\(\int \frac {e^{3 \coth ^{-1}(a x)} \sqrt {c-a c x}}{x^2} \, dx\) [315]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F(-2)]
   Mupad [F(-1)]

Optimal result

Integrand size = 23, antiderivative size = 172 \[ \int \frac {e^{3 \coth ^{-1}(a x)} \sqrt {c-a c x}}{x^2} \, dx=\frac {\sqrt {1+\frac {1}{a x}} \sqrt {c-a c x}}{\sqrt {1-\frac {1}{a x}} x}+\frac {5 \sqrt {a} \sqrt {\frac {1}{x}} \sqrt {c-a c x} \text {arcsinh}\left (\frac {\sqrt {\frac {1}{x}}}{\sqrt {a}}\right )}{\sqrt {1-\frac {1}{a x}}}-\frac {4 \sqrt {2} \sqrt {a} \sqrt {\frac {1}{x}} \sqrt {c-a c x} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {\frac {1}{x}}}{\sqrt {a} \sqrt {1+\frac {1}{a x}}}\right )}{\sqrt {1-\frac {1}{a x}}} \]

[Out]

(1+1/a/x)^(1/2)*(-a*c*x+c)^(1/2)/x/(1-1/a/x)^(1/2)+5*arcsinh((1/x)^(1/2)/a^(1/2))*a^(1/2)*(1/x)^(1/2)*(-a*c*x+
c)^(1/2)/(1-1/a/x)^(1/2)-4*arctanh(2^(1/2)*(1/x)^(1/2)/a^(1/2)/(1+1/a/x)^(1/2))*2^(1/2)*a^(1/2)*(1/x)^(1/2)*(-
a*c*x+c)^(1/2)/(1-1/a/x)^(1/2)

Rubi [A] (verified)

Time = 0.17 (sec) , antiderivative size = 172, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.348, Rules used = {6311, 6316, 104, 163, 56, 221, 95, 212} \[ \int \frac {e^{3 \coth ^{-1}(a x)} \sqrt {c-a c x}}{x^2} \, dx=\frac {5 \sqrt {a} \sqrt {\frac {1}{x}} \text {arcsinh}\left (\frac {\sqrt {\frac {1}{x}}}{\sqrt {a}}\right ) \sqrt {c-a c x}}{\sqrt {1-\frac {1}{a x}}}-\frac {4 \sqrt {2} \sqrt {a} \sqrt {\frac {1}{x}} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {\frac {1}{x}}}{\sqrt {a} \sqrt {\frac {1}{a x}+1}}\right ) \sqrt {c-a c x}}{\sqrt {1-\frac {1}{a x}}}+\frac {\sqrt {\frac {1}{a x}+1} \sqrt {c-a c x}}{x \sqrt {1-\frac {1}{a x}}} \]

[In]

Int[(E^(3*ArcCoth[a*x])*Sqrt[c - a*c*x])/x^2,x]

[Out]

(Sqrt[1 + 1/(a*x)]*Sqrt[c - a*c*x])/(Sqrt[1 - 1/(a*x)]*x) + (5*Sqrt[a]*Sqrt[x^(-1)]*Sqrt[c - a*c*x]*ArcSinh[Sq
rt[x^(-1)]/Sqrt[a]])/Sqrt[1 - 1/(a*x)] - (4*Sqrt[2]*Sqrt[a]*Sqrt[x^(-1)]*Sqrt[c - a*c*x]*ArcTanh[(Sqrt[2]*Sqrt
[x^(-1)])/(Sqrt[a]*Sqrt[1 + 1/(a*x)])])/Sqrt[1 - 1/(a*x)]

Rule 56

Int[1/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_.) + (d_.)*(x_)]), x_Symbol] :> Dist[2/Sqrt[b], Subst[Int[1/Sqrt[b*c -
 a*d + d*x^2], x], x, Sqrt[a + b*x]], x] /; FreeQ[{a, b, c, d}, x] && GtQ[b*c - a*d, 0] && GtQ[b, 0]

Rule 95

Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> With[{q = Denomin
ator[m]}, Dist[q, Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^
(1/q)], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[
a + b*x, c + d*x]

Rule 104

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[b*(a +
b*x)^(m - 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(d*f*(m + n + p + 1))), x] + Dist[1/(d*f*(m + n + p + 1)), I
nt[(a + b*x)^(m - 2)*(c + d*x)^n*(e + f*x)^p*Simp[a^2*d*f*(m + n + p + 1) - b*(b*c*e*(m - 1) + a*(d*e*(n + 1)
+ c*f*(p + 1))) + b*(a*d*f*(2*m + n + p) - b*(d*e*(m + n) + c*f*(m + p)))*x, x], x], x] /; FreeQ[{a, b, c, d,
e, f, n, p}, x] && GtQ[m, 1] && NeQ[m + n + p + 1, 0] && IntegersQ[2*m, 2*n, 2*p]

