Chapter 4
Listing of integrals solved by CAS which has no known antiderivatives

4.1 Test file Number [5]
4.2 Test file Number [57]
4.3 Test file Number [58]
4.4 Test file Number [63]
4.5 Test file Number [79]
4.6 Test file Number [151]
4.7 Test file Number [154]
4.8 Test file Number [173]
4.9 Test file Number [206]

4.1 Test file Number [5]

4.1.1 Maxima

Integral number [145] xcos(kcsc(x))cot(x)csc(x)dx

[C]   time = 0.222839 (sec), size = 240 ,normalized size = 21.82 (xe(4kcos(2x)cos(x)cos(2x)2+sin(2x)22cos(2x)+1+4ksin(2x)sin(x)cos(2x)2+sin(2x)22cos(2x)+1)+xe(4kcos(x)cos(2x)2+sin(2x)22cos(2x)+1))e(2kcos(2x)cos(x)cos(2x)2+sin(2x)22cos(2x)+12ksin(2x)sin(x)cos(2x)2+sin(2x)22cos(2x)+12kcos(x)cos(2x)2+sin(2x)22cos(2x)+1)sin(2(kcos(x)sin(2x)kcos(2x)sin(x)+ksin(x))cos(2x)2+sin(2x)22cos(2x)+1)2k

[In]

integrate(x*cos(x)*cos(k/sin(x))/sin(x)^2,x, algorithm=""maxima"")

output
-1/2*(x*e^(4*k*cos(2*x)*cos(x)/(cos(2*x)^2 + sin(2*x)^2 - 2*cos(2*x) + 1) + 4* 
k*sin(2*x)*sin(x)/(cos(2*x)^2 + sin(2*x)^2 - 2*cos(2*x) + 1)) + x*e^(4*k*cos(x 
)/(cos(2*x)^2 + sin(2*x)^2 - 2*cos(2*x) + 1)))*e^(-2*k*cos(2*x)*cos(x)/(cos(2* 
x)^2 + sin(2*x)^2 - 2*cos(2*x) + 1) - 2*k*sin(2*x)*sin(x)/(cos(2*x)^2 + sin(2* 
x)^2 - 2*cos(2*x) + 1) - 2*k*cos(x)/(cos(2*x)^2 + sin(2*x)^2 - 2*cos(2*x) + 1) 
)*sin(2*(k*cos(x)*sin(2*x) - k*cos(2*x)*sin(x) + k*sin(x))/(cos(2*x)^2 + sin(2 
*x)^2 - 2*cos(2*x) + 1))/k
 

4.2 Test file Number [57]

4.2.1 Mathematica

Integral number [166] (fx)m(a+blog(cxn))d+exdx

[B]   time = 0.128514 (sec), size = 72 ,normalized size = 3.13 x(fx)m(bn3F2(1,1+m,1+m;2+m,2+m;exd)+(1+m)Hypergeometric2F1(1,1+m,2+m,exd)(a+blog(cxn)))d(1+m)2

[In]

Integrate[((f*x)^m*(a + b*Log[c*x^n]))/(d + e*x),x]

output
(x*(f*x)^m*(-(b*n*HypergeometricPFQ[{1, 1 + m, 1 + m}, {2 + m, 2 + m}, -((e*x) 
/d)]) + (1 + m)*Hypergeometric2F1[1, 1 + m, 2 + m, -((e*x)/d)]*(a + b*Log[c*x^ 
n])))/(d*(1 + m)^2)
 

Integral number [167] (fx)m(a+blog(cxn))(d+ex)2dx

[B]   time = 0.117558 (sec), size = 72 ,normalized size = 3.13 x(fx)m(bn3F2(2,1+m,1+m;2+m,2+m;exd)+(1+m)Hypergeometric2F1(2,1+m,2+m,exd)(a+blog(cxn)))d2(1+m)2

[In]

Integrate[((f*x)^m*(a + b*Log[c*x^n]))/(d + e*x)^2,x]

output
(x*(f*x)^m*(-(b*n*HypergeometricPFQ[{2, 1 + m, 1 + m}, {2 + m, 2 + m}, -((e*x) 
/d)]) + (1 + m)*Hypergeometric2F1[2, 1 + m, 2 + m, -((e*x)/d)]*(a + b*Log[c*x^ 
n])))/(d^2*(1 + m)^2)
 

Integral number [168] x(a+bx)mlog(cxn)dx

[B]   time = 0.16101 (sec), size = 173 ,normalized size = 11.53 (a+bx)m(1+bxa)m(n(2abx(1+bxa)m+b2x2(1+bxa)m+a2(1+(1+bxa)m))+ab(2+m)nx3F2(1,1,1m;2,2;bxa)+(abmx(1+bxa)m+b2(1+m)x2(1+bxa)ma2(1+(1+bxa)m))log(cxn))b2(1+m)(2+m)

[In]

Integrate[x*(a + b*x)^m*Log[c*x^n],x]

output
((a + b*x)^m*(-(n*(2*a*b*x*(1 + (b*x)/a)^m + b^2*x^2*(1 + (b*x)/a)^m + a^2*(-1 
 + (1 + (b*x)/a)^m))) + a*b*(2 + m)*n*x*HypergeometricPFQ[{1, 1, -1 - m}, {2, 
2}, -((b*x)/a)] + (a*b*m*x*(1 + (b*x)/a)^m + b^2*(1 + m)*x^2*(1 + (b*x)/a)^m - 
 a^2*(-1 + (1 + (b*x)/a)^m))*Log[c*x^n]))/(b^2*(1 + m)*(2 + m)*(1 + (b*x)/a)^m 
)
 

Integral number [170] (a+bx)mlog(cxn)xdx

[B]   time = 0.0419056 (sec), size = 89 ,normalized size = 5.24 (1+abx)m(a+bx)m(n3F2(m,m,m;1m,1m;abx)+mHypergeometric2F1(m,m,1m,abx)log(cxn))m2

[In]

Integrate[((a + b*x)^m*Log[c*x^n])/x,x]

output
((a + b*x)^m*(-(n*HypergeometricPFQ[{-m, -m, -m}, {1 - m, 1 - m}, -(a/(b*x))]) 
 + m*Hypergeometric2F1[-m, -m, 1 - m, -(a/(b*x))]*Log[c*x^n]))/(m^2*(1 + a/(b* 
x))^m)
 

Integral number [322] (fx)m(a+blog(cxn))d+ex2dx

[B]   time = 0.703872 (sec), size = 108 ,normalized size = 4.32 x(fx)m(bn3F2(1,12+m2,12+m2;32+m2,32+m2;ex2d)+(1+m)Hypergeometric2F1(1,1+m2,3+m2,ex2d)(a+blog(cxn)))d(1+m)2

[In]

Integrate[((f*x)^m*(a + b*Log[c*x^n]))/(d + e*x^2),x]

output
(x*(f*x)^m*(-(b*n*HypergeometricPFQ[{1, 1/2 + m/2, 1/2 + m/2}, {3/2 + m/2, 3/2 
 + m/2}, -((e*x^2)/d)]) + (1 + m)*Hypergeometric2F1[1, (1 + m)/2, (3 + m)/2, - 
((e*x^2)/d)]*(a + b*Log[c*x^n])))/(d*(1 + m)^2)
 

Integral number [323] (fx)m(a+blog(cxn))(d+ex2)2dx

[B]   time = 0.136591 (sec), size = 108 ,normalized size = 4.32 x(fx)m(bn3F2(2,12+m2,12+m2;32+m2,32+m2;ex2d)+(1+m)Hypergeometric2F1(2,1+m2,3+m2,ex2d)(a+blog(cxn)))d2(1+m)2

[In]

Integrate[((f*x)^m*(a + b*Log[c*x^n]))/(d + e*x^2)^2,x]

output
(x*(f*x)^m*(-(b*n*HypergeometricPFQ[{2, 1/2 + m/2, 1/2 + m/2}, {3/2 + m/2, 3/2 
 + m/2}, -((e*x^2)/d)]) + (1 + m)*Hypergeometric2F1[2, (1 + m)/2, (3 + m)/2, - 
((e*x^2)/d)]*(a + b*Log[c*x^n])))/(d^2*(1 + m)^2)
 

Integral number [406] x3(a+blog(cxn))d+exrdx

[B]   time = 0.0916891 (sec), size = 87 ,normalized size = 3.78 x4(bn3F2(1,4r,4r;1+4r,1+4r;exrd)+4Hypergeometric2F1(1,4r,4+rr,exrd)(a+blog(cxn)))16d

[In]

Integrate[(x^3*(a + b*Log[c*x^n]))/(d + e*x^r),x]

output
(x^4*(-(b*n*HypergeometricPFQ[{1, 4/r, 4/r}, {1 + 4/r, 1 + 4/r}, -((e*x^r)/d)] 
) + 4*Hypergeometric2F1[1, 4/r, (4 + r)/r, -((e*x^r)/d)]*(a + b*Log[c*x^n])))/ 
(16*d)
 

Integral number [407] x(a+blog(cxn))d+exrdx

[B]   time = 0.0764756 (sec), size = 87 ,normalized size = 4.14 x2(bn3F2(1,2r,2r;1+2r,1+2r;exrd)+2Hypergeometric2F1(1,2r,2+rr,exrd)(a+blog(cxn)))4d

[In]

Integrate[(x*(a + b*Log[c*x^n]))/(d + e*x^r),x]

output
(x^2*(-(b*n*HypergeometricPFQ[{1, 2/r, 2/r}, {1 + 2/r, 1 + 2/r}, -((e*x^r)/d)] 
) + 2*Hypergeometric2F1[1, 2/r, (2 + r)/r, -((e*x^r)/d)]*(a + b*Log[c*x^n])))/ 
(4*d)
 

Integral number [409] a+blog(cxn)x3(d+exr)dx

[B]   time = 0.0886791 (sec), size = 86 ,normalized size = 3.74 bn3F2(1,2r,2r;12r,12r;exrd)+2Hypergeometric2F1(1,2r,2+rr,exrd)(a+blog(cxn))4dx2

[In]

Integrate[(a + b*Log[c*x^n])/(x^3*(d + e*x^r)),x]

output
-1/4*(b*n*HypergeometricPFQ[{1, -2/r, -2/r}, {1 - 2/r, 1 - 2/r}, -((e*x^r)/d)] 
 + 2*Hypergeometric2F1[1, -2/r, (-2 + r)/r, -((e*x^r)/d)]*(a + b*Log[c*x^n]))/ 
(d*x^2)
 

Integral number [410] x2(a+blog(cxn))d+exrdx

[B]   time = 0.0840796 (sec), size = 87 ,normalized size = 3.78 x3(bn3F2(1,3r,3r;1+3r,1+3r;exrd)+3Hypergeometric2F1(1,3r,3+rr,exrd)(a+blog(cxn)))9d

[In]

Integrate[(x^2*(a + b*Log[c*x^n]))/(d + e*x^r),x]

output
(x^3*(-(b*n*HypergeometricPFQ[{1, 3/r, 3/r}, {1 + 3/r, 1 + 3/r}, -((e*x^r)/d)] 
) + 3*Hypergeometric2F1[1, 3/r, (3 + r)/r, -((e*x^r)/d)]*(a + b*Log[c*x^n])))/ 
(9*d)
 

Integral number [411] a+blog(cxn)d+exrdx

[B]   time = 0.0650704 (sec), size = 69 ,normalized size = 3.45 x(bn3F2(1,1r,1r;1+1r,1+1r;exrd)+Hypergeometric2F1(1,1r,1+1r,exrd)(a+blog(cxn)))d

[In]

Integrate[(a + b*Log[c*x^n])/(d + e*x^r),x]

output
(x*(-(b*n*HypergeometricPFQ[{1, r^(-1), r^(-1)}, {1 + r^(-1), 1 + r^(-1)}, -(( 
e*x^r)/d)]) + Hypergeometric2F1[1, r^(-1), 1 + r^(-1), -((e*x^r)/d)]*(a + b*Lo 
g[c*x^n])))/d
 

Integral number [412] a+blog(cxn)x2(d+exr)dx

[B]   time = 0.0852945 (sec), size = 83 ,normalized size = 3.61 bn3F2(1,1r,1r;11r,11r;exrd)+Hypergeometric2F1(1,1r,1+rr,exrd)(a+blog(cxn))dx

[In]

Integrate[(a + b*Log[c*x^n])/(x^2*(d + e*x^r)),x]

output
-((b*n*HypergeometricPFQ[{1, -r^(-1), -r^(-1)}, {1 - r^(-1), 1 - r^(-1)}, -((e 
*x^r)/d)] + Hypergeometric2F1[1, -r^(-1), (-1 + r)/r, -((e*x^r)/d)]*(a + b*Log 
[c*x^n]))/(d*x))
 

Integral number [413] x3(a+blog(cxn))(d+exr)2dx

[B]   time = 0.164696 (sec), size = 140 ,normalized size = 6.09 x4(bn(4+r)(d+exr)3F2(1,4r,4r;1+4r,1+4r;exrd)+16d(a+blog(cxn))+4(d+exr)Hypergeometric2F1(1,4r,4+rr,exrd)(bn+a(4+r)+b(4+r)log(cxn)))16d2r(d+exr)

[In]

Integrate[(x^3*(a + b*Log[c*x^n]))/(d + e*x^r)^2,x]

output
(x^4*(-(b*n*(-4 + r)*(d + e*x^r)*HypergeometricPFQ[{1, 4/r, 4/r}, {1 + 4/r, 1 
+ 4/r}, -((e*x^r)/d)]) + 16*d*(a + b*Log[c*x^n]) + 4*(d + e*x^r)*Hypergeometri 
c2F1[1, 4/r, (4 + r)/r, -((e*x^r)/d)]*(-(b*n) + a*(-4 + r) + b*(-4 + r)*Log[c* 
x^n])))/(16*d^2*r*(d + e*x^r))
 

Integral number [414] x(a+blog(cxn))(d+exr)2dx

[B]   time = 0.161746 (sec), size = 140 ,normalized size = 6.67 x2(bn(2+r)(d+exr)3F2(1,2r,2r;1+2r,1+2r;exrd)+4d(a+blog(cxn))+2(d+exr)Hypergeometric2F1(1,2r,2+rr,exrd)(bn+a(2+r)+b(2+r)log(cxn)))4d2r(d+exr)

[In]

Integrate[(x*(a + b*Log[c*x^n]))/(d + e*x^r)^2,x]

output
(x^2*(-(b*n*(-2 + r)*(d + e*x^r)*HypergeometricPFQ[{1, 2/r, 2/r}, {1 + 2/r, 1 
+ 2/r}, -((e*x^r)/d)]) + 4*d*(a + b*Log[c*x^n]) + 2*(d + e*x^r)*Hypergeometric 
2F1[1, 2/r, (2 + r)/r, -((e*x^r)/d)]*(-(b*n) + a*(-2 + r) + b*(-2 + r)*Log[c*x 
^n])))/(4*d^2*r*(d + e*x^r))
 

Integral number [416] a+blog(cxn)x3(d+exr)2dx

[B]   time = 0.163581 (sec), size = 139 ,normalized size = 6.04 bn(2+r)(d+exr)3F2(1,2r,2r;12r,12r;exrd)4d(a+blog(cxn))+2(d+exr)Hypergeometric2F1(1,2r,2+rr,exrd)(bn+a(2+r)+b(2+r)log(cxn))4d2rx2(d+exr)

[In]

Integrate[(a + b*Log[c*x^n])/(x^3*(d + e*x^r)^2),x]

output
-1/4*(b*n*(2 + r)*(d + e*x^r)*HypergeometricPFQ[{1, -2/r, -2/r}, {1 - 2/r, 1 - 
 2/r}, -((e*x^r)/d)] - 4*d*(a + b*Log[c*x^n]) + 2*(d + e*x^r)*Hypergeometric2F 
1[1, -2/r, (-2 + r)/r, -((e*x^r)/d)]*(-(b*n) + a*(2 + r) + b*(2 + r)*Log[c*x^n 
]))/(d^2*r*x^2*(d + e*x^r))
 

Integral number [417] x2(a+blog(cxn))(d+exr)2dx

[B]   time = 0.156319 (sec), size = 140 ,normalized size = 6.09 x3(bn(3+r)(d+exr)3F2(1,3r,3r;1+3r,1+3r;exrd)+9d(a+blog(cxn))+3(d+exr)Hypergeometric2F1(1,3r,3+rr,exrd)(bn+a(3+r)+b(3+r)log(cxn)))9d2r(d+exr)

[In]

Integrate[(x^2*(a + b*Log[c*x^n]))/(d + e*x^r)^2,x]

output
(x^3*(-(b*n*(-3 + r)*(d + e*x^r)*HypergeometricPFQ[{1, 3/r, 3/r}, {1 + 3/r, 1 
+ 3/r}, -((e*x^r)/d)]) + 9*d*(a + b*Log[c*x^n]) + 3*(d + e*x^r)*Hypergeometric 
2F1[1, 3/r, (3 + r)/r, -((e*x^r)/d)]*(-(b*n) + a*(-3 + r) + b*(-3 + r)*Log[c*x 
^n])))/(9*d^2*r*(d + e*x^r))
 

Integral number [418] a+blog(cxn)(d+exr)2dx

[B]   time = 1.70687 (sec), size = 161 ,normalized size = 8.05 x(adrHypergeometric2F1(2,1r,1+1r,exrd)+aerxrHypergeometric2F1(2,1r,1+1r,exrd)bn(1+r)(d+exr)3F2(1,1r,1r;1+1r,1+1r;exrd)+bdlog(cxn)b(d+exr)Hypergeometric2F1(1,1r,1+1r,exrd)(n(1+r)log(cxn)))d2r(d+exr)

[In]

Integrate[(a + b*Log[c*x^n])/(d + e*x^r)^2,x]

output
(x*(a*d*r*Hypergeometric2F1[2, r^(-1), 1 + r^(-1), -((e*x^r)/d)] + a*e*r*x^r*H 
ypergeometric2F1[2, r^(-1), 1 + r^(-1), -((e*x^r)/d)] - b*n*(-1 + r)*(d + e*x^ 
r)*HypergeometricPFQ[{1, r^(-1), r^(-1)}, {1 + r^(-1), 1 + r^(-1)}, -((e*x^r)/ 
d)] + b*d*Log[c*x^n] - b*(d + e*x^r)*Hypergeometric2F1[1, r^(-1), 1 + r^(-1), 
-((e*x^r)/d)]*(n - (-1 + r)*Log[c*x^n])))/(d^2*r*(d + e*x^r))
 

Integral number [419] a+blog(cxn)x2(d+exr)2dx

[B]   time = 0.138563 (sec), size = 135 ,normalized size = 5.87 bn(1+r)(d+exr)3F2(1,1r,1r;11r,11r;exrd)+d(a+blog(cxn))(d+exr)Hypergeometric2F1(1,1r,1+rr,exrd)(abn+ar+b(1+r)log(cxn))d2rx(d+exr)

[In]

Integrate[(a + b*Log[c*x^n])/(x^2*(d + e*x^r)^2),x]

output
(-(b*n*(1 + r)*(d + e*x^r)*HypergeometricPFQ[{1, -r^(-1), -r^(-1)}, {1 - r^(-1 
), 1 - r^(-1)}, -((e*x^r)/d)]) + d*(a + b*Log[c*x^n]) - (d + e*x^r)*Hypergeome 
tric2F1[1, -r^(-1), (-1 + r)/r, -((e*x^r)/d)]*(a - b*n + a*r + b*(1 + r)*Log[c 
*x^n]))/(d^2*r*x*(d + e*x^r))
 

Integral number [444] (fx)m(a+blog(cxn))d+exrdx

[B]   time = 0.157935 (sec), size = 111 ,normalized size = 4.44 x(fx)m(bn3F2(1,1r+mr,1r+mr;1+1r+mr,1+1r+mr;exrd)+(1+m)Hypergeometric2F1(1,1+mr,1+m+rr,exrd)(a+blog(cxn)))d(1+m)2

[In]

Integrate[((f*x)^m*(a + b*Log[c*x^n]))/(d + e*x^r),x]

output
(x*(f*x)^m*(-(b*n*HypergeometricPFQ[{1, r^(-1) + m/r, r^(-1) + m/r}, {1 + r^(- 
1) + m/r, 1 + r^(-1) + m/r}, -((e*x^r)/d)]) + (1 + m)*Hypergeometric2F1[1, (1 
+ m)/r, (1 + m + r)/r, -((e*x^r)/d)]*(a + b*Log[c*x^n])))/(d*(1 + m)^2)
 

Integral number [445] (fx)m(a+blog(cxn))(d+exr)2dx

[B]   time = 0.296047 (sec), size = 177 ,normalized size = 7.08 x(fx)m(bn(1+mr)(d+exr)3F2(1,1r+mr,1r+mr;1+1r+mr,1+1r+mr;exrd)(1+m)(d(1+m)(a+blog(cxn))+(d+exr)Hypergeometric2F1(1,1+mr,1+m+rr,exrd)(bn+a(1+mr)+b(1+mr)log(cxn))))d2(1+m)2r(d+exr)

[In]

Integrate[((f*x)^m*(a + b*Log[c*x^n]))/(d + e*x^r)^2,x]

output
(x*(f*x)^m*(b*n*(1 + m - r)*(d + e*x^r)*HypergeometricPFQ[{1, r^(-1) + m/r, r^ 
(-1) + m/r}, {1 + r^(-1) + m/r, 1 + r^(-1) + m/r}, -((e*x^r)/d)] - (1 + m)*(-( 
d*(1 + m)*(a + b*Log[c*x^n])) + (d + e*x^r)*Hypergeometric2F1[1, (1 + m)/r, (1 
 + m + r)/r, -((e*x^r)/d)]*(b*n + a*(1 + m - r) + b*(1 + m - r)*Log[c*x^n])))) 
/(d^2*(1 + m)^2*r*(d + e*x^r))
 

4.3 Test file Number [58]

4.3.1 Mathematica

Integral number [138] (gx)q(a+blog(cxn))log(d(e+fxm)k)dx

[B]   time = 0.33242 (sec), size = 304 ,normalized size = 10.86 x(gx)q(akm+2bkmnakmqbkmn3F2(1,1m+qm,1m+qm;1+1m+qm,1+1m+qm;fxme)bkmlog(cxn)bkmqlog(cxn)+kmHypergeometric2F1(1,1+qm,1+m+qm,fxme)(abn+aq+b(1+q)log(cxn))+alog(d(e+fxm)k)bnlog(d(e+fxm)k)+2aqlog(d(e+fxm)k)bnqlog(d(e+fxm)k)+aq2log(d(e+fxm)k)+blog(cxn)log(d(e+fxm)k)+2bqlog(cxn)log(d(e+fxm)k)+bq2log(cxn)log(d(e+fxm)k))(1+q)3

[In]

Integrate[(g*x)^q*(a + b*Log[c*x^n])*Log[d*(e + f*x^m)^k],x]

output
(x*(g*x)^q*(-(a*k*m) + 2*b*k*m*n - a*k*m*q - b*k*m*n*HypergeometricPFQ[{1, m^( 
-1) + q/m, m^(-1) + q/m}, {1 + m^(-1) + q/m, 1 + m^(-1) + q/m}, -((f*x^m)/e)] 
- b*k*m*Log[c*x^n] - b*k*m*q*Log[c*x^n] + k*m*Hypergeometric2F1[1, (1 + q)/m, 
(1 + m + q)/m, -((f*x^m)/e)]*(a - b*n + a*q + b*(1 + q)*Log[c*x^n]) + a*Log[d* 
(e + f*x^m)^k] - b*n*Log[d*(e + f*x^m)^k] + 2*a*q*Log[d*(e + f*x^m)^k] - b*n*q 
*Log[d*(e + f*x^m)^k] + a*q^2*Log[d*(e + f*x^m)^k] + b*Log[c*x^n]*Log[d*(e + f 
*x^m)^k] + 2*b*q*Log[c*x^n]*Log[d*(e + f*x^m)^k] + b*q^2*Log[c*x^n]*Log[d*(e + 
 f*x^m)^k]))/(1 + q)^3
 

Integral number [144] x2(a+blog(cxn))log(d(e+fxm)k)dx

[B]   time = 0.152851 (sec), size = 292 ,normalized size = 11.23 x3(6bekmn2bekm2n+9afkmxmHypergeometric2F1(1,3+mm,2+3m,fxme)+bekm(3+m)n3F2(1,3m,3m;1+3m,1+3m;fxme)+bekm(3+m)Hypergeometric2F1(1,3m,3+mm,fxme)(n3log(cxn))+9bekmlog(cxn)+3bekm2log(cxn)27aelog(d(e+fxm)k)9aemlog(d(e+fxm)k)+9benlog(d(e+fxm)k)+3bemnlog(d(e+fxm)k)27belog(cxn)log(d(e+fxm)k)9bemlog(cxn)log(d(e+fxm)k))27e(3+m)

[In]

