\(\int \frac {e^{3 \coth ^{-1}(a x)} \sqrt {c-a c x}}{x} \, dx\) [314]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F(-2)]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 170 \[ \int \frac {e^{3 \coth ^{-1}(a x)} \sqrt {c-a c x}}{x} \, dx=\frac {2 \sqrt {1+\frac {1}{a x}} \sqrt {c-a c x}}{\sqrt {1-\frac {1}{a x}}}+\frac {2 \sqrt {\frac {1}{x}} \sqrt {c-a c x} \text {arcsinh}\left (\frac {\sqrt {\frac {1}{x}}}{\sqrt {a}}\right )}{\sqrt {a} \sqrt {1-\frac {1}{a x}}}-\frac {4 \sqrt {2} \sqrt {\frac {1}{x}} \sqrt {c-a c x} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {\frac {1}{x}}}{\sqrt {a} \sqrt {1+\frac {1}{a x}}}\right )}{\sqrt {a} \sqrt {1-\frac {1}{a x}}} \]

[Out]

2*(1+1/a/x)^(1/2)*(-a*c*x+c)^(1/2)/(1-1/a/x)^(1/2)+2*arcsinh((1/x)^(1/2)/a^(1/2))*(1/x)^(1/2)*(-a*c*x+c)^(1/2)
/a^(1/2)/(1-1/a/x)^(1/2)-4*arctanh(2^(1/2)*(1/x)^(1/2)/a^(1/2)/(1+1/a/x)^(1/2))*2^(1/2)*(1/x)^(1/2)*(-a*c*x+c)
^(1/2)/a^(1/2)/(1-1/a/x)^(1/2)

Rubi [A] (verified)

Time = 0.17 (sec) , antiderivative size = 170, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.348, Rules used = {6311, 6316, 100, 163, 56, 221, 95, 212} \[ \int \frac {e^{3 \coth ^{-1}(a x)} \sqrt {c-a c x}}{x} \, dx=\frac {2 \sqrt {\frac {1}{x}} \text {arcsinh}\left (\frac {\sqrt {\frac {1}{x}}}{\sqrt {a}}\right ) \sqrt {c-a c x}}{\sqrt {a} \sqrt {1-\frac {1}{a x}}}-\frac {4 \sqrt {2} \sqrt {\frac {1}{x}} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {\frac {1}{x}}}{\sqrt {a} \sqrt {\frac {1}{a x}+1}}\right ) \sqrt {c-a c x}}{\sqrt {a} \sqrt {1-\frac {1}{a x}}}+\frac {2 \sqrt {\frac {1}{a x}+1} \sqrt {c-a c x}}{\sqrt {1-\frac {1}{a x}}} \]

[In]

Int[(E^(3*ArcCoth[a*x])*Sqrt[c - a*c*x])/x,x]

[Out]

(2*Sqrt[1 + 1/(a*x)]*Sqrt[c - a*c*x])/Sqrt[1 - 1/(a*x)] + (2*Sqrt[x^(-1)]*Sqrt[c - a*c*x]*ArcSinh[Sqrt[x^(-1)]
/Sqrt[a]])/(Sqrt[a]*Sqrt[1 - 1/(a*x)]) - (4*Sqrt[2]*Sqrt[x^(-1)]*Sqrt[c - a*c*x]*ArcTanh[(Sqrt[2]*Sqrt[x^(-1)]
)/(Sqrt[a]*Sqrt[1 + 1/(a*x)])])/(Sqrt[a]*Sqrt[1 - 1/(a*x)])

Rule 56

Int[1/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_.) + (d_.)*(x_)]), x_Symbol] :> Dist[2/Sqrt[b], Subst[Int[1/Sqrt[b*c -
 a*d + d*x^2], x], x, Sqrt[a + b*x]], x] /; FreeQ[{a, b, c, d}, x] && GtQ[b*c - a*d, 0] && GtQ[b, 0]

Rule 95

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 100

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*c -
a*d)*(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*((e + f*x)^(p + 1)/(b*(b*e - a*f)*(m + 1))), x] + Dist[1/(b*(b*e - a*
f)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 2)*(e + f*x)^p*Simp[a*d*(d*e*(n - 1) + c*f*(p + 1)) + b*c*(d
*e*(m - n + 2) - c*f*(m + p + 2)) + d*(a*d*f*(n + p) + b*(d*e*(m + 1) - c*f*(m + n + p + 1)))*x, x], x], x] /;
 FreeQ[{a, b, c, d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p
] || IntegersQ[p, m + n])

