithm="giac")

[Out]

1/4*sqrt(pi)*e^2*erf(-1/2*sqrt(6)*sqrt(b*arcsin(d*x + c) + a)/sqrt(b) - 1/2*I*sqrt(6)*sqrt(b*arcsin(d*x + c) +
 a)*sqrt(b)/abs(b))*e^(3*I*a/b)/((sqrt(6)*sqrt(b) + I*sqrt(6)*b^(3/2)/abs(b))*d) - 1/4*sqrt(pi)*e^2*erf(-1/2*I
*sqrt(2)*sqrt(b*arcsin(d*x + c) + a)/sqrt(abs(b)) - 1/2*sqrt(2)*sqrt(b*arcsin(d*x + c) + a)*sqrt(abs(b))/b)*e^
(I*a/b)/(d*(I*sqrt(2)*b/sqrt(abs(b)) + sqrt(2)*sqrt(abs(b)))) - 1/4*sqrt(pi)*e^2*erf(1/2*I*sqrt(2)*sqrt(b*arcs
in(d*x + c) + a)/sqrt(abs(b)) - 1/2*sqrt(2)*sqrt(b*arcsin(d*x + c) + a)*sqrt(abs(b))/b)*e^(-I*a/b)/(d*(-I*sqrt
(2)*b/sqrt(abs(b)) + sqrt(2)*sqrt(abs(b)))) + 1/4*sqrt(pi)*e^2*erf(-1/2*sqrt(6)*sqrt(b*arcsin(d*x + c) + a)/sq
rt(b) + 1/2*I*sqrt(6)*sqrt(b*arcsin(d*x + c) + a)*sqrt(b)/abs(b))*e^(-3*I*a/b)/((sqrt(6)*sqrt(b) - I*sqrt(6)*b
^(3/2)/abs(b))*d)

Mupad [F(-1)]

Timed out. \[ \int \frac {(c e+d e x)^2}{\sqrt {a+b \arcsin (c+d x)}} \, dx=\int \frac {{\left (c\,e+d\,e\,x\right )}^2}{\sqrt {a+b\,\mathrm {asin}\left (c+d\,x\right )}} \,d x \]

[In]

int((c*e + d*e*x)^2/(a + b*asin(c + d*x))^(1/2),x)

[Out]

int((c*e + d*e*x)^2/(a + b*asin(c + d*x))^(1/2), x)