Integrate[x^2*(a + b*Log[c*x^n])*Log[d*(e + f*x^m)^k],x]

output
-1/27*(x^3*(-6*b*e*k*m*n - 2*b*e*k*m^2*n + 9*a*f*k*m*x^m*Hypergeometric2F1[1, 
(3 + m)/m, 2 + 3/m, -((f*x^m)/e)] + b*e*k*m*(3 + m)*n*HypergeometricPFQ[{1, 3/ 
m, 3/m}, {1 + 3/m, 1 + 3/m}, -((f*x^m)/e)] + b*e*k*m*(3 + m)*Hypergeometric2F1 
[1, 3/m, (3 + m)/m, -((f*x^m)/e)]*(n - 3*Log[c*x^n]) + 9*b*e*k*m*Log[c*x^n] + 
3*b*e*k*m^2*Log[c*x^n] - 27*a*e*Log[d*(e + f*x^m)^k] - 9*a*e*m*Log[d*(e + f*x^ 
m)^k] + 9*b*e*n*Log[d*(e + f*x^m)^k] + 3*b*e*m*n*Log[d*(e + f*x^m)^k] - 27*b*e 
*Log[c*x^n]*Log[d*(e + f*x^m)^k] - 9*b*e*m*Log[c*x^n]*Log[d*(e + f*x^m)^k]))/( 
e*(3 + m))
 

Integral number [145] x(a+blog(cxn))log(d(e+fxm)k)dx

[B]   time = 0.136601 (sec), size = 292 ,normalized size = 12.17 x2(4bekmn2bekm2n+4afkmxmHypergeometric2F1(1,2+mm,2+2m,fxme)+bekm(2+m)n3F2(1,2m,2m;1+2m,1+2m;fxme)+bekm(2+m)Hypergeometric2F1(1,2m,2+mm,fxme)(n2log(cxn))+4bekmlog(cxn)+2bekm2log(cxn)8aelog(d(e+fxm)k)4aemlog(d(e+fxm)k)+4benlog(d(e+fxm)k)+2bemnlog(d(e+fxm)k)8belog(cxn)log(d(e+fxm)k)4bemlog(cxn)log(d(e+fxm)k))8e(2+m)

[In]

Integrate[x*(a + b*Log[c*x^n])*Log[d*(e + f*x^m)^k],x]

output
-1/8*(x^2*(-4*b*e*k*m*n - 2*b*e*k*m^2*n + 4*a*f*k*m*x^m*Hypergeometric2F1[1, ( 
2 + m)/m, 2 + 2/m, -((f*x^m)/e)] + b*e*k*m*(2 + m)*n*HypergeometricPFQ[{1, 2/m 
, 2/m}, {1 + 2/m, 1 + 2/m}, -((f*x^m)/e)] + b*e*k*m*(2 + m)*Hypergeometric2F1[ 
1, 2/m, (2 + m)/m, -((f*x^m)/e)]*(n - 2*Log[c*x^n]) + 4*b*e*k*m*Log[c*x^n] + 2 
*b*e*k*m^2*Log[c*x^n] - 8*a*e*Log[d*(e + f*x^m)^k] - 4*a*e*m*Log[d*(e + f*x^m) 
^k] + 4*b*e*n*Log[d*(e + f*x^m)^k] + 2*b*e*m*n*Log[d*(e + f*x^m)^k] - 8*b*e*Lo 
g[c*x^n]*Log[d*(e + f*x^m)^k] - 4*b*e*m*Log[c*x^n]*Log[d*(e + f*x^m)^k]))/(e*( 
2 + m))
 

Integral number [146] (a+blog(cxn))log(d(e+fxm)k)dx

[B]   time = 0.152115 (sec), size = 165 ,normalized size = 7.17 bkmnxkmx(a+b(nlog(x)+log(cxn)))+x(bkmnbkmn3F2(1,1m,1m;1+1m,1+1m;fxme)bkmnlog(x)+kmHypergeometric2F1(1,1m,1+1m,fxme)(abn+blog(cxn))+alog(d(e+fxm)k)bnlog(d(e+fxm)k)+blog(cxn)log(d(e+fxm)k))

[In]

Integrate[(a + b*Log[c*x^n])*Log[d*(e + f*x^m)^k],x]

output
b*k*m*n*x - k*m*x*(a + b*(-(n*Log[x]) + Log[c*x^n])) + x*(b*k*m*n - b*k*m*n*Hy 
pergeometricPFQ[{1, m^(-1), m^(-1)}, {1 + m^(-1), 1 + m^(-1)}, -((f*x^m)/e)] - 
 b*k*m*n*Log[x] + k*m*Hypergeometric2F1[1, m^(-1), 1 + m^(-1), -((f*x^m)/e)]*( 
a - b*n + b*Log[c*x^n]) + a*Log[d*(e + f*x^m)^k] - b*n*Log[d*(e + f*x^m)^k] + 
b*Log[c*x^n]*Log[d*(e + f*x^m)^k])
 

Integral number [148] (a+blog(cxn))log(d(e+fxm)k)x2dx

[B]   time = 0.125142 (sec), size = 282 ,normalized size = 10.85 2bekmn2bekm2n+afkmxmHypergeometric2F1(1,1+mm,21m,fxme)+bek(1+m)mn3F2(1,1m,1m;11m,11m;fxme)+bekmlog(cxn)bekm2log(cxn)+bek(1+m)mHypergeometric2F1(1,1m,1+mm,fxme)(n+log(cxn))+aelog(d(e+fxm)k)aemlog(d(e+fxm)k)+benlog(d(e+fxm)k)bemnlog(d(e+fxm)k)+belog(cxn)log(d(e+fxm)k)bemlog(cxn)log(d(e+fxm)k)e(1+m)x

[In]

Integrate[((a + b*Log[c*x^n])*Log[d*(e + f*x^m)^k])/x^2,x]

output
(2*b*e*k*m*n - 2*b*e*k*m^2*n + a*f*k*m*x^m*Hypergeometric2F1[1, (-1 + m)/m, 2 
- m^(-1), -((f*x^m)/e)] + b*e*k*(-1 + m)*m*n*HypergeometricPFQ[{1, -m^(-1), -m 
^(-1)}, {1 - m^(-1), 1 - m^(-1)}, -((f*x^m)/e)] + b*e*k*m*Log[c*x^n] - b*e*k*m 
^2*Log[c*x^n] + b*e*k*(-1 + m)*m*Hypergeometric2F1[1, -m^(-1), (-1 + m)/m, -(( 
f*x^m)/e)]*(n + Log[c*x^n]) + a*e*Log[d*(e + f*x^m)^k] - a*e*m*Log[d*(e + f*x^ 
m)^k] + b*e*n*Log[d*(e + f*x^m)^k] - b*e*m*n*Log[d*(e + f*x^m)^k] + b*e*Log[c* 
x^n]*Log[d*(e + f*x^m)^k] - b*e*m*Log[c*x^n]*Log[d*(e + f*x^m)^k])/(e*(-1 + m) 
*x)
 

Integral number [149] (a+blog(cxn))log(d(e+fxm)k)x3dx

[B]   time = 0.128627 (sec), size = 292 ,normalized size = 11.23 4bekmn2bekm2n+4afkmxmHypergeometric2F1(1,2+mm,22m,fxme)+bek(2+m)mn3F2(1,2m,2m;12m,12m;fxme)+4bekmlog(cxn)2bekm2log(cxn)+bek(2+m)mHypergeometric2F1(1,2m,2+mm,fxme)(n+2log(cxn))+8aelog(d(e+fxm)k)4aemlog(d(e+fxm)k)+4benlog(d(e+fxm)k)2bemnlog(d(e+fxm)k)+8belog(cxn)log(d(e+fxm)k)4bemlog(cxn)log(d(e+fxm)k)8e(2+m)x2

[In]

Integrate[((a + b*Log[c*x^n])*Log[d*(e + f*x^m)^k])/x^3,x]

output
(4*b*e*k*m*n - 2*b*e*k*m^2*n + 4*a*f*k*m*x^m*Hypergeometric2F1[1, (-2 + m)/m, 
2 - 2/m, -((f*x^m)/e)] + b*e*k*(-2 + m)*m*n*HypergeometricPFQ[{1, -2/m, -2/m}, 
 {1 - 2/m, 1 - 2/m}, -((f*x^m)/e)] + 4*b*e*k*m*Log[c*x^n] - 2*b*e*k*m^2*Log[c* 
x^n] + b*e*k*(-2 + m)*m*Hypergeometric2F1[1, -2/m, (-2 + m)/m, -((f*x^m)/e)]*( 
n + 2*Log[c*x^n]) + 8*a*e*Log[d*(e + f*x^m)^k] - 4*a*e*m*Log[d*(e + f*x^m)^k] 
+ 4*b*e*n*Log[d*(e + f*x^m)^k] - 2*b*e*m*n*Log[d*(e + f*x^m)^k] + 8*b*e*Log[c* 
x^n]*Log[d*(e + f*x^m)^k] - 4*b*e*m*Log[c*x^n]*Log[d*(e + f*x^m)^k])/(8*e*(-2 
+ m)*x^2)
 

Integral number [220] (dx)m(a+blog(cxn))log(1exq)dx

[B]   time = 0.296332 (sec), size = 266 ,normalized size = 10.23 x(dx)m(aqamq+2bnqbnq3F2(1,1q+mq,1q+mq;1+1q+mq,1+1q+mq;exq)bqlog(cxn)bmqlog(cxn)+qHypergeometric2F1(1,1+mq,1+m+qq,exq)(a+ambn+b(1+m)log(cxn))+alog(1exq)+2amlog(1exq)+am2log(1exq)bnlog(1exq)bmnlog(1exq)+blog(cxn)log(1exq)+2bmlog(cxn)log(1exq)+bm2log(cxn)log(1exq))(1+m)3

[In]

Integrate[-((d*x)^m*(a + b*Log[c*x^n])*Log[1 - e*x^q]),x]

output
-((x*(d*x)^m*(-(a*q) - a*m*q + 2*b*n*q - b*n*q*HypergeometricPFQ[{1, q^(-1) + 
m/q, q^(-1) + m/q}, {1 + q^(-1) + m/q, 1 + q^(-1) + m/q}, e*x^q] - b*q*Log[c*x 
^n] - b*m*q*Log[c*x^n] + q*Hypergeometric2F1[1, (1 + m)/q, (1 + m + q)/q, e*x^ 
q]*(a + a*m - b*n + b*(1 + m)*Log[c*x^n]) + a*Log[1 - e*x^q] + 2*a*m*Log[1 - e 
*x^q] + a*m^2*Log[1 - e*x^q] - b*n*Log[1 - e*x^q] - b*m*n*Log[1 - e*x^q] + b*L 
og[c*x^n]*Log[1 - e*x^q] + 2*b*m*Log[c*x^n]*Log[1 - e*x^q] + b*m^2*Log[c*x^n]* 
Log[1 - e*x^q]))/(1 + m)^3)
 

4.3.2 Maple

Integral number [221] (dx)m(a+blog(cxn))PolyLog(2,exq)dx

[B]   time = 0.089 (sec), size = 867 ,normalized size = 37.7 (dx)mxm(e)mq1qa(q2x1+m(e)mq+1qln(1exq)(1+m)2qx1+m(e)mq+1qLi2(exq)1+mq2x1+m+qe(e)mq+1qΦ(exq,1,1+m+qq)(1+m)2)q(dx)mxm(e)mq1qbln(c)(q2x1+m(e)mq+1qln(1exq)(1+m)2qx1+m(e)mq+1qLi2(exq)1+mq2x1+m+qe(e)mq+1qΦ(exq,1,1+m+qq)(1+m)2)q+((e)mq1qln(e)(dx)mxmbn(q2xm(e)mq+1qln(1exq)(1+m)2qxm(e)mq+1qLi2(exq)1+mq2xq+me(e)mq+1qΦ(exq,1,1+m+qq)(1+m)2)q2(e)mq1q(dx)mxmbn(q2xm(e)mq+1qln(x)ln(1exq)(1+m)2qxm(e)mq+1qln(e)ln(1exq)(1+m)2+2q2xm(e)mq+1qln(1exq)(1+m)3qxm(e)mq+1qln(x)Li2(exq)1+mxm(e)mq+1qln(e)Li2(exq)1+m+qxm(e)mq+1qLi2(exq)(1+m)2q2xq+me(e)mq+1qln(x)Φ(exq,1,1+m+qq)(1+m)2qxq+me(e)mq+1qln(e)Φ(exq,1,1+m+qq)(1+m)2+2q2xq+me(e)mq+1qΦ(exq,1,1+m+qq)(1+m)3+qxq+me(e)mq+1qΦ(exq,2,1+m+qq)(1+m)2)q)x

[In]

int((d*x)^m*(a+b*ln(c*x^n))*polylog(2,e*x^q),x)

output
-(d*x)^m*x^(-m)*(-e)^(-m/q-1/q)*a/q*(-q^2*x^(1+m)*(-e)^(m/q+1/q)/(1+m)^2*ln(1- 
e*x^q)-q*x^(1+m)*(-e)^(m/q+1/q)/(1+m)*polylog(2,e*x^q)-q^2*x^(1+m+q)*e*(-e)^(m 
/q+1/q)/(1+m)^2*LerchPhi(e*x^q,1,(1+m+q)/q))-(d*x)^m*x^(-m)*(-e)^(-m/q-1/q)*b* 
ln(c)/q*(-q^2*x^(1+m)*(-e)^(m/q+1/q)/(1+m)^2*ln(1-e*x^q)-q*x^(1+m)*(-e)^(m/q+1 
/q)/(1+m)*polylog(2,e*x^q)-q^2*x^(1+m+q)*e*(-e)^(m/q+1/q)/(1+m)^2*LerchPhi(e*x 
^q,1,(1+m+q)/q))+((-e)^(-m/q-1/q)*ln(-e)/q^2*(d*x)^m*x^(-m)*b*n*(-q^2*x^m*(-e) 
^(m/q+1/q)/(1+m)^2*ln(1-e*x^q)-q*x^m*(-e)^(m/q+1/q)/(1+m)*polylog(2,e*x^q)-q^2 
*x^(q+m)*e*(-e)^(m/q+1/q)/(1+m)^2*LerchPhi(e*x^q,1,(1+m+q)/q))-(-e)^(-m/q-1/q) 
*(d*x)^m*x^(-m)*b*n/q*(-q^2*x^m*(-e)^(m/q+1/q)*ln(x)/(1+m)^2*ln(1-e*x^q)-q*x^m 
*(-e)^(m/q+1/q)*ln(-e)/(1+m)^2*ln(1-e*x^q)+2*q^2*x^m*(-e)^(m/q+1/q)/(1+m)^3*ln 
(1-e*x^q)-q*x^m*(-e)^(m/q+1/q)*ln(x)/(1+m)*polylog(2,e*x^q)-x^m*(-e)^(m/q+1/q) 
*ln(-e)/(1+m)*polylog(2,e*x^q)+q*x^m*(-e)^(m/q+1/q)/(1+m)^2*polylog(2,e*x^q)-q 
^2*x^(q+m)*e*(-e)^(m/q+1/q)*ln(x)/(1+m)^2*LerchPhi(e*x^q,1,(1+m+q)/q)-q*x^(q+m 
)*e*(-e)^(m/q+1/q)*ln(-e)/(1+m)^2*LerchPhi(e*x^q,1,(1+m+q)/q)+2*q^2*x^(q+m)*e* 
(-e)^(m/q+1/q)/(1+m)^3*LerchPhi(e*x^q,1,(1+m+q)/q)+q*x^(q+m)*e*(-e)^(m/q+1/q)/ 
(1+m)^2*LerchPhi(e*x^q,2,(1+m+q)/q)))*x
 

4.4 Test file Number [63]

4.4.1 Mathematica

Integral number [98] x2log3(c(a+bx2)p)dx

[B]   time = 3.12679 (sec), size = 909 ,normalized size = 50.5 2apx(plog(a+bx2)+log(c(a+bx2)p))2b2a3/2parctan(bxa)(plog(a+bx2)+log(c(a+bx2)p))2b3/2+px3log(a+bx2)(plog(a+bx2)+log(c(a+bx2)p))2+13x3(plog(a+bx2)+log(c(a+bx2)p))2(2pplog(a+bx2)+log(c(a+bx2)p))+3p2(plog(a+bx2)+log(c(a+bx2)p))(13x3log2(a+bx2)4(9ia3/2arctan(bxa)2+3a3/2arctan(bxa)(8+6log(2aa+ibx)+3log(a+bx2))+bx(24a2bx2+(9a+3bx2)log(a+bx2))+9ia3/2PolyLog(2,ia+bxia+bx))27b3/2)+p3(416aa3/2bx2a+bx2a+bx2arcsin(aa+bx2)+23abx2(624a16bx2+(288a+24bx2)log(a+bx2)+18(3abx2)log2(a+bx2)+9bx2log3(a+bx2))+36aa3/2bx2a+bx2(8a4F3(12,12,12,12;32,32,32;aa+bx2)+log(a+bx2)(4a3F2(12,12,12;32,32;aa+bx2)+a+bx2arcsin(aa+bx2)log(a+bx2)))48a2(4bx2arctanh(bx2a)(log(a+bx2)log(1+bx2a))abx2a(log2(1+bx2a)4log(1+bx2a)log(12(1+bx2a))+2log2(12(1+bx2a))4PolyLog(2,1212bx2a))))18ab2x

[In]

Integrate[x^2*Log[c*(a + b*x^2)^p]^3,x]

output
(2*a*p*x*(-(p*Log[a + b*x^2]) + Log[c*(a + b*x^2)^p])^2)/b - (2*a^(3/2)*p*ArcT 
an[(Sqrt[b]*x)/Sqrt[a]]*(-(p*Log[a + b*x^2]) + Log[c*(a + b*x^2)^p])^2)/b^(3/2 
) + p*x^3*Log[a + b*x^2]*(-(p*Log[a + b*x^2]) + Log[c*(a + b*x^2)^p])^2 + (x^3 
*(-(p*Log[a + b*x^2]) + Log[c*(a + b*x^2)^p])^2*(-2*p - p*Log[a + b*x^2] + Log 
[c*(a + b*x^2)^p]))/3 + 3*p^2*(-(p*Log[a + b*x^2]) + Log[c*(a + b*x^2)^p])*((x 
^3*Log[a + b*x^2]^2)/3 - (4*((9*I)*a^(3/2)*ArcTan[(Sqrt[b]*x)/Sqrt[a]]^2 + 3*a 
^(3/2)*ArcTan[(Sqrt[b]*x)/Sqrt[a]]*(-8 + 6*Log[(2*Sqrt[a])/(Sqrt[a] + I*Sqrt[b 
]*x)] + 3*Log[a + b*x^2]) + Sqrt[b]*x*(24*a - 2*b*x^2 + (-9*a + 3*b*x^2)*Log[a 
 + b*x^2]) + (9*I)*a^(3/2)*PolyLog[2, (I*Sqrt[a] + Sqrt[b]*x)/((-I)*Sqrt[a] + 
Sqrt[b]*x)]))/(27*b^(3/2))) + (p^3*(416*Sqrt[-a]*a^(3/2)*Sqrt[(b*x^2)/(a + b*x 
^2)]*Sqrt[a + b*x^2]*ArcSin[Sqrt[a]/Sqrt[a + b*x^2]] + (2*Sqrt[-a]*b*x^2*(624* 
a - 16*b*x^2 + (-288*a + 24*b*x^2)*Log[a + b*x^2] + 18*(3*a - b*x^2)*Log[a + b 
*x^2]^2 + 9*b*x^2*Log[a + b*x^2]^3))/3 + 36*Sqrt[-a]*a^(3/2)*Sqrt[(b*x^2)/(a + 
 b*x^2)]*(8*Sqrt[a]*HypergeometricPFQ[{1/2, 1/2, 1/2, 1/2}, {3/2, 3/2, 3/2}, a 
/(a + b*x^2)] + Log[a + b*x^2]*(4*Sqrt[a]*HypergeometricPFQ[{1/2, 1/2, 1/2}, { 
3/2, 3/2}, a/(a + b*x^2)] + Sqrt[a + b*x^2]*ArcSin[Sqrt[a]/Sqrt[a + b*x^2]]*Lo 
g[a + b*x^2])) - 48*a^2*(4*Sqrt[b*x^2]*ArcTanh[Sqrt[b*x^2]/Sqrt[-a]]*(Log[a + 
b*x^2] - Log[1 + (b*x^2)/a]) - Sqrt[-a]*Sqrt[-((b*x^2)/a)]*(Log[1 + (b*x^2)/a] 
^2 - 4*Log[1 + (b*x^2)/a]*Log[(1 + Sqrt[-((b*x^2)/a)])/2] + 2*Log[(1 + Sqrt[-( 
(b*x^2)/a)])/2]^2 - 4*PolyLog[2, 1/2 - Sqrt[-((b*x^2)/a)]/2]))))/(18*Sqrt[-...
 

Integral number [99] log3(c(a+bx2)p)dx

[B]   time = 2.66678 (sec), size = 789 ,normalized size = 56.36 6aparctan(bxa)(plog(a+bx2)+log(c(a+bx2)p))2b+3pxlog(a+bx2)(plog(a+bx2)+log(c(a+bx2)p))2+x(plog(a+bx2)+log(c(a+bx2)p))2(6pplog(a+bx2)+log(c(a+bx2)p))3p2(plog(a+bx2)log(c(a+bx2)p))(4iaarctan(bxa)2+4aarctan(bxa)(2+2log(2aa+ibx)+log(a+bx2))+bx(84log(a+bx2)+log2(a+bx2))+4iaPolyLog(2,ia+bxia+bx))b+p3(48a2bx2a+bx2a+bx2arcsin(aa+bx2)+abx2(48+24log(a+bx2)6log2(a+bx2)+log3(a+bx2))6a2bx2a+bx2(8a4F3(12,12,12,12;32,32,32;aa+bx2)+log(a+bx2)(4a3F2(12,12,12;32,32;aa+bx2)+a+bx2arcsin(aa+bx2)log(a+bx2)))+24abx2arctanh(bx2a)(log(a+bx2)log(1+bx2a))+6(a)3/2bx2a(log2(1+bx2a)4log(1+bx2a)log(12(1+bx2a))+2log2(12(1+bx2a))4PolyLog(2,1212bx2a)))abx

[In]

Integrate[Log[c*(a + b*x^2)^p]^3,x]

output
(6*Sqrt[a]*p*ArcTan[(Sqrt[b]*x)/Sqrt[a]]*(-(p*Log[a + b*x^2]) + Log[c*(a + b*x 
^2)^p])^2)/Sqrt[b] + 3*p*x*Log[a + b*x^2]*(-(p*Log[a + b*x^2]) + Log[c*(a + b* 
x^2)^p])^2 + x*(-(p*Log[a + b*x^2]) + Log[c*(a + b*x^2)^p])^2*(-6*p - p*Log[a 
+ b*x^2] + Log[c*(a + b*x^2)^p]) - (3*p^2*(p*Log[a + b*x^2] - Log[c*(a + b*x^2 
)^p])*((4*I)*Sqrt[a]*ArcTan[(Sqrt[b]*x)/Sqrt[a]]^2 + 4*Sqrt[a]*ArcTan[(Sqrt[b] 
*x)/Sqrt[a]]*(-2 + 2*Log[(2*Sqrt[a])/(Sqrt[a] + I*Sqrt[b]*x)] + Log[a + b*x^2] 
) + Sqrt[b]*x*(8 - 4*Log[a + b*x^2] + Log[a + b*x^2]^2) + (4*I)*Sqrt[a]*PolyLo 
g[2, (I*Sqrt[a] + Sqrt[b]*x)/((-I)*Sqrt[a] + Sqrt[b]*x)]))/Sqrt[b] + (p^3*(-48 
*Sqrt[-a^2]*Sqrt[(b*x^2)/(a + b*x^2)]*Sqrt[a + b*x^2]*ArcSin[Sqrt[a]/Sqrt[a + 
b*x^2]] + Sqrt[-a]*b*x^2*(-48 + 24*Log[a + b*x^2] - 6*Log[a + b*x^2]^2 + Log[a 
 + b*x^2]^3) - 6*Sqrt[-a^2]*Sqrt[(b*x^2)/(a + b*x^2)]*(8*Sqrt[a]*Hypergeometri 
cPFQ[{1/2, 1/2, 1/2, 1/2}, {3/2, 3/2, 3/2}, a/(a + b*x^2)] + Log[a + b*x^2]*(4 
*Sqrt[a]*HypergeometricPFQ[{1/2, 1/2, 1/2}, {3/2, 3/2}, a/(a + b*x^2)] + Sqrt[ 
a + b*x^2]*ArcSin[Sqrt[a]/Sqrt[a + b*x^2]]*Log[a + b*x^2])) + 24*a*Sqrt[b*x^2] 
*ArcTanh[Sqrt[b*x^2]/Sqrt[-a]]*(Log[a + b*x^2] - Log[1 + (b*x^2)/a]) + 6*(-a)^ 
(3/2)*Sqrt[-((b*x^2)/a)]*(Log[1 + (b*x^2)/a]^2 - 4*Log[1 + (b*x^2)/a]*Log[(1 + 
 Sqrt[-((b*x^2)/a)])/2] + 2*Log[(1 + Sqrt[-((b*x^2)/a)])/2]^2 - 4*PolyLog[2, 1 
/2 - Sqrt[-((b*x^2)/a)]/2])))/(Sqrt[-a]*b*x)
 

