The following are the current version of the grading functions used for grading the quality of
the antiderivative with reference to the optimal antiderivative included in the test
suite.
There is a version for Maple and for Mathematica/Rubi. There is a version for grading
Sympy and version for use with Sagemath.
The following are links to the current source code.
The following are the listings of source code of the grading functions.
This section lists all \(7297\) rules for Rubi version 4.17.2 used.
-
Int[(u_.)*((a_) + (b_.)*(x_)^(n_.))^(p_.), x_Symbol] :> Int[u*(b*x^n)^p, x] /; FreeQ[{a, b, n, p}, x] && EqQ[a
, 0]
-
Int[(u_.)*((a_.) + (b_.)*(x_)^(n_.))^(p_.), x_Symbol] :> Int[u*a^p, x] /; FreeQ[{a, b, n, p}, x] && EqQ[b, 0]
-
Int[(u_.)*((a_) + (c_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_.), x_Symbol] :> Int[u*(b*x^n + c*x^(2*n))^p, x] /;
FreeQ[{a, b, c, n, p}, x] && EqQ[j, 2*n] && EqQ[a, 0]
-
Int[(u_.)*((a_.) + (c_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_.), x_Symbol] :> Int[u*(a + c*x^(2*n))^p, x] /; Fre
eQ[{a, b, c, n, p}, x] && EqQ[j, 2*n] && EqQ[b, 0]
-
Int[(u_.)*((a_.) + (c_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_.), x_Symbol] :> Int[u*(a + b*x^n)^p, x] /; FreeQ[{
a, b, c, n, p}, x] && EqQ[j, 2*n] && EqQ[c, 0]
-
Int[(u_.)*((v_.) + (a_.)*(Fx_) + (b_.)*(Fx_))^(p_.), x_Symbol] :> Int[u*(v + (a + b)*Fx)^p, x] /; FreeQ[{a, b}
, x] && !FreeQ[Fx, x]
-
Int[(u_.)*(Px_)^(p_), x_Symbol] :> Int[u*Px^Simplify[p], x] /; PolyQ[Px, x] && !RationalQ[p] && FreeQ[p, x] &
& RationalQ[Simplify[p]]
-
Int[(u_.)*(x_)^(m_.)*((a_.)*(x_))^(p_), x_Symbol] :> Simp[1/a^m Int[u*(a*x)^(m + p), x], x] /; FreeQ[{a, m,
p}, x] && IntegerQ[m]
-
Int[(u_.)*(Px_)^(p_.)*((e_.)*(x_))^(m_.), x_Symbol] :> With[{r = Expon[Px, x, Min]}, Simp[1/e^(p*r) Int[u*(e
*x)^(m + p*r)*ExpandToSum[Px/x^r, x]^p, x], x] /; IGtQ[r, 0]] /; FreeQ[{e, m}, x] && PolyQ[Px, x] && IntegerQ[
p] && !MonomialQ[Px, x]
-
Int[(u_.)*((e_.)*(x_))^(m_.)*((a_.)*(x_)^(r_.) + (b_.)*(x_)^(s_.))^(p_.), x_Symbol] :> Simp[1/e^(p*r) Int[u*
(e*x)^(m + p*r)*(a + b*x^(s - r))^p, x], x] /; FreeQ[{a, b, e, m, r, s}, x] && IntegerQ[p] && (IntegerQ[p*r] |
| GtQ[e, 0]) && PosQ[s - r]
-
Int[(u_.)*((e_.)*(x_))^(m_.)*((a_.)*(x_)^(r_.) + (b_.)*(x_)^(s_.) + (c_.)*(x_)^(t_.))^(p_.), x_Symbol] :> Simp
[1/e^(p*r) Int[u*(e*x)^(m + p*r)*(a + b*x^(s - r) + c*x^(t - r))^p, x], x] /; FreeQ[{a, b, c, e, m, r, s, t}
, x] && IntegerQ[p] && (IntegerQ[p*r] || GtQ[e, 0]) && PosQ[s - r] && PosQ[t - r]
-
Int[(u_.)*((e_.)*(x_))^(m_.)*((d_.)*(x_)^(q_.) + (a_.)*(x_)^(r_.) + (b_.)*(x_)^(s_.) + (c_.)*(x_)^(t_.))^(p_.)
, x_Symbol] :> Simp[1/e^(p*r) Int[u*(e*x)^(m + p*r)*(a + b*x^(s - r) + c*x^(t - r) + d*x^(q - r))^p, x], x]
/; FreeQ[{a, b, c, d, e, m, r, s, t, q}, x] && IntegerQ[p] && (IntegerQ[p*r] || GtQ[e, 0]) && PosQ[s - r] && P
osQ[t - r] && PosQ[q - r]
-
Int[(u_.)*((v_.)*((a_) + (b_.)*(x_)^(n_.))^(mm_.)*((c_) + (d_.)*(x_)^(n2_.))^(m_.))^(p_), x_Symbol] :> Int[u*(
v*(c^m/a^(2*m))*(a - b*x^n)^m)^p, x] /; FreeQ[{a, b, c, d, n, p}, x] && EqQ[n2, 2*n] && EqQ[b^2*c + a^2*d, 0]
&& IntegersQ[m, mm] && EqQ[m + mm, 0]
-
Int[(a_.)/(x_), x_Symbol] :> Simp[a*Log[x], x] /; FreeQ[a, x]
-
Int[(a_.)*(x_)^(m_.), x_Symbol] :> Simp[a*(x^(m + 1)/(m + 1)), x] /; FreeQ[{a, m}, x] && NeQ[m, -1]
-
Int[(c_.)/((a_.) + (b_.)*(x_)), x_Symbol] :> Simp[c*(Log[RemoveContent[a + b*x, x]]/b), x] /; FreeQ[{a, b, c},
x]
-
Int[(c_.)*((a_.) + (b_.)*(x_))^(m_.), x_Symbol] :> Simp[c*((a + b*x)^(m + 1)/(b*(m + 1))), x] /; FreeQ[{a, b,
c, m}, x] && NeQ[m, -1]
-
Int[(c_.)*((a_.) + (b_.)*(u_))^(m_), x_Symbol] :> Simp[1/D[u, x] Subst[Int[c*(a + b*x)^m, x], x, u], x] /; F
reeQ[{a, b, c, m}, x] && LinearQ[u, x] && NeQ[u, x]
-
Int[((a_.)/(x_))^(p_), x_Symbol] :> Simp[(-a)*((a/x)^(p - 1)/(p - 1)), x] /; FreeQ[{a, p}, x] && !IntegerQ[p]
-
Int[((a_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a*x^n)^p/x^(n*p) Int[x^(n*p), x], x] /; FreeQ[{a, n, p}, x] &
& !IntegerQ[p]
-
Int[(x_)^(m_.)*((a_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[1/(n*a^(Simplify[(m + 1)/n] - 1)) Subst[Int[(a*x)^(
Simplify[(m + 1)/n] + p - 1), x], x, x^n], x] /; FreeQ[{a, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]
-
Int[(x_)^(m_.)*((a_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[1/a^(m/n) Int[(a*x^n)^(p + m/n), x], x] /; FreeQ[{
a, m, n, p}, x] && IntegerQ[m/n] && LtQ[p*(m/n), 0]
-
Int[(x_)^(m_.)*((a_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[(a*x^n)^p/x^(n*p) Int[x^(m + n*p), x], x] /; FreeQ
[{a, m, n, p}, x]
-
Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]
-
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1] Int[Fx, x], x]
-
Int[(Complex[0, a_])*(Fx_), x_Symbol] :> Simp[(Complex[Identity[0], a]) Int[Fx, x], x] /; FreeQ[a, x] && EqQ
[a^2, 1]
-
Int[(a_)*(Fx_), x_Symbol] :> Simp[a Int[Fx, x], x] /; FreeQ[a, x] && !MatchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
-
Int[(u_.)*((a_.)*(x_))^(m_.)*((b_.)*(x_)^(i_.))^(p_.)*((c_.)*(x_)^(j_.))^(q_.)*((d_.)*(x_)^(k_.))^(r_.), x_Sym
bol] :> Simp[(b*x^i)^p*(c*x^j)^q*((d*x^k)^r/(a*x)^(i*p + j*q + k*r)) Int[u*(a*x)^(m + i*p + j*q + k*r), x],
x] /; FreeQ[{a, b, c, d, i, j, k, m, p, q, r}, x]
-
Int[(u_.)*((a_.)*(x_))^(m_.)*((b_.)*(x_)^(i_.))^(p_.)*((c_.)*(x_)^(j_.))^(q_.), x_Symbol] :> Simp[(b*x^i)^p*((
c*x^j)^q/(a*x)^(i*p + j*q)) Int[u*(a*x)^(m + i*p + j*q), x], x] /; FreeQ[{a, b, c, i, j, m, p, q}, x]
-
Int[(u_.)*((a_.)*(x_))^(m_.)*((b_.)*(x_)^(i_.))^(p_), x_Symbol] :> Simp[b^IntPart[p]*((b*x^i)^FracPart[p]/(a^(
i*IntPart[p])*(a*x)^(i*FracPart[p]))) Int[u*(a*x)^(m + i*p), x], x] /; FreeQ[{a, b, i, m, p}, x] && IntegerQ
[i] && !IntegerQ[p]
-
Int[(u_.)*((a_.)*(x_))^(m_.)*((b_.)*(x_)^(i_.))^(p_), x_Symbol] :> Simp[(b*x^i)^p/(a*x)^(i*p) Int[u*(a*x)^(m
+ i*p), x], x] /; FreeQ[{a, b, i, m, p}, x] && !IntegerQ[p]
-
Int[(u_.)*((c_.)*(x_)^(k_))^(r_.)*((a_.)*(x_)^(m_))^(p_.)*((b_.)*(x_)^(n_))^(q_.), x_Symbol] :> Simp[(a*x^m)^p
*(b*x^n)^q*((c*x^k)^r/x^(m*p + n*q + k*r)) Int[u*x^(m*p + n*q + k*r), x], x] /; FreeQ[{a, b, c, m, n, k, p,
q, r}, x]
-
Int[(u_.)*((a_.)*(x_)^(m_))^(p_.)*((b_.)*(x_)^(n_))^(q_.), x_Symbol] :> Simp[a^IntPart[p]*b^IntPart[q]*(a*x^m)
^FracPart[p]*((b*x^n)^FracPart[q]/x^(m*FracPart[p] + n*FracPart[q])) Int[u*x^(m*p + n*q), x], x] /; FreeQ[{a
, b, m, n, p, q}, x]
-
Int[(u_.)*((a_.)*(x_)^(m_))^(p_), x_Symbol] :> Simp[a^IntPart[p]*((a*x^m)^FracPart[p]/x^(m*FracPart[p])) Int
[u*x^(m*p), x], x] /; FreeQ[{a, m, p}, x] && !IntegerQ[p]
-
Int[(u_.)*((a_) + (b_.)*(x_))^(m_.)*((c_) + (d_.)*(x_))^(n_.), x_Symbol] :> Simp[(b/d)^m Int[u*(c + d*x)^(m
+ n), x], x] /; FreeQ[{a, b, c, d, m, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && !(IntegerQ[n] && SimplerQ
[a + b*x, c + d*x])
-
Int[(u_.)*((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(b/d)^m Int[u*(c + d*x)^(m +
n), x], x] /; FreeQ[{a, b, c, d, m, n}, x] && EqQ[b*c - a*d, 0] && GtQ[b/d, 0] && !SimplerQ[a + b*x, c + d*x]
-
Int[(u_.)*((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^m/(c + d*x)^m Int[u
*(c + d*x)^(m + n), x], x] /; FreeQ[{a, b, c, d, m, n}, x] && EqQ[b*c - a*d, 0] && !SimplerQ[a + b*x, c + d*x
]
-
Int[((a_) + (b_.)*(x_))^(m_.)*((c_) + (d_.)*(x_)), x_Symbol] :> Simp[d*x*((a + b*x)^(m + 1)/(b*(m + 2))), x] /
; FreeQ[{a, b, c, d, m}, x] && EqQ[a*d - b*c*(m + 2), 0]
-
Int[((a_) + (b_.)*(x_))^(m_.)*((c_) + (d_.)*(x_))^(m_.), x_Symbol] :> Int[(a*c + b*d*x^2)^m, x] /; FreeQ[{a, b
, c, d, m}, x] && EqQ[b*c + a*d, 0] && (IntegerQ[m] || (GtQ[a, 0] && GtQ[c, 0]))
-
Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(m_), x_Symbol] :> Simp[x*(a + b*x)^m*((c + d*x)^m/(2*m + 1))
, x] + Simp[2*a*c*(m/(2*m + 1)) Int[(a + b*x)^(m - 1)*(c + d*x)^(m - 1), x], x] /; FreeQ[{a, b, c, d}, x] &&
EqQ[b*c + a*d, 0] && IGtQ[m + 1/2, 0]
-
Int[1/(((a_) + (b_.)*(x_))^(3/2)*((c_) + (d_.)*(x_))^(3/2)), x_Symbol] :> Simp[x/(a*c*Sqrt[a + b*x]*Sqrt[c + d
*x]), x] /; FreeQ[{a, b, c, d}, x] && EqQ[b*c + a*d, 0]
-
Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(m_), x_Symbol] :> Simp[(-x)*(a + b*x)^(m + 1)*((c + d*x)^(m
+ 1)/(2*a*c*(m + 1))), x] + Simp[(2*m + 3)/(2*a*c*(m + 1)) Int[(a + b*x)^(m + 1)*(c + d*x)^(m + 1), x], x] /
; FreeQ[{a, b, c, d}, x] && EqQ[b*c + a*d, 0] && ILtQ[m + 3/2, 0]
-
Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[ArcCosh[b*(x/a)]/(b*Sqrt[d/b]), x]
/; FreeQ[{a, b, c, d}, x] && EqQ[b*c + a*d, 0] && GtQ[a, 0] && GtQ[d/b, 0]
-
Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[2/(b*Sqrt[c]) Subst[Int[1/Sqrt[2
- x^2/a], x], x, Sqrt[a + b*x]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[b*c + a*d, 0] && GtQ[c, 0]
-
Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[2 Subst[Int[1/(b - d*x^2), x], x,
Sqrt[a + b*x]/Sqrt[c + d*x]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[b*c + a*d, 0] && !GtQ[c, 0]
-
Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(m_), x_Symbol] :> Simp[(a + b*x)^FracPart[m]*((c + d*x)^Frac
Part[m]/(a*c + b*d*x^2)^FracPart[m]) Int[(a*c + b*d*x^2)^m, x], x] /; FreeQ[{a, b, c, d, m}, x] && EqQ[b*c +
a*d, 0] && !IntegerQ[2*m]
-
Int[1/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :> Simp[b/(b*c - a*d) Int[1/(a + b*x), x], x] -
Simp[d/(b*c - a*d) Int[1/(c + d*x), x], x] /; FreeQ[{a, b, c, d}, x]
-
Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^(n +
1)/((b*c - a*d)*(m + 1))), x] /; FreeQ[{a, b, c, d, m, n}, x] && EqQ[m + n + 2, 0] && NeQ[m, -1]
-
Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d}, x] && IGtQ[m, 0] && IGtQ[m + n + 2, 0]
-
Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a*c + b*d*x^2)^m/(2*d*m), x] + Simp[
a Int[(a*c + b*d*x^2)^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[m - n, 1] && GtQ
[m, 0] && (IntegerQ[m] || (GtQ[a, 0] && GtQ[c, 0]))
-
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^n/(b*(
m + 1))), x] - Simp[d*(n/(b*(m + 1))) Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d,
n}, x] && ILtQ[m, -1] && FractionQ[n] && GtQ[n, 0]
-
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^(n + 1
)/((b*c - a*d)*(m + 1))), x] - Simp[d*((m + n + 2)/((b*c - a*d)*(m + 1))) Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && ILtQ[m, -1] && FractionQ[n] && LtQ[n, 0]
-
Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0] && LeQ[7*m + 4*n + 4,
0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])
-
Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*x
)^n, x], x] /; FreeQ[{a, b, c, d}, x] && ILtQ[m, 0] && IntegerQ[n] && !(IGtQ[n, 0] && LtQ[m + n + 2, 0])
-
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^(n + 1
)/((b*c - a*d)*(m + 1))), x] - Simp[d*(Simplify[m + n + 2]/((b*c - a*d)*(m + 1))) Int[(a + b*x)^Simplify[m +
1]*(c + d*x)^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && ILtQ[Simplify[m + n + 2], 0] && NeQ[m, -1] && !(Lt
Q[m, -1] && LtQ[n, -1] && (EqQ[a, 0] || (NeQ[c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && (SumSimplerQ[m, 1] ||
!SumSimplerQ[n, 1])
-
Int[1/(((a_) + (b_.)*(x_))^(9/4)*((c_) + (d_.)*(x_))^(1/4)), x_Symbol] :> Simp[-4/(5*b*(a + b*x)^(5/4)*(c + d*
x)^(1/4)), x] - Simp[d/(5*b) Int[1/((a + b*x)^(5/4)*(c + d*x)^(5/4)), x], x] /; FreeQ[{a, b, c, d}, x] && Eq
Q[b*c + a*d, 0] && NegQ[a^2*b^2]
-
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^n/(b*(
m + 1))), x] - Simp[d*(n/(b*(m + 1))) Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d},
x] && GtQ[n, 0] && LtQ[m, -1] && !(IntegerQ[n] && !IntegerQ[m]) && !(ILeQ[m + n + 2, 0] && (FractionQ[m] |
| GeQ[2*n + m + 1, 0])) && IntLinearQ[a, b, c, d, m, n, x]
-
Int[1/(((a_) + (b_.)*(x_))^(5/4)*((c_) + (d_.)*(x_))^(1/4)), x_Symbol] :> Simp[-2/(b*(a + b*x)^(1/4)*(c + d*x)
^(1/4)), x] + Simp[c Int[1/((a + b*x)^(5/4)*(c + d*x)^(5/4)), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[b*c +
a*d, 0] && NegQ[a^2*b^2]
-
Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^n/(b*(m
+ n + 1))), x] + Simp[2*c*(n/(m + n + 1)) Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d}, x
] && EqQ[b*c + a*d, 0] && IGtQ[m + 1/2, 0] && IGtQ[n + 1/2, 0] && LtQ[m, n]
-
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^n/(b*(
m + n + 1))), x] + Simp[n*((b*c - a*d)/(b*(m + n + 1))) Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{
a, b, c, d}, x] && GtQ[n, 0] && NeQ[m + n + 1, 0] && !(IGtQ[m, 0] && ( !IntegerQ[n] || (GtQ[m, 0] && LtQ[m -
n, 0]))) && !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]
-
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^(n + 1
)/((b*c - a*d)*(m + 1))), x] - Simp[d*((m + n + 2)/((b*c - a*d)*(m + 1))) Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && LtQ[m, -1] && !(LtQ[n, -1] && (EqQ[a, 0] || (NeQ[c, 0] && LtQ[m - n,
0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d, m, n, x]
-
Int[1/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Int[1/Sqrt[a*c - b*(a - c)*x - b^2*x^2]
, x] /; FreeQ[{a, b, c, d}, x] && EqQ[b + d, 0] && GtQ[a + c, 0]
-
Int[1/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[2/b Subst[Int[1/Sqrt[c + d*(x^2/b)], x],
x, Sqrt[b*x]], x] /; FreeQ[{b, c, d}, x] && GtQ[c, 0]
-
Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_.) + (d_.)*(x_)]), x_Symbol] :> Simp[2/b Subst[Int[1/Sqrt[c - a*(d/b)
+ d*(x^2/b)], x], x, Sqrt[a + b*x]], x] /; FreeQ[{a, b, c, d}, x] && GtQ[c - a*(d/b), 0] && ( !GtQ[a - c*(b/d
), 0] || PosQ[b])
-
Int[1/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[2 Subst[Int[1/(b - d*x^2), x], x, Sqrt[b
*x]/Sqrt[c + d*x]], x] /; FreeQ[{b, c, d}, x] && !GtQ[c, 0]
-
Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[2 Subst[Int[1/(b - d*x^2), x], x,
Sqrt[a + b*x]/Sqrt[c + d*x]], x] /; FreeQ[{a, b, c, d}, x] && !GtQ[c - a*(d/b), 0]
-
Int[1/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(1/3)), x_Symbol] :> With[{q = Rt[(b*c - a*d)/b, 3]}, Simp[-L
og[RemoveContent[a + b*x, x]]/(2*b*q), x] + (Simp[3/(2*b) Subst[Int[1/(q^2 + q*x + x^2), x], x, (c + d*x)^(1
/3)], x] - Simp[3/(2*b*q) Subst[Int[1/(q - x), x], x, (c + d*x)^(1/3)], x])] /; FreeQ[{a, b, c, d}, x] && Po
sQ[(b*c - a*d)/b]
-
Int[1/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(1/3)), x_Symbol] :> With[{q = Rt[-(b*c - a*d)/b, 3]}, Simp[L
og[RemoveContent[a + b*x, x]]/(2*b*q), x] + (Simp[3/(2*b) Subst[Int[1/(q^2 - q*x + x^2), x], x, (c + d*x)^(1
/3)], x] - Simp[3/(2*b*q) Subst[Int[1/(q + x), x], x, (c + d*x)^(1/3)], x])] /; FreeQ[{a, b, c, d}, x] && Ne
gQ[(b*c - a*d)/b]
-
Int[1/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(2/3)), x_Symbol] :> With[{q = Rt[(b*c - a*d)/b, 3]}, Simp[-L
og[RemoveContent[a + b*x, x]]/(2*b*q^2), x] + (-Simp[3/(2*b*q) Subst[Int[1/(q^2 + q*x + x^2), x], x, (c + d*
x)^(1/3)], x] - Simp[3/(2*b*q^2) Subst[Int[1/(q - x), x], x, (c + d*x)^(1/3)], x])] /; FreeQ[{a, b, c, d}, x
] && PosQ[(b*c - a*d)/b]
-
Int[1/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(2/3)), x_Symbol] :> With[{q = Rt[-(b*c - a*d)/b, 3]}, Simp[-
Log[RemoveContent[a + b*x, x]]/(2*b*q^2), x] + (Simp[3/(2*b*q) Subst[Int[1/(q^2 - q*x + x^2), x], x, (c + d*
x)^(1/3)], x] + Simp[3/(2*b*q^2) Subst[Int[1/(q + x), x], x, (c + d*x)^(1/3)], x])] /; FreeQ[{a, b, c, d}, x
] && NegQ[(b*c - a*d)/b]
-
Int[1/(((a_.) + (b_.)*(x_))^(1/3)*((c_.) + (d_.)*(x_))^(2/3)), x_Symbol] :> With[{q = Rt[d/b, 3]}, Simp[(-Sqrt
[3])*(q/d)*ArcTan[2*q*((a + b*x)^(1/3)/(Sqrt[3]*(c + d*x)^(1/3))) + 1/Sqrt[3]], x] + (-Simp[3*(q/(2*d))*Log[q*
((a + b*x)^(1/3)/(c + d*x)^(1/3)) - 1], x] - Simp[(q/(2*d))*Log[c + d*x], x])] /; FreeQ[{a, b, c, d}, x] && Po
sQ[d/b]
-
Int[1/(((a_.) + (b_.)*(x_))^(1/3)*((c_.) + (d_.)*(x_))^(2/3)), x_Symbol] :> With[{q = Rt[-d/b, 3]}, Simp[Sqrt[
3]*(q/d)*ArcTan[1/Sqrt[3] - 2*q*((a + b*x)^(1/3)/(Sqrt[3]*(c + d*x)^(1/3)))], x] + (Simp[3*(q/(2*d))*Log[q*((a
+ b*x)^(1/3)/(c + d*x)^(1/3)) + 1], x] + Simp[(q/(2*d))*Log[c + d*x], x])] /; FreeQ[{a, b, c, d}, x] && NegQ[
d/b]
-
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Simp[p/b Su
bst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x]
&& LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a, b, c, d, m, n, x]
-
Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[c^n*((b*x)^(m + 1)/(b*(m + 1)))*Hypergeometr
ic2F1[-n, m + 1, m + 2, (-d)*(x/c)], x] /; FreeQ[{b, c, d, m, n}, x] && !IntegerQ[m] && (IntegerQ[n] || (GtQ[
c, 0] && !(EqQ[n, -2^(-1)] && EqQ[c^2 - d^2, 0] && GtQ[-d/(b*c), 0])))
-
Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((c + d*x)^(n + 1)/(d*(n + 1)*(-d/(b*c))^m))
*Hypergeometric2F1[-m, n + 1, n + 2, 1 + d*(x/c)], x] /; FreeQ[{b, c, d, m, n}, x] && !IntegerQ[n] && (Intege
rQ[m] || GtQ[-d/(b*c), 0])
-
Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[c^IntPart[n]*((c + d*x)^FracPart[n]/(1 + d*(
x/c))^FracPart[n]) Int[(b*x)^m*(1 + d*(x/c))^n, x], x] /; FreeQ[{b, c, d, m, n}, x] && !IntegerQ[m] && !In
tegerQ[n] && !GtQ[c, 0] && !GtQ[-d/(b*c), 0] && ((RationalQ[m] && !(EqQ[n, -2^(-1)] && EqQ[c^2 - d^2, 0]))
|| !RationalQ[n])
-
Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((-b)*(c/d))^IntPart[m]*((b*x)^FracPart[m]/(
(-d)*(x/c))^FracPart[m]) Int[((-d)*(x/c))^m*(c + d*x)^n, x], x] /; FreeQ[{b, c, d, m, n}, x] && !IntegerQ[m
] && !IntegerQ[n] && !GtQ[c, 0] && !GtQ[-d/(b*c), 0]
-
Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(b*c - a*d)^n*((a + b*x)^(m + 1)/(b^(
n + 1)*(m + 1)))*Hypergeometric2F1[-n, m + 1, m + 2, (-d)*((a + b*x)/(b*c - a*d))], x] /; FreeQ[{a, b, c, d, m
}, x] && !IntegerQ[m] && IntegerQ[n]
-
Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)/(b*(m + 1)*(b/(b*c
- a*d))^n))*Hypergeometric2F1[-n, m + 1, m + 2, (-d)*((a + b*x)/(b*c - a*d))], x] /; FreeQ[{a, b, c, d, m, n}
, x] && !IntegerQ[m] && !IntegerQ[n] && GtQ[b/(b*c - a*d), 0] && (RationalQ[m] || !(RationalQ[n] && GtQ[-d/
(b*c - a*d), 0]))
-
Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(c + d*x)^FracPart[n]/((b/(b*c - a*d)
)^IntPart[n]*(b*((c + d*x)/(b*c - a*d)))^FracPart[n]) Int[(a + b*x)^m*Simp[b*(c/(b*c - a*d)) + b*d*(x/(b*c -
a*d)), x]^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && !IntegerQ[m] && !IntegerQ[n] && (RationalQ[m] || !S
implerQ[n + 1, m + 1])
-
Int[((a_.) + (b_.)*(u_))^(m_.)*((c_.) + (d_.)*(u_))^(n_.), x_Symbol] :> Simp[1/Coefficient[u, x, 1] Subst[In
t[(a + b*x)^m*(c + d*x)^n, x], x, u], x] /; FreeQ[{a, b, c, d, m, n}, x] && LinearQ[u, x] && NeQ[Coefficient[u
, x, 0], 0]
-
Int[((a_) + (b_.)*(x_))^(m_.)*((c_) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_] :> Int[(a*c + b*d*x^2)
^m*(e + f*x)^p, x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[n, m] && IntegerQ[m]
-
Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_] :> Simp[b*(c + d*x)^(n + 1
)*((e + f*x)^(p + 1)/(d*f*(n + p + 2))), x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2, 0] && EqQ[
a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)), 0]
-
Int[((d_.)*(x_))^(n_.)*((a_) + (b_.)*(x_))*((e_) + (f_.)*(x_))^(p_.), x_] :> Int[ExpandIntegrand[(a + b*x)*(d*
x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, d, e, f, n}, x] && IGtQ[p, 0] && EqQ[b*e + a*f, 0] && !(ILtQ[n + p +
2, 0] && GtQ[n + 2*p, 0])
-
Int[((d_.)*(x_))^(n_.)*((a_) + (b_.)*(x_))*((e_) + (f_.)*(x_))^(p_.), x_] :> Int[ExpandIntegrand[(a + b*x)*(d*
x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, d, e, f, n}, x] && IGtQ[p, 0] && (NeQ[n, -1] || EqQ[p, 1]) && NeQ[b*e
+ a*f, 0] && ( !IntegerQ[n] || LtQ[9*p + 5*n, 0] || GeQ[n + p + 1, 0] || (GeQ[n + p + 2, 0] && RationalQ[a, b
, d, e, f])) && (NeQ[n + p + 3, 0] || EqQ[p, 1])
-
Int[((a_.) + (b_.)*(x_))*((c_) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_] :> Int[ExpandIntegrand[(a +
b*x)*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && ((ILtQ[n, 0] && ILtQ[p, 0]) || EqQ
[p, 1] || (IGtQ[p, 0] && ( !IntegerQ[n] || LeQ[9*p + 5*(n + 2), 0] || GeQ[n + p + 1, 0] || (GeQ[n + p + 2, 0]
&& RationalQ[a, b, c, d, e, f]))))
-
Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_] :> Simp[(-(b*e - a*f))*(c
+ d*x)^(n + 1)*((e + f*x)^(p + 1)/(f*(p + 1)*(c*f - d*e))), x] - Simp[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*
f*(p + 1)))/(f*(p + 1)*(c*f - d*e)) Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f, n}
, x] && LtQ[p, -1] && ( !LtQ[n, -1] || IntegerQ[p] || !(IntegerQ[n] || !(EqQ[e, 0] || !(EqQ[c, 0] || LtQ[p,
n]))))
-
Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_] :> Simp[(-(b*e - a*f))*(c
+ d*x)^(n + 1)*((e + f*x)^(p + 1)/(f*(p + 1)*(c*f - d*e))), x] - Simp[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*
f*(p + 1)))/(f*(p + 1)*(c*f - d*e)) Int[(c + d*x)^n*(e + f*x)^Simplify[p + 1], x], x] /; FreeQ[{a, b, c, d,
e, f, n, p}, x] && !RationalQ[p] && SumSimplerQ[p, 1]
-
Int[(((a_.) + (b_.)*(x_))*Sqrt[(c_) + (d_.)*(x_)])/Sqrt[(e_) + (f_.)*(x_)], x_] :> Simp[Sqrt[c*e]*(b*f*x - 2*(
b*e - a*f))*(Sqrt[e^2 - f^2*x^2]/(2*e*f^2)), x] - Simp[Sqrt[c*e]*(b*e - 2*a*f)*(ArcSin[f*(x/e)]/(2*f^2)), x] /
; FreeQ[{a, b, c, d, e, f}, x] && EqQ[d*e + c*f, 0] && GtQ[c, 0] && GtQ[e, 0]
-
Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_] :> Simp[b*(c + d*x)^(n + 1
)*((e + f*x)^(p + 1)/(d*f*(n + p + 2))), x] + Simp[(a*d*f*(n + p + 2) - b*(d*e*(n + 1) + c*f*(p + 1)))/(d*f*(n
+ p + 2)) Int[(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2, 0]
-
Int[((a_.) + (b_.)*(x_))^2*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_] :> Simp[b*(c + d*x)^(n + 1
)*(e + f*x)^(p + 1)*((2*a*d*f*(n + p + 3) - b*(d*e*(n + 2) + c*f*(p + 2)) + b*d*f*(n + p + 2)*x)/(d^2*f^2*(n +
p + 2)*(n + p + 3))), x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 2, 0] && NeQ[n + p + 3, 0] && E
qQ[d*f*(n + p + 2)*(a^2*d*f*(n + p + 3) - b*(b*c*e + a*(d*e*(n + 1) + c*f*(p + 1)))) - b*(d*e*(n + 1) + c*f*(p
+ 1))*(a*d*f*(n + p + 4) - b*(d*e*(n + 2) + c*f*(p + 2))), 0]
-
Int[((f_.)*(x_))^(p_)*((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_] :> Simp[a Int[(a + b*x)^n*(c
+ d*x)^n*(f*x)^p, x], x] + Simp[b/f Int[(a + b*x)^n*(c + d*x)^n*(f*x)^(p + 1), x], x] /; FreeQ[{a, b, c, d,
f, m, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[m - n - 1, 0] && !RationalQ[p] && !IGtQ[m, 0] && NeQ[m + n + p +
2, 0]
-
Int[((e_.) + (f_.)*(x_))^(p_)/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_] :> Int[ExpandIntegrand[(e + f*x
)^p/((a + b*x)*(c + d*x)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IntegerQ[p]
-
Int[((e_.) + (f_.)*(x_))^(p_)/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_] :> Simp[(b*e - a*f)/(b*c - a*d)
Int[(e + f*x)^(p - 1)/(a + b*x), x], x] - Simp[(d*e - c*f)/(b*c - a*d) Int[(e + f*x)^(p - 1)/(c + d*x), x
], x] /; FreeQ[{a, b, c, d, e, f}, x] && LtQ[0, p, 1]
-
Int[((e_.) + (f_.)*(x_))^(p_)/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_] :> Simp[f*((e + f*x)^(p - 1)/(b
*d*(p - 1))), x] + Simp[1/(b*d) Int[(b*d*e^2 - a*c*f^2 + f*(2*b*d*e - b*c*f - a*d*f)*x)*((e + f*x)^(p - 2)/(
(a + b*x)*(c + d*x))), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[p, 1]
-
Int[((e_.) + (f_.)*(x_))^(p_)/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_] :> Simp[f*((e + f*x)^(p + 1)/((
p + 1)*(b*e - a*f)*(d*e - c*f))), x] + Simp[1/((b*e - a*f)*(d*e - c*f)) Int[(b*d*e - b*c*f - a*d*f - b*d*f*x
)*((e + f*x)^(p + 1)/((a + b*x)*(c + d*x))), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && LtQ[p, -1]
-
Int[((e_.) + (f_.)*(x_))^(p_)/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_] :> Simp[b/(b*c - a*d) Int[(e
+ f*x)^p/(a + b*x), x], x] - Simp[d/(b*c - a*d) Int[(e + f*x)^p/(c + d*x), x], x] /; FreeQ[{a, b, c, d, e, f
, p}, x] && !IntegerQ[p]
-
Int[(((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_))/((a_.) + (b_.)*(x_)), x_] :> Int[ExpandIntegrand[(e
+ f*x)^FractionalPart[p], (c + d*x)^n*((e + f*x)^IntegerPart[p]/(a + b*x)), x], x] /; FreeQ[{a, b, c, d, e, f}
, x] && IGtQ[n, 0] && LtQ[p, -1] && FractionQ[p]
-
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_] :> Int[ExpandIntegrand[
(a + b*x)^m*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && IntegersQ[m, n] && (IntegerQ
[p] || (GtQ[m, 0] && GeQ[n, -1]))
-
Int[((a_.) + (b_.)*(x_))^2*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_] :> Simp[(b*c - a*d)^2*(c +
d*x)^(n + 1)*((e + f*x)^(p + 1)/(d^2*(d*e - c*f)*(n + 1))), x] - Simp[1/(d^2*(d*e - c*f)*(n + 1)) Int[(c +
d*x)^(n + 1)*(e + f*x)^p*Simp[a^2*d^2*f*(n + p + 2) + b^2*c*(d*e*(n + 1) + c*f*(p + 1)) - 2*a*b*d*(d*e*(n + 1)
+ c*f*(p + 1)) - b^2*d*(d*e - c*f)*(n + 1)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && (LtQ[n, -1]
|| (EqQ[n + p + 3, 0] && NeQ[n, -1] && (SumSimplerQ[n, 1] || !SumSimplerQ[p, 1])))
-
Int[((a_.) + (b_.)*(x_))^2*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_] :> Simp[b*(a + b*x)*(c + d
*x)^(n + 1)*((e + f*x)^(p + 1)/(d*f*(n + p + 3))), x] + Simp[1/(d*f*(n + p + 3)) Int[(c + d*x)^n*(e + f*x)^p
*Simp[a^2*d*f*(n + p + 3) - b*(b*c*e + a*(d*e*(n + 1) + c*f*(p + 1))) + b*(a*d*f*(n + p + 4) - b*(d*e*(n + 2)
+ c*f*(p + 2)))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && NeQ[n + p + 3, 0]
-
Int[1/(((a_.) + (b_.)*(x_))^(1/3)*((c_.) + (d_.)*(x_))^(2/3)*((e_.) + (f_.)*(x_))), x_] :> With[{q = Rt[(d*e -
c*f)/(b*e - a*f), 3]}, Simp[(-Sqrt[3])*q*(ArcTan[1/Sqrt[3] + 2*q*((a + b*x)^(1/3)/(Sqrt[3]*(c + d*x)^(1/3)))]
/(d*e - c*f)), x] + (Simp[q*(Log[e + f*x]/(2*(d*e - c*f))), x] - Simp[3*q*(Log[q*(a + b*x)^(1/3) - (c + d*x)^(
1/3)]/(2*(d*e - c*f))), x])] /; FreeQ[{a, b, c, d, e, f}, x]
-
Int[1/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_.) + (d_.)*(x_)]*((e_.) + (f_.)*(x_))), x_] :> Simp[b*f Subst[Int[1/
(d*(b*e - a*f)^2 + b*f^2*x^2), x], x, Sqrt[a + b*x]*Sqrt[c + d*x]], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[
2*b*d*e - f*(b*c + a*d), 0]
-
Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_] :> With[{q = Denominator[m
]}, Simp[q Subst[Int[x^(q*(m + 1) - 1)/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^(1/q)
], x]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && LtQ[-1, m, 0] && SimplerQ[a + b
*x, c + d*x]
-
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_] :> Simp[(a + b*x)^(m +
1)*(c + d*x)^n*((e + f*x)^(p + 1)/((m + 1)*(b*e - a*f))), x] - Simp[n*((d*e - c*f)/((m + 1)*(b*e - a*f))) In
t[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[m + n +
p + 2, 0] && GtQ[n, 0] && (SumSimplerQ[m, 1] || !SumSimplerQ[p, 1]) && NeQ[m, -1]
-
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_] :> Simp[b*(a + b*x)^(m
+ 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] /; FreeQ[{a, b, c, d, e, f, m
, n, p}, x] && EqQ[Simplify[m + n + p + 3], 0] && EqQ[a*d*f*(m + 1) + b*c*f*(n + 1) + b*d*e*(p + 1), 0] && NeQ
[m, -1]
-
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_] :> Simp[b*(a + b*x)^(m
+ 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] + Simp[(a*d*f*(m + 1) + b*c*f
*(n + 1) + b*d*e*(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*f)) Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p, x
], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[Simplify[m + n + p + 3], 0] && (LtQ[m, -1] || SumSimpler
Q[m, 1])
-
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_] :> Simp[(a + b*x)^(m +
1)*(c + d*x)^n*((e + f*x)^p/(b*(m + 1))), x] - Simp[1/(b*(m + 1)) Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e
+ f*x)^(p - 1)*Simp[d*e*n + c*f*p + d*f*(n + p)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && LtQ[m, -1] &
& GtQ[n, 0] && GtQ[p, 0] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p] || IntegersQ[p, m + n])
-
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_] :> Simp[(b*c - a*d)*(a
