\(\int e^x \coth (4 x) \, dx\) [224]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [C] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 8, antiderivative size = 116 \[ \int e^x \coth (4 x) \, dx=e^x-\frac {\arctan \left (e^x\right )}{2}+\frac {\arctan \left (1-\sqrt {2} e^x\right )}{2 \sqrt {2}}-\frac {\arctan \left (1+\sqrt {2} e^x\right )}{2 \sqrt {2}}-\frac {\text {arctanh}\left (e^x\right )}{2}+\frac {\log \left (1-\sqrt {2} e^x+e^{2 x}\right )}{4 \sqrt {2}}-\frac {\log \left (1+\sqrt {2} e^x+e^{2 x}\right )}{4 \sqrt {2}} \]

[Out]

exp(x)-1/2*arctan(exp(x))-1/2*arctanh(exp(x))-1/4*arctan(-1+exp(x)*2^(1/2))*2^(1/2)-1/4*arctan(1+exp(x)*2^(1/2
))*2^(1/2)+1/8*ln(1+exp(2*x)-exp(x)*2^(1/2))*2^(1/2)-1/8*ln(1+exp(2*x)+exp(x)*2^(1/2))*2^(1/2)

Rubi [A] (verified)

Time = 0.06 (sec) , antiderivative size = 116, normalized size of antiderivative = 1.00, number of steps used = 15, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 1.500, Rules used = {2320, 396, 220, 218, 212, 209, 217, 1179, 642, 1176, 631, 210} \[ \int e^x \coth (4 x) \, dx=-\frac {1}{2} \arctan \left (e^x\right )+\frac {\arctan \left (1-\sqrt {2} e^x\right )}{2 \sqrt {2}}-\frac {\arctan \left (\sqrt {2} e^x+1\right )}{2 \sqrt {2}}-\frac {\text {arctanh}\left (e^x\right )}{2}+e^x+\frac {\log \left (-\sqrt {2} e^x+e^{2 x}+1\right )}{4 \sqrt {2}}-\frac {\log \left (\sqrt {2} e^x+e^{2 x}+1\right )}{4 \sqrt {2}} \]

[In]

Int[E^x*Coth[4*x],x]

[Out]

E^x - ArcTan[E^x]/2 + ArcTan[1 - Sqrt[2]*E^x]/(2*Sqrt[2]) - ArcTan[1 + Sqrt[2]*E^x]/(2*Sqrt[2]) - ArcTanh[E^x]
/2 + Log[1 - Sqrt[2]*E^x + E^(2*x)]/(4*Sqrt[2]) - Log[1 + Sqrt[2]*E^x + E^(2*x)]/(4*Sqrt[2])

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 217

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]}, Di
st[1/(2*r), Int[(r - s*x^2)/(a + b*x^4), x], x] + Dist[1/(2*r), Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[
{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ, b
]]))

Rule 218

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]},
Dist[r/(2*a), Int[1/(r - s*x^2), x], x] + Dist[r/(2*a), Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !Gt
Q[a/b, 0]

Rule 220

Int[((a_) + (b_.)*(x_)^(n_))^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]
}, Dist[r/(2*a), Int[1/(r - s*x^(n/2)), x], x] + Dist[r/(2*a), Int[1/(r + s*x^(n/2)), x], x]] /; FreeQ[{a, b},
 x] && IGtQ[n/4, 1] &&  !GtQ[a/b, 0]

Rule 396

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[d*x*((a + b*x^n)^(p + 1)/(b*(n*(
p + 1) + 1))), x] - Dist[(a*d - b*c*(n*(p + 1) + 1))/(b*(n*(p + 1) + 1)), Int[(a + b*x^n)^p, x], x] /; FreeQ[{
a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && NeQ[n*(p + 1) + 1, 0]

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1176

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[2*(d/e), 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1179

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[-2*(d/e), 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 2320

Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Dist[v/D[v, x], Subst[Int[FunctionOfExponentialFu
nction[u, x]/x, x], x, v], x]] /; FunctionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; F
reeQ[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x))*(F_)[v_] /; FreeQ[{a, b, c}, x
] && InverseFunctionQ[F[x]]]