Integral number [100] log3(c(a+bx2)p)x2dx

[C]   time = 1.00436 (sec), size = 505 ,normalized size = 28.06 p3(96a1aa+bx24F3(12,12,12,12;32,32,32;aa+bx2)48a1aa+bx23F2(12,12,12;32,32;aa+bx2)log(a+bx2)2log2(a+bx2)(6a+bx21aa+bx2arcsin(aa+bx2)+alog(a+bx2)))2ax+6bparctan(bxa)(plog(a+bx2)+log(c(a+bx2)p))2a3plog(a+bx2)(plog(a+bx2)+log(c(a+bx2)p))2x(plog(a+bx2)+log(c(a+bx2)p))3x+3p2(plog(a+bx2)+log(c(a+bx2)p))(log2(a+bx2)x+4b(arctan(bxa)(iarctan(bxa)+2log(2iibxa)+log(a+bx2))+iPolyLog(2,ia+bxia+bx))a)

[In]

Integrate[Log[c*(a + b*x^2)^p]^3/x^2,x]

output
(p^3*(-96*Sqrt[a]*Sqrt[1 - a/(a + b*x^2)]*HypergeometricPFQ[{1/2, 1/2, 1/2, 1/ 
2}, {3/2, 3/2, 3/2}, a/(a + b*x^2)] - 48*Sqrt[a]*Sqrt[1 - a/(a + b*x^2)]*Hyper 
geometricPFQ[{1/2, 1/2, 1/2}, {3/2, 3/2}, a/(a + b*x^2)]*Log[a + b*x^2] - 2*Lo 
g[a + b*x^2]^2*(6*Sqrt[a + b*x^2]*Sqrt[1 - a/(a + b*x^2)]*ArcSin[Sqrt[a]/Sqrt[ 
a + b*x^2]] + Sqrt[a]*Log[a + b*x^2])))/(2*Sqrt[a]*x) + (6*Sqrt[b]*p*ArcTan[(S 
qrt[b]*x)/Sqrt[a]]*(-(p*Log[a + b*x^2]) + Log[c*(a + b*x^2)^p])^2)/Sqrt[a] - ( 
3*p*Log[a + b*x^2]*(-(p*Log[a + b*x^2]) + Log[c*(a + b*x^2)^p])^2)/x - (-(p*Lo 
g[a + b*x^2]) + Log[c*(a + b*x^2)^p])^3/x + 3*p^2*(-(p*Log[a + b*x^2]) + Log[c 
*(a + b*x^2)^p])*(-(Log[a + b*x^2]^2/x) + (4*Sqrt[b]*(ArcTan[(Sqrt[b]*x)/Sqrt[ 
a]]*(I*ArcTan[(Sqrt[b]*x)/Sqrt[a]] + 2*Log[(2*I)/(I - (Sqrt[b]*x)/Sqrt[a])] + 
Log[a + b*x^2]) + I*PolyLog[2, (I*Sqrt[a] + Sqrt[b]*x)/((-I)*Sqrt[a] + Sqrt[b] 
*x)]))/Sqrt[a])
 

Integral number [101] log3(c(a+bx2)p)x4dx

[B]   time = 2.19457 (sec), size = 851 ,normalized size = 47.28 a2(plog(a+bx2)log(c(a+bx2)p))36abpx2(plog(a+bx2)+log(c(a+bx2)p))26ab3/2px3arctan(bxa)(plog(a+bx2)+log(c(a+bx2)p))23a2plog(a+bx2)(plog(a+bx2)+log(c(a+bx2)p))2+3ap2(plog(a+bx2)log(c(a+bx2)p))(a3/2log2(a+bx2)+4bx2(ibxarctan(bxa)2+alog(a+bx2)+bxarctan(bxa)(2+2log(2aa+ibx)+log(a+bx2))+ibxPolyLog(2,ia+bxia+bx)))+p3(48abx2bx2a+bx24F3(12,12,12,12;32,32,32;aa+bx2)+24a(bx2)3/2arctanh(bx2a)log(a+bx2)+24abx2bx2a+bx23F2(12,12,12;32,32;aa+bx2)log(a+bx2)6abx2log2(a+bx2)+6a(bx2a+bx2)3/2(a+bx2)3/2arcsin(aa+bx2)log2(a+bx2)a2log3(a+bx2)24a(bx2)3/2arctanh(bx2a)log(1+bx2a)6a2(bx2a)3/2log2(1+bx2a)+24a2(bx2a)3/2log(1+bx2a)log(12(1+bx2a))12a2(bx2a)3/2log2(12(1+bx2a))+24a2(bx2a)3/2PolyLog(2,1212bx2a))3a2x3

[In]

Integrate[Log[c*(a + b*x^2)^p]^3/x^4,x]

output
(a^2*(p*Log[a + b*x^2] - Log[c*(a + b*x^2)^p])^3 - 6*a*b*p*x^2*(-(p*Log[a + b* 
x^2]) + Log[c*(a + b*x^2)^p])^2 - 6*Sqrt[a]*b^(3/2)*p*x^3*ArcTan[(Sqrt[b]*x)/S 
qrt[a]]*(-(p*Log[a + b*x^2]) + Log[c*(a + b*x^2)^p])^2 - 3*a^2*p*Log[a + b*x^2 
]*(-(p*Log[a + b*x^2]) + Log[c*(a + b*x^2)^p])^2 + 3*Sqrt[a]*p^2*(p*Log[a + b* 
x^2] - Log[c*(a + b*x^2)^p])*(a^(3/2)*Log[a + b*x^2]^2 + 4*b*x^2*(I*Sqrt[b]*x* 
ArcTan[(Sqrt[b]*x)/Sqrt[a]]^2 + Sqrt[a]*Log[a + b*x^2] + Sqrt[b]*x*ArcTan[(Sqr 
t[b]*x)/Sqrt[a]]*(-2 + 2*Log[(2*Sqrt[a])/(Sqrt[a] + I*Sqrt[b]*x)] + Log[a + b* 
x^2]) + I*Sqrt[b]*x*PolyLog[2, (I*Sqrt[a] + Sqrt[b]*x)/((-I)*Sqrt[a] + Sqrt[b] 
*x)])) + p^3*(48*a*b*x^2*Sqrt[(b*x^2)/(a + b*x^2)]*HypergeometricPFQ[{1/2, 1/2 
, 1/2, 1/2}, {3/2, 3/2, 3/2}, a/(a + b*x^2)] + 24*Sqrt[-a]*(b*x^2)^(3/2)*ArcTa 
nh[Sqrt[b*x^2]/Sqrt[-a]]*Log[a + b*x^2] + 24*a*b*x^2*Sqrt[(b*x^2)/(a + b*x^2)] 
*HypergeometricPFQ[{1/2, 1/2, 1/2}, {3/2, 3/2}, a/(a + b*x^2)]*Log[a + b*x^2] 
- 6*a*b*x^2*Log[a + b*x^2]^2 + 6*Sqrt[a]*((b*x^2)/(a + b*x^2))^(3/2)*(a + b*x^ 
2)^(3/2)*ArcSin[Sqrt[a]/Sqrt[a + b*x^2]]*Log[a + b*x^2]^2 - a^2*Log[a + b*x^2] 
^3 - 24*Sqrt[-a]*(b*x^2)^(3/2)*ArcTanh[Sqrt[b*x^2]/Sqrt[-a]]*Log[1 + (b*x^2)/a 
] - 6*a^2*(-((b*x^2)/a))^(3/2)*Log[1 + (b*x^2)/a]^2 + 24*a^2*(-((b*x^2)/a))^(3 
/2)*Log[1 + (b*x^2)/a]*Log[(1 + Sqrt[-((b*x^2)/a)])/2] - 12*a^2*(-((b*x^2)/a)) 
^(3/2)*Log[(1 + Sqrt[-((b*x^2)/a)])/2]^2 + 24*a^2*(-((b*x^2)/a))^(3/2)*PolyLog 
[2, 1/2 - Sqrt[-((b*x^2)/a)]/2]))/(3*a^2*x^3)
 

Integral number [158] (fx)mlog3(c(d+ex2)p)dx

[B]   time = 1.8218 (sec), size = 994 ,normalized size = 49.7 (fx)m((1+m)p3x2log3(d+ex2)+6p3(ex2d)1m2(((1+m)(d+ex2)4F3(1,1,1,12m2;2,2,2;1+ex2d))+(1+m)(d+ex2)3F2(1,1,12m2;2,2;1+ex2d)log(d+ex2)+d(1+(ex2d)1+m2)log2(d+ex2))e+6d(1+m)p3(ex2d+ex2)12m2(84F3(12m2,12m2,12m2,12m2;32m2,32m2,32m2;dd+ex2)+(1+m)log(d+ex2)(43F2(12m2,12m2,12m2;32m2,32m2;dd+ex2)+(1+m)Hypergeometric2F1(12m2,12m2,32m2,dd+ex2)log(d+ex2)))e(1+m)33p2(ex2d)1m2(((1+m)(d+ex2)4F3(1,1,1,12m2;2,2,2;1+ex2d))+(1+m)(d+ex2)3F2(1,1,12m2;2,2;1+ex2d)log(d+ex2)+d(1+(ex2d)1+m2)log2(d+ex2))(plog(d+ex2)+log(c(d+ex2)p))e3mp2(ex2d)1m2(((1+m)(d+ex2)4F3(1,1,1,12m2;2,2,2;1+ex2d))+(1+m)(d+ex2)3F2(1,1,12m2;2,2;1+ex2d)log(d+ex2)+d(1+(ex2d)1+m2)log2(d+ex2))(plog(d+ex2)+log(c(d+ex2)p))e+3px2(2ex2Hypergeometric2F1(1,3+m2,5+m2,ex2d)+d(3+m)log(d+ex2))(plog(d+ex2)+log(c(d+ex2)p))2d(3+m)+3mpx2(2ex2Hypergeometric2F1(1,3+m2,5+m2,ex2d)+d(3+m)log(d+ex2))(plog(d+ex2)+log(c(d+ex2)p))2d(3+m)+x2(plog(d+ex2)+log(c(d+ex2)p))3+mx2(plog(d+ex2)+log(c(d+ex2)p))3)(1+m)2x

[In]

Integrate[(f*x)^m*Log[c*(d + e*x^2)^p]^3,x]

output
((f*x)^m*((1 + m)*p^3*x^2*Log[d + e*x^2]^3 + (6*p^3*(-((e*x^2)/d))^((1 - m)/2) 
*(-((1 + m)*(d + e*x^2)*HypergeometricPFQ[{1, 1, 1, 1/2 - m/2}, {2, 2, 2}, 1 + 
 (e*x^2)/d]) + (1 + m)*(d + e*x^2)*HypergeometricPFQ[{1, 1, 1/2 - m/2}, {2, 2} 
, 1 + (e*x^2)/d]*Log[d + e*x^2] + d*(-1 + (-((e*x^2)/d))^((1 + m)/2))*Log[d + 
e*x^2]^2))/e + (6*d*(1 + m)*p^3*((e*x^2)/(d + e*x^2))^(1/2 - m/2)*(8*Hypergeom 
etricPFQ[{1/2 - m/2, 1/2 - m/2, 1/2 - m/2, 1/2 - m/2}, {3/2 - m/2, 3/2 - m/2, 
3/2 - m/2}, d/(d + e*x^2)] + (-1 + m)*Log[d + e*x^2]*(-4*HypergeometricPFQ[{1/ 
2 - m/2, 1/2 - m/2, 1/2 - m/2}, {3/2 - m/2, 3/2 - m/2}, d/(d + e*x^2)] + (-1 + 
 m)*Hypergeometric2F1[1/2 - m/2, 1/2 - m/2, 3/2 - m/2, d/(d + e*x^2)]*Log[d + 
e*x^2])))/(e*(-1 + m)^3) - (3*p^2*(-((e*x^2)/d))^((1 - m)/2)*(-((1 + m)*(d + e 
*x^2)*HypergeometricPFQ[{1, 1, 1, 1/2 - m/2}, {2, 2, 2}, 1 + (e*x^2)/d]) + (1 
+ m)*(d + e*x^2)*HypergeometricPFQ[{1, 1, 1/2 - m/2}, {2, 2}, 1 + (e*x^2)/d]*L 
og[d + e*x^2] + d*(-1 + (-((e*x^2)/d))^((1 + m)/2))*Log[d + e*x^2]^2)*(-(p*Log 
[d + e*x^2]) + Log[c*(d + e*x^2)^p]))/e - (3*m*p^2*(-((e*x^2)/d))^((1 - m)/2)* 
(-((1 + m)*(d + e*x^2)*HypergeometricPFQ[{1, 1, 1, 1/2 - m/2}, {2, 2, 2}, 1 + 
(e*x^2)/d]) + (1 + m)*(d + e*x^2)*HypergeometricPFQ[{1, 1, 1/2 - m/2}, {2, 2}, 
 1 + (e*x^2)/d]*Log[d + e*x^2] + d*(-1 + (-((e*x^2)/d))^((1 + m)/2))*Log[d + e 
*x^2]^2)*(-(p*Log[d + e*x^2]) + Log[c*(d + e*x^2)^p]))/e + (3*p*x^2*(-2*e*x^2* 
Hypergeometric2F1[1, (3 + m)/2, (5 + m)/2, -((e*x^2)/d)] + d*(3 + m)*Log[d + e 
*x^2])*(-(p*Log[d + e*x^2]) + Log[c*(d + e*x^2)^p])^2)/(d*(3 + m)) + (3*m*p...
 

Integral number [159] (fx)mlog2(c(d+ex2)p)dx

[B]   time = 0.528109 (sec), size = 466 ,normalized size = 23.3 (fx)m(4p2x(2ex2Hypergeometric2F1(1,3+m2,5+m2,ex2d)d(3+m)log(d+ex2))+(1+m)p2xlog2(d+ex2)+4d(1+m)p2(ex2d+ex2)12m2(23F2(12m2,12m2,12m2;32m2,32m2;dd+ex2)+(1+m)Hypergeometric2F1(12m2,12m2,32m2,dd+ex2)log(d+ex2))e(1+m)2x+2p(2ex3Hypergeometric2F1(1,3+m2,5+m2,ex2d)d(3+m)xlog(d+ex2))(plog(d+ex2)log(c(d+ex2)p))d(3+m)2mp(2ex3Hypergeometric2F1(1,3+m2,5+m2,ex2d)+d(3+m)xlog(d+ex2))(plog(d+ex2)log(c(d+ex2)p))d(3+m)+x(plog(d+ex2)+log(c(d+ex2)p))2+mx(plog(d+ex2)+log(c(d+ex2)p))2)(1+m)2

[In]

Integrate[(f*x)^m*Log[c*(d + e*x^2)^p]^2,x]

output
((f*x)^m*(4*p^2*x*((2*e*x^2*Hypergeometric2F1[1, (3 + m)/2, (5 + m)/2, -((e*x^ 
2)/d)])/(d*(3 + m)) - Log[d + e*x^2]) + (1 + m)*p^2*x*Log[d + e*x^2]^2 + (4*d* 
(1 + m)*p^2*((e*x^2)/(d + e*x^2))^(1/2 - m/2)*(-2*HypergeometricPFQ[{1/2 - m/2 
, 1/2 - m/2, 1/2 - m/2}, {3/2 - m/2, 3/2 - m/2}, d/(d + e*x^2)] + (-1 + m)*Hyp 
ergeometric2F1[1/2 - m/2, 1/2 - m/2, 3/2 - m/2, d/(d + e*x^2)]*Log[d + e*x^2]) 
)/(e*(-1 + m)^2*x) + (2*p*(2*e*x^3*Hypergeometric2F1[1, (3 + m)/2, (5 + m)/2, 
-((e*x^2)/d)] - d*(3 + m)*x*Log[d + e*x^2])*(p*Log[d + e*x^2] - Log[c*(d + e*x 
^2)^p]))/(d*(3 + m)) - (2*m*p*(-2*e*x^3*Hypergeometric2F1[1, (3 + m)/2, (5 + m 
)/2, -((e*x^2)/d)] + d*(3 + m)*x*Log[d + e*x^2])*(p*Log[d + e*x^2] - Log[c*(d 
+ e*x^2)^p]))/(d*(3 + m)) + x*(-(p*Log[d + e*x^2]) + Log[c*(d + e*x^2)^p])^2 + 
 m*x*(-(p*Log[d + e*x^2]) + Log[c*(d + e*x^2)^p])^2))/(1 + m)^2
 

Integral number [277] (f+gx2)log3(c(d+ex2)p)dx

[B]   time = 9.0714 (sec), size = 1772 ,normalized size = 80.55 result too large to display

[In]

Integrate[(f + g*x^2)*Log[c*(d + e*x^2)^p]^3,x]

output
(2*d*g*p*x*(-(p*Log[d + e*x^2]) + Log[c*(d + e*x^2)^p])^2)/e + (6*Sqrt[d]*f*p* 
ArcTan[(Sqrt[e]*x)/Sqrt[d]]*(-(p*Log[d + e*x^2]) + Log[c*(d + e*x^2)^p])^2)/Sq 
rt[e] - (2*d^(3/2)*g*p*ArcTan[(Sqrt[e]*x)/Sqrt[d]]*(-(p*Log[d + e*x^2]) + Log[ 
c*(d + e*x^2)^p])^2)/e^(3/2) + 3*f*p*x*Log[d + e*x^2]*(-(p*Log[d + e*x^2]) + L 
og[c*(d + e*x^2)^p])^2 + g*p*x^3*Log[d + e*x^2]*(-(p*Log[d + e*x^2]) + Log[c*( 
d + e*x^2)^p])^2 + f*x*(-(p*Log[d + e*x^2]) + Log[c*(d + e*x^2)^p])^2*(-6*p - 
p*Log[d + e*x^2] + Log[c*(d + e*x^2)^p]) + (g*x^3*(-(p*Log[d + e*x^2]) + Log[c 
*(d + e*x^2)^p])^2*(-2*p - p*Log[d + e*x^2] + Log[c*(d + e*x^2)^p]))/3 + 3*f*p 
^2*(-(p*Log[d + e*x^2]) + Log[c*(d + e*x^2)^p])*(x*Log[d + e*x^2]^2 - (4*((-I) 
*Sqrt[d]*ArcTan[(Sqrt[e]*x)/Sqrt[d]]^2 + Sqrt[e]*x*(-2 + Log[d + e*x^2]) - Sqr 
t[d]*ArcTan[(Sqrt[e]*x)/Sqrt[d]]*(-2 + 2*Log[(2*Sqrt[d])/(Sqrt[d] + I*Sqrt[e]* 
x)] + Log[d + e*x^2]) - I*Sqrt[d]*PolyLog[2, (I*Sqrt[d] + Sqrt[e]*x)/((-I)*Sqr 
t[d] + Sqrt[e]*x)]))/Sqrt[e]) + 3*g*p^2*(-(p*Log[d + e*x^2]) + Log[c*(d + e*x^ 
2)^p])*((x^3*Log[d + e*x^2]^2)/3 - (4*((9*I)*d^(3/2)*ArcTan[(Sqrt[e]*x)/Sqrt[d 
]]^2 + 3*d^(3/2)*ArcTan[(Sqrt[e]*x)/Sqrt[d]]*(-8 + 6*Log[(2*Sqrt[d])/(Sqrt[d] 
+ I*Sqrt[e]*x)] + 3*Log[d + e*x^2]) + Sqrt[e]*x*(24*d - 2*e*x^2 + (-9*d + 3*e* 
x^2)*Log[d + e*x^2]) + (9*I)*d^(3/2)*PolyLog[2, (I*Sqrt[d] + Sqrt[e]*x)/((-I)* 
Sqrt[d] + Sqrt[e]*x)]))/(27*e^(3/2))) + (g*p^3*(416*Sqrt[-d]*d^(3/2)*Sqrt[d + 
e*x^2]*Sqrt[1 - d/(d + e*x^2)]*ArcSin[Sqrt[d]/Sqrt[d + e*x^2]] + 36*Sqrt[-d]*d 
^(3/2)*Sqrt[1 - d/(d + e*x^2)]*(8*Sqrt[d]*HypergeometricPFQ[{1/2, 1/2, 1/2,...
 

Integral number [298] (f+gx3)2log3(c(d+ex2)p)dx

[B]   time = 8.70025 (sec), size = 2385 ,normalized size = 99.38 Result too large to show

[In]

Integrate[(f + g*x^3)^2*Log[c*(d + e*x^2)^p]^3,x]

output
(f*g*p^3*(d + e*x^2)*(-8*d*(-6 + 6*Log[d + e*x^2] - 3*Log[d + e*x^2]^2 + Log[d 
 + e*x^2]^3) + (d + e*x^2)*(-3 + 6*Log[d + e*x^2] - 6*Log[d + e*x^2]^2 + 4*Log 
[d + e*x^2]^3)))/(8*e^2) + 6*f*g*p^2*((x^4*Log[d + e*x^2]^2)/4 - e*((3*d*x^2)/ 
(4*e^2) - x^4/(8*e) - (3*d^2*Log[d + e*x^2])/(4*e^3) - (d*x^2*Log[d + e*x^2])/ 
(2*e^2) + (x^4*Log[d + e*x^2])/(4*e) + (d^2*Log[d + e*x^2]^2)/(4*e^3)))*(-(p*L 
og[d + e*x^2]) + Log[c*(d + e*x^2)^p]) + (3*d*f*g*p*x^2*(-(p*Log[d + e*x^2]) + 
 Log[c*(d + e*x^2)^p])^2)/(2*e) - (2*d^2*g^2*p*x^3*(-(p*Log[d + e*x^2]) + Log[ 
c*(d + e*x^2)^p])^2)/(7*e^2) + (6*d*g^2*p*x^5*(-(p*Log[d + e*x^2]) + Log[c*(d 
+ e*x^2)^p])^2)/(35*e) - (3*d^2*f*g*p*Log[d + e*x^2]*(-(p*Log[d + e*x^2]) + Lo 
g[c*(d + e*x^2)^p])^2)/(2*e^2) + (3*p*x*(14*f^2 + 7*f*g*x^3 + 2*g^2*x^6)*Log[d 
 + e*x^2]*(-(p*Log[d + e*x^2]) + Log[c*(d + e*x^2)^p])^2)/14 + (f*g*x^4*(-(p*L 
og[d + e*x^2]) + Log[c*(d + e*x^2)^p])^2*(-3*p + 2*(-(p*Log[d + e*x^2]) + Log[ 
c*(d + e*x^2)^p])))/4 + (g^2*x^7*(-(p*Log[d + e*x^2]) + Log[c*(d + e*x^2)^p])^ 
2*(-6*p + 7*(-(p*Log[d + e*x^2]) + Log[c*(d + e*x^2)^p])))/49 + (x*(-(p*Log[d 
+ e*x^2]) + Log[c*(d + e*x^2)^p])^2*(-42*e^3*f^2*p + 6*d^3*g^2*p + 7*e^3*f^2*( 
-(p*Log[d + e*x^2]) + Log[c*(d + e*x^2)^p])))/(7*e^3) - (6*ArcTan[(Sqrt[e]*x)/ 
Sqrt[d]]*(-7*d*e^3*f^2*p*(-(p*Log[d + e*x^2]) + Log[c*(d + e*x^2)^p])^2 + d^4* 
g^2*p*(-(p*Log[d + e*x^2]) + Log[c*(d + e*x^2)^p])^2))/(7*Sqrt[d]*e^(7/2)) + 3 
*f^2*p^2*(-(p*Log[d + e*x^2]) + Log[c*(d + e*x^2)^p])*(x*Log[d + e*x^2]^2 - (4 
*((-I)*Sqrt[d]*ArcTan[(Sqrt[e]*x)/Sqrt[d]]^2 + Sqrt[e]*x*(-2 + Log[d + e*x^...
 