+ b*x)^(m + 1)*(c + d*x)^(n - 1)*((e + f*x)^(p + 1)/(b*(b*e - a*f)*(m + 1))), x] + Simp[1/(b*(b*e - a*f)*(m +
1)) Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 2)*(e + f*x)^p*Simp[a*d*(d*e*(n - 1) + c*f*(p + 1)) + b*c*(d*e*(m -
n + 2) - c*f*(m + p + 2)) + d*(a*d*f*(n + p) + b*(d*e*(m + 1) - c*f*(m + n + p + 1)))*x, x], x], x] /; FreeQ[
{a, b, c, d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 1] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p] || In
tegersQ[p, m + n])
-
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_] :> Simp[(a + b*x)^(m +
1)*(c + d*x)^n*((e + f*x)^(p + 1)/((m + 1)*(b*e - a*f))), x] - Simp[1/((m + 1)*(b*e - a*f)) Int[(a + b*x)^(m
+ 1)*(c + d*x)^(n - 1)*(e + f*x)^p*Simp[d*e*n + c*f*(m + p + 2) + d*f*(m + n + p + 2)*x, x], x], x] /; FreeQ[
{a, b, c, d, e, f, p}, x] && LtQ[m, -1] && GtQ[n, 0] && (IntegersQ[2*m, 2*n, 2*p] || IntegersQ[m, n + p] || In
tegersQ[p, m + n])
-
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_] :> Simp[b*(a + b*x)^(m
- 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(d*f*(m + n + p + 1))), x] + Simp[1/(d*f*(m + n + p + 1)) Int[(a +
b*x)^(m - 2)*(c + d*x)^n*(e + f*x)^p*Simp[a^2*d*f*(m + n + p + 1) - b*(b*c*e*(m - 1) + a*(d*e*(n + 1) + c*f*(
p + 1))) + b*(a*d*f*(2*m + n + p) - b*(d*e*(m + n) + c*f*(m + p)))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n
, p}, x] && GtQ[m, 1] && NeQ[m + n + p + 1, 0] && IntegerQ[m]
-
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_] :> Simp[(a + b*x)^m*(c
+ d*x)^n*((e + f*x)^(p + 1)/(f*(m + n + p + 1))), x] - Simp[1/(f*(m + n + p + 1)) Int[(a + b*x)^(m - 1)*(c +
d*x)^(n - 1)*(e + f*x)^p*Simp[c*m*(b*e - a*f) + a*n*(d*e - c*f) + (d*m*(b*e - a*f) + b*n*(d*e - c*f))*x, x],
x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && GtQ[m, 0] && GtQ[n, 0] && NeQ[m + n + p + 1, 0] && (IntegersQ[2*m
, 2*n, 2*p] || (IntegersQ[m, n + p] || IntegersQ[p, m + n]))
-
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_] :> Simp[b*(a + b*x)^(m
- 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(d*f*(m + n + p + 1))), x] + Simp[1/(d*f*(m + n + p + 1)) Int[(a +
b*x)^(m - 2)*(c + d*x)^n*(e + f*x)^p*Simp[a^2*d*f*(m + n + p + 1) - b*(b*c*e*(m - 1) + a*(d*e*(n + 1) + c*f*(
p + 1))) + b*(a*d*f*(2*m + n + p) - b*(d*e*(m + n) + c*f*(m + p)))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n
, p}, x] && GtQ[m, 1] && NeQ[m + n + p + 1, 0] && IntegersQ[2*m, 2*n, 2*p]
-
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_] :> Simp[b*(a + b*x)^(m
+ 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] + Simp[1/((m + 1)*(b*c - a*d)
*(b*e - a*f)) Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*(m + 1) - b*(d*e*(m + n + 2) + c*f*(m
+ p + 2)) - b*d*f*(m + n + p + 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && ILtQ[m, -1] && (Inte
gerQ[n] || IntegersQ[2*n, 2*p] || ILtQ[m + n + p + 3, 0])
-
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_] :> Simp[b*(a + b*x)^(m
+ 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] + Simp[1/((m + 1)*(b*c - a*d)
*(b*e - a*f)) Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*(m + 1) - b*(d*e*(m + n + 2) + c*f*(m
+ p + 2)) - b*d*f*(m + n + p + 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && LtQ[m, -1] && Intege
rsQ[2*m, 2*n, 2*p]
-
Int[1/(((a_.) + (b_.)*(x_))*Sqrt[(c_.) + (d_.)*(x_)]*((e_.) + (f_.)*(x_))^(1/4)), x_] :> Simp[-4 Subst[Int[x
^2/((b*e - a*f - b*x^4)*Sqrt[c - d*(e/f) + d*(x^4/f)]), x], x, (e + f*x)^(1/4)], x] /; FreeQ[{a, b, c, d, e, f
}, x] && GtQ[-f/(d*e - c*f), 0]
-
Int[1/(((a_.) + (b_.)*(x_))*Sqrt[(c_.) + (d_.)*(x_)]*((e_.) + (f_.)*(x_))^(1/4)), x_] :> Simp[Sqrt[(-f)*((c +
d*x)/(d*e - c*f))]/Sqrt[c + d*x] Int[1/((a + b*x)*Sqrt[(-c)*(f/(d*e - c*f)) - d*f*(x/(d*e - c*f))]*(e + f*x)
^(1/4)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && !GtQ[-f/(d*e - c*f), 0]
-
Int[1/(((a_.) + (b_.)*(x_))*Sqrt[(c_.) + (d_.)*(x_)]*((e_.) + (f_.)*(x_))^(3/4)), x_] :> Simp[-4 Subst[Int[1
/((b*e - a*f - b*x^4)*Sqrt[c - d*(e/f) + d*(x^4/f)]), x], x, (e + f*x)^(1/4)], x] /; FreeQ[{a, b, c, d, e, f},
x] && GtQ[-f/(d*e - c*f), 0]
-
Int[1/(((a_.) + (b_.)*(x_))*Sqrt[(c_.) + (d_.)*(x_)]*((e_.) + (f_.)*(x_))^(3/4)), x_] :> Simp[Sqrt[(-f)*((c +
d*x)/(d*e - c*f))]/Sqrt[c + d*x] Int[1/((a + b*x)*Sqrt[(-c)*(f/(d*e - c*f)) - d*f*(x/(d*e - c*f))]*(e + f*x)
^(3/4)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && !GtQ[-f/(d*e - c*f), 0]
-
Int[Sqrt[(e_) + (f_.)*(x_)]/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_] :> Simp[2*(Sqrt[e]/b)*Rt[-b/d, 2]*
EllipticE[ArcSin[Sqrt[b*x]/(Sqrt[c]*Rt[-b/d, 2])], c*(f/(d*e))], x] /; FreeQ[{b, c, d, e, f}, x] && GtQ[c, 0]
&& GtQ[e, 0] && !LtQ[-b/d, 0]
-
Int[Sqrt[(e_) + (f_.)*(x_)]/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_] :> Simp[Sqrt[(-b)*x]/Sqrt[b*x] I
nt[Sqrt[e + f*x]/(Sqrt[(-b)*x]*Sqrt[c + d*x]), x], x] /; FreeQ[{b, c, d, e, f}, x] && GtQ[c, 0] && GtQ[e, 0] &
& LtQ[-b/d, 0]
-
Int[Sqrt[(e_) + (f_.)*(x_)]/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_] :> Simp[Sqrt[e + f*x]*(Sqrt[1 + d*
(x/c)]/(Sqrt[c + d*x]*Sqrt[1 + f*(x/e)])) Int[Sqrt[1 + f*(x/e)]/(Sqrt[b*x]*Sqrt[1 + d*(x/c)]), x], x] /; Fre
eQ[{b, c, d, e, f}, x] && !(GtQ[c, 0] && GtQ[e, 0])
-
Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_] :> Simp[(2/b)*Rt[-(b*e - a
*f)/d, 2]*EllipticE[ArcSin[Sqrt[a + b*x]/Rt[-(b*c - a*d)/d, 2]], f*((b*c - a*d)/(d*(b*e - a*f)))], x] /; FreeQ
[{a, b, c, d, e, f}, x] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] && !LtQ[-(b*c - a*d)/d, 0] && !(Si
mplerQ[c + d*x, a + b*x] && GtQ[-d/(b*c - a*d), 0] && GtQ[d/(d*e - c*f), 0] && !LtQ[(b*c - a*d)/b, 0])
-
Int[Sqrt[(e_.) + (f_.)*(x_)]/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]), x_] :> Simp[Sqrt[e + f*x]*(Sqr
t[b*((c + d*x)/(b*c - a*d))]/(Sqrt[c + d*x]*Sqrt[b*((e + f*x)/(b*e - a*f))])) Int[Sqrt[b*(e/(b*e - a*f)) + b
*f*(x/(b*e - a*f))]/(Sqrt[a + b*x]*Sqrt[b*(c/(b*c - a*d)) + b*d*(x/(b*c - a*d))]), x], x] /; FreeQ[{a, b, c, d
, e, f}, x] && !(GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0]) && !LtQ[-(b*c - a*d)/d, 0]
-
Int[1/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_] :> Simp[(2/(b*Sqrt[e]))*Rt[-b/d,
2]*EllipticF[ArcSin[Sqrt[b*x]/(Sqrt[c]*Rt[-b/d, 2])], c*(f/(d*e))], x] /; FreeQ[{b, c, d, e, f}, x] && GtQ[c,
0] && GtQ[e, 0] && (GtQ[-b/d, 0] || LtQ[-b/f, 0])
-
Int[1/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_] :> Simp[(2/(b*Sqrt[e]))*Rt[-b/d,
2]*EllipticF[ArcSin[Sqrt[b*x]/(Sqrt[c]*Rt[-b/d, 2])], c*(f/(d*e))], x] /; FreeQ[{b, c, d, e, f}, x] && GtQ[c,
0] && GtQ[e, 0] && (PosQ[-b/d] || NegQ[-b/f])
-
Int[1/(Sqrt[(b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_] :> Simp[Sqrt[1 + d*(x/c)]*(Sqrt[
1 + f*(x/e)]/(Sqrt[c + d*x]*Sqrt[e + f*x])) Int[1/(Sqrt[b*x]*Sqrt[1 + d*(x/c)]*Sqrt[1 + f*(x/e)]), x], x] /;
FreeQ[{b, c, d, e, f}, x] && !(GtQ[c, 0] && GtQ[e, 0])
-
Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_] :> Simp[-2*(Sqrt[d/f]/(d*
Rt[-(b*e - a*f)/f, 2]))*EllipticF[ArcSin[Rt[-(b*e - a*f)/f, 2]/Sqrt[a + b*x]], f*((b*c - a*d)/(d*(b*e - a*f)))
], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[d/b, 0] && GtQ[f/b, 0] && LeQ[c, a*(d/b)] && LeQ[e, a*(f/b)]
-
Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_] :> Simp[2*(Rt[-b/d, 2]/(b
*Sqrt[(b*e - a*f)/b]))*EllipticF[ArcSin[Sqrt[a + b*x]/(Rt[-b/d, 2]*Sqrt[(b*c - a*d)/b])], f*((b*c - a*d)/(d*(b
*e - a*f)))], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[(b*c - a*d)/b, 0] && GtQ[(b*e - a*f)/b, 0] && PosQ[-b/
d] && !(SimplerQ[c + d*x, a + b*x] && GtQ[(d*e - c*f)/d, 0] && GtQ[-d/b, 0]) && !(SimplerQ[c + d*x, a + b*x]
&& GtQ[((-b)*e + a*f)/f, 0] && GtQ[-f/b, 0]) && !(SimplerQ[e + f*x, a + b*x] && GtQ[((-d)*e + c*f)/f, 0] &&
GtQ[((-b)*e + a*f)/f, 0] && (PosQ[-f/d] || PosQ[-f/b]))
-
Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_] :> Simp[2*(Rt[-b/d, 2]/(b
*Sqrt[(b*e - a*f)/b]))*EllipticF[ArcSin[Sqrt[a + b*x]/(Rt[-b/d, 2]*Sqrt[(b*c - a*d)/b])], f*((b*c - a*d)/(d*(b
*e - a*f)))], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[b/(b*c - a*d), 0] && GtQ[b/(b*e - a*f), 0] && SimplerQ
[a + b*x, c + d*x] && SimplerQ[a + b*x, e + f*x] && (PosQ[-(b*c - a*d)/d] || NegQ[-(b*e - a*f)/f])
-
Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_] :> Simp[Sqrt[b*((c + d*x)
/(b*c - a*d))]/Sqrt[c + d*x] Int[1/(Sqrt[a + b*x]*Sqrt[b*(c/(b*c - a*d)) + b*d*(x/(b*c - a*d))]*Sqrt[e + f*x
]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && !GtQ[(b*c - a*d)/b, 0] && SimplerQ[a + b*x, c + d*x] && Simpler
Q[a + b*x, e + f*x]
-
Int[1/(Sqrt[(a_) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_] :> Simp[Sqrt[b*((e + f*x)
/(b*e - a*f))]/Sqrt[e + f*x] Int[1/(Sqrt[a + b*x]*Sqrt[c + d*x]*Sqrt[b*(e/(b*e - a*f)) + b*f*(x/(b*e - a*f))
]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && !GtQ[(b*e - a*f)/b, 0]
-
Int[1/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(1/3)*((e_.) + (f_.)*(x_))^(1/3)), x_] :> With[{q = Rt[b*((b*
e - a*f)/(b*c - a*d)^2), 3]}, Simp[-Log[a + b*x]/(2*q*(b*c - a*d)), x] + (-Simp[Sqrt[3]*(ArcTan[1/Sqrt[3] + 2*
q*((c + d*x)^(2/3)/(Sqrt[3]*(e + f*x)^(1/3)))]/(2*q*(b*c - a*d))), x] + Simp[3*(Log[q*(c + d*x)^(2/3) - (e + f
*x)^(1/3)]/(4*q*(b*c - a*d))), x])] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[2*b*d*e - b*c*f - a*d*f, 0]
-
Int[((a_.) + (b_.)*(x_))^(m_)/(((c_.) + (d_.)*(x_))^(1/3)*((e_.) + (f_.)*(x_))^(1/3)), x_] :> Simp[b*(a + b*x)
^(m + 1)*(c + d*x)^(2/3)*((e + f*x)^(2/3)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] + Simp[f/(6*(m + 1)*(b*c - a*
d)*(b*e - a*f)) Int[(a + b*x)^(m + 1)*((a*d*(3*m + 1) - 3*b*c*(3*m + 5) - 2*b*d*(3*m + 7)*x)/((c + d*x)^(1/3
)*(e + f*x)^(1/3))), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[2*b*d*e - b*c*f - a*d*f, 0] && ILtQ[m, -1]
-
Int[((f_.)*(x_))^(p_)*((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_] :> Int[(a*c + b*d*x^2)^m*(f*x)^
p, x] /; FreeQ[{a, b, c, d, f, m, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[n, m] && GtQ[a, 0] && GtQ[c, 0]
-
Int[((f_.)*(x_))^(p_)*((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_] :> Simp[(a + b*x)^FracPart[m]*(
(c + d*x)^FracPart[m]/(a*c + b*d*x^2)^FracPart[m]) Int[(a*c + b*d*x^2)^m*(f*x)^p, x], x] /; FreeQ[{a, b, c,
d, f, m, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[n, m]
-
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_] :> Int[ExpandIntegrand[
(a + b*x)^m*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && (IGtQ[m, 0] || (ILtQ[m, 0
] && ILtQ[n, 0]))
-
Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_))^2, x_] :> Simp[b*(d/f^2) Int[
(a + b*x)^(m - 1)*(c + d*x)^(n - 1), x], x] + Simp[(b*e - a*f)*((d*e - c*f)/f^2) Int[(a + b*x)^(m - 1)*((c +
d*x)^(n - 1)/(e + f*x)^2), x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && IGtQ[m + n, 0] && EqQ[2*b*d*e - f*
(b*c + a*d), 0]
-
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_] :> Simp[f^(p - 1)/d^p
Int[(a + b*x)^m*((d*e*p - c*f*(p - 1) + d*f*x)/(c + d*x)^(m + 1)), x], x] + Simp[f^(p - 1) Int[(a + b*x)^m*
((e + f*x)^p/(c + d*x)^(m + 1))*ExpandToSum[f^(-p + 1)*(c + d*x)^(-p + 1) - (d*e*p - c*f*(p - 1) + d*f*x)/(d^p
*(e + f*x)^p), x], x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && EqQ[m + n + p, 0] && ILtQ[p, 0] && (LtQ[m,
0] || SumSimplerQ[m, 1] || !(LtQ[n, 0] || SumSimplerQ[n, 1]))
-
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_] :> Simp[b*d^(m + n)*f^p
Int[(a + b*x)^(m - 1)/(c + d*x)^m, x], x] + Int[(a + b*x)^(m - 1)*((e + f*x)^p/(c + d*x)^m)*ExpandToSum[(a
+ b*x)*(c + d*x)^(-p - 1) - (b*d^(-p - 1)*f^p)/(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && Eq
Q[m + n + p + 1, 0] && ILtQ[p, 0] && (GtQ[m, 0] || SumSimplerQ[m, -1] || !(GtQ[n, 0] || SumSimplerQ[n, -1]))
-
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_] :> Simp[(b*c - a*d)^n*(
(a + b*x)^(m + 1)/((m + 1)*(b*e - a*f)^(n + 1)*(e + f*x)^(m + 1)))*Hypergeometric2F1[m + 1, -n, m + 2, (-(d*e
- c*f))*((a + b*x)/((b*c - a*d)*(e + f*x)))], x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[m + n + p + 2, 0
] && ILtQ[n, 0] && (SumSimplerQ[m, 1] || !SumSimplerQ[p, 1]) && !ILtQ[m, 0]
-
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_] :> Simp[((a + b*x)^(m +
1)*(c + d*x)^n*((e + f*x)^(p + 1)/((b*e - a*f)*(m + 1)))*Hypergeometric2F1[m + 1, -n, m + 2, (-(d*e - c*f))*(
(a + b*x)/((b*c - a*d)*(e + f*x)))])/((b*e - a*f)*((c + d*x)/((b*c - a*d)*(e + f*x))))^n, x] /; FreeQ[{a, b, c
, d, e, f, m, n, p}, x] && EqQ[m + n + p + 2, 0] && !IntegerQ[n]
-
Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_] :> Simp[(c*f - d*e)^(m + n
+ 1)/f^(m + n + 1) Int[(a + b*x)^m/((c + d*x)^(m + 1)*(e + f*x)), x], x] + Simp[1/f^(m + n + 1) Int[((a +
b*x)^m/(c + d*x)^(m + 1))*ExpandToSum[(f^(m + n + 1)*(c + d*x)^(m + n + 1) - (c*f - d*e)^(m + n + 1))/(e + f*
x), x], x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && IGtQ[m + n + 1, 0] && (LtQ[m, 0] || SumSimplerQ[m, 1]
|| !(LtQ[n, 0] || SumSimplerQ[n, 1]))
-
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_] :> With[{mnp = Simplify
[m + n + p]}, Simp[b*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/((m + 1)*(b*c - a*d)*(b*e - a*f)))
, x] + Simp[1/((m + 1)*(b*c - a*d)*(b*e - a*f)) Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*(m
+ 1) - b*(d*e*(m + n + 2) + c*f*(m + p + 2)) - b*d*f*(mnp + 3)*x, x], x], x] /; ILtQ[mnp + 2, 0] && (SumSimple
rQ[m, 1] || ( !SumSimplerQ[n, 1] && !SumSimplerQ[p, 1]))] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && NeQ[m,
-1]
-
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_] :> Simp[1/b Subst[Int
[x^m*(c*e - (d*e + c*f)^2/(4*d*f) + d*f*(x^2/b^2))^n, x], x, a + b*x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}
, x] && EqQ[p, n] && EqQ[b*d*e + b*c*f - 2*a*d*f, 0] && EqQ[d*e + c*f, 0] && GtQ[c, 0] && GtQ[e, 0]
-
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_] :> Simp[(c + d*x)^n*((e
+ f*x)^p/(b*(c*e + (d*e + c*f)*x + d*f*x^2)^n)) Subst[Int[x^m*(c*e - (d*e + c*f)^2/(4*d*f) + d*f*(x^2/b^2))
^n, x], x, a + b*x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[p, n] && EqQ[b*d*e + b*c*f - 2*a*d*f,
0]
-
Int[((f_.)*(x_))^(p_)*((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_] :> Int[ExpandIntegrand[(a + b*x
)^n*(c + d*x)^n*(f*x)^p, (a + b*x)^(m - n), x], x] /; FreeQ[{a, b, c, d, f, m, n, p}, x] && EqQ[b*c + a*d, 0]
&& IGtQ[m - n, 0] && NeQ[m + n + p + 2, 0]
-
Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_.)*((e_) + (f_.)*(x_))^(p_.), x_] :> With[{k = Denominator[m]}, S
imp[k/b Subst[Int[x^(k*(m + 1) - 1)*(c + d*(x^k/b))^n*(e + f*(x^k/b))^p, x], x, (b*x)^(1/k)], x]] /; FreeQ[{
b, c, d, e, f, n, p}, x] && FractionQ[m] && IntegerQ[p]
-
Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_] :> With[{k = Denominat
or[m]}, Simp[k/b Subst[Int[x^(k*(m + 1) - 1)*(c - a*(d/b) + d*(x^k/b))^n*(e - a*(f/b) + f*(x^k/b))^p, x], x,
(a + b*x)^(1/k)], x]] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && FractionQ[m] && IntegerQ[2*n] && IntegerQ[p]
-
Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_)*((e_) + (f_.)*(x_))^(p_), x_] :> Simp[c^n*e^p*((b*x)^(m + 1)/(b
*(m + 1)))*AppellF1[m + 1, -n, -p, m + 2, (-d)*(x/c), (-f)*(x/e)], x] /; FreeQ[{b, c, d, e, f, m, n, p}, x] &&
!IntegerQ[m] && !IntegerQ[n] && GtQ[c, 0] && (IntegerQ[p] || GtQ[e, 0])
-
Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_)*((e_) + (f_.)*(x_))^(p_), x_] :> Simp[((c + d*x)^(n + 1)/(d*(n
+ 1)*(-d/(b*c))^m*(d/(d*e - c*f))^p))*AppellF1[n + 1, -m, -p, n + 2, 1 + d*(x/c), (-f)*((c + d*x)/(d*e - c*f))
], x] /; FreeQ[{b, c, d, e, f, m, n, p}, x] && !IntegerQ[m] && !IntegerQ[n] && GtQ[-d/(b*c), 0] && (IntegerQ
[p] || GtQ[d/(d*e - c*f), 0])
-
Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_)*((e_) + (f_.)*(x_))^(p_), x_] :> Simp[c^IntPart[n]*((c + d*x)^F
racPart[n]/(1 + d*(x/c))^FracPart[n]) Int[(b*x)^m*(1 + d*(x/c))^n*(e + f*x)^p, x], x] /; FreeQ[{b, c, d, e,
f, m, n, p}, x] && !IntegerQ[m] && !IntegerQ[n] && !GtQ[c, 0]
-
Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_] :> Simp[(b*e - a*f)^p*((
a + b*x)^(m + 1)/(b^(p + 1)*(m + 1)*Simplify[b/(b*c - a*d)]^n))*AppellF1[m + 1, -n, -p, m + 2, (-d)*((a + b*x)
/(b*c - a*d)), (-f)*((a + b*x)/(b*e - a*f))], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && !IntegerQ[m] && !I
ntegerQ[n] && IntegerQ[p] && GtQ[Simplify[b/(b*c - a*d)], 0] && !(GtQ[Simplify[d/(d*a - c*b)], 0] && SimplerQ
[c + d*x, a + b*x])
-
Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_] :> Simp[(c + d*x)^FracPa
rt[n]/(Simplify[b/(b*c - a*d)]^IntPart[n]*(b*((c + d*x)/(b*c - a*d)))^FracPart[n]) Int[(a + b*x)^m*Simp[b*(c
/(b*c - a*d)) + b*d*(x/(b*c - a*d)), x]^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && !Integ
erQ[m] && !IntegerQ[n] && IntegerQ[p] && !GtQ[Simplify[b/(b*c - a*d)], 0] && !SimplerQ[c + d*x, a + b*x]
-
Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_] :> Simp[((a + b*x)^(m +
1)/(b*(m + 1)*Simplify[b/(b*c - a*d)]^n*Simplify[b/(b*e - a*f)]^p))*AppellF1[m + 1, -n, -p, m + 2, (-d)*((a +
b*x)/(b*c - a*d)), (-f)*((a + b*x)/(b*e - a*f))], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && !IntegerQ[m]
&& !IntegerQ[n] && !IntegerQ[p] && GtQ[Simplify[b/(b*c - a*d)], 0] && GtQ[Simplify[b/(b*e - a*f)], 0] && !
(GtQ[Simplify[d/(d*a - c*b)], 0] && GtQ[Simplify[d/(d*e - c*f)], 0] && SimplerQ[c + d*x, a + b*x]) && !(GtQ[S
implify[f/(f*a - e*b)], 0] && GtQ[Simplify[f/(f*c - e*d)], 0] && SimplerQ[e + f*x, a + b*x])
-
Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_] :> Simp[(e + f*x)^FracPa
rt[p]/(Simplify[b/(b*e - a*f)]^IntPart[p]*(b*((e + f*x)/(b*e - a*f)))^FracPart[p]) Int[(a + b*x)^m*(c + d*x)
^n*Simp[b*(e/(b*e - a*f)) + b*f*(x/(b*e - a*f)), x]^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && !In
tegerQ[m] && !IntegerQ[n] && !IntegerQ[p] && GtQ[Simplify[b/(b*c - a*d)], 0] && !GtQ[Simplify[b/(b*e - a*f)
], 0]
-
Int[((a_) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_), x_] :> Simp[(c + d*x)^FracPa
rt[n]/(Simplify[b/(b*c - a*d)]^IntPart[n]*(b*((c + d*x)/(b*c - a*d)))^FracPart[n]) Int[(a + b*x)^m*Simp[b*(c
/(b*c - a*d)) + b*d*(x/(b*c - a*d)), x]^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && !In
tegerQ[m] && !IntegerQ[n] && !IntegerQ[p] && !GtQ[Simplify[b/(b*c - a*d)], 0] && !SimplerQ[c + d*x, a + b*
x] && !SimplerQ[e + f*x, a + b*x]
-
Int[((a_.) + (b_.)*(u_))^(m_.)*((c_.) + (d_.)*(u_))^(n_.)*((e_) + (f_.)*(u_))^(p_.), x_Symbol] :> Simp[1/D[u,
x] Subst[Int[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p, x], x, u], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] &&
LinearQ[u, x] && NeQ[u, x]
-
Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_) + (f_.)*(x_))*((g_.) + (h_.)*(x_)), x_] :> Int
[ExpandIntegrand[(a + b*x)^m*(c + d*x)^n*(e + f*x)*(g + h*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] &&
(IGtQ[m, 0] || IntegersQ[m, n])
-
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_) + (f_.)*(x_))*((g_.) + (h_.)*(x_)), x_] :> Simp
[(b^2*d*e*g - a^2*d*f*h*m - a*b*(d*(f*g + e*h) - c*f*h*(m + 1)) + b*f*h*(b*c - a*d)*(m + 1)*x)*(a + b*x)^(m +
1)*((c + d*x)^(n + 1)/(b^2*d*(b*c - a*d)*(m + 1))), x] + Simp[(a*d*f*h*m + b*(d*(f*g + e*h) - c*f*h*(m + 2)))/
(b^2*d) Int[(a + b*x)^(m + 1)*(c + d*x)^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, m, n}, x] && EqQ[m + n +
2, 0] && NeQ[m, -1] && (SumSimplerQ[m, 1] || !SumSimplerQ[n, 1])
-
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_) + (f_.)*(x_))*((g_.) + (h_.)*(x_)), x_] :> Simp[
((b^2*c*d*e*g*(n + 1) + a^2*c*d*f*h*(n + 1) + a*b*(d^2*e*g*(m + 1) + c^2*f*h*(m + 1) - c*d*(f*g + e*h)*(m + n
+ 2)) + (a^2*d^2*f*h*(n + 1) - a*b*d^2*(f*g + e*h)*(n + 1) + b^2*(c^2*f*h*(m + 1) - c*d*(f*g + e*h)*(m + 1) +
d^2*e*g*(m + n + 2)))*x)/(b*d*(b*c - a*d)^2*(m + 1)*(n + 1)))*(a + b*x)^(m + 1)*(c + d*x)^(n + 1), x] - Simp[(
a^2*d^2*f*h*(2 + 3*n + n^2) + a*b*d*(n + 1)*(2*c*f*h*(m + 1) - d*(f*g + e*h)*(m + n + 3)) + b^2*(c^2*f*h*(2 +
3*m + m^2) - c*d*(f*g + e*h)*(m + 1)*(m + n + 3) + d^2*e*g*(6 + m^2 + 5*n + n^2 + m*(2*n + 5))))/(b*d*(b*c - a
*d)^2*(m + 1)*(n + 1)) Int[(a + b*x)^(m + 1)*(c + d*x)^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]
&& LtQ[m, -1] && LtQ[n, -1]
-
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_) + (f_.)*(x_))*((g_.) + (h_.)*(x_)), x_] :> Simp
[((b^3*c*e*g*(m + 2) - a^3*d*f*h*(n + 2) - a^2*b*(c*f*h*m - d*(f*g + e*h)*(m + n + 3)) - a*b^2*(c*(f*g + e*h)
+ d*e*g*(2*m + n + 4)) + b*(a^2*d*f*h*(m - n) - a*b*(2*c*f*h*(m + 1) - d*(f*g + e*h)*(n + 1)) + b^2*(c*(f*g +
e*h)*(m + 1) - d*e*g*(m + n + 2)))*x)/(b^2*(b*c - a*d)^2*(m + 1)*(m + 2)))*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)
, x] + Simp[(f*(h/b^2) - (d*(m + n + 3)*(a^2*d*f*h*(m - n) - a*b*(2*c*f*h*(m + 1) - d*(f*g + e*h)*(n + 1)) + b
^2*(c*(f*g + e*h)*(m + 1) - d*e*g*(m + n + 2))))/(b^2*(b*c - a*d)^2*(m + 1)*(m + 2))) Int[(a + b*x)^(m + 2)*
(c + d*x)^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, m, n}, x] && (LtQ[m, -2] || (EqQ[m + n + 3, 0] && !LtQ[
n, -2]))
-
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_) + (f_.)*(x_))*((g_.) + (h_.)*(x_)), x_] :> Simp
[((a^2*d*f*h*(n + 2) + b^2*d*e*g*(m + n + 3) + a*b*(c*f*h*(m + 1) - d*(f*g + e*h)*(m + n + 3)) + b*f*h*(b*c -
a*d)*(m + 1)*x)/(b^2*d*(b*c - a*d)*(m + 1)*(m + n + 3)))*(a + b*x)^(m + 1)*(c + d*x)^(n + 1), x] - Simp[(a^2*d
^2*f*h*(n + 1)*(n + 2) + a*b*d*(n + 1)*(2*c*f*h*(m + 1) - d*(f*g + e*h)*(m + n + 3)) + b^2*(c^2*f*h*(m + 1)*(m
+ 2) - c*d*(f*g + e*h)*(m + 1)*(m + n + 3) + d^2*e*g*(m + n + 2)*(m + n + 3)))/(b^2*d*(b*c - a*d)*(m + 1)*(m
+ n + 3)) Int[(a + b*x)^(m + 1)*(c + d*x)^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, m, n}, x] && ((GeQ[m,
-2] && LtQ[m, -1]) || SumSimplerQ[m, 1]) && NeQ[m, -1] && NeQ[m + n + 3, 0]
-
Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_) + (f_.)*(x_))*((g_.) + (h_.)*(x_)), x_] :> Sim
p[(-(a*d*f*h*(n + 2) + b*c*f*h*(m + 2) - b*d*(f*g + e*h)*(m + n + 3) - b*d*f*h*(m + n + 2)*x))*(a + b*x)^(m +
1)*((c + d*x)^(n + 1)/(b^2*d^2*(m + n + 2)*(m + n + 3))), x] + Simp[(a^2*d^2*f*h*(n + 1)*(n + 2) + a*b*d*(n +
1)*(2*c*f*h*(m + 1) - d*(f*g + e*h)*(m + n + 3)) + b^2*(c^2*f*h*(m + 1)*(m + 2) - c*d*(f*g + e*h)*(m + 1)*(m +
n + 3) + d^2*e*g*(m + n + 2)*(m + n + 3)))/(b^2*d^2*(m + n + 2)*(m + n + 3)) Int[(a + b*x)^m*(c + d*x)^n, x
], x] /; FreeQ[{a, b, c, d, e, f, g, h, m, n}, x] && NeQ[m + n + 2, 0] && NeQ[m + n + 3, 0]
-
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_] :>
Int[ExpandIntegrand[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p*(g + h*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h, m
}, x] && (IntegersQ[m, n, p] || (IGtQ[n, 0] && IGtQ[p, 0]))
-
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_] :>
Simp[(b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^n*((e + f*x)^(p + 1)/(b*(b*e - a*f)*(m + 1))), x] - Simp[1/(b*(b
*e - a*f)*(m + 1)) Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p*Simp[b*c*(f*g - e*h)*(m + 1) + (b*g -
a*h)*(d*e*n + c*f*(p + 1)) + d*(b*(f*g - e*h)*(m + 1) + f*(b*g - a*h)*(n + p + 1))*x, x], x], x] /; FreeQ[{a,
b, c, d, e, f, g, h, p}, x] && ILtQ[m, -1] && GtQ[n, 0]
-
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_] :>
Simp[(b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^n*((e + f*x)^(p + 1)/(b*(b*e - a*f)*(m + 1))), x] - Simp[1/(b*(b
*e - a*f)*(m + 1)) Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1)*(e + f*x)^p*Simp[b*c*(f*g - e*h)*(m + 1) + (b*g -
a*h)*(d*e*n + c*f*(p + 1)) + d*(b*(f*g - e*h)*(m + 1) + f*(b*g - a*h)*(n + p + 1))*x, x], x], x] /; FreeQ[{a,
b, c, d, e, f, g, h, p}, x] && LtQ[m, -1] && GtQ[n, 0] && IntegersQ[2*m, 2*n, 2*p]
-
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_] :>
Simp[(b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x
] + Simp[1/((m + 1)*(b*c - a*d)*(b*e - a*f)) Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[(a*d*f*g - b
*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a*h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p + 3)*
x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && ILtQ[m, -1]
-
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_] :>
Simp[(b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x
] + Simp[1/((m + 1)*(b*c - a*d)*(b*e - a*f)) Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[(a*d*f*g - b
*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a*h)*(d*e*(n + 1) + c*f*(p + 1)) - d*f*(b*g - a*h)*(m + n + p + 3)*
x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && LtQ[m, -1] && IntegersQ[2*m, 2*n, 2*p]
-
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_] :>
Simp[h*(a + b*x)^m*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(d*f*(m + n + p + 2))), x] + Simp[1/(d*f*(m + n + p +
2)) Int[(a + b*x)^(m - 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*g*(m + n + p + 2) - h*(b*c*e*m + a*(d*e*(n + 1
) + c*f*(p + 1))) + (b*d*f*g*(m + n + p + 2) + h*(a*d*f*m - b*(d*e*(m + n + 1) + c*f*(m + p + 1))))*x, x], x],
x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && GtQ[m, 0] && NeQ[m + n + p + 2, 0] && IntegerQ[m]
-
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_] :>
Simp[h*(a + b*x)^m*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(d*f*(m + n + p + 2))), x] + Simp[1/(d*f*(m + n + p +
2)) Int[(a + b*x)^(m - 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*g*(m + n + p + 2) - h*(b*c*e*m + a*(d*e*(n + 1
) + c*f*(p + 1))) + (b*d*f*g*(m + n + p + 2) + h*(a*d*f*m - b*(d*e*(m + n + 1) + c*f*(m + p + 1))))*x, x], x],
x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && GtQ[m, 0] && NeQ[m + n + p + 2, 0] && IntegersQ[2*m, 2*n, 2
*p]
-
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_] :>
With[{mnp = Simplify[m + n + p]}, Simp[(b*g - a*h)*(a + b*x)^(m + 1)*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/((m
+ 1)*(b*c - a*d)*(b*e - a*f))), x] + Simp[1/((m + 1)*(b*c - a*d)*(b*e - a*f)) Int[(a + b*x)^(m + 1)*(c + d*
x)^n*(e + f*x)^p*Simp[(a*d*f*g - b*(d*e + c*f)*g + b*c*e*h)*(m + 1) - (b*g - a*h)*(d*e*(n + 1) + c*f*(p + 1))
- d*f*(b*g - a*h)*(mnp + 3)*x, x], x], x] /; ILtQ[mnp + 2, 0] && (SumSimplerQ[m, 1] || ( !(NeQ[n, -1] && SumSi
mplerQ[n, 1]) && !(NeQ[p, -1] && SumSimplerQ[p, 1])))] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x] && NeQ[m,
-1]
-
Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((g_.) + (h_.)*(x_)))/((e_.) + (f_.)*(x_)), x_] :> Si
mp[(f*g - e*h)*((c*f - d*e)^(m + n + 1)/f^(m + n + 2)) Int[(a + b*x)^m/((c + d*x)^(m + 1)*(e + f*x)), x], x]
+ Simp[1/f^(m + n + 2) Int[((a + b*x)^m/(c + d*x)^(m + 1))*ExpandToSum[(f^(m + n + 2)*(c + d*x)^(m + n + 1)
*(g + h*x) - (f*g - e*h)*(c*f - d*e)^(m + n + 1))/(e + f*x), x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]
&& IGtQ[m + n + 1, 0] && (LtQ[m, 0] || SumSimplerQ[m, 1] || !SumSimplerQ[n, 1])
-
Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_] :> Simp[
(b*g - a*h)/(b*c - a*d) Int[(e + f*x)^p/(a + b*x), x], x] - Simp[(d*g - c*h)/(b*c - a*d) Int[(e + f*x)^p/(
c + d*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]
-
Int[(((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/((a_.) + (b_.)*(x_)), x_] :> Si
mp[h/b Int[(c + d*x)^n*(e + f*x)^p, x], x] + Simp[(b*g - a*h)/b Int[(c + d*x)^n*((e + f*x)^p/(a + b*x)), x
], x] /; FreeQ[{a, b, c, d, e, f, g, h, n, p}, x]
-
Int[((g_.) + (h_.)*(x_))/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)]), x_] :> Si