Rule 163

Int[(((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/((a_.) + (b_.)*(x_)), x_Symbol]
 :> Dist[h/b, Int[(c + d*x)^n*(e + f*x)^p, x], x] + Dist[(b*g - a*h)/b, Int[(c + d*x)^n*((e + f*x)^p/(a + b*x)
), x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 221

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt[a])]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rule 6311

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_))^(p_), x_Symbol] :> Dist[(c + d*x)^p/(x^p*(1 + c/(d
*x))^p), Int[u*x^p*(1 + c/(d*x))^p*E^(n*ArcCoth[a*x]), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c^2 - d^
2, 0] &&  !IntegerQ[n/2] &&  !IntegerQ[p]

Rule 6316

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((c_) + (d_.)/(x_))^(p_.)*(x_)^(m_), x_Symbol] :> Dist[(-c^p)*x^m*(1/x)^m, S
ubst[Int[(1 + d*(x/c))^p*((1 + x/a)^(n/2)/(x^(m + 2)*(1 - x/a)^(n/2))), x], x, 1/x], x] /; FreeQ[{a, c, d, m,
n, p}, x] && EqQ[c^2 - a^2*d^2, 0] &&  !IntegerQ[n/2] && (IntegerQ[p] || GtQ[c, 0]) &&  !IntegerQ[m]

Rubi steps \begin{align*} \text {integral}& = \frac {\sqrt {c-a c x} \int \frac {e^{3 \coth ^{-1}(a x)} \sqrt {1-\frac {1}{a x}}}{\sqrt {x}} \, dx}{\sqrt {1-\frac {1}{a x}} \sqrt {x}} \\ & = -\frac {\left (\sqrt {\frac {1}{x}} \sqrt {c-a c x}\right ) \text {Subst}\left (\int \frac {\left (1+\frac {x}{a}\right )^{3/2}}{x^{3/2} \left (1-\frac {x}{a}\right )} \, dx,x,\frac {1}{x}\right )}{\sqrt {1-\frac {1}{a x}}} \\ & = \frac {2 \sqrt {1+\frac {1}{a x}} \sqrt {c-a c x}}{\sqrt {1-\frac {1}{a x}}}+\frac {\left (2 \sqrt {\frac {1}{x}} \sqrt {c-a c x}\right ) \text {Subst}\left (\int \frac {-\frac {3}{2 a}-\frac {x}{2 a^2}}{\sqrt {x} \left (1-\frac {x}{a}\right ) \sqrt {1+\frac {x}{a}}} \, dx,x,\frac {1}{x}\right )}{\sqrt {1-\frac {1}{a x}}} \\ & = \frac {2 \sqrt {1+\frac {1}{a x}} \sqrt {c-a c x}}{\sqrt {1-\frac {1}{a x}}}+\frac {\left (\sqrt {\frac {1}{x}} \sqrt {c-a c x}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {x} \sqrt {1+\frac {x}{a}}} \, dx,x,\frac {1}{x}\right )}{a \sqrt {1-\frac {1}{a x}}}-\frac {\left (4 \sqrt {\frac {1}{x}} \sqrt {c-a c x}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {x} \left (1-\frac {x}{a}\right ) \sqrt {1+\frac {x}{a}}} \, dx,x,\frac {1}{x}\right )}{a \sqrt {1-\frac {1}{a x}}} \\ & = \frac {2 \sqrt {1+\frac {1}{a x}} \sqrt {c-a c x}}{\sqrt {1-\frac {1}{a x}}}+\frac {\left (2 \sqrt {\frac {1}{x}} \sqrt {c-a c x}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1+\frac {x^2}{a}}} \, dx,x,\sqrt {\frac {1}{x}}\right )}{a \sqrt {1-\frac {1}{a x}}}-\frac {\left (8 \sqrt {\frac {1}{x}} \sqrt {c-a c x}\right ) \text {Subst}\left (\int \frac {1}{1-\frac {2 x^2}{a}} \, dx,x,\frac {\sqrt {\frac {1}{x}}}{\sqrt {1+\frac {1}{a x}}}\right )}{a \sqrt {1-\frac {1}{a x}}} \\ & = \frac {2 \sqrt {1+\frac {1}{a x}} \sqrt {c-a c x}}{\sqrt {1-\frac {1}{a x}}}+\frac {2 \sqrt {\frac {1}{x}} \sqrt {c-a c x} \text {arcsinh}\left (\frac {\sqrt {\frac {1}{x}}}{\sqrt {a}}\right )}{\sqrt {a} \sqrt {1-\frac {1}{a x}}}-\frac {4 \sqrt {2} \sqrt {\frac {1}{x}} \sqrt {c-a c x} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {\frac {1}{x}}}{\sqrt {a} \sqrt {1+\frac {1}{a x}}}\right )}{\sqrt {a} \sqrt {1-\frac {1}{a x}}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.07 (sec) , antiderivative size = 120, normalized size of antiderivative = 0.71 \[ \int \frac {e^{3 \coth ^{-1}(a x)} \sqrt {c-a c x}}{x} \, dx=\frac {2 \sqrt {c-a c x} \left (\sqrt {a} \sqrt {1+\frac {1}{a x}}+\sqrt {\frac {1}{x}} \text {arcsinh}\left (\frac {\sqrt {\frac {1}{x}}}{\sqrt {a}}\right )-2 \sqrt {2} \sqrt {\frac {1}{x}} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {\frac {1}{x}}}{\sqrt {a} \sqrt {1+\frac {1}{a x}}}\right )\right )}{\sqrt {a} \sqrt {1-\frac {1}{a x}}} \]