Rule 163

Int[(((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/((a_.) + (b_.)*(x_)), x_Symbol]
 :> Dist[h/b, Int[(c + d*x)^n*(e + f*x)^p, x], x] + Dist[(b*g - a*h)/b, Int[(c + d*x)^n*((e + f*x)^p/(a + b*x)
), x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 221

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt[a])]/Rt[b, 2], x] /; FreeQ[{a, b},
 x] && GtQ[a, 0] && PosQ[b]

Rule 6311

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_))^(p_), x_Symbol] :> Dist[(c + d*x)^p/(x^p*(1 + c/(d
*x))^p), Int[u*x^p*(1 + c/(d*x))^p*E^(n*ArcCoth[a*x]), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c^2 - d^
2, 0] &&  !IntegerQ[n/2] &&  !IntegerQ[p]

Rule 6316

Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((c_) + (d_.)/(x_))^(p_.)*(x_)^(m_), x_Symbol] :> Dist[(-c^p)*x^m*(1/x)^m, S
ubst[Int[(1 + d*(x/c))^p*((1 + x/a)^(n/2)/(x^(m + 2)*(1 - x/a)^(n/2))), x], x, 1/x], x] /; FreeQ[{a, c, d, m,
n, p}, x] && EqQ[c^2 - a^2*d^2, 0] &&  !IntegerQ[n/2] && (IntegerQ[p] || GtQ[c, 0]) &&  !IntegerQ[m]

Rubi steps \begin{align*} \text {integral}& = \frac {\sqrt {c-a c x} \int \frac {e^{3 \coth ^{-1}(a x)} \sqrt {1-\frac {1}{a x}}}{x^{3/2}} \, dx}{\sqrt {1-\frac {1}{a x}} \sqrt {x}} \\ & = -\frac {\left (\sqrt {\frac {1}{x}} \sqrt {c-a c x}\right ) \text {Subst}\left (\int \frac {\left (1+\frac {x}{a}\right )^{3/2}}{\sqrt {x} \left (1-\frac {x}{a}\right )} \, dx,x,\frac {1}{x}\right )}{\sqrt {1-\frac {1}{a x}}} \\ & = \frac {\sqrt {1+\frac {1}{a x}} \sqrt {c-a c x}}{\sqrt {1-\frac {1}{a x}} x}+\frac {\left (a \sqrt {\frac {1}{x}} \sqrt {c-a c x}\right ) \text {Subst}\left (\int \frac {-\frac {3}{2 a}-\frac {5 x}{2 a^2}}{\sqrt {x} \left (1-\frac {x}{a}\right ) \sqrt {1+\frac {x}{a}}} \, dx,x,\frac {1}{x}\right )}{\sqrt {1-\frac {1}{a x}}} \\ & = \frac {\sqrt {1+\frac {1}{a x}} \sqrt {c-a c x}}{\sqrt {1-\frac {1}{a x}} x}+\frac {\left (5 \sqrt {\frac {1}{x}} \sqrt {c-a c x}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {x} \sqrt {1+\frac {x}{a}}} \, dx,x,\frac {1}{x}\right )}{2 \sqrt {1-\frac {1}{a x}}}-\frac {\left (4 \sqrt {\frac {1}{x}} \sqrt {c-a c x}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {x} \left (1-\frac {x}{a}\right ) \sqrt {1+\frac {x}{a}}} \, dx,x,\frac {1}{x}\right )}{\sqrt {1-\frac {1}{a x}}} \\ & = \frac {\sqrt {1+\frac {1}{a x}} \sqrt {c-a c x}}{\sqrt {1-\frac {1}{a x}} x}+\frac {\left (5 \sqrt {\frac {1}{x}} \sqrt {c-a c x}\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1+\frac {x^2}{a}}} \, dx,x,\sqrt {\frac {1}{x}}\right )}{\sqrt {1-\frac {1}{a x}}}-\frac {\left (8 \sqrt {\frac {1}{x}} \sqrt {c-a c x}\right ) \text {Subst}\left (\int \frac {1}{1-\frac {2 x^2}{a}} \, dx,x,\frac {\sqrt {\frac {1}{x}}}{\sqrt {1+\frac {1}{a x}}}\right )}{\sqrt {1-\frac {1}{a x}}} \\ & = \frac {\sqrt {1+\frac {1}{a x}} \sqrt {c-a c x}}{\sqrt {1-\frac {1}{a x}} x}+\frac {5 \sqrt {a} \sqrt {\frac {1}{x}} \sqrt {c-a c x} \text {arcsinh}\left (\frac {\sqrt {\frac {1}{x}}}{\sqrt {a}}\right )}{\sqrt {1-\frac {1}{a x}}}-\frac {4 \sqrt {2} \sqrt {a} \sqrt {\frac {1}{x}} \sqrt {c-a c x} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {\frac {1}{x}}}{\sqrt {a} \sqrt {1+\frac {1}{a x}}}\right )}{\sqrt {1-\frac {1}{a x}}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.07 (sec) , antiderivative size = 120, normalized size of antiderivative = 0.70 \[ \int \frac {e^{3 \coth ^{-1}(a x)} \sqrt {c-a c x}}{x^2} \, dx=\frac {\sqrt {\frac {1}{x}} \sqrt {c-a c x} \left (\sqrt {1+\frac {1}{a x}} \sqrt {\frac {1}{x}}+5 \sqrt {a} \text {arcsinh}\left (\frac {\sqrt {\frac {1}{x}}}{\sqrt {a}}\right )-4 \sqrt {2} \sqrt {a} \text {arctanh}\left (\frac {\sqrt {2} \sqrt {\frac {1}{x}}}{\sqrt {a} \sqrt {1+\frac {1}{a x}}}\right )\right )}{\sqrt {1-\frac {1}{a x}}} \]