mp[h/f Int[Sqrt[e + f*x]/(Sqrt[a + b*x]*Sqrt[c + d*x]), x], x] + Simp[(f*g - e*h)/f Int[1/(Sqrt[a + b*x]*S
qrt[c + d*x]*Sqrt[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && SimplerQ[a + b*x, e + f*x] && Sim
plerQ[c + d*x, e + f*x]
-
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)), x_] :>
Simp[h/b Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p, x], x] + Simp[(b*g - a*h)/b Int[(a + b*x)^m*(c +
d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, m, n, p}, x] && (SumSimplerQ[m, 1] || ( !SumSimpl
erQ[n, 1] && !SumSimplerQ[p, 1]))
-
Int[((a_.) + (b_.)*(x_))^(m_)*Sqrt[(c_.) + (d_.)*(x_)]*Sqrt[(e_.) + (f_.)*(x_)]*Sqrt[(g_.) + (h_.)*(x_)], x_]
:> Simp[(a + b*x)^(m + 1)*Sqrt[c + d*x]*Sqrt[e + f*x]*(Sqrt[g + h*x]/(b*(m + 1))), x] - Simp[1/(2*b*(m + 1))
Int[((a + b*x)^(m + 1)/(Sqrt[c + d*x]*Sqrt[e + f*x]*Sqrt[g + h*x]))*Simp[d*e*g + c*f*g + c*e*h + 2*(d*f*g + d
*e*h + c*f*h)*x + 3*d*f*h*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, m}, x] && IntegerQ[2*m] && LtQ[m,
-1]
-
Int[((a_.) + (b_.)*(x_))^(m_)*Sqrt[(c_.) + (d_.)*(x_)]*Sqrt[(e_.) + (f_.)*(x_)]*Sqrt[(g_.) + (h_.)*(x_)], x_]
:> Simp[2*(a + b*x)^(m + 1)*Sqrt[c + d*x]*Sqrt[e + f*x]*(Sqrt[g + h*x]/(b*(2*m + 5))), x] + Simp[1/(b*(2*m + 5
)) Int[((a + b*x)^m/(Sqrt[c + d*x]*Sqrt[e + f*x]*Sqrt[g + h*x]))*Simp[3*b*c*e*g - a*(d*e*g + c*f*g + c*e*h)
+ 2*(b*(d*e*g + c*f*g + c*e*h) - a*(d*f*g + d*e*h + c*f*h))*x - (3*a*d*f*h - b*(d*f*g + d*e*h + c*f*h))*x^2, x
], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, m}, x] && IntegerQ[2*m] && !LtQ[m, -1]
-
Int[(((a_.) + (b_.)*(x_))^(m_)*Sqrt[(e_.) + (f_.)*(x_)]*Sqrt[(g_.) + (h_.)*(x_)])/Sqrt[(c_.) + (d_.)*(x_)], x_
] :> Simp[2*(a + b*x)^m*Sqrt[c + d*x]*Sqrt[e + f*x]*(Sqrt[g + h*x]/(d*(2*m + 3))), x] - Simp[1/(d*(2*m + 3))
Int[((a + b*x)^(m - 1)/(Sqrt[c + d*x]*Sqrt[e + f*x]*Sqrt[g + h*x]))*Simp[2*b*c*e*g*m + a*(c*(f*g + e*h) - 2*d
*e*g*(m + 1)) - (b*(2*d*e*g - c*(f*g + e*h)*(2*m + 1)) - a*(2*c*f*h - d*(2*m + 1)*(f*g + e*h)))*x - (2*a*d*f*h
*m + b*(d*(f*g + e*h) - 2*c*f*h*(m + 1)))*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, m}, x] && IntegerQ
[2*m] && GtQ[m, 0]
-
Int[(Sqrt[(e_.) + (f_.)*(x_)]*Sqrt[(g_.) + (h_.)*(x_)])/(((a_.) + (b_.)*(x_))*Sqrt[(c_.) + (d_.)*(x_)]), x_] :
> Simp[(b*e - a*f)*((b*g - a*h)/b^2) Int[1/((a + b*x)*Sqrt[c + d*x]*Sqrt[e + f*x]*Sqrt[g + h*x]), x], x] + S
imp[1/b^2 Int[Simp[b*f*g + b*e*h - a*f*h + b*f*h*x, x]/(Sqrt[c + d*x]*Sqrt[e + f*x]*Sqrt[g + h*x]), x], x] /
; FreeQ[{a, b, c, d, e, f, g, h}, x]
-
Int[(((a_.) + (b_.)*(x_))^(m_)*Sqrt[(e_.) + (f_.)*(x_)]*Sqrt[(g_.) + (h_.)*(x_)])/Sqrt[(c_.) + (d_.)*(x_)], x_
] :> Simp[(a + b*x)^(m + 1)*Sqrt[c + d*x]*Sqrt[e + f*x]*(Sqrt[g + h*x]/((m + 1)*(b*c - a*d))), x] - Simp[1/(2*
(m + 1)*(b*c - a*d)) Int[((a + b*x)^(m + 1)/(Sqrt[c + d*x]*Sqrt[e + f*x]*Sqrt[g + h*x]))*Simp[c*(f*g + e*h)
+ d*e*g*(2*m + 3) + 2*(c*f*h + d*(m + 2)*(f*g + e*h))*x + d*f*h*(2*m + 5)*x^2, x], x], x] /; FreeQ[{a, b, c, d
, e, f, g, h, m}, x] && IntegerQ[2*m] && LtQ[m, -1]
-
Int[Sqrt[(a_.) + (b_.)*(x_)]/(Sqrt[(c_.) + (d_.)*(x_)]*Sqrt[(e_.) + (f_.)*(x_)]*Sqrt[(g_.) + (h_.)*(x_)]), x_]
:> Simp[2*(a + b*x)*Sqrt[(b*g - a*h)*((c + d*x)/((d*g - c*h)*(a + b*x)))]*(Sqrt[(b*g - a*h)*((e + f*x)/((f*g
- e*h)*(a + b*x)))]/(Sqrt[c + d*x]*Sqrt[e + f*x])) Subst[Int[1/((h - b*x^2)*Sqrt[1 + (b*c - a*d)*(x^2/(d*g -
c*h))]*Sqrt[1 + (b*e - a*f)*(x^2/(f*g - e*h))]), x], x, Sqrt[g + h*x]/Sqrt[a + b*x]], x] /; FreeQ[{a, b, c, d
, e, f, g, h}, x]
-
Int[((a_.) + (b_.)*(x_))^(3/2)/(Sqrt[(c_.) + (d_.)*(x_)]*Sqrt[(e_.) + (f_.)*(x_)]*Sqrt[(g_.) + (h_.)*(x_)]), x
_] :> Simp[b/d Int[Sqrt[a + b*x]*(Sqrt[c + d*x]/(Sqrt[e + f*x]*Sqrt[g + h*x])), x], x] - Simp[(b*c - a*d)/d
Int[Sqrt[a + b*x]/(Sqrt[c + d*x]*Sqrt[e + f*x]*Sqrt[g + h*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]
-
Int[((a_.) + (b_.)*(x_))^(m_)/(Sqrt[(c_.) + (d_.)*(x_)]*Sqrt[(e_.) + (f_.)*(x_)]*Sqrt[(g_.) + (h_.)*(x_)]), x_
] :> Simp[2*b^2*(a + b*x)^(m - 2)*Sqrt[c + d*x]*Sqrt[e + f*x]*(Sqrt[g + h*x]/(d*f*h*(2*m - 1))), x] - Simp[1/(
d*f*h*(2*m - 1)) Int[((a + b*x)^(m - 3)/(Sqrt[c + d*x]*Sqrt[e + f*x]*Sqrt[g + h*x]))*Simp[a*b^2*(d*e*g + c*f
*g + c*e*h) + 2*b^3*c*e*g*(m - 2) - a^3*d*f*h*(2*m - 1) + b*(2*a*b*(d*f*g + d*e*h + c*f*h) + b^2*(2*m - 3)*(d*
e*g + c*f*g + c*e*h) - 3*a^2*d*f*h*(2*m - 1))*x - 2*b^2*(m - 1)*(3*a*d*f*h - b*(d*f*g + d*e*h + c*f*h))*x^2, x
], x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && IntegerQ[2*m] && GeQ[m, 2]
-
Int[1/(((a_.) + (b_.)*(x_))*Sqrt[(c_.) + (d_.)*(x_)]*Sqrt[(e_.) + (f_.)*(x_)]*Sqrt[(g_.) + (h_.)*(x_)]), x_] :
> Simp[-2 Subst[Int[1/(Simp[b*c - a*d - b*x^2, x]*Sqrt[Simp[(d*e - c*f)/d + f*(x^2/d), x]]*Sqrt[Simp[(d*g -
c*h)/d + h*(x^2/d), x]]), x], x, Sqrt[c + d*x]], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && GtQ[(d*e - c*f)/d
, 0]
-
Int[1/(((a_.) + (b_.)*(x_))*Sqrt[(c_.) + (d_.)*(x_)]*Sqrt[(e_.) + (f_.)*(x_)]*Sqrt[(g_.) + (h_.)*(x_)]), x_] :
> Simp[-2 Subst[Int[1/(Simp[b*c - a*d - b*x^2, x]*Sqrt[Simp[(d*e - c*f)/d + f*(x^2/d), x]]*Sqrt[Simp[(d*g -
c*h)/d + h*(x^2/d), x]]), x], x, Sqrt[c + d*x]], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && !SimplerQ[e + f*
x, c + d*x] && !SimplerQ[g + h*x, c + d*x]
-
Int[1/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_.) + (d_.)*(x_)]*Sqrt[(e_.) + (f_.)*(x_)]*Sqrt[(g_.) + (h_.)*(x_)]), x
_] :> Simp[2*Sqrt[g + h*x]*(Sqrt[(b*e - a*f)*((c + d*x)/((d*e - c*f)*(a + b*x)))]/((f*g - e*h)*Sqrt[c + d*x]*S
qrt[(-(b*e - a*f))*((g + h*x)/((f*g - e*h)*(a + b*x)))])) Subst[Int[1/(Sqrt[1 + (b*c - a*d)*(x^2/(d*e - c*f)
)]*Sqrt[1 - (b*g - a*h)*(x^2/(f*g - e*h))]), x], x, Sqrt[e + f*x]/Sqrt[a + b*x]], x] /; FreeQ[{a, b, c, d, e,
f, g, h}, x]
-
Int[1/(((a_.) + (b_.)*(x_))^(3/2)*Sqrt[(c_.) + (d_.)*(x_)]*Sqrt[(e_.) + (f_.)*(x_)]*Sqrt[(g_.) + (h_.)*(x_)]),
x_] :> Simp[-d/(b*c - a*d) Int[1/(Sqrt[a + b*x]*Sqrt[c + d*x]*Sqrt[e + f*x]*Sqrt[g + h*x]), x], x] + Simp[b
/(b*c - a*d) Int[Sqrt[c + d*x]/((a + b*x)^(3/2)*Sqrt[e + f*x]*Sqrt[g + h*x]), x], x] /; FreeQ[{a, b, c, d, e
, f, g, h}, x]
-
Int[((a_.) + (b_.)*(x_))^(m_)/(Sqrt[(c_.) + (d_.)*(x_)]*Sqrt[(e_.) + (f_.)*(x_)]*Sqrt[(g_.) + (h_.)*(x_)]), x_
] :> Simp[b^2*(a + b*x)^(m + 1)*Sqrt[c + d*x]*Sqrt[e + f*x]*(Sqrt[g + h*x]/((m + 1)*(b*c - a*d)*(b*e - a*f)*(b
*g - a*h))), x] - Simp[1/(2*(m + 1)*(b*c - a*d)*(b*e - a*f)*(b*g - a*h)) Int[((a + b*x)^(m + 1)/(Sqrt[c + d*
x]*Sqrt[e + f*x]*Sqrt[g + h*x]))*Simp[2*a^2*d*f*h*(m + 1) - 2*a*b*(m + 1)*(d*f*g + d*e*h + c*f*h) + b^2*(2*m +
3)*(d*e*g + c*f*g + c*e*h) - 2*b*(a*d*f*h*(m + 1) - b*(m + 2)*(d*f*g + d*e*h + c*f*h))*x + d*f*h*(2*m + 5)*b^
2*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && IntegerQ[2*m] && LeQ[m, -2]
-
Int[(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_.) + (d_.)*(x_)])/(Sqrt[(e_.) + (f_.)*(x_)]*Sqrt[(g_.) + (h_.)*(x_)]), x
_] :> Simp[Sqrt[a + b*x]*Sqrt[c + d*x]*(Sqrt[g + h*x]/(h*Sqrt[e + f*x])), x] + (-Simp[(d*e - c*f)*((f*g - e*h)
/(2*f*h)) Int[Sqrt[a + b*x]/(Sqrt[c + d*x]*(e + f*x)^(3/2)*Sqrt[g + h*x]), x], x] + Simp[(a*d*f*h - b*(d*f*g
+ d*e*h - c*f*h))/(2*f^2*h) Int[Sqrt[e + f*x]/(Sqrt[a + b*x]*Sqrt[c + d*x]*Sqrt[g + h*x]), x], x] + Simp[(d
*e - c*f)*((b*f*g + b*e*h - 2*a*f*h)/(2*f^2*h)) Int[1/(Sqrt[a + b*x]*Sqrt[c + d*x]*Sqrt[e + f*x]*Sqrt[g + h*
x]), x], x]) /; FreeQ[{a, b, c, d, e, f, g, h}, x]
-
Int[(((a_.) + (b_.)*(x_))^(m_)*Sqrt[(c_.) + (d_.)*(x_)])/(Sqrt[(e_.) + (f_.)*(x_)]*Sqrt[(g_.) + (h_.)*(x_)]),
x_] :> Simp[2*b*(a + b*x)^(m - 1)*Sqrt[c + d*x]*Sqrt[e + f*x]*(Sqrt[g + h*x]/(f*h*(2*m + 1))), x] - Simp[1/(f*
h*(2*m + 1)) Int[((a + b*x)^(m - 2)/(Sqrt[c + d*x]*Sqrt[e + f*x]*Sqrt[g + h*x]))*Simp[a*b*(d*e*g + c*(f*g +
e*h)) + 2*b^2*c*e*g*(m - 1) - a^2*c*f*h*(2*m + 1) + (b^2*(2*m - 1)*(d*e*g + c*(f*g + e*h)) - a^2*d*f*h*(2*m +
1) + 2*a*b*(d*f*g + d*e*h - 2*c*f*h*m))*x - b*(a*d*f*h*(4*m - 1) + b*(c*f*h - 2*d*(f*g + e*h)*m))*x^2, x], x],
x] /; FreeQ[{a, b, c, d, e, f, g, h, m}, x] && IntegerQ[2*m] && GtQ[m, 1]
-
Int[Sqrt[(c_.) + (d_.)*(x_)]/(((a_.) + (b_.)*(x_))*Sqrt[(e_.) + (f_.)*(x_)]*Sqrt[(g_.) + (h_.)*(x_)]), x_] :>
Simp[d/b Int[1/(Sqrt[c + d*x]*Sqrt[e + f*x]*Sqrt[g + h*x]), x], x] + Simp[(b*c - a*d)/b Int[1/((a + b*x)*S
qrt[c + d*x]*Sqrt[e + f*x]*Sqrt[g + h*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]
-
Int[Sqrt[(c_.) + (d_.)*(x_)]/(((a_.) + (b_.)*(x_))^(3/2)*Sqrt[(e_.) + (f_.)*(x_)]*Sqrt[(g_.) + (h_.)*(x_)]), x
_] :> Simp[-2*Sqrt[c + d*x]*(Sqrt[(-(b*e - a*f))*((g + h*x)/((f*g - e*h)*(a + b*x)))]/((b*e - a*f)*Sqrt[g + h*
x]*Sqrt[(b*e - a*f)*((c + d*x)/((d*e - c*f)*(a + b*x)))])) Subst[Int[Sqrt[1 + (b*c - a*d)*(x^2/(d*e - c*f))]
/Sqrt[1 - (b*g - a*h)*(x^2/(f*g - e*h))], x], x, Sqrt[e + f*x]/Sqrt[a + b*x]], x] /; FreeQ[{a, b, c, d, e, f,
g, h}, x]
-
Int[(((a_.) + (b_.)*(x_))^(m_)*Sqrt[(c_.) + (d_.)*(x_)])/(Sqrt[(e_.) + (f_.)*(x_)]*Sqrt[(g_.) + (h_.)*(x_)]),
x_] :> Simp[b*(a + b*x)^(m + 1)*Sqrt[c + d*x]*Sqrt[e + f*x]*(Sqrt[g + h*x]/((m + 1)*(b*e - a*f)*(b*g - a*h))),
x] + Simp[1/(2*(m + 1)*(b*e - a*f)*(b*g - a*h)) Int[((a + b*x)^(m + 1)/(Sqrt[c + d*x]*Sqrt[e + f*x]*Sqrt[g
+ h*x]))*Simp[2*a*c*f*h*(m + 1) - b*(d*e*g + c*(2*m + 3)*(f*g + e*h)) + 2*(a*d*f*h*(m + 1) - b*(m + 2)*(d*f*g
+ d*e*h + c*f*h))*x - b*d*f*h*(2*m + 5)*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, m}, x] && IntegerQ[2
*m] && LeQ[m, -2]
-
Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_))^(q_))/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_] :>
Simp[(b*e - a*f)/(b*c - a*d) Int[(e + f*x)^(p - 1)*((g + h*x)^q/(a + b*x)), x], x] - Simp[(d*e - c*f)/(b*c -
a*d) Int[(e + f*x)^(p - 1)*((g + h*x)^q/(c + d*x)), x], x] /; FreeQ[{a, b, c, d, e, f, g, h, q}, x] && LtQ[
0, p, 1]
-
Int[(((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_))/(Sqrt[(e_.) + (f_.)*(x_)]*Sqrt[(g_.) + (h_.)*(x_)])
, x_] :> Int[ExpandIntegrand[1/(Sqrt[c + d*x]*Sqrt[e + f*x]*Sqrt[g + h*x]), (a + b*x)^m*(c + d*x)^(n + 1/2), x
], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && IntegerQ[m] && IntegerQ[n + 1/2]
-
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_))^(q_), x
_] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p*(g + h*x)^q, x], x] /; FreeQ[{a, b, c, d, e, f,
g, h, m, n}, x] && IntegersQ[p, q]
-
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_))^(q_), x
_] :> Simp[h/b Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*(g + h*x)^(q - 1), x], x] + Simp[(b*g - a*h)/b
Int[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p*(g + h*x)^(q - 1), x], x] /; FreeQ[{a, b, c, d, e, f, g, h, m, n, p}
, x] && IGtQ[q, 0] && (SumSimplerQ[m, 1] || ( !SumSimplerQ[n, 1] && !SumSimplerQ[p, 1]))
-
Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.)*((g_.) + (h_.)*(x_))^(q_.
), x_] :> CannotIntegrate[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p*(g + h*x)^q, x] /; FreeQ[{a, b, c, d, e, f, g, h
, m, n, p, q}, x]
-
Int[((a_.) + (b_.)*(u_))^(m_.)*((c_.) + (d_.)*(u_))^(n_.)*((e_.) + (f_.)*(u_))^(p_.)*((g_.) + (h_.)*(u_))^(q_.
), x_Symbol] :> Simp[1/Coefficient[u, x, 1] Subst[Int[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p*(g + h*x)^q, x], x
, u], x] /; FreeQ[{a, b, c, d, e, f, g, h, m, n, p, q}, x] && LinearQ[u, x] && NeQ[u, x]
-
Int[((i_.)*((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_))^
(q_))^(r_), x_Symbol] :> Simp[(i*(a + b*x)^m*(c + d*x)^n*(e + f*x)^p*(g + h*x)^q)^r/((a + b*x)^(m*r)*(c + d*x)
^(n*r)*(e + f*x)^(p*r)*(g + h*x)^(q*r)) Int[(a + b*x)^(m*r)*(c + d*x)^(n*r)*(e + f*x)^(p*r)*(g + h*x)^(q*r),
x], x] /; FreeQ[{a, b, c, d, e, f, g, h, i, m, n, p, q, r}, x]
-
Int[(u_)^(m_), x_Symbol] :> Int[ExpandToSum[u, x]^m, x] /; FreeQ[m, x] && LinearQ[u, x] && !LinearMatchQ[u, x
]
-
Int[(u_)^(m_.)*(v_)^(n_.), x_Symbol] :> Int[ExpandToSum[u, x]^m*ExpandToSum[v, x]^n, x] /; FreeQ[{m, n}, x] &&
LinearQ[{u, v}, x] && !LinearMatchQ[{u, v}, x]
-
Int[(u_)^(m_.)*(v_)^(n_.)*(w_)^(p_.), x_Symbol] :> Int[ExpandToSum[u, x]^m*ExpandToSum[v, x]^n*ExpandToSum[w,
x]^p, x] /; FreeQ[{m, n, p}, x] && LinearQ[{u, v, w}, x] && !LinearMatchQ[{u, v, w}, x]
-
Int[(u_)^(m_.)*(v_)^(n_.)*(w_)^(p_.)*(z_)^(q_.), x_Symbol] :> Int[ExpandToSum[u, x]^m*ExpandToSum[v, x]^n*Expa
ndToSum[w, x]^p*ExpandToSum[z, x]^q, x] /; FreeQ[{m, n, p, q}, x] && LinearQ[{u, v, w, z}, x] && !LinearMatch
Q[{u, v, w, z}, x]
-
Int[((b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[b^IntPart[p]*((b*x^2)^FracPart[p]/x^(2*FracPart[p])) Int[x^(2*p),
x], x] /; FreeQ[{b, p}, x]
-
Int[((a_) + (b_.)*(x_)^2)^(-3/2), x_Symbol] :> Simp[x/(a*Sqrt[a + b*x^2]), x] /; FreeQ[{a, b}, x]
-
Int[((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-x)*((a + b*x^2)^(p + 1)/(2*a*(p + 1))), x] + Simp[(2*p + 3
)/(2*a*(p + 1)) Int[(a + b*x^2)^(p + 1), x], x] /; FreeQ[{a, b}, x] && ILtQ[p + 3/2, 0]
-
Int[((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Int[ExpandIntegrand[(a + b*x^2)^p, x], x] /; FreeQ[{a, b}, x] &&
IGtQ[p, 0]
-
Int[((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[x*((a + b*x^2)^p/(2*p + 1)), x] + Simp[2*a*(p/(2*p + 1)) I
nt[(a + b*x^2)^(p - 1), x], x] /; FreeQ[{a, b}, x] && GtQ[p, 0] && (IntegerQ[4*p] || IntegerQ[6*p])
-
Int[((a_) + (b_.)*(x_)^2)^(-5/4), x_Symbol] :> Simp[(2/(a^(5/4)*Rt[b/a, 2]))*EllipticE[(1/2)*ArcTan[Rt[b/a, 2]
*x], 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b/a]
-
Int[((a_) + (b_.)*(x_)^2)^(-5/4), x_Symbol] :> Simp[(1 + b*(x^2/a))^(1/4)/(a*(a + b*x^2)^(1/4)) Int[1/(1 + b
*(x^2/a))^(5/4), x], x] /; FreeQ[{a, b}, x] && PosQ[a] && PosQ[b/a]
-
Int[((a_) + (b_.)*(x_)^2)^(-7/6), x_Symbol] :> Simp[1/((a + b*x^2)^(2/3)*(a/(a + b*x^2))^(2/3)) Subst[Int[1/
(1 - b*x^2)^(1/3), x], x, x/Sqrt[a + b*x^2]], x] /; FreeQ[{a, b}, x]
-
Int[((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-x)*((a + b*x^2)^(p + 1)/(2*a*(p + 1))), x] + Simp[(2*p + 3
)/(2*a*(p + 1)) Int[(a + b*x^2)^(p + 1), x], x] /; FreeQ[{a, b}, x] && LtQ[p, -1] && (IntegerQ[4*p] || Integ
erQ[6*p])
-
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])
-
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])
-
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]
-
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
/; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])
-
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[b, 2])^(-1))*ArcTanh[Rt[b, 2]*(x/Rt[-a, 2])]
, x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (LtQ[a, 0] || GtQ[b, 0])
-
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]
-
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt[a])]/Rt[b, 2], x] /; FreeQ[{a, b},
x] && GtQ[a, 0] && PosQ[b]
-
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-b, 2]*(x/Sqrt[a])]/Rt[-b, 2], x] /; FreeQ[{a, b}
, x] && GtQ[a, 0] && NegQ[b]
-
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] && !GtQ[a, 0]
-
Int[((a_) + (b_.)*(x_)^2)^(-1/4), x_Symbol] :> Simp[2*(x/(a + b*x^2)^(1/4)), x] - Simp[a Int[1/(a + b*x^2)^(
5/4), x], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b/a]
-
Int[((a_) + (b_.)*(x_)^2)^(-1/4), x_Symbol] :> Simp[(2/(a^(1/4)*Rt[-b/a, 2]))*EllipticE[(1/2)*ArcSin[Rt[-b/a,
2]*x], 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && NegQ[b/a]
-
Int[((a_) + (b_.)*(x_)^2)^(-1/4), x_Symbol] :> Simp[(1 + b*(x^2/a))^(1/4)/(a + b*x^2)^(1/4) Int[1/(1 + b*(x^
2/a))^(1/4), x], x] /; FreeQ[{a, b}, x] && PosQ[a]
-
Int[((a_) + (b_.)*(x_)^2)^(-1/4), x_Symbol] :> Simp[2*(Sqrt[(-b)*(x^2/a)]/(b*x)) Subst[Int[x^2/Sqrt[1 - x^4/
a], x], x, (a + b*x^2)^(1/4)], x] /; FreeQ[{a, b}, x] && NegQ[a]
-
Int[((a_) + (b_.)*(x_)^2)^(-3/4), x_Symbol] :> Simp[(2/(a^(3/4)*Rt[b/a, 2]))*EllipticF[(1/2)*ArcTan[Rt[b/a, 2]
*x], 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b/a]
-
Int[((a_) + (b_.)*(x_)^2)^(-3/4), x_Symbol] :> Simp[(2/(a^(3/4)*Rt[-b/a, 2]))*EllipticF[(1/2)*ArcSin[Rt[-b/a,
2]*x], 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && NegQ[b/a]
-
Int[((a_) + (b_.)*(x_)^2)^(-3/4), x_Symbol] :> Simp[(1 + b*(x^2/a))^(3/4)/(a + b*x^2)^(3/4) Int[1/(1 + b*(x^
2/a))^(3/4), x], x] /; FreeQ[{a, b}, x] && PosQ[a]
-
Int[((a_) + (b_.)*(x_)^2)^(-3/4), x_Symbol] :> Simp[2*(Sqrt[(-b)*(x^2/a)]/(b*x)) Subst[Int[1/Sqrt[1 - x^4/a]
, x], x, (a + b*x^2)^(1/4)], x] /; FreeQ[{a, b}, x] && NegQ[a]
-
Int[((a_) + (b_.)*(x_)^2)^(-1/3), x_Symbol] :> Simp[3*(Sqrt[b*x^2]/(2*b*x)) Subst[Int[x/Sqrt[-a + x^3], x],
x, (a + b*x^2)^(1/3)], x] /; FreeQ[{a, b}, x]
-
Int[((a_) + (b_.)*(x_)^2)^(-2/3), x_Symbol] :> Simp[3*(Sqrt[b*x^2]/(2*b*x)) Subst[Int[1/Sqrt[-a + x^3], x],
x, (a + b*x^2)^(1/3)], x] /; FreeQ[{a, b}, x]
-
Int[((a_) + (b_.)*(x_)^2)^(-1/6), x_Symbol] :> Simp[3*(x/(2*(a + b*x^2)^(1/6))), x] - Simp[a/2 Int[1/(a + b*
x^2)^(7/6), x], x] /; FreeQ[{a, b}, x]
-
Int[((a_) + (b_.)*(x_)^2)^(-5/6), x_Symbol] :> Simp[1/((a/(a + b*x^2))^(1/3)*(a + b*x^2)^(1/3)) Subst[Int[1/
(1 - b*x^2)^(2/3), x], x, x/Sqrt[a + b*x^2]], x] /; FreeQ[{a, b}, x]
-
Int[((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[a^p*x*Hypergeometric2F1[-p, 1/2, 1/2 + 1, (-b)*(x^2/a)], x]
/; FreeQ[{a, b, p}, x] && !IntegerQ[2*p] && GtQ[a, 0]
-
Int[((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[a^IntPart[p]*((a + b*x^2)^FracPart[p]/(1 + b*(x^2/a))^FracPa
rt[p]) Int[(1 + b*(x^2/a))^p, x], x] /; FreeQ[{a, b, p}, x] && !IntegerQ[2*p] && !GtQ[a, 0]
-
Int[((a_.) + (b_.)*(v_)^(n_))^(p_), x_Symbol] :> Simp[1/Coefficient[v, x, 1] Subst[Int[(a + b*x^n)^p, x], x,
v], x] /; FreeQ[{a, b, n, p}, x] && LinearQ[v, x] && NeQ[v, x]
-
Int[(x_)/((a_) + (b_.)*(x_)^2), x_Symbol] :> Simp[Log[RemoveContent[a + b*x^2, x]]/(2*b), x] /; FreeQ[{a, b},
x]
-
Int[(x_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(a + b*x^2)^(p + 1)/(2*b*(p + 1)), x] /; FreeQ[{a, b, p
}, x] && NeQ[p, -1]
-
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a + b*x^2)^(p + 1)/(a*c*(
m + 1))), x] /; FreeQ[{a, b, c, m, p}, x] && EqQ[m + 2*p + 3, 0] && NeQ[m, -1]
-
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[1/2 Subst[Int[x^((m - 1)/2)*(a + b*x)^p, x], x,
x^2], x] /; FreeQ[{a, b, m, p}, x] && IntegerQ[(m - 1)/2]
-
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*(a + b*x^2)^p, x]
, x] /; FreeQ[{a, b, c, m}, x] && IGtQ[p, 0]
-
Int[(x_)^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[x^(m + 1)*((a + b*x^2)^(p + 1)/(a*(m + 1))), x] -
Simp[b*((m + 2*(p + 1) + 1)/(a*(m + 1))) Int[x^(m + 2)*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, m, p}, x] && IL
tQ[Simplify[(m + 1)/2 + p + 1], 0] && NeQ[m, -1]
-
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-(c*x)^(m + 1))*((a + b*x^2)^(p + 1)/(a*
c*2*(p + 1))), x] + Simp[(m + 2*p + 3)/(a*2*(p + 1)) Int[(c*x)^m*(a + b*x^2)^(p + 1), x], x] /; FreeQ[{a, b,
c, m, p}, x] && ILtQ[Simplify[(m + 1)/2 + p + 1], 0] && NeQ[p, -1]
-
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a + b*x^2)^p/(c*(m + 1)))
, x] - Simp[2*b*(p/(c^2*(m + 1))) Int[(c*x)^(m + 2)*(a + b*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c}, x] && Gt
Q[p, 0] && LtQ[m, -1] && !ILtQ[(m + 2*p + 3)/2, 0] && IntBinomialQ[a, b, c, 2, m, p, x]
-
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a + b*x^2)^p/(c*(m + 2*p
+ 1))), x] + Simp[2*a*(p/(m + 2*p + 1)) Int[(c*x)^m*(a + b*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, m}, x] &&
GtQ[p, 0] && NeQ[m + 2*p + 1, 0] && IntBinomialQ[a, b, c, 2, m, p, x]
-
Int[Sqrt[(c_.)*(x_)]/((a_) + (b_.)*(x_)^2)^(5/4), x_Symbol] :> Simp[Sqrt[c*x]*((1 + a/(b*x^2))^(1/4)/(b*(a + b
*x^2)^(1/4))) Int[1/(x^2*(1 + a/(b*x^2))^(5/4)), x], x] /; FreeQ[{a, b, c}, x] && PosQ[b/a]
-
Int[((c_.)*(x_))^(m_)/((a_) + (b_.)*(x_)^2)^(5/4), x_Symbol] :> Simp[2*c*((c*x)^(m - 1)/(b*(2*m - 3)*(a + b*x^
2)^(1/4))), x] - Simp[2*a*c^2*((m - 1)/(b*(2*m - 3))) Int[(c*x)^(m - 2)/(a + b*x^2)^(5/4), x], x] /; FreeQ[{
a, b, c}, x] && PosQ[b/a] && IntegerQ[2*m] && GtQ[m, 3/2]
-
Int[((c_.)*(x_))^(m_)/((a_) + (b_.)*(x_)^2)^(5/4), x_Symbol] :> Simp[(c*x)^(m + 1)/(a*c*(m + 1)*(a + b*x^2)^(1
/4)), x] - Simp[b*((2*m + 1)/(2*a*c^2*(m + 1))) Int[(c*x)^(m + 2)/(a + b*x^2)^(5/4), x], x] /; FreeQ[{a, b,
c}, x] && PosQ[b/a] && IntegerQ[2*m] && LtQ[m, -1]
-
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[c*(c*x)^(m - 1)*((a + b*x^2)^(p + 1)/(2*b
*(p + 1))), x] - Simp[c^2*((m - 1)/(2*b*(p + 1))) Int[(c*x)^(m - 2)*(a + b*x^2)^(p + 1), x], x] /; FreeQ[{a,
b, c}, x] && LtQ[p, -1] && GtQ[m, 1] && !ILtQ[(m + 2*p + 3)/2, 0] && IntBinomialQ[a, b, c, 2, m, p, x]
-
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-(c*x)^(m + 1))*((a + b*x^2)^(p + 1)/(2*
a*c*(p + 1))), x] + Simp[(m + 2*p + 3)/(2*a*(p + 1)) Int[(c*x)^m*(a + b*x^2)^(p + 1), x], x] /; FreeQ[{a, b,
c, m}, x] && LtQ[p, -1] && IntBinomialQ[a, b, c, 2, m, p, x]
-
Int[(x_)^(m_)/((a_) + (b_.)*(x_)^2), x_Symbol] :> Int[PolynomialDivide[x^m, a + b*x^2, x], x] /; FreeQ[{a, b},
x] && IGtQ[m, 3]
-
Int[Sqrt[(c_)*(x_)]/((a_) + (b_.)*(x_)^2)^(1/4), x_Symbol] :> Simp[x*(Sqrt[c*x]/(a + b*x^2)^(1/4)), x] - Simp[
a/2 Int[Sqrt[c*x]/(a + b*x^2)^(5/4), x], x] /; FreeQ[{a, b, c}, x] && PosQ[b/a]
-
Int[Sqrt[(c_)*(x_)]/((a_) + (b_.)*(x_)^2)^(1/4), x_Symbol] :> Simp[c*((a + b*x^2)^(3/4)/(b*Sqrt[c*x])), x] + S
imp[a*(c^2/(2*b)) Int[1/((c*x)^(3/2)*(a + b*x^2)^(1/4)), x], x] /; FreeQ[{a, b, c}, x] && NegQ[b/a]
-
Int[1/(((c_.)*(x_))^(3/2)*((a_) + (b_.)*(x_)^2)^(1/4)), x_Symbol] :> Simp[-2/(c*Sqrt[c*x]*(a + b*x^2)^(1/4)),
x] - Simp[b/c^2 Int[Sqrt[c*x]/(a + b*x^2)^(5/4), x], x] /; FreeQ[{a, b, c}, x] && PosQ[b/a]
-
Int[1/(((c_.)*(x_))^(3/2)*((a_) + (b_.)*(x_)^2)^(1/4)), x_Symbol] :> Simp[Sqrt[c*x]*((1 + a/(b*x^2))^(1/4)/(c^
2*(a + b*x^2)^(1/4))) Int[1/(x^2*(1 + a/(b*x^2))^(1/4)), x], x] /; FreeQ[{a, b, c}, x] && NegQ[b/a]
-
Int[Sqrt[x_]/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[-2/(Sqrt[a]*(-b/a)^(3/4)) Subst[Int[Sqrt[1 - 2*x^2
]/Sqrt[1 - x^2], x], x, Sqrt[1 - Sqrt[-b/a]*x]/Sqrt[2]], x] /; FreeQ[{a, b}, x] && GtQ[-b/a, 0] && GtQ[a, 0]
-
Int[Sqrt[x_]/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[Sqrt[1 + b*(x^2/a)]/Sqrt[a + b*x^2] Int[Sqrt[x]/Sq
rt[1 + b*(x^2/a)], x], x] /; FreeQ[{a, b}, x] && GtQ[-b/a, 0] && !GtQ[a, 0]
-
Int[Sqrt[(c_)*(x_)]/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[Sqrt[c*x]/Sqrt[x] Int[Sqrt[x]/Sqrt[a + b*x^
2], x], x] /; FreeQ[{a, b, c}, x] && GtQ[-b/a, 0]
-
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[c*(c*x)^(m - 1)*((a + b*x^2)^(p + 1)/(b*(m
+ 2*p + 1))), x] - Simp[a*c^2*((m - 1)/(b*(m + 2*p + 1))) Int[(c*x)^(m - 2)*(a + b*x^2)^p, x], x] /; FreeQ[
{a, b, c, p}, x] && GtQ[m, 2 - 1] && NeQ[m + 2*p + 1, 0] && IntBinomialQ[a, b, c, 2, m, p, x]
-
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[c*(c*x)^(m - 1)*((a + b*x^2)^(p + 1)/(b*(m
+ 2*p + 1))), x] - Simp[a*c^2*((m - 1)/(b*(m + 2*p + 1))) Int[(c*x)^(m - 2)*(a + b*x^2)^p, x], x] /; FreeQ[
{a, b, c, m, p}, x] && SumSimplerQ[m, -2] && NeQ[m + 2*p + 1, 0] && ILtQ[Simplify[(m + 1)/2 + p], 0]
-
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a + b*x^2)^(p + 1)/(a*c*(m
+ 1))), x] - Simp[b*((m + 2*p + 3)/(a*c^2*(m + 1))) Int[(c*x)^(m + 2)*(a + b*x^2)^p, x], x] /; FreeQ[{a, b,
c, p}, x] && LtQ[m, -1] && IntBinomialQ[a, b, c, 2, m, p, x]
-
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a + b*x^2)^(p + 1)/(a*c*(m
+ 1))), x] - Simp[b*((m + 2*p + 3)/(a*c^2*(m + 1))) Int[(c*x)^(m + 2)*(a + b*x^2)^p, x], x] /; FreeQ[{a, b,
c, m, p}, x] && SumSimplerQ[m, 2] && ILtQ[Simplify[(m + 1)/2 + p], 0]
-
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = Denominator[m]}, Simp[k/c Subst[Int
[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m]
&& IntBinomialQ[a, b, c, 2, m, p, x]
-
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[a^(p + (m + 1)/2) Subst[Int[x^m/(1 - b*x^2)^(p
+ (m + 1)/2 + 1), x], x, x/(a + b*x^2)^(1/2)], x] /; FreeQ[{a, b}, x] && LtQ[-1, p, 0] && NeQ[p, -2^(-1)] && I
ntegersQ[m, p + (m + 1)/2]
-
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(a/(a + b*x^2))^(p + (m + 1)/2)*(a + b*x^2)^(p +
(m + 1)/2) Subst[Int[x^m/(1 - b*x^2)^(p + (m + 1)/2 + 1), x], x, x/(a + b*x^2)^(1/2)], x] /; FreeQ[{a, b}, x
] && LtQ[-1, p, 0] && NeQ[p, -2^(-1)] && IntegerQ[m] && LtQ[Denominator[p + (m + 1)/2], Denominator[p]]
-
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[x^(m + 1)*((a + b*x^2)^p/(m + 1)), x] - Simp[2*b*
(p/(m + 1)) Int[x^(m + 2)*(a + b*x^2)^(p - 1), x], x] /; FreeQ[{a, b, m}, x] && EqQ[(m + 1)/2 + p, 0] && GtQ
[p, 0]
-
Int[((c_)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[c^IntPart[m]*((c*x)^FracPart[m]/x^FracPart[
m]) Int[x^m*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, m}, x] && EqQ[(m + 1)/2 + p, 0] && GtQ[p, 0]
-
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a + b*x^2)^p/(c*(m + 2*p
+ 1))), x] + Simp[2*a*(p/(m + 2*p + 1)) Int[(c*x)^m*(a + b*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, m}, x] &&
IntegerQ[p + Simplify[(m + 1)/2]] && GtQ[p, 0] && NeQ[m + 2*p + 1, 0]
-
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = Denominator[p]}, Simp[k*(a^(p + Simplify[(m
+ 1)/2])/2) Subst[Int[x^(k*Simplify[(m + 1)/2] - 1)/(1 - b*x^k)^(p + Simplify[(m + 1)/2] + 1), x], x, x^(2/k
)/(a + b*x^2)^(1/k)], x]] /; FreeQ[{a, b, m}, x] && IntegerQ[p + Simplify[(m + 1)/2]] && LtQ[-1, p, 0]
-
Int[((c_)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[c^IntPart[m]*((c*x)^FracPart[m]/x^FracPart[
m]) Int[x^m*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, m}, x] && IntegerQ[p + Simplify[(m + 1)/2]] && LtQ[-1,
p, 0]
-
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-(c*x)^(m + 1))*((a + b*x^2)^(p + 1)/(a*
c*2*(p + 1))), x] + Simp[(m + 2*(p + 1) + 1)/(a*2*(p + 1)) Int[(c*x)^m*(a + b*x^2)^(p + 1), x], x] /; FreeQ[
{a, b, c, m}, x] && IntegerQ[p + Simplify[(m + 1)/2]] && LtQ[p, -1]
-
Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^2), x_Symbol] :> Simp[x^(m - 1)/(b*(m - 1)), x] - Simp[a/b Int[x^(m - 2)/(
a + b*x^2), x], x] /; FreeQ[{a, b, m}, x] && FractionQ[(m + 1)/2] && SumSimplerQ[m, -2]
-
Int[(x_)^(m_)/((a_) + (b_.)*(x_)^2), x_Symbol] :> Simp[x^(m + 1)/(a*(m + 1)), x] - Simp[b/a Int[x^Simplify[m
+ 2]/(a + b*x^2), x], x] /; FreeQ[{a, b, m}, x] && FractionQ[(m + 1)/2] && SumSimplerQ[m, 2]
-
Int[((c_)*(x_))^(m_)/((a_) + (b_.)*(x_)^2), x_Symbol] :> Simp[c^IntPart[m]*((c*x)^FracPart[m]/x^FracPart[m])
Int[x^m/(a + b*x^2), x], x] /; FreeQ[{a, b, c, m}, x] && FractionQ[(m + 1)/2] && (SumSimplerQ[m, 2] || SumSim
plerQ[m, -2])
-
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[a^p*((c*x)^(m + 1)/(c*(m + 1)))*Hypergeom
etric2F1[-p, (m + 1)/2, (m + 1)/2 + 1, (-b)*(x^2/a)], x] /; FreeQ[{a, b, c, m, p}, x] && !IGtQ[p, 0] && (ILtQ
[p, 0] || GtQ[a, 0])
-
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[a^IntPart[p]*((a + b*x^2)^FracPart[p]/(1
+ b*(x^2/a))^FracPart[p]) Int[(c*x)^m*(1 + b*(x^2/a))^p, x], x] /; FreeQ[{a, b, c, m, p}, x] && !IGtQ[p, 0]
&& !(ILtQ[p, 0] || GtQ[a, 0])
-
Int[(u_.)*((b_.)*(x_)^(n_))^(p_)*((d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[b^IntPart[p]*d^IntPart[q]*(b*x^n)^F
racPart[p]*((d*x^n)^FracPart[q]/x^(n*(FracPart[p] + FracPart[q]))) Int[u*x^(n*(p + q)), x], x] /; FreeQ[{b,
d, n, p, q}, x]
-
Int[(u_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Simp[(b/d)^p Int[u*(c
+ d*x^n)^(p + q), x], x] /; FreeQ[{a, b, c, d, n, p, q}, x] && EqQ[b*c - a*d, 0] && IntegerQ[p] && !(IntegerQ
[q] && SimplerQ[a + b*x^n, c + d*x^n])
-
Int[(u_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(b/d)^p Int[u*(c +
d*x^n)^(p + q), x], x] /; FreeQ[{a, b, c, d, n, p, q}, x] && EqQ[b*c - a*d, 0] && GtQ[b/d, 0] && !SimplerQ[a
+ b*x^n, c + d*x^n]
-