Integral number [299] (f+gx3)log3(c(d+ex2)p)dx

[B]   time = 1.29533 (sec), size = 1051 ,normalized size = 47.77 14gx4log3(c(d+ex2)p)+6dfparctan(exd)(plog(d+ex2)+log(c(d+ex2)p))2e+3fpxlog(d+ex2)(plog(d+ex2)+log(c(d+ex2)p))2+fx(plog(d+ex2)+log(c(d+ex2)p))2(6pplog(d+ex2)+log(c(d+ex2)p))34gp(7dp2x22e+p2x44+d2p2log(d+ex2)2e2+3d2plog(c(d+ex2)p)e2+3dpx2log(c(d+ex2)p)e12px4log(c(d+ex2)p)3d2log2(c(d+ex2)p)2e2dx2log2(c(d+ex2)p)e+12x4log2(c(d+ex2)p)+d2log3(c(d+ex2)p)3e2p)+3fp2(plog(d+ex2)+log(c(d+ex2)p))(xlog2(d+ex2)4(idarctan(exd)2+ex(2+log(d+ex2))darctan(exd)(2+2log(2dd+iex)+log(d+ex2))idPolyLog(2,id+exid+ex))e)+fp3(48d2d+ex21dd+ex2arcsin(dd+ex2)6d21dd+ex2(8d4F3(12,12,12,12;32,32,32;dd+ex2)+4d3F2(12,12,12;32,32;dd+ex2)log(d+ex2)+d+ex2arcsin(dd+ex2)log2(d+ex2))+dex2(48+24log(d+ex2)6log2(d+ex2)+log3(d+ex2))+24dex2arctanh(ex2d)(log(d+ex2)log(d+ex2d))+6(d)3/21d+ex2d(log2(d+ex2d)4log(d+ex2d)log(12(1+1d+ex2d))+2log2(12(1+1d+ex2d))4PolyLog(2,12121d+ex2d)))dex

[In]

Integrate[(f + g*x^3)*Log[c*(d + e*x^2)^p]^3,x]

output
(g*x^4*Log[c*(d + e*x^2)^p]^3)/4 + (6*Sqrt[d]*f*p*ArcTan[(Sqrt[e]*x)/Sqrt[d]]* 
(-(p*Log[d + e*x^2]) + Log[c*(d + e*x^2)^p])^2)/Sqrt[e] + 3*f*p*x*Log[d + e*x^ 
2]*(-(p*Log[d + e*x^2]) + Log[c*(d + e*x^2)^p])^2 + f*x*(-(p*Log[d + e*x^2]) + 
 Log[c*(d + e*x^2)^p])^2*(-6*p - p*Log[d + e*x^2] + Log[c*(d + e*x^2)^p]) - (3 
*g*p*((-7*d*p^2*x^2)/(2*e) + (p^2*x^4)/4 + (d^2*p^2*Log[d + e*x^2])/(2*e^2) + 
(3*d^2*p*Log[c*(d + e*x^2)^p])/e^2 + (3*d*p*x^2*Log[c*(d + e*x^2)^p])/e - (p*x 
^4*Log[c*(d + e*x^2)^p])/2 - (3*d^2*Log[c*(d + e*x^2)^p]^2)/(2*e^2) - (d*x^2*L 
og[c*(d + e*x^2)^p]^2)/e + (x^4*Log[c*(d + e*x^2)^p]^2)/2 + (d^2*Log[c*(d + e* 
x^2)^p]^3)/(3*e^2*p)))/4 + 3*f*p^2*(-(p*Log[d + e*x^2]) + Log[c*(d + e*x^2)^p] 
)*(x*Log[d + e*x^2]^2 - (4*((-I)*Sqrt[d]*ArcTan[(Sqrt[e]*x)/Sqrt[d]]^2 + Sqrt[ 
e]*x*(-2 + Log[d + e*x^2]) - Sqrt[d]*ArcTan[(Sqrt[e]*x)/Sqrt[d]]*(-2 + 2*Log[( 
2*Sqrt[d])/(Sqrt[d] + I*Sqrt[e]*x)] + Log[d + e*x^2]) - I*Sqrt[d]*PolyLog[2, ( 
I*Sqrt[d] + Sqrt[e]*x)/((-I)*Sqrt[d] + Sqrt[e]*x)]))/Sqrt[e]) + (f*p^3*(-48*Sq 
rt[-d^2]*Sqrt[d + e*x^2]*Sqrt[1 - d/(d + e*x^2)]*ArcSin[Sqrt[d]/Sqrt[d + e*x^2 
]] - 6*Sqrt[-d^2]*Sqrt[1 - d/(d + e*x^2)]*(8*Sqrt[d]*HypergeometricPFQ[{1/2, 1 
/2, 1/2, 1/2}, {3/2, 3/2, 3/2}, d/(d + e*x^2)] + 4*Sqrt[d]*HypergeometricPFQ[{ 
1/2, 1/2, 1/2}, {3/2, 3/2}, d/(d + e*x^2)]*Log[d + e*x^2] + Sqrt[d + e*x^2]*Ar 
cSin[Sqrt[d]/Sqrt[d + e*x^2]]*Log[d + e*x^2]^2) + Sqrt[-d]*e*x^2*(-48 + 24*Log 
[d + e*x^2] - 6*Log[d + e*x^2]^2 + Log[d + e*x^2]^3) + 24*d*Sqrt[e*x^2]*ArcTan 
h[Sqrt[e*x^2]/Sqrt[-d]]*(Log[d + e*x^2] - Log[(d + e*x^2)/d]) + 6*(-d)^(3/2...
 

Integral number [485] x2(a+blog(c(d+ex2/3)n))3dx

[A]   time = 7.79559 (sec), size = 1552 ,normalized size = 64.67 result too large to display

[In]

Integrate[x^2*(a + b*Log[c*(d + e*x^(2/3))^n])^3,x]

output
(-2*b*d^4*n*x^(1/3)*(a - b*n*Log[d + e*x^(2/3)] + b*Log[c*(d + e*x^(2/3))^n])^ 
2)/e^4 + (2*b*d^3*n*x*(a - b*n*Log[d + e*x^(2/3)] + b*Log[c*(d + e*x^(2/3))^n] 
)^2)/(3*e^3) - (2*b*d^2*n*x^(5/3)*(a - b*n*Log[d + e*x^(2/3)] + b*Log[c*(d + e 
*x^(2/3))^n])^2)/(5*e^2) + (2*b*d*n*x^(7/3)*(a - b*n*Log[d + e*x^(2/3)] + b*Lo 
g[c*(d + e*x^(2/3))^n])^2)/(7*e) + (2*b*d^(9/2)*n*ArcTan[(Sqrt[e]*x^(1/3))/Sqr 
t[d]]*(a - b*n*Log[d + e*x^(2/3)] + b*Log[c*(d + e*x^(2/3))^n])^2)/e^(9/2) + b 
*n*x^3*Log[d + e*x^(2/3)]*(a - b*n*Log[d + e*x^(2/3)] + b*Log[c*(d + e*x^(2/3) 
)^n])^2 + (x^3*(a - b*n*Log[d + e*x^(2/3)] + b*Log[c*(d + e*x^(2/3))^n])^2*(3* 
a - 2*b*n - 3*b*n*Log[d + e*x^(2/3)] + 3*b*Log[c*(d + e*x^(2/3))^n]))/9 - (b^3 
*n^3*(1094783760*d^(9/2)*Sqrt[d + e*x^(2/3)]*Sqrt[(e*x^(2/3))/(d + e*x^(2/3))] 
*ArcSin[Sqrt[d]/Sqrt[d + e*x^(2/3)]] - e*x^(2/3)*(-16*(68423985*d^4 - 4186770* 
d^3*e*x^(2/3) + 871542*d^2*e^2*x^(4/3) - 217125*d*e^3*x^2 + 42875*e^4*x^(8/3)) 
 + 2520*(177345*d^4 - 26040*d^3*e*x^(2/3) + 9009*d^2*e^2*x^(4/3) - 3600*d*e^3* 
x^2 + 1225*e^4*x^(8/3))*Log[d + e*x^(2/3)] - 198450*(315*d^4 - 105*d^3*e*x^(2/ 
3) + 63*d^2*e^2*x^(4/3) - 45*d*e^3*x^2 + 35*e^4*x^(8/3))*Log[d + e*x^(2/3)]^2 
+ 10418625*e^4*x^(8/3)*Log[d + e*x^(2/3)]^3) + 62511750*d^(9/2)*Sqrt[(e*x^(2/3 
))/(d + e*x^(2/3))]*(8*Sqrt[d]*HypergeometricPFQ[{1/2, 1/2, 1/2, 1/2}, {3/2, 3 
/2, 3/2}, d/(d + e*x^(2/3))] + Log[d + e*x^(2/3)]*(4*Sqrt[d]*HypergeometricPFQ 
[{1/2, 1/2, 1/2}, {3/2, 3/2}, d/(d + e*x^(2/3))] + Sqrt[d + e*x^(2/3)]*ArcSin[ 
Sqrt[d]/Sqrt[d + e*x^(2/3)]]*Log[d + e*x^(2/3)])) + 111727350*(-d)^(9/2)*(4...
 

Integral number [486] (a+blog(c(d+ex2/3)n))3dx

[B]   time = 5.89109 (sec), size = 1299 ,normalized size = 64.95 result too large to display

[In]

Integrate[(a + b*Log[c*(d + e*x^(2/3))^n])^3,x]

output
(6*b*d*n*x^(1/3)*(a - b*n*Log[d + e*x^(2/3)] + b*Log[c*(d + e*x^(2/3))^n])^2)/ 
e - (6*b*d^(3/2)*n*ArcTan[(Sqrt[e]*x^(1/3))/Sqrt[d]]*(a - b*n*Log[d + e*x^(2/3 
)] + b*Log[c*(d + e*x^(2/3))^n])^2)/e^(3/2) + 3*b*n*x*Log[d + e*x^(2/3)]*(a - 
b*n*Log[d + e*x^(2/3)] + b*Log[c*(d + e*x^(2/3))^n])^2 + x*(a - b*n*Log[d + e* 
x^(2/3)] + b*Log[c*(d + e*x^(2/3))^n])^2*(a - 2*b*n - b*n*Log[d + e*x^(2/3)] + 
 b*Log[c*(d + e*x^(2/3))^n]) + (b^2*n^2*x^(1/3)*(a - b*n*Log[d + e*x^(2/3)] + 
b*Log[c*(d + e*x^(2/3))^n])*((-96*d^(3/2)*ArcSin[Sqrt[d]/Sqrt[d + e*x^(2/3)]]) 
/(Sqrt[d + e*x^(2/3)]*Sqrt[(e*x^(2/3))/(d + e*x^(2/3))]) - d*(104 - 48*Log[d + 
 e*x^(2/3)] + 9*Log[d + e*x^(2/3)]^2) + (d + e*x^(2/3))*(8 - 12*Log[d + e*x^(2 
/3)] + 9*Log[d + e*x^(2/3)]^2) + (36*(-d)^(3/2)*ArcTanh[Sqrt[e*x^(2/3)]/Sqrt[- 
d]]*(Log[d + e*x^(2/3)] - Log[1 + (e*x^(2/3))/d]))/Sqrt[e*x^(2/3)] + (9*d*(2*L 
og[(1 + Sqrt[-((e*x^(2/3))/d)])/2]^2 - 4*Log[(1 + Sqrt[-((e*x^(2/3))/d)])/2]*L 
og[1 + (e*x^(2/3))/d] + Log[1 + (e*x^(2/3))/d]^2 - 4*PolyLog[2, 1/2 - Sqrt[-(( 
e*x^(2/3))/d)]/2]))/Sqrt[-((e*x^(2/3))/d)]))/(3*e) + (b^3*n^3*(624*d*e*x^(2/3) 
 - 16*e^2*x^(4/3) + 624*d^(3/2)*Sqrt[d + e*x^(2/3)]*Sqrt[(e*x^(2/3))/(d + e*x^ 
(2/3))]*ArcSin[Sqrt[d]/Sqrt[d + e*x^(2/3)]] + 432*d^2*Sqrt[(e*x^(2/3))/(d + e* 
x^(2/3))]*HypergeometricPFQ[{1/2, 1/2, 1/2, 1/2}, {3/2, 3/2, 3/2}, d/(d + e*x^ 
(2/3))] + 144*d^2*Sqrt[-((e*x^(2/3))/d)]*Log[(1 + Sqrt[-((e*x^(2/3))/d)])/2]^2 
 - 288*d*e*x^(2/3)*Log[d + e*x^(2/3)] + 24*e^2*x^(4/3)*Log[d + e*x^(2/3)] + 28 
8*Sqrt[-d]*d*Sqrt[e*x^(2/3)]*ArcTanh[Sqrt[e*x^(2/3)]/Sqrt[-d]]*Log[d + e*x^...
 

Integral number [487] (a+blog(c(d+ex2/3)n))3x2dx

[B]   time = 6.62541 (sec), size = 1158 ,normalized size = 48.25 result too large to display

[In]

Integrate[(a + b*Log[c*(d + e*x^(2/3))^n])^3/x^2,x]

output
(-6*b*e*n*(a - b*n*Log[d + e*x^(2/3)] + b*Log[c*(d + e*x^(2/3))^n])^2)/(d*x^(1 
/3)) - (6*b*e^(3/2)*n*ArcTan[(Sqrt[e]*x^(1/3))/Sqrt[d]]*(a - b*n*Log[d + e*x^( 
2/3)] + b*Log[c*(d + e*x^(2/3))^n])^2)/d^(3/2) - (3*b*n*Log[d + e*x^(2/3)]*(a 
- b*n*Log[d + e*x^(2/3)] + b*Log[c*(d + e*x^(2/3))^n])^2)/x - (a - b*n*Log[d + 
 e*x^(2/3)] + b*Log[c*(d + e*x^(2/3))^n])^3/x + (3*b^2*e*n^2*(a - b*n*Log[d + 
e*x^(2/3)] + b*Log[c*(d + e*x^(2/3))^n])*((-16*Sqrt[d + e*x^(2/3)]*Sqrt[(e*x^( 
2/3))/(d + e*x^(2/3))]*ArcSin[Sqrt[d]/Sqrt[d + e*x^(2/3)]])/d^(3/2) - (8*Log[d 
 + e*x^(2/3)])/d - (2*Log[d + e*x^(2/3)]^2)/(e*x^(2/3)) - (8*Sqrt[e*x^(2/3)]*A 
rcTanh[Sqrt[e*x^(2/3)]/Sqrt[-d]]*(Log[d + e*x^(2/3)] - Log[1 + (e*x^(2/3))/d]) 
)/(-d)^(3/2) - (2*Sqrt[-((e*x^(2/3))/d)]*(2*Log[(1 + Sqrt[-((e*x^(2/3))/d)])/2 
]^2 - 4*Log[(1 + Sqrt[-((e*x^(2/3))/d)])/2]*Log[1 + (e*x^(2/3))/d] + Log[1 + ( 
e*x^(2/3))/d]^2 - 4*PolyLog[2, 1/2 - Sqrt[-((e*x^(2/3))/d)]/2]))/d))/(2*x^(1/3 
)) + (b^3*n^3*(48*Sqrt[-d^2]*e*Sqrt[(e*x^(2/3))/(d + e*x^(2/3))]*x^(2/3)*Hyper 
geometricPFQ[{1/2, 1/2, 1/2, 1/2}, {3/2, 3/2, 3/2}, d/(d + e*x^(2/3))] - 12*d* 
Sqrt[-d^2]*(-((e*x^(2/3))/d))^(3/2)*Log[(1 + Sqrt[-((e*x^(2/3))/d)])/2]^2 - 24 
*Sqrt[d]*(e*x^(2/3))^(3/2)*ArcTanh[Sqrt[e*x^(2/3)]/Sqrt[-d]]*Log[d + e*x^(2/3) 
] + 24*Sqrt[-d^2]*e*Sqrt[(e*x^(2/3))/(d + e*x^(2/3))]*x^(2/3)*HypergeometricPF 
Q[{1/2, 1/2, 1/2}, {3/2, 3/2}, d/(d + e*x^(2/3))]*Log[d + e*x^(2/3)] - 6*Sqrt[ 
-d^2]*e*x^(2/3)*Log[d + e*x^(2/3)]^2 + 6*Sqrt[-d]*(d + e*x^(2/3))^(3/2)*((e*x^ 
(2/3))/(d + e*x^(2/3)))^(3/2)*ArcSin[Sqrt[d]/Sqrt[d + e*x^(2/3)]]*Log[d + e...
 

Integral number [488] (a+blog(c(d+ex2/3)n))3x4dx

[B]   time = 7.58333 (sec), size = 1385 ,normalized size = 57.71 result too large to display

[In]

Integrate[(a + b*Log[c*(d + e*x^(2/3))^n])^3/x^4,x]

output
((-60*b*e*n*(a - b*n*Log[d + e*x^(2/3)] + b*Log[c*(d + e*x^(2/3))^n])^2)/(d*x^ 
(7/3)) + (84*b*e^2*n*(a - b*n*Log[d + e*x^(2/3)] + b*Log[c*(d + e*x^(2/3))^n]) 
^2)/(d^2*x^(5/3)) - (140*b*e^3*n*(a - b*n*Log[d + e*x^(2/3)] + b*Log[c*(d + e* 
x^(2/3))^n])^2)/(d^3*x) + (420*b*e^4*n*(a - b*n*Log[d + e*x^(2/3)] + b*Log[c*( 
d + e*x^(2/3))^n])^2)/(d^4*x^(1/3)) + (420*b*e^(9/2)*n*ArcTan[(Sqrt[e]*x^(1/3) 
)/Sqrt[d]]*(a - b*n*Log[d + e*x^(2/3)] + b*Log[c*(d + e*x^(2/3))^n])^2)/d^(9/2 
) - (210*b*n*Log[d + e*x^(2/3)]*(a - b*n*Log[d + e*x^(2/3)] + b*Log[c*(d + e*x 
^(2/3))^n])^2)/x^3 - (70*(a - b*n*Log[d + e*x^(2/3)] + b*Log[c*(d + e*x^(2/3)) 
^n])^3)/x^3 - (2*b^3*n^3*(1376*e^3*(d + e*x^(2/3))^(3/2)*((e*x^(2/3))/(d + e*x 
^(2/3)))^(3/2)*x^2*ArcSin[Sqrt[d]/Sqrt[d + e*x^(2/3)]] + Sqrt[d]*(16*e^3*(d - 
15*e*x^(2/3))*x^2 + 8*(3*d^2*e^2*x^(4/3) - 12*d*e^3*x^2 + 71*e^4*x^(8/3))*Log[ 
d + e*x^(2/3)] + (30*d^3*e*x^(2/3) - 42*d^2*e^2*x^(4/3) + 70*d*e^3*x^2 - 210*e 
^4*x^(8/3))*Log[d + e*x^(2/3)]^2 + 35*d^4*Log[d + e*x^(2/3)]^3) + 210*e^4*Sqrt 
[(e*x^(2/3))/(d + e*x^(2/3))]*x^(8/3)*(8*Sqrt[d]*HypergeometricPFQ[{1/2, 1/2, 
1/2, 1/2}, {3/2, 3/2, 3/2}, d/(d + e*x^(2/3))] + Log[d + e*x^(2/3)]*(4*Sqrt[d] 
*HypergeometricPFQ[{1/2, 1/2, 1/2}, {3/2, 3/2}, d/(d + e*x^(2/3))] + Sqrt[d + 
e*x^(2/3)]*ArcSin[Sqrt[d]/Sqrt[d + e*x^(2/3)]]*Log[d + e*x^(2/3)])) + (352*d^( 
3/2)*e^4*x^(8/3)*(4*Sqrt[e*x^(2/3)]*ArcTanh[Sqrt[e*x^(2/3)]/Sqrt[-d]]*(Log[d + 
 e*x^(2/3)] - Log[1 + (e*x^(2/3))/d]) - Sqrt[-d]*Sqrt[-((e*x^(2/3))/d)]*(2*Log 
[(1 + Sqrt[-((e*x^(2/3))/d)])/2]^2 - 4*Log[(1 + Sqrt[-((e*x^(2/3))/d)])/2]*...
 

Integral number [528] x2(a+blog(c(d+ex2/3)n))3dx

[B]   time = 23.0946 (sec), size = 5975 ,normalized size = 248.96 Result too large to show

[In]

Integrate[x^2*(a + b*Log[c*(d + e/x^(2/3))^n])^3,x]

output
Result too large to show
 

Integral number [530] (a+blog(c(d+ex2/3)n))3x2dx

[B]   time = 13.157 (sec), size = 5504 ,normalized size = 229.33 Result too large to show

[In]

Integrate[(a + b*Log[c*(d + e/x^(2/3))^n])^3/x^2,x]

output
Result too large to show
 

Integral number [531] (a+blog(c(d+ex2/3)n))3x4dx

[B]   time = 21.2985 (sec), size = 6328 ,normalized size = 263.67 Result too large to show

[In]

Integrate[(a + b*Log[c*(d + e/x^(2/3))^n])^3/x^4,x]

output
Result too large to show
 

4.5 Test file Number [79]

4.5.1 Mathematica

Integral number [399] cos4(c+dx)(a+bsin3(c+dx))2dx

[C]   time = 0.895414 (sec), size = 394 ,normalized size = 17.13 iRootSum[ib+3ib#12+8a#133ib#14+ib#16&,2barctan(sin(c+dx)cos(c+dx)#1)iblog(12cos(c+dx)#1+#12)+4iaarctan(sin(c+dx)cos(c+dx)#1)#1+2alog(12cos(c+dx)#1+#12)#1+12barctan(sin(c+dx)cos(c+dx)#1)#126iblog(12cos(c+dx)#1+#12)#124iaarctan(sin(c+dx)cos(c+dx)#1)#132alog(12cos(c+dx)#1+#12)#13+2barctan(sin(c+dx)cos(c+dx)#1)#14iblog(12cos(c+dx)#1+#12)#14b#14ia#122b#13+b#15&]+24cos(c+dx)(a+bsin(c+dx))4a+3bsin(c+dx)bsin(3(c+dx))18abd

[In]

Integrate[Cos[c + d*x]^4/(a + b*Sin[c + d*x]^3)^2,x]

output
((-I)*RootSum[(-I)*b + (3*I)*b*#1^2 + 8*a*#1^3 - (3*I)*b*#1^4 + I*b*#1^6 & , ( 
2*b*ArcTan[Sin[c + d*x]/(Cos[c + d*x] - #1)] - I*b*Log[1 - 2*Cos[c + d*x]*#1 + 
 #1^2] + (4*I)*a*ArcTan[Sin[c + d*x]/(Cos[c + d*x] - #1)]*#1 + 2*a*Log[1 - 2*C 
os[c + d*x]*#1 + #1^2]*#1 + 12*b*ArcTan[Sin[c + d*x]/(Cos[c + d*x] - #1)]*#1^2 
 - (6*I)*b*Log[1 - 2*Cos[c + d*x]*#1 + #1^2]*#1^2 - (4*I)*a*ArcTan[Sin[c + d*x 
]/(Cos[c + d*x] - #1)]*#1^3 - 2*a*Log[1 - 2*Cos[c + d*x]*#1 + #1^2]*#1^3 + 2*b 
*ArcTan[Sin[c + d*x]/(Cos[c + d*x] - #1)]*#1^4 - I*b*Log[1 - 2*Cos[c + d*x]*#1 
 + #1^2]*#1^4)/(b*#1 - (4*I)*a*#1^2 - 2*b*#1^3 + b*#1^5) & ] + (24*Cos[c + d*x 
]*(a + b*Sin[c + d*x]))/(4*a + 3*b*Sin[c + d*x] - b*Sin[3*(c + d*x)]))/(18*a*b 
*d)
 

Integral number [400] cos2(c+dx)(a+bsin3(c+dx))2dx

[C]   time = 0.765131 (sec), size = 273 ,normalized size = 11.87 iRootSum[ib+3ib#12+8a#133ib#14+ib#16&,2arctan(sin(c+dx)cos(c+dx)#1)ilog(12cos(c+dx)#1+#12)+12arctan(sin(c+dx)cos(c+dx)#1)#126ilog(12cos(c+dx)#1+#12)#12+2arctan(sin(c+dx)cos(c+dx)#1)#14ilog(12cos(c+dx)#1+#12)#14b#14ia#122b#13+b#15&]+12sin(2(c+dx))4a+3bsin(c+dx)bsin(3(c+dx))18ad

[In]

Integrate[Cos[c + d*x]^2/(a + b*Sin[c + d*x]^3)^2,x]

output
((-I)*RootSum[(-I)*b + (3*I)*b*#1^2 + 8*a*#1^3 - (3*I)*b*#1^4 + I*b*#1^6 & , ( 
2*ArcTan[Sin[c + d*x]/(Cos[c + d*x] - #1)] - I*Log[1 - 2*Cos[c + d*x]*#1 + #1^ 
2] + 12*ArcTan[Sin[c + d*x]/(Cos[c + d*x] - #1)]*#1^2 - (6*I)*Log[1 - 2*Cos[c 
+ d*x]*#1 + #1^2]*#1^2 + 2*ArcTan[Sin[c + d*x]/(Cos[c + d*x] - #1)]*#1^4 - I*L 
og[1 - 2*Cos[c + d*x]*#1 + #1^2]*#1^4)/(b*#1 - (4*I)*a*#1^2 - 2*b*#1^3 + b*#1^ 
5) & ] + (12*Sin[2*(c + d*x)])/(4*a + 3*b*Sin[c + d*x] - b*Sin[3*(c + d*x)]))/ 
(18*a*d)
 