Rubi steps \begin{align*} \text {integral}& = \text {Subst}\left (\int \frac {-1-x^8}{1-x^8} \, dx,x,e^x\right ) \\ & = e^x-2 \text {Subst}\left (\int \frac {1}{1-x^8} \, dx,x,e^x\right ) \\ & = e^x-\text {Subst}\left (\int \frac {1}{1-x^4} \, dx,x,e^x\right )-\text {Subst}\left (\int \frac {1}{1+x^4} \, dx,x,e^x\right ) \\ & = e^x-\frac {1}{2} \text {Subst}\left (\int \frac {1}{1-x^2} \, dx,x,e^x\right )-\frac {1}{2} \text {Subst}\left (\int \frac {1}{1+x^2} \, dx,x,e^x\right )-\frac {1}{2} \text {Subst}\left (\int \frac {1-x^2}{1+x^4} \, dx,x,e^x\right )-\frac {1}{2} \text {Subst}\left (\int \frac {1+x^2}{1+x^4} \, dx,x,e^x\right ) \\ & = e^x-\frac {\arctan \left (e^x\right )}{2}-\frac {\text {arctanh}\left (e^x\right )}{2}-\frac {1}{4} \text {Subst}\left (\int \frac {1}{1-\sqrt {2} x+x^2} \, dx,x,e^x\right )-\frac {1}{4} \text {Subst}\left (\int \frac {1}{1+\sqrt {2} x+x^2} \, dx,x,e^x\right )+\frac {\text {Subst}\left (\int \frac {\sqrt {2}+2 x}{-1-\sqrt {2} x-x^2} \, dx,x,e^x\right )}{4 \sqrt {2}}+\frac {\text {Subst}\left (\int \frac {\sqrt {2}-2 x}{-1+\sqrt {2} x-x^2} \, dx,x,e^x\right )}{4 \sqrt {2}} \\ & = e^x-\frac {\arctan \left (e^x\right )}{2}-\frac {\text {arctanh}\left (e^x\right )}{2}+\frac {\log \left (1-\sqrt {2} e^x+e^{2 x}\right )}{4 \sqrt {2}}-\frac {\log \left (1+\sqrt {2} e^x+e^{2 x}\right )}{4 \sqrt {2}}-\frac {\text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\sqrt {2} e^x\right )}{2 \sqrt {2}}+\frac {\text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\sqrt {2} e^x\right )}{2 \sqrt {2}} \\ & = e^x-\frac {\arctan \left (e^x\right )}{2}+\frac {\arctan \left (1-\sqrt {2} e^x\right )}{2 \sqrt {2}}-\frac {\arctan \left (1+\sqrt {2} e^x\right )}{2 \sqrt {2}}-\frac {\text {arctanh}\left (e^x\right )}{2}+\frac {\log \left (1-\sqrt {2} e^x+e^{2 x}\right )}{4 \sqrt {2}}-\frac {\log \left (1+\sqrt {2} e^x+e^{2 x}\right )}{4 \sqrt {2}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.02 (sec) , antiderivative size = 22, normalized size of antiderivative = 0.19 \[ \int e^x \coth (4 x) \, dx=e^x-2 e^x \operatorname {Hypergeometric2F1}\left (\frac {1}{8},1,\frac {9}{8},e^{8 x}\right ) \]

[In]

Integrate[E^x*Coth[4*x],x]

[Out]

E^x - 2*E^x*Hypergeometric2F1[1/8, 1, 9/8, E^(8*x)]

Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.17 (sec) , antiderivative size = 56, normalized size of antiderivative = 0.48

method result size
risch \({\mathrm e}^{x}+\frac {i \ln \left ({\mathrm e}^{x}-i\right )}{4}-\frac {i \ln \left ({\mathrm e}^{x}+i\right )}{4}-\frac {\ln \left ({\mathrm e}^{x}+1\right )}{4}+\frac {\ln \left ({\mathrm e}^{x}-1\right )}{4}+\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (256 \textit {\_Z}^{4}+1\right )}{\sum }\textit {\_R} \ln \left ({\mathrm e}^{x}-4 \textit {\_R} \right )\right )\) \(56\)