Int[(u_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(a + b*x^n)^p/(c + d*
x^n)^p Int[u*(c + d*x^n)^(p + q), x], x] /; FreeQ[{a, b, c, d, n, p, q}, x] && EqQ[b*c - a*d, 0] && !Simple
rQ[a + b*x^n, c + d*x^n]
-
Int[((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Int[(a*c + b*d*x^4)^p, x] /; FreeQ[{
a, b, c, d, p}, x] && EqQ[b*c + a*d, 0] && (IntegerQ[p] || (GtQ[a, 0] && GtQ[c, 0]))
-
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Simp[x*(a + b*x^2)^p*((c + d*x^2)^p/(4
*p + 1)), x] + Simp[4*a*c*(p/(4*p + 1)) Int[(a + b*x^2)^(p - 1)*(c + d*x^2)^(p - 1), x], x] /; FreeQ[{a, b,
c, d}, x] && EqQ[b*c + a*d, 0] && GtQ[p, 0]
-
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-x)*(a + b*x^2)^(p + 1)*((c + d*
x^2)^(p + 1)/(4*a*c*(p + 1))), x] + Simp[(4*p + 5)/(4*a*c*(p + 1)) Int[(a + b*x^2)^(p + 1)*(c + d*x^2)^(p +
1), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[b*c + a*d, 0] && LtQ[p, -1]
-
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1/Sqrt[2*a*d])*EllipticF[ArcSi
n[Sqrt[2*d]*(x/Sqrt[c + d*x^2])], 1/2], x] /; FreeQ[{a, b, c, d}, x] && EqQ[b*c + a*d, 0] && GtQ[a, 0] && GtQ[
d, 0]
-
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(c + d*x^2)^FracPart[p]/((-1)^Int
Part[p]*(-c - d*x^2)^FracPart[p]) Int[((-a)*c - b*d*x^4)^p, x], x] /; FreeQ[{a, b, c, d, p}, x] && EqQ[b*c +
a*d, 0] && GtQ[a, 0] && LtQ[c, 0]
-
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(a + b*x^2)^FracPart[p]*((c + d*x
^2)^FracPart[p]/(a*c + b*d*x^4)^FracPart[p]) Int[(a*c + b*d*x^4)^p, x], x] /; FreeQ[{a, b, c, d, p}, x] && E
qQ[b*c + a*d, 0] && !IntegerQ[p]
-
Int[((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x^2)^p*(c
+ d*x^2)^q, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && IGtQ[p, 0] && IGtQ[q, 0]
-
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^2), x], x
, x/Sqrt[a + b*x^2]] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0]
-
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_.), x_Symbol] :> Simp[(-x)*(a + b*x^2)^(p + 1)*((c + d
*x^2)^q/(2*a*(p + 1))), x] - Simp[c*(q/(a*(p + 1))) Int[(a + b*x^2)^(p + 1)*(c + d*x^2)^(q - 1), x], x] /; F
reeQ[{a, b, c, d, p}, x] && NeQ[b*c - a*d, 0] && EqQ[2*(p + q + 1) + 1, 0] && GtQ[q, 0] && NeQ[p, -1]
-
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Simp[a^p*(x/(c^(p + 1)*Sqrt[c + d*x^2]
))*Hypergeometric2F1[1/2, -p, 3/2, (-(b*c - a*d))*(x^2/(a*(c + d*x^2)))], x] /; FreeQ[{a, b, c, d, q}, x] && N
eQ[b*c - a*d, 0] && EqQ[2*(p + q + 1) + 1, 0] && ILtQ[p, 0]
-
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Simp[x*((a + b*x^2)^p/(c*(c*((a + b*x^
2)/(a*(c + d*x^2))))^p*(c + d*x^2)^(1/2 + p)))*Hypergeometric2F1[1/2, -p, 3/2, (-(b*c - a*d))*(x^2/(a*(c + d*x
^2)))], x] /; FreeQ[{a, b, c, d, p, q}, x] && NeQ[b*c - a*d, 0] && EqQ[2*(p + q + 1) + 1, 0]
-
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Simp[x*(a + b*x^2)^(p + 1)*((c + d*x^2
)^(q + 1)/(a*c)), x] /; FreeQ[{a, b, c, d, p, q}, x] && NeQ[b*c - a*d, 0] && EqQ[2*(p + q + 2) + 1, 0] && EqQ[
a*d*(p + 1) + b*c*(q + 1), 0]
-
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Simp[(-b)*x*(a + b*x^2)^(p + 1)*((c +
d*x^2)^(q + 1)/(2*a*(p + 1)*(b*c - a*d))), x] + Simp[(b*c + 2*(p + 1)*(b*c - a*d))/(2*a*(p + 1)*(b*c - a*d))
Int[(a + b*x^2)^(p + 1)*(c + d*x^2)^q, x], x] /; FreeQ[{a, b, c, d, q}, x] && NeQ[b*c - a*d, 0] && EqQ[2*(p +
q + 2) + 1, 0] && (LtQ[p, -1] || !LtQ[q, -1]) && NeQ[p, -1]
-
Int[((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2), x_Symbol] :> Simp[c*x*((a + b*x^2)^(p + 1)/a), x] /; Fr
eeQ[{a, b, c, d, p}, x] && NeQ[b*c - a*d, 0] && EqQ[a*d - b*c*(2*p + 3), 0]
-
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2), x_Symbol] :> Simp[(-(b*c - a*d))*x*((a + b*x^2)^(p + 1)/
(2*a*b*(p + 1))), x] - Simp[(a*d - b*c*(2*p + 3))/(2*a*b*(p + 1)) Int[(a + b*x^2)^(p + 1), x], x] /; FreeQ[{
a, b, c, d, p}, x] && NeQ[b*c - a*d, 0] && (LtQ[p, -1] || ILtQ[1/2 + p, 0])
-
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2), x_Symbol] :> Simp[d*x*((a + b*x^2)^(p + 1)/(b*(2*p + 3))
), x] - Simp[(a*d - b*c*(2*p + 3))/(b*(2*p + 3)) Int[(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[
b*c - a*d, 0] && NeQ[2*p + 3, 0]
-
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Int[PolynomialDivide[(a + b*x^2)^p, (c
+ d*x^2)^(-q), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && IGtQ[p, 0] && ILtQ[q, 0] && GeQ[p, -q
]
-
Int[((a_) + (b_.)*(x_)^2)^(p_.)/((c_) + (d_.)*(x_)^2), x_Symbol] :> Simp[b/d Int[(a + b*x^2)^(p - 1), x], x]
- Simp[(b*c - a*d)/d Int[(a + b*x^2)^(p - 1)/(c + d*x^2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d
, 0] && GtQ[p, 0] && (EqQ[p, 1/2] || EqQ[Denominator[p], 4] || (EqQ[p, 2/3] && EqQ[b*c + 3*a*d, 0]))
-
Int[((a_) + (b_.)*(x_)^2)^(p_)/((c_) + (d_.)*(x_)^2), x_Symbol] :> Simp[b/(b*c - a*d) Int[(a + b*x^2)^p, x],
x] - Simp[d/(b*c - a*d) Int[(a + b*x^2)^(p + 1)/(c + d*x^2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c -
a*d, 0] && LtQ[p, -1] && EqQ[Denominator[p], 4] && (EqQ[p, -5/4] || EqQ[p, -7/4])
-
Int[1/(((a_) + (b_.)*(x_)^2)*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Simp[b/(b*c - a*d) Int[1/(a + b*x^2), x],
x] - Simp[d/(b*c - a*d) Int[1/(c + d*x^2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0]
-
Int[1/(((a_) + (b_.)*(x_)^2)^(1/3)*((c_) + (d_.)*(x_)^2)), x_Symbol] :> With[{q = Rt[b/a, 2]}, Simp[q*(ArcTanh
[Sqrt[3]/(q*x)]/(2*2^(2/3)*Sqrt[3]*a^(1/3)*d)), x] + (-Simp[q*(ArcTan[(a^(1/3)*q*x)/(a^(1/3) + 2^(1/3)*(a + b*
x^2)^(1/3))]/(2*2^(2/3)*a^(1/3)*d)), x] + Simp[q*(ArcTan[q*x]/(6*2^(2/3)*a^(1/3)*d)), x] + Simp[q*(ArcTanh[Sqr
t[3]*((a^(1/3) - 2^(1/3)*(a + b*x^2)^(1/3))/(a^(1/3)*q*x))]/(2*2^(2/3)*Sqrt[3]*a^(1/3)*d)), x])] /; FreeQ[{a,
b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[b*c + 3*a*d, 0] && PosQ[b/a]
-
Int[1/(((a_) + (b_.)*(x_)^2)^(1/3)*((c_) + (d_.)*(x_)^2)), x_Symbol] :> With[{q = Rt[-b/a, 2]}, Simp[q*(ArcTan
[Sqrt[3]/(q*x)]/(2*2^(2/3)*Sqrt[3]*a^(1/3)*d)), x] + (Simp[q*(ArcTanh[(a^(1/3)*q*x)/(a^(1/3) + 2^(1/3)*(a + b*
x^2)^(1/3))]/(2*2^(2/3)*a^(1/3)*d)), x] - Simp[q*(ArcTanh[q*x]/(6*2^(2/3)*a^(1/3)*d)), x] + Simp[q*(ArcTan[Sqr
t[3]*((a^(1/3) - 2^(1/3)*(a + b*x^2)^(1/3))/(a^(1/3)*q*x))]/(2*2^(2/3)*Sqrt[3]*a^(1/3)*d)), x])] /; FreeQ[{a,
b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[b*c + 3*a*d, 0] && NegQ[b/a]
-
Int[1/(((a_) + (b_.)*(x_)^2)^(1/3)*((c_) + (d_.)*(x_)^2)), x_Symbol] :> With[{q = Rt[b/a, 2]}, Simp[q*(ArcTan[
q*(x/3)]/(12*Rt[a, 3]*d)), x] + (Simp[q*(ArcTan[(Rt[a, 3] - (a + b*x^2)^(1/3))^2/(3*Rt[a, 3]^2*q*x)]/(12*Rt[a,
3]*d)), x] - Simp[q*(ArcTanh[(Sqrt[3]*(Rt[a, 3] - (a + b*x^2)^(1/3)))/(Rt[a, 3]*q*x)]/(4*Sqrt[3]*Rt[a, 3]*d))
, x])] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[b*c - 9*a*d, 0] && PosQ[b/a]
-
Int[1/(((a_) + (b_.)*(x_)^2)^(1/3)*((c_) + (d_.)*(x_)^2)), x_Symbol] :> With[{q = Rt[-b/a, 2]}, Simp[(-q)*(Arc
Tanh[q*(x/3)]/(12*Rt[a, 3]*d)), x] + (Simp[q*(ArcTanh[(Rt[a, 3] - (a + b*x^2)^(1/3))^2/(3*Rt[a, 3]^2*q*x)]/(12
*Rt[a, 3]*d)), x] - Simp[q*(ArcTan[(Sqrt[3]*(Rt[a, 3] - (a + b*x^2)^(1/3)))/(Rt[a, 3]*q*x)]/(4*Sqrt[3]*Rt[a, 3
]*d)), x])] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[b*c - 9*a*d, 0] && NegQ[b/a]
-
Int[1/(((a_) + (b_.)*(x_)^2)^(1/4)*((c_) + (d_.)*(x_)^2)), x_Symbol] :> With[{q = Rt[b^2/a, 4]}, Simp[(-b/(2*a
*d*q))*ArcTan[(b + q^2*Sqrt[a + b*x^2])/(q^3*x*(a + b*x^2)^(1/4))], x] - Simp[(b/(2*a*d*q))*ArcTanh[(b - q^2*S
qrt[a + b*x^2])/(q^3*x*(a + b*x^2)^(1/4))], x]] /; FreeQ[{a, b, c, d}, x] && EqQ[b*c - 2*a*d, 0] && PosQ[b^2/a
]
-
Int[1/(((a_) + (b_.)*(x_)^2)^(1/4)*((c_) + (d_.)*(x_)^2)), x_Symbol] :> With[{q = Rt[-b^2/a, 4]}, Simp[(b/(2*S
qrt[2]*a*d*q))*ArcTan[q*(x/(Sqrt[2]*(a + b*x^2)^(1/4)))], x] + Simp[(b/(2*Sqrt[2]*a*d*q))*ArcTanh[q*(x/(Sqrt[2
]*(a + b*x^2)^(1/4)))], x]] /; FreeQ[{a, b, c, d}, x] && EqQ[b*c - 2*a*d, 0] && NegQ[b^2/a]
-
Int[1/(((a_) + (b_.)*(x_)^2)^(1/4)*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Simp[2*(Sqrt[(-b)*(x^2/a)]/x) Subst[
Int[x^2/(Sqrt[1 - x^4/a]*(b*c - a*d + d*x^4)), x], x, (a + b*x^2)^(1/4)], x] /; FreeQ[{a, b, c, d}, x] && NeQ[
b*c - a*d, 0]
-
Int[1/(((a_) + (b_.)*(x_)^2)^(3/4)*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Simp[1/c Int[1/(a + b*x^2)^(3/4), x]
, x] - Simp[d/c Int[x^2/((a + b*x^2)^(3/4)*(c + d*x^2)), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[b*c - 2*a*d
, 0]
-
Int[1/(((a_) + (b_.)*(x_)^2)^(3/4)*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Simp[Sqrt[(-b)*(x^2/a)]/(2*x) Subst[
Int[1/(Sqrt[(-b)*(x/a)]*(a + b*x)^(3/4)*(c + d*x)), x], x, x^2], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d
, 0]
-
Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(c*Rt[d/c, 2]*Sq
rt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticE[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]
-
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Simp[(-x)*(a + b*x^2)^(p + 1)*((c + d*
x^2)^q/(2*a*(p + 1))), x] + Simp[1/(2*a*(p + 1)) Int[(a + b*x^2)^(p + 1)*(c + d*x^2)^(q - 1)*Simp[c*(2*p + 3
) + d*(2*(p + q + 1) + 1)*x^2, x], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && LtQ[
0, q, 1] && IntBinomialQ[a, b, c, d, 2, p, q, x]
-
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Simp[(a*d - c*b)*x*(a + b*x^2)^(p + 1)
*((c + d*x^2)^(q - 1)/(2*a*b*(p + 1))), x] - Simp[1/(2*a*b*(p + 1)) Int[(a + b*x^2)^(p + 1)*(c + d*x^2)^(q -
2)*Simp[c*(a*d - c*b*(2*p + 3)) + d*(a*d*(2*(q - 1) + 1) - b*c*(2*(p + q) + 1))*x^2, x], x], x] /; FreeQ[{a,
b, c, d}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && GtQ[q, 1] && IntBinomialQ[a, b, c, d, 2, p, q, x]
-
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Simp[(-b)*x*(a + b*x^2)^(p + 1)*((c +
d*x^2)^(q + 1)/(2*a*(p + 1)*(b*c - a*d))), x] + Simp[1/(2*a*(p + 1)*(b*c - a*d)) Int[(a + b*x^2)^(p + 1)*(c
+ d*x^2)^q*Simp[b*c + 2*(p + 1)*(b*c - a*d) + d*b*(2*(p + q + 2) + 1)*x^2, x], x], x] /; FreeQ[{a, b, c, d, q}
, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && !( !IntegerQ[p] && IntegerQ[q] && LtQ[q, -1]) && IntBinomialQ[a, b
, c, d, 2, p, q, x]
-
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Int[ExpandIntegrand[(a + b*x^2)^p*(c +
d*x^2)^q, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && IntegersQ[p, q] && GtQ[p + q, 0]
-
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Simp[d*x*(a + b*x^2)^(p + 1)*((c + d*x
^2)^(q - 1)/(b*(2*(p + q) + 1))), x] + Simp[1/(b*(2*(p + q) + 1)) Int[(a + b*x^2)^p*(c + d*x^2)^(q - 2)*Simp
[c*(b*c*(2*(p + q) + 1) - a*d) + d*(b*c*(2*(p + 2*q - 1) + 1) - a*d*(2*(q - 1) + 1))*x^2, x], x], x] /; FreeQ[
{a, b, c, d, p}, x] && NeQ[b*c - a*d, 0] && GtQ[q, 1] && NeQ[2*(p + q) + 1, 0] && !IGtQ[p, 1] && IntBinomialQ
[a, b, c, d, 2, p, q, x]
-
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Simp[x*(a + b*x^2)^p*((c + d*x^2)^q/(2
*(p + q) + 1)), x] + Simp[2/(2*(p + q) + 1) Int[(a + b*x^2)^(p - 1)*(c + d*x^2)^(q - 1)*Simp[a*c*(p + q) + (
q*(b*c - a*d) + a*d*(p + q))*x^2, x], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[q, 0] && Gt
Q[p, 0] && IntBinomialQ[a, b, c, d, 2, p, q, x]
-
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(a*Rt[d/c, 2]*
Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticF[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /
; FreeQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] && !SimplerSqrtQ[b/a, d/c]
-
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(1/(Sqrt[a]*Sqrt[c]*Rt[-d/c, 2]
))*EllipticF[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && Gt
Q[a, 0] && !(NegQ[b/a] && SimplerSqrtQ[-b/a, -d/c])
-
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(-(Sqrt[c]*Rt[-d/c, 2]*Sqrt[a -
b*(c/d)])^(-1))*EllipticF[ArcCos[Rt[-d/c, 2]*x], b*(c/(b*c - a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c
] && GtQ[c, 0] && GtQ[a - b*(c/d), 0]
-
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[Sqrt[1 + (d/c)*x^2]/Sqrt[c + d*
x^2] Int[1/(Sqrt[a + b*x^2]*Sqrt[1 + (d/c)*x^2]), x], x] /; FreeQ[{a, b, c, d}, x] && !GtQ[c, 0]
-
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[a Int[1/(Sqrt[a + b*x^2]*Sqrt[c +
d*x^2]), x], x] + Simp[b Int[x^2/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]), x], x] /; FreeQ[{a, b, c, d}, x] && Pos
Q[d/c] && PosQ[b/a]
-
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[x*(Sqrt[a + b*x^2]/Sqrt[c + d*x^2])
, x] + Simp[Sqrt[-2*a]*(x/Sqrt[d*x^2])*EllipticE[ArcSin[Sqrt[2*c]/Sqrt[c + d*x^2]], 1/2], x] /; FreeQ[{a, b, c
, d}, x] && PosQ[d/c] && EqQ[b*c + a*d, 0] && LtQ[a, 0] && GtQ[c, 0]
-
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[b/d Int[Sqrt[c + d*x^2]/Sqrt[a +
b*x^2], x], x] - Simp[(b*c - a*d)/d Int[1/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]), x], x] /; FreeQ[{a, b, c, d}, x
] && PosQ[d/c] && NegQ[b/a]
-
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]/(Sqrt[c]*Rt[-d/c, 2]))*Ell
ipticE[ArcSin[Rt[-d/c, 2]*x], b*(c/(a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && GtQ[a, 0
]
-
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[(-Sqrt[a - b*(c/d)]/(Sqrt[c]*Rt[-d/
c, 2]))*EllipticE[ArcCos[Rt[-d/c, 2]*x], b*(c/(b*c - a*d))], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[
c, 0] && GtQ[a - b*(c/d), 0]
-
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[a*(Sqrt[1 - b^2*(x^4/a^2)]/(Sqrt[a
+ b*x^2]*Sqrt[c + d*x^2])) Int[Sqrt[1 + b*(x^2/a)]/Sqrt[1 - b*(x^2/a)], x], x] /; FreeQ[{a, b, c, d}, x] &&
EqQ[b*c + a*d, 0] && !(LtQ[a*c, 0] && GtQ[a*b, 0])
-
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[Sqrt[a + b*x^2]/Sqrt[1 + (b/a)*x^2]
Int[Sqrt[1 + (b/a)*x^2]/Sqrt[c + d*x^2], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && GtQ[c, 0] && !Gt
Q[a, 0]
-
Int[Sqrt[(a_) + (b_.)*(x_)^2]/Sqrt[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[Sqrt[1 + (d/c)*x^2]/Sqrt[c + d*x^2]
Int[Sqrt[a + b*x^2]/Sqrt[1 + (d/c)*x^2], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[d/c] && !GtQ[c, 0]
-
Int[((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Int[ExpandIntegrand[(a + b*x^2)^p*(c
+ d*x^2)^q, x], x] /; FreeQ[{a, b, c, d, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[p, 0]
-
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Simp[a^p*c^q*x*AppellF1[1/2, -p, -q, 3
/2, (-b)*(x^2/a), (-d)*(x^2/c)], x] /; FreeQ[{a, b, c, d, p, q}, x] && NeQ[b*c - a*d, 0] && (IntegerQ[p] || Gt
Q[a, 0]) && (IntegerQ[q] || GtQ[c, 0])
-
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Simp[a^IntPart[p]*((a + b*x^2)^FracPar
t[p]/(1 + b*(x^2/a))^FracPart[p]) Int[(1 + b*(x^2/a))^p*(c + d*x^2)^q, x], x] /; FreeQ[{a, b, c, d, p, q}, x
] && NeQ[b*c - a*d, 0] && !(IntegerQ[p] || GtQ[a, 0])
-
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Int[(e*x)^m*(a*c
+ b*d*x^4)^p, x] /; FreeQ[{a, b, c, d, e, m, p}, x] && EqQ[b*c + a*d, 0] && (IntegerQ[p] || (GtQ[a, 0] && GtQ[
c, 0]))
-
Int[(x_)^3*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(a + b*x^2)^(p + 1)*((c +
d*x^2)^(p + 1)/(4*b*d*(p + 1))), x] /; FreeQ[{a, b, c, d, p}, x] && EqQ[b*c + a*d, 0]
-
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-(e*x)^(m + 1
))*(a + b*x^2)^(p + 1)*((c + d*x^2)^(p + 1)/(4*a*c*e*(p + 1))), x] /; FreeQ[{a, b, c, d, e, m, p}, x] && EqQ[b
*c + a*d, 0] && EqQ[m + 4*p + 5, 0]
-
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Simp[1/2 Subst[Int[x^((m
- 1)/2)*(a + b*x)^p*(c + d*x)^p, x], x, x^2], x] /; FreeQ[{a, b, c, d, p}, x] && EqQ[b*c + a*d, 0] && IntegerQ
[(m - 1)/2]
-
Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*x)^(m + 1)*(
a + b*x^2)^p*((c + d*x^2)^p/(e*(m + 1))), x] - Simp[4*b*d*(p/(e^4*(m + 1))) Int[(e*x)^(m + 4)*(a + b*x^2)^(p
- 1)*(c + d*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && EqQ[b*c + a*d, 0] && GtQ[p, 0] && LtQ[m,
-1]
-
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*x)^(m + 1)*
(a + b*x^2)^p*((c + d*x^2)^p/(e*(m + 4*p + 1))), x] + Simp[4*a*c*(p/(m + 4*p + 1)) Int[(e*x)^m*(a + b*x^2)^(
p - 1)*(c + d*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && EqQ[b*c + a*d, 0] && GtQ[p, 0] && NeQ[m
+ 4*p + 1, 0] && IntegerQ[2*m]
-
Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e^3*(e*x)^(m -
3)*(a + b*x^2)^(p + 1)*((c + d*x^2)^(p + 1)/(4*b*d*(p + 1))), x] - Simp[e^4*((m - 3)/(4*b*d*(p + 1))) Int[(e
*x)^(m - 4)*(a + b*x^2)^(p + 1)*(c + d*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && EqQ[b*c + a*d,
0] && LtQ[p, -1] && GtQ[m, 3]
-
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-(e*x)^(m + 1
))*(a + b*x^2)^(p + 1)*((c + d*x^2)^(p + 1)/(4*a*c*e*(p + 1))), x] + Simp[(m + 4*p + 5)/(4*a*c*(p + 1)) Int[
(e*x)^m*(a + b*x^2)^(p + 1)*(c + d*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && EqQ[b*c + a*d, 0] &
& LtQ[p, -1] && IntegerQ[2*m]
-
Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*x)^(m + 1)*(
a + b*x^2)^(p + 1)*((c + d*x^2)^(p + 1)/(a*c*e*(m + 1))), x] - Simp[b*d*((m + 4*p + 5)/(a*c*e^4*(m + 1))) In
t[(e*x)^(m + 4)*(a + b*x^2)^p*(c + d*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[b*c + a*d, 0] && Lt
Q[m, -1]
-
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(a + b*x^2)^Fr
acPart[p]*((c + d*x^2)^FracPart[p]/(a*c + b*d*x^4)^FracPart[p]) Int[(e*x)^m*(a*c + b*d*x^4)^p, x], x] /; Fre
eQ[{a, b, c, d, e, m, p}, x] && EqQ[b*c + a*d, 0] && !IntegerQ[p]
-
Int[(x_)^(m_.)*((b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_.), x_Symbol] :> Simp[1/(2*b^((m - 1)/2)) Subst[
Int[(b*x)^(p + (m - 1)/2)*(c + d*x)^q, x], x, x^2], x] /; FreeQ[{b, c, d, m, p, q}, x] && IntegerQ[(m - 1)/2]
-
Int[((e_.)*(x_))^(m_.)*((b_.)*(x_)^2.)^(p_)*((c_) + (d_.)*(x_)^2)^(q_.), x_Symbol] :> Simp[e^m*b^IntPart[p]*((
b*x^2)^FracPart[p]/x^(2*FracPart[p])) Int[x^(m + 2*p)*(c + d*x^2)^q, x], x] /; FreeQ[{b, c, d, e, m, p, q},
x] && (IntegerQ[m] || GtQ[e, 0])
-
Int[((e_)*(x_))^(m_)*((b_.)*(x_)^2.)^(p_)*((c_) + (d_.)*(x_)^2)^(q_.), x_Symbol] :> Simp[e^IntPart[m]*((e*x)^F
racPart[m]/x^FracPart[m]) Int[x^m*(b*x^2)^p*(c + d*x^2)^q, x], x] /; FreeQ[{b, c, d, e, m, p, q}, x] && !In
tegerQ[m]
-
Int[(x_)/(((a_) + (b_.)*(x_)^2)^(1/4)*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Simp[(-(Sqrt[2]*Rt[a, 4]*d)^(-1))*A
rcTan[(Rt[a, 4]^2 - Sqrt[a + b*x^2])/(Sqrt[2]*Rt[a, 4]*(a + b*x^2)^(1/4))], x] - Simp[(1/(Sqrt[2]*Rt[a, 4]*d))
*ArcTanh[(Rt[a, 4]^2 + Sqrt[a + b*x^2])/(Sqrt[2]*Rt[a, 4]*(a + b*x^2)^(1/4))], x] /; FreeQ[{a, b, c, d}, x] &&
EqQ[b*c - 2*a*d, 0] && PosQ[a]
-
Int[(x_)^(m_)/(((a_) + (b_.)*(x_)^2)^(1/4)*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Int[ExpandIntegrand[x^m/((a +
b*x^2)^(1/4)*(c + d*x^2)), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[b*c - 2*a*d, 0] && IntegerQ[m] && (PosQ[a]
|| IntegerQ[m/2])
-
Int[(x_)^2/(((a_) + (b_.)*(x_)^2)^(3/4)*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Simp[(-b/(a*d*Rt[b^2/a, 4]^3))*Ar
cTan[(b + Rt[b^2/a, 4]^2*Sqrt[a + b*x^2])/(Rt[b^2/a, 4]^3*x*(a + b*x^2)^(1/4))], x] + Simp[(b/(a*d*Rt[b^2/a, 4
]^3))*ArcTanh[(b - Rt[b^2/a, 4]^2*Sqrt[a + b*x^2])/(Rt[b^2/a, 4]^3*x*(a + b*x^2)^(1/4))], x] /; FreeQ[{a, b, c
, d}, x] && EqQ[b*c - 2*a*d, 0] && PosQ[b^2/a]
-
Int[(x_)^2/(((a_) + (b_.)*(x_)^2)^(3/4)*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Simp[(-b/(Sqrt[2]*a*d*Rt[-b^2/a,
4]^3))*ArcTan[(Rt[-b^2/a, 4]*x)/(Sqrt[2]*(a + b*x^2)^(1/4))], x] + Simp[(b/(Sqrt[2]*a*d*Rt[-b^2/a, 4]^3))*ArcT
anh[(Rt[-b^2/a, 4]*x)/(Sqrt[2]*(a + b*x^2)^(1/4))], x] /; FreeQ[{a, b, c, d}, x] && EqQ[b*c - 2*a*d, 0] && Neg
Q[b^2/a]
-
Int[(x_)^(m_)/(((a_) + (b_.)*(x_)^2)^(3/4)*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Int[ExpandIntegrand[x^m/((a +
b*x^2)^(3/4)*(c + d*x^2)), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[b*c - 2*a*d, 0] && IntegerQ[m] && (PosQ[a]
|| IntegerQ[m/2])
-
Int[(x_)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.), x_Symbol] :> Simp[1/2 Subst[Int[(a + b*x)^
p*(c + d*x)^q, x], x, x^2], x] /; FreeQ[{a, b, c, d, p, q}, x] && NeQ[b*c - a*d, 0]
-
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.), x_Symbol] :> Simp[1/2 Subst[Int[x^((
m - 1)/2)*(a + b*x)^p*(c + d*x)^q, x], x, x^2], x] /; FreeQ[{a, b, c, d, p, q}, x] && NeQ[b*c - a*d, 0] && Int
egerQ[(m - 1)/2]
-
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.), x_Symbol] :> Int[ExpandIntegra
nd[(e*x)^m*(a + b*x^2)^p*(c + d*x^2)^q, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b*c - a*d, 0] && IGtQ[p,
0] && IGtQ[q, 0]
-
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2), x_Symbol] :> Simp[c*(e*x)^(m + 1)*((
a + b*x^2)^(p + 1)/(a*e*(m + 1))), x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b*c - a*d, 0] && EqQ[a*d*(m +
1) - b*c*(m + 2*p + 3), 0] && NeQ[m, -1]
-
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2), x_Symbol] :> Simp[(b*c - a*d)*(e*x)^(
m + 1)*((a + b*x^2)^(p + 1)/(a*b*e*(m + 1))), x] + Simp[d/b Int[(e*x)^m*(a + b*x^2)^(p + 1), x], x] /; FreeQ
[{a, b, c, d, e}, x] && NeQ[b*c - a*d, 0] && EqQ[m + 2*p + 3, 0] && LtQ[p, -1]
-
Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2), x_Symbol] :> Simp[c*(e*x)^(m + 1)*((a
+ b*x^2)^(p + 1)/(a*e*(m + 1))), x] + Simp[d/e^2 Int[(e*x)^(m + 2)*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c,
d, e, m, p}, x] && NeQ[b*c - a*d, 0] && EqQ[Simplify[m + 2*p + 3], 0] && NeQ[m, -1]
-
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2), x_Symbol] :> Simp[c*(e*x)^(m + 1)*((
a + b*x^2)^(p + 1)/(a*e*(m + 1))), x] + Simp[(a*d*(m + 1) - b*c*(m + 2*p + 3))/(a*e^2*(m + 1)) Int[(e*x)^(m
+ 2)*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] && !ILtQ[p, -1]
-
Int[(x_)^(m_)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2), x_Symbol] :> Simp[(-a)^(m/2 - 1)*(b*c - a*d)*x
*((a + b*x^2)^(p + 1)/(2*b^(m/2 + 1)*(p + 1))), x] + Simp[1/(2*b^(m/2 + 1)*(p + 1)) Int[(a + b*x^2)^(p + 1)*
ExpandToSum[2*b*(p + 1)*x^2*Together[(b^(m/2)*x^(m - 2)*(c + d*x^2) - (-a)^(m/2 - 1)*(b*c - a*d))/(a + b*x^2)]
- (-a)^(m/2 - 1)*(b*c - a*d), x], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && IGtQ
[m/2, 0] && (IntegerQ[p] || EqQ[m + 2*p + 1, 0])
-
Int[(x_)^(m_)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2), x_Symbol] :> Simp[(-a)^(m/2 - 1)*(b*c - a*d)*x
*((a + b*x^2)^(p + 1)/(2*b^(m/2 + 1)*(p + 1))), x] + Simp[1/(2*b^(m/2 + 1)*(p + 1)) Int[x^m*(a + b*x^2)^(p +
1)*ExpandToSum[2*b*(p + 1)*Together[(b^(m/2)*(c + d*x^2) - (-a)^(m/2 - 1)*(b*c - a*d)*x^(-m + 2))/(a + b*x^2)
] - ((-a)^(m/2 - 1)*(b*c - a*d))/x^m, x], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1]
&& ILtQ[m/2, 0] && (IntegerQ[p] || EqQ[m + 2*p + 1, 0])
-
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2), x_Symbol] :> Simp[(-(b*c - a*d))*(e*
x)^(m + 1)*((a + b*x^2)^(p + 1)/(2*a*b*e*(p + 1))), x] - Simp[(a*d*(m + 1) - b*c*(m + 2*p + 3))/(2*a*b*(p + 1)
) Int[(e*x)^m*(a + b*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1]
&& (( !IntegerQ[p + 1/2] && NeQ[p, -5/4]) || !RationalQ[m] || (ILtQ[p + 1/2, 0] && LeQ[-1, m, -2*(p + 1)]))
-
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2), x_Symbol] :> Simp[d*(e*x)^(m + 1)*((
a + b*x^2)^(p + 1)/(b*e*(m + 2*p + 3))), x] - Simp[(a*d*(m + 1) - b*c*(m + 2*p + 3))/(b*(m + 2*p + 3)) Int[(
e*x)^m*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b*c - a*d, 0] && NeQ[m + 2*p + 3, 0]
-
Int[(((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_))/((c_) + (d_.)*(x_)^2), x_Symbol] :> Int[ExpandIntegrand[(e
*x)^m*((a + b*x^2)^p/(c + d*x^2)), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b*c - a*d, 0] && IGtQ[p, 0] &
& (IntegerQ[m] || IGtQ[2*(m + 1), 0] || !RationalQ[m])
-
Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^2, x_Symbol] :> Simp[c^2*(e*x)^(m + 1)*
((a + b*x^2)^(p + 1)/(a*e*(m + 1))), x] - Simp[1/(a*e^2*(m + 1)) Int[(e*x)^(m + 2)*(a + b*x^2)^p*Simp[2*b*c^
2*(p + 1) + c*(b*c - 2*a*d)*(m + 1) - a*d^2*(m + 1)*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c
- a*d, 0] && LtQ[m, -1]
-
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^2, x_Symbol] :> Simp[(-(b*c - a*d)^2)*
(e*x)^(m + 1)*((a + b*x^2)^(p + 1)/(2*a*b^2*e*(p + 1))), x] + Simp[1/(2*a*b^2*(p + 1)) Int[(e*x)^m*(a + b*x^
2)^(p + 1)*Simp[(b*c - a*d)^2*(m + 1) + 2*b^2*c^2*(p + 1) + 2*a*b*d^2*(p + 1)*x^2, x], x], x] /; FreeQ[{a, b,
c, d, e, m}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1]
-
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^2, x_Symbol] :> Simp[d^2*(e*x)^(m + 3)
*((a + b*x^2)^(p + 1)/(b*e^3*(m + 2*p + 5))), x] + Simp[1/(b*(m + 2*p + 5)) Int[(e*x)^m*(a + b*x^2)^p*Simp[b
*c^2*(m + 2*p + 5) - d*(a*d*(m + 3) - 2*b*c*(m + 2*p + 5))*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, m, p}, x]
&& NeQ[b*c - a*d, 0] && NeQ[m + 2*p + 5, 0]
-
Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> With[{k = Denominato
r[m]}, Simp[k/e Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(k*2)/e^2))^p*(c + d*(x^(k*2)/e^2))^q, x], x, (e*x)^(1
/k)], x]] /; FreeQ[{a, b, c, d, e, p, q}, x] && NeQ[b*c - a*d, 0] && FractionQ[m] && IntegerQ[p]
-
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Simp[e*(e*x)^(m - 1
)*(a + b*x^2)^(p + 1)*((c + d*x^2)^q/(2*b*(p + 1))), x] - Simp[e^2/(2*b*(p + 1)) Int[(e*x)^(m - 2)*(a + b*x^
2)^(p + 1)*(c + d*x^2)^(q - 1)*Simp[c*(m - 1) + d*(m + 2*q - 1)*x^2, x], x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[b*c - a*d, 0] && LtQ[p, -1] && GtQ[q, 0] && GtQ[m, 1] && IntBinomialQ[a, b, c, d, e, m, 2, p, q, x]
-
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Simp[(-(b*c - a*d))
*(e*x)^(m + 1)*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q - 1)/(a*b*e*2*(p + 1))), x] + Simp[1/(a*b*2*(p + 1)) Int[
(e*x)^m*(a + b*x^2)^(p + 1)*(c + d*x^2)^(q - 2)*Simp[c*(b*c*2*(p + 1) + (b*c - a*d)*(m + 1)) + d*(b*c*2*(p + 1
) + (b*c - a*d)*(m + 2*(q - 1) + 1))*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b*c - a*d, 0] && L
tQ[p, -1] && GtQ[q, 1] && IntBinomialQ[a, b, c, d, e, m, 2, p, q, x]
-
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Simp[(-(e*x)^(m + 1
))*(a + b*x^2)^(p + 1)*((c + d*x^2)^q/(a*e*2*(p + 1))), x] + Simp[1/(a*2*(p + 1)) Int[(e*x)^m*(a + b*x^2)^(p
+ 1)*(c + d*x^2)^(q - 1)*Simp[c*(m + 2*(p + 1) + 1) + d*(m + 2*(p + q + 1) + 1)*x^2, x], x], x] /; FreeQ[{a,
b, c, d, e, m}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && LtQ[0, q, 1] && IntBinomialQ[a, b, c, d, e, m, 2, p,
q, x]
-
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Simp[(-a)*e^3*(e*x)
^(m - 3)*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q + 1)/(2*b*(b*c - a*d)*(p + 1))), x] + Simp[e^4/(2*b*(b*c - a*d)*(
p + 1)) Int[(e*x)^(m - 4)*(a + b*x^2)^(p + 1)*(c + d*x^2)^q*Simp[a*c*(m - 3) + (a*d*(m + 2*q - 1) + 2*b*c*(p
+ 1))*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && GtQ[m, 3] && IntB
inomialQ[a, b, c, d, e, m, 2, p, q, x]
-
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Simp[e*(e*x)^(m - 1
)*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q + 1)/(2*(b*c - a*d)*(p + 1))), x] - Simp[e^2/(2*(b*c - a*d)*(p + 1)) I
nt[(e*x)^(m - 2)*(a + b*x^2)^(p + 1)*(c + d*x^2)^q*Simp[c*(m - 1) + d*(m + 2*p + 2*q + 3)*x^2, x], x], x] /; F
reeQ[{a, b, c, d, e, q}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && GtQ[m, 1] && LeQ[m, 3] && IntBinomialQ[a, b,
c, d, e, m, 2, p, q, x]
-
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Simp[(-b)*(e*x)^(m
+ 1)*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q + 1)/(a*e*2*(b*c - a*d)*(p + 1))), x] + Simp[1/(a*2*(b*c - a*d)*(p +
1)) Int[(e*x)^m*(a + b*x^2)^(p + 1)*(c + d*x^2)^q*Simp[b*c*(m + 1) + 2*(b*c - a*d)*(p + 1) + d*b*(m + 2*(p +
q + 2) + 1)*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, m, q}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && IntBinom