[In]

Integrate[(E^(3*ArcCoth[a*x])*Sqrt[c - a*c*x])/x^2,x]

[Out]

(Sqrt[x^(-1)]*Sqrt[c - a*c*x]*(Sqrt[1 + 1/(a*x)]*Sqrt[x^(-1)] + 5*Sqrt[a]*ArcSinh[Sqrt[x^(-1)]/Sqrt[a]] - 4*Sq
rt[2]*Sqrt[a]*ArcTanh[(Sqrt[2]*Sqrt[x^(-1)])/(Sqrt[a]*Sqrt[1 + 1/(a*x)])]))/Sqrt[1 - 1/(a*x)]

Maple [A] (verified)

Time = 0.47 (sec) , antiderivative size = 117, normalized size of antiderivative = 0.68

method result size
default \(\frac {\left (a x -1\right ) \sqrt {-c \left (a x -1\right )}\, \left (-4 \sqrt {2}\, \arctan \left (\frac {\sqrt {-c \left (a x +1\right )}\, \sqrt {2}}{2 \sqrt {c}}\right ) a c x +5 \arctan \left (\frac {\sqrt {-c \left (a x +1\right )}}{\sqrt {c}}\right ) a c x +\sqrt {-c \left (a x +1\right )}\, \sqrt {c}\right )}{\left (\frac {a x -1}{a x +1}\right )^{\frac {3}{2}} \left (a x +1\right ) \sqrt {-c \left (a x +1\right )}\, \sqrt {c}\, x}\) \(117\)
risch \(-\frac {c \left (a x -1\right )}{x \sqrt {\frac {a x -1}{a x +1}}\, \sqrt {-c \left (a x -1\right )}}-\frac {\left (\frac {4 a \sqrt {2}\, \arctan \left (\frac {\sqrt {-a c x -c}\, \sqrt {2}}{2 \sqrt {c}}\right )}{\sqrt {c}}-\frac {5 a \arctan \left (\frac {\sqrt {-a c x -c}}{\sqrt {c}}\right )}{\sqrt {c}}\right ) c \sqrt {-c \left (a x +1\right )}\, \left (a x -1\right )}{\left (a x +1\right ) \sqrt {\frac {a x -1}{a x +1}}\, \sqrt {-c \left (a x -1\right )}}\) \(140\)

[In]

int(1/((a*x-1)/(a*x+1))^(3/2)*(-a*c*x+c)^(1/2)/x^2,x,method=_RETURNVERBOSE)

[Out]

1/((a*x-1)/(a*x+1))^(3/2)*(a*x-1)/(a*x+1)*(-c*(a*x-1))^(1/2)*(-4*2^(1/2)*arctan(1/2*(-c*(a*x+1))^(1/2)*2^(1/2)
/c^(1/2))*a*c*x+5*arctan((-c*(a*x+1))^(1/2)/c^(1/2))*a*c*x+(-c*(a*x+1))^(1/2)*c^(1/2))/(-c*(a*x+1))^(1/2)/c^(1
/2)/x

