3.1.24 \(\int \frac {\text {PolyLog}(2,a x^2)}{x^5} \, dx\) [24]

Optimal. Leaf size=64 \[ -\frac {a}{8 x^2}+\frac {1}{4} a^2 \log (x)-\frac {1}{8} a^2 \log \left (1-a x^2\right )+\frac {\log \left (1-a x^2\right )}{8 x^4}-\frac {\text {PolyLog}\left (2,a x^2\right )}{4 x^4} \]

[Out]

-1/8*a/x^2+1/4*a^2*ln(x)-1/8*a^2*ln(-a*x^2+1)+1/8*ln(-a*x^2+1)/x^4-1/4*polylog(2,a*x^2)/x^4

________________________________________________________________________________________

Rubi [A]
time = 0.03, antiderivative size = 64, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 4, integrand size = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.364, Rules used = {6726, 2504, 2442, 46} \begin {gather*} -\frac {1}{8} a^2 \log \left (1-a x^2\right )+\frac {1}{4} a^2 \log (x)-\frac {\text {Li}_2\left (a x^2\right )}{4 x^4}-\frac {a}{8 x^2}+\frac {\log \left (1-a x^2\right )}{8 x^4} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[PolyLog[2, a*x^2]/x^5,x]

[Out]

-1/8*a/x^2 + (a^2*Log[x])/4 - (a^2*Log[1 - a*x^2])/8 + Log[1 - a*x^2]/(8*x^4) - PolyLog[2, a*x^2]/(4*x^4)

Rule 46

Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*x
)^n, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, 0] && IntegerQ[n] &&  !(IGtQ[n, 0] && Lt
Q[m + n + 2, 0])

Rule 2442

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))*((f_.) + (g_.)*(x_))^(q_.), x_Symbol] :> Simp[(f + g*
x)^(q + 1)*((a + b*Log[c*(d + e*x)^n])/(g*(q + 1))), x] - Dist[b*e*(n/(g*(q + 1))), Int[(f + g*x)^(q + 1)/(d +
 e*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, n, q}, x] && NeQ[e*f - d*g, 0] && NeQ[q, -1]

Rule 2504

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))^(q_.)*(x_)^(m_.), x_Symbol] :> Dist[1/n, Subst[I
nt[x^(Simplify[(m + 1)/n] - 1)*(a + b*Log[c*(d + e*x)^p])^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, e, m, n, p,
 q}, x] && IntegerQ[Simplify[(m + 1)/n]] && (GtQ[(m + 1)/n, 0] || IGtQ[q, 0]) &&  !(EqQ[q, 1] && ILtQ[n, 0] &&
 IGtQ[m, 0])

Rule 6726

Int[((d_.)*(x_))^(m_.)*PolyLog[n_, (a_.)*((b_.)*(x_)^(p_.))^(q_.)], x_Symbol] :> Simp[(d*x)^(m + 1)*(PolyLog[n
, a*(b*x^p)^q]/(d*(m + 1))), x] - Dist[p*(q/(m + 1)), Int[(d*x)^m*PolyLog[n - 1, a*(b*x^p)^q], x], x] /; FreeQ
[{a, b, d, m, p, q}, x] && NeQ[m, -1] && GtQ[n, 0]

Rubi steps

\begin {align*} \int \frac {\text {Li}_2\left (a x^2\right )}{x^5} \, dx &=-\frac {\text {Li}_2\left (a x^2\right )}{4 x^4}-\frac {1}{2} \int \frac {\log \left (1-a x^2\right )}{x^5} \, dx\\ &=-\frac {\text {Li}_2\left (a x^2\right )}{4 x^4}-\frac {1}{4} \text {Subst}\left (\int \frac {\log (1-a x)}{x^3} \, dx,x,x^2\right )\\ &=\frac {\log \left (1-a x^2\right )}{8 x^4}-\frac {\text {Li}_2\left (a x^2\right )}{4 x^4}+\frac {1}{8} a \text {Subst}\left (\int \frac {1}{x^2 (1-a x)} \, dx,x,x^2\right )\\ &=\frac {\log \left (1-a x^2\right )}{8 x^4}-\frac {\text {Li}_2\left (a x^2\right )}{4 x^4}+\frac {1}{8} a \text {Subst}\left (\int \left (\frac {1}{x^2}+\frac {a}{x}-\frac {a^2}{-1+a x}\right ) \, dx,x,x^2\right )\\ &=-\frac {a}{8 x^2}+\frac {1}{4} a^2 \log (x)-\frac {1}{8} a^2 \log \left (1-a x^2\right )+\frac {\log \left (1-a x^2\right )}{8 x^4}-\frac {\text {Li}_2\left (a x^2\right )}{4 x^4}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.02, size = 51, normalized size = 0.80 \begin {gather*} -\frac {a x^2-2 a^2 x^4 \log (x)+\left (-1+a^2 x^4\right ) \log \left (1-a x^2\right )+2 \text {PolyLog}\left (2,a x^2\right )}{8 x^4} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[PolyLog[2, a*x^2]/x^5,x]