ialQ[a, b, c, d, e, m, 2, p, q, x]
-
Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Simp[(e*x)^(m + 1)*(
a + b*x^2)^p*((c + d*x^2)^q/(e*(m + 1))), x] - Simp[2/(e^2*(m + 1)) Int[(e*x)^(m + 2)*(a + b*x^2)^(p - 1)*(c
+ d*x^2)^(q - 1)*Simp[b*c*p + a*d*q + b*d*(p + q)*x^2, x], x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b*c - a
*d, 0] && GtQ[q, 0] && LtQ[m, -1] && GtQ[p, 0] && IntBinomialQ[a, b, c, d, e, m, 2, p, q, x]
-
Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Simp[c*(e*x)^(m + 1)
*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q - 1)/(a*e*(m + 1))), x] - Simp[1/(a*e^2*(m + 1)) Int[(e*x)^(m + 2)*(a +
b*x^2)^p*(c + d*x^2)^(q - 2)*Simp[c*(b*c - a*d)*(m + 1) + 2*c*(b*c*(p + 1) + a*d*(q - 1)) + d*((b*c - a*d)*(m
+ 1) + 2*b*c*(p + q))*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && GtQ[q, 1] && Lt
Q[m, -1] && IntBinomialQ[a, b, c, d, e, m, 2, p, q, x]
-
Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Simp[(e*x)^(m + 1)*(
a + b*x^2)^(p + 1)*((c + d*x^2)^q/(a*e*(m + 1))), x] - Simp[1/(a*e^2*(m + 1)) Int[(e*x)^(m + 2)*(a + b*x^2)^
p*(c + d*x^2)^(q - 1)*Simp[b*c*(m + 1) + 2*(b*c*(p + 1) + a*d*q) + d*(b*(m + 1) + 2*b*(p + q + 1))*x^2, x], x]
, x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && LtQ[0, q, 1] && LtQ[m, -1] && IntBinomialQ[a, b,
c, d, e, m, 2, p, q, x]
-
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Simp[(e*x)^(m + 1)*
(a + b*x^2)^p*((c + d*x^2)^q/(e*(m + 2*(p + q) + 1))), x] + Simp[2/(m + 2*(p + q) + 1) Int[(e*x)^m*(a + b*x^
2)^(p - 1)*(c + d*x^2)^(q - 1)*Simp[a*c*(p + q) + (q*(b*c - a*d) + a*d*(p + q))*x^2, x], x], x] /; FreeQ[{a, b
, c, d, e, m}, x] && NeQ[b*c - a*d, 0] && GtQ[q, 0] && GtQ[p, 0] && IntBinomialQ[a, b, c, d, e, m, 2, p, q, x]
-
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Simp[d*(e*x)^(m + 1
)*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q - 1)/(b*e*(m + 2*(p + q) + 1))), x] + Simp[1/(b*(m + 2*(p + q) + 1)) I
nt[(e*x)^m*(a + b*x^2)^p*(c + d*x^2)^(q - 2)*Simp[c*((b*c - a*d)*(m + 1) + b*c*2*(p + q)) + (d*(b*c - a*d)*(m
+ 1) + d*2*(q - 1)*(b*c - a*d) + b*c*d*2*(p + q))*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b*
c - a*d, 0] && GtQ[q, 1] && IntBinomialQ[a, b, c, d, e, m, 2, p, q, x]
-
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Simp[e*(e*x)^(m - 1
)*(a + b*x^2)^(p + 1)*((c + d*x^2)^q/(b*(m + 2*(p + q) + 1))), x] - Simp[e^2/(b*(m + 2*(p + q) + 1)) Int[(e*
x)^(m - 2)*(a + b*x^2)^p*(c + d*x^2)^(q - 1)*Simp[a*c*(m - 1) + (a*d*(m - 1) - 2*q*(b*c - a*d))*x^2, x], x], x
] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && GtQ[q, 0] && GtQ[m, 1] && IntBinomialQ[a, b, c, d, e
, m, 2, p, q, x]
-
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Simp[e^3*(e*x)^(m -
3)*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q + 1)/(b*d*(m + 2*(p + q) + 1))), x] - Simp[e^4/(b*d*(m + 2*(p + q) + 1
)) Int[(e*x)^(m - 4)*(a + b*x^2)^p*(c + d*x^2)^q*Simp[a*c*(m - 3) + (a*d*(m + 2*q - 1) + b*c*(m + 2*p - 1))*
x^2, x], x], x] /; FreeQ[{a, b, c, d, e, p, q}, x] && NeQ[b*c - a*d, 0] && GtQ[m, 3] && IntBinomialQ[a, b, c,
d, e, m, 2, p, q, x]
-
Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Simp[(e*x)^(m + 1)*(
a + b*x^2)^(p + 1)*((c + d*x^2)^(q + 1)/(a*c*e*(m + 1))), x] - Simp[1/(a*c*e^2*(m + 1)) Int[(e*x)^(m + 2)*(a
+ b*x^2)^p*(c + d*x^2)^q*Simp[(b*c + a*d)*(m + 3) + 2*(b*c*p + a*d*q) + b*d*(m + 2*p + 2*q + 5)*x^2, x], x],
x] /; FreeQ[{a, b, c, d, e, p, q}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, d, e, m, 2,
p, q, x]
-
Int[((e_.)*(x_))^(m_.)/(((a_) + (b_.)*(x_)^2)*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Simp[(-a)*(e^2/(b*c - a*d))
Int[(e*x)^(m - 2)/(a + b*x^2), x], x] + Simp[c*(e^2/(b*c - a*d)) Int[(e*x)^(m - 2)/(c + d*x^2), x], x] /;
FreeQ[{a, b, c, d, e, m}, x] && NeQ[b*c - a*d, 0] && LeQ[2, m, 3]
-
Int[((e_.)*(x_))^(m_.)/(((a_) + (b_.)*(x_)^2)*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Simp[b/(b*c - a*d) Int[(e
*x)^m/(a + b*x^2), x], x] - Simp[d/(b*c - a*d) Int[(e*x)^m/(c + d*x^2), x], x] /; FreeQ[{a, b, c, d, e, m},
x] && NeQ[b*c - a*d, 0]
-
Int[(((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_)^2)^(q_.))/((a_) + (b_.)*(x_)^2), x_Symbol] :> Simp[e^2/b Int[(e*x)
^(m - 2)*(c + d*x^2)^q, x], x] - Simp[a*(e^2/b) Int[(e*x)^(m - 2)*((c + d*x^2)^q/(a + b*x^2)), x], x] /; Fre
eQ[{a, b, c, d, e, m, q}, x] && NeQ[b*c - a*d, 0] && LeQ[2, m, 3] && IntBinomialQ[a, b, c, d, e, m, 2, -1, q,
x]
-
Int[((x_)*((a_) + (b_.)*(x_)^2)^(p_))/((c_) + (d_.)*(x_)^2), x_Symbol] :> Simp[b/d Int[x*(a + b*x^2)^(p - 1)
, x], x] - Simp[(b*c - a*d)/d Int[x*((a + b*x^2)^(p - 1)/(c + d*x^2)), x], x] /; FreeQ[{a, b, c, d}, x] && N
eQ[b*c - a*d, 0] && GtQ[p, 0] && IntBinomialQ[a, b, c, d, 1, 1, 2, p, -1, x]
-
Int[((x_)*((a_) + (b_.)*(x_)^2)^(p_))/((c_) + (d_.)*(x_)^2), x_Symbol] :> Simp[b/(b*c - a*d) Int[x*(a + b*x^
2)^(p - 1), x], x] - Simp[d/(b*c - a*d) Int[x*((a + b*x^2)^(p + 1)/(c + d*x^2)), x], x] /; FreeQ[{a, b, c, d
}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && IntBinomialQ[a, b, c, d, 1, 1, 2, p, -1, x]
-
Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[x*(Sqrt[a + b*x^2]/(b*Sqrt
[c + d*x^2])), x] - Simp[c/b Int[Sqrt[a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[
b*c - a*d, 0] && PosQ[b/a] && PosQ[d/c] && !SimplerSqrtQ[b/a, d/c]
-
Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[1/b Int[Sqrt[a + b*x^2]/
Sqrt[c + d*x^2], x], x] - Simp[a/b Int[1/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]), x], x] /; FreeQ[{a, b, c, d}, x]
&& NeQ[b*c - a*d, 0] && !SimplerSqrtQ[-b/a, -d/c]
-
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_.), x_Symbol] :> With[{k = Denominator[p]},
Simp[k*(a^(p + (m + 1)/2)/2) Subst[Int[x^(k*((m + 1)/2) - 1)*((c - (b*c - a*d)*x^k)^q/(1 - b*x^k)^(p + q +
(m + 1)/2 + 1)), x], x, x^(2/k)/(a + b*x^2)^(1/k)], x]] /; FreeQ[{a, b, c, d}, x] && RationalQ[m, p] && Intege
rsQ[p + (m + 1)/2, q] && LtQ[-1, p, 0]
-
Int[(x_)^(m_)/(((a_) + (b_.)*(x_)^2)*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Simp[-a/(b*c - a*d) Int[x^(m - 2)/
(a + b*x^2), x], x] + Simp[c/(b*c - a*d) Int[x^(m - 2)/(c + d*x^2), x], x] /; FreeQ[{a, b, c, d, m}, x] && N
eQ[b*c - a*d, 0] && (EqQ[m, 2] || EqQ[m, 3])
-
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Int[ExpandIntegrand
[(e*x)^m*(a + b*x^2)^p*(c + d*x^2)^q, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b*c - a*d, 0] && IGtQ[p, -
2] && (IGtQ[q, -2] || (EqQ[q, -3] && IntegerQ[(m - 1)/2]))
-
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.), x_Symbol] :> Simp[(e*x)^m/(2*x
*(x^2)^(Simplify[(m + 1)/2] - 1)) Subst[Int[x^(Simplify[(m + 1)/2] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^2]
, x] /; FreeQ[{a, b, c, d, e, m, p, q}, x] && NeQ[b*c - a*d, 0] && IntegerQ[Simplify[m + 2*p]] && !IntegerQ[m
]
-
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Simp[a^p*c^q*((e*x)
^(m + 1)/(e*(m + 1)))*AppellF1[(m + 1)/2, -p, -q, 1 + (m + 1)/2, (-b)*(x^2/a), (-d)*(x^2/c)], x] /; FreeQ[{a,
b, c, d, e, m, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, 1] && (IntegerQ[p] || GtQ[a, 0]) && (Int
egerQ[q] || GtQ[c, 0])
-
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Simp[a^IntPart[p]*(
(a + b*x^2)^FracPart[p]/(1 + b*(x^2/a))^FracPart[p]) Int[(e*x)^m*(1 + b*(x^2/a))^p*(c + d*x^2)^q, x], x] /;
FreeQ[{a, b, c, d, e, m, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, 1] && !(IntegerQ[p] || GtQ[a,
0])
-
Int[((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.)*((e_) + (f_.)*(x_)^2)^(r_.), x_Symbol] :> Int[Expa
ndIntegrand[(a + b*x^2)^p*(c + d*x^2)^q*(e + f*x^2)^r, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[p, 0] &&
IGtQ[q, 0] && IGtQ[r, 0]
-
Int[((e_) + (f_.)*(x_)^2)/(((a_) + (b_.)*(x_)^2)*((c_) + (d_.)*(x_)^2)), x_Symbol] :> Simp[(b*e - a*f)/(b*c -
a*d) Int[1/(a + b*x^2), x], x] - Simp[(d*e - c*f)/(b*c - a*d) Int[1/(c + d*x^2), x], x] /; FreeQ[{a, b, c,
d, e, f}, x]
-
Int[((e_) + (f_.)*(x_)^2)/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[f/b Int[1/Sqr
t[c + d*x^2], x], x] + Simp[(b*e - a*f)/b Int[1/((a + b*x^2)*Sqrt[c + d*x^2]), x], x] /; FreeQ[{a, b, c, d,
e, f}, x]
-
Int[((e_) + (f_.)*(x_)^2)/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[f/b Int[S
qrt[a + b*x^2]/Sqrt[c + d*x^2], x], x] + Simp[(b*e - a*f)/b Int[1/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]), x], x]
/; FreeQ[{a, b, c, d, e, f}, x] && !((PosQ[b/a] && PosQ[d/c]) || (NegQ[b/a] && (PosQ[d/c] || (GtQ[a, 0] && (
!GtQ[c, 0] || SimplerSqrtQ[-b/a, -d/c])))))
-
Int[((e_) + (f_.)*(x_)^2)/(Sqrt[(a_) + (b_.)*(x_)^2]*((c_) + (d_.)*(x_)^2)^(3/2)), x_Symbol] :> Simp[(b*e - a*
f)/(b*c - a*d) Int[1/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]), x], x] - Simp[(d*e - c*f)/(b*c - a*d) Int[Sqrt[a +
b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && PosQ[b/a] && PosQ[d/c]
-
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_.)*((e_) + (f_.)*(x_)^2), x_Symbol] :> Simp[(-(b*e - a
*f))*x*(a + b*x^2)^(p + 1)*((c + d*x^2)^q/(a*b*2*(p + 1))), x] + Simp[1/(a*b*2*(p + 1)) Int[(a + b*x^2)^(p +
1)*(c + d*x^2)^(q - 1)*Simp[c*(b*e*2*(p + 1) + b*e - a*f) + d*(b*e*2*(p + 1) + (b*e - a*f)*(2*q + 1))*x^2, x]
, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && LtQ[p, -1] && GtQ[q, 0]
-
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_.)*((e_) + (f_.)*(x_)^2), x_Symbol] :> Simp[(-(b*e - a
*f))*x*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q + 1)/(a*2*(b*c - a*d)*(p + 1))), x] + Simp[1/(a*2*(b*c - a*d)*(p +
1)) Int[(a + b*x^2)^(p + 1)*(c + d*x^2)^q*Simp[c*(b*e - a*f) + e*2*(b*c - a*d)*(p + 1) + d*(b*e - a*f)*(2*(p
+ q + 2) + 1)*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, q}, x] && LtQ[p, -1]
-
Int[((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.)*((e_) + (f_.)*(x_)^2), x_Symbol] :> Simp[f*x*(a +
b*x^2)^(p + 1)*((c + d*x^2)^q/(b*(2*(p + q + 1) + 1))), x] + Simp[1/(b*(2*(p + q + 1) + 1)) Int[(a + b*x^2)^
p*(c + d*x^2)^(q - 1)*Simp[c*(b*e - a*f + b*e*2*(p + q + 1)) + (d*(b*e - a*f) + f*2*q*(b*c - a*d) + b*d*e*2*(p
+ q + 1))*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && GtQ[q, 0] && NeQ[2*(p + q + 1) + 1, 0]
-
Int[((e_) + (f_.)*(x_)^4)/(((a_) + (b_.)*(x_)^4)^(3/4)*((c_) + (d_.)*(x_)^4)), x_Symbol] :> Simp[(b*e - a*f)/(
b*c - a*d) Int[1/(a + b*x^4)^(3/4), x], x] - Simp[(d*e - c*f)/(b*c - a*d) Int[(a + b*x^4)^(1/4)/(c + d*x^4
), x], x] /; FreeQ[{a, b, c, d, e, f}, x]
-
Int[(((a_) + (b_.)*(x_)^2)^(p_)*((e_) + (f_.)*(x_)^2))/((c_) + (d_.)*(x_)^2), x_Symbol] :> Simp[f/d Int[(a +
b*x^2)^p, x], x] + Simp[(d*e - c*f)/d Int[(a + b*x^2)^p/(c + d*x^2), x], x] /; FreeQ[{a, b, c, d, e, f, p},
x]
-
Int[((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.)*((e_) + (f_.)*(x_)^2), x_Symbol] :> Simp[e Int[(
a + b*x^2)^p*(c + d*x^2)^q, x], x] + Simp[f Int[x^2*(a + b*x^2)^p*(c + d*x^2)^q, x], x] /; FreeQ[{a, b, c, d
, e, f, p, q}, x]
-
Int[1/(((a_) + (b_.)*(x_)^2)*((c_) + (d_.)*(x_)^2)*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Simp[b/(b*c - a*d)
Int[1/((a + b*x^2)*Sqrt[e + f*x^2]), x], x] - Simp[d/(b*c - a*d) Int[1/((c + d*x^2)*Sqrt[e + f*x^2]), x],
x] /; FreeQ[{a, b, c, d, e, f}, x]
-
Int[1/((x_)^2*((c_) + (d_.)*(x_)^2)*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Simp[1/c Int[1/(x^2*Sqrt[e + f*
x^2]), x], x] - Simp[d/c Int[1/((c + d*x^2)*Sqrt[e + f*x^2]), x], x] /; FreeQ[{c, d, e, f}, x] && NeQ[d*e -
c*f, 0]
-
Int[(Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_)^2])/((a_) + (b_.)*(x_)^2), x_Symbol] :> Simp[d/b Int[S
qrt[e + f*x^2]/Sqrt[c + d*x^2], x], x] + Simp[(b*c - a*d)/b Int[Sqrt[e + f*x^2]/((a + b*x^2)*Sqrt[c + d*x^2]
), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[d/c, 0] && GtQ[f/e, 0] && !SimplerSqrtQ[d/c, f/e]
-
Int[(Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_)^2])/((a_) + (b_.)*(x_)^2), x_Symbol] :> Simp[d/b Int[S
qrt[e + f*x^2]/Sqrt[c + d*x^2], x], x] + Simp[(b*c - a*d)/b Int[Sqrt[e + f*x^2]/((a + b*x^2)*Sqrt[c + d*x^2]
), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && !SimplerSqrtQ[-f/e, -d/c]
-
Int[1/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Simp[-f/(b*e -
a*f) Int[1/(Sqrt[c + d*x^2]*Sqrt[e + f*x^2]), x], x] + Simp[b/(b*e - a*f) Int[Sqrt[e + f*x^2]/((a + b*x^2
)*Sqrt[c + d*x^2]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[d/c, 0] && GtQ[f/e, 0] && !SimplerSqrtQ[d/c
, f/e]
-
Int[1/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Simp[(1/(a*Sqr
t[c]*Sqrt[e]*Rt[-d/c, 2]))*EllipticPi[b*(c/(a*d)), ArcSin[Rt[-d/c, 2]*x], c*(f/(d*e))], x] /; FreeQ[{a, b, c,
d, e, f}, x] && !GtQ[d/c, 0] && GtQ[c, 0] && GtQ[e, 0] && !( !GtQ[f/e, 0] && SimplerSqrtQ[-f/e, -d/c])
-
Int[1/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Simp[Sqrt[1 +
(d/c)*x^2]/Sqrt[c + d*x^2] Int[1/((a + b*x^2)*Sqrt[1 + (d/c)*x^2]*Sqrt[e + f*x^2]), x], x] /; FreeQ[{a, b, c
, d, e, f}, x] && !GtQ[c, 0]
-
Int[Sqrt[(c_) + (d_.)*(x_)^2]/(((a_) + (b_.)*(x_)^2)*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Simp[c*(Sqrt[e +
f*x^2]/(a*e*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[c*((e + f*x^2)/(e*(c + d*x^2)))]))*EllipticPi[1 - b*(c/(a*d)), Ar
cTan[Rt[d/c, 2]*x], 1 - c*(f/(d*e))], x] /; FreeQ[{a, b, c, d, e, f}, x] && PosQ[d/c]
-
Int[Sqrt[(c_) + (d_.)*(x_)^2]/(((a_) + (b_.)*(x_)^2)*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Simp[d/b Int[1
/(Sqrt[c + d*x^2]*Sqrt[e + f*x^2]), x], x] + Simp[(b*c - a*d)/b Int[1/((a + b*x^2)*Sqrt[c + d*x^2]*Sqrt[e +
f*x^2]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NegQ[d/c]
-
Int[Sqrt[(e_) + (f_.)*(x_)^2]/(((a_) + (b_.)*(x_)^2)*((c_) + (d_.)*(x_)^2)^(3/2)), x_Symbol] :> Simp[b/(b*c -
a*d) Int[Sqrt[e + f*x^2]/((a + b*x^2)*Sqrt[c + d*x^2]), x], x] - Simp[d/(b*c - a*d) Int[Sqrt[e + f*x^2]/(c
+ d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && PosQ[d/c] && PosQ[f/e]
-
Int[((e_) + (f_.)*(x_)^2)^(3/2)/(((a_) + (b_.)*(x_)^2)*((c_) + (d_.)*(x_)^2)^(3/2)), x_Symbol] :> Simp[(b*e -
a*f)/(b*c - a*d) Int[Sqrt[e + f*x^2]/((a + b*x^2)*Sqrt[c + d*x^2]), x], x] - Simp[(d*e - c*f)/(b*c - a*d)
Int[Sqrt[e + f*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && PosQ[d/c] && PosQ[f/e]
-
Int[(((c_) + (d_.)*(x_)^2)^(3/2)*Sqrt[(e_) + (f_.)*(x_)^2])/((a_) + (b_.)*(x_)^2), x_Symbol] :> Simp[(b*c - a*
d)^2/b^2 Int[Sqrt[e + f*x^2]/((a + b*x^2)*Sqrt[c + d*x^2]), x], x] + Simp[d/b^2 Int[(2*b*c - a*d + b*d*x^2
)*(Sqrt[e + f*x^2]/Sqrt[c + d*x^2]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && PosQ[d/c] && PosQ[f/e]
-
Int[(((c_) + (d_.)*(x_)^2)^(q_)*((e_) + (f_.)*(x_)^2)^(r_))/((a_) + (b_.)*(x_)^2), x_Symbol] :> Simp[b*((b*e -
a*f)/(b*c - a*d)^2) Int[(c + d*x^2)^(q + 2)*((e + f*x^2)^(r - 1)/(a + b*x^2)), x], x] - Simp[1/(b*c - a*d)^
2 Int[(c + d*x^2)^q*(e + f*x^2)^(r - 1)*(2*b*c*d*e - a*d^2*e - b*c^2*f + d^2*(b*e - a*f)*x^2), x], x] /; Fre
eQ[{a, b, c, d, e, f}, x] && LtQ[q, -1] && GtQ[r, 1]
-
Int[(((c_) + (d_.)*(x_)^2)^(q_)*((e_) + (f_.)*(x_)^2)^(r_))/((a_) + (b_.)*(x_)^2), x_Symbol] :> Simp[d/b Int
[(c + d*x^2)^(q - 1)*(e + f*x^2)^r, x], x] + Simp[(b*c - a*d)/b Int[(c + d*x^2)^(q - 1)*((e + f*x^2)^r/(a +
b*x^2)), x], x] /; FreeQ[{a, b, c, d, e, f, r}, x] && GtQ[q, 1]
-
Int[(((c_) + (d_.)*(x_)^2)^(q_)*((e_) + (f_.)*(x_)^2)^(r_))/((a_) + (b_.)*(x_)^2), x_Symbol] :> Simp[b^2/(b*c
- a*d)^2 Int[(c + d*x^2)^(q + 2)*((e + f*x^2)^r/(a + b*x^2)), x], x] - Simp[d/(b*c - a*d)^2 Int[(c + d*x^2
)^q*(e + f*x^2)^r*(2*b*c - a*d + b*d*x^2), x], x] /; FreeQ[{a, b, c, d, e, f, r}, x] && LtQ[q, -1]
-
Int[(((c_) + (d_.)*(x_)^2)^(q_)*((e_) + (f_.)*(x_)^2)^(r_))/((a_) + (b_.)*(x_)^2), x_Symbol] :> Simp[-d/(b*c -
a*d) Int[(c + d*x^2)^q*(e + f*x^2)^r, x], x] + Simp[b/(b*c - a*d) Int[(c + d*x^2)^(q + 1)*((e + f*x^2)^r/
(a + b*x^2)), x], x] /; FreeQ[{a, b, c, d, e, f, r}, x] && LeQ[q, -1]
-
Int[(Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_)^2])/((a_) + (b_.)*(x_)^2)^2, x_Symbol] :> Simp[x*Sqrt[c
+ d*x^2]*(Sqrt[e + f*x^2]/(2*a*(a + b*x^2))), x] + (Simp[(b^2*c*e - a^2*d*f)/(2*a*b^2) Int[1/((a + b*x^2)*Sq
rt[c + d*x^2]*Sqrt[e + f*x^2]), x], x] + Simp[d*(f/(2*a*b^2)) Int[(a - b*x^2)/(Sqrt[c + d*x^2]*Sqrt[e + f*x^
2]), x], x]) /; FreeQ[{a, b, c, d, e, f}, x]
-
Int[1/(((a_) + (b_.)*(x_)^2)^2*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Simp[b^2*x*S
qrt[c + d*x^2]*(Sqrt[e + f*x^2]/(2*a*(b*c - a*d)*(b*e - a*f)*(a + b*x^2))), x] + (Simp[(b^2*c*e + 3*a^2*d*f -
2*a*b*(d*e + c*f))/(2*a*(b*c - a*d)*(b*e - a*f)) Int[1/((a + b*x^2)*Sqrt[c + d*x^2]*Sqrt[e + f*x^2]), x], x]
- Simp[d*(f/(2*a*(b*c - a*d)*(b*e - a*f))) Int[(a + b*x^2)/(Sqrt[c + d*x^2]*Sqrt[e + f*x^2]), x], x]) /; Fr
eeQ[{a, b, c, d, e, f}, x]
-
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_)*((e_) + (f_.)*(x_)^2)^(r_), x_Symbol] :> Simp[d/b
Int[(a + b*x^2)^(p + 1)*(c + d*x^2)^(q - 1)*(e + f*x^2)^r, x], x] + Simp[(b*c - a*d)/b Int[(a + b*x^2)^p*(c
+ d*x^2)^(q - 1)*(e + f*x^2)^r, x], x] /; FreeQ[{a, b, c, d, e, f, r}, x] && ILtQ[p, 0] && GtQ[q, 0]
-
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_)*((e_) + (f_.)*(x_)^2)^(r_), x_Symbol] :> Simp[b/(b*c
- a*d) Int[(a + b*x^2)^p*(c + d*x^2)^(q + 1)*(e + f*x^2)^r, x], x] - Simp[d/(b*c - a*d) Int[(a + b*x^2)^(
p + 1)*(c + d*x^2)^q*(e + f*x^2)^r, x], x] /; FreeQ[{a, b, c, d, e, f, q}, x] && ILtQ[p, 0] && LeQ[q, -1]
-
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Simp[Sqrt[
c + d*x^2]*(Sqrt[a*((e + f*x^2)/(e*(a + b*x^2)))]/(c*Sqrt[e + f*x^2]*Sqrt[a*((c + d*x^2)/(c*(a + b*x^2)))]))
Subst[Int[1/(Sqrt[1 - (b*c - a*d)*(x^2/c)]*Sqrt[1 - (b*e - a*f)*(x^2/e)]), x], x, x/Sqrt[a + b*x^2]], x] /; F
reeQ[{a, b, c, d, e, f}, x]
-
Int[Sqrt[(a_) + (b_.)*(x_)^2]/(Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Simp[a*Sqrt[
c + d*x^2]*(Sqrt[a*((e + f*x^2)/(e*(a + b*x^2)))]/(c*Sqrt[e + f*x^2]*Sqrt[a*((c + d*x^2)/(c*(a + b*x^2)))]))
Subst[Int[1/((1 - b*x^2)*Sqrt[1 - (b*c - a*d)*(x^2/c)]*Sqrt[1 - (b*e - a*f)*(x^2/e)]), x], x, x/Sqrt[a + b*x^
2]], x] /; FreeQ[{a, b, c, d, e, f}, x]
-
Int[Sqrt[(c_) + (d_.)*(x_)^2]/(((a_) + (b_.)*(x_)^2)^(3/2)*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Simp[Sqrt[
c + d*x^2]*(Sqrt[a*((e + f*x^2)/(e*(a + b*x^2)))]/(a*Sqrt[e + f*x^2]*Sqrt[a*((c + d*x^2)/(c*(a + b*x^2)))]))
Subst[Int[Sqrt[1 - (b*c - a*d)*(x^2/c)]/Sqrt[1 - (b*e - a*f)*(x^2/e)], x], x, x/Sqrt[a + b*x^2]], x] /; FreeQ
[{a, b, c, d, e, f}, x]
-
Int[(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2])/Sqrt[(e_) + (f_.)*(x_)^2], x_Symbol] :> Simp[d*x*Sqr
t[a + b*x^2]*(Sqrt[e + f*x^2]/(2*f*Sqrt[c + d*x^2])), x] + (-Simp[c*((d*e - c*f)/(2*f)) Int[Sqrt[a + b*x^2]/
((c + d*x^2)^(3/2)*Sqrt[e + f*x^2]), x], x] - Simp[(b*d*e - b*c*f - a*d*f)/(2*d*f) Int[Sqrt[c + d*x^2]/(Sqrt
[a + b*x^2]*Sqrt[e + f*x^2]), x], x] + Simp[b*c*((d*e - c*f)/(2*d*f)) Int[1/(Sqrt[a + b*x^2]*Sqrt[c + d*x^2]
*Sqrt[e + f*x^2]), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && PosQ[(d*e - c*f)/c]
-
Int[(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2])/Sqrt[(e_) + (f_.)*(x_)^2], x_Symbol] :> Simp[x*Sqrt[
a + b*x^2]*(Sqrt[c + d*x^2]/(2*Sqrt[e + f*x^2])), x] + (Simp[e*((b*e - a*f)/(2*f)) Int[Sqrt[c + d*x^2]/(Sqrt
[a + b*x^2]*(e + f*x^2)^(3/2)), x], x] - Simp[(b*d*e - b*c*f - a*d*f)/(2*f^2) Int[Sqrt[e + f*x^2]/(Sqrt[a +
b*x^2]*Sqrt[c + d*x^2]), x], x] + Simp[(b*e - a*f)*((d*e - 2*c*f)/(2*f^2)) Int[1/(Sqrt[a + b*x^2]*Sqrt[c + d
*x^2]*Sqrt[e + f*x^2]), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && NegQ[(d*e - c*f)/c]
-
Int[(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2])/((e_) + (f_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[b/f
Int[Sqrt[c + d*x^2]/(Sqrt[a + b*x^2]*Sqrt[e + f*x^2]), x], x] - Simp[(b*e - a*f)/f Int[Sqrt[c + d*x^2]/(Sqr
t[a + b*x^2]*(e + f*x^2)^(3/2)), x], x] /; FreeQ[{a, b, c, d, e, f}, x]
-
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_)*((e_) + (f_.)*(x_)^2)^(r_), x_Symbol] :> With[{u = E
xpandIntegrand[(a + b*x^2)^p*(c + d*x^2)^q*(e + f*x^2)^r, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c, d, e,
f, p, q, r}, x]
-
Int[((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.)*((e_) + (f_.)*(x_)^2)^(r_.), x_Symbol] :> Unintegr
able[(a + b*x^2)^p*(c + d*x^2)^q*(e + f*x^2)^r, x] /; FreeQ[{a, b, c, d, e, f, p, q, r}, x]
-
Int[(x_)^(m_.)*((a_.) + (b_.)*(x_)^2)^(p_.)*((c_.) + (d_.)*(x_)^2)^(q_.)*((e_.) + (f_.)*(x_)^2)^(r_.), x_Symbo
l] :> Simp[1/2 Subst[Int[x^((m - 1)/2)*(a + b*x)^p*(c + d*x)^q*(e + f*x)^r, x], x, x^2], x] /; FreeQ[{a, b,
c, d, e, f, p, q, r}, x] && IntegerQ[(m - 1)/2]
-
Int[((g_.)*(x_))^(m_.)*((b_.)*(x_)^2.)^(p_.)*((c_.) + (d_.)*(x_)^2)^(q_.)*((e_.) + (f_.)*(x_)^2)^(r_.), x_Symb
ol] :> Simp[(g*x)^m*((b*x^2)^p/x^(m + 2*p)) Int[x^(m + 2*p)*(c + d*x^2)^q*(e + f*x^2)^r, x], x] /; FreeQ[{b,
c, d, e, f, g, m, p, q, r}, x]
-
Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.)*((e_) + (f_.)*(x_)^2)^(r_.), x_
Symbol] :> Int[ExpandIntegrand[(g*x)^m*(a + b*x^2)^p*(c + d*x^2)^q*(e + f*x^2)^r, x], x] /; FreeQ[{a, b, c, d,
e, f, g, m}, x] && IGtQ[p, -2] && IGtQ[q, 0] && IGtQ[r, 0]
-
Int[((g_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_)*((e_) + (f_.)*(x_)^2)^(r_), x_Symb
ol] :> With[{k = Denominator[m]}, Simp[k/g Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(k*2)/g^2))^p*(c + d*(x^(k*
2)/g^2))^q*(e + f*(x^(k*2)/g^2))^r, x], x, (g*x)^(1/k)], x]] /; FreeQ[{a, b, c, d, e, f, g, p, q, r}, x] && Fr
actionQ[m]
-
Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_.)*((e_) + (f_.)*(x_)^2), x_Symbol]
:> Simp[(-(b*e - a*f))*(g*x)^(m + 1)*(a + b*x^2)^(p + 1)*((c + d*x^2)^q/(2*a*b*g*(p + 1))), x] + Simp[1/(2*a*
b*(p + 1)) Int[(g*x)^m*(a + b*x^2)^(p + 1)*(c + d*x^2)^(q - 1)*Simp[c*(2*b*e*(p + 1) + (b*e - a*f)*(m + 1))
+ d*(2*b*e*(p + 1) + (b*e - a*f)*(m + 2*q + 1))*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && LtQ[p
, -1] && GtQ[q, 0] && !(EqQ[q, 1] && SimplerQ[b*c - a*d, b*e - a*f])
-
Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_)*((e_) + (f_.)*(x_)^2), x_Symbol]
:> Simp[g*(b*e - a*f)*(g*x)^(m - 1)*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q + 1)/(2*b*(b*c - a*d)*(p + 1))), x] -
Simp[g^2/(2*b*(b*c - a*d)*(p + 1)) Int[(g*x)^(m - 2)*(a + b*x^2)^(p + 1)*(c + d*x^2)^q*Simp[c*(b*e - a*f)*(m
- 1) + (d*(b*e - a*f)*(m + 2*q + 1) - b*2*(c*f - d*e)*(p + 1))*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, g,
q}, x] && LtQ[p, -1] && GtQ[m, 1]
-
Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_)*((e_) + (f_.)*(x_)^2), x_Symbol]
:> Simp[(-(b*e - a*f))*(g*x)^(m + 1)*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q + 1)/(a*g*2*(b*c - a*d)*(p + 1))), x]
+ Simp[1/(a*2*(b*c - a*d)*(p + 1)) Int[(g*x)^m*(a + b*x^2)^(p + 1)*(c + d*x^2)^q*Simp[c*(b*e - a*f)*(m + 1)
+ e*2*(b*c - a*d)*(p + 1) + d*(b*e - a*f)*(m + 2*(p + q + 2) + 1)*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, f,
g, m, q}, x] && LtQ[p, -1]
-
Int[((g_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.)*((e_) + (f_.)*(x_)^2), x_Symbol]
:> Simp[e*(g*x)^(m + 1)*(a + b*x^2)^(p + 1)*((c + d*x^2)^q/(a*g*(m + 1))), x] - Simp[1/(a*g^2*(m + 1)) Int[
(g*x)^(m + 2)*(a + b*x^2)^p*(c + d*x^2)^(q - 1)*Simp[c*(b*e - a*f)*(m + 1) + e*2*(b*c*(p + 1) + a*d*q) + d*((b
*e - a*f)*(m + 1) + b*e*2*(p + q + 1))*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && GtQ[q, 0] && L
tQ[m, -1] && !(EqQ[q, 1] && SimplerQ[e + f*x^2, c + d*x^2])
-
Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.)*((e_) + (f_.)*(x_)^2), x_Symbol
] :> Simp[f*(g*x)^(m + 1)*(a + b*x^2)^(p + 1)*((c + d*x^2)^q/(b*g*(m + 2*(p + q + 1) + 1))), x] + Simp[1/(b*(m
+ 2*(p + q + 1) + 1)) Int[(g*x)^m*(a + b*x^2)^p*(c + d*x^2)^(q - 1)*Simp[c*((b*e - a*f)*(m + 1) + b*e*2*(p
+ q + 1)) + (d*(b*e - a*f)*(m + 1) + f*2*q*(b*c - a*d) + b*e*d*2*(p + q + 1))*x^2, x], x], x] /; FreeQ[{a, b,
c, d, e, f, g, m, p}, x] && GtQ[q, 0] && !(EqQ[q, 1] && SimplerQ[e + f*x^2, c + d*x^2])
-
Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.)*((e_) + (f_.)*(x_)^2), x_Symbol
] :> Simp[f*g*(g*x)^(m - 1)*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q + 1)/(b*d*(m + 2*(p + q + 1) + 1))), x] - Simp
[g^2/(b*d*(m + 2*(p + q + 1) + 1)) Int[(g*x)^(m - 2)*(a + b*x^2)^p*(c + d*x^2)^q*Simp[a*f*c*(m - 1) + (a*f*d
*(m + 2*q + 1) + b*(f*c*(m + 2*p + 1) - e*d*(m + 2*(p + q + 1) + 1)))*x^2, x], x], x] /; FreeQ[{a, b, c, d, e,
f, g, p, q}, x] && GtQ[m, 1]
-
Int[((g_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.)*((e_) + (f_.)*(x_)^2), x_Symbol]
:> Simp[e*(g*x)^(m + 1)*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q + 1)/(a*c*g*(m + 1))), x] + Simp[1/(a*c*g^2*(m +
1)) Int[(g*x)^(m + 2)*(a + b*x^2)^p*(c + d*x^2)^q*Simp[a*f*c*(m + 1) - e*(b*c + a*d)*(m + 2 + 1) - e*2*(b*c*
p + a*d*q) - b*e*d*(m + 2*(p + q + 2) + 1)*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p, q}, x] && LtQ[m,
-1]
-
Int[(((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((e_) + (f_.)*(x_)^2))/((c_) + (d_.)*(x_)^2), x_Symbol] :>
Int[ExpandIntegrand[(g*x)^m*(a + b*x^2)^p*((e + f*x^2)/(c + d*x^2)), x], x] /; FreeQ[{a, b, c, d, e, f, g, m,
p}, x]
-
Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.)*((e_) + (f_.)*(x_)^2), x_Symbol
] :> Simp[e Int[(g*x)^m*(a + b*x^2)^p*(c + d*x^2)^q, x], x] + Simp[f/e^2 Int[(g*x)^(m + 2)*(a + b*x^2)^p*(
c + d*x^2)^q, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p, q}, x]
-
Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.)*((e_) + (f_.)*(x_)^2)^(r_.), x_
Symbol] :> Simp[e Int[(g*x)^m*(a + b*x^2)^p*(c + d*x^2)^q*(e + f*x^2)^(r - 1), x], x] + Simp[f/e^2 Int[(g*
x)^(m + 2)*(a + b*x^2)^p*(c + d*x^2)^q*(e + f*x^2)^(r - 1), x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p, q}, x]
&& IGtQ[r, 0]
-
Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_)*((e_) + (f_.)*(x_)^2), x_Symbol]
:> Simp[e Int[(g*x)^m*(a + b*x^2)^p*(c + d*x^2)^q, x], x] + Simp[f*((g*x)^m/x^m) Int[x^(m + 2)*(a + b*x^2)
^p*(c + d*x^2)^q, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p, q}, x]
-
Int[((g_.)*(x_))^(m_.)*((a_.) + (b_.)*(x_)^2)^(p_.)*((c_.) + (d_.)*(x_)^2)^(q_.)*((e_.) + (f_.)*(x_)^2)^(r_.),
x_Symbol] :> Unintegrable[(g*x)^m*(a + b*x^2)^p*(c + d*x^2)^q*(e + f*x^2)^r, x] /; FreeQ[{a, b, c, d, e, f, g
, m, p, q, r}, x]
-
Int[((c_) + (d_.)*(x_))/((a_) + (b_.)*(x_)^2), x_Symbol] :> Simp[c^2/a Int[1/(c - d*x), x], x] /; FreeQ[{a,
b, c, d}, x] && EqQ[b*c^2 + a*d^2, 0]
-
Int[((c_) + (d_.)*(x_))/((a_) + (b_.)*(x_)^2), x_Symbol] :> Simp[c Int[1/(a + b*x^2), x], x] + Simp[d Int[
x/(a + b*x^2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c^2 + a*d^2, 0]
-
Int[((c_) + (d_.)*(x_))/((a_) + (b_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[-(a*d - b*c*x)/(a*b*Sqrt[a + b*x^2]), x
] /; FreeQ[{a, b, c, d}, x]
-
Int[((c_) + (d_.)*(x_))*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((a*d - b*c*x)/(2*a*b*(p + 1)))*(a + b*x
^2)^(p + 1), x] + Simp[c*((2*p + 3)/(2*a*(p + 1))) Int[(a + b*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d}, x]
&& LtQ[p, -1] && NeQ[p, -3/2]
-
Int[((c_) + (d_.)*(x_))*((a_) + (b_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[d*((a + b*x^2)^(p + 1)/(2*b*(p + 1))),
x] + Simp[c Int[(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, d, p}, x] && !LeQ[p, -1]
-
Int[((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_.), x_Symbol] :> Int[(c + d*x)^(n + p)*(a/c + (b/d)*x)^p
, x] /; FreeQ[{a, b, c, d, n, p}, x] && EqQ[b*c^2 + a*d^2, 0] && (IntegerQ[p] || (GtQ[a, 0] && GtQ[c, 0] && !
