\(\int \frac {c e+d e x}{\sqrt {a+b \arcsin (c+d x)}} \, dx\) [262]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [F(-2)]
   Sympy [F]
   Maxima [F]
   Giac [C] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 105 \[ \int \frac {c e+d e x}{\sqrt {a+b \arcsin (c+d x)}} \, dx=\frac {e \sqrt {\pi } \cos \left (\frac {2 a}{b}\right ) \operatorname {FresnelS}\left (\frac {2 \sqrt {a+b \arcsin (c+d x)}}{\sqrt {b} \sqrt {\pi }}\right )}{2 \sqrt {b} d}-\frac {e \sqrt {\pi } \operatorname {FresnelC}\left (\frac {2 \sqrt {a+b \arcsin (c+d x)}}{\sqrt {b} \sqrt {\pi }}\right ) \sin \left (\frac {2 a}{b}\right )}{2 \sqrt {b} d} \]

[Out]

1/2*e*cos(2*a/b)*FresnelS(2*(a+b*arcsin(d*x+c))^(1/2)/b^(1/2)/Pi^(1/2))*Pi^(1/2)/d/b^(1/2)-1/2*e*FresnelC(2*(a
+b*arcsin(d*x+c))^(1/2)/b^(1/2)/Pi^(1/2))*sin(2*a/b)*Pi^(1/2)/d/b^(1/2)

Rubi [A] (verified)

Time = 0.14 (sec) , antiderivative size = 105, normalized size of antiderivative = 1.00, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.391, Rules used = {4889, 12, 4731, 4491, 3387, 3386, 3432, 3385, 3433} \[ \int \frac {c e+d e x}{\sqrt {a+b \arcsin (c+d x)}} \, dx=\frac {\sqrt {\pi } e \cos \left (\frac {2 a}{b}\right ) \operatorname {FresnelS}\left (\frac {2 \sqrt {a+b \arcsin (c+d x)}}{\sqrt {b} \sqrt {\pi }}\right )}{2 \sqrt {b} d}-\frac {\sqrt {\pi } e \sin \left (\frac {2 a}{b}\right ) \operatorname {FresnelC}\left (\frac {2 \sqrt {a+b \arcsin (c+d x)}}{\sqrt {b} \sqrt {\pi }}\right )}{2 \sqrt {b} d} \]

[In]

Int[(c*e + d*e*x)/Sqrt[a + b*ArcSin[c + d*x]],x]

[Out]

(e*Sqrt[Pi]*Cos[(2*a)/b]*FresnelS[(2*Sqrt[a + b*ArcSin[c + d*x]])/(Sqrt[b]*Sqrt[Pi])])/(2*Sqrt[b]*d) - (e*Sqrt
[Pi]*FresnelC[(2*Sqrt[a + b*ArcSin[c + d*x]])/(Sqrt[b]*Sqrt[Pi])]*Sin[(2*a)/b])/(2*Sqrt[b]*d)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 3385

Int[sin[Pi/2 + (e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[Cos[f*(x^2/d)],
x], x, Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]

Rule 3386

Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[2/d, Subst[Int[Sin[f*(x^2/d)], x], x,
Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]

Rule 3387

Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Dist[Cos[(d*e - c*f)/d], Int[Sin[c*(f/d) +
f*x]/Sqrt[c + d*x], x], x] + Dist[Sin[(d*e - c*f)/d], Int[Cos[c*(f/d) + f*x]/Sqrt[c + d*x], x], x] /; FreeQ[{c
, d, e, f}, x] && ComplexFreeQ[f] && NeQ[d*e - c*f, 0]

Rule 3432

Int[Sin[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]/(f*Rt[d, 2]))*FresnelS[Sqrt[2/Pi]*Rt[d, 2
]*(e + f*x)], x] /; FreeQ[{d, e, f}, x]

Rule 3433

Int[Cos[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]/(f*Rt[d, 2]))*FresnelC[Sqrt[2/Pi]*Rt[d, 2
]*(e + f*x)], x] /; FreeQ[{d, e, f}, x]

Rule 4491

Int[Cos[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sin[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Int[E
xpandTrigReduce[(c + d*x)^m, Sin[a + b*x]^n*Cos[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0]
&& IGtQ[p, 0]

Rule 4731

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Dist[1/(b*c^(m + 1)), Subst[Int[x^n*Sin[-
a/b + x/b]^m*Cos[-a/b + x/b], x], x, a + b*ArcSin[c*x]], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[m, 0]