[Out]

-1/8*(a*x^2 - 2*a^2*x^4*Log[x] + (-1 + a^2*x^4)*Log[1 - a*x^2] + 2*PolyLog[2, a*x^2])/x^4

________________________________________________________________________________________

Maple [A]
time = 0.10, size = 52, normalized size = 0.81

method result size
default \(-\frac {\polylog \left (2, a \,x^{2}\right )}{4 x^{4}}+\frac {\ln \left (-a \,x^{2}+1\right )}{8 x^{4}}+\frac {a \left (-\frac {a \ln \left (a \,x^{2}-1\right )}{2}-\frac {1}{2 x^{2}}+a \ln \left (x \right )\right )}{4}\) \(52\)
meijerg \(-\frac {a^{2} \left (-\frac {9 a \,x^{2}+27}{36 a \,x^{2}}-\frac {\left (-9 a^{2} x^{4}+9\right ) \ln \left (-a \,x^{2}+1\right )}{36 a^{2} x^{4}}+\frac {\polylog \left (2, a \,x^{2}\right )}{2 a^{2} x^{4}}+\frac {1}{4}-\frac {\ln \left (x \right )}{2}-\frac {\ln \left (-a \right )}{4}+\frac {1}{a \,x^{2}}\right )}{2}\) \(83\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(polylog(2,a*x^2)/x^5,x,method=_RETURNVERBOSE)

[Out]

-1/4*polylog(2,a*x^2)/x^4+1/8*ln(-a*x^2+1)/x^4+1/4*a*(-1/2*a*ln(a*x^2-1)-1/2/x^2+a*ln(x))

________________________________________________________________________________________

Maxima [A]
time = 0.27, size = 46, normalized size = 0.72 \begin {gather*} \frac {1}{4} \, a^{2} \log \left (x\right ) - \frac {a x^{2} + {\left (a^{2} x^{4} - 1\right )} \log \left (-a x^{2} + 1\right ) + 2 \, {\rm Li}_2\left (a x^{2}\right )}{8 \, x^{4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(polylog(2,a*x^2)/x^5,x, algorithm="maxima")

[Out]

1/4*a^2*log(x) - 1/8*(a*x^2 + (a^2*x^4 - 1)*log(-a*x^2 + 1) + 2*dilog(a*x^2))/x^4

________________________________________________________________________________________

Fricas [A]
time = 0.37, size = 55, normalized size = 0.86 \begin {gather*} -\frac {a^{2} x^{4} \log \left (a x^{2} - 1\right ) - 2 \, a^{2} x^{4} \log \left (x\right ) + a x^{2} + 2 \, {\rm Li}_2\left (a x^{2}\right ) - \log \left (-a x^{2} + 1\right )}{8 \, x^{4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(polylog(2,a*x^2)/x^5,x, algorithm="fricas")

[Out]

-1/8*(a^2*x^4*log(a*x^2 - 1) - 2*a^2*x^4*log(x) + a*x^2 + 2*dilog(a*x^2) - log(-a*x^2 + 1))/x^4

________________________________________________________________________________________

Sympy [A]
time = 2.15, size = 49, normalized size = 0.77 \begin {gather*} \frac {a^{2} \log {\left (x \right )}}{4} + \frac {a^{2} \operatorname {Li}_{1}\left (a x^{2}\right )}{8} - \frac {a}{8 x^{2}} - \frac {\operatorname {Li}_{1}\left (a x^{2}\right )}{8 x^{4}} - \frac {\operatorname {Li}_{2}\left (a x^{2}\right )}{4 x^{4}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(polylog(2,a*x**2)/x**5,x)

[Out]

a**2*log(x)/4 + a**2*polylog(1, a*x**2)/8 - a/(8*x**2) - polylog(1, a*x**2)/(8*x**4) - polylog(2, a*x**2)/(4*x
**4)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(polylog(2,a*x^2)/x^5,x, algorithm="giac")

[Out]

integrate(dilog(a*x^2)/x^5, x)

________________________________________________________________________________________

Mupad [B]
time = 0.26, size = 53, normalized size = 0.83 \begin {gather*} \frac {a^2\,\ln \left (x\right )}{4}-\frac {\mathrm {polylog}\left (2,a\,x^2\right )}{4\,x^4}-\frac {a^2\,\ln \left (a\,x^2-1\right )}{8}-\frac {a}{8\,x^2}+\frac {\ln \left (1-a\,x^2\right )}{8\,x^4} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(polylog(2, a*x^2)/x^5,x)

[Out]

(a^2*log(x))/4 - polylog(2, a*x^2)/(4*x^4) - (a^2*log(a*x^2 - 1))/8 - a/(8*x^2) + log(1 - a*x^2)/(8*x^4)

________________________________________________________________________________________