IntegerQ[n]))
-
Int[((c_) + (d_.)*(x_))^2*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[d*(c + d*x)*((a + b*x^2)^(p + 1)/(b*(p
+ 1))), x] - Simp[d^2*((p + 2)/(b*(p + 1))) Int[(a + b*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, p}, x] &&
EqQ[b*c^2 + a*d^2, 0] && LtQ[p, -1]
-
Int[((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[d*(c + d*x)^(n - 1)*((a + b*x^2)^(p
+ 1)/(b*(p + 1))), x] /; FreeQ[{a, b, c, d, n, p}, x] && EqQ[b*c^2 + a*d^2, 0] && EqQ[n + p, 0]
-
Int[((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[d*(c + d*x)^(n - 1)*((a + b*x^2)^(p
+ 1)/(b*(n + 2*p + 1))), x] + Simp[2*c*(Simplify[n + p]/(n + 2*p + 1)) Int[(c + d*x)^(n - 1)*(a + b*x^2)^p,
x], x] /; FreeQ[{a, b, c, d, n, p}, x] && EqQ[b*c^2 + a*d^2, 0] && IGtQ[Simplify[n + p], 0]
-
Int[((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-d)*(c + d*x)^n*((a + b*x^2)^(p +
1)/(b*c*n)), x] /; FreeQ[{a, b, c, d, n, p}, x] && EqQ[b*c^2 + a*d^2, 0] && EqQ[n + 2*p + 2, 0]
-
Int[((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-d)*(c + d*x)^n*((a + b*x^2)^(p +
1)/(2*b*c*(n + p + 1))), x] + Simp[Simplify[n + 2*p + 2]/(2*c*(n + p + 1)) Int[(c + d*x)^(n + 1)*(a + b*x^2)
^p, x], x] /; FreeQ[{a, b, c, d, n, p}, x] && EqQ[b*c^2 + a*d^2, 0] && ILtQ[Simplify[n + 2*p + 2], 0] && (LtQ[
n, -1] || GtQ[n + p, 0])
-
Int[((c_) + (d_.)*(x_))^(n_)/((a_) + (b_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(-2^(n - 1))*d*c^(n - 2)*((c + d*x
)/(b*Sqrt[a + b*x^2])), x] + Simp[d^2/b Int[(1/Sqrt[a + b*x^2])*ExpandToSum[(2^(n - 1)*c^(n - 1) - (c + d*x)
^(n - 1))/(c - d*x), x], x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[b*c^2 + a*d^2, 0] && IGtQ[n, 2]
-
Int[((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-(-c)^(-n - 2))*d^(2*n + 3)*(Sqrt[
a + b*x^2]/(2^(n + 1)*b^(n + 2)*(c + d*x))), x] - Simp[d^(2*n + 2)/b^(n + 1) Int[(1/Sqrt[a + b*x^2])*ExpandT
oSum[(2^(-n - 1)*(-c)^(-n - 1) - (-c + d*x)^(-n - 1))/(c + d*x), x], x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[b
*c^2 + a*d^2, 0] && ILtQ[n, 0] && EqQ[n + p, -3/2]
-
Int[((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Int[(a + b*x^2)^(n + p)/(a/c + b*(x/d))^
n, x] /; FreeQ[{a, b, c, d}, x] && EqQ[b*c^2 + a*d^2, 0] && IntegerQ[n] && RationalQ[p] && (LtQ[0, -n, p] || L
tQ[p, -n, 0]) && NeQ[n, 2] && NeQ[n, -1]
-
Int[((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(c + d*x)^(n + 1)*((a + b*x^2)^p/(d
*(n + p + 1))), x] - Simp[b*(p/(d^2*(n + p + 1))) Int[(c + d*x)^(n + 2)*(a + b*x^2)^(p - 1), x], x] /; FreeQ
[{a, b, c, d}, x] && EqQ[b*c^2 + a*d^2, 0] && GtQ[p, 0] && (LtQ[n, -2] || EqQ[n + 2*p + 1, 0]) && NeQ[n + p +
1, 0] && IntegerQ[2*p]
-
Int[((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(c + d*x)^(n + 1)*((a + b*x^2)^p/(d
*(n + 2*p + 1))), x] - Simp[2*b*c*(p/(d^2*(n + 2*p + 1))) Int[(c + d*x)^(n + 1)*(a + b*x^2)^(p - 1), x], x]
/; FreeQ[{a, b, c, d}, x] && EqQ[b*c^2 + a*d^2, 0] && GtQ[p, 0] && (LeQ[-2, n, 0] || EqQ[n + p + 1, 0]) && NeQ
[n + 2*p + 1, 0] && IntegerQ[2*p]
-
Int[((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-c)*(c + d*x)^n*((a + b*x^2)^(p +
1)/(2*a*d*(p + 1))), x] + Simp[c*((n + 2*p + 2)/(2*a*(p + 1))) Int[(c + d*x)^(n - 1)*(a + b*x^2)^(p + 1), x]
, x] /; FreeQ[{a, b, c, d}, x] && EqQ[b*c^2 + a*d^2, 0] && LtQ[p, -1] && LtQ[0, n, 1] && IntegerQ[2*p]
-
Int[((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[d*(c + d*x)^(n - 1)*((a + b*x^2)^(p
+ 1)/(b*(p + 1))), x] - Simp[d^2*((n + p)/(b*(p + 1))) Int[(c + d*x)^(n - 2)*(a + b*x^2)^(p + 1), x], x] /;
FreeQ[{a, b, c, d}, x] && EqQ[b*c^2 + a*d^2, 0] && LtQ[p, -1] && GtQ[n, 1] && IntegerQ[2*p]
-
Int[((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[d*(c + d*x)^(n - 1)*((a + b*x^2)^(p
+ 1)/(b*(n + 2*p + 1))), x] + Simp[2*c*((n + p)/(n + 2*p + 1)) Int[(c + d*x)^(n - 1)*(a + b*x^2)^p, x], x]
/; FreeQ[{a, b, c, d, p}, x] && EqQ[b*c^2 + a*d^2, 0] && GtQ[n, 0] && NeQ[n + 2*p + 1, 0] && IntegerQ[2*p]
-
Int[((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-d)*(c + d*x)^n*((a + b*x^2)^(p +
1)/(2*b*c*(n + p + 1))), x] + Simp[(n + 2*p + 2)/(2*c*(n + p + 1)) Int[(c + d*x)^(n + 1)*(a + b*x^2)^p, x],
x] /; FreeQ[{a, b, c, d, p}, x] && EqQ[b*c^2 + a*d^2, 0] && LtQ[n, 0] && NeQ[n + p + 1, 0] && IntegerQ[2*p]
-
Int[1/(Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(a_) + (b_.)*(x_)^2]), x_Symbol] :> Simp[2*d Subst[Int[1/(2*b*c + d^2*x^
2), x], x, Sqrt[a + b*x^2]/Sqrt[c + d*x]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[b*c^2 + a*d^2, 0]
-
Int[((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[a^(p + 1)*c^(n - 1)*(((c - d*x)/c)^
(p + 1)/(a/c + b*(x/d))^(p + 1)) Int[(1 + d*(x/c))^(n + p)*(a/c + (b/d)*x)^p, x], x] /; FreeQ[{a, b, c, d, n
}, x] && EqQ[b*c^2 + a*d^2, 0] && (IntegerQ[n] || GtQ[c, 0]) && GtQ[a, 0] && !(IntegerQ[n] && (IntegerQ[3*p]
|| IntegerQ[4*p]))
-
Int[((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[c^(n - 1)*((a + b*x^2)^(p + 1)/((1
+ d*(x/c))^(p + 1)*(a/c + (b*x)/d)^(p + 1))) Int[(1 + d*(x/c))^(n + p)*(a/c + (b/d)*x)^p, x], x] /; FreeQ[{a
, b, c, d, n}, x] && EqQ[b*c^2 + a*d^2, 0] && (IntegerQ[n] || GtQ[c, 0]) && !GtQ[a, 0] && !(IntegerQ[n] && (
IntegerQ[3*p] || IntegerQ[4*p]))
-
Int[((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[c^IntPart[n]*((c + d*x)^FracPart[n]
/(1 + d*(x/c))^FracPart[n]) Int[(1 + d*(x/c))^n*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*
c^2 + a*d^2, 0] && !(IntegerQ[n] || GtQ[c, 0])
-
Int[((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[d*n*c^(n - 1)*((a + b*x^2)^(p + 1)
/(2*b*(p + 1))), x] + Int[ExpandIntegrand[((c + d*x)^n - d*n*c^(n - 1)*x)*(a + b*x^2)^p, x], x] /; FreeQ[{a, b
, c, d}, x] && IGtQ[p, 0] && IGtQ[n, 0] && LeQ[n, p]
-
Int[((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(c + d*x)^n*(a + b*
x^2)^p, x], x] /; FreeQ[{a, b, c, d, n}, x] && IGtQ[p, 0]
-
Int[((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[a^p Int[ExpandIntegrand[(c + d*x)
^n*(1 - Rt[-b/a, 2]*x)^p*(1 + Rt[-b/a, 2]*x)^p, x], x], x] /; FreeQ[{a, b, c, d}, x] && ILtQ[p, 0] && IntegerQ
[n] && NiceSqrtQ[-b/a] && !FractionalPowerFactorQ[Rt[-b/a, 2]]
-
Int[((c_) + (d_.)*(x_))^(n_)/((a_) + (b_.)*(x_)^2), x_Symbol] :> Int[ExpandIntegrand[(c + d*x)^n/(a + b*x^2),
x], x] /; FreeQ[{a, b, c, d}, x] && IGtQ[n, 1]
-
Int[1/(((c_) + (d_.)*(x_))*((a_) + (b_.)*(x_)^2)), x_Symbol] :> Simp[d*(Log[RemoveContent[c + d*x, x]]/(b*c^2
+ a*d^2)), x] + Simp[b/(b*c^2 + a*d^2) Int[(c - d*x)/(a + b*x^2), x], x] /; FreeQ[{a, b, c, d}, x]
-
Int[((c_) + (d_.)*(x_))^(n_)/((a_) + (b_.)*(x_)^2), x_Symbol] :> Simp[d*((c + d*x)^(n + 1)/((n + 1)*(b*c^2 + a
*d^2))), x] + Simp[b/(b*c^2 + a*d^2) Int[(c + d*x)^(n + 1)*((c - d*x)/(a + b*x^2)), x], x] /; FreeQ[{a, b, c
, d}, x] && ILtQ[n, -1]
-
Int[((c_) + (d_.)*(x_))^(n_)/((a_) + (b_.)*(x_)^2), x_Symbol] :> Simp[d*((c + d*x)^(n - 1)/(b*(n - 1))), x] +
Simp[1/b Int[(c + d*x)^(n - 2)*(Simp[b*c^2 - a*d^2 + 2*b*c*d*x, x]/(a + b*x^2)), x], x] /; FreeQ[{a, b, c, d
}, x] && GtQ[n, 1]
-
Int[((c_) + (d_.)*(x_))^(n_)/((a_) + (b_.)*(x_)^2), x_Symbol] :> Simp[d*((c + d*x)^(n + 1)/((n + 1)*(b*c^2 + a
*d^2))), x] + Simp[b/(b*c^2 + a*d^2) Int[(c + d*x)^(n + 1)*((c - d*x)/(a + b*x^2)), x], x] /; FreeQ[{a, b, c
, d, n}, x] && LtQ[n, -1]
-
Int[Sqrt[(c_) + (d_.)*(x_)]/((a_) + (b_.)*(x_)^2), x_Symbol] :> Simp[2*d Subst[Int[x^2/(b*c^2 + a*d^2 - 2*b*
c*x^2 + b*x^4), x], x, Sqrt[c + d*x]], x] /; FreeQ[{a, b, c, d}, x]
-
Int[1/(Sqrt[(c_) + (d_.)*(x_)]*((a_) + (b_.)*(x_)^2)), x_Symbol] :> Simp[2*d Subst[Int[1/(b*c^2 + a*d^2 - 2*
b*c*x^2 + b*x^4), x], x, Sqrt[c + d*x]], x] /; FreeQ[{a, b, c, d}, x]
-
Int[((c_) + (d_.)*(x_))^(n_)/((a_) + (b_.)*(x_)^2), x_Symbol] :> Int[ExpandIntegrand[(c + d*x)^n, 1/(a + b*x^2
), x], x] /; FreeQ[{a, b, c, d, n}, x] && !IntegerQ[2*n]
-
Int[((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(c + d*x)^(n + 1)*(a*d - b*c*x)*((a
+ b*x^2)^p/((n + 1)*(b*c^2 + a*d^2))), x] - Simp[2*a*b*(p/((n + 1)*(b*c^2 + a*d^2))) Int[(c + d*x)^(n + 2)*
(a + b*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[n + 2*p + 2, 0] && GtQ[p, 0]
-
Int[((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(c + d*x)^(n - 1)*(a*d - b*c*x)*((a
+ b*x^2)^(p + 1)/(2*a*b*(p + 1))), x] + Simp[(2*p + 3)*((b*c^2 + a*d^2)/(2*a*b*(p + 1))) Int[(c + d*x)^(n -
2)*(a + b*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[n + 2*p + 2, 0] && LtQ[p, -1]
-
Int[1/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^2]), x_Symbol] :> -Subst[Int[1/(b*c^2 + a*d^2 - x^2), x], x,
(a*d - b*c*x)/Sqrt[a + b*x^2]] /; FreeQ[{a, b, c, d}, x]
-
Int[((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{q = Rt[(-a)*b, 2]}, Simp[(q - b*x)
*(c + d*x)^(n + 1)*((a + b*x^2)^p/((n + 1)*(b*c + d*q)*((b*c + d*q)*((q + b*x)/((b*c - d*q)*(-q + b*x))))^p))*
Hypergeometric2F1[n + 1, -p, n + 2, 2*b*q*((c + d*x)/((b*c - d*q)*(q - b*x)))], x]] /; FreeQ[{a, b, c, d, n, p
}, x] && EqQ[n + 2*p + 2, 0]
-
Int[((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-x)*(c + d*x)^n*((a + b*x^2)^(p +
1)/(2*a*(p + 1))), x] - Simp[c*(n/(2*a*(p + 1))) Int[(c + d*x)^(n - 1)*(a + b*x^2)^(p + 1), x], x] /; FreeQ[
{a, b, c, d, n, p}, x] && EqQ[n + 2*p + 3, 0] && LtQ[p, -1]
-
Int[((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[d*(c + d*x)^(n + 1)*((a + b*x^2)^(p
+ 1)/((n + 1)*(b*c^2 + a*d^2))), x] + Simp[b*(c/(b*c^2 + a*d^2)) Int[(c + d*x)^(n + 1)*(a + b*x^2)^p, x], x
] /; FreeQ[{a, b, c, d, n, p}, x] && EqQ[n + 2*p + 3, 0]
-
Int[((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(c + d*x)^(n + 1)*((a + b*x^2)^p/(d
*(n + 1))), x] - Simp[2*b*(p/(d*(n + 1))) Int[x*(c + d*x)^(n + 1)*(a + b*x^2)^(p - 1), x], x] /; FreeQ[{a, b
, c, d, n}, x] && GtQ[p, 0] && (IntegerQ[p] || LtQ[n, -1]) && NeQ[n, -1] && !ILtQ[n + 2*p + 1, 0] && IntQuadr
aticQ[a, 0, b, c, d, n, p, x]
-
Int[((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(c + d*x)^(n + 1)*((a + b*x^2)^p/(d
*(n + 2*p + 1))), x] + Simp[2*(p/(d*(n + 2*p + 1))) Int[(c + d*x)^n*(a + b*x^2)^(p - 1)*(a*d - b*c*x), x], x
] /; FreeQ[{a, b, c, d, n}, x] && GtQ[p, 0] && NeQ[n + 2*p + 1, 0] && ( !RationalQ[n] || LtQ[n, 1]) && !ILtQ[
n + 2*p, 0] && IntQuadraticQ[a, 0, b, c, d, n, p, x]
-
Int[((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-x)*(c + d*x)^n*((a + b*x^2)^(p +
1)/(2*a*(p + 1))), x] + Simp[1/(2*a*(p + 1)) Int[(c + d*x)^(n - 1)*(a + b*x^2)^(p + 1)*(c*(2*p + 3) + d*(n +
2*p + 3)*x), x], x] /; FreeQ[{a, b, c, d}, x] && LtQ[p, -1] && GtQ[n, 0] && (LtQ[n, 1] || (ILtQ[n + 2*p + 3,
0] && NeQ[n, 2])) && IntQuadraticQ[a, 0, b, c, d, n, p, x]
-
Int[((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(a*d - b*c*x)*(c + d*x)^(n - 1)*((a
+ b*x^2)^(p + 1)/(2*a*b*(p + 1))), x] - Simp[1/(2*a*b*(p + 1)) Int[(c + d*x)^(n - 2)*(a + b*x^2)^(p + 1)*Si
mp[a*d^2*(n - 1) - b*c^2*(2*p + 3) - b*c*d*(n + 2*p + 2)*x, x], x], x] /; FreeQ[{a, b, c, d}, x] && LtQ[p, -1]
&& GtQ[n, 1] && IntQuadraticQ[a, 0, b, c, d, n, p, x]
-
Int[((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-(a*d + b*c*x))*(c + d*x)^(n + 1)*
((a + b*x^2)^(p + 1)/(2*a*(p + 1)*(b*c^2 + a*d^2))), x] + Simp[1/(2*a*(p + 1)*(b*c^2 + a*d^2)) Int[(c + d*x)
^n*(a + b*x^2)^(p + 1)*Simp[b*c^2*(2*p + 3) + a*d^2*(n + 2*p + 3) + b*c*d*(n + 2*p + 4)*x, x], x], x] /; FreeQ
[{a, b, c, d, n}, x] && LtQ[p, -1] && IntQuadraticQ[a, 0, b, c, d, n, p, x]
-
Int[((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[d*(c + d*x)^(n - 1)*((a + b*x^2)^(p
+ 1)/(b*(n + 2*p + 1))), x] + Simp[1/(b*(n + 2*p + 1)) Int[(c + d*x)^(n - 2)*(a + b*x^2)^p*Simp[b*c^2*(n +
2*p + 1) - a*d^2*(n - 1) + 2*b*c*d*(n + p)*x, x], x], x] /; FreeQ[{a, b, c, d, n, p}, x] && If[RationalQ[n], G
tQ[n, 1], SumSimplerQ[n, -2]] && NeQ[n + 2*p + 1, 0] && IntQuadraticQ[a, 0, b, c, d, n, p, x]
-
Int[((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[d*(c + d*x)^(n + 1)*((a + b*x^2)^(p
+ 1)/((n + 1)*(b*c^2 + a*d^2))), x] + Simp[b/((n + 1)*(b*c^2 + a*d^2)) Int[(c + d*x)^(n + 1)*(a + b*x^2)^p*
(c*(n + 1) - d*(n + 2*p + 3)*x), x], x] /; FreeQ[{a, b, c, d, n, p}, x] && NeQ[n, -1] && ((LtQ[n, -1] && IntQu
adraticQ[a, 0, b, c, d, n, p, x]) || (SumSimplerQ[n, 1] && IntegerQ[p]) || ILtQ[Simplify[n + 2*p + 3], 0])
-
Int[1/(((c_) + (d_.)*(x_))*((a_) + (b_.)*(x_)^2)^(1/4)), x_Symbol] :> With[{q = Rt[-a, 4]}, Simp[(1/(2*d*q))*A
rcTan[c*q*((a + b*x^2)^(1/4)/(q^2*(c + d*x) - c*Sqrt[a + b*x^2]))], x] - Simp[(1/(2*d*q))*ArcTanh[c*q*((a + b*
x^2)^(1/4)/(q^2*(c + d*x) + c*Sqrt[a + b*x^2]))], x]] /; FreeQ[{a, b, c, d}, x] && EqQ[b*c^2 + 2*a*d^2, 0] &&
NegQ[a]
-
Int[1/(((c_) + (d_.)*(x_))*((a_) + (b_.)*(x_)^2)^(1/4)), x_Symbol] :> Simp[(-a - b*x^2)^(1/4)/(a + b*x^2)^(1/4
) Int[1/((c + d*x)*(-a - b*x^2)^(1/4)), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[b*c^2 + 2*a*d^2, 0] && PosQ[
a]
-
Int[1/(((c_) + (d_.)*(x_))*((a_) + (b_.)*(x_)^2)^(1/3)), x_Symbol] :> With[{q = Rt[6*b^2*(d^2/c^2), 3]}, Simp[
(-Sqrt[3])*b*d*(ArcTan[1/Sqrt[3] + 2*b*((c - d*x)/(Sqrt[3]*c*q*(a + b*x^2)^(1/3)))]/(c^2*q^2)), x] + (-Simp[3*
b*d*(Log[c + d*x]/(2*c^2*q^2)), x] + Simp[3*b*d*(Log[b*c - b*d*x - c*q*(a + b*x^2)^(1/3)]/(2*c^2*q^2)), x])] /
; FreeQ[{a, b, c, d}, x] && EqQ[b*c^2 - 3*a*d^2, 0]
-
Int[1/(((c_) + (d_.)*(x_))*((a_) + (b_.)*(x_)^2)^(1/3)), x_Symbol] :> Simp[a^(1/3) Int[1/((c + d*x)*(1 - 3*d
*(x/c))^(1/3)*(1 + 3*d*(x/c))^(1/3)), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[b*c^2 + 9*a*d^2, 0] && GtQ[a, 0]
-
Int[1/(((c_) + (d_.)*(x_))*((a_) + (b_.)*(x_)^2)^(1/3)), x_Symbol] :> Simp[(1 + b*(x^2/a))^(1/3)/(a + b*x^2)^(
1/3) Int[1/((c + d*x)*(1 + b*(x^2/a))^(1/3)), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[b*c^2 + 9*a*d^2, 0] &&
!GtQ[a, 0]
-
Int[((a_) + (b_.)*(x_)^2)^(p_)/((c_) + (d_.)*(x_)), x_Symbol] :> Simp[c Int[(a + b*x^2)^p/(c^2 - d^2*x^2), x
], x] - Simp[d Int[x*((a + b*x^2)^p/(c^2 - d^2*x^2)), x], x] /; FreeQ[{a, b, c, d, p}, x]
-
Int[((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Int[ExpandIntegrand[(a + b*x^2)^p, (c/(c
^2 - d^2*x^2) - d*(x/(c^2 - d^2*x^2)))^(-n), x], x] /; FreeQ[{a, b, c, d, p}, x] && ILtQ[n, -1] && PosQ[a/b]
-
Int[((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{q = Rt[-a/b, 2]}, Simp[(-(a + b*x^
2)^p)*((1/(c + d*x))^(2*p)/(d*(1 - (c - d*q)/(c + d*x))^p*(1 - (c + d*q)/(c + d*x))^p)) Subst[Int[(1 - (c -
d*q)*x)^p*((1 - (c + d*q)*x)^p/x^(n + 2*p + 2)), x], x, 1/(c + d*x)], x]] /; FreeQ[{a, b, c, d, p}, x] && ILtQ
[n, -1] && NegQ[a/b]
-
Int[Sqrt[(c_) + (d_.)*(x_)]/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[2/d Subst[Int[x^2/Sqrt[(b*c^2 + a*d
^2)/d^2 - 2*b*c*(x^2/d^2) + b*(x^4/d^2)], x], x, Sqrt[c + d*x]], x] /; FreeQ[{a, b, c, d}, x] && PosQ[b/a]
-
Int[Sqrt[(c_) + (d_.)*(x_)]/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> With[{q = Rt[-b/a, 2]}, Simp[-2*(Sqrt[c +
d*x]/(Sqrt[a]*q*Sqrt[q*((c + d*x)/(d + c*q))])) Subst[Int[Sqrt[1 - 2*d*(x^2/(d + c*q))]/Sqrt[1 - x^2], x], x
, Sqrt[(1 - q*x)/2]], x]] /; FreeQ[{a, b, c, d}, x] && NegQ[b/a] && GtQ[a, 0]
-
Int[Sqrt[(c_) + (d_.)*(x_)]/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[Sqrt[1 + b*(x^2/a)]/Sqrt[a + b*x^2]
Int[Sqrt[c + d*x]/Sqrt[1 + b*(x^2/a)], x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[b/a] && !GtQ[a, 0]
-
Int[1/(Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(a_) + (b_.)*(x_)^2]), x_Symbol] :> Simp[2/d Subst[Int[1/Sqrt[(b*c^2 + a
*d^2)/d^2 - 2*b*c*(x^2/d^2) + b*(x^4/d^2)], x], x, Sqrt[c + d*x]], x] /; FreeQ[{a, b, c, d}, x] && PosQ[b/a]
-
Int[1/(Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(a_) + (b_.)*(x_)^2]), x_Symbol] :> With[{q = Rt[-b/a, 2]}, Simp[-2*(Sqrt[
q*((c + d*x)/(d + c*q))]/(Sqrt[a]*q*Sqrt[c + d*x])) Subst[Int[1/(Sqrt[1 - 2*d*(x^2/(d + c*q))]*Sqrt[1 - x^2]
), x], x, Sqrt[(1 - q*x)/2]], x]] /; FreeQ[{a, b, c, d}, x] && NegQ[b/a] && GtQ[a, 0]
-
Int[1/(Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(a_) + (b_.)*(x_)^2]), x_Symbol] :> Simp[Sqrt[1 + b*(x^2/a)]/Sqrt[a + b*x^
2] Int[1/(Sqrt[c + d*x]*Sqrt[1 + b*(x^2/a)]), x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[b/a] && !GtQ[a, 0]
-
Int[((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[a^p Int[(c + d*x)^n*(1 + Rt[-b/a,
2]*x)^p*(1 - Rt[-b/a, 2]*x)^p, x], x] /; FreeQ[{a, b, c, d, n, p}, x] && GtQ[a, 0] && NegQ[b/a]
-
Int[((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{q = Rt[-a/b, 2]}, Simp[(a + b*x^2)
^p/(d*(1 - (c + d*x)/(c - d*q))^p*(1 - (c + d*x)/(c + d*q))^p) Subst[Int[x^n*Simp[1 - x/(c + d*q), x]^p*Simp
[1 - x/(c - d*q), x]^p, x], x, c + d*x], x]] /; FreeQ[{a, b, c, d, n, p}, x] && NeQ[b*c^2 + a*d^2, 0]
-
Int[((c_) + (d_.)*(u_))^(n_.)*((a_) + (b_.)*(u_)^2)^(p_.), x_Symbol] :> Simp[1/Coefficient[u, x, 1] Subst[In
t[(c + d*x)^n*(a + b*x^2)^p, x], x, u], x] /; FreeQ[{a, b, c, d, n, p}, x] && LinearQ[u, x] && NeQ[u, x]
-
Int[((e_.)*(x_))^(m_.)*((c_) + (d_.)*(x_))^(n_.)*((a_) + (b_.)*(x_)^2)^(p_.), x_Symbol] :> Int[(e*x)^m*(c + d*
x)^(n + p)*(a/c + (b/d)*x)^p, x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && EqQ[b*c^2 + a*d^2, 0] && (IntegerQ[p
] || (GtQ[a, 0] && GtQ[c, 0] && !IntegerQ[n]))
-
Int[((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[2*(e^m/d^(m + 2*
p + 1)) Subst[Int[x^(2*n + 1)*(-c + x^2)^m*(b*c^2 + a*d^2 - 2*b*c*x^2 + b*x^4)^p, x], x, Sqrt[c + d*x]], x]
/; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && ILtQ[m, 0] && IntegerQ[n + 1/2]
-
Int[((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[2/e^(n + 2*p + 1
) Subst[Int[x^(2*m + 1)*(e*c + d*x^2)^n*(a*e^2 + b*x^4)^p, x], x, Sqrt[e*x]], x] /; FreeQ[{a, b, c, d, e}, x
] && IGtQ[p, 0] && ILtQ[n, 0] && IntegerQ[m + 1/2]
-
Int[((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_.), x_Symbol] :> With[{Qx = Polynomial
Quotient[(a + b*x^2)^p, c + d*x, x], R = PolynomialRemainder[(a + b*x^2)^p, c + d*x, x]}, Simp[(-R)*(e*x)^(m +
1)*((c + d*x)^(n + 1)/(c*e*(n + 1))), x] + Simp[1/(c*(n + 1)) Int[(e*x)^m*(c + d*x)^(n + 1)*ExpandToSum[c*(
n + 1)*Qx + R*(m + n + 2), x], x], x]] /; FreeQ[{a, b, c, d, e, m}, x] && IGtQ[p, 0] && LtQ[n, -1] && !Intege
rQ[m]
-
Int[((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_.), x_Symbol] :> With[{Qx = Polynomial
Quotient[(a + b*x^2)^p, e*x, x], R = PolynomialRemainder[(a + b*x^2)^p, e*x, x]}, Simp[R*(e*x)^(m + 1)*((c + d
*x)^(n + 1)/((m + 1)*(e*c))), x] + Simp[1/((m + 1)*(e*c)) Int[(e*x)^(m + 1)*(c + d*x)^n*ExpandToSum[(m + 1)*
(e*c)*Qx - d*R*(m + n + 2), x], x], x]] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[p, 0] && LtQ[m, -1] && !Integ
erQ[n]
-
Int[((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[b^p*(e*x)^(m + 2
*p)*((c + d*x)^(n + 1)/(d*e^(2*p)*(m + n + 2*p + 1))), x] + Simp[1/(d*e^(2*p)*(m + n + 2*p + 1)) Int[(e*x)^m
*(c + d*x)^n*ExpandToSum[d*(m + n + 2*p + 1)*(e^(2*p)*(a + b*x^2)^p - b^p*(e*x)^(2*p)) - b^p*(e*c)*(m + 2*p)*(
e*x)^(2*p - 1), x], x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && NeQ[m + n + 2*p + 1, 0] && !IntegerQ
[m] && !IntegerQ[n]
-
Int[((e_.)*(x_))^(m_.)*((c_) + (d_.)*(x_))^(n_.)*((a_) + (b_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand
[(e*x)^m*(c + d*x)^n*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && IGtQ[p, 0]
-
Int[((x_)^(m_.)*((c_) + (d_.)*(x_)))/((a_) + (b_.)*(x_)^2), x_Symbol] :> Int[ExpandIntegrand[x^m*((c + d*x)/(a
+ b*x^2)), x], x] /; FreeQ[{a, b, c, d}, x] && IntegerQ[m]
-
Int[((c_) + (d_.)*(x_))^2/((x_)*((a_) + (b_.)*(x_)^2)), x_Symbol] :> Simp[(c^2/a)*Log[x], x] + (-Simp[(b*c^2 -
a*d^2)/a Int[x/(a + b*x^2), x], x] + Simp[2*c*d Int[1/(a + b*x^2), x], x]) /; FreeQ[{a, b, c, d}, x]
-
Int[((x_)^(m_.)*((c_) + (d_.)*(x_))^(n_))/((a_) + (b_.)*(x_)^2), x_Symbol] :> Simp[d^n*(x^(m + n - 1)/(b*(m +
n - 1))), x] + Simp[1/b Int[x^m*(ExpandToSum[b*(c + d*x)^n - b*d^n*x^n - a*d^n*x^(n - 2), x]/(a + b*x^2)), x
], x] /; FreeQ[{a, b, c, d}, x] && IGtQ[n, 1] && IGtQ[m, -2] && NeQ[m + n - 1, 0]
-
Int[((x_)^(m_)*((c_) + (d_.)*(x_))^(n_))/((a_) + (b_.)*(x_)^2), x_Symbol] :> With[{Qx = PolynomialQuotient[(c
+ d*x)^n, x, x], R = PolynomialRemainder[(c + d*x)^n, x, x]}, Simp[R*(x^(m + 1)/(a*(m + 1))), x] + Simp[1/a
Int[x^(m + 1)*(ExpandToSum[a*Qx - b*R*x, x]/(a + b*x^2)), x], x]] /; FreeQ[{a, b, c, d}, x] && IGtQ[n, 1] && I
LtQ[m, -1]
-
Int[((x_)^(m_.)*((c_) + (d_.)*(x_))^(n_.))/((a_) + (b_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(-2^(n - 1))*c^(m +
n - 2)*((c + d*x)/(b*d^(m - 1)*Sqrt[a + b*x^2])), x] + Simp[1/(b*d^(m - 2)) Int[(1/Sqrt[a + b*x^2])*ExpandTo
Sum[(2^(n - 1)*c^(m + n - 1) - d^m*x^m*(c + d*x)^(n - 1))/(c - d*x), x], x], x] /; FreeQ[{a, b, c, d}, x] && I
GtQ[n, 0] && IGtQ[m, 0] && EqQ[b*c^2 + a*d^2, 0]
-
Int[((x_)^(m_)*((c_) + (d_.)*(x_))^(n_.))/((a_) + (b_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(-2^(n - 1))*c^(m + n
- 2)*((c + d*x)/(b*d^(m - 1)*Sqrt[a + b*x^2])), x] + Simp[c^2/a Int[(x^m/Sqrt[a + b*x^2])*ExpandToSum[((c +
d*x)^(n - 1) - (2^(n - 1)*c^(m + n - 1))/(d^m*x^m))/(c - d*x), x], x], x] /; FreeQ[{a, b, c, d}, x] && IGtQ[n
, 0] && ILtQ[m, 0] && EqQ[b*c^2 + a*d^2, 0]
-
Int[(x_)^(m_)*((c_) + (d_.)*(x_))^(n_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Qx = PolynomialQuotient
[x^m, a*d + b*c*x, x], R = PolynomialRemainder[x^m, a*d + b*c*x, x]}, Simp[(-c)*R*(c + d*x)^n*((a + b*x^2)^(p
+ 1)/(2*a*d*(p + 1))), x] + Simp[c/(2*a*(p + 1)) Int[(c + d*x)^(n - 1)*(a + b*x^2)^(p + 1)*ExpandToSum[2*a*d
*(p + 1)*Qx + R*(n + 2*p + 2), x], x], x]] /; FreeQ[{a, b, c, d}, x] && IGtQ[n, 0] && IGtQ[m, 1] && LtQ[p, -1]
&& EqQ[b*c^2 + a*d^2, 0]
-
Int[(x_)^(m_.)*((c_) + (d_.)*(x_))^(n_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Qx = PolynomialQuotien
t[x^m*(c + d*x)^n, a + b*x^2, x], e = Coeff[PolynomialRemainder[x^m*(c + d*x)^n, a + b*x^2, x], x, 0], f = Coe
ff[PolynomialRemainder[x^m*(c + d*x)^n, a + b*x^2, x], x, 1]}, Simp[(a*f - b*e*x)*((a + b*x^2)^(p + 1)/(2*a*b*
(p + 1))), x] + Simp[1/(2*a*(p + 1)) Int[(a + b*x^2)^(p + 1)*ExpandToSum[2*a*(p + 1)*Qx + e*(2*p + 3), x], x
], x]] /; FreeQ[{a, b, c, d}, x] && IGtQ[n, 0] && IGtQ[m, 0] && LtQ[p, -1] && EqQ[n, 1] && IntegerQ[2*p]
-
Int[(x_)^(m_.)*((c_) + (d_.)*(x_))^(n_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Qx = PolynomialQuotien
t[x^m, a + b*x^2, x], e = Coeff[PolynomialRemainder[x^m, a + b*x^2, x], x, 0], f = Coeff[PolynomialRemainder[x
^m, a + b*x^2, x], x, 1]}, Simp[(c + d*x)^n*(a*f - b*e*x)*((a + b*x^2)^(p + 1)/(2*a*b*(p + 1))), x] + Simp[1/(
2*a*b*(p + 1)) Int[(c + d*x)^(n - 1)*(a + b*x^2)^(p + 1)*ExpandToSum[2*a*b*(p + 1)*(c + d*x)*Qx - a*d*f*n +
b*c*e*(2*p + 3) + b*d*e*(n + 2*p + 3)*x, x], x], x]] /; FreeQ[{a, b, c, d}, x] && IGtQ[n, 0] && IGtQ[m, 0] &&
LtQ[p, -1] && GtQ[n, 1] && IntegerQ[2*p]
-
Int[(x_)^(m_)*((c_) + (d_.)*(x_))^(n_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Qx = PolynomialQuotient
[x^m*(c + d*x)^n, a + b*x^2, x], e = Coeff[PolynomialRemainder[x^m*(c + d*x)^n, a + b*x^2, x], x, 0], f = Coef
f[PolynomialRemainder[x^m*(c + d*x)^n, a + b*x^2, x], x, 1]}, Simp[(a*f - b*e*x)*((a + b*x^2)^(p + 1)/(2*a*b*(
p + 1))), x] + Simp[1/(2*a*(p + 1)) Int[x^m*(a + b*x^2)^(p + 1)*ExpandToSum[2*a*(p + 1)*(Qx/x^m) + e*((2*p +
3)/x^m), x], x], x]] /; FreeQ[{a, b, c, d}, x] && IGtQ[n, 0] && ILtQ[m, 0] && LtQ[p, -1] && IntegerQ[2*p]
-
Int[(x_)^(m_.)*((c_) + (d_.)*(x_))*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[d*x^m*((a + b*x^2)^(p + 1)/(b
*(m + 2*p + 2))), x] - Simp[1/(b*(m + 2*p + 2)) Int[x^(m - 1)*(a + b*x^2)^p*Simp[a*d*m - b*c*(m + 2*p + 2)*x
, x], x], x] /; FreeQ[{a, b, c, d, p}, x] && IGtQ[m, 0] && GtQ[p, -1] && IntegerQ[2*p]
-
Int[(x_)^(m_)*((c_) + (d_.)*(x_))*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-c)*x^(m + 1)*((a + b*x^2)^(p
+ 1)/(2*a*(p + 1))), x] + Simp[d Int[x^(m + 1)*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, d, m, p}, x] && ILt
Q[m, 0] && GtQ[p, -1] && EqQ[m + 2*p + 3, 0]
-
Int[(((c_) + (d_.)*(x_))*((a_) + (b_.)*(x_)^2)^(p_))/(x_), x_Symbol] :> Simp[(c*(2*p + 1) + 2*d*p*x)*((a + b*x
^2)^p/(2*p*(2*p + 1))), x] + Simp[a/(2*p + 1) Int[(c*(2*p + 1) + 2*d*p*x)*((a + b*x^2)^(p - 1)/x), x], x] /;
FreeQ[{a, b, c, d}, x] && GtQ[p, 0] && IntegerQ[2*p]
-
Int[(((c_) + (d_.)*(x_))*((a_) + (b_.)*(x_)^2)^(p_))/(x_)^2, x_Symbol] :> Simp[(-(2*c*p - d*x))*((a + b*x^2)^p
/(2*p*x)), x] + Int[(a*d + 2*b*c*p*x)*((a + b*x^2)^(p - 1)/x), x] /; FreeQ[{a, b, c, d}, x] && GtQ[p, 0] && In
tegerQ[2*p]
-
Int[(x_)^(m_)*((c_) + (d_.)*(x_))*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[x^(m + 1)*(c*(m + 2) + d*(m +
1)*x)*((a + b*x^2)^p/((m + 1)*(m + 2))), x] - Simp[2*b*(p/((m + 1)*(m + 2))) Int[x^(m + 2)*(c*(m + 2) + d*(m
+ 1)*x)*(a + b*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, d}, x] && ILtQ[m, -2] && GtQ[p, 0] && !ILtQ[m + 2*p +
3, 0] && IntegerQ[2*p]
-
Int[((c_) + (d_.)*(x_))/((x_)*Sqrt[(a_) + (b_.)*(x_)^2]), x_Symbol] :> Simp[c Int[1/(x*Sqrt[a + b*x^2]), x],
x] + Simp[d Int[1/Sqrt[a + b*x^2], x], x] /; FreeQ[{a, b, c, d}, x]
-
Int[(x_)^(m_)*((c_) + (d_.)*(x_))*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[c*x^(m + 1)*((a + b*x^2)^(p +
1)/(a*(m + 1))), x] + Simp[1/(a*(m + 1)) Int[x^(m + 1)*(a + b*x^2)^p*(a*d*(m + 1) - b*c*(m + 2*p + 3)*x), x]
, x] /; FreeQ[{a, b, c, d, p}, x] && ILtQ[m, -1] && GtQ[p, -1] && IntegerQ[2*p]
-
Int[(x_)^(m_)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Qx = PolynomialQuotient[
(c + d*x)^n, x, x], R = PolynomialRemainder[(c + d*x)^n, x, x]}, Simp[R*x^(m + 1)*((a + b*x^2)^(p + 1)/(a*(m +
1))), x] + Simp[1/(a*(m + 1)) Int[x^(m + 1)*(a + b*x^2)^p*ExpandToSum[a*(m + 1)*Qx - b*R*(m + 2*p + 3)*x, x
], x], x]] /; FreeQ[{a, b, c, d, p}, x] && IGtQ[n, 1] && ILtQ[m, -1] && GtQ[p, -1] && IntegerQ[2*p]
-
Int[(x_)^(m_.)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[d^n*x^(m + n - 1)*((a +
b*x^2)^(p + 1)/(b*(m + n + 2*p + 1))), x] + Simp[1/(b*(m + n + 2*p + 1)) Int[x^m*(a + b*x^2)^p*ExpandToSum[b
*(m + n + 2*p + 1)*(c + d*x)^n - b*d^n*(m + n + 2*p + 1)*x^n - a*d^n*(m + n - 1)*x^(n - 2), x], x], x] /; Free
Q[{a, b, c, d, m, p}, x] && IGtQ[n, 1] && IGtQ[m, -2] && GtQ[p, -1] && IntegerQ[2*p]
-
Int[(x_)^(m_.)*((c_) + (d_.)*(x_))*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[c Int[x^m*(a + b*x^2)^p, x]
, x] + Simp[d Int[x^(m + 1)*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, d, p}, x] && IntegerQ[m] && !IntegerQ[
2*p]
-
Int[(x_)^(m_.)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Module[{k}, Int[x^m*Sum[Binom
ial[n, 2*k]*c^(n - 2*k)*d^(2*k)*x^(2*k), {k, 0, n/2}]*(a + b*x^2)^p, x] + Int[x^(m + 1)*Sum[Binomial[n, 2*k +
1]*c^(n - 2*k - 1)*d^(2*k + 1)*x^(2*k), {k, 0, (n - 1)/2}]*(a + b*x^2)^p, x]] /; FreeQ[{a, b, c, d, p}, x] &&
IGtQ[n, 1] && IntegerQ[m] && !IntegerQ[2*p] && !(EqQ[m, 1] && EqQ[b*c^2 + a*d^2, 0])
-
Int[((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_))*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*x)^m*(a*d - b*c*x)*
((a + b*x^2)^(p + 1)/(2*a*b*(p + 1))), x] - Simp[e*d*(m/(2*b*(p + 1)))*Int[(e*x)^(m - 1)*(a + b*x^2)^(p + 1),
x], x] /; FreeQ[{a, b, c, d, e, m}, x] && EqQ[Simplify[m + 2*p + 3], 0] && LtQ[p, -1]
-
Int[((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_))*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-c)*(e*x)^(m + 1)*((a
+ b*x^2)^(p + 1)/(2*a*e*(p + 1))), x] + Simp[d/e Int[(e*x)^(m + 1)*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c,
d, e, m, p}, x] && EqQ[Simplify[m + 2*p + 3], 0]
-
Int[((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_))*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*x)^(m + 1)*(c*(m +
2) + d*(m + 1)*x)*((a + b*x^2)^p/(e*(m + 1)*(m + 2))), x] - Simp[2*b*(p/(e^2*(m + 1)*(m + 2))) Int[(e*x)^(m
+ 2)*(a + b*x^2)^(p - 1)*(c*(m + 2) + d*(m + 1)*x), x], x] /; FreeQ[{a, b, c, d, e}, x] && GtQ[p, 0] && LtQ[m,
-2] && !ILtQ[m + 2*p + 3, 0]
-
Int[((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_))*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*x)^(m + 1)*(c*(m +