Integral number [401] 1(a+bsin3(c+dx))2dx

[C]   time = 0.608929 (sec), size = 502 ,normalized size = 35.86 iRootSum[ib+3ib#12+8a#133ib#14+ib#16&,2b2arctan(sin(c+dx)cos(c+dx)#1)ib2log(12cos(c+dx)#1+#12)+4iabarctan(sin(c+dx)cos(c+dx)#1)#1+2ablog(12cos(c+dx)#1+#12)#124a2arctan(sin(c+dx)cos(c+dx)#1)#12+12b2arctan(sin(c+dx)cos(c+dx)#1)#12+12ia2log(12cos(c+dx)#1+#12)#126ib2log(12cos(c+dx)#1+#12)#124iabarctan(sin(c+dx)cos(c+dx)#1)#132ablog(12cos(c+dx)#1+#12)#13+2b2arctan(sin(c+dx)cos(c+dx)#1)#14ib2log(12cos(c+dx)#1+#12)#14b#14ia#122b#13+b#15&]a2b212bcos(c+dx)(3a+acos(2(c+dx))+2bsin(c+dx))(ab)(a+b)(4a+3bsin(c+dx)bsin(3(c+dx)))18ad

[In]

Integrate[(a + b*Sin[c + d*x]^3)^(-2),x]

output
((I*RootSum[(-I)*b + (3*I)*b*#1^2 + 8*a*#1^3 - (3*I)*b*#1^4 + I*b*#1^6 & , (2* 
b^2*ArcTan[Sin[c + d*x]/(Cos[c + d*x] - #1)] - I*b^2*Log[1 - 2*Cos[c + d*x]*#1 
 + #1^2] + (4*I)*a*b*ArcTan[Sin[c + d*x]/(Cos[c + d*x] - #1)]*#1 + 2*a*b*Log[1 
 - 2*Cos[c + d*x]*#1 + #1^2]*#1 - 24*a^2*ArcTan[Sin[c + d*x]/(Cos[c + d*x] - # 
1)]*#1^2 + 12*b^2*ArcTan[Sin[c + d*x]/(Cos[c + d*x] - #1)]*#1^2 + (12*I)*a^2*L 
og[1 - 2*Cos[c + d*x]*#1 + #1^2]*#1^2 - (6*I)*b^2*Log[1 - 2*Cos[c + d*x]*#1 + 
#1^2]*#1^2 - (4*I)*a*b*ArcTan[Sin[c + d*x]/(Cos[c + d*x] - #1)]*#1^3 - 2*a*b*L 
og[1 - 2*Cos[c + d*x]*#1 + #1^2]*#1^3 + 2*b^2*ArcTan[Sin[c + d*x]/(Cos[c + d*x 
] - #1)]*#1^4 - I*b^2*Log[1 - 2*Cos[c + d*x]*#1 + #1^2]*#1^4)/(b*#1 - (4*I)*a* 
#1^2 - 2*b*#1^3 + b*#1^5) & ])/(a^2 - b^2) - (12*b*Cos[c + d*x]*(-3*a + a*Cos[ 
2*(c + d*x)] + 2*b*Sin[c + d*x]))/((a - b)*(a + b)*(4*a + 3*b*Sin[c + d*x] - b 
*Sin[3*(c + d*x)])))/(18*a*d)
 

Integral number [402] sec2(c+dx)(a+bsin3(c+dx))2dx

[C]   time = 2.21428 (sec), size = 845 ,normalized size = 36.74 ibRootSum[ib+3ib#12+8a#133ib#14+ib#16&,16a2barctan(sin(c+dx)cos(c+dx)#1)+2b3arctan(sin(c+dx)cos(c+dx)#1)8ia2blog(12cos(c+dx)#1+#12)ib3log(12cos(c+dx)#1+#12)+20ia3arctan(sin(c+dx)cos(c+dx)#1)#1+16iab2arctan(sin(c+dx)cos(c+dx)#1)#1+10a3log(12cos(c+dx)#1+#12)#1+8ab2log(12cos(c+dx)#1+#12)#1120a2barctan(sin(c+dx)cos(c+dx)#1)#12+12b3arctan(sin(c+dx)cos(c+dx)#1)#12+60ia2blog(12cos(c+dx)#1+#12)#126ib3log(12cos(c+dx)#1+#12)#1220ia3arctan(sin(c+dx)cos(c+dx)#1)#1316iab2arctan(sin(c+dx)cos(c+dx)#1)#1310a3log(12cos(c+dx)#1+#12)#138ab2log(12cos(c+dx)#1+#12)#13+16a2barctan(sin(c+dx)cos(c+dx)#1)#14+2b3arctan(sin(c+dx)cos(c+dx)#1)#148ia2blog(12cos(c+dx)#1+#12)#14ib3log(12cos(c+dx)#1+#12)#14b#14ia#122b#13+b#15&]a(a2b2)2+18sin(12(c+dx))(a+b)2(cos(12(c+dx))sin(12(c+dx)))+18sin(12(c+dx))(ab)2(cos(12(c+dx))+sin(12(c+dx)))+12bcos(c+dx)(2a37ab2+3ab2cos(2(c+dx))+2b(2a2+b2)sin(c+dx))a(ab)2(a+b)2(4a+3bsin(c+dx)bsin(3(c+dx)))18d

[In]

Integrate[Sec[c + d*x]^2/(a + b*Sin[c + d*x]^3)^2,x]

output
(((-I)*b*RootSum[(-I)*b + (3*I)*b*#1^2 + 8*a*#1^3 - (3*I)*b*#1^4 + I*b*#1^6 & 
, (16*a^2*b*ArcTan[Sin[c + d*x]/(Cos[c + d*x] - #1)] + 2*b^3*ArcTan[Sin[c + d* 
x]/(Cos[c + d*x] - #1)] - (8*I)*a^2*b*Log[1 - 2*Cos[c + d*x]*#1 + #1^2] - I*b^ 
3*Log[1 - 2*Cos[c + d*x]*#1 + #1^2] + (20*I)*a^3*ArcTan[Sin[c + d*x]/(Cos[c + 
d*x] - #1)]*#1 + (16*I)*a*b^2*ArcTan[Sin[c + d*x]/(Cos[c + d*x] - #1)]*#1 + 10 
*a^3*Log[1 - 2*Cos[c + d*x]*#1 + #1^2]*#1 + 8*a*b^2*Log[1 - 2*Cos[c + d*x]*#1 
+ #1^2]*#1 - 120*a^2*b*ArcTan[Sin[c + d*x]/(Cos[c + d*x] - #1)]*#1^2 + 12*b^3* 
ArcTan[Sin[c + d*x]/(Cos[c + d*x] - #1)]*#1^2 + (60*I)*a^2*b*Log[1 - 2*Cos[c + 
 d*x]*#1 + #1^2]*#1^2 - (6*I)*b^3*Log[1 - 2*Cos[c + d*x]*#1 + #1^2]*#1^2 - (20 
*I)*a^3*ArcTan[Sin[c + d*x]/(Cos[c + d*x] - #1)]*#1^3 - (16*I)*a*b^2*ArcTan[Si 
n[c + d*x]/(Cos[c + d*x] - #1)]*#1^3 - 10*a^3*Log[1 - 2*Cos[c + d*x]*#1 + #1^2 
]*#1^3 - 8*a*b^2*Log[1 - 2*Cos[c + d*x]*#1 + #1^2]*#1^3 + 16*a^2*b*ArcTan[Sin[ 
c + d*x]/(Cos[c + d*x] - #1)]*#1^4 + 2*b^3*ArcTan[Sin[c + d*x]/(Cos[c + d*x] - 
 #1)]*#1^4 - (8*I)*a^2*b*Log[1 - 2*Cos[c + d*x]*#1 + #1^2]*#1^4 - I*b^3*Log[1 
- 2*Cos[c + d*x]*#1 + #1^2]*#1^4)/(b*#1 - (4*I)*a*#1^2 - 2*b*#1^3 + b*#1^5) & 
])/(a*(a^2 - b^2)^2) + (18*Sin[(c + d*x)/2])/((a + b)^2*(Cos[(c + d*x)/2] - Si 
n[(c + d*x)/2])) + (18*Sin[(c + d*x)/2])/((a - b)^2*(Cos[(c + d*x)/2] + Sin[(c 
 + d*x)/2])) + (12*b*Cos[c + d*x]*(-2*a^3 - 7*a*b^2 + 3*a*b^2*Cos[2*(c + d*x)] 
 + 2*b*(2*a^2 + b^2)*Sin[c + d*x]))/(a*(a - b)^2*(a + b)^2*(4*a + 3*b*Sin[c + 
d*x] - b*Sin[3*(c + d*x)])))/(18*d)
 

Integral number [403] sec4(c+dx)(a+bsin3(c+dx))2dx

[C]   time = 2.2548 (sec), size = 1158 ,normalized size = 50.35 result too large to display

[In]

Integrate[Sec[c + d*x]^4/(a + b*Sin[c + d*x]^3)^2,x]

output
((4*I)*b^2*RootSum[(-I)*b + (3*I)*b*#1^2 + 8*a*#1^3 - (3*I)*b*#1^4 + I*b*#1^6 
& , (14*a^4*ArcTan[Sin[c + d*x]/(Cos[c + d*x] - #1)] + 74*a^2*b^2*ArcTan[Sin[c 
 + d*x]/(Cos[c + d*x] - #1)] + 2*b^4*ArcTan[Sin[c + d*x]/(Cos[c + d*x] - #1)] 
- (7*I)*a^4*Log[1 - 2*Cos[c + d*x]*#1 + #1^2] - (37*I)*a^2*b^2*Log[1 - 2*Cos[c 
 + d*x]*#1 + #1^2] - I*b^4*Log[1 - 2*Cos[c + d*x]*#1 + #1^2] + (144*I)*a^3*b*A 
rcTan[Sin[c + d*x]/(Cos[c + d*x] - #1)]*#1 + (36*I)*a*b^3*ArcTan[Sin[c + d*x]/ 
(Cos[c + d*x] - #1)]*#1 + 72*a^3*b*Log[1 - 2*Cos[c + d*x]*#1 + #1^2]*#1 + 18*a 
*b^3*Log[1 - 2*Cos[c + d*x]*#1 + #1^2]*#1 - 180*a^4*ArcTan[Sin[c + d*x]/(Cos[c 
 + d*x] - #1)]*#1^2 - 372*a^2*b^2*ArcTan[Sin[c + d*x]/(Cos[c + d*x] - #1)]*#1^ 
2 + 12*b^4*ArcTan[Sin[c + d*x]/(Cos[c + d*x] - #1)]*#1^2 + (90*I)*a^4*Log[1 - 
2*Cos[c + d*x]*#1 + #1^2]*#1^2 + (186*I)*a^2*b^2*Log[1 - 2*Cos[c + d*x]*#1 + # 
1^2]*#1^2 - (6*I)*b^4*Log[1 - 2*Cos[c + d*x]*#1 + #1^2]*#1^2 - (144*I)*a^3*b*A 
rcTan[Sin[c + d*x]/(Cos[c + d*x] - #1)]*#1^3 - (36*I)*a*b^3*ArcTan[Sin[c + d*x 
]/(Cos[c + d*x] - #1)]*#1^3 - 72*a^3*b*Log[1 - 2*Cos[c + d*x]*#1 + #1^2]*#1^3 
- 18*a*b^3*Log[1 - 2*Cos[c + d*x]*#1 + #1^2]*#1^3 + 14*a^4*ArcTan[Sin[c + d*x] 
/(Cos[c + d*x] - #1)]*#1^4 + 74*a^2*b^2*ArcTan[Sin[c + d*x]/(Cos[c + d*x] - #1 
)]*#1^4 + 2*b^4*ArcTan[Sin[c + d*x]/(Cos[c + d*x] - #1)]*#1^4 - (7*I)*a^4*Log[ 
1 - 2*Cos[c + d*x]*#1 + #1^2]*#1^4 - (37*I)*a^2*b^2*Log[1 - 2*Cos[c + d*x]*#1 
+ #1^2]*#1^4 - I*b^4*Log[1 - 2*Cos[c + d*x]*#1 + #1^2]*#1^4)/(b*#1 - (4*I)*a*# 
1^2 - 2*b*#1^3 + b*#1^5) & ] + (3*Sec[c + d*x]^3*(48*a^5*b + 568*a^3*b^3 + ...
 

4.5.2 Fricas

Integral number [399] cos4(c+dx)(a+bsin3(c+dx))2dx

[C]   time = 9.39875 (sec), size = 9984 ,normalized size = 434.09 Too large to display

[In]

integrate(cos(d*x+c)^4/(a+b*sin(d*x+c)^3)^2,x, algorithm=""fricas"")

output
-1/36*(sqrt(2)*sqrt(1/2)*(a^2*b*d - (a*b^2*d*cos(d*x + c)^2 - a*b^2*d)*sin(d*x 
 + c))*sqrt((((1/2)^(1/3)*(I*sqrt(3) + 1)*(27/(a^6*b^6*d^6) - (a^2 - 4*b^2)^3/ 
(a^10*b^8*d^6) - (a^6 + 15*a^4*b^2 + 48*a^2*b^4 - 64*b^6)/(a^10*b^8*d^6))^(1/3 
) + 6/(a^2*b^2*d^2))*a^2*b^2*d^2 + 3*sqrt(1/3)*a^2*b^2*d^2*sqrt(-(((1/2)^(1/3) 
*(I*sqrt(3) + 1)*(27/(a^6*b^6*d^6) - (a^2 - 4*b^2)^3/(a^10*b^8*d^6) - (a^6 + 1 
5*a^4*b^2 + 48*a^2*b^4 - 64*b^6)/(a^10*b^8*d^6))^(1/3) + 6/(a^2*b^2*d^2))^2*a^ 
4*b^4*d^4 - 12*((1/2)^(1/3)*(I*sqrt(3) + 1)*(27/(a^6*b^6*d^6) - (a^2 - 4*b^2)^ 
3/(a^10*b^8*d^6) - (a^6 + 15*a^4*b^2 + 48*a^2*b^4 - 64*b^6)/(a^10*b^8*d^6))^(1 
/3) + 6/(a^2*b^2*d^2))*a^2*b^2*d^2 + 36)/(a^4*b^4*d^4)) - 18)/(a^2*b^2*d^2))*l 
og(1/4*(a^9*b^5 + 8*a^7*b^7)*((1/2)^(1/3)*(I*sqrt(3) + 1)*(27/(a^6*b^6*d^6) - 
(a^2 - 4*b^2)^3/(a^10*b^8*d^6) - (a^6 + 15*a^4*b^2 + 48*a^2*b^4 - 64*b^6)/(a^1 
0*b^8*d^6))^(1/3) + 6/(a^2*b^2*d^2))^2*d^4*sin(d*x + c) - 2*a^6 + 96*a^2*b^4 - 
 256*b^6 - 3*(a^7*b^3 + 8*a^5*b^5)*((1/2)^(1/3)*(I*sqrt(3) + 1)*(27/(a^6*b^6*d 
^6) - (a^2 - 4*b^2)^3/(a^10*b^8*d^6) - (a^6 + 15*a^4*b^2 + 48*a^2*b^4 - 64*b^6 
)/(a^10*b^8*d^6))^(1/3) + 6/(a^2*b^2*d^2))*d^2*sin(d*x + c) - 1/4*sqrt(2)*sqrt 
(1/2)*(((1/2)^(1/3)*(I*sqrt(3) + 1)*(27/(a^6*b^6*d^6) - (a^2 - 4*b^2)^3/(a^10* 
b^8*d^6) - (a^6 + 15*a^4*b^2 + 48*a^2*b^4 - 64*b^6)/(a^10*b^8*d^6))^(1/3) + 6/ 
(a^2*b^2*d^2))^2*a^9*b^7*d^5*cos(d*x + c) - 16*(a^7*b^5 - a^5*b^7)*((1/2)^(1/3 
)*(I*sqrt(3) + 1)*(27/(a^6*b^6*d^6) - (a^2 - 4*b^2)^3/(a^10*b^8*d^6) - (a^6 + 
15*a^4*b^2 + 48*a^2*b^4 - 64*b^6)/(a^10*b^8*d^6))^(1/3) + 6/(a^2*b^2*d^2))*...
 

Integral number [400] cos2(c+dx)(a+bsin3(c+dx))2dx

[C]   time = 3.24086 (sec), size = 36403 ,normalized size = 1582.74 Too large to display

[In]

integrate(cos(d*x+c)^2/(a+b*sin(d*x+c)^3)^2,x, algorithm=""fricas"")

output
1/324*(3*sqrt(2/3)*sqrt(1/6)*(a^2*d - (a*b*d*cos(d*x + c)^2 - a*b*d)*sin(d*x + 
 c))*sqrt(-((a^4 - a^2*b^2)*((-I*sqrt(3) + 1)*(3/(a^6*b^2*d^4 - a^4*b^4*d^4) - 
 1/(a^4*d^2 - a^2*b^2*d^2)^2)/(-1/1062882*(a^4 - 16*a^2*b^2 + 64*b^4)/(a^12*b^ 
4*d^6 - a^10*b^6*d^6) + 1/118098/((a^6*b^2*d^4 - a^4*b^4*d^4)*(a^4*d^2 - a^2*b 
^2*d^2)) - 1/531441/(a^4*d^2 - a^2*b^2*d^2)^3 + 1/1062882*(a^6 + 28*a^4*b^2 - 
80*a^2*b^4 + 64*b^6)/((a^2 - b^2)^2*a^10*b^4*d^6))^(1/3) - 6561*(I*sqrt(3) + 1 
)*(-1/1062882*(a^4 - 16*a^2*b^2 + 64*b^4)/(a^12*b^4*d^6 - a^10*b^6*d^6) + 1/11 
8098/((a^6*b^2*d^4 - a^4*b^4*d^4)*(a^4*d^2 - a^2*b^2*d^2)) - 1/531441/(a^4*d^2 
 - a^2*b^2*d^2)^3 + 1/1062882*(a^6 + 28*a^4*b^2 - 80*a^2*b^4 + 64*b^6)/((a^2 - 
 b^2)^2*a^10*b^4*d^6))^(1/3) - 162/(a^4*d^2 - a^2*b^2*d^2))*d^2 + 3*sqrt(1/3)* 
(a^4 - a^2*b^2)*d^2*sqrt(-((a^8*b^2 - 2*a^6*b^4 + a^4*b^6)*((-I*sqrt(3) + 1)*( 
3/(a^6*b^2*d^4 - a^4*b^4*d^4) - 1/(a^4*d^2 - a^2*b^2*d^2)^2)/(-1/1062882*(a^4 
- 16*a^2*b^2 + 64*b^4)/(a^12*b^4*d^6 - a^10*b^6*d^6) + 1/118098/((a^6*b^2*d^4 
- a^4*b^4*d^4)*(a^4*d^2 - a^2*b^2*d^2)) - 1/531441/(a^4*d^2 - a^2*b^2*d^2)^3 + 
 1/1062882*(a^6 + 28*a^4*b^2 - 80*a^2*b^4 + 64*b^6)/((a^2 - b^2)^2*a^10*b^4*d^ 
6))^(1/3) - 6561*(I*sqrt(3) + 1)*(-1/1062882*(a^4 - 16*a^2*b^2 + 64*b^4)/(a^12 
*b^4*d^6 - a^10*b^6*d^6) + 1/118098/((a^6*b^2*d^4 - a^4*b^4*d^4)*(a^4*d^2 - a^ 
2*b^2*d^2)) - 1/531441/(a^4*d^2 - a^2*b^2*d^2)^3 + 1/1062882*(a^6 + 28*a^4*b^2 
 - 80*a^2*b^4 + 64*b^6)/((a^2 - b^2)^2*a^10*b^4*d^6))^(1/3) - 162/(a^4*d^2 - a 
^2*b^2*d^2))^2*d^4 + 324*(a^4*b^2 - a^2*b^4)*((-I*sqrt(3) + 1)*(3/(a^6*b^2*...
 

Integral number [401] 1(a+bsin3(c+dx))2dx

[C]   time = 8.47099 (sec), size = 70185 ,normalized size = 5013.21 Too large to display

[In]

integrate(1/(a+b*sin(d*x+c)^3)^2,x, algorithm=""fricas"")

output
-1/108*(36*a*b*cos(d*x + c)^3 + 36*b^2*cos(d*x + c)*sin(d*x + c) - sqrt(2/3)*s 
qrt(1/2)*((a^4 - a^2*b^2)*d - ((a^3*b - a*b^3)*d*cos(d*x + c)^2 - (a^3*b - a*b 
^3)*d)*sin(d*x + c))*sqrt(-(1458*a^4 + 486*a^2*b^2 - 486*b^4 - (a^8 - 3*a^6*b^ 
2 + 3*a^4*b^4 - a^2*b^6)*((-I*sqrt(3) + 1)*(3*(3*a^4 + a^2*b^2 - b^4)^2/(a^8*d 
^2 - 3*a^6*b^2*d^2 + 3*a^4*b^4*d^2 - a^2*b^6*d^2)^2 - (27*a^2 - 11*b^2)/(a^10* 
d^4 - 3*a^8*b^2*d^4 + 3*a^6*b^4*d^4 - a^4*b^6*d^4))/(-1/1062882*(729*a^4 - 432 
*a^2*b^2 + 64*b^4)/(a^16*d^6 - 3*a^14*b^2*d^6 + 3*a^12*b^4*d^6 - a^10*b^6*d^6) 
 - 1/19683*(3*a^4 + a^2*b^2 - b^4)^3/(a^8*d^2 - 3*a^6*b^2*d^2 + 3*a^4*b^4*d^2 
- a^2*b^6*d^2)^3 + 1/39366*(3*a^4 + a^2*b^2 - b^4)*(27*a^2 - 11*b^2)/((a^10*d^ 
4 - 3*a^8*b^2*d^4 + 3*a^6*b^4*d^4 - a^4*b^6*d^4)*(a^8*d^2 - 3*a^6*b^2*d^2 + 3* 
a^4*b^4*d^2 - a^2*b^6*d^2)) + 1/1062882*(3375*a^8 - 4573*a^6*b^2 + 2460*a^4*b^ 
4 - 624*a^2*b^6 + 64*b^8)*b^2/((a^2 - b^2)^6*a^10*d^6))^(1/3) + 2187*(I*sqrt(3 
) + 1)*(-1/1062882*(729*a^4 - 432*a^2*b^2 + 64*b^4)/(a^16*d^6 - 3*a^14*b^2*d^6 
 + 3*a^12*b^4*d^6 - a^10*b^6*d^6) - 1/19683*(3*a^4 + a^2*b^2 - b^4)^3/(a^8*d^2 
 - 3*a^6*b^2*d^2 + 3*a^4*b^4*d^2 - a^2*b^6*d^2)^3 + 1/39366*(3*a^4 + a^2*b^2 - 
 b^4)*(27*a^2 - 11*b^2)/((a^10*d^4 - 3*a^8*b^2*d^4 + 3*a^6*b^4*d^4 - a^4*b^6*d 
^4)*(a^8*d^2 - 3*a^6*b^2*d^2 + 3*a^4*b^4*d^2 - a^2*b^6*d^2)) + 1/1062882*(3375 
*a^8 - 4573*a^6*b^2 + 2460*a^4*b^4 - 624*a^2*b^6 + 64*b^8)*b^2/((a^2 - b^2)^6* 
a^10*d^6))^(1/3) + 162*(3*a^4 + a^2*b^2 - b^4)/(a^8*d^2 - 3*a^6*b^2*d^2 + 3*a^ 
4*b^4*d^2 - a^2*b^6*d^2))*d^2 + 3*sqrt(1/3)*(a^8 - 3*a^6*b^2 + 3*a^4*b^4 - ...
 

