\(\int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-a^2 c x^2}}{x} \, dx\) [716]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 27, antiderivative size = 75 \[ \int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-a^2 c x^2}}{x} \, dx=\sqrt {c-a^2 c x^2}+2 \sqrt {c} \arctan \left (\frac {a \sqrt {c} x}{\sqrt {c-a^2 c x^2}}\right )+\sqrt {c} \text {arctanh}\left (\frac {\sqrt {c-a^2 c x^2}}{\sqrt {c}}\right ) \]

[Out]

2*arctan(a*x*c^(1/2)/(-a^2*c*x^2+c)^(1/2))*c^(1/2)+arctanh((-a^2*c*x^2+c)^(1/2)/c^(1/2))*c^(1/2)+(-a^2*c*x^2+c
)^(1/2)

Rubi [A] (verified)

Time = 0.24 (sec) , antiderivative size = 75, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {6302, 6287, 1823, 858, 223, 209, 272, 65, 214} \[ \int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-a^2 c x^2}}{x} \, dx=2 \sqrt {c} \arctan \left (\frac {a \sqrt {c} x}{\sqrt {c-a^2 c x^2}}\right )+\sqrt {c} \text {arctanh}\left (\frac {\sqrt {c-a^2 c x^2}}{\sqrt {c}}\right )+\sqrt {c-a^2 c x^2} \]

[In]

Int[Sqrt[c - a^2*c*x^2]/(E^(2*ArcCoth[a*x])*x),x]

[Out]

Sqrt[c - a^2*c*x^2] + 2*Sqrt[c]*ArcTan[(a*Sqrt[c]*x)/Sqrt[c - a^2*c*x^2]] + Sqrt[c]*ArcTanh[Sqrt[c - a^2*c*x^2
]/Sqrt[c]]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 858

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rule 1823

Int[(Pq_)*((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{q = Expon[Pq, x], f = Coeff[Pq, x,
 Expon[Pq, x]]}, Simp[f*(c*x)^(m + q - 1)*((a + b*x^2)^(p + 1)/(b*c^(q - 1)*(m + q + 2*p + 1))), x] + Dist[1/(
b*(m + q + 2*p + 1)), Int[(c*x)^m*(a + b*x^2)^p*ExpandToSum[b*(m + q + 2*p + 1)*Pq - b*f*(m + q + 2*p + 1)*x^q
 - a*f*(m + q - 1)*x^(q - 2), x], x], x] /; GtQ[q, 1] && NeQ[m + q + 2*p + 1, 0]] /; FreeQ[{a, b, c, m, p}, x]
 && PolyQ[Pq, x] && ( !IGtQ[m, 0] || IGtQ[p + 1/2, -1])

Rule 6287

Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[1/c^(n/2), Int[x^m*
((c + d*x^2)^(p + n/2)/(1 - a*x)^n), x], x] /; FreeQ[{a, c, d, m, p}, x] && EqQ[a^2*c + d, 0] &&  !(IntegerQ[p
] || GtQ[c, 0]) && ILtQ[n/2, 0]

Rule 6302

Int[E^(ArcCoth[(a_.)*(x_)]*(n_))*(u_.), x_Symbol] :> Dist[(-1)^(n/2), Int[u*E^(n*ArcTanh[a*x]), x], x] /; Free
Q[a, x] && IntegerQ[n/2]

Rubi steps \begin{align*} \text {integral}& = -\int \frac {e^{-2 \text {arctanh}(a x)} \sqrt {c-a^2 c x^2}}{x} \, dx \\ & = -\left (c \int \frac {(1-a x)^2}{x \sqrt {c-a^2 c x^2}} \, dx\right ) \\ & = \sqrt {c-a^2 c x^2}+\frac {\int \frac {-a^2 c+2 a^3 c x}{x \sqrt {c-a^2 c x^2}} \, dx}{a^2} \\ & = \sqrt {c-a^2 c x^2}-c \int \frac {1}{x \sqrt {c-a^2 c x^2}} \, dx+(2 a c) \int \frac {1}{\sqrt {c-a^2 c x^2}} \, dx \\ & = \sqrt {c-a^2 c x^2}-\frac {1}{2} c \text {Subst}\left (\int \frac {1}{x \sqrt {c-a^2 c x}} \, dx,x,x^2\right )+(2 a c) \text {Subst}\left (\int \frac {1}{1+a^2 c x^2} \, dx,x,\frac {x}{\sqrt {c-a^2 c x^2}}\right ) \\ & = \sqrt {c-a^2 c x^2}+2 \sqrt {c} \arctan \left (\frac {a \sqrt {c} x}{\sqrt {c-a^2 c x^2}}\right )+\frac {\text {Subst}\left (\int \frac {1}{\frac {1}{a^2}-\frac {x^2}{a^2 c}} \, dx,x,\sqrt {c-a^2 c x^2}\right )}{a^2} \\ & = \sqrt {c-a^2 c x^2}+2 \sqrt {c} \arctan \left (\frac {a \sqrt {c} x}{\sqrt {c-a^2 c x^2}}\right )+\sqrt {c} \text {arctanh}\left (\frac {\sqrt {c-a^2 c x^2}}{\sqrt {c}}\right ) \\ \end{align*}