2*p + 2) + d*(m + 1)*x)*((a + b*x^2)^p/(e*(m + 1)*(m + 2*p + 2))), x] + Simp[2*(p/(e*(m + 1)*(m + 2*p + 2)))
Int[(e*x)^(m + 1)*(a*d*(m + 1) - b*c*(m + 2*p + 2)*x)*(a + b*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e}, x
] && GtQ[p, 0] && LtQ[m, -1] && !ILtQ[m + 2*p + 1, 0]
-
Int[((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_))*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*x)^(m + 1)*(c*(m +
2*p + 2) + d*(m + 2*p + 1)*x)*((a + b*x^2)^p/(e*(m + 2*p + 1)*(m + 2*p + 2))), x] + Simp[2*a*(p/((m + 2*p + 1)
*(m + 2*p + 2))) Int[(e*x)^m*(a + b*x^2)^(p - 1)*(c*(m + 2*p + 2) + d*(m + 2*p + 1)*x), x], x] /; FreeQ[{a,
b, c, d, e, m}, x] && GtQ[p, 0] && (IntegerQ[p] || !RationalQ[m] || (GeQ[m, -1] && LtQ[m, 0])) && !ILtQ[m +
2*p, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])
-
Int[((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_))*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e*(e*x)^(m - 1)*(c + d
*x)*((a + b*x^2)^(p + 1)/(2*b*(p + 1))), x] - Simp[e^2/(2*b*(p + 1)) Int[(e*x)^(m - 2)*(c*(m - 1) + d*m*x)*(
a + b*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && LtQ[p, -1] && GtQ[m, 1]
-
Int[((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_))*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*x)^m*(a*d - b*c*x)*
((a + b*x^2)^(p + 1)/(2*a*b*(p + 1))), x] - Simp[e/(2*a*b*(p + 1)) Int[(e*x)^(m - 1)*(a*d*m - b*c*(m + 2*p +
3)*x)*(a + b*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && LtQ[p, -1] && LtQ[0, m, 1]
-
Int[((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_))*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-(e*x)^(m + 1))*(c +
d*x)*((a + b*x^2)^(p + 1)/(2*a*e*(p + 1))), x] + Simp[1/(2*a*(p + 1)) Int[(e*x)^m*(c*(m + 2*p + 3) + d*(m +
2*p + 4)*x)*(a + b*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && LtQ[p, -1] && LtQ[m, 0]
-
Int[((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_))*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[d*(e*x)^m*((a + b*x^2)
^(p + 1)/(b*(m + 2*p + 2))), x] - Simp[e/(b*(m + 2*p + 2)) Int[(e*x)^(m - 1)*(a + b*x^2)^p*Simp[a*d*m - b*c*
(m + 2*p + 2)*x, x], x], x] /; FreeQ[{a, b, c, d, e, p}, x] && GtQ[m, 0] && NeQ[m + 2*p + 2, 0] && (IntegerQ[p
] || IntegersQ[2*m, 2*p])
-
Int[((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_))*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[c*(e*x)^(m + 1)*((a +
b*x^2)^(p + 1)/(a*e*(m + 1))), x] + Simp[1/(a*e*(m + 1)) Int[(e*x)^(m + 1)*(a + b*x^2)^p*(a*d*(m + 1) - b*c*
(m + 2*p + 3)*x), x], x] /; FreeQ[{a, b, c, d, e, p}, x] && LtQ[m, -1]
-
Int[((c_) + (d_.)*(x_))/(Sqrt[(e_.)*(x_)]*((a_) + (b_.)*(x_)^2)), x_Symbol] :> Simp[2 Subst[Int[(e*c + d*x^2
)/(a*e^2 + b*x^4), x], x, Sqrt[e*x]], x] /; FreeQ[{a, b, c, d, e}, x]
-
Int[((f_) + (g_.)*(x_))/(Sqrt[x_]*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> Simp[2 Subst[Int[(f + g*x^2)/Sqrt
[a + c*x^4], x], x, Sqrt[x]], x] /; FreeQ[{a, c, f, g}, x]
-
Int[((c_) + (d_.)*(x_))/(Sqrt[(e_)*(x_)]*Sqrt[(a_) + (b_.)*(x_)^2]), x_Symbol] :> Simp[Sqrt[x]/Sqrt[e*x] Int
[(c + d*x)/(Sqrt[x]*Sqrt[a + b*x^2]), x], x] /; FreeQ[{a, b, c, d, e}, x]
-
Int[((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_))*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[c Int[(e*x)^m*(a + b
*x^2)^p, x], x] + Simp[d/e Int[(e*x)^(m + 1)*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, m, p}, x]
-
Int[((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Qx = Polynomial
Quotient[(c + d*x)^n, a + b*x^2, x], f = Coeff[PolynomialRemainder[(c + d*x)^n, a + b*x^2, x], x, 0], g = Coef
f[PolynomialRemainder[(c + d*x)^n, a + b*x^2, x], x, 1]}, Simp[(-(e*x)^(m + 1))*(f + g*x)*((a + b*x^2)^(p + 1)
/(2*a*e*(p + 1))), x] + Simp[1/(2*a*(p + 1)) Int[(e*x)^m*(a + b*x^2)^(p + 1)*ExpandToSum[2*a*(p + 1)*Qx + f*
(m + 2*p + 3) + g*(m + 2*p + 4)*x, x], x], x]] /; FreeQ[{a, b, c, d, e, m}, x] && IGtQ[n, 1] && !IntegerQ[m]
&& LtQ[p, -1]
-
Int[((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[d^n*(e*x)^(m + n
- 1)*((a + b*x^2)^(p + 1)/(b*e^(n - 1)*(m + n + 2*p + 1))), x] + Simp[1/(b*(m + n + 2*p + 1)) Int[(e*x)^m*(a
+ b*x^2)^p*ExpandToSum[b*(m + n + 2*p + 1)*(c + d*x)^n - b*d^n*(m + n + 2*p + 1)*x^n - a*d^n*(m + n - 1)*x^(n
- 2), x], x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && IGtQ[n, 1] && !IntegerQ[m] && NeQ[m + n + 2*p + 1, 0]
-
Int[((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Module[{k}, Int[(e*x)^
m*Sum[Binomial[n, 2*k]*c^(n - 2*k)*d^(2*k)*x^(2*k), {k, 0, n/2}]*(a + b*x^2)^p, x] + Simp[1/e Int[(e*x)^(m +
1)*Sum[Binomial[n, 2*k + 1]*c^(n - 2*k - 1)*d^(2*k + 1)*x^(2*k), {k, 0, (n - 1)/2}]*(a + b*x^2)^p, x], x]] /;
FreeQ[{a, b, c, d, e, p}, x] && IGtQ[n, 1] && !IntegerQ[m] && EqQ[m + n + 2*p + 1, 0]
-
Int[(x_)^(m_.)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = Denominator[n]}, Si
mp[k/d Subst[Int[x^(k*(n + 1) - 1)*(-c/d + x^k/d)^m*Simp[(b*c^2 + a*d^2)/d^2 - 2*b*c*(x^k/d^2) + b*(x^(2*k)/
d^2), x]^p, x], x, (c + d*x)^(1/k)], x]] /; FreeQ[{a, b, c, d, m, p}, x] && FractionQ[n] && IntegerQ[p] && Int
egerQ[m]
-
Int[(x_)^(m_.)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[c^(2*n)/a^n Int[x^m*((
a + b*x^2)^(n + p)/(c - d*x)^n), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[b*c^2 + a*d^2, 0] && IGtQ[m, 0] && IL
tQ[n, 0] && IGtQ[n + p + 1/2, 0]
-
Int[(x_)^(m_.)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-(-c)^(m - n - 2))*d^(2
*n - m + 3)*(Sqrt[a + b*x^2]/(2^(n + 1)*b^(n + 2)*(c + d*x))), x] - Simp[d^(2*n - m + 2)/b^(n + 1) Int[(1/Sq
rt[a + b*x^2])*ExpandToSum[(2^(-n - 1)*(-c)^(m - n - 1) - d^m*x^m*(-c + d*x)^(-n - 1))/(c + d*x), x], x], x] /
; FreeQ[{a, b, c, d}, x] && EqQ[b*c^2 + a*d^2, 0] && IGtQ[m, 0] && ILtQ[n, 0] && EqQ[n + p, -3/2]
-
Int[(x_)^(m_)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-(-c)^(m - n - 2))*d^(2*
n - m + 3)*(Sqrt[a + b*x^2]/(2^(n + 1)*b^(n + 2)*(c + d*x))), x] - Simp[d^(2*n + 2)/b^(n + 1) Int[(x^m/Sqrt[
a + b*x^2])*ExpandToSum[((2^(-n - 1)*(-c)^(m - n - 1))/(d^m*x^m) - (-c + d*x)^(-n - 1))/(c + d*x), x], x], x]
/; FreeQ[{a, b, c, d}, x] && EqQ[b*c^2 + a*d^2, 0] && ILtQ[m, 0] && ILtQ[n, 0] && EqQ[n + p, -3/2]
-
Int[((x_)*((a_) + (b_.)*(x_)^2)^(p_))/((c_) + (d_.)*(x_)), x_Symbol] :> Simp[a*((a + b*x^2)^p/(2*b*c*p)), x] +
Simp[b/d Int[x^2*(a + b*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, d, p}, x] && EqQ[b*c^2 + a*d^2, 0]
-
Int[((x_)^(m_)*((a_) + (b_.)*(x_)^2)^(p_))/((c_) + (d_.)*(x_)), x_Symbol] :> Int[x^m*(a/c + b*(x/d))*(a + b*x^
2)^(p - 1), x] /; FreeQ[{a, b, c, d}, x] && EqQ[b*c^2 + a*d^2, 0] && GtQ[p, 0]
-
Int[((x_)^(m_)*((a_) + (b_.)*(x_)^2)^(p_))/((c_) + (d_.)*(x_)), x_Symbol] :> Simp[c*x^m*((a + b*x^2)^(p + 1)/(
2*a*d*p*(c + d*x))), x] - Simp[m/(2*d*p) Int[x^(m - 1)*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, d}, x] && Eq
Q[b*c^2 + a*d^2, 0] && IGtQ[m, 1] && LtQ[p, -1] && EqQ[m + 2*p + 1, 0]
-
Int[((x_)^(m_)*((a_) + (b_.)*(x_)^2)^(p_))/((c_) + (d_.)*(x_)), x_Symbol] :> Simp[x^(m - 1)*((a + b*x^2)^(p +
1)/(2*b*p*(c + d*x))), x] + Simp[1/(2*d^2*p) Int[x^(m - 2)*(a + b*x^2)^p*(c*(m - 1) - d*m*x), x], x] /; Free
Q[{a, b, c, d}, x] && EqQ[b*c^2 + a*d^2, 0] && IGtQ[m, 1] && LtQ[p, -1]
-
Int[((x_)^(m_)*((a_) + (b_.)*(x_)^2)^(p_))/((c_) + (d_.)*(x_)), x_Symbol] :> Simp[(-x^(m + 1))*((a + b*x^2)^(p
+ 1)/(2*a*p*(c + d*x))), x] + Simp[1/(2*c^2*p) Int[x^m*(a + b*x^2)^p*(c*(m + 2*p + 1) - d*(m + 2*p + 2)*x),
x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[b*c^2 + a*d^2, 0] && ILtQ[m + 2*p, 0]
-
Int[((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[c^(2*n)/a^n Int
[(e*x)^m*((a + b*x^2)^(n + p)/(c - d*x)^n), x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && EqQ[b*c^2 + a*d^2, 0]
&& ILtQ[n, -1] && !(IGtQ[m, 0] && ILtQ[m + n, 0] && !GtQ[p, 1])
-
Int[(x_)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(c + d*x)^n*((a + b*x^2)^(p +
1)/(2*b*(n + p + 1))), x] + Simp[n/(2*d*(n + p + 1)) Int[(c + d*x)^(n + 1)*(a + b*x^2)^p, x], x] /; FreeQ[{a
, b, c, d, n, p}, x] && EqQ[b*c^2 + a*d^2, 0] && ((LtQ[n, -1] && !IGtQ[n + p + 1, 0]) || (LtQ[n, 0] && LtQ[p,
-1]) || EqQ[n + 2*p + 2, 0]) && NeQ[n + p + 1, 0]
-
Int[(x_)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(c + d*x)^n*((a + b*x^2)^(p +
1)/(b*(n + 2*p + 2))), x] + Simp[c*(n/(d*(n + 2*p + 2))) Int[(c + d*x)^n*(a + b*x^2)^p, x], x] /; FreeQ[{a,
b, c, d, n, p}, x] && EqQ[b*c^2 + a*d^2, 0] && NeQ[n + 2*p + 2, 0]
-
Int[Sqrt[(c_) + (d_.)*(x_)]/((x_)*Sqrt[(a_) + (b_.)*(x_)^2]), x_Symbol] :> Simp[-2*c Subst[Int[1/(a - c*x^2)
, x], x, Sqrt[a + b*x^2]/Sqrt[c + d*x]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[b*c^2 + a*d^2, 0]
-
Int[((e_.)*(x_))^(n_)*((c_) + (d_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[d^2*(e*x)^(n + 1)
*(c + d*x)^(m - 2)*((a + b*x^2)^(p + 1)/(b*e*(n + p + 2))), x] + Simp[c*((2*n + p + 3)/(n + p + 2)) Int[(e*x
)^n*(c + d*x)^(m - 1)*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && EqQ[b*c^2 + a*d^2, 0] &&
EqQ[m + p - 1, 0] && !LtQ[n, -1] && IntegerQ[2*p]
-
Int[((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*x)^(m + 1)*(c
+ d*x)^n*((a + b*x^2)^p/(e*(m + 1))), x] + Simp[b*(n/(d*e*(m + 1))) Int[(e*x)^(m + 1)*(c + d*x)^(n + 1)*(a +
b*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[b*c^2 + a*d^2, 0] && EqQ[n + p, 0] && GtQ[p, 0] &&
LtQ[m, -1] && !(IntegerQ[m + p] && LeQ[m + p + 2, 0])
-
Int[((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-(e*x)^(m + 1))*
(c + d*x)^n*((a + b*x^2)^p/(e*(n - m - 1))), x] - Simp[b*c*(n/(d^2*(n - m - 1))) Int[(e*x)^m*(c + d*x)^(n +
1)*(a + b*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && EqQ[b*c^2 + a*d^2, 0] && EqQ[n + p, 0] && Gt
Q[p, 0] && NeQ[m - n + 1, 0] && !IGtQ[m, 0] && !(IntegerQ[m + p] && LtQ[m + p + 2, 0]) && RationalQ[m]
-
Int[((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[d*(e*x)^m*(c + d*
x)^(n - 1)*((a + b*x^2)^(p + 1)/(b*(p + 1))), x] - Simp[d*e*(m/(b*(p + 1))) Int[(e*x)^(m - 1)*(c + d*x)^(n -
1)*(a + b*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[b*c^2 + a*d^2, 0] && EqQ[n + p, 0] && LtQ[
p, -1] && GtQ[m, 0]
-
Int[((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-c)*(e*x)^(m + 1
)*(c + d*x)^(n - 1)*((a + b*x^2)^(p + 1)/(a*e*(p + 1))), x] + Simp[c*((m - n + 2)/(a*(p + 1))) Int[(e*x)^m*(
c + d*x)^(n - 1)*(a + b*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && EqQ[b*c^2 + a*d^2, 0] && EqQ[n
+ p, 0] && LtQ[p, -1] && RationalQ[m]
-
Int[((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-d^2)*(e*x)^(m +
1)*(c + d*x)^(n - 1)*((a + b*x^2)^(p + 1)/(b*c*e*(m + 1))), x] - Simp[d*((n - m - 2)/(c*e*(m + 1))) Int[(e*
x)^(m + 1)*(c + d*x)^n*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, n, p}, x] && EqQ[b*c^2 + a*d^2, 0] && Eq
Q[n + p, 0] && LtQ[m, -1] && (IntegerQ[2*p] || IntegerQ[m])
-
Int[((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-d^2)*(e*x)^(m +
1)*(c + d*x)^(n - 2)*((a + b*x^2)^(p + 1)/(b*e*(m + 1))), x] + Simp[d*((2*m + p + 3)/(e*(m + 1))) Int[(e*x)
^(m + 1)*(c + d*x)^(n - 1)*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, n, p}, x] && EqQ[b*c^2 + a*d^2, 0] &
& EqQ[n + p - 1, 0] && LtQ[m, -1] && IntegerQ[p + 1/2]
-
Int[(x_)^(m_)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(c + d*x)^(m + n - 1)*((a
+ b*x^2)^(p + 1)/(b*d^(m - 1)*(m + n + 2*p + 1))), x] + Simp[1/(d^m*(m + n + 2*p + 1)) Int[(c + d*x)^n*(a +
b*x^2)^p*ExpandToSum[d^m*(m + n + 2*p + 1)*x^m - (m + n + 2*p + 1)*(c + d*x)^m + c*(c + d*x)^(m - 2)*(c*(m +
n - 1) + c*(m + n + 2*p + 1) + 2*d*(m + n + p)*x), x], x], x] /; FreeQ[{a, b, c, d, n, p}, x] && EqQ[b*c^2 + a
*d^2, 0] && IGtQ[m, 1] && NeQ[m + n + 2*p + 1, 0] && (IntegerQ[2*p] || ILtQ[m + n, 0])
-
Int[(x_)^(m_.)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Int[ExpandIntegrand[x^m*(c +
d*x)^n*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, d, p}, x] && EqQ[b*c^2 + a*d^2, 0] && IntegerQ[2*p] && Integer
Q[m] && ILtQ[n, 0]
-
Int[((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[c^(2*n)/a^n Int
[(e*x)^m*((a + b*x^2)^(n + p)/(c - d*x)^n), x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && EqQ[b*c^2 + a*d^2, 0]
&& ILtQ[n, 0]
-
Int[((e_.)*(x_))^(m_.)*((c_) + (d_.)*(x_))^(n_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Int[(e*x)^m*(c + d*x
)^(n + p)*(a/c + (b/d)*x)^p, x] /; FreeQ[{a, b, c, d, e, m, n}, x] && EqQ[b*c^2 + a*d^2, 0] && GtQ[a, 0] && Gt
Q[c, 0]
-
Int[((e_.)*(x_))^(m_.)*((c_) + (d_.)*(x_))^(n_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[a^p*c^IntPart[n
]*((c + d*x)^FracPart[n]/(1 + d*(x/c))^FracPart[n]) Int[(e*x)^m*(1 - d*(x/c))^p*(1 + d*(x/c))^(n + p), x], x
] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && EqQ[b*c^2 + a*d^2, 0] && GtQ[a, 0]
-
Int[((e_.)*(x_))^(m_.)*((c_) + (d_.)*(x_))^(n_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(a + b*x^2)^Fra
cPart[p]/((c + d*x)^FracPart[p]*(a/c + (b*x)/d)^FracPart[p]) Int[(e*x)^m*(c + d*x)^(n + p)*(a/c + (b/d)*x)^p
, x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && EqQ[b*c^2 + a*d^2, 0]
-
Int[(x_.)/(((c_) + (d_.)*(x_))*((a_) + (b_.)*(x_)^2)), x_Symbol] :> Simp[(-c)*(d/(b*c^2 + a*d^2)) Int[1/(c +
d*x), x], x] + Simp[1/(b*c^2 + a*d^2) Int[(a*d + b*c*x)/(a + b*x^2), x], x] /; FreeQ[{a, b, c, d}, x] && Ne
Q[b*c^2 + a*d^2, 0]
-
Int[(x_.)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[c*(c + d*x)^(n + 1)*((a + b*x
^2)^(p + 1)/(2*(p + 1)*(b*c^2 + a*d^2))), x] + Simp[a*(d/(b*c^2 + a*d^2)) Int[(c + d*x)^(n + 1)*(a + b*x^2)^
p, x], x] /; FreeQ[{a, b, c, d, n, p}, x] && EqQ[Simplify[n + 2*p + 3], 0] && NeQ[b*c^2 + a*d^2, 0]
-
Int[(x_)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-(c + d*x)^(n + 1))*(a + b*x^
2)^p*((c*(a*d^2 + b*c^2*(2*p + 1)) - d*(a*d^2*(n + 1) + b*c^2*(n - 2*p + 1))*x)/(d^2*(n + 1)*(n + 2)*(b*c^2 +
a*d^2))), x] + Simp[b*(p/(d^2*(n + 1)*(n + 2)*(b*c^2 + a*d^2))) Int[(c + d*x)^(n + 2)*(a + b*x^2)^(p - 1)*Si
mp[2*a*c*d*(n + 2) - (2*a*d^2*(n + 1) - 2*b*c^2*(2*p + 1))*x, x], x], x] /; FreeQ[{a, b, c, d}, x] && GtQ[p, 0
] && LtQ[n, -2] && LtQ[n + 2*p, 0] && !ILtQ[n + 2*p + 3, 0]
-
Int[(x_)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-(c + d*x)^(n + 1))*(a + b*x^
2)^p*((c*(2*p + 1) - d*(n + 1)*x)/(d^2*(n + 1)*(n + 2*p + 2))), x] + Simp[2*(p/(d^2*(n + 1)*(n + 2*p + 2)))
Int[(c + d*x)^(n + 1)*(a + b*x^2)^(p - 1)*(a*d*(n + 1) + b*c*(2*p + 1)*x), x], x] /; FreeQ[{a, b, c, d}, x] &&
GtQ[p, 0] && LtQ[n, -1] && !ILtQ[n + 2*p + 1, 0]
-
Int[(x_)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-(c + d*x)^(n + 1))*(a + b*x^
2)^p*((c*(2*p + 1) - d*(n + 2*p + 1)*x)/(d^2*(n + 2*p + 1)*(n + 2*p + 2))), x] + Simp[2*(p/(d^2*(n + 2*p + 1)*
(n + 2*p + 2))) Int[(c + d*x)^n*(a + b*x^2)^(p - 1)*Simp[a*c*d*n + (b*c^2*(2*p + 1) + a*d^2*(n + 2*p + 1))*x
, x], x], x] /; FreeQ[{a, b, c, d, n}, x] && GtQ[p, 0] && LeQ[-1, n, 0] && !ILtQ[n + 2*p, 0]
-
Int[(x_)*((c_) + (d_.)*(x_))^(n_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(c + d*x)^n*((a + b*x^2)^(p +
1)/(2*b*(p + 1))), x] - Simp[d*(n/(2*b*(p + 1))) Int[(c + d*x)^(n - 1)*(a + b*x^2)^(p + 1), x], x] /; FreeQ
[{a, b, c, d}, x] && LtQ[p, -1] && GtQ[n, 0] && (IntegerQ[n] || IntegerQ[p] || IntegersQ[2*n, 2*p])
-
Int[(x_)*((c_) + (d_.)*(x_))^(n_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(c + d*x)^(n + 1)*(c - d*x)*(
(a + b*x^2)^(p + 1)/(2*(p + 1)*(b*c^2 + a*d^2))), x] - Simp[d/(2*(p + 1)*(b*c^2 + a*d^2)) Int[(c + d*x)^n*(a
+ b*x^2)^(p + 1)*(c*n - d*(n + 2*p + 4)*x), x], x] /; FreeQ[{a, b, c, d, n}, x] && LtQ[p, -1] && NeQ[b*c^2 +
a*d^2, 0]
-
Int[(x_)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-c)*(c + d*x)^(n + 1)*((a + b
*x^2)^(p + 1)/((n + 1)*(b*c^2 + a*d^2))), x] + Simp[1/((n + 1)*(b*c^2 + a*d^2)) Int[(c + d*x)^(n + 1)*(a + b
*x^2)^p*(a*d*(n + 1) + b*c*(n + 2*p + 3)*x), x], x] /; FreeQ[{a, b, c, d, p}, x] && LtQ[n, -1] && NeQ[b*c^2 +
a*d^2, 0]
-
Int[((x_)*((c_) + (d_.)*(x_))^(n_))/((a_) + (b_.)*(x_)^2), x_Symbol] :> Simp[(c + d*x)^n/(b*n), x] - Simp[1/b
Int[(c + d*x)^(n - 1)*((a*d - b*c*x)/(a + b*x^2)), x], x] /; FreeQ[{a, b, c, d}, x] && GtQ[n, 0]
-
Int[(x_)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(c + d*x)^n*((a + b*x^2)^(p +
1)/(b*(n + 2*p + 2))), x] - Simp[n/(b*(n + 2*p + 2)) Int[(c + d*x)^(n - 1)*(a + b*x^2)^p*(a*d - b*c*x), x],
x] /; FreeQ[{a, b, c, d, p}, x] && GtQ[n, 0] && NeQ[n + 2*p + 2, 0]
-
Int[(x_)/(((c_) + (d_.)*(x_))*((a_) + (b_.)*(x_)^2)^(3/4)), x_Symbol] :> With[{q = Rt[-a, 4]}, Simp[(c/(2*d^2*
q^3))*ArcTan[c*q*((a + b*x^2)^(1/4)/(q^2*(c + d*x) - c*Sqrt[a + b*x^2]))], x] + Simp[(c/(2*d^2*q^3))*ArcTanh[c
*q*((a + b*x^2)^(1/4)/(q^2*(c + d*x) + c*Sqrt[a + b*x^2]))], x]] /; FreeQ[{a, b, c, d}, x] && EqQ[b*c^2 + 2*a*
d^2, 0] && NegQ[a]
-
Int[(x_)/(((c_) + (d_.)*(x_))*((a_) + (b_.)*(x_)^2)^(3/4)), x_Symbol] :> Simp[(-a - b*x^2)^(3/4)/(a + b*x^2)^(
3/4) Int[x/((c + d*x)*(-a - b*x^2)^(3/4)), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[b*c^2 + 2*a*d^2, 0] && Po
sQ[a]
-
Int[((A_.) + (B_.)*(x_))/(Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(a_) + (b_.)*(x_)^2]), x_Symbol] :> Simp[-2/d^2 Subst
[Int[(B*c - A*d - B*x^2)/Sqrt[(b*c^2 + a*d^2)/d^2 - 2*b*c*(x^2/d^2) + b*(x^4/d^2)], x], x, Sqrt[c + d*x]], x]
/; FreeQ[{a, b, c, d, A, B}, x] && PosQ[b/a]
-
Int[((A_.) + (B_.)*(x_))/(Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(a_) + (b_.)*(x_)^2]), x_Symbol] :> Simp[B/d Int[Sqrt
[c + d*x]/Sqrt[a + b*x^2], x], x] - Simp[(B*c - A*d)/d Int[1/(Sqrt[c + d*x]*Sqrt[a + b*x^2]), x], x] /; Free
Q[{a, b, c, d, A, B}, x] && NegQ[b/a]
-
Int[(x_)^(m_)*((c_) + (d_.)*(x_))^(n_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Qx = PolynomialQuotient
[x^m*(c + d*x)^n, a + b*x^2, x], e = Coeff[PolynomialRemainder[x^m*(c + d*x)^n, a + b*x^2, x], x, 0], f = Coef
f[PolynomialRemainder[x^m*(c + d*x)^n, a + b*x^2, x], x, 1]}, Simp[(a*f - b*e*x)*((a + b*x^2)^(p + 1)/(2*a*b*(
p + 1))), x] + Simp[1/(2*a*(p + 1)) Int[(c + d*x)^n*(a + b*x^2)^(p + 1)*ExpandToSum[(2*a*(p + 1)*Qx)/(c + d*
x)^n + (e*(2*p + 3))/(c + d*x)^n, x], x], x]] /; FreeQ[{a, b, c, d}, x] && IGtQ[m, 1] && LtQ[p, -1] && ILtQ[n,
0] && NeQ[b*c^2 + a*d^2, 0]
-
Int[(x_)^(m_)*((c_) + (d_.)*(x_))^(n_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Qx = PolynomialQuotient
[x^m, a + b*x^2, x], e = Coeff[PolynomialRemainder[x^m, a + b*x^2, x], x, 0], f = Coeff[PolynomialRemainder[x^
m, a + b*x^2, x], x, 1]}, Simp[(-(c + d*x)^(n + 1))*(a + b*x^2)^(p + 1)*((a*(d*e - c*f) + (b*c*e + a*d*f)*x)/(
2*a*(p + 1)*(b*c^2 + a*d^2))), x] + Simp[1/(2*a*(p + 1)*(b*c^2 + a*d^2)) Int[(c + d*x)^n*(a + b*x^2)^(p + 1)
*ExpandToSum[2*a*(p + 1)*(b*c^2 + a*d^2)*Qx + e*(b*c^2*(2*p + 3) + a*d^2*(n + 2*p + 3)) - a*c*d*f*n + d*(b*c*e
+ a*d*f)*(n + 2*p + 4)*x, x], x], x]] /; FreeQ[{a, b, c, d, n}, x] && IGtQ[m, 1] && LtQ[p, -1] && NeQ[b*c^2 +
a*d^2, 0]
-
Int[(x_)^(m_)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Qx = PolynomialQuotient[
x^m, c + d*x, x], R = PolynomialRemainder[x^m, c + d*x, x]}, Simp[d*R*(c + d*x)^(n + 1)*((a + b*x^2)^(p + 1)/(
(n + 1)*(b*c^2 + a*d^2))), x] + Simp[1/((n + 1)*(b*c^2 + a*d^2)) Int[(c + d*x)^(n + 1)*(a + b*x^2)^p*ExpandT
oSum[(n + 1)*(b*c^2 + a*d^2)*Qx + b*c*R*(n + 1) - b*d*R*(n + 2*p + 3)*x, x], x], x]] /; FreeQ[{a, b, c, d, p},
x] && IGtQ[m, 1] && LtQ[n, -1] && NeQ[b*c^2 + a*d^2, 0]
-
Int[(x_)^(m_)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(c + d*x)^(m + n - 1)*((a
+ b*x^2)^(p + 1)/(b*d^(m - 1)*(m + n + 2*p + 1))), x] + Simp[1/(b*d^m*(m + n + 2*p + 1)) Int[(c + d*x)^n*(a
+ b*x^2)^p*ExpandToSum[b*d^m*(m + n + 2*p + 1)*x^m - b*(m + n + 2*p + 1)*(c + d*x)^m - (c + d*x)^(m - 2)*(a*d
^2*(m + n - 1) - b*c^2*(m + n + 2*p + 1) - 2*b*c*d*(m + n + p)*x), x], x], x] /; FreeQ[{a, b, c, d, n, p}, x]
&& IGtQ[m, 1] && NeQ[m + n + 2*p + 1, 0] && IntegerQ[2*p]
-
Int[((x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_))/((c_) + (d_.)*(x_)), x_Symbol] :> Simp[1/d Int[x^(m - 1)*(a + b*
x^2)^p, x], x] - Simp[c/d Int[x^(m - 1)*((a + b*x^2)^p/(c + d*x)), x], x] /; FreeQ[{a, b, c, d, p}, x] && IG
tQ[m, 0] && LtQ[-1, p, 0]
-
Int[(((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_))/(x_), x_Symbol] :> Simp[a/c Int[(c + d*x)^(n + 1)*
((a + b*x^2)^(p - 1)/x), x], x] - Simp[1/c Int[(c + d*x)^n*(a*d - b*c*x)*(a + b*x^2)^(p - 1), x], x] /; Free
Q[{a, b, c, d}, x] && GtQ[p, 0] && ILtQ[n, 0]
-
Int[(((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_))/((a_) + (b_.)*(x_)^2), x_Symbol] :> Simp[e*(d/b) Int[(e*x)^
(m - 1)*(c + d*x)^(n - 2)*(2*c + d*x), x], x] - Simp[e/b Int[(e*x)^(m - 1)*(c + d*x)^(n - 2)*(Simp[2*a*c*d -
(b*c^2 - a*d^2)*x, x]/(a + b*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && GtQ[n, 1] && GtQ[m, 0] && !Intege
rQ[m] && !IntegerQ[n]
-
Int[(((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_))/((a_) + (b_.)*(x_)^2), x_Symbol] :> Simp[e^2/b Int[(e*x)^(m
- 2)*(c + d*x)^n, x], x] - Simp[a*(e^2/b) Int[(e*x)^(m - 2)*((c + d*x)^n/(a + b*x^2)), x], x] /; FreeQ[{a,
b, c, d, e}, x] && LtQ[0, n, 1] && GtQ[m, 1] && !IntegerQ[m] && !IntegerQ[n]
-
Int[(((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_))/((a_) + (b_.)*(x_)^2), x_Symbol] :> Simp[d*(e/b) Int[(e*x)^
(m - 1)*(c + d*x)^(n - 1), x], x] - Simp[e/b Int[(e*x)^(m - 1)*(c + d*x)^(n - 1)*((a*d - b*c*x)/(a + b*x^2))
, x], x] /; FreeQ[{a, b, c, d, e}, x] && LtQ[0, n, 1] && LtQ[0, m, 1] && !IntegerQ[m] && !IntegerQ[n]
-
Int[(((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_))/((a_) + (b_.)*(x_)^2), x_Symbol] :> Simp[e^(m + 1/2) Int[Ex
pandIntegrand[1/(Sqrt[e*x]*Sqrt[c + d*x]), x^(m + 1/2)*((c + d*x)^(n + 1/2)/(a + b*x^2)), x], x], x] /; FreeQ[
{a, b, c, d, e}, x] && IGtQ[n + 1/2, 0] && ILtQ[m - 1/2, 0]
-
Int[(((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_))/((a_) + (b_.)*(x_)^2), x_Symbol] :> Simp[c/a Int[(e*x)^m*(c
+ d*x)^(n - 1), x], x] + Simp[1/(a*e) Int[((e*x)^(m + 1)*(c + d*x)^(n - 1)*(a*d - b*c*x))/(a + b*x^2), x],
x] /; FreeQ[{a, b, c, d, e}, x] && GtQ[n, 0] && LtQ[m, -1] && !IntegerQ[m] && !IntegerQ[n]
-
Int[(((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_))/((a_) + (b_.)*(x_)^2), x_Symbol] :> Simp[(-e)*c*(d/(b*c^2 + a
*d^2)) Int[(e*x)^(m - 1)*(c + d*x)^n, x], x] + Simp[e/(b*c^2 + a*d^2) Int[(e*x)^(m - 1)*(c + d*x)^(n + 1)*
((a*d + b*c*x)/(a + b*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && LtQ[n, -1] && GtQ[m, 0] && !IntegerQ[m] &
& !IntegerQ[n]
-
Int[Sqrt[(e_.)*(x_)]/(Sqrt[(c_) + (d_.)*(x_)]*((a_) + (b_.)*(x_)^2)), x_Symbol] :> Simp[e/(2*b) Int[1/(Sqrt[
e*x]*Sqrt[c + d*x]*(Rt[-a/b, 2] + x)), x], x] - Simp[e/(2*b) Int[1/(Sqrt[e*x]*Sqrt[c + d*x]*(Rt[-a/b, 2] - x
)), x], x] /; FreeQ[{a, b, c, d, e}, x]
-
Int[((e_.)*(x_))^(m_)/(Sqrt[(c_) + (d_.)*(x_)]*((a_) + (b_.)*(x_)^2)), x_Symbol] :> Simp[e^(m + 1/2) Int[Exp
andIntegrand[1/(Sqrt[e*x]*Sqrt[c + d*x]), x^(m + 1/2)/(a + b*x^2), x], x], x] /; FreeQ[{a, b, c, d, e}, x] &&
IGtQ[m - 1/2, 0]
-
Int[((e_.)*(x_))^(m_.)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Int[ExpandIntegrand[(
e*x)^m*(c + d*x)^n*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && ILtQ[p, 0]
-
Int[((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = Denominator[
m]}, Simp[k/e Subst[Int[x^(k*(m + 1) - 1)*(c + d*(x^k/e))^n*(a + b*(x^(2*k)/e^2))^p, x], x, (e*x)^(1/k)], x]
] /; FreeQ[{a, b, c, d, e, p}, x] && ILtQ[n, 0] && FractionQ[m]
-
Int[(x_)^(m_.)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Int[ExpandIntegrand[(a + b*x^
2)^p, x^m*(c + d*x)^n, x], x] /; FreeQ[{a, b, c, d, p}, x] && ILtQ[n, 0] && IntegerQ[m] && IntegerQ[2*p]
-
Int[Sqrt[(e_.)*(x_)]/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^2]), x_Symbol] :> Simp[e/d Int[1/(Sqrt[e*x]
*Sqrt[a + b*x^2]), x], x] - Simp[c*(e/d) Int[1/(Sqrt[e*x]*(c + d*x)*Sqrt[a + b*x^2]), x], x] /; FreeQ[{a, b,
c, d, e}, x]
-
Int[1/(Sqrt[(e_.)*(x_)]*((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^2]), x_Symbol] :> Simp[1/Sqrt[a] Int[1/(S
qrt[e*x]*(c + d*x)*Sqrt[1 - Rt[-b/a, 2]*x]*Sqrt[1 + Rt[-b/a, 2]*x]), x], x] /; FreeQ[{a, b, c, d, e}, x] && Gt
Q[a, 0]
-
Int[1/(Sqrt[(e_.)*(x_)]*((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^2]), x_Symbol] :> Simp[Sqrt[1 + b*(x^2/a)]/
Sqrt[a + b*x^2] Int[1/(Sqrt[e*x]*(c + d*x)*Sqrt[1 + b*(x^2/a)]), x], x] /; FreeQ[{a, b, c, d, e}, x] && !Gt
Q[a, 0]
-
Int[((x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_))/((c_) + (d_.)*(x_)), x_Symbol] :> Simp[c Int[x^m*((a + b*x^2)^p/
(c^2 - d^2*x^2)), x], x] - Simp[d Int[x^(m + 1)*((a + b*x^2)^p/(c^2 - d^2*x^2)), x], x] /; FreeQ[{a, b, c, d
, m, p}, x]
-
Int[(x_)^(m_.)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Int[ExpandIntegrand[x^m*(a +
b*x^2)^p, (c/(c^2 - d^2*x^2) - d*(x/(c^2 - d^2*x^2)))^(-n), x], x] /; FreeQ[{a, b, c, d, m, p}, x] && ILtQ[n,
-1]
-
Int[((e_)*(x_))^(m_.)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*x)^m/x^m Int
[x^m*(c + d*x)^n*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && ILtQ[n, 0]
-
Int[(x_)^(m_.)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[1/d Int[x^(m - 1)*(c +
d*x)^(n + 1)*(a + b*x^2)^p, x], x] - Simp[c/d Int[x^(m - 1)*(c + d*x)^n*(a + b*x^2)^p, x], x] /; FreeQ[{a,
b, c, d, n, p}, x] && IGtQ[m, 0]
-
Int[Sqrt[(a_) + (b_.)*(x_)^2]/((x_)*Sqrt[(c_) + (d_.)*(x_)]), x_Symbol] :> Simp[-2 Subst[Int[Sqrt[(b*c^2 + a
*d^2)/d^2 - 2*b*c*(x^2/d^2) + b*(x^4/d^2)]/(c - x^2), x], x, Sqrt[c + d*x]], x] /; FreeQ[{a, b, c, d}, x] && P
osQ[b/a]
-
Int[(((c_) + (d_.)*(x_))^(n_)*Sqrt[(a_) + (b_.)*(x_)^2])/(x_), x_Symbol] :> Simp[a*c^(n + 1/2) Int[1/(x*Sqrt
[c + d*x]*Sqrt[a + b*x^2]), x], x] + Int[(1/(Sqrt[c + d*x]*Sqrt[a + b*x^2]))*ExpandToSum[((-a)*c^(n + 1/2) + a
*(c + d*x)^(n + 1/2) + b*x^2*(c + d*x)^(n + 1/2))/x, x], x] /; FreeQ[{a, b, c, d}, x] && IGtQ[n + 3/2, 0]
-
Int[(((c_) + (d_.)*(x_))^(n_)*Sqrt[(a_) + (b_.)*(x_)^2])/(x_), x_Symbol] :> Simp[a*c^(n + 1/2) Int[1/(x*Sqrt
[c + d*x]*Sqrt[a + b*x^2]), x], x] + Int[((c + d*x)^n/Sqrt[a + b*x^2])*ExpandToSum[(a + b*x^2 - a*c^(n + 1/2)*
(c + d*x)^(-n - 1/2))/x, x], x] /; FreeQ[{a, b, c, d}, x] && ILtQ[n + 1/2, 0]
-
Int[((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_)*Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[c^(n - 1/2)*(e*x)^
(m + 1)*Sqrt[c + d*x]*(Sqrt[a + b*x^2]/(e*(m + 1))), x] - Simp[1/(2*e*(m + 1)) Int[((e*x)^(m + 1)/(Sqrt[c +
d*x]*Sqrt[a + b*x^2]))*ExpandToSum[(2*a*c^(n + 1/2)*(m + 1) + a*c^(n - 1/2)*d*(2*m + 3)*x + 2*b*c^(n + 1/2)*(m
+ 2)*x^2 + b*c^(n - 1/2)*d*(2*m + 5)*x^3 - 2*a*(m + 1)*(c + d*x)^(n + 1/2) - 2*b*(m + 1)*x^2*(c + d*x)^(n + 1
/2))/x, x], x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[n + 3/2, 0] && LtQ[m, -1] && IntegerQ[2*m]
-
Int[((e_.)*(x_))^(m_.)*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[2*(e*x)^(m + 1)*Sq
rt[c + d*x]*(Sqrt[a + b*x^2]/(e*(2*m + 5))), x] + Simp[1/(2*m + 5) Int[(e*x)^m*((3*a*c + 2*a*d*x + b*c*x^2)/
(Sqrt[c + d*x]*Sqrt[a + b*x^2])), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && !LtQ[m, -1] && IntegerQ[2*m]
-
Int[Sqrt[(c_) + (d_.)*(x_)]/((x_)*Sqrt[(a_) + (b_.)*(x_)^2]), x_Symbol] :> Simp[-2 Subst[Int[x^2/((c - x^2)*
Sqrt[(b*c^2 + a*d^2)/d^2 - 2*b*c*(x^2/d^2) + b*(x^4/d^2)]), x], x, Sqrt[c + d*x]], x] /; FreeQ[{a, b, c, d}, x
] && PosQ[b/a]
-
Int[1/((x_)*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(a_) + (b_.)*(x_)^2]), x_Symbol] :> Simp[-2 Subst[Int[1/((c - x^2)*
Sqrt[(b*c^2 + a*d^2)/d^2 - 2*b*c*(x^2/d^2) + b*(x^4/d^2)]), x], x, Sqrt[c + d*x]], x] /; FreeQ[{a, b, c, d}, x
] && PosQ[b/a]
-
Int[1/((x_)*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(a_) + (b_.)*(x_)^2]), x_Symbol] :> With[{q = Rt[-b/a, 2]}, Simp[1/Sq
rt[a] Int[1/(x*Sqrt[c + d*x]*Sqrt[1 - q*x]*Sqrt[1 + q*x]), x], x]] /; FreeQ[{a, b, c, d}, x] && NegQ[b/a] &&
GtQ[a, 0]
-
Int[1/((x_)*Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(a_) + (b_.)*(x_)^2]), x_Symbol] :> Simp[Sqrt[1 + b*(x^2/a)]/Sqrt[a +
b*x^2] Int[1/(x*Sqrt[c + d*x]*Sqrt[1 + b*(x^2/a)]), x], x] /; FreeQ[{a, b, c, d}, x] && NegQ[b/a] && !GtQ[
a, 0]
-