[In]

Integrate[(E^(3*ArcCoth[a*x])*Sqrt[c - a*c*x])/x,x]

[Out]

(2*Sqrt[c - a*c*x]*(Sqrt[a]*Sqrt[1 + 1/(a*x)] + Sqrt[x^(-1)]*ArcSinh[Sqrt[x^(-1)]/Sqrt[a]] - 2*Sqrt[2]*Sqrt[x^
(-1)]*ArcTanh[(Sqrt[2]*Sqrt[x^(-1)])/(Sqrt[a]*Sqrt[1 + 1/(a*x)])]))/(Sqrt[a]*Sqrt[1 - 1/(a*x)])

Maple [A] (verified)

Time = 0.44 (sec) , antiderivative size = 107, normalized size of antiderivative = 0.63

method result size
default \(\frac {2 \left (a x -1\right ) \sqrt {-c \left (a x -1\right )}\, \left (-2 \sqrt {c}\, \sqrt {2}\, \arctan \left (\frac {\sqrt {-c \left (a x +1\right )}\, \sqrt {2}}{2 \sqrt {c}}\right )+\sqrt {c}\, \arctan \left (\frac {\sqrt {-c \left (a x +1\right )}}{\sqrt {c}}\right )+\sqrt {-c \left (a x +1\right )}\right )}{\left (\frac {a x -1}{a x +1}\right )^{\frac {3}{2}} \left (a x +1\right ) \sqrt {-c \left (a x +1\right )}}\) \(107\)

[In]

int(1/((a*x-1)/(a*x+1))^(3/2)*(-a*c*x+c)^(1/2)/x,x,method=_RETURNVERBOSE)

[Out]

2*(a*x-1)*(-c*(a*x-1))^(1/2)*(-2*c^(1/2)*2^(1/2)*arctan(1/2*(-c*(a*x+1))^(1/2)*2^(1/2)/c^(1/2))+c^(1/2)*arctan
((-c*(a*x+1))^(1/2)/c^(1/2))+(-c*(a*x+1))^(1/2))/((a*x-1)/(a*x+1))^(3/2)/(a*x+1)/(-c*(a*x+1))^(1/2)

Fricas [A] (verification not implemented)