Mathematica [A] (verified)

Time = 0.15 (sec) , antiderivative size = 97, normalized size of antiderivative = 1.29 \[ \int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-a^2 c x^2}}{x} \, dx=\sqrt {c-a^2 c x^2}-2 \sqrt {c} \arctan \left (\frac {a x \sqrt {c-a^2 c x^2}}{\sqrt {c} \left (-1+a^2 x^2\right )}\right )-\sqrt {c} \log (x)+\sqrt {c} \log \left (c+\sqrt {c} \sqrt {c-a^2 c x^2}\right ) \]

[In]

Integrate[Sqrt[c - a^2*c*x^2]/(E^(2*ArcCoth[a*x])*x),x]

[Out]

Sqrt[c - a^2*c*x^2] - 2*Sqrt[c]*ArcTan[(a*x*Sqrt[c - a^2*c*x^2])/(Sqrt[c]*(-1 + a^2*x^2))] - Sqrt[c]*Log[x] +
Sqrt[c]*Log[c + Sqrt[c]*Sqrt[c - a^2*c*x^2]]

Maple [A] (verified)

Time = 0.66 (sec) , antiderivative size = 121, normalized size of antiderivative = 1.61

method result size
default \(-\sqrt {-a^{2} c \,x^{2}+c}+\sqrt {c}\, \ln \left (\frac {2 c +2 \sqrt {c}\, \sqrt {-a^{2} c \,x^{2}+c}}{x}\right )+2 \sqrt {-a^{2} c \left (x +\frac {1}{a}\right )^{2}+2 \left (x +\frac {1}{a}\right ) a c}+\frac {2 a c \arctan \left (\frac {\sqrt {a^{2} c}\, x}{\sqrt {-a^{2} c \left (x +\frac {1}{a}\right )^{2}+2 \left (x +\frac {1}{a}\right ) a c}}\right )}{\sqrt {a^{2} c}}\) \(121\)

[In]

int((a*x-1)*(-a^2*c*x^2+c)^(1/2)/(a*x+1)/x,x,method=_RETURNVERBOSE)

[Out]

-(-a^2*c*x^2+c)^(1/2)+c^(1/2)*ln((2*c+2*c^(1/2)*(-a^2*c*x^2+c)^(1/2))/x)+2*(-a^2*c*(x+1/a)^2+2*(x+1/a)*a*c)^(1
/2)+2*a*c/(a^2*c)^(1/2)*arctan((a^2*c)^(1/2)*x/(-a^2*c*(x+1/a)^2+2*(x+1/a)*a*c)^(1/2))

Fricas [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 191, normalized size of antiderivative = 2.55 \[ \int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-a^2 c x^2}}{x} \, dx=\left [-2 \, \sqrt {c} \arctan \left (\frac {\sqrt {-a^{2} c x^{2} + c} a \sqrt {c} x}{a^{2} c x^{2} - c}\right ) + \frac {1}{2} \, \sqrt {c} \log \left (-\frac {a^{2} c x^{2} - 2 \, \sqrt {-a^{2} c x^{2} + c} \sqrt {c} - 2 \, c}{x^{2}}\right ) + \sqrt {-a^{2} c x^{2} + c}, \sqrt {-c} \arctan \left (\frac {\sqrt {-a^{2} c x^{2} + c} \sqrt {-c}}{a^{2} c x^{2} - c}\right ) + \sqrt {-c} \log \left (2 \, a^{2} c x^{2} + 2 \, \sqrt {-a^{2} c x^{2} + c} a \sqrt {-c} x - c\right ) + \sqrt {-a^{2} c x^{2} + c}\right ] \]

