\(\int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-a^2 c x^2}}{x^2} \, dx\) [717]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 27, antiderivative size = 82 \[ \int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-a^2 c x^2}}{x^2} \, dx=\frac {\sqrt {c-a^2 c x^2}}{x}-a \sqrt {c} \arctan \left (\frac {a \sqrt {c} x}{\sqrt {c-a^2 c x^2}}\right )-2 a \sqrt {c} \text {arctanh}\left (\frac {\sqrt {c-a^2 c x^2}}{\sqrt {c}}\right ) \]

[Out]

-a*arctan(a*x*c^(1/2)/(-a^2*c*x^2+c)^(1/2))*c^(1/2)-2*a*arctanh((-a^2*c*x^2+c)^(1/2)/c^(1/2))*c^(1/2)+(-a^2*c*
x^2+c)^(1/2)/x

Rubi [A] (verified)

Time = 0.24 (sec) , antiderivative size = 82, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {6302, 6287, 1821, 858, 223, 209, 272, 65, 214} \[ \int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-a^2 c x^2}}{x^2} \, dx=-a \sqrt {c} \arctan \left (\frac {a \sqrt {c} x}{\sqrt {c-a^2 c x^2}}\right )-2 a \sqrt {c} \text {arctanh}\left (\frac {\sqrt {c-a^2 c x^2}}{\sqrt {c}}\right )+\frac {\sqrt {c-a^2 c x^2}}{x} \]

[In]

Int[Sqrt[c - a^2*c*x^2]/(E^(2*ArcCoth[a*x])*x^2),x]

[Out]

Sqrt[c - a^2*c*x^2]/x - a*Sqrt[c]*ArcTan[(a*Sqrt[c]*x)/Sqrt[c - a^2*c*x^2]] - 2*a*Sqrt[c]*ArcTanh[Sqrt[c - a^2
*c*x^2]/Sqrt[c]]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 858

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rule 1821

Int[(Pq_)*((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[Pq, c*x, x],
 R = PolynomialRemainder[Pq, c*x, x]}, Simp[R*(c*x)^(m + 1)*((a + b*x^2)^(p + 1)/(a*c*(m + 1))), x] + Dist[1/(
a*c*(m + 1)), Int[(c*x)^(m + 1)*(a + b*x^2)^p*ExpandToSum[a*c*(m + 1)*Q - b*R*(m + 2*p + 3)*x, x], x], x]] /;
FreeQ[{a, b, c, p}, x] && PolyQ[Pq, x] && LtQ[m, -1] && (IntegerQ[2*p] || NeQ[Expon[Pq, x], 1])

Rule 6287

Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[1/c^(n/2), Int[x^m*
((c + d*x^2)^(p + n/2)/(1 - a*x)^n), x], x] /; FreeQ[{a, c, d, m, p}, x] && EqQ[a^2*c + d, 0] &&  !(IntegerQ[p
] || GtQ[c, 0]) && ILtQ[n/2, 0]

Rule 6302

Int[E^(ArcCoth[(a_.)*(x_)]*(n_))*(u_.), x_Symbol] :> Dist[(-1)^(n/2), Int[u*E^(n*ArcTanh[a*x]), x], x] /; Free
Q[a, x] && IntegerQ[n/2]

Rubi steps \begin{align*} \text {integral}& = -\int \frac {e^{-2 \text {arctanh}(a x)} \sqrt {c-a^2 c x^2}}{x^2} \, dx \\ & = -\left (c \int \frac {(1-a x)^2}{x^2 \sqrt {c-a^2 c x^2}} \, dx\right ) \\ & = \frac {\sqrt {c-a^2 c x^2}}{x}+\int \frac {2 a c-a^2 c x}{x \sqrt {c-a^2 c x^2}} \, dx \\ & = \frac {\sqrt {c-a^2 c x^2}}{x}+(2 a c) \int \frac {1}{x \sqrt {c-a^2 c x^2}} \, dx-\left (a^2 c\right ) \int \frac {1}{\sqrt {c-a^2 c x^2}} \, dx \\ & = \frac {\sqrt {c-a^2 c x^2}}{x}+(a c) \text {Subst}\left (\int \frac {1}{x \sqrt {c-a^2 c x}} \, dx,x,x^2\right )-\left (a^2 c\right ) \text {Subst}\left (\int \frac {1}{1+a^2 c x^2} \, dx,x,\frac {x}{\sqrt {c-a^2 c x^2}}\right ) \\ & = \frac {\sqrt {c-a^2 c x^2}}{x}-a \sqrt {c} \arctan \left (\frac {a \sqrt {c} x}{\sqrt {c-a^2 c x^2}}\right )-\frac {2 \text {Subst}\left (\int \frac {1}{\frac {1}{a^2}-\frac {x^2}{a^2 c}} \, dx,x,\sqrt {c-a^2 c x^2}\right )}{a} \\ & = \frac {\sqrt {c-a^2 c x^2}}{x}-a \sqrt {c} \arctan \left (\frac {a \sqrt {c} x}{\sqrt {c-a^2 c x^2}}\right )-2 a \sqrt {c} \text {arctanh}\left (\frac {\sqrt {c-a^2 c x^2}}{\sqrt {c}}\right ) \\ \end{align*}