Rule 4889

Int[((a_.) + ArcSin[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Dist[1/d, Subst[I
nt[((d*e - c*f)/d + f*(x/d))^m*(a + b*ArcSin[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {e x}{\sqrt {a+b \arcsin (x)}} \, dx,x,c+d x\right )}{d} \\ & = \frac {e \text {Subst}\left (\int \frac {x}{\sqrt {a+b \arcsin (x)}} \, dx,x,c+d x\right )}{d} \\ & = -\frac {e \text {Subst}\left (\int \frac {\cos \left (\frac {a}{b}-\frac {x}{b}\right ) \sin \left (\frac {a}{b}-\frac {x}{b}\right )}{\sqrt {x}} \, dx,x,a+b \arcsin (c+d x)\right )}{b d} \\ & = -\frac {e \text {Subst}\left (\int \frac {\sin \left (\frac {2 a}{b}-\frac {2 x}{b}\right )}{2 \sqrt {x}} \, dx,x,a+b \arcsin (c+d x)\right )}{b d} \\ & = -\frac {e \text {Subst}\left (\int \frac {\sin \left (\frac {2 a}{b}-\frac {2 x}{b}\right )}{\sqrt {x}} \, dx,x,a+b \arcsin (c+d x)\right )}{2 b d} \\ & = \frac {\left (e \cos \left (\frac {2 a}{b}\right )\right ) \text {Subst}\left (\int \frac {\sin \left (\frac {2 x}{b}\right )}{\sqrt {x}} \, dx,x,a+b \arcsin (c+d x)\right )}{2 b d}-\frac {\left (e \sin \left (\frac {2 a}{b}\right )\right ) \text {Subst}\left (\int \frac {\cos \left (\frac {2 x}{b}\right )}{\sqrt {x}} \, dx,x,a+b \arcsin (c+d x)\right )}{2 b d} \\ & = \frac {\left (e \cos \left (\frac {2 a}{b}\right )\right ) \text {Subst}\left (\int \sin \left (\frac {2 x^2}{b}\right ) \, dx,x,\sqrt {a+b \arcsin (c+d x)}\right )}{b d}-\frac {\left (e \sin \left (\frac {2 a}{b}\right )\right ) \text {Subst}\left (\int \cos \left (\frac {2 x^2}{b}\right ) \, dx,x,\sqrt {a+b \arcsin (c+d x)}\right )}{b d} \\ & = \frac {e \sqrt {\pi } \cos \left (\frac {2 a}{b}\right ) \operatorname {FresnelS}\left (\frac {2 \sqrt {a+b \arcsin (c+d x)}}{\sqrt {b} \sqrt {\pi }}\right )}{2 \sqrt {b} d}-\frac {e \sqrt {\pi } \operatorname {FresnelC}\left (\frac {2 \sqrt {a+b \arcsin (c+d x)}}{\sqrt {b} \sqrt {\pi }}\right ) \sin \left (\frac {2 a}{b}\right )}{2 \sqrt {b} d} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.07 (sec) , antiderivative size = 134, normalized size of antiderivative = 1.28 \[ \int \frac {c e+d e x}{\sqrt {a+b \arcsin (c+d x)}} \, dx=-\frac {e e^{-\frac {2 i a}{b}} \left (\sqrt {-\frac {i (a+b \arcsin (c+d x))}{b}} \Gamma \left (\frac {1}{2},-\frac {2 i (a+b \arcsin (c+d x))}{b}\right )+e^{\frac {4 i a}{b}} \sqrt {\frac {i (a+b \arcsin (c+d x))}{b}} \Gamma \left (\frac {1}{2},\frac {2 i (a+b \arcsin (c+d x))}{b}\right )\right )}{4 \sqrt {2} d \sqrt {a+b \arcsin (c+d x)}} \]

[In]

Integrate[(c*e + d*e*x)/Sqrt[a + b*ArcSin[c + d*x]],x]

[Out]

-1/4*(e*(Sqrt[((-I)*(a + b*ArcSin[c + d*x]))/b]*Gamma[1/2, ((-2*I)*(a + b*ArcSin[c + d*x]))/b] + E^(((4*I)*a)/
b)*Sqrt[(I*(a + b*ArcSin[c + d*x]))/b]*Gamma[1/2, ((2*I)*(a + b*ArcSin[c + d*x]))/b]))/(Sqrt[2]*d*E^(((2*I)*a)
/b)*Sqrt[a + b*ArcSin[c + d*x]])

Maple [A] (verified)

Time = 0.68 (sec) , antiderivative size = 96, normalized size of antiderivative = 0.91

method result size
default \(-\frac {\sqrt {\pi }\, \sqrt {-\frac {1}{b}}\, e \left (\cos \left (\frac {2 a}{b}\right ) \operatorname {FresnelS}\left (\frac {2 \sqrt {2}\, \sqrt {a +b \arcsin \left (d x +c \right )}}{\sqrt {\pi }\, \sqrt {-\frac {2}{b}}\, b}\right )+\sin \left (\frac {2 a}{b}\right ) \operatorname {FresnelC}\left (\frac {2 \sqrt {2}\, \sqrt {a +b \arcsin \left (d x +c \right )}}{\sqrt {\pi }\, \sqrt {-\frac {2}{b}}\, b}\right )\right )}{2 d}\) \(96\)