Fricas [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 390, normalized size of antiderivative = 2.27 \[ \int \frac {e^{3 \coth ^{-1}(a x)} \sqrt {c-a c x}}{x^2} \, dx=\left [\frac {4 \, \sqrt {2} {\left (a^{2} x^{2} - a x\right )} \sqrt {-c} \log \left (-\frac {a^{2} c x^{2} + 2 \, a c x + 2 \, \sqrt {2} \sqrt {-a c x + c} {\left (a x + 1\right )} \sqrt {-c} \sqrt {\frac {a x - 1}{a x + 1}} - 3 \, c}{a^{2} x^{2} - 2 \, a x + 1}\right ) + 5 \, {\left (a^{2} x^{2} - a x\right )} \sqrt {-c} \log \left (-\frac {a^{2} c x^{2} + a c x - 2 \, \sqrt {-a c x + c} {\left (a x + 1\right )} \sqrt {-c} \sqrt {\frac {a x - 1}{a x + 1}} - 2 \, c}{a x^{2} - x}\right ) + 2 \, \sqrt {-a c x + c} {\left (a x + 1\right )} \sqrt {\frac {a x - 1}{a x + 1}}}{2 \, {\left (a x^{2} - x\right )}}, -\frac {4 \, \sqrt {2} {\left (a^{2} x^{2} - a x\right )} \sqrt {c} \arctan \left (\frac {\sqrt {2} \sqrt {-a c x + c} \sqrt {c} \sqrt {\frac {a x - 1}{a x + 1}}}{a c x - c}\right ) - 5 \, {\left (a^{2} x^{2} - a x\right )} \sqrt {c} \arctan \left (\frac {\sqrt {-a c x + c} \sqrt {c} \sqrt {\frac {a x - 1}{a x + 1}}}{a c x - c}\right ) - \sqrt {-a c x + c} {\left (a x + 1\right )} \sqrt {\frac {a x - 1}{a x + 1}}}{a x^{2} - x}\right ] \]

[In]

integrate(1/((a*x-1)/(a*x+1))^(3/2)*(-a*c*x+c)^(1/2)/x^2,x, algorithm="fricas")

[Out]

[1/2*(4*sqrt(2)*(a^2*x^2 - a*x)*sqrt(-c)*log(-(a^2*c*x^2 + 2*a*c*x + 2*sqrt(2)*sqrt(-a*c*x + c)*(a*x + 1)*sqrt
(-c)*sqrt((a*x - 1)/(a*x + 1)) - 3*c)/(a^2*x^2 - 2*a*x + 1)) + 5*(a^2*x^2 - a*x)*sqrt(-c)*log(-(a^2*c*x^2 + a*
c*x - 2*sqrt(-a*c*x + c)*(a*x + 1)*sqrt(-c)*sqrt((a*x - 1)/(a*x + 1)) - 2*c)/(a*x^2 - x)) + 2*sqrt(-a*c*x + c)
*(a*x + 1)*sqrt((a*x - 1)/(a*x + 1)))/(a*x^2 - x), -(4*sqrt(2)*(a^2*x^2 - a*x)*sqrt(c)*arctan(sqrt(2)*sqrt(-a*
c*x + c)*sqrt(c)*sqrt((a*x - 1)/(a*x + 1))/(a*c*x - c)) - 5*(a^2*x^2 - a*x)*sqrt(c)*arctan(sqrt(-a*c*x + c)*sq
rt(c)*sqrt((a*x - 1)/(a*x + 1))/(a*c*x - c)) - sqrt(-a*c*x + c)*(a*x + 1)*sqrt((a*x - 1)/(a*x + 1)))/(a*x^2 -
x)]

Sympy [F(-1)]

Timed out. \[ \int \frac {e^{3 \coth ^{-1}(a x)} \sqrt {c-a c x}}{x^2} \, dx=\text {Timed out} \]

[In]

integrate(1/((a*x-1)/(a*x+1))**(3/2)*(-a*c*x+c)**(1/2)/x**2,x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {e^{3 \coth ^{-1}(a x)} \sqrt {c-a c x}}{x^2} \, dx=\int { \frac {\sqrt {-a c x + c}}{x^{2} \left (\frac {a x - 1}{a x + 1}\right )^{\frac {3}{2}}} \,d x } \]

[In]

integrate(1/((a*x-1)/(a*x+1))^(3/2)*(-a*c*x+c)^(1/2)/x^2,x, algorithm="maxima")

[Out]

integrate(sqrt(-a*c*x + c)/(x^2*((a*x - 1)/(a*x + 1))^(3/2)), x)

Giac [F(-2)]

Exception generated. \[ \int \frac {e^{3 \coth ^{-1}(a x)} \sqrt {c-a c x}}{x^2} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate(1/((a*x-1)/(a*x+1))^(3/2)*(-a*c*x+c)^(1/2)/x^2,x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:sym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

Mupad [F(-1)]

Timed out. \[ \int \frac {e^{3 \coth ^{-1}(a x)} \sqrt {c-a c x}}{x^2} \, dx=\int \frac {\sqrt {c-a\,c\,x}}{x^2\,{\left (\frac {a\,x-1}{a\,x+1}\right )}^{3/2}} \,d x \]

[In]

int((c - a*c*x)^(1/2)/(x^2*((a*x - 1)/(a*x + 1))^(3/2)),x)

[Out]

int((c - a*c*x)^(1/2)/(x^2*((a*x - 1)/(a*x + 1))^(3/2)), x)