Integral number [402] sec2(c+dx)(a+bsin3(c+dx))2dx

[C]   time = 43.884 (sec), size = 102913 ,normalized size = 4474.48 Too large to display

[In]

integrate(sec(d*x+c)^2/(a+b*sin(d*x+c)^3)^2,x, algorithm=""fricas"")

output
1/108*(108*(a^3*b + 2*a*b^3)*cos(d*x + c)^4 - 108*a^3*b + 108*a*b^3 - sqrt(2)* 
sqrt(1/2)*((a^6 - 2*a^4*b^2 + a^2*b^4)*d*cos(d*x + c) - ((a^5*b - 2*a^3*b^3 + 
a*b^5)*d*cos(d*x + c)^3 - (a^5*b - 2*a^3*b^3 + a*b^5)*d*cos(d*x + c))*sin(d*x 
+ c))*sqrt(-(5670*a^6*b^2 + 31590*a^4*b^4 + 2916*a^2*b^6 - 810*b^8 - (a^12 - 5 
*a^10*b^2 + 10*a^8*b^4 - 10*a^6*b^6 + 5*a^4*b^8 - a^2*b^10)*((-I*sqrt(3) + 1)* 
((35*a^6*b^2 + 195*a^4*b^4 + 18*a^2*b^6 - 5*b^8)^2/(a^12*d^2 - 5*a^10*b^2*d^2 
+ 10*a^8*b^4*d^2 - 10*a^6*b^6*d^2 + 5*a^4*b^8*d^2 - a^2*b^10*d^2)^2 - 45*(10*a 
^2*b^4 - b^6)/(a^14*d^4 - 5*a^12*b^2*d^4 + 10*a^10*b^4*d^4 - 10*a^8*b^6*d^4 + 
5*a^6*b^8*d^4 - a^4*b^10*d^4))/(-1/19683*(35*a^6*b^2 + 195*a^4*b^4 + 18*a^2*b^ 
6 - 5*b^8)^3/(a^12*d^2 - 5*a^10*b^2*d^2 + 10*a^8*b^4*d^2 - 10*a^6*b^6*d^2 + 5* 
a^4*b^8*d^2 - a^2*b^10*d^2)^3 - 1/1062882*(15625*a^4*b^4 - 2000*a^2*b^6 + 64*b 
^8)/(a^20*d^6 - 5*a^18*b^2*d^6 + 10*a^16*b^4*d^6 - 10*a^14*b^6*d^6 + 5*a^12*b^ 
8*d^6 - a^10*b^10*d^6) + 5/1458*(35*a^6*b^2 + 195*a^4*b^4 + 18*a^2*b^6 - 5*b^8 
)*(10*a^2*b^4 - b^6)/((a^14*d^4 - 5*a^12*b^2*d^4 + 10*a^10*b^4*d^4 - 10*a^8*b^ 
6*d^4 + 5*a^6*b^8*d^4 - a^4*b^10*d^4)*(a^12*d^2 - 5*a^10*b^2*d^2 + 10*a^8*b^4* 
d^2 - 10*a^6*b^6*d^2 + 5*a^4*b^8*d^2 - a^2*b^10*d^2)) - 1/1062882*(15625*a^14 
+ 959375*a^12*b^2 + 24861*a^10*b^4 - 1094705*a^8*b^6 + 307475*a^6*b^8 - 37740* 
a^4*b^10 + 2320*a^2*b^12 - 64*b^14)*b^4/((a^2 - b^2)^10*a^10*d^6))^(1/3) + 729 
*(I*sqrt(3) + 1)*(-1/19683*(35*a^6*b^2 + 195*a^4*b^4 + 18*a^2*b^6 - 5*b^8)^3/( 
a^12*d^2 - 5*a^10*b^2*d^2 + 10*a^8*b^4*d^2 - 10*a^6*b^6*d^2 + 5*a^4*b^8*d^2...
 

Integral number [403] sec4(c+dx)(a+bsin3(c+dx))2dx

[C]   time = 140.116 (sec), size = 133123 ,normalized size = 5787.96 Too large to display

[In]

integrate(sec(d*x+c)^4/(a+b*sin(d*x+c)^3)^2,x, algorithm=""fricas"")

output
1/108*(36*(2*a^5*b - 30*a^3*b^3 - 17*a*b^5)*cos(d*x + c)^6 - 36*a^5*b + 72*a^3 
*b^3 - 36*a*b^5 - 108*(a^5*b - 21*a^3*b^3 - 10*a*b^5)*cos(d*x + c)^4 + sqrt(2/ 
3)*sqrt(1/6)*((a^8 - 3*a^6*b^2 + 3*a^4*b^4 - a^2*b^6)*d*cos(d*x + c)^3 - ((a^7 
*b - 3*a^5*b^3 + 3*a^3*b^5 - a*b^7)*d*cos(d*x + c)^5 - (a^7*b - 3*a^5*b^3 + 3* 
a^3*b^5 - a*b^7)*d*cos(d*x + c)^3)*sin(d*x + c))*sqrt(-(573480*a^8*b^4 + 42933 
24*a^6*b^6 + 3847662*a^4*b^8 + 159894*a^2*b^10 - 17010*b^12 - (a^16 - 7*a^14*b 
^2 + 21*a^12*b^4 - 35*a^10*b^6 + 35*a^8*b^8 - 21*a^6*b^10 + 7*a^4*b^12 - a^2*b 
^14)*((-I*sqrt(3) + 1)*((1180*a^8*b^4 + 8834*a^6*b^6 + 7917*a^4*b^8 + 329*a^2* 
b^10 - 35*b^12)^2/(a^16*d^2 - 7*a^14*b^2*d^2 + 21*a^12*b^4*d^2 - 35*a^10*b^6*d 
^2 + 35*a^8*b^8*d^2 - 21*a^6*b^10*d^2 + 7*a^4*b^12*d^2 - a^2*b^14*d^2)^2 + 15* 
(1029*a^4*b^6 - 3173*a^2*b^8 + 119*b^10)/(a^18*d^4 - 7*a^16*b^2*d^4 + 21*a^14* 
b^4*d^4 - 35*a^12*b^6*d^4 + 35*a^10*b^8*d^4 - 21*a^8*b^10*d^4 + 7*a^6*b^12*d^4 
 - a^4*b^14*d^4))/(-1/531441*(1180*a^8*b^4 + 8834*a^6*b^6 + 7917*a^4*b^8 + 329 
*a^2*b^10 - 35*b^12)^3/(a^16*d^2 - 7*a^14*b^2*d^2 + 21*a^12*b^4*d^2 - 35*a^10* 
b^6*d^2 + 35*a^8*b^8*d^2 - 21*a^6*b^10*d^2 + 7*a^4*b^12*d^2 - a^2*b^14*d^2)^3 
- 1/1062882*(117649*a^4*b^8 - 5488*a^2*b^10 + 64*b^12)/(a^24*d^6 - 7*a^22*b^2* 
d^6 + 21*a^20*b^4*d^6 - 35*a^18*b^6*d^6 + 35*a^16*b^8*d^6 - 21*a^14*b^10*d^6 + 
 7*a^12*b^12*d^6 - a^10*b^14*d^6) - 5/118098*(1180*a^8*b^4 + 8834*a^6*b^6 + 79 
17*a^4*b^8 + 329*a^2*b^10 - 35*b^12)*(1029*a^4*b^6 - 3173*a^2*b^8 + 119*b^10)/ 
((a^18*d^4 - 7*a^16*b^2*d^4 + 21*a^14*b^4*d^4 - 35*a^12*b^6*d^4 + 35*a^10*b...
 

4.5.3 Mupad

Integral number [399] cos4(c+dx)(a+bsin3(c+dx))2dx

[B]   time = 15.0511 (sec), size = -1 ,normalized size = -0.04 Too large to display

[In]

int(cos(c + d*x)^4/(a + b*sin(c + d*x)^3)^2,x)

output
2/(3*d*(a*b + 8*b^2*tan(c/2 + (d*x)/2)^3 + 3*a*b*tan(c/2 + (d*x)/2)^2 + 3*a*b* 
tan(c/2 + (d*x)/2)^4 + a*b*tan(c/2 + (d*x)/2)^6)) + symsum(log((638976*a^2*b^4 
 - 655360*b^6 - 8192*a^6 + 24576*a^4*b^2 - 2949120*root(531441*a^10*b^8*d^6 + 
59049*a^8*b^6*d^4 + 2187*a^6*b^4*d^2 + 48*a^2*b^4 + 15*a^4*b^2 + a^6 - 64*b^6, 
 d, k)*a^3*b^5 + 2138112*root(531441*a^10*b^8*d^6 + 59049*a^8*b^6*d^4 + 2187*a 
^6*b^4*d^2 + 48*a^2*b^4 + 15*a^4*b^2 + a^6 - 64*b^6, d, k)*a^5*b^3 - 9437184*r 
oot(531441*a^10*b^8*d^6 + 59049*a^8*b^6*d^4 + 2187*a^6*b^4*d^2 + 48*a^2*b^4 + 
15*a^4*b^2 + a^6 - 64*b^6, d, k)*b^8*tan(c/2 + (d*x)/2) - 786432*a*b^5*tan(c/2 
 + (d*x)/2) + 98304*a^5*b*tan(c/2 + (d*x)/2) - 21233664*root(531441*a^10*b^8*d 
^6 + 59049*a^8*b^6*d^4 + 2187*a^6*b^4*d^2 + 48*a^2*b^4 + 15*a^4*b^2 + a^6 - 64 
*b^6, d, k)^2*a^2*b^8 + 18579456*root(531441*a^10*b^8*d^6 + 59049*a^8*b^6*d^4 
+ 2187*a^6*b^4*d^2 + 48*a^2*b^4 + 15*a^4*b^2 + a^6 - 64*b^6, d, k)^2*a^4*b^6 + 
 2654208*root(531441*a^10*b^8*d^6 + 59049*a^8*b^6*d^4 + 2187*a^6*b^4*d^2 + 48* 
a^2*b^4 + 15*a^4*b^2 + a^6 - 64*b^6, d, k)^2*a^6*b^4 - 167215104*root(531441*a 
^10*b^8*d^6 + 59049*a^8*b^6*d^4 + 2187*a^6*b^4*d^2 + 48*a^2*b^4 + 15*a^4*b^2 + 
 a^6 - 64*b^6, d, k)^3*a^5*b^7 + 113467392*root(531441*a^10*b^8*d^6 + 59049*a^ 
8*b^6*d^4 + 2187*a^6*b^4*d^2 + 48*a^2*b^4 + 15*a^4*b^2 + a^6 - 64*b^6, d, k)^3 
*a^7*b^5 - 107495424*root(531441*a^10*b^8*d^6 + 59049*a^8*b^6*d^4 + 2187*a^6*b 
^4*d^2 + 48*a^2*b^4 + 15*a^4*b^2 + a^6 - 64*b^6, d, k)^4*a^6*b^8 + 107495424*r 
oot(531441*a^10*b^8*d^6 + 59049*a^8*b^6*d^4 + 2187*a^6*b^4*d^2 + 48*a^2*b^4...
 

Integral number [400] cos2(c+dx)(a+bsin3(c+dx))2dx

[B]   time = 15.2435 (sec), size = -1 ,normalized size = -0.04 Too large to display

[In]

int(cos(c + d*x)^2/(a + b*sin(c + d*x)^3)^2,x)

output
symsum(log(-((131072*b^2)/243 - (16384*a^2)/243 + (8192*root(531441*a^12*b^4*d 
^6 - 531441*a^10*b^6*d^6 + 19683*a^8*b^4*d^4 + 729*a^6*b^2*d^2 - 16*a^2*b^2 + 
a^4 + 64*b^4, d, k)*a^4*tan(c/2 + (d*x)/2))/27 + (1048576*root(531441*a^12*b^4 
*d^6 - 531441*a^10*b^6*d^6 + 19683*a^8*b^4*d^4 + 729*a^6*b^2*d^2 - 16*a^2*b^2 
+ a^4 + 64*b^4, d, k)*b^4*tan(c/2 + (d*x)/2))/27 + (262144*root(531441*a^12*b^ 
4*d^6 - 531441*a^10*b^6*d^6 + 19683*a^8*b^4*d^4 + 729*a^6*b^2*d^2 - 16*a^2*b^2 
 + a^4 + 64*b^4, d, k)^2*a^2*b^4)/3 - (131072*root(531441*a^12*b^4*d^6 - 53144 
1*a^10*b^6*d^6 + 19683*a^8*b^4*d^4 + 729*a^6*b^2*d^2 - 16*a^2*b^2 + a^4 + 64*b 
^4, d, k)^2*a^4*b^2)/3 - 98304*root(531441*a^12*b^4*d^6 - 531441*a^10*b^6*d^6 
+ 19683*a^8*b^4*d^4 + 729*a^6*b^2*d^2 - 16*a^2*b^2 + a^4 + 64*b^4, d, k)^3*a^5 
*b^3 + 442368*root(531441*a^12*b^4*d^6 - 531441*a^10*b^6*d^6 + 19683*a^8*b^4*d 
^4 + 729*a^6*b^2*d^2 - 16*a^2*b^2 + a^4 + 64*b^4, d, k)^4*a^6*b^4 + 221184*roo 
t(531441*a^12*b^4*d^6 - 531441*a^10*b^6*d^6 + 19683*a^8*b^4*d^4 + 729*a^6*b^2* 
d^2 - 16*a^2*b^2 + a^4 + 64*b^4, d, k)^4*a^8*b^2 + 7962624*root(531441*a^12*b^ 
4*d^6 - 531441*a^10*b^6*d^6 + 19683*a^8*b^4*d^4 + 729*a^6*b^2*d^2 - 16*a^2*b^2 
 + a^4 + 64*b^4, d, k)^5*a^7*b^5 - 5971968*root(531441*a^12*b^4*d^6 - 531441*a 
^10*b^6*d^6 + 19683*a^8*b^4*d^4 + 729*a^6*b^2*d^2 - 16*a^2*b^2 + a^4 + 64*b^4, 
 d, k)^5*a^9*b^3 + (131072*root(531441*a^12*b^4*d^6 - 531441*a^10*b^6*d^6 + 19 
683*a^8*b^4*d^4 + 729*a^6*b^2*d^2 - 16*a^2*b^2 + a^4 + 64*b^4, d, k)*a*b^3)/27 
 - (65536*root(531441*a^12*b^4*d^6 - 531441*a^10*b^6*d^6 + 19683*a^8*b^4*d^...
 

Integral number [401] 1(a+bsin3(c+dx))2dx

[B]   time = 17.0233 (sec), size = -1 ,normalized size = -0.07 Too large to display

[In]

int(1/(a + b*sin(c + d*x)^3)^2,x)

output
symsum(log(- (8192*(80*b^6 - 270*a^2*b^4))/(243*(a^7 + a^3*b^4 - 2*a^5*b^2)) - 
 root(1594323*a^14*b^2*d^6 - 1594323*a^12*b^4*d^6 + 531441*a^10*b^6*d^6 - 5314 
41*a^16*d^6 - 59049*a^10*b^2*d^4 + 59049*a^8*b^4*d^4 - 177147*a^12*d^4 + 8019* 
a^6*b^2*d^2 - 19683*a^8*d^2 + 432*a^2*b^2 - 64*b^4 - 729*a^4, d, k)*((8192*(14 
4*a*b^7 + 648*a^3*b^5 - 2187*a^5*b^3))/(243*(a^7 + a^3*b^4 - 2*a^5*b^2)) - roo 
t(1594323*a^14*b^2*d^6 - 1594323*a^12*b^4*d^6 + 531441*a^10*b^6*d^6 - 531441*a 
^16*d^6 - 59049*a^10*b^2*d^4 + 59049*a^8*b^4*d^4 - 177147*a^12*d^4 + 8019*a^6* 
b^2*d^2 - 19683*a^8*d^2 + 432*a^2*b^2 - 64*b^4 - 729*a^4, d, k)*(root(1594323* 
a^14*b^2*d^6 - 1594323*a^12*b^4*d^6 + 531441*a^10*b^6*d^6 - 531441*a^16*d^6 - 
59049*a^10*b^2*d^4 + 59049*a^8*b^4*d^4 - 177147*a^12*d^4 + 8019*a^6*b^2*d^2 - 
19683*a^8*d^2 + 432*a^2*b^2 - 64*b^4 - 729*a^4, d, k)*((8192*(26973*a^7*b^5 - 
20412*a^5*b^7 + 39366*a^9*b^3))/(243*(a^7 + a^3*b^4 - 2*a^5*b^2)) - root(15943 
23*a^14*b^2*d^6 - 1594323*a^12*b^4*d^6 + 531441*a^10*b^6*d^6 - 531441*a^16*d^6 
 - 59049*a^10*b^2*d^4 + 59049*a^8*b^4*d^4 - 177147*a^12*d^4 + 8019*a^6*b^2*d^2 
 - 19683*a^8*d^2 + 432*a^2*b^2 - 64*b^4 - 729*a^4, d, k)*(root(1594323*a^14*b^ 
2*d^6 - 1594323*a^12*b^4*d^6 + 531441*a^10*b^6*d^6 - 531441*a^16*d^6 - 59049*a 
^10*b^2*d^4 + 59049*a^8*b^4*d^4 - 177147*a^12*d^4 + 8019*a^6*b^2*d^2 - 19683*a 
^8*d^2 + 432*a^2*b^2 - 64*b^4 - 729*a^4, d, k)*((8192*(236196*a^7*b^9 - 649539 
*a^9*b^7 + 590490*a^11*b^5 - 177147*a^13*b^3))/(243*(a^7 + a^3*b^4 - 2*a^5*b^2 
)) + (8192*tan(c/2 + (d*x)/2)*(6561*a^8*b^8 - 13122*a^10*b^6 + 6561*a^12*b^...
 

Integral number [402] sec2(c+dx)(a+bsin3(c+dx))2dx

[B]   time = 19.147 (sec), size = -1 ,normalized size = -0.04 Too large to display

[In]

int(1/(cos(c + d*x)^2*(a + b*sin(c + d*x)^3)^2),x)

output
symsum(log(5479612416*a^8*b^36 - 180486144*a^6*b^38 - root(5314410*a^16*b^4*d^ 
6 - 5314410*a^14*b^6*d^6 - 2657205*a^18*b^2*d^6 + 2657205*a^12*b^8*d^6 - 53144 
1*a^10*b^10*d^6 + 531441*a^20*d^6 + 11514555*a^12*b^4*d^4 + 2066715*a^14*b^2*d 
^4 + 1062882*a^10*b^6*d^4 - 295245*a^8*b^8*d^4 + 984150*a^8*b^4*d^2 - 98415*a^ 
6*b^6*d^2 + 15625*a^4*b^4 - 2000*a^2*b^6 + 64*b^8, d, k)*(tan(c/2 + (d*x)/2)*( 
764411904*a^6*b^40 - 27805483008*a^8*b^38 + 437297356800*a^10*b^36 - 367246172 
1600*a^12*b^34 + 19250011791360*a^14*b^32 - 69150635753472*a^16*b^30 + 1801658 
72001024*a^18*b^28 - 352655758540800*a^20*b^26 + 529923028377600*a^22*b^24 - 6 
18699706859520*a^24*b^22 + 563713761042432*a^26*b^20 - 399760062234624*a^28*b^ 
18 + 218398602240000*a^30*b^16 - 90108039168000*a^32*b^14 + 27130620764160*a^3 
4*b^12 - 5617221156864*a^36*b^10 + 713536708608*a^38*b^8 - 41803776000*a^40*b^ 
6) - root(5314410*a^16*b^4*d^6 - 5314410*a^14*b^6*d^6 - 2657205*a^18*b^2*d^6 + 
 2657205*a^12*b^8*d^6 - 531441*a^10*b^10*d^6 + 531441*a^20*d^6 + 11514555*a^12 
*b^4*d^4 + 2066715*a^14*b^2*d^4 + 1062882*a^10*b^6*d^4 - 295245*a^8*b^8*d^4 + 
984150*a^8*b^4*d^2 - 98415*a^6*b^6*d^2 + 15625*a^4*b^4 - 2000*a^2*b^6 + 64*b^8 
, d, k)*(root(5314410*a^16*b^4*d^6 - 5314410*a^14*b^6*d^6 - 2657205*a^18*b^2*d 
^6 + 2657205*a^12*b^8*d^6 - 531441*a^10*b^10*d^6 + 531441*a^20*d^6 + 11514555* 
a^12*b^4*d^4 + 2066715*a^14*b^2*d^4 + 1062882*a^10*b^6*d^4 - 295245*a^8*b^8*d^ 
4 + 984150*a^8*b^4*d^2 - 98415*a^6*b^6*d^2 + 15625*a^4*b^4 - 2000*a^2*b^6 + 64 
*b^8, d, k)*(tan(c/2 + (d*x)/2)*(157695787008*a^12*b^38 - 4039140556800*a^1...
 

Integral number [403] sec4(c+dx)(a+bsin3(c+dx))2dx

[B]   time = 23.8272 (sec), size = -1 ,normalized size = -0.04 Too large to display

[In]

int(1/(cos(c + d*x)^4*(a + b*sin(c + d*x)^3)^2),x)

output
symsum(log(26838024192*a^8*b^54 - tan(c/2 + (d*x)/2)*(7962624000*a^7*b^55 - 50 
8612608000*a^9*b^53 + 8841498624000*a^11*b^51 - 82283765760000*a^13*b^49 + 501 
714984960000*a^15*b^47 - 2205295497216000*a^17*b^45 + 7379181637632000*a^19*b^ 
43 - 19451488075776000*a^21*b^41 + 41318016122880000*a^23*b^39 - 7181143216128 
0000*a^25*b^37 + 103155513237504000*a^27*b^35 - 123224906907648000*a^29*b^33 + 
 122756816093184000*a^31*b^31 - 101967282708480000*a^33*b^29 + 703968720076800 
00*a^35*b^27 - 40129785593856000*a^37*b^25 + 18687625592832000*a^39*b^23 - 699 
4754113536000*a^41*b^21 + 2053854351360000*a^43*b^19 - 455730831360000*a^45*b^ 
17 + 71860690944000*a^47*b^15 - 7177310208000*a^49*b^13 + 341397504000*a^51*b^ 
11) - 392822784*a^6*b^56 - root(18600435*a^18*b^6*d^6 - 18600435*a^16*b^8*d^6 
- 11160261*a^20*b^4*d^6 + 11160261*a^14*b^10*d^6 + 3720087*a^22*b^2*d^6 - 3720 
087*a^12*b^12*d^6 + 531441*a^10*b^14*d^6 - 531441*a^24*d^6 - 173879622*a^14*b^ 
6*d^4 - 155830311*a^12*b^8*d^4 - 23225940*a^16*b^4*d^4 - 6475707*a^10*b^10*d^4 
 + 688905*a^8*b^12*d^4 - 11565585*a^8*b^8*d^2 + 3750705*a^10*b^6*d^2 + 433755* 
a^6*b^10*d^2 - 117649*a^4*b^8 + 5488*a^2*b^10 - 64*b^12, d, k)*(tan(c/2 + (d*x 
)/2)*(764411904*a^6*b^58 - 61439606784*a^8*b^56 + 2110475575296*a^10*b^54 - 33 
643637121024*a^12*b^52 + 319697763065856*a^14*b^50 - 2067381036048384*a^16*b^4 
8 + 9810082122817536*a^18*b^46 - 35797302942326784*a^20*b^44 + 103613766013034 
496*a^22*b^42 - 243004699498881024*a^24*b^40 + 468678655511248896*a^26*b^38 - 
750973819695611904*a^28*b^36 + 1006348379003928576*a^30*b^34 - 113202827820...
 