[In]

integrate((-a^2*c*x^2+c)^(1/2)*(a*x-1)/(a*x+1)/x,x, algorithm="fricas")

[Out]

[-2*sqrt(c)*arctan(sqrt(-a^2*c*x^2 + c)*a*sqrt(c)*x/(a^2*c*x^2 - c)) + 1/2*sqrt(c)*log(-(a^2*c*x^2 - 2*sqrt(-a
^2*c*x^2 + c)*sqrt(c) - 2*c)/x^2) + sqrt(-a^2*c*x^2 + c), sqrt(-c)*arctan(sqrt(-a^2*c*x^2 + c)*sqrt(-c)/(a^2*c
*x^2 - c)) + sqrt(-c)*log(2*a^2*c*x^2 + 2*sqrt(-a^2*c*x^2 + c)*a*sqrt(-c)*x - c) + sqrt(-a^2*c*x^2 + c)]

Sympy [F]

\[ \int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-a^2 c x^2}}{x} \, dx=\int \frac {\sqrt {- c \left (a x - 1\right ) \left (a x + 1\right )} \left (a x - 1\right )}{x \left (a x + 1\right )}\, dx \]

[In]

integrate((-a**2*c*x**2+c)**(1/2)*(a*x-1)/(a*x+1)/x,x)

[Out]

Integral(sqrt(-c*(a*x - 1)*(a*x + 1))*(a*x - 1)/(x*(a*x + 1)), x)

Maxima [A] (verification not implemented)

none

Time = 0.30 (sec) , antiderivative size = 86, normalized size of antiderivative = 1.15 \[ \int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-a^2 c x^2}}{x} \, dx=a^{2} {\left (\frac {\sqrt {c} \arcsin \left (a x\right )}{a^{2}} + \frac {\sqrt {-a^{2} c x^{2} + c}}{a^{2}}\right )} + a {\left (\frac {\sqrt {c} \arcsin \left (a x\right )}{a} + \frac {\sqrt {c} \log \left (\frac {2 \, \sqrt {-a^{2} c x^{2} + c} \sqrt {c}}{{\left | x \right |}} + \frac {2 \, c}{{\left | x \right |}}\right )}{a}\right )} \]

[In]

integrate((-a^2*c*x^2+c)^(1/2)*(a*x-1)/(a*x+1)/x,x, algorithm="maxima")

[Out]

a^2*(sqrt(c)*arcsin(a*x)/a^2 + sqrt(-a^2*c*x^2 + c)/a^2) + a*(sqrt(c)*arcsin(a*x)/a + sqrt(c)*log(2*sqrt(-a^2*
c*x^2 + c)*sqrt(c)/abs(x) + 2*c/abs(x))/a)

Giac [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 95, normalized size of antiderivative = 1.27 \[ \int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-a^2 c x^2}}{x} \, dx=-\frac {2 \, c \arctan \left (-\frac {\sqrt {-a^{2} c} x - \sqrt {-a^{2} c x^{2} + c}}{\sqrt {-c}}\right )}{\sqrt {-c}} + \frac {2 \, a \sqrt {-c} \log \left ({\left | -\sqrt {-a^{2} c} x + \sqrt {-a^{2} c x^{2} + c} \right |}\right )}{{\left | a \right |}} + \sqrt {-a^{2} c x^{2} + c} \]

[In]

integrate((-a^2*c*x^2+c)^(1/2)*(a*x-1)/(a*x+1)/x,x, algorithm="giac")

[Out]

-2*c*arctan(-(sqrt(-a^2*c)*x - sqrt(-a^2*c*x^2 + c))/sqrt(-c))/sqrt(-c) + 2*a*sqrt(-c)*log(abs(-sqrt(-a^2*c)*x
 + sqrt(-a^2*c*x^2 + c)))/abs(a) + sqrt(-a^2*c*x^2 + c)

Mupad [F(-1)]

Timed out. \[ \int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-a^2 c x^2}}{x} \, dx=\int \frac {\sqrt {c-a^2\,c\,x^2}\,\left (a\,x-1\right )}{x\,\left (a\,x+1\right )} \,d x \]

[In]

int(((c - a^2*c*x^2)^(1/2)*(a*x - 1))/(x*(a*x + 1)),x)

[Out]

int(((c - a^2*c*x^2)^(1/2)*(a*x - 1))/(x*(a*x + 1)), x)