[In]

int((d*e*x+c*e)/(a+b*arcsin(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/2*Pi^(1/2)*(-1/b)^(1/2)*e*(cos(2*a/b)*FresnelS(2*2^(1/2)/Pi^(1/2)/(-2/b)^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b)
+sin(2*a/b)*FresnelC(2*2^(1/2)/Pi^(1/2)/(-2/b)^(1/2)*(a+b*arcsin(d*x+c))^(1/2)/b))/d

Fricas [F(-2)]

Exception generated. \[ \int \frac {c e+d e x}{\sqrt {a+b \arcsin (c+d x)}} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate((d*e*x+c*e)/(a+b*arcsin(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

Exception raised: TypeError >>  Error detected within library code:   integrate: implementation incomplete (co
nstant residues)

Sympy [F]

\[ \int \frac {c e+d e x}{\sqrt {a+b \arcsin (c+d x)}} \, dx=e \left (\int \frac {c}{\sqrt {a + b \operatorname {asin}{\left (c + d x \right )}}}\, dx + \int \frac {d x}{\sqrt {a + b \operatorname {asin}{\left (c + d x \right )}}}\, dx\right ) \]

[In]

integrate((d*e*x+c*e)/(a+b*asin(d*x+c))**(1/2),x)

[Out]

e*(Integral(c/sqrt(a + b*asin(c + d*x)), x) + Integral(d*x/sqrt(a + b*asin(c + d*x)), x))

Maxima [F]

\[ \int \frac {c e+d e x}{\sqrt {a+b \arcsin (c+d x)}} \, dx=\int { \frac {d e x + c e}{\sqrt {b \arcsin \left (d x + c\right ) + a}} \,d x } \]

[In]

integrate((d*e*x+c*e)/(a+b*arcsin(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((d*e*x + c*e)/sqrt(b*arcsin(d*x + c) + a), x)

Giac [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.70 (sec) , antiderivative size = 142, normalized size of antiderivative = 1.35 \[ \int \frac {c e+d e x}{\sqrt {a+b \arcsin (c+d x)}} \, dx=\frac {i \, \sqrt {\pi } e \operatorname {erf}\left (-\frac {\sqrt {b \arcsin \left (d x + c\right ) + a}}{\sqrt {b}} + \frac {i \, \sqrt {b \arcsin \left (d x + c\right ) + a} \sqrt {b}}{{\left | b \right |}}\right ) e^{\left (-\frac {2 i \, a}{b}\right )}}{4 \, d {\left (\sqrt {b} - \frac {i \, b^{\frac {3}{2}}}{{\left | b \right |}}\right )}} - \frac {i \, \sqrt {\pi } e \operatorname {erf}\left (-\frac {\sqrt {b \arcsin \left (d x + c\right ) + a}}{\sqrt {b}} - \frac {i \, \sqrt {b \arcsin \left (d x + c\right ) + a} \sqrt {b}}{{\left | b \right |}}\right ) e^{\left (\frac {2 i \, a}{b}\right )}}{4 \, \sqrt {b} d {\left (\frac {i \, b}{{\left | b \right |}} + 1\right )}} \]

[In]

integrate((d*e*x+c*e)/(a+b*arcsin(d*x+c))^(1/2),x, algorithm="giac")

[Out]

1/4*I*sqrt(pi)*e*erf(-sqrt(b*arcsin(d*x + c) + a)/sqrt(b) + I*sqrt(b*arcsin(d*x + c) + a)*sqrt(b)/abs(b))*e^(-
2*I*a/b)/(d*(sqrt(b) - I*b^(3/2)/abs(b))) - 1/4*I*sqrt(pi)*e*erf(-sqrt(b*arcsin(d*x + c) + a)/sqrt(b) - I*sqrt
(b*arcsin(d*x + c) + a)*sqrt(b)/abs(b))*e^(2*I*a/b)/(sqrt(b)*d*(I*b/abs(b) + 1))

Mupad [F(-1)]

Timed out. \[ \int \frac {c e+d e x}{\sqrt {a+b \arcsin (c+d x)}} \, dx=\int \frac {c\,e+d\,e\,x}{\sqrt {a+b\,\mathrm {asin}\left (c+d\,x\right )}} \,d x \]

[In]

int((c*e + d*e*x)/(a + b*asin(c + d*x))^(1/2),x)

[Out]

int((c*e + d*e*x)/(a + b*asin(c + d*x))^(1/2), x)