4.6 Test file Number [151]

4.6.1 Mathematica

Integral number [65] arctan(a+bx)1+a2+2abx+b2x23dx

[B]   time = 0.31135 (sec), size = 163 ,normalized size = 5.82 6Gamma(116)Gamma(73)(15+10(a+bx)arctan(a+bx)+4(a+bx)arctan(a+bx)Hypergeometric2F1(1,43,116,11+(a+bx)2)1+(a+bx)2)+523πGamma(53)3F2(1,43,43;116,73;11+(a+bx)2)1+(a+bx)220b1+a2+2abx+b2x23Gamma(116)Gamma(73)

[In]

Integrate[ArcTan[a + b*x]/(1 + a^2 + 2*a*b*x + b^2*x^2)^(1/3),x]

output
(6*Gamma[11/6]*Gamma[7/3]*(15 + 10*(a + b*x)*ArcTan[a + b*x] + (4*(a + b*x)*Ar 
cTan[a + b*x]*Hypergeometric2F1[1, 4/3, 11/6, (1 + (a + b*x)^2)^(-1)])/(1 + (a 
 + b*x)^2)) + (5*2^(1/3)*Sqrt[Pi]*Gamma[5/3]*HypergeometricPFQ[{1, 4/3, 4/3}, 
{11/6, 7/3}, (1 + (a + b*x)^2)^(-1)])/(1 + (a + b*x)^2))/(20*b*(1 + a^2 + 2*a* 
b*x + b^2*x^2)^(1/3)*Gamma[11/6]*Gamma[7/3])
 

Integral number [66] arctan(a+bx)(1+a2)c+2abcx+b2cx23dx

[B]   time = 0.151768 (sec), size = 165 ,normalized size = 5. 6Gamma(116)Gamma(73)(15+10(a+bx)arctan(a+bx)+4(a+bx)arctan(a+bx)Hypergeometric2F1(1,43,116,11+(a+bx)2)1+(a+bx)2)+523πGamma(53)3F2(1,43,43;116,73;11+(a+bx)2)1+(a+bx)220bc(1+a2+2abx+b2x2)3Gamma(116)Gamma(73)

[In]

Integrate[ArcTan[a + b*x]/((1 + a^2)*c + 2*a*b*c*x + b^2*c*x^2)^(1/3),x]

output
(6*Gamma[11/6]*Gamma[7/3]*(15 + 10*(a + b*x)*ArcTan[a + b*x] + (4*(a + b*x)*Ar 
cTan[a + b*x]*Hypergeometric2F1[1, 4/3, 11/6, (1 + (a + b*x)^2)^(-1)])/(1 + (a 
 + b*x)^2)) + (5*2^(1/3)*Sqrt[Pi]*Gamma[5/3]*HypergeometricPFQ[{1, 4/3, 4/3}, 
{11/6, 7/3}, (1 + (a + b*x)^2)^(-1)])/(1 + (a + b*x)^2))/(20*b*(c*(1 + a^2 + 2 
*a*b*x + b^2*x^2))^(1/3)*Gamma[11/6]*Gamma[7/3])
 

Integral number [69] (a+bx)2arctan(a+bx)1+a2+2abx+b2x23dx

[B]   time = 4.75302 (sec), size = 181 ,normalized size = 5.17 3(1+(a+bx)2)2/3(523πGamma(53)3F2(1,43,43;116,73;11+(a+bx)2)(1+(a+bx)2)2+Gamma(116)Gamma(73)(15+901+(a+bx)2+24(a+bx)arctan(a+bx)Hypergeometric2F1(1,43,116,11+(a+bx)2)(1+(a+bx)2)2+5arctan(a+bx)(4(a+bx)+6sin(2arctan(a+bx)))))140bGamma(116)Gamma(73)

[In]

Integrate[((a + b*x)^2*ArcTan[a + b*x])/(1 + a^2 + 2*a*b*x + b^2*x^2)^(1/3),x]

output
(-3*(1 + (a + b*x)^2)^(2/3)*((5*2^(1/3)*Sqrt[Pi]*Gamma[5/3]*HypergeometricPFQ[ 
{1, 4/3, 4/3}, {11/6, 7/3}, (1 + (a + b*x)^2)^(-1)])/(1 + (a + b*x)^2)^2 + Gam 
ma[11/6]*Gamma[7/3]*(15 + 90/(1 + (a + b*x)^2) + (24*(a + b*x)*ArcTan[a + b*x] 
*Hypergeometric2F1[1, 4/3, 11/6, (1 + (a + b*x)^2)^(-1)])/(1 + (a + b*x)^2)^2 
+ 5*ArcTan[a + b*x]*(-4*(a + b*x) + 6*Sin[2*ArcTan[a + b*x]]))))/(140*b*Gamma[ 
11/6]*Gamma[7/3])
 

Integral number [70] (a+bx)2arctan(a+bx)(1+a2)c+2abcx+b2cx23dx

[B]   time = 0.727785 (sec), size = 225 ,normalized size = 5.62 31+a2+2abx+b2x23(1+(a+bx)2)2/3(523πGamma(53)3F2(1,43,43;116,73;11+(a+bx)2)(1+(a+bx)2)2+Gamma(116)Gamma(73)(15+901+(a+bx)2+24(a+bx)arctan(a+bx)Hypergeometric2F1(1,43,116,11+(a+bx)2)(1+(a+bx)2)2+5arctan(a+bx)(4(a+bx)+6sin(2arctan(a+bx)))))140bc(1+a2+2abx+b2x2)3Gamma(116)Gamma(73)

[In]

Integrate[((a + b*x)^2*ArcTan[a + b*x])/((1 + a^2)*c + 2*a*b*c*x + b^2*c*x^2)^(1/3),x]

output
(-3*(1 + a^2 + 2*a*b*x + b^2*x^2)^(1/3)*(1 + (a + b*x)^2)^(2/3)*((5*2^(1/3)*Sq 
rt[Pi]*Gamma[5/3]*HypergeometricPFQ[{1, 4/3, 4/3}, {11/6, 7/3}, (1 + (a + b*x) 
^2)^(-1)])/(1 + (a + b*x)^2)^2 + Gamma[11/6]*Gamma[7/3]*(15 + 90/(1 + (a + b*x 
)^2) + (24*(a + b*x)*ArcTan[a + b*x]*Hypergeometric2F1[1, 4/3, 11/6, (1 + (a + 
 b*x)^2)^(-1)])/(1 + (a + b*x)^2)^2 + 5*ArcTan[a + b*x]*(-4*(a + b*x) + 6*Sin[ 
2*ArcTan[a + b*x]]))))/(140*b*(c*(1 + a^2 + 2*a*b*x + b^2*x^2))^(1/3)*Gamma[11 
/6]*Gamma[7/3])
 

4.7 Test file Number [154]

4.7.1 Mathematica

Integral number [116] cot1(a+bx)1+a2+2abx+b2x23dx

[B]   time = 0.30209 (sec), size = 177 ,normalized size = 6.32 6Gamma(116)Gamma(73)(5(1+a2+2abx+b2x2)(3+2(a+bx)cot1(a+bx))+4(a+bx)cot1(a+bx)Hypergeometric2F1(1,43,116,11+a2+2abx+b2x2))523πGamma(53)3F2(1,43,43;116,73;11+a2+2abx+b2x2)20b(1+a2+2abx+b2x2)4/3Gamma(116)Gamma(73)

[In]

Integrate[ArcCot[a + b*x]/(1 + a^2 + 2*a*b*x + b^2*x^2)^(1/3),x]

output
(6*Gamma[11/6]*Gamma[7/3]*(5*(1 + a^2 + 2*a*b*x + b^2*x^2)*(-3 + 2*(a + b*x)*A 
rcCot[a + b*x]) + 4*(a + b*x)*ArcCot[a + b*x]*Hypergeometric2F1[1, 4/3, 11/6, 
(1 + a^2 + 2*a*b*x + b^2*x^2)^(-1)]) - 5*2^(1/3)*Sqrt[Pi]*Gamma[5/3]*Hypergeom 
etricPFQ[{1, 4/3, 4/3}, {11/6, 7/3}, (1 + a^2 + 2*a*b*x + b^2*x^2)^(-1)])/(20* 
b*(1 + a^2 + 2*a*b*x + b^2*x^2)^(4/3)*Gamma[11/6]*Gamma[7/3])
 

Integral number [117] cot1(a+bx)(1+a2)c+2abcx+b2cx23dx

[B]   time = 0.141477 (sec), size = 180 ,normalized size = 5.45 c(6Gamma(116)Gamma(73)(5(1+a2+2abx+b2x2)(3+2(a+bx)cot1(a+bx))+4(a+bx)cot1(a+bx)Hypergeometric2F1(1,43,116,11+a2+2abx+b2x2))523πGamma(53)3F2(1,43,43;116,73;11+a2+2abx+b2x2))20b(c(1+a2+2abx+b2x2))4/3Gamma(116)Gamma(73)

[In]

Integrate[ArcCot[a + b*x]/((1 + a^2)*c + 2*a*b*c*x + b^2*c*x^2)^(1/3),x]

output
(c*(6*Gamma[11/6]*Gamma[7/3]*(5*(1 + a^2 + 2*a*b*x + b^2*x^2)*(-3 + 2*(a + b*x 
)*ArcCot[a + b*x]) + 4*(a + b*x)*ArcCot[a + b*x]*Hypergeometric2F1[1, 4/3, 11/ 
6, (1 + a^2 + 2*a*b*x + b^2*x^2)^(-1)]) - 5*2^(1/3)*Sqrt[Pi]*Gamma[5/3]*Hyperg 
eometricPFQ[{1, 4/3, 4/3}, {11/6, 7/3}, (1 + a^2 + 2*a*b*x + b^2*x^2)^(-1)]))/ 
(20*b*(c*(1 + a^2 + 2*a*b*x + b^2*x^2))^(4/3)*Gamma[11/6]*Gamma[7/3])
 

Integral number [120] (a+bx)2cot1(a+bx)1+a2+2abx+b2x23dx

[B]   time = 0.740671 (sec), size = 198 ,normalized size = 5.66 3(Gamma(116)Gamma(73)(5(1+(a+bx)2)(3(7+(a+bx)2)+4(a+bx)(2+(a+bx)2)cot1(a+bx))24(a+bx)cot1(a+bx)Hypergeometric2F1(1,43,116,11+a2+2abx+b2x2))+523πGamma(53)3F2(1,43,43;116,73;11+a2+2abx+b2x2))140b1+a2+2abx+b2x23(1+(a+bx)2)Gamma(116)Gamma(73)

[In]

Integrate[((a + b*x)^2*ArcCot[a + b*x])/(1 + a^2 + 2*a*b*x + b^2*x^2)^(1/3),x]

output
(3*(Gamma[11/6]*Gamma[7/3]*(5*(1 + (a + b*x)^2)*(3*(7 + (a + b*x)^2) + 4*(a + 
b*x)*(-2 + (a + b*x)^2)*ArcCot[a + b*x]) - 24*(a + b*x)*ArcCot[a + b*x]*Hyperg 
eometric2F1[1, 4/3, 11/6, (1 + a^2 + 2*a*b*x + b^2*x^2)^(-1)]) + 5*2^(1/3)*Sqr 
t[Pi]*Gamma[5/3]*HypergeometricPFQ[{1, 4/3, 4/3}, {11/6, 7/3}, (1 + a^2 + 2*a* 
b*x + b^2*x^2)^(-1)]))/(140*b*(1 + a^2 + 2*a*b*x + b^2*x^2)^(1/3)*(1 + (a + b* 
x)^2)*Gamma[11/6]*Gamma[7/3])
 

Integral number [121] (a+bx)2cot1(a+bx)(1+a2)c+2abcx+b2cx23dx

[B]   time = 0.321534 (sec), size = 200 ,normalized size = 5. 3(Gamma(116)Gamma(73)(5(1+(a+bx)2)(3(7+(a+bx)2)+4(a+bx)(2+(a+bx)2)cot1(a+bx))24(a+bx)cot1(a+bx)Hypergeometric2F1(1,43,116,11+a2+2abx+b2x2))+523πGamma(53)3F2(1,43,43;116,73;11+a2+2abx+b2x2))140bc(1+a2+2abx+b2x2)3(1+(a+bx)2)Gamma(116)Gamma(73)

[In]

Integrate[((a + b*x)^2*ArcCot[a + b*x])/((1 + a^2)*c + 2*a*b*c*x + b^2*c*x^2)^(1/3),x]

output
(3*(Gamma[11/6]*Gamma[7/3]*(5*(1 + (a + b*x)^2)*(3*(7 + (a + b*x)^2) + 4*(a + 
b*x)*(-2 + (a + b*x)^2)*ArcCot[a + b*x]) - 24*(a + b*x)*ArcCot[a + b*x]*Hyperg 
eometric2F1[1, 4/3, 11/6, (1 + a^2 + 2*a*b*x + b^2*x^2)^(-1)]) + 5*2^(1/3)*Sqr 
t[Pi]*Gamma[5/3]*HypergeometricPFQ[{1, 4/3, 4/3}, {11/6, 7/3}, (1 + a^2 + 2*a* 
b*x + b^2*x^2)^(-1)]))/(140*b*(c*(1 + a^2 + 2*a*b*x + b^2*x^2))^(1/3)*(1 + (a 
+ b*x)^2)*Gamma[11/6]*Gamma[7/3])
 

4.8 Test file Number [173]

4.8.1 Mathematica

Integral number [74] sinh3(c+dx)a+btanh3(c+dx)dx

[B]   time = 1.06392 (sec), size = 826 ,normalized size = 35.91 9a(a2+3b2)cosh(c+dx)+a3cosh(3(c+dx))ab2cosh(3(c+dx))2abRootSum[ab+3a#12+3b#12+3a#143b#14+a#16+b#16&,3a2c+3abc+3b2c+3a2dx+3abdx+3b2dx+6a2log(cosh(12(c+dx))sinh(12(c+dx))+cosh(12(c+dx))#1sinh(12(c+dx))#1)+6ablog(cosh(12(c+dx))sinh(12(c+dx))+cosh(12(c+dx))#1sinh(12(c+dx))#1)+6b2log(cosh(12(c+dx))sinh(12(c+dx))+cosh(12(c+dx))#1sinh(12(c+dx))#1)+2a2c#122b2c#12+2a2dx#122b2dx#12+4a2log(cosh(12(c+dx))sinh(12(c+dx))+cosh(12(c+dx))#1sinh(12(c+dx))#1)#124b2log(cosh(12(c+dx))sinh(12(c+dx))+cosh(12(c+dx))#1sinh(12(c+dx))#1)#12+3a2c#143abc#14+3b2c#14+3a2dx#143abdx#14+3b2dx#14+6a2log(cosh(12(c+dx))sinh(12(c+dx))+cosh(12(c+dx))#1sinh(12(c+dx))#1)#146ablog(cosh(12(c+dx))sinh(12(c+dx))+cosh(12(c+dx))#1sinh(12(c+dx))#1)#14+6b2log(cosh(12(c+dx))sinh(12(c+dx))+cosh(12(c+dx))#1sinh(12(c+dx))#1)#14a#1+b#1+2a#132b#13+a#15+b#15&]+27a2bsinh(c+dx)+9b3sinh(c+dx)a2bsinh(3(c+dx))+b3sinh(3(c+dx))12(ab)2(a+b)2d

[In]

Integrate[Sinh[c + d*x]^3/(a + b*Tanh[c + d*x]^3),x]

output
(-9*a*(a^2 + 3*b^2)*Cosh[c + d*x] + a^3*Cosh[3*(c + d*x)] - a*b^2*Cosh[3*(c + 
d*x)] - 2*a*b*RootSum[a - b + 3*a*#1^2 + 3*b*#1^2 + 3*a*#1^4 - 3*b*#1^4 + a*#1 
^6 + b*#1^6 & , (3*a^2*c + 3*a*b*c + 3*b^2*c + 3*a^2*d*x + 3*a*b*d*x + 3*b^2*d 
*x + 6*a^2*Log[-Cosh[(c + d*x)/2] - Sinh[(c + d*x)/2] + Cosh[(c + d*x)/2]*#1 - 
 Sinh[(c + d*x)/2]*#1] + 6*a*b*Log[-Cosh[(c + d*x)/2] - Sinh[(c + d*x)/2] + Co 
sh[(c + d*x)/2]*#1 - Sinh[(c + d*x)/2]*#1] + 6*b^2*Log[-Cosh[(c + d*x)/2] - Si 
nh[(c + d*x)/2] + Cosh[(c + d*x)/2]*#1 - Sinh[(c + d*x)/2]*#1] + 2*a^2*c*#1^2 
- 2*b^2*c*#1^2 + 2*a^2*d*x*#1^2 - 2*b^2*d*x*#1^2 + 4*a^2*Log[-Cosh[(c + d*x)/2 
] - Sinh[(c + d*x)/2] + Cosh[(c + d*x)/2]*#1 - Sinh[(c + d*x)/2]*#1]*#1^2 - 4* 
b^2*Log[-Cosh[(c + d*x)/2] - Sinh[(c + d*x)/2] + Cosh[(c + d*x)/2]*#1 - Sinh[( 
c + d*x)/2]*#1]*#1^2 + 3*a^2*c*#1^4 - 3*a*b*c*#1^4 + 3*b^2*c*#1^4 + 3*a^2*d*x* 
#1^4 - 3*a*b*d*x*#1^4 + 3*b^2*d*x*#1^4 + 6*a^2*Log[-Cosh[(c + d*x)/2] - Sinh[( 
c + d*x)/2] + Cosh[(c + d*x)/2]*#1 - Sinh[(c + d*x)/2]*#1]*#1^4 - 6*a*b*Log[-C 
osh[(c + d*x)/2] - Sinh[(c + d*x)/2] + Cosh[(c + d*x)/2]*#1 - Sinh[(c + d*x)/2 
]*#1]*#1^4 + 6*b^2*Log[-Cosh[(c + d*x)/2] - Sinh[(c + d*x)/2] + Cosh[(c + d*x) 
/2]*#1 - Sinh[(c + d*x)/2]*#1]*#1^4)/(a*#1 + b*#1 + 2*a*#1^3 - 2*b*#1^3 + a*#1 
^5 + b*#1^5) & ] + 27*a^2*b*Sinh[c + d*x] + 9*b^3*Sinh[c + d*x] - a^2*b*Sinh[3 
*(c + d*x)] + b^3*Sinh[3*(c + d*x)])/(12*(a - b)^2*(a + b)^2*d)
 

Integral number [76] sinh(c+dx)a+btanh3(c+dx)dx

[B]   time = 0.718557 (sec), size = 409 ,normalized size = 19.48 6acosh(c+dx)+bRootSum[ab+3a#12+3b#12+3a#143b#14+a#16+b#16&,2ac+bc+2adx+bdx+4alog(cosh(12(c+dx))sinh(12(c+dx))+cosh(12(c+dx))#1sinh(12(c+dx))#1)+2blog(cosh(12(c+dx))sinh(12(c+dx))+cosh(12(c+dx))#1sinh(12(c+dx))#1)+2ac#14bc#14+2adx#14bdx#14+4alog(cosh(12(c+dx))sinh(12(c+dx))+cosh(12(c+dx))#1sinh(12(c+dx))#1)#142blog(cosh(12(c+dx))sinh(12(c+dx))+cosh(12(c+dx))#1sinh(12(c+dx))#1)#14a#1+b#1+2a#132b#13+a#15+b#15&]6bsinh(c+dx)6(ab)(a+b)d

[In]

Integrate[Sinh[c + d*x]/(a + b*Tanh[c + d*x]^3),x]

output
(6*a*Cosh[c + d*x] + b*RootSum[a - b + 3*a*#1^2 + 3*b*#1^2 + 3*a*#1^4 - 3*b*#1 
^4 + a*#1^6 + b*#1^6 & , (2*a*c + b*c + 2*a*d*x + b*d*x + 4*a*Log[-Cosh[(c + d 
*x)/2] - Sinh[(c + d*x)/2] + Cosh[(c + d*x)/2]*#1 - Sinh[(c + d*x)/2]*#1] + 2* 
b*Log[-Cosh[(c + d*x)/2] - Sinh[(c + d*x)/2] + Cosh[(c + d*x)/2]*#1 - Sinh[(c 
+ d*x)/2]*#1] + 2*a*c*#1^4 - b*c*#1^4 + 2*a*d*x*#1^4 - b*d*x*#1^4 + 4*a*Log[-C 
osh[(c + d*x)/2] - Sinh[(c + d*x)/2] + Cosh[(c + d*x)/2]*#1 - Sinh[(c + d*x)/2 
]*#1]*#1^4 - 2*b*Log[-Cosh[(c + d*x)/2] - Sinh[(c + d*x)/2] + Cosh[(c + d*x)/2 
]*#1 - Sinh[(c + d*x)/2]*#1]*#1^4)/(a*#1 + b*#1 + 2*a*#1^3 - 2*b*#1^3 + a*#1^5 
 + b*#1^5) & ] - 6*b*Sinh[c + d*x])/(6*(a - b)*(a + b)*d)
 

Integral number [77] csch(c+dx)a+btanh3(c+dx)dx

[B]   time = 0.62824 (sec), size = 331 ,normalized size = 15.76 6log(cosh(12(c+dx)))6log(sinh(12(c+dx)))+bRootSum[ab+3a#12+3b#12+3a#143b#14+a#16+b#16&,c+dx+2log(cosh(12(c+dx))sinh(12(c+dx))+cosh(12(c+dx))#1sinh(12(c+dx))#1)2c#122dx#124log(cosh(12(c+dx))sinh(12(c+dx))+cosh(12(c+dx))#1sinh(12(c+dx))#1)#12+c#14+dx#14+2log(cosh(12(c+dx))sinh(12(c+dx))+cosh(12(c+dx))#1sinh(12(c+dx))#1)#14a#1+b#1+2a#132b#13+a#15+b#15&]6ad

[In]

Integrate[Csch[c + d*x]/(a + b*Tanh[c + d*x]^3),x]

output
-1/6*(6*Log[Cosh[(c + d*x)/2]] - 6*Log[Sinh[(c + d*x)/2]] + b*RootSum[a - b + 
3*a*#1^2 + 3*b*#1^2 + 3*a*#1^4 - 3*b*#1^4 + a*#1^6 + b*#1^6 & , (c + d*x + 2*L 
og[-Cosh[(c + d*x)/2] - Sinh[(c + d*x)/2] + Cosh[(c + d*x)/2]*#1 - Sinh[(c + d 
*x)/2]*#1] - 2*c*#1^2 - 2*d*x*#1^2 - 4*Log[-Cosh[(c + d*x)/2] - Sinh[(c + d*x) 
/2] + Cosh[(c + d*x)/2]*#1 - Sinh[(c + d*x)/2]*#1]*#1^2 + c*#1^4 + d*x*#1^4 + 
2*Log[-Cosh[(c + d*x)/2] - Sinh[(c + d*x)/2] + Cosh[(c + d*x)/2]*#1 - Sinh[(c 
+ d*x)/2]*#1]*#1^4)/(a*#1 + b*#1 + 2*a*#1^3 - 2*b*#1^3 + a*#1^5 + b*#1^5) & ]) 
/(a*d)
 

Integral number [79] csch3(c+dx)a+btanh3(c+dx)dx

[B]   time = 0.918625 (sec), size = 214 ,normalized size = 9.3 16bRootSum[ab+3a#12+3b#12+3a#143b#14+a#16+b#16&,c#1+dx#1+2log(cosh(12(c+dx))sinh(12(c+dx))+cosh(12(c+dx))#1sinh(12(c+dx))#1)#1a+b+2a#122b#12+a#14+b#14&]+3(csch2(12(c+dx))4log(cosh(12(c+dx)))+4log(sinh(12(c+dx)))+sech2(12(c+dx)))24ad

[In]

Integrate[Csch[c + d*x]^3/(a + b*Tanh[c + d*x]^3),x]

output
-1/24*(16*b*RootSum[a - b + 3*a*#1^2 + 3*b*#1^2 + 3*a*#1^4 - 3*b*#1^4 + a*#1^6 
 + b*#1^6 & , (c*#1 + d*x*#1 + 2*Log[-Cosh[(c + d*x)/2] - Sinh[(c + d*x)/2] + 
Cosh[(c + d*x)/2]*#1 - Sinh[(c + d*x)/2]*#1]*#1)/(a + b + 2*a*#1^2 - 2*b*#1^2 
+ a*#1^4 + b*#1^4) & ] + 3*(Csch[(c + d*x)/2]^2 - 4*Log[Cosh[(c + d*x)/2]] + 4 
*Log[Sinh[(c + d*x)/2]] + Sech[(c + d*x)/2]^2))/(a*d)
 

4.8.2 Fricas

Integral number [74] sinh3(c+dx)a+btanh3(c+dx)dx

[C]   time = 4.16929 (sec), size = 62017 ,normalized size = 2696.39 Too large to display

[In]

integrate(sinh(d*x+c)^3/(a+b*tanh(d*x+c)^3),x, algorithm=""fricas"")

output
1/24*((a^3 - a^2*b - a*b^2 + b^3)*cosh(d*x + c)^6 + 6*(a^3 - a^2*b - a*b^2 + b 
^3)*cosh(d*x + c)*sinh(d*x + c)^5 + (a^3 - a^2*b - a*b^2 + b^3)*sinh(d*x + c)^ 
6 - 9*(a^3 - 3*a^2*b + 3*a*b^2 - b^3)*cosh(d*x + c)^4 - 3*(3*a^3 - 9*a^2*b + 9 
*a*b^2 - 3*b^3 - 5*(a^3 - a^2*b - a*b^2 + b^3)*cosh(d*x + c)^2)*sinh(d*x + c)^ 
4 + 4*(5*(a^3 - a^2*b - a*b^2 + b^3)*cosh(d*x + c)^3 - 9*(a^3 - 3*a^2*b + 3*a* 
b^2 - b^3)*cosh(d*x + c))*sinh(d*x + c)^3 - 4*sqrt(2/3)*sqrt(1/6)*((a^4 - 2*a^ 
2*b^2 + b^4)*d*cosh(d*x + c)^3 + 3*(a^4 - 2*a^2*b^2 + b^4)*d*cosh(d*x + c)^2*s 
inh(d*x + c) + 3*(a^4 - 2*a^2*b^2 + b^4)*d*cosh(d*x + c)*sinh(d*x + c)^2 + (a^ 
4 - 2*a^2*b^2 + b^4)*d*sinh(d*x + c)^3)*sqrt(-(810*a^6*b^2 + 2754*a^4*b^4 + 81 
0*a^2*b^6 - (a^10 - 5*a^8*b^2 + 10*a^6*b^4 - 10*a^4*b^6 + 5*a^2*b^8 - b^10)*(( 
5*a^2*b^2/(a^8*d^4 - 4*a^6*b^2*d^4 + 6*a^4*b^4*d^4 - 4*a^2*b^6*d^4 + b^8*d^4) 
+ 9*(5*a^6*b^2 + 17*a^4*b^4 + 5*a^2*b^6)^2/(a^10*d^2 - 5*a^8*b^2*d^2 + 10*a^6* 
b^4*d^2 - 10*a^4*b^6*d^2 + 5*a^2*b^8*d^2 - b^10*d^2)^2)*(-I*sqrt(3) + 1)/(-1/1 
458*a^2*b^2/(a^10*d^6 - 5*a^8*b^2*d^6 + 10*a^6*b^4*d^6 - 10*a^4*b^6*d^6 + 5*a^ 
2*b^8*d^6 - b^10*d^6) - 5/162*(5*a^6*b^2 + 17*a^4*b^4 + 5*a^2*b^6)*a^2*b^2/((a 
^10*d^2 - 5*a^8*b^2*d^2 + 10*a^6*b^4*d^2 - 10*a^4*b^6*d^2 + 5*a^2*b^8*d^2 - b^ 
10*d^2)*(a^8*d^4 - 4*a^6*b^2*d^4 + 6*a^4*b^4*d^4 - 4*a^2*b^6*d^4 + b^8*d^4)) - 
 1/27*(5*a^6*b^2 + 17*a^4*b^4 + 5*a^2*b^6)^3/(a^10*d^2 - 5*a^8*b^2*d^2 + 10*a^ 
6*b^4*d^2 - 10*a^4*b^6*d^2 + 5*a^2*b^8*d^2 - b^10*d^2)^3 + 1/1458*(a^10 - 30*a 
^8*b^2 - 700*a^6*b^4 - 700*a^4*b^6 - 30*a^2*b^8 + b^10)*a^2*b^2/((a^2 - b^2...
 