[In]

int(exp(x)*coth(4*x),x,method=_RETURNVERBOSE)

[Out]

exp(x)+1/4*I*ln(exp(x)-I)-1/4*I*ln(exp(x)+I)-1/4*ln(exp(x)+1)+1/4*ln(exp(x)-1)+sum(_R*ln(exp(x)-4*_R),_R=RootO
f(256*_Z^4+1))

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.29 (sec) , antiderivative size = 111, normalized size of antiderivative = 0.96 \[ \int e^x \coth (4 x) \, dx=-\left (\frac {1}{8} i + \frac {1}{8}\right ) \, \sqrt {2} \log \left (\left (i + 1\right ) \, \sqrt {2} + 2 \, \cosh \left (x\right ) + 2 \, \sinh \left (x\right )\right ) + \left (\frac {1}{8} i - \frac {1}{8}\right ) \, \sqrt {2} \log \left (-\left (i - 1\right ) \, \sqrt {2} + 2 \, \cosh \left (x\right ) + 2 \, \sinh \left (x\right )\right ) - \left (\frac {1}{8} i - \frac {1}{8}\right ) \, \sqrt {2} \log \left (\left (i - 1\right ) \, \sqrt {2} + 2 \, \cosh \left (x\right ) + 2 \, \sinh \left (x\right )\right ) + \left (\frac {1}{8} i + \frac {1}{8}\right ) \, \sqrt {2} \log \left (-\left (i + 1\right ) \, \sqrt {2} + 2 \, \cosh \left (x\right ) + 2 \, \sinh \left (x\right )\right ) - \frac {1}{2} \, \arctan \left (\cosh \left (x\right ) + \sinh \left (x\right )\right ) + \cosh \left (x\right ) - \frac {1}{4} \, \log \left (\cosh \left (x\right ) + \sinh \left (x\right ) + 1\right ) + \frac {1}{4} \, \log \left (\cosh \left (x\right ) + \sinh \left (x\right ) - 1\right ) + \sinh \left (x\right ) \]

[In]

integrate(exp(x)*coth(4*x),x, algorithm="fricas")

[Out]

-(1/8*I + 1/8)*sqrt(2)*log((I + 1)*sqrt(2) + 2*cosh(x) + 2*sinh(x)) + (1/8*I - 1/8)*sqrt(2)*log(-(I - 1)*sqrt(
2) + 2*cosh(x) + 2*sinh(x)) - (1/8*I - 1/8)*sqrt(2)*log((I - 1)*sqrt(2) + 2*cosh(x) + 2*sinh(x)) + (1/8*I + 1/
8)*sqrt(2)*log(-(I + 1)*sqrt(2) + 2*cosh(x) + 2*sinh(x)) - 1/2*arctan(cosh(x) + sinh(x)) + cosh(x) - 1/4*log(c
osh(x) + sinh(x) + 1) + 1/4*log(cosh(x) + sinh(x) - 1) + sinh(x)

Sympy [F]

\[ \int e^x \coth (4 x) \, dx=\int e^{x} \coth {\left (4 x \right )}\, dx \]

[In]

integrate(exp(x)*coth(4*x),x)

[Out]

Integral(exp(x)*coth(4*x), x)

Maxima [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 97, normalized size of antiderivative = 0.84 \[ \int e^x \coth (4 x) \, dx=-\frac {1}{4} \, \sqrt {2} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + 2 \, e^{x}\right )}\right ) - \frac {1}{4} \, \sqrt {2} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - 2 \, e^{x}\right )}\right ) - \frac {1}{8} \, \sqrt {2} \log \left (\sqrt {2} e^{x} + e^{\left (2 \, x\right )} + 1\right ) + \frac {1}{8} \, \sqrt {2} \log \left (-\sqrt {2} e^{x} + e^{\left (2 \, x\right )} + 1\right ) - \frac {1}{2} \, \arctan \left (e^{x}\right ) + e^{x} - \frac {1}{4} \, \log \left (e^{x} + 1\right ) + \frac {1}{4} \, \log \left (e^{x} - 1\right ) \]