Mathematica [A] (verified)

Time = 0.15 (sec) , antiderivative size = 104, normalized size of antiderivative = 1.27 \[ \int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-a^2 c x^2}}{x^2} \, dx=\frac {\sqrt {c-a^2 c x^2}}{x}+a \sqrt {c} \arctan \left (\frac {a x \sqrt {c-a^2 c x^2}}{\sqrt {c} \left (-1+a^2 x^2\right )}\right )+2 a \sqrt {c} \log (x)-2 a \sqrt {c} \log \left (c+\sqrt {c} \sqrt {c-a^2 c x^2}\right ) \]

[In]

Integrate[Sqrt[c - a^2*c*x^2]/(E^(2*ArcCoth[a*x])*x^2),x]

[Out]

Sqrt[c - a^2*c*x^2]/x + a*Sqrt[c]*ArcTan[(a*x*Sqrt[c - a^2*c*x^2])/(Sqrt[c]*(-1 + a^2*x^2))] + 2*a*Sqrt[c]*Log
[x] - 2*a*Sqrt[c]*Log[c + Sqrt[c]*Sqrt[c - a^2*c*x^2]]

Maple [A] (verified)

Time = 0.69 (sec) , antiderivative size = 102, normalized size of antiderivative = 1.24

method result size
risch \(-\frac {\left (a^{2} x^{2}-1\right ) c}{x \sqrt {-c \left (a^{2} x^{2}-1\right )}}-\left (\frac {a^{2} \arctan \left (\frac {\sqrt {a^{2} c}\, x}{\sqrt {-a^{2} c \,x^{2}+c}}\right )}{\sqrt {a^{2} c}}+\frac {2 a \ln \left (\frac {2 c +2 \sqrt {c}\, \sqrt {-a^{2} c \,x^{2}+c}}{x}\right )}{\sqrt {c}}\right ) c\) \(102\)
default \(\frac {\left (-a^{2} c \,x^{2}+c \right )^{\frac {3}{2}}}{c x}+2 a^{2} \left (\frac {x \sqrt {-a^{2} c \,x^{2}+c}}{2}+\frac {c \arctan \left (\frac {\sqrt {a^{2} c}\, x}{\sqrt {-a^{2} c \,x^{2}+c}}\right )}{2 \sqrt {a^{2} c}}\right )+2 a \left (\sqrt {-a^{2} c \,x^{2}+c}-\sqrt {c}\, \ln \left (\frac {2 c +2 \sqrt {c}\, \sqrt {-a^{2} c \,x^{2}+c}}{x}\right )\right )-2 a \left (\sqrt {-a^{2} c \left (x +\frac {1}{a}\right )^{2}+2 \left (x +\frac {1}{a}\right ) a c}+\frac {a c \arctan \left (\frac {\sqrt {a^{2} c}\, x}{\sqrt {-a^{2} c \left (x +\frac {1}{a}\right )^{2}+2 \left (x +\frac {1}{a}\right ) a c}}\right )}{\sqrt {a^{2} c}}\right )\) \(200\)

[In]

int((a*x-1)*(-a^2*c*x^2+c)^(1/2)/(a*x+1)/x^2,x,method=_RETURNVERBOSE)

[Out]

-(a^2*x^2-1)/x/(-c*(a^2*x^2-1))^(1/2)*c-(a^2/(a^2*c)^(1/2)*arctan((a^2*c)^(1/2)*x/(-a^2*c*x^2+c)^(1/2))+2*a/c^
(1/2)*ln((2*c+2*c^(1/2)*(-a^2*c*x^2+c)^(1/2))/x))*c

Fricas [A] (verification not implemented)

none

Time = 0.26 (sec) , antiderivative size = 210, normalized size of antiderivative = 2.56 \[ \int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-a^2 c x^2}}{x^2} \, dx=\left [\frac {a \sqrt {c} x \arctan \left (\frac {\sqrt {-a^{2} c x^{2} + c} a \sqrt {c} x}{a^{2} c x^{2} - c}\right ) + a \sqrt {c} x \log \left (-\frac {a^{2} c x^{2} + 2 \, \sqrt {-a^{2} c x^{2} + c} \sqrt {c} - 2 \, c}{x^{2}}\right ) + \sqrt {-a^{2} c x^{2} + c}}{x}, -\frac {4 \, a \sqrt {-c} x \arctan \left (\frac {\sqrt {-a^{2} c x^{2} + c} \sqrt {-c}}{a^{2} c x^{2} - c}\right ) - a \sqrt {-c} x \log \left (2 \, a^{2} c x^{2} - 2 \, \sqrt {-a^{2} c x^{2} + c} a \sqrt {-c} x - c\right ) - 2 \, \sqrt {-a^{2} c x^{2} + c}}{2 \, x}\right ] \]