none

Time = 0.27 (sec) , antiderivative size = 352, normalized size of antiderivative = 2.07 \[ \int \frac {e^{3 \coth ^{-1}(a x)} \sqrt {c-a c x}}{x} \, dx=\left [\frac {2 \, \sqrt {2} {\left (a x - 1\right )} \sqrt {-c} \log \left (-\frac {a^{2} c x^{2} + 2 \, a c x + 2 \, \sqrt {2} \sqrt {-a c x + c} {\left (a x + 1\right )} \sqrt {-c} \sqrt {\frac {a x - 1}{a x + 1}} - 3 \, c}{a^{2} x^{2} - 2 \, a x + 1}\right ) + {\left (a x - 1\right )} \sqrt {-c} \log \left (-\frac {a^{2} c x^{2} + a c x - 2 \, \sqrt {-a c x + c} {\left (a x + 1\right )} \sqrt {-c} \sqrt {\frac {a x - 1}{a x + 1}} - 2 \, c}{a x^{2} - x}\right ) + 2 \, \sqrt {-a c x + c} {\left (a x + 1\right )} \sqrt {\frac {a x - 1}{a x + 1}}}{a x - 1}, -\frac {2 \, {\left (2 \, \sqrt {2} {\left (a x - 1\right )} \sqrt {c} \arctan \left (\frac {\sqrt {2} \sqrt {-a c x + c} \sqrt {c} \sqrt {\frac {a x - 1}{a x + 1}}}{a c x - c}\right ) - {\left (a x - 1\right )} \sqrt {c} \arctan \left (\frac {\sqrt {-a c x + c} \sqrt {c} \sqrt {\frac {a x - 1}{a x + 1}}}{a c x - c}\right ) - \sqrt {-a c x + c} {\left (a x + 1\right )} \sqrt {\frac {a x - 1}{a x + 1}}\right )}}{a x - 1}\right ] \]

[In]

integrate(1/((a*x-1)/(a*x+1))^(3/2)*(-a*c*x+c)^(1/2)/x,x, algorithm="fricas")

[Out]

[(2*sqrt(2)*(a*x - 1)*sqrt(-c)*log(-(a^2*c*x^2 + 2*a*c*x + 2*sqrt(2)*sqrt(-a*c*x + c)*(a*x + 1)*sqrt(-c)*sqrt(
(a*x - 1)/(a*x + 1)) - 3*c)/(a^2*x^2 - 2*a*x + 1)) + (a*x - 1)*sqrt(-c)*log(-(a^2*c*x^2 + a*c*x - 2*sqrt(-a*c*
x + c)*(a*x + 1)*sqrt(-c)*sqrt((a*x - 1)/(a*x + 1)) - 2*c)/(a*x^2 - x)) + 2*sqrt(-a*c*x + c)*(a*x + 1)*sqrt((a
*x - 1)/(a*x + 1)))/(a*x - 1), -2*(2*sqrt(2)*(a*x - 1)*sqrt(c)*arctan(sqrt(2)*sqrt(-a*c*x + c)*sqrt(c)*sqrt((a
*x - 1)/(a*x + 1))/(a*c*x - c)) - (a*x - 1)*sqrt(c)*arctan(sqrt(-a*c*x + c)*sqrt(c)*sqrt((a*x - 1)/(a*x + 1))/
(a*c*x - c)) - sqrt(-a*c*x + c)*(a*x + 1)*sqrt((a*x - 1)/(a*x + 1)))/(a*x - 1)]

Sympy [F]

\[ \int \frac {e^{3 \coth ^{-1}(a x)} \sqrt {c-a c x}}{x} \, dx=\int \frac {\sqrt {- c \left (a x - 1\right )}}{x \left (\frac {a x - 1}{a x + 1}\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate(1/((a*x-1)/(a*x+1))**(3/2)*(-a*c*x+c)**(1/2)/x,x)

[Out]

Integral(sqrt(-c*(a*x - 1))/(x*((a*x - 1)/(a*x + 1))**(3/2)), x)

Maxima [F]

\[ \int \frac {e^{3 \coth ^{-1}(a x)} \sqrt {c-a c x}}{x} \, dx=\int { \frac {\sqrt {-a c x + c}}{x \left (\frac {a x - 1}{a x + 1}\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate(1/((a*x-1)/(a*x+1))^(3/2)*(-a*c*x+c)^(1/2)/x,x, algorithm="maxima")

[Out]

integrate(sqrt(-a*c*x + c)/(x*((a*x - 1)/(a*x + 1))^(3/2)), x)

Giac [F(-2)]

Exception generated. \[ \int \frac {e^{3 \coth ^{-1}(a x)} \sqrt {c-a c x}}{x} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate(1/((a*x-1)/(a*x+1))^(3/2)*(-a*c*x+c)^(1/2)/x,x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:sym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

Mupad [F(-1)]

Timed out. \[ \int \frac {e^{3 \coth ^{-1}(a x)} \sqrt {c-a c x}}{x} \, dx=\int \frac {\sqrt {c-a\,c\,x}}{x\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{3/2}} \,d x \]

[In]

int((c - a*c*x)^(1/2)/(x*((a*x - 1)/(a*x + 1))^(3/2)),x)

[Out]

int((c - a*c*x)^(1/2)/(x*((a*x - 1)/(a*x + 1))^(3/2)), x)