[In]

integrate(exp(x)*coth(4*x),x, algorithm="maxima")

[Out]

-1/4*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2) + 2*e^x)) - 1/4*sqrt(2)*arctan(-1/2*sqrt(2)*(sqrt(2) - 2*e^x)) - 1/8*
sqrt(2)*log(sqrt(2)*e^x + e^(2*x) + 1) + 1/8*sqrt(2)*log(-sqrt(2)*e^x + e^(2*x) + 1) - 1/2*arctan(e^x) + e^x -
 1/4*log(e^x + 1) + 1/4*log(e^x - 1)

Giac [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 98, normalized size of antiderivative = 0.84 \[ \int e^x \coth (4 x) \, dx=-\frac {1}{4} \, \sqrt {2} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + 2 \, e^{x}\right )}\right ) - \frac {1}{4} \, \sqrt {2} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - 2 \, e^{x}\right )}\right ) - \frac {1}{8} \, \sqrt {2} \log \left (\sqrt {2} e^{x} + e^{\left (2 \, x\right )} + 1\right ) + \frac {1}{8} \, \sqrt {2} \log \left (-\sqrt {2} e^{x} + e^{\left (2 \, x\right )} + 1\right ) - \frac {1}{2} \, \arctan \left (e^{x}\right ) + e^{x} - \frac {1}{4} \, \log \left (e^{x} + 1\right ) + \frac {1}{4} \, \log \left ({\left | e^{x} - 1 \right |}\right ) \]

[In]

integrate(exp(x)*coth(4*x),x, algorithm="giac")

[Out]

-1/4*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2) + 2*e^x)) - 1/4*sqrt(2)*arctan(-1/2*sqrt(2)*(sqrt(2) - 2*e^x)) - 1/8*
sqrt(2)*log(sqrt(2)*e^x + e^(2*x) + 1) + 1/8*sqrt(2)*log(-sqrt(2)*e^x + e^(2*x) + 1) - 1/2*arctan(e^x) + e^x -
 1/4*log(e^x + 1) + 1/4*log(abs(e^x - 1))

Mupad [B] (verification not implemented)

Time = 0.31 (sec) , antiderivative size = 104, normalized size of antiderivative = 0.90 \[ \int e^x \coth (4 x) \, dx=\frac {\ln \left (2-2\,{\mathrm {e}}^x\right )}{4}-\frac {\ln \left (-2\,{\mathrm {e}}^x-2\right )}{4}-\frac {\mathrm {atan}\left ({\mathrm {e}}^x\right )}{2}+{\mathrm {e}}^x-\frac {\sqrt {2}\,\mathrm {atan}\left (\frac {\sqrt {2}\,\left (2\,{\mathrm {e}}^x-\sqrt {2}\right )}{2}\right )}{4}+\frac {\sqrt {2}\,\ln \left ({\left (2\,{\mathrm {e}}^x-\sqrt {2}\right )}^2+2\right )}{8}-\frac {\sqrt {2}\,\mathrm {atan}\left (\frac {\sqrt {2}\,\left (2\,{\mathrm {e}}^x+\sqrt {2}\right )}{2}\right )}{4}-\frac {\sqrt {2}\,\ln \left ({\left (2\,{\mathrm {e}}^x+\sqrt {2}\right )}^2+2\right )}{8} \]

[In]

int(coth(4*x)*exp(x),x)

[Out]

log(2 - 2*exp(x))/4 - log(- 2*exp(x) - 2)/4 - atan(exp(x))/2 + exp(x) - (2^(1/2)*atan((2^(1/2)*(2*exp(x) - 2^(
1/2)))/2))/4 + (2^(1/2)*log((2*exp(x) - 2^(1/2))^2 + 2))/8 - (2^(1/2)*atan((2^(1/2)*(2*exp(x) + 2^(1/2)))/2))/
4 - (2^(1/2)*log((2*exp(x) + 2^(1/2))^2 + 2))/8