Integral number [76] sinh(c+dx)a+btanh3(c+dx)dx

[C]   time = 1.73806 (sec), size = 40923 ,normalized size = 1948.71 Too large to display

[In]

integrate(sinh(d*x+c)/(a+b*tanh(d*x+c)^3),x, algorithm=""fricas"")

output
-1/6*(sqrt(2/3)*sqrt(1/2)*((a^2 - b^2)*d*cosh(d*x + c) + (a^2 - b^2)*d*sinh(d* 
x + c))*sqrt(-(108*a^2*b^2 + 54*b^4 - (a^6 - 3*a^4*b^2 + 3*a^2*b^4 - b^6)*((b^ 
2/(a^6*d^4 - 3*a^4*b^2*d^4 + 3*a^2*b^4*d^4 - b^6*d^4) + 3*(2*a^2*b^2 + b^4)^2/ 
(a^6*d^2 - 3*a^4*b^2*d^2 + 3*a^2*b^4*d^2 - b^6*d^2)^2)*(-I*sqrt(3) + 1)/(-1/14 
58*b^2/(a^8*d^6 - 3*a^6*b^2*d^6 + 3*a^4*b^4*d^6 - a^2*b^6*d^6) - 1/54*(2*a^2*b 
^2 + b^4)*b^2/((a^6*d^4 - 3*a^4*b^2*d^4 + 3*a^2*b^4*d^4 - b^6*d^4)*(a^6*d^2 - 
3*a^4*b^2*d^2 + 3*a^2*b^4*d^2 - b^6*d^2)) - 1/27*(2*a^2*b^2 + b^4)^3/(a^6*d^2 
- 3*a^4*b^2*d^2 + 3*a^2*b^4*d^2 - b^6*d^2)^3 - 1/1458*(a^6 - 3*a^4*b^2 - 24*a^ 
2*b^4 - b^6)*b^2/((a^2 - b^2)^6*a^2*d^6))^(1/3) + 27*(-1/1458*b^2/(a^8*d^6 - 3 
*a^6*b^2*d^6 + 3*a^4*b^4*d^6 - a^2*b^6*d^6) - 1/54*(2*a^2*b^2 + b^4)*b^2/((a^6 
*d^4 - 3*a^4*b^2*d^4 + 3*a^2*b^4*d^4 - b^6*d^4)*(a^6*d^2 - 3*a^4*b^2*d^2 + 3*a 
^2*b^4*d^2 - b^6*d^2)) - 1/27*(2*a^2*b^2 + b^4)^3/(a^6*d^2 - 3*a^4*b^2*d^2 + 3 
*a^2*b^4*d^2 - b^6*d^2)^3 - 1/1458*(a^6 - 3*a^4*b^2 - 24*a^2*b^4 - b^6)*b^2/(( 
a^2 - b^2)^6*a^2*d^6))^(1/3)*(I*sqrt(3) + 1) + 18*(2*a^2*b^2 + b^4)/(a^6*d^2 - 
 3*a^4*b^2*d^2 + 3*a^2*b^4*d^2 - b^6*d^2))*d^2 + 3*sqrt(1/3)*(a^6 - 3*a^4*b^2 
+ 3*a^2*b^4 - b^6)*d^2*sqrt((432*a^6*b^2 + 2592*a^4*b^4 + 5184*a^2*b^6 + 540*b 
^8 - (a^12 - 6*a^10*b^2 + 15*a^8*b^4 - 20*a^6*b^6 + 15*a^4*b^8 - 6*a^2*b^10 + 
b^12)*((b^2/(a^6*d^4 - 3*a^4*b^2*d^4 + 3*a^2*b^4*d^4 - b^6*d^4) + 3*(2*a^2*b^2 
 + b^4)^2/(a^6*d^2 - 3*a^4*b^2*d^2 + 3*a^2*b^4*d^2 - b^6*d^2)^2)*(-I*sqrt(3) + 
 1)/(-1/1458*b^2/(a^8*d^6 - 3*a^6*b^2*d^6 + 3*a^4*b^4*d^6 - a^2*b^6*d^6) - ...
 

Integral number [77] csch(c+dx)a+btanh3(c+dx)dx

[C]   time = 1.72563 (sec), size = 20085 ,normalized size = 956.43 Too large to display

[In]

integrate(csch(d*x+c)/(a+b*tanh(d*x+c)^3),x, algorithm=""fricas"")

output
-1/6*(sqrt(2/3)*sqrt(1/6)*a*d*sqrt(((a^4 - a^2*b^2)*((b^4/(a^4*d^2 - a^2*b^2*d 
^2)^2 + b^2/(a^6*d^4 - a^4*b^2*d^4))*(-I*sqrt(3) + 1)/(-1/729*b^6/(a^4*d^2 - a 
^2*b^2*d^2)^3 - 1/486*b^4/((a^6*d^4 - a^4*b^2*d^4)*(a^4*d^2 - a^2*b^2*d^2)) - 
1/1458*b^2/(a^8*d^6 - a^6*b^2*d^6) + 1/1458*b^2/((a^2 - b^2)^2*a^4*d^6))^(1/3) 
 + 81*(-1/729*b^6/(a^4*d^2 - a^2*b^2*d^2)^3 - 1/486*b^4/((a^6*d^4 - a^4*b^2*d^ 
4)*(a^4*d^2 - a^2*b^2*d^2)) - 1/1458*b^2/(a^8*d^6 - a^6*b^2*d^6) + 1/1458*b^2/ 
((a^2 - b^2)^2*a^4*d^6))^(1/3)*(I*sqrt(3) + 1) + 18*b^2/(a^4*d^2 - a^2*b^2*d^2 
))*d^2 + 3*sqrt(1/3)*(a^4 - a^2*b^2)*d^2*sqrt(-((a^8 - 2*a^6*b^2 + a^4*b^4)*(( 
b^4/(a^4*d^2 - a^2*b^2*d^2)^2 + b^2/(a^6*d^4 - a^4*b^2*d^4))*(-I*sqrt(3) + 1)/ 
(-1/729*b^6/(a^4*d^2 - a^2*b^2*d^2)^3 - 1/486*b^4/((a^6*d^4 - a^4*b^2*d^4)*(a^ 
4*d^2 - a^2*b^2*d^2)) - 1/1458*b^2/(a^8*d^6 - a^6*b^2*d^6) + 1/1458*b^2/((a^2 
- b^2)^2*a^4*d^6))^(1/3) + 81*(-1/729*b^6/(a^4*d^2 - a^2*b^2*d^2)^3 - 1/486*b^ 
4/((a^6*d^4 - a^4*b^2*d^4)*(a^4*d^2 - a^2*b^2*d^2)) - 1/1458*b^2/(a^8*d^6 - a^ 
6*b^2*d^6) + 1/1458*b^2/((a^2 - b^2)^2*a^4*d^6))^(1/3)*(I*sqrt(3) + 1) + 18*b^ 
2/(a^4*d^2 - a^2*b^2*d^2))^2*d^4 - 1296*a^2*b^2 + 324*b^4 - 36*(a^4*b^2 - a^2* 
b^4)*((b^4/(a^4*d^2 - a^2*b^2*d^2)^2 + b^2/(a^6*d^4 - a^4*b^2*d^4))*(-I*sqrt(3 
) + 1)/(-1/729*b^6/(a^4*d^2 - a^2*b^2*d^2)^3 - 1/486*b^4/((a^6*d^4 - a^4*b^2*d 
^4)*(a^4*d^2 - a^2*b^2*d^2)) - 1/1458*b^2/(a^8*d^6 - a^6*b^2*d^6) + 1/1458*b^2 
/((a^2 - b^2)^2*a^4*d^6))^(1/3) + 81*(-1/729*b^6/(a^4*d^2 - a^2*b^2*d^2)^3 - 1 
/486*b^4/((a^6*d^4 - a^4*b^2*d^4)*(a^4*d^2 - a^2*b^2*d^2)) - 1/1458*b^2/(a^...
 

Integral number [79] csch3(c+dx)a+btanh3(c+dx)dx

[C]   time = 2.9369 (sec), size = 6846 ,normalized size = 297.65 Too large to display

[In]

integrate(csch(d*x+c)^3/(a+b*tanh(d*x+c)^3),x, algorithm=""fricas"")

output
-1/6*(6*cosh(d*x + c)^3 + 18*cosh(d*x + c)*sinh(d*x + c)^2 + 6*sinh(d*x + c)^3 
 + (a*d*cosh(d*x + c)^4 + 4*a*d*cosh(d*x + c)*sinh(d*x + c)^3 + a*d*sinh(d*x + 
 c)^4 - 2*a*d*cosh(d*x + c)^2 + 2*(3*a*d*cosh(d*x + c)^2 - a*d)*sinh(d*x + c)^ 
2 + a*d + 4*(a*d*cosh(d*x + c)^3 - a*d*cosh(d*x + c))*sinh(d*x + c))*sqrt((1/2 
)^(1/3)*(I*sqrt(3) + 1)*((a^2 + b^2)*b^2/(a^10*d^6) - (a^2*b^2 - b^4)/(a^10*d^ 
6))^(1/3) + 3*sqrt(1/3)*sqrt(-(((1/2)^(1/3)*(I*sqrt(3) + 1)*((a^2 + b^2)*b^2/( 
a^10*d^6) - (a^2*b^2 - b^4)/(a^10*d^6))^(1/3) - 2*(1/2)^(2/3)*b^2*(-I*sqrt(3) 
+ 1)/(a^6*d^4*((a^2 + b^2)*b^2/(a^10*d^6) - (a^2*b^2 - b^4)/(a^10*d^6))^(1/3)) 
)^2*a^6*d^4 + 16*b^2)/(a^6*d^4)) - 2*(1/2)^(2/3)*b^2*(-I*sqrt(3) + 1)/(a^6*d^4 
*((a^2 + b^2)*b^2/(a^10*d^6) - (a^2*b^2 - b^4)/(a^10*d^6))^(1/3)))*log(4*(a^3* 
b + a^2*b^2 + a*b^3 + b^4)*cosh(d*x + c) + 4*(a^3*b + a^2*b^2 + a*b^3 + b^4)*s 
inh(d*x + c) + 1/2*(((1/2)^(1/3)*(I*sqrt(3) + 1)*((a^2 + b^2)*b^2/(a^10*d^6) - 
 (a^2*b^2 - b^4)/(a^10*d^6))^(1/3) - 2*(1/2)^(2/3)*b^2*(-I*sqrt(3) + 1)/(a^6*d 
^4*((a^2 + b^2)*b^2/(a^10*d^6) - (a^2*b^2 - b^4)/(a^10*d^6))^(1/3)))^2*a^9*d^5 
 + (a^7 - a^5*b^2)*((1/2)^(1/3)*(I*sqrt(3) + 1)*((a^2 + b^2)*b^2/(a^10*d^6) - 
(a^2*b^2 - b^4)/(a^10*d^6))^(1/3) - 2*(1/2)^(2/3)*b^2*(-I*sqrt(3) + 1)/(a^6*d^ 
4*((a^2 + b^2)*b^2/(a^10*d^6) - (a^2*b^2 - b^4)/(a^10*d^6))^(1/3)))*d^3 + 4*(a 
^4*b + 2*a^3*b^2 + a^2*b^3)*d - 3*sqrt(1/3)*(((1/2)^(1/3)*(I*sqrt(3) + 1)*((a^ 
2 + b^2)*b^2/(a^10*d^6) - (a^2*b^2 - b^4)/(a^10*d^6))^(1/3) - 2*(1/2)^(2/3)*b^ 
2*(-I*sqrt(3) + 1)/(a^6*d^4*((a^2 + b^2)*b^2/(a^10*d^6) - (a^2*b^2 - b^4)/(...
 

4.8.3 Mupad

Integral number [76] sinh(c+dx)a+btanh3(c+dx)dx

[B]   time = 83.4069 (sec), size = -1 ,normalized size = -0.05 Too large to display

[In]

int(sinh(c + d*x)/(a + b*tanh(c + d*x)^3),x)

output
exp(- c - d*x)/(2*(a*d - b*d)) + symsum(log((81920*a^2*b^5*exp(d*x)*exp(root(2 
187*a^6*b^2*d^6*z^6 - 2187*a^4*b^4*d^6*z^6 + 729*a^2*b^6*d^6*z^6 - 729*a^8*d^6 
*z^6 - 1458*a^4*b^2*d^4*z^4 - 729*a^2*b^4*d^4*z^4 + 81*a^2*b^2*d^2*z^2 - b^2, 
z, k)) + 221184*root(2187*a^6*b^2*d^6*z^6 - 2187*a^4*b^4*d^6*z^6 + 729*a^2*b^6 
*d^6*z^6 - 729*a^8*d^6*z^6 - 1458*a^4*b^2*d^4*z^4 - 729*a^2*b^4*d^4*z^4 + 81*a 
^2*b^2*d^2*z^2 - b^2, z, k)^3*a^2*b^8*d^3 - 3538944*root(2187*a^6*b^2*d^6*z^6 
- 2187*a^4*b^4*d^6*z^6 + 729*a^2*b^6*d^6*z^6 - 729*a^8*d^6*z^6 - 1458*a^4*b^2* 
d^4*z^4 - 729*a^2*b^4*d^4*z^4 + 81*a^2*b^2*d^2*z^2 - b^2, z, k)^3*a^3*b^7*d^3 
+ 1990656*root(2187*a^6*b^2*d^6*z^6 - 2187*a^4*b^4*d^6*z^6 + 729*a^2*b^6*d^6*z 
^6 - 729*a^8*d^6*z^6 - 1458*a^4*b^2*d^4*z^4 - 729*a^2*b^4*d^4*z^4 + 81*a^2*b^2 
*d^2*z^2 - b^2, z, k)^3*a^4*b^6*d^3 + 3538944*root(2187*a^6*b^2*d^6*z^6 - 2187 
*a^4*b^4*d^6*z^6 + 729*a^2*b^6*d^6*z^6 - 729*a^8*d^6*z^6 - 1458*a^4*b^2*d^4*z^ 
4 - 729*a^2*b^4*d^4*z^4 + 81*a^2*b^2*d^2*z^2 - b^2, z, k)^3*a^5*b^5*d^3 - 2211 
840*root(2187*a^6*b^2*d^6*z^6 - 2187*a^4*b^4*d^6*z^6 + 729*a^2*b^6*d^6*z^6 - 7 
29*a^8*d^6*z^6 - 1458*a^4*b^2*d^4*z^4 - 729*a^2*b^4*d^4*z^4 + 81*a^2*b^2*d^2*z 
^2 - b^2, z, k)^3*a^6*b^4*d^3 + 7962624*root(2187*a^6*b^2*d^6*z^6 - 2187*a^4*b 
^4*d^6*z^6 + 729*a^2*b^6*d^6*z^6 - 729*a^8*d^6*z^6 - 1458*a^4*b^2*d^4*z^4 - 72 
9*a^2*b^4*d^4*z^4 + 81*a^2*b^2*d^2*z^2 - b^2, z, k)^5*a^3*b^9*d^5 + 15925248*r 
oot(2187*a^6*b^2*d^6*z^6 - 2187*a^4*b^4*d^6*z^6 + 729*a^2*b^6*d^6*z^6 - 729*a^ 
8*d^6*z^6 - 1458*a^4*b^2*d^4*z^4 - 729*a^2*b^4*d^4*z^4 + 81*a^2*b^2*d^2*z^2...
 

Integral number [77] csch(c+dx)a+btanh3(c+dx)dx

[B]   time = 15.2722 (sec), size = -1 ,normalized size = -0.05 Too large to display

[In]

int(1/(sinh(c + d*x)*(a + b*tanh(c + d*x)^3)),x)

output
symsum(log(-(1409286144*b^6*exp(d*x)*exp(root(729*a^6*b^2*d^6*z^6 - 729*a^8*d^ 
6*z^6 - 243*a^4*b^2*d^4*z^4 + 27*a^2*b^2*d^2*z^2 - b^2, z, k)) + 134217728*roo 
t(729*a^6*b^2*d^6*z^6 - 729*a^8*d^6*z^6 - 243*a^4*b^2*d^4*z^4 + 27*a^2*b^2*d^2 
*z^2 - b^2, z, k)*b^7*d + 1879048192*root(729*a^6*b^2*d^6*z^6 - 729*a^8*d^6*z^ 
6 - 243*a^4*b^2*d^4*z^4 + 27*a^2*b^2*d^2*z^2 - b^2, z, k)*a*b^6*d - 2818572288 
*root(729*a^6*b^2*d^6*z^6 - 729*a^8*d^6*z^6 - 243*a^4*b^2*d^4*z^4 + 27*a^2*b^2 
*d^2*z^2 - b^2, z, k)^3*a^2*b^7*d^3 - 40869298176*root(729*a^6*b^2*d^6*z^6 - 7 
29*a^8*d^6*z^6 - 243*a^4*b^2*d^4*z^4 + 27*a^2*b^2*d^2*z^2 - b^2, z, k)^3*a^3*b 
^6*d^3 + 28185722880*root(729*a^6*b^2*d^6*z^6 - 729*a^8*d^6*z^6 - 243*a^4*b^2* 
d^4*z^4 + 27*a^2*b^2*d^2*z^2 - b^2, z, k)^3*a^4*b^5*d^3 + 15502147584*root(729 
*a^6*b^2*d^6*z^6 - 729*a^8*d^6*z^6 - 243*a^4*b^2*d^4*z^4 + 27*a^2*b^2*d^2*z^2 
- b^2, z, k)^3*a^5*b^4*d^3 + 18119393280*root(729*a^6*b^2*d^6*z^6 - 729*a^8*d^ 
6*z^6 - 243*a^4*b^2*d^4*z^4 + 27*a^2*b^2*d^2*z^2 - b^2, z, k)^5*a^4*b^7*d^5 + 
235552112640*root(729*a^6*b^2*d^6*z^6 - 729*a^8*d^6*z^6 - 243*a^4*b^2*d^4*z^4 
+ 27*a^2*b^2*d^2*z^2 - b^2, z, k)^5*a^5*b^6*d^5 + 14495514624*root(729*a^6*b^2 
*d^6*z^6 - 729*a^8*d^6*z^6 - 243*a^4*b^2*d^4*z^4 + 27*a^2*b^2*d^2*z^2 - b^2, z 
, k)^5*a^6*b^5*d^5 - 219244658688*root(729*a^6*b^2*d^6*z^6 - 729*a^8*d^6*z^6 - 
 243*a^4*b^2*d^4*z^4 + 27*a^2*b^2*d^2*z^2 - b^2, z, k)^5*a^7*b^4*d^5 - 4892236 
1856*root(729*a^6*b^2*d^6*z^6 - 729*a^8*d^6*z^6 - 243*a^4*b^2*d^4*z^4 + 27*a^2 
*b^2*d^2*z^2 - b^2, z, k)^5*a^8*b^3*d^5 - 32614907904*root(729*a^6*b^2*d^6*...
 

Integral number [79] csch3(c+dx)a+btanh3(c+dx)dx

[B]   time = 27.7824 (sec), size = -1 ,normalized size = -0.04 Too large to display

[In]

int(1/(sinh(c + d*x)^3*(a + b*tanh(c + d*x)^3)),x)

output
exp(c + d*x)/(a*d - a*d*exp(2*c + 2*d*x)) - (2*exp(c + d*x))/(a*d - 2*a*d*exp( 
2*c + 2*d*x) + a*d*exp(4*c + 4*d*x)) + symsum(log((570425344*a^4*b^6*exp(d*x)* 
exp(root(729*a^10*d^6*z^6 + 27*a^4*b^2*d^2*z^2 + a^2*b^2 - b^4, z, k)) - 33554 
432*root(729*a^10*d^6*z^6 + 27*a^4*b^2*d^2*z^2 + a^2*b^2 - b^4, z, k)*a*b^10*d 
 - 553648128*a^2*b^8*exp(d*x)*exp(root(729*a^10*d^6*z^6 + 27*a^4*b^2*d^2*z^2 + 
 a^2*b^2 - b^4, z, k)) - 167772160*a^3*b^7*exp(d*x)*exp(root(729*a^10*d^6*z^6 
+ 27*a^4*b^2*d^2*z^2 + a^2*b^2 - b^4, z, k)) - 16777216*b^10*exp(d*x)*exp(root 
(729*a^10*d^6*z^6 + 27*a^4*b^2*d^2*z^2 + a^2*b^2 - b^4, z, k)) + 192937984*a^5 
*b^5*exp(d*x)*exp(root(729*a^10*d^6*z^6 + 27*a^4*b^2*d^2*z^2 + a^2*b^2 - b^4, 
z, k)) + 2617245696*root(729*a^10*d^6*z^6 + 27*a^4*b^2*d^2*z^2 + a^2*b^2 - b^4 
, z, k)^3*a^5*b^8*d^3 - 150994944*root(729*a^10*d^6*z^6 + 27*a^4*b^2*d^2*z^2 + 
 a^2*b^2 - b^4, z, k)^3*a^6*b^7*d^3 - 1384120320*root(729*a^10*d^6*z^6 + 27*a^ 
4*b^2*d^2*z^2 + a^2*b^2 - b^4, z, k)^3*a^7*b^6*d^3 + 2415919104*root(729*a^10* 
d^6*z^6 + 27*a^4*b^2*d^2*z^2 + a^2*b^2 - b^4, z, k)^3*a^8*b^5*d^3 - 3498049536 
*root(729*a^10*d^6*z^6 + 27*a^4*b^2*d^2*z^2 + a^2*b^2 - b^4, z, k)^3*a^9*b^4*d 
^3 + 5435817984*root(729*a^10*d^6*z^6 + 27*a^4*b^2*d^2*z^2 + a^2*b^2 - b^4, z, 
 k)^5*a^8*b^7*d^5 + 679477248*root(729*a^10*d^6*z^6 + 27*a^4*b^2*d^2*z^2 + a^2 
*b^2 - b^4, z, k)^5*a^9*b^6*d^5 - 70665633792*root(729*a^10*d^6*z^6 + 27*a^4*b 
^2*d^2*z^2 + a^2*b^2 - b^4, z, k)^5*a^10*b^5*d^5 + 52319748096*root(729*a^10*d 
^6*z^6 + 27*a^4*b^2*d^2*z^2 + a^2*b^2 - b^4, z, k)^5*a^11*b^4*d^5 + 1223059...
 

4.9 Test file Number [206]

4.9.1 Mathematica

Integral number [115] cos(bx)CosIntegral(bx)x2dx

[A]   time = 0.0255593 (sec), size = 13 ,normalized size = 1.08 cos(bx)CosIntegral(bx)x

[In]

Integrate[(Cos[b*x]*CosIntegral[b*x])/x^2,x]

output
-((Cos[b*x]*CosIntegral[b*x])/x)
 

4.9.2 Fricas

Integral number [16] Si(bx)2x3dx

[C]   time = 0.255927 (sec), size = 74 ,normalized size = 7.4 4b2x2Ci(2bx)2bxcos(bx)Si(bx)(b2x2+2)Si(bx)2+cos(bx)22(2bxcos(bx)+Si(bx))sin(bx)14x2

[In]

integrate(sin_integral(b*x)^2/x^3,x, algorithm=""fricas"")

output
1/4*(4*b^2*x^2*cos_integral(2*b*x) - 2*b*x*cos(b*x)*sin_integral(b*x) - (b^2*x 
^2 + 2)*sin_integral(b*x)^2 + cos(b*x)^2 - 2*(2*b*x*cos(b*x) + sin_integral(b* 
x))*sin(b*x) - 1)/x^2