[In]

integrate((-a^2*c*x^2+c)^(1/2)*(a*x-1)/(a*x+1)/x^2,x, algorithm="fricas")

[Out]

[(a*sqrt(c)*x*arctan(sqrt(-a^2*c*x^2 + c)*a*sqrt(c)*x/(a^2*c*x^2 - c)) + a*sqrt(c)*x*log(-(a^2*c*x^2 + 2*sqrt(
-a^2*c*x^2 + c)*sqrt(c) - 2*c)/x^2) + sqrt(-a^2*c*x^2 + c))/x, -1/2*(4*a*sqrt(-c)*x*arctan(sqrt(-a^2*c*x^2 + c
)*sqrt(-c)/(a^2*c*x^2 - c)) - a*sqrt(-c)*x*log(2*a^2*c*x^2 - 2*sqrt(-a^2*c*x^2 + c)*a*sqrt(-c)*x - c) - 2*sqrt
(-a^2*c*x^2 + c))/x]

Sympy [F]

\[ \int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-a^2 c x^2}}{x^2} \, dx=\int \frac {\sqrt {- c \left (a x - 1\right ) \left (a x + 1\right )} \left (a x - 1\right )}{x^{2} \left (a x + 1\right )}\, dx \]

[In]

integrate((-a**2*c*x**2+c)**(1/2)*(a*x-1)/(a*x+1)/x**2,x)

[Out]

Integral(sqrt(-c*(a*x - 1)*(a*x + 1))*(a*x - 1)/(x**2*(a*x + 1)), x)

Maxima [F]

\[ \int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-a^2 c x^2}}{x^2} \, dx=\int { \frac {\sqrt {-a^{2} c x^{2} + c} {\left (a x - 1\right )}}{{\left (a x + 1\right )} x^{2}} \,d x } \]

[In]

integrate((-a^2*c*x^2+c)^(1/2)*(a*x-1)/(a*x+1)/x^2,x, algorithm="maxima")

[Out]

integrate(sqrt(-a^2*c*x^2 + c)*(a*x - 1)/((a*x + 1)*x^2), x)

Giac [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 134, normalized size of antiderivative = 1.63 \[ \int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-a^2 c x^2}}{x^2} \, dx=\frac {4 \, a c \arctan \left (-\frac {\sqrt {-a^{2} c} x - \sqrt {-a^{2} c x^{2} + c}}{\sqrt {-c}}\right )}{\sqrt {-c}} - \frac {a^{2} \sqrt {-c} \log \left ({\left | -\sqrt {-a^{2} c} x + \sqrt {-a^{2} c x^{2} + c} \right |}\right )}{{\left | a \right |}} - \frac {2 \, a^{2} \sqrt {-c} c}{{\left ({\left (\sqrt {-a^{2} c} x - \sqrt {-a^{2} c x^{2} + c}\right )}^{2} - c\right )} {\left | a \right |}} \]

[In]

integrate((-a^2*c*x^2+c)^(1/2)*(a*x-1)/(a*x+1)/x^2,x, algorithm="giac")

[Out]

4*a*c*arctan(-(sqrt(-a^2*c)*x - sqrt(-a^2*c*x^2 + c))/sqrt(-c))/sqrt(-c) - a^2*sqrt(-c)*log(abs(-sqrt(-a^2*c)*
x + sqrt(-a^2*c*x^2 + c)))/abs(a) - 2*a^2*sqrt(-c)*c/(((sqrt(-a^2*c)*x - sqrt(-a^2*c*x^2 + c))^2 - c)*abs(a))

Mupad [F(-1)]

Timed out. \[ \int \frac {e^{-2 \coth ^{-1}(a x)} \sqrt {c-a^2 c x^2}}{x^2} \, dx=\int \frac {\sqrt {c-a^2\,c\,x^2}\,\left (a\,x-1\right )}{x^2\,\left (a\,x+1\right )} \,d x \]

[In]

int(((c - a^2*c*x^2)^(1/2)*(a*x - 1))/(x^2*(a*x + 1)),x)

[Out]

int(((c - a^2*c*x^2)^(1/2)*(a*x - 1))/(x^2*(a*x + 1)), x)