Int[((c_) + (d_.)*(x_))^(n_)/((x_)*Sqrt[(a_) + (b_.)*(x_)^2]), x_Symbol] :> Simp[c^(n + 1/2) Int[1/(x*Sqrt[c
+ d*x]*Sqrt[a + b*x^2]), x], x] - Int[(1/(Sqrt[c + d*x]*Sqrt[a + b*x^2]))*ExpandToSum[(c^(n + 1/2) - (c + d*x
)^(n + 1/2))/x, x], x] /; FreeQ[{a, b, c, d}, x] && IGtQ[n - 1/2, 0]
-
Int[((c_) + (d_.)*(x_))^(n_)/((x_)*Sqrt[(a_) + (b_.)*(x_)^2]), x_Symbol] :> Simp[c^(n + 1/2) Int[1/(x*Sqrt[c
+ d*x]*Sqrt[a + b*x^2]), x], x] + Int[((c + d*x)^n/Sqrt[a + b*x^2])*ExpandToSum[(1 - c^(n + 1/2)*(c + d*x)^(-
n - 1/2))/x, x], x] /; FreeQ[{a, b, c, d}, x] && ILtQ[n + 1/2, 0]
-
Int[(((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_))/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[c^(n - 1/2)*(e*x
)^(m + 1)*Sqrt[c + d*x]*(Sqrt[a + b*x^2]/(a*e*(m + 1))), x] - Simp[1/(2*a*e*(m + 1)) Int[((e*x)^(m + 1)/(Sqr
t[c + d*x]*Sqrt[a + b*x^2]))*ExpandToSum[(2*a*c^(n + 1/2)*(m + 1) + a*c^(n - 1/2)*d*(2*m + 3)*x + 2*b*c^(n + 1
/2)*(m + 2)*x^2 + b*c^(n - 1/2)*d*(2*m + 5)*x^3 - 2*a*(m + 1)*(c + d*x)^(n + 1/2))/x, x], x], x] /; FreeQ[{a,
b, c, d, e}, x] && IGtQ[n + 3/2, 0] && LtQ[m, -1] && IntegerQ[2*m]
-
Int[(x_)^(m_.)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Int[ExpandIntegrand[(a + b*x^
2)^p/Sqrt[c + d*x], x^m*(c + d*x)^(n + 1/2), x], x] /; FreeQ[{a, b, c, d, m}, x] && IntegerQ[p + 1/2] && Integ
erQ[n + 1/2] && IntegerQ[m]
-
Int[((e_.)*(x_))^(m_.)*((c_) + (d_.)*(x_))^(n_.)*((a_) + (b_.)*(x_)^2)^(p_.), x_Symbol] :> Unintegrable[(e*x)^
m*(c + d*x)^n*(a + b*x^2)^p, x] /; FreeQ[{a, b, c, d, e, m, n, p}, x]
-
Int[((c_) + (d_.)*(x_))^(m_.)*((e_) + (f_.)*(x_))^(n_.)*((a_) + (b_.)*(x_)^2)^(p_.), x_Symbol] :> Int[(c + d*x
)^(m + p)*(e + f*x)^n*(a/c + (b/d)*x)^p, x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[b*c^2 + a*d^2, 0]
&& (IntegerQ[p] || (GtQ[a, 0] && GtQ[c, 0] && !IntegerQ[m]))
-
Int[((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))^(n_.)*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(g/e)
^n Int[(d + e*x)^(m + n)*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g, m, p}, x] && EqQ[e*f - d*g, 0] &&
IntegerQ[n] && !(IntegerQ[m] && SimplerQ[f + g*x, d + e*x])
-
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(e/g)^m
Int[(f + g*x)^(m + n)*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g, m, n, p}, x] && EqQ[e*f - d*g, 0] &
& GtQ[e/g, 0]
-
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*
x)^m/(f + g*x)^m Int[(f + g*x)^(m + n)*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g, m, n, p}, x] && EqQ
[e*f - d*g, 0]
-
Int[((c_) + (d_.)*(x_))^(m_.)*((e_) + (f_.)*(x_))^(n_.)*((a_.) + (b_.)*(x_)^2)^(p_.), x_Symbol] :> Int[(c*e +
d*f*x^2)^m*(a + b*x^2)^p, x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[m, n] && EqQ[d*e + c*f, 0] && (In
tegerQ[m] || (GtQ[c, 0] && GtQ[e, 0]))
-
Int[((c_) + (d_.)*(x_))^(m_.)*((e_) + (f_.)*(x_))^(n_.)*((a_.) + (b_.)*(x_)^2), x_Symbol] :> Simp[a*x*(c + d*x
)^(m + 1)*((e + f*x)^(n + 1)/(c*e)), x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && EqQ[m, n] && EqQ[d*e + c*f, 0
] && EqQ[b*c*e - a*d*f*(2*m + 3), 0]
-
Int[((c_) + (d_.)*(x_))^(m_.)*((e_) + (f_.)*(x_))^(n_.)*((a_.) + (b_.)*(x_)^2), x_Symbol] :> Simp[(b*c*e - a*d
*f)*x*(c + d*x)^(m + 1)*((e + f*x)^(n + 1)/(2*c*d*e*f*(m + 1))), x] - Simp[(b*c*e - a*d*f*(2*m + 3))/(2*c*d*e*
f*(m + 1)) Int[(c + d*x)^(m + 1)*(e + f*x)^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && EqQ[m, n
] && EqQ[d*e + c*f, 0] && LtQ[m, -1]
-
Int[((c_) + (d_.)*(x_))^(m_.)*((e_) + (f_.)*(x_))^(n_.)*((a_.) + (b_.)*(x_)^2), x_Symbol] :> Simp[b*x*(c + d*x
)^(m + 1)*((e + f*x)^(n + 1)/(d*f*(2*m + 3))), x] - Simp[(b*c*e - a*d*f*(2*m + 3))/(d*f*(2*m + 3)) Int[(c +
d*x)^m*(e + f*x)^n, x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && EqQ[m, n] && EqQ[d*e + c*f, 0] && !LtQ[m,
-1]
-
Int[(Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(e_) + (f_.)*(x_)])/((a_.) + (b_.)*(x_)^2), x_Symbol] :> Simp[d*(f/b) Int[
1/(Sqrt[c + d*x]*Sqrt[e + f*x]), x], x] + Simp[1/b Int[(b*c*e - a*d*f)/(Sqrt[c + d*x]*Sqrt[e + f*x]*(a + b*x
^2)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[d*e + c*f, 0]
-
Int[((c_) + (d_.)*(x_))^(m_.)*((e_) + (f_.)*(x_))^(n_.)*((a_.) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(c + d*
x)^FracPart[m]*((e + f*x)^FracPart[m]/(c*e + d*f*x^2)^FracPart[m]) Int[(c*e + d*f*x^2)^m*(a + b*x^2)^p, x],
x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[m, n] && EqQ[d*e + c*f, 0] && !(EqQ[p, 2] && LtQ[m, -1])
-
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[2/e^(n
+ 2*p + 1) Subst[Int[x^(2*m + 1)*(e*f - d*g + g*x^2)^n*(c*d^2 + a*e^2 - 2*c*d*x^2 + c*x^4)^p, x], x, Sqrt[d
+ e*x]], x] /; FreeQ[{a, c, d, e, f, g}, x] && IGtQ[p, 0] && ILtQ[n, 0] && IntegerQ[m + 1/2]
-
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> With[{Qx = P
olynomialQuotient[(a + c*x^2)^p, d + e*x, x], R = PolynomialRemainder[(a + c*x^2)^p, d + e*x, x]}, Simp[R*(d +
e*x)^(m + 1)*((f + g*x)^(n + 1)/((m + 1)*(e*f - d*g))), x] + Simp[1/((m + 1)*(e*f - d*g)) Int[(d + e*x)^(m
+ 1)*(f + g*x)^n*ExpandToSum[(m + 1)*(e*f - d*g)*Qx - g*R*(m + n + 2), x], x], x]] /; FreeQ[{a, c, d, e, f, g,
n}, x] && IGtQ[p, 0] && ILtQ[2*m, -2] && !IntegerQ[n]
-
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[c^p*(d
+ e*x)^(m + 2*p)*((f + g*x)^(n + 1)/(g*e^(2*p)*(m + n + 2*p + 1))), x] + Simp[1/(g*e^(2*p)*(m + n + 2*p + 1))
Int[(d + e*x)^m*(f + g*x)^n*ExpandToSum[g*(m + n + 2*p + 1)*(e^(2*p)*(a + c*x^2)^p - c^p*(d + e*x)^(2*p)) -
c^p*(e*f - d*g)*(m + 2*p)*(d + e*x)^(2*p - 1), x], x], x] /; FreeQ[{a, c, d, e, f, g}, x] && IGtQ[p, 0] && !I
ntegerQ[m] && !IntegerQ[n] && NeQ[m + n + 2*p + 1, 0]
-
Int[((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))^(n_.)*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[Expand
Integrand[(d + e*x)^m*(f + g*x)^n*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g, m, n}, x] && IGtQ[p, 0]
-
Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_)))/((a_) + (c_.)*(x_)^2), x_Symbol] :> Simp[g*((d + e*x)^m/(
c*m)), x] + Simp[1/c Int[(d + e*x)^(m - 1)*(Simp[c*d*f - a*e*g + (g*c*d + c*e*f)*x, x]/(a + c*x^2)), x], x]
/; FreeQ[{a, c, d, e, f, g}, x] && FractionQ[m] && GtQ[m, 0]
-
Int[((f_.) + (g_.)*(x_))/(Sqrt[(d_.) + (e_.)*(x_)]*((a_) + (c_.)*(x_)^2)), x_Symbol] :> Simp[2 Subst[Int[(e*
f - d*g + g*x^2)/(c*d^2 + a*e^2 - 2*c*d*x^2 + c*x^4), x], x, Sqrt[d + e*x]], x] /; FreeQ[{a, c, d, e, f, g}, x
]
-
Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_)))/((a_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(e*f - d*g)*((d
+ e*x)^(m + 1)/((m + 1)*(c*d^2 + a*e^2))), x] + Simp[1/(c*d^2 + a*e^2) Int[(d + e*x)^(m + 1)*(Simp[c*d*f + a
*e*g - c*(e*f - d*g)*x, x]/(a + c*x^2)), x], x] /; FreeQ[{a, c, d, e, f, g}, x] && FractionQ[m] && LtQ[m, -1]
-
Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_))/((a_) + (c_.)*(x_)^2), x_Symbol] :> With[{q = Denomi
nator[m]}, Simp[q/e Subst[Int[ExpandIntegrand[x^(q*(m + 1) - 1)*(((e*f - d*g)/e + g*(x^q/e))^n/((c*d^2 + a*e
^2)/e^2 - 2*c*d*(x^q/e^2) + c*(x^(2*q)/e^2))), x], x], x, (d + e*x)^(1/q)], x]] /; FreeQ[{a, c, d, e, f, g}, x
] && IntegerQ[n] && FractionQ[m]
-
Int[(((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))^(n_.))/((a_) + (c_.)*(x_)^2), x_Symbol] :> Int[ExpandInte
grand[(d + e*x)^m*((f + g*x)^n/(a + c*x^2)), x], x] /; FreeQ[{a, c, d, e, f, g, m}, x] && IntegersQ[n]
-
Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_))/((a_) + (c_.)*(x_)^2), x_Symbol] :> Simp[g/c Int[S
imp[2*e*f + d*g + e*g*x, x]*(d + e*x)^(m - 1)*(f + g*x)^(n - 2), x], x] + Simp[1/c Int[Simp[c*d*f^2 - 2*a*e*
f*g - a*d*g^2 + (c*e*f^2 + 2*c*d*f*g - a*e*g^2)*x, x]*(d + e*x)^(m - 1)*((f + g*x)^(n - 2)/(a + c*x^2)), x], x
] /; FreeQ[{a, c, d, e, f, g}, x] && !IntegerQ[m] && !IntegerQ[n] && GtQ[m, 0] && GtQ[n, 1]
-
Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_))/((a_) + (c_.)*(x_)^2), x_Symbol] :> Simp[e*(g/c) I
nt[(d + e*x)^(m - 1)*(f + g*x)^(n - 1), x], x] + Simp[1/c Int[Simp[c*d*f - a*e*g + (c*e*f + c*d*g)*x, x]*(d
+ e*x)^(m - 1)*((f + g*x)^(n - 1)/(a + c*x^2)), x], x] /; FreeQ[{a, c, d, e, f, g}, x] && !IntegerQ[m] && !I
ntegerQ[n] && GtQ[m, 0] && GtQ[n, 0]
-
Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_))/((a_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(-g)*((e*f
- d*g)/(c*f^2 + a*g^2)) Int[(d + e*x)^(m - 1)*(f + g*x)^n, x], x] + Simp[1/(c*f^2 + a*g^2) Int[Simp[c*d*f
+ a*e*g + c*(e*f - d*g)*x, x]*(d + e*x)^(m - 1)*((f + g*x)^(n + 1)/(a + c*x^2)), x], x] /; FreeQ[{a, c, d, e,
f, g}, x] && !IntegerQ[m] && !IntegerQ[n] && GtQ[m, 0] && LtQ[n, -1]
-
Int[((d_.) + (e_.)*(x_))^(m_)/(Sqrt[(f_.) + (g_.)*(x_)]*((a_.) + (c_.)*(x_)^2)), x_Symbol] :> Int[ExpandIntegr
and[1/(Sqrt[d + e*x]*Sqrt[f + g*x]), (d + e*x)^(m + 1/2)/(a + c*x^2), x], x] /; FreeQ[{a, c, d, e, f, g}, x] &
& IGtQ[m + 1/2, 0]
-
Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_))/((a_) + (c_.)*(x_)^2), x_Symbol] :> Int[ExpandIntegr
and[(d + e*x)^m*(f + g*x)^n, 1/(a + c*x^2), x], x] /; FreeQ[{a, c, d, e, f, g, m, n}, x] && !IntegerQ[m] &&
!IntegerQ[n]
-
Int[((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))^(n_.)*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> With[{q =
Rt[(-a)*c, 2]}, Simp[1/c^p Int[ExpandIntegrand[(d + e*x)^m*(f + g*x)^n*(-q + c*x)^p*(q + c*x)^p, x], x], x]
/; !FractionalPowerFactorQ[q]] /; FreeQ[{a, c, d, e, f, g}, x] && ILtQ[p, -1] && IntegersQ[m, n] && NiceSqrtQ
[(-a)*c]
-
Int[((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))^2*((a_.) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[g^2*(d +
e*x)^(m + 1)*((a + c*x^2)^(p + 1)/(c*e*(m + 2*p + 3))), x] /; FreeQ[{a, c, d, e, f, g, m, p}, x] && EqQ[d*g*(
p + 1) - e*f*(m + 2*p + 3), 0] && EqQ[e*(c*f^2 + a*g^2)*(m + 1) + 2*c*f*(e*f - d*g)*(p + 1), 0] && NeQ[m + 2*p
+ 3, 0]
-
Int[(((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))^(n_.))/((a_) + (c_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(-2
^(m - 1))*d^(m - 2)*(e*f + d*g)^n*((d + e*x)/(c*e^(n - 1)*Sqrt[a + c*x^2])), x] + Simp[1/(c*e^(n - 2)) Int[E
xpandToSum[(2^(m - 1)*d^(m - 1)*(e*f + d*g)^n - e^n*(d + e*x)^(m - 1)*(f + g*x)^n)/(d - e*x), x]/Sqrt[a + c*x^
2], x], x] /; FreeQ[{a, c, d, e, f, g}, x] && EqQ[c*d^2 + a*e^2, 0] && IGtQ[m, 0] && IGtQ[n, 0]
-
Int[((x_)^(n_.)*((d_.) + (e_.)*(x_))^(m_.))/((a_) + (c_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(-2^(m - 1))*d^(m +
n - 2)*((d + e*x)/(c*e^(n - 1)*Sqrt[a + c*x^2])), x] + Simp[d^2/a Int[ExpandToSum[((d + e*x)^(m - 1) - (2^(
m - 1)*d^(m + n - 1))/(e^n*x^n))/(d - e*x), x]/(Sqrt[a + c*x^2]/x^n), x], x] /; FreeQ[{a, c, d, e}, x] && EqQ[
c*d^2 + a*e^2, 0] && IGtQ[m, 0] && ILtQ[n, 0]
-
Int[(((f_.) + (g_.)*(x_))^(n_.)*((a_) + (c_.)*(x_)^2)^(p_))/((d_) + (e_.)*(x_)), x_Symbol] :> Int[(a/d + c*(x/
e))*(f + g*x)^n*(a + c*x^2)^(p - 1), x] /; FreeQ[{a, c, d, e, f, g, n, p}, x] && EqQ[c*d^2 + a*e^2, 0] && GtQ[
p, 0]
-
Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[g*(d + e*x)^m*
((a + c*x^2)^(p + 1)/(c*(m + 2*p + 2))), x] /; FreeQ[{a, c, d, e, f, g, m, p}, x] && EqQ[c*d^2 + a*e^2, 0] &&
EqQ[c*e*f*(m + 2*p + 2) + c*d*g*m, 0]
-
Int[((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(d*g + e*f)*
(d + e*x)^m*((a + c*x^2)^(p + 1)/(2*c*d*(p + 1))), x] - Simp[e*((m*(d*g + e*f) + 2*e*f*(p + 1))/(2*c*d*(p + 1)
)) Int[(d + e*x)^(m - 1)*(a + c*x^2)^(p + 1), x], x] /; FreeQ[{a, c, d, e, f, g}, x] && EqQ[c*d^2 + a*e^2, 0
] && LtQ[p, -1] && GtQ[m, 0]
-
Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(d*g + e*f)*(d
+ e*x)^m*((a + c*x^2)^(p + 1)/(2*c*d*(p + 1))), x] - Simp[e*((m*(d*g + e*f) + 2*e*f*(p + 1))/(2*c*d*(p + 1)))
Int[(d + e*x)^Simplify[m - 1]*(a + c*x^2)^Simplify[p + 1], x], x] /; FreeQ[{a, c, d, e, f, g, m, p}, x] &&
EqQ[c*d^2 + a*e^2, 0] && SumSimplerQ[p, 1] && SumSimplerQ[m, -1] && NeQ[p, -1] && !IGtQ[m, 0]
-
Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(d*g - e*f)*(d
+ e*x)^m*((a + c*x^2)^(p + 1)/(2*c*d*(m + p + 1))), x] + Simp[(m*(g*c*d + c*e*f) + 2*e*c*f*(p + 1))/(e*(2*c*d
)*(m + p + 1)) Int[(d + e*x)^(m + 1)*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g, m, p}, x] && EqQ[c*d^
2 + a*e^2, 0] && ((LtQ[m, -1] && !IGtQ[m + p + 1, 0]) || (LtQ[m, 0] && LtQ[p, -1]) || EqQ[m + 2*p + 2, 0]) &&
NeQ[m + p + 1, 0]
-
Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[g*(d + e*x)^m*
((a + c*x^2)^(p + 1)/(c*(m + 2*p + 2))), x] + Simp[(m*(d*g + e*f) + 2*e*f*(p + 1))/(e*(m + 2*p + 2)) Int[(d
+ e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g, m, p}, x] && EqQ[c*d^2 + a*e^2, 0] && NeQ[m + 2*p +
2, 0]
-
Int[((d_.) + (e_.)*(x_))*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((e*f + d*g)*(2*p
+ 3) + 2*e*g*(p + 1)*x)*((a + c*x^2)^(p + 1)/(2*c*(p + 1)*(2*p + 3))), x] /; FreeQ[{a, c, d, e, f, g, p}, x] &
& EqQ[a*e*g - c*d*f*(2*p + 3), 0] && NeQ[p, -1]
-
Int[(x_)*((d_) + (e_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(d + e*x)*((a + c*x^2)^(p + 1)/(2*c
*(p + 1))), x] - Simp[e/(2*c*(p + 1)) Int[(a + c*x^2)^(p + 1), x], x] /; FreeQ[{a, c, d, e}, x] && LtQ[p, -1
] && !(IntegerQ[p] && NiceSqrtQ[(-a)*c])
-
Int[((d_) + (e_.)*(x_))*((f_) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[a*(e*f + d*g)*((a +
c*x^2)^(p + 1)/(2*a*c*(p + 1))), x] + (-Simp[(c*d*f - a*e*g)*x*((a + c*x^2)^(p + 1)/(2*a*c*(p + 1))), x] - Sim
p[(a*e*g - c*d*f*(2*p + 3))/(2*a*c*(p + 1)) Int[(a + c*x^2)^(p + 1), x], x]) /; FreeQ[{a, c, d, e, f, g}, x]
&& LtQ[p, -1] && !(IntegerQ[p] && NiceSqrtQ[(-a)*c])
-
Int[((d_.) + (e_.)*(x_))*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*f + d*g)*((a +
c*x^2)^(p + 1)/(2*c*(p + 1))), x] + (Simp[e*g*x*((a + c*x^2)^(p + 1)/(c*(2*p + 3))), x] - Simp[(a*e*g - c*d*f*
(2*p + 3))/(c*(2*p + 3)) Int[(a + c*x^2)^p, x], x]) /; FreeQ[{a, c, d, e, f, g, p}, x] && !LeQ[p, -1]
-
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(-(e*f - d*g
))*(d + e*x)^(m + 1)*((a + c*x^2)^(p + 1)/(2*(p + 1)*(c*d^2 + a*e^2))), x] /; FreeQ[{a, c, d, e, f, g, m, p},
x] && EqQ[Simplify[m + 2*p + 3], 0] && EqQ[c*d*f + a*e*g, 0]
-
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(d + e*x)^m*(
a + c*x^2)^(p + 1)*((a*g - c*f*x)/(2*a*c*(p + 1))), x] - Simp[m*((c*d*f + a*e*g)/(2*a*c*(p + 1))) Int[(d + e
*x)^(m - 1)*(a + c*x^2)^(p + 1), x], x] /; FreeQ[{a, c, d, e, f, g}, x] && EqQ[Simplify[m + 2*p + 3], 0] && Lt
Q[p, -1]
-
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(-(e*f - d*g
))*(d + e*x)^(m + 1)*((a + c*x^2)^(p + 1)/(2*(p + 1)*(c*d^2 + a*e^2))), x] + Simp[(c*d*f + a*e*g)/(c*d^2 + a*e
^2) Int[(d + e*x)^(m + 1)*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g, m, p}, x] && EqQ[Simplify[m + 2*
p + 3], 0]
-
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(-(d + e*x)^
(m + 1))*((a + c*x^2)^p/(e^2*(m + 1)*(m + 2)*(c*d^2 + a*e^2)))*((d*g - e*f*(m + 2))*(c*d^2 + a*e^2) - 2*c*d^2*
p*(e*f - d*g) - e*(g*(m + 1)*(c*d^2 + a*e^2) + 2*c*d*p*(e*f - d*g))*x), x] - Simp[p/(e^2*(m + 1)*(m + 2)*(c*d^
2 + a*e^2)) Int[(d + e*x)^(m + 2)*(a + c*x^2)^(p - 1)*Simp[2*a*c*e*(e*f - d*g)*(m + 2) - c*(2*c*d*(d*g*(2*p
+ 1) - e*f*(m + 2*p + 2)) - 2*a*e^2*g*(m + 1))*x, x], x], x] /; FreeQ[{a, c, d, e, f, g}, x] && GtQ[p, 0] && L
tQ[m, -2] && LtQ[m + 2*p, 0] && !ILtQ[m + 2*p + 3, 0]
-
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x)^(m
+ 1)*(e*f*(m + 2*p + 2) - d*g*(2*p + 1) + e*g*(m + 1)*x)*((a + c*x^2)^p/(e^2*(m + 1)*(m + 2*p + 2))), x] + Si
mp[p/(e^2*(m + 1)*(m + 2*p + 2)) Int[(d + e*x)^(m + 1)*(a + c*x^2)^(p - 1)*Simp[g*(2*a*e + 2*a*e*m) + (g*(2*
c*d + 4*c*d*p) - 2*c*e*f*(m + 2*p + 2))*x, x], x], x] /; FreeQ[{a, c, d, e, f, g, m}, x] && GtQ[p, 0] && (LtQ[
m, -1] || EqQ[p, 1] || (IntegerQ[p] && !RationalQ[m])) && NeQ[m, -1] && !ILtQ[m + 2*p + 1, 0] && (IntegerQ[m
] || IntegerQ[p] || IntegersQ[2*m, 2*p])
-
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x)^(m
+ 1)*(c*e*f*(m + 2*p + 2) - g*c*d*(2*p + 1) + g*c*e*(m + 2*p + 1)*x)*((a + c*x^2)^p/(c*e^2*(m + 2*p + 1)*(m +
2*p + 2))), x] + Simp[2*(p/(c*e^2*(m + 2*p + 1)*(m + 2*p + 2))) Int[(d + e*x)^m*(a + c*x^2)^(p - 1)*Simp[f*
a*c*e^2*(m + 2*p + 2) + a*c*d*e*g*m - (c^2*f*d*e*(m + 2*p + 2) - g*(c^2*d^2*(2*p + 1) + a*c*e^2*(m + 2*p + 1))
)*x, x], x], x] /; FreeQ[{a, c, d, e, f, g, m}, x] && GtQ[p, 0] && (IntegerQ[p] || !RationalQ[m] || (GeQ[m, -
1] && LtQ[m, 0])) && !ILtQ[m + 2*p, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])
-
Int[((d_) + (e_.)*(x_))^(m_)*((f_) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Int[(a + c*x^2)^p*Ex
pandIntegrand[(d + e*x)^m*(f + g*x), x], x] /; FreeQ[{a, c, d, e, f, g}, x] && ILtQ[p, -1] && IGtQ[m, 0] && Ra
tionalQ[a, c, d, e, f, g]
-
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x)^(m
- 1)*(a + c*x^2)^(p + 1)*((a*(e*f + d*g) - (c*d*f - a*e*g)*x)/(2*a*c*(p + 1))), x] - Simp[1/(2*a*c*(p + 1))
Int[(d + e*x)^(m - 2)*(a + c*x^2)^(p + 1)*Simp[a*e*(e*f*(m - 1) + d*g*m) - c*d^2*f*(2*p + 3) + e*(a*e*g*m - c
*d*f*(m + 2*p + 2))*x, x], x], x] /; FreeQ[{a, c, d, e, f, g}, x] && LtQ[p, -1] && GtQ[m, 1] && (EqQ[d, 0] ||
(EqQ[m, 2] && EqQ[p, -3] && RationalQ[a, c, d, e, f, g]) || !ILtQ[m + 2*p + 3, 0])
-
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(d + e*x)^m*(
a + c*x^2)^(p + 1)*((a*g - c*f*x)/(2*a*c*(p + 1))), x] - Simp[1/(2*a*c*(p + 1)) Int[(d + e*x)^(m - 1)*(a + c
*x^2)^(p + 1)*Simp[a*e*g*m - c*d*f*(2*p + 3) - c*e*f*(m + 2*p + 3)*x, x], x], x] /; FreeQ[{a, c, d, e, f, g},
x] && LtQ[p, -1] && GtQ[m, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])
-
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-(d + e*x)^(
m + 1))*(f*a*c*e - a*g*c*d + c*(c*d*f + a*e*g)*x)*((a + c*x^2)^(p + 1)/(2*a*c*(p + 1)*(c*d^2 + a*e^2))), x] +
Simp[1/(2*a*c*(p + 1)*(c*d^2 + a*e^2)) Int[(d + e*x)^m*(a + c*x^2)^(p + 1)*Simp[f*(c^2*d^2*(2*p + 3) + a*c*e
^2*(m + 2*p + 3)) - a*c*d*e*g*m + c*e*(c*d*f + a*e*g)*(m + 2*p + 4)*x, x], x], x] /; FreeQ[{a, c, d, e, f, g},
x] && LtQ[p, -1] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])
-
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[g*(d + e*x)^
m*((a + c*x^2)^(p + 1)/(c*(m + 2*p + 2))), x] + Simp[1/(c*(m + 2*p + 2)) Int[(d + e*x)^(m - 1)*(a + c*x^2)^p
*Simp[c*d*f*(m + 2*p + 2) - a*e*g*m + c*(e*f*(m + 2*p + 2) + d*g*m)*x, x], x], x] /; FreeQ[{a, c, d, e, f, g,
p}, x] && GtQ[m, 0] && NeQ[m + 2*p + 2, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p]) && !(IGtQ[m
, 0] && EqQ[f, 0])
-
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(e*f - d*g)*
(d + e*x)^(m + 1)*((a + c*x^2)^(p + 1)/((m + 1)*(c*d^2 + a*e^2))), x] + Simp[1/((m + 1)*(c*d^2 + a*e^2)) Int
[(d + e*x)^(m + 1)*(a + c*x^2)^p*Simp[(c*d*f + a*e*g)*(m + 1) - c*(e*f - d*g)*(m + 2*p + 3)*x, x], x], x] /; F
reeQ[{a, c, d, e, f, g, p}, x] && LtQ[m, -1] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])
-
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(e*f - d*g)*
(d + e*x)^(m + 1)*((a + c*x^2)^(p + 1)/((m + 1)*(c*d^2 + a*e^2))), x] + Simp[1/((m + 1)*(c*d^2 + a*e^2)) Int
[(d + e*x)^(m + 1)*(a + c*x^2)^p*Simp[(c*d*f + a*e*g)*(m + 1) - c*(e*f - d*g)*(m + 2*p + 3)*x, x], x], x] /; F
reeQ[{a, c, d, e, f, g, m, p}, x] && ILtQ[Simplify[m + 2*p + 3], 0] && NeQ[m, -1]
-
Int[((f_) + (g_.)*(x_))/(Sqrt[(e_)*(x_)]*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> Simp[Sqrt[x]/Sqrt[e*x] Int
[(f + g*x)/(Sqrt[x]*Sqrt[a + c*x^2]), x], x] /; FreeQ[{a, c, e, f, g}, x]
-
Int[((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = Po
lynomialQuotient[(f + g*x)^n, a*e + c*d*x, x], R = PolynomialRemainder[(f + g*x)^n, a*e + c*d*x, x]}, Simp[(-d
)*R*(d + e*x)^m*((a + c*x^2)^(p + 1)/(2*a*e*(p + 1))), x] + Simp[d/(2*a*(p + 1)) Int[(d + e*x)^(m - 1)*(a +
c*x^2)^(p + 1)*ExpandToSum[2*a*e*(p + 1)*Q + R*(m + 2*p + 2), x], x], x]] /; FreeQ[{a, c, d, e, f, g}, x] && I
GtQ[n, 1] && IGtQ[m, 0] && LtQ[p, -1] && EqQ[c*d^2 + a*e^2, 0]
-
Int[(((f_.) + (g_.)*(x_))^(n_.)*((a_.) + (c_.)*(x_)^2)^(p_))/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[d*(f + g*x
)^n*((a + c*x^2)^(p + 1)/(2*a*e*p*(d + e*x))), x] - Simp[n*((e*f + d*g)/(2*d*e*p)) Int[(f + g*x)^(n - 1)*(a
+ c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g}, x] && EqQ[c*d^2 + a*e^2, 0] && IGtQ[n, 1] && LtQ[p, -1] && EqQ
[n + 2*p + 1, 0]
-
Int[(((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_))/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[(-(e*f - d*g
))*(f + g*x)^(n - 1)*((a + c*x^2)^(p + 1)/(2*c*d*p*(d + e*x))), x] + Simp[1/(2*d*e^2*p) Int[(f + g*x)^(n - 2
)*(a + c*x^2)^p*Simp[(e*f - d*g)*(e*f + d*g - d*g*n) + 2*e^2*f^2*p + e*g*((e*f - d*g)*n + 2*e*f*p)*x, x], x],
x] /; FreeQ[{a, c, d, e, f, g}, x] && IGtQ[n, 1] && LtQ[p, -1] && EqQ[c*d^2 + a*e^2, 0]
-
Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-(e*f -
d*g)^n)*(d + e*x)^m*((a + c*x^2)^(p + 1)/(2*c*d*e^(n - 1)*(m + p + 1))), x] + Simp[1/(2*d*e^n*(m + p + 1)) I
nt[(d + e*x)^(m + 1)*(a + c*x^2)^p*ExpandToSum[(2*d*e^n*(m + p + 1)*(f + g*x)^n - (e*f - d*g)^n*(d*m - e*(m +
2*p + 2)*x))/(d + e*x), x], x], x] /; FreeQ[{a, c, d, e, f, g}, x] && IGtQ[n, 1] && ILtQ[m, -1] && LtQ[p, -1]
&& EqQ[c*d^2 + a*e^2, 0]
-
Int[(((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_))/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[d*(f + g*x)^
(n + 1)*((a + c*x^2)^(p + 1)/(2*a*p*(e*f - d*g)*(d + e*x))), x] + Simp[1/(p*(2*c*d)*(e*f - d*g)) Int[(f + g*
x)^n*(a + c*x^2)^p*(c*e*f*(2*p + 1) - c*d*g*(n + 2*p + 1) + c*e*g*(n + 2*p + 2)*x), x], x] /; FreeQ[{a, c, d,
e, f, g}, x] && EqQ[c*d^2 + a*e^2, 0] && ILtQ[n, 0] && ILtQ[n + 2*p, 0] && !IGtQ[n, 0]
-
Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-e)*(d +
e*x)^(m - 1)*(f + g*x)^n*((a + c*x^2)^(p + 1)/(c*(m - n - 1))), x] /; FreeQ[{a, c, d, e, f, g, m, n, p}, x] &
& EqQ[c*d^2 + a*e^2, 0] && EqQ[m + p, 0] && EqQ[e*f + d*g, 0] && NeQ[m - n - 1, 0]
-
Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-e^2)*(d
+ e*x)^(m - 1)*(f + g*x)^(n + 1)*((a + c*x^2)^(p + 1)/(c*(n + 1)*(e*f + d*g))), x] /; FreeQ[{a, c, d, e, f, g
, m, n, p}, x] && EqQ[c*d^2 + a*e^2, 0] && EqQ[m + p, 0] && EqQ[m - n - 2, 0]
-
Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(d + e*x)
^m*(f + g*x)^(n + 1)*((a + c*x^2)^p/(g*(n + 1))), x] + Simp[c*(m/(e*g*(n + 1))) Int[(d + e*x)^(m + 1)*(f + g
*x)^(n + 1)*(a + c*x^2)^(p - 1), x], x] /; FreeQ[{a, c, d, e, f, g}, x] && EqQ[c*d^2 + a*e^2, 0] && EqQ[m + p,
0] && GtQ[p, 0] && LtQ[n, -1] && !(IntegerQ[n + p] && LeQ[n + p + 2, 0])
-
Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-(d + e*
x)^m)*(f + g*x)^(n + 1)*((a + c*x^2)^p/(g*(m - n - 1))), x] - Simp[c*m*((e*f + d*g)/(e^2*g*(m - n - 1))) Int
[(d + e*x)^(m + 1)*(f + g*x)^n*(a + c*x^2)^(p - 1), x], x] /; FreeQ[{a, c, d, e, f, g, n}, x] && EqQ[c*d^2 + a
*e^2, 0] && EqQ[m + p, 0] && GtQ[p, 0] && NeQ[m - n - 1, 0] && !IGtQ[n, 0] && !(IntegerQ[n + p] && LtQ[n + p
+ 2, 0]) && RationalQ[n]
-
Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e*(d + e*
x)^(m - 1)*(f + g*x)^n*((a + c*x^2)^(p + 1)/(c*(p + 1))), x] - Simp[e*g*(n/(c*(p + 1))) Int[(d + e*x)^(m - 1
)*(f + g*x)^(n - 1)*(a + c*x^2)^(p + 1), x], x] /; FreeQ[{a, c, d, e, f, g}, x] && EqQ[c*d^2 + a*e^2, 0] && Eq
Q[m + p, 0] && LtQ[p, -1] && GtQ[n, 0]
-
Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e^2*(d +
e*x)^(m - 1)*(f + g*x)^(n + 1)*((a + c*x^2)^(p + 1)/(c*(p + 1)*(e*f + d*g))), x] + Simp[e^2*g*((m - n - 2)/(c*
(p + 1)*(e*f + d*g))) Int[(d + e*x)^(m - 1)*(f + g*x)^n*(a + c*x^2)^(p + 1), x], x] /; FreeQ[{a, c, d, e, f,
g, n}, x] && EqQ[c*d^2 + a*e^2, 0] && EqQ[m + p, 0] && LtQ[p, -1] && RationalQ[n]
-
Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-e)*(d +
e*x)^(m - 1)*(f + g*x)^n*((a + c*x^2)^(p + 1)/(c*(m - n - 1))), x] - Simp[n*((e*f + d*g)/(e*(m - n - 1))) I
nt[(d + e*x)^m*(f + g*x)^(n - 1)*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g, m, p}, x] && EqQ[c*d^2 + a*
e^2, 0] && EqQ[m + p, 0] && GtQ[n, 0] && NeQ[m - n - 1, 0] && (IntegerQ[2*p] || IntegerQ[n])
-
Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-e^2)*(d
+ e*x)^(m - 1)*(f + g*x)^(n + 1)*((a + c*x^2)^(p + 1)/((n + 1)*(c*e*f + c*d*g))), x] - Simp[e*((m - n - 2)/((
n + 1)*(e*f + d*g))) Int[(d + e*x)^m*(f + g*x)^(n + 1)*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g, m,
p}, x] && EqQ[c*d^2 + a*e^2, 0] && EqQ[m + p, 0] && LtQ[n, -1] && IntegerQ[2*p]
-
Int[Sqrt[(d_) + (e_.)*(x_)]/(((f_.) + (g_.)*(x_))*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> Simp[2*e^2 Subst[
Int[1/(c*(e*f + d*g) + e^2*g*x^2), x], x, Sqrt[a + c*x^2]/Sqrt[d + e*x]], x] /; FreeQ[{a, c, d, e, f, g}, x] &
& EqQ[c*d^2 + a*e^2, 0]
-
Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e^2*(d +
e*x)^(m - 2)*(f + g*x)^(n + 1)*((a + c*x^2)^(p + 1)/(c*g*(n + p + 2))), x] /; FreeQ[{a, c, d, e, f, g, m, n, p
}, x] && EqQ[c*d^2 + a*e^2, 0] && EqQ[m + p - 1, 0] && EqQ[e*f*(p + 1) - d*g*(2*n + p + 3), 0] && NeQ[n + p +
2, 0]
-
Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e^2*(e*f
- d*g)*(d + e*x)^(m - 2)*(f + g*x)^(n + 1)*((a + c*x^2)^(p + 1)/(c*g*(n + 1)*(e*f + d*g))), x] - Simp[e*((e*f*
(p + 1) - d*g*(2*n + p + 3))/(g*(n + 1)*(e*f + d*g))) Int[(d + e*x)^(m - 1)*(f + g*x)^(n + 1)*(a + c*x^2)^p,
x], x] /; FreeQ[{a, c, d, e, f, g, m, p}, x] && EqQ[c*d^2 + a*e^2, 0] && EqQ[m + p - 1, 0] && LtQ[n, -1] && I
ntegerQ[2*p]
-
Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e^2*(d +
e*x)^(m - 2)*(f + g*x)^(n + 1)*((a + c*x^2)^(p + 1)/(c*g*(n + p + 2))), x] - Simp[(e*f*(p + 1) - d*g*(2*n + p
+ 3))/(g*(n + p + 2)) Int[(d + e*x)^(m - 1)*(f + g*x)^n*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g, m,
n, p}, x] && EqQ[c*d^2 + a*e^2, 0] && EqQ[m + p - 1, 0] && !LtQ[n, -1] && IntegerQ[2*p]
-
Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Int[ExpandInte
grand[1/Sqrt[a + c*x^2], (d + e*x)^m*(f + g*x)^n*(a + c*x^2)^(p + 1/2), x], x] /; FreeQ[{a, c, d, e, f, g, n,
p}, x] && EqQ[c*d^2 + a*e^2, 0] && IntegerQ[p - 1/2] && ILtQ[m, 0] && ILtQ[n, 0] && !IGtQ[n, 0]
-
Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Int[ExpandInte
grand[(d + e*x)^m*(f + g*x)^n*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g, n, p}, x] && EqQ[c*d^2 + a*e^2
, 0] && ILtQ[m, 0] && (ILtQ[n, 0] || (IGtQ[n, 0] && ILtQ[p + 1/2, 0])) && !IGtQ[n, 0]
-
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Int[ExpandInt
egrand[(a + c*x^2)^p, (d + e*x)^m*(f + g*x)^n, x], x] /; FreeQ[{a, c, d, e, f, g}, x] && EqQ[c*d^2 + a*e^2, 0]
&& EqQ[m + n + 2*p + 1, 0] && ILtQ[m, 0] && ILtQ[n, 0]
-
Int[((d_.) + (e_.)*(x_))^(m_.)*((f_) + (g_.)*(x_))^(n_.)*((a_.) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[g^n*(d
+ e*x)^(m + n - 1)*((a + c*x^2)^(p + 1)/(c*e^(n - 1)*(m + n + 2*p + 1))), x] + Simp[1/(c*e^n*(m + n + 2*p + 1
)) Int[(d + e*x)^m*(a + c*x^2)^p*ExpandToSum[c*e^n*(m + n + 2*p + 1)*(f + g*x)^n - c*g^n*(m + n + 2*p + 1)*(
d + e*x)^n - 2*e*g^n*(m + p + n)*(d + e*x)^(n - 2)*(a*e - c*d*x), x], x], x] /; FreeQ[{a, c, d, e, f, g, m, p}
, x] && EqQ[c*d^2 + a*e^2, 0] && IGtQ[n, 0] && NeQ[m + n + 2*p + 1, 0]
-
Int[((d_) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = Pol
ynomialQuotient[(f + g*x)^n, a + c*x^2, x], R = Coeff[PolynomialRemainder[(f + g*x)^n, a + c*x^2, x], x, 0], S
= Coeff[PolynomialRemainder[(f + g*x)^n, a + c*x^2, x], x, 1]}, Simp[(d + e*x)^m*(a + c*x^2)^(p + 1)*((a*S -
c*R*x)/(2*a*c*(p + 1))), x] + Simp[1/(2*a*c*(p + 1)) Int[(d + e*x)^(m - 1)*(a + c*x^2)^(p + 1)*ExpandToSum[2
*a*c*(p + 1)*(d + e*x)*Q - a*e*S*m + c*d*R*(2*p + 3) + c*e*R*(m + 2*p + 3)*x, x], x], x]] /; FreeQ[{a, c, d, e
, f, g}, x] && IGtQ[n, 1] && LtQ[p, -1] && GtQ[m, 0] && NeQ[c*d^2 + a*e^2, 0]
-
Int[((d_) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = Pol
ynomialQuotient[(d + e*x)^m*(f + g*x)^n, a + c*x^2, x], R = Coeff[PolynomialRemainder[(d + e*x)^m*(f + g*x)^n,
a + c*x^2, x], x, 0], S = Coeff[PolynomialRemainder[(d + e*x)^m*(f + g*x)^n, a + c*x^2, x], x, 1]}, Simp[(a*S
- c*R*x)*((a + c*x^2)^(p + 1)/(2*a*c*(p + 1))), x] + Simp[1/(2*a*c*(p + 1)) Int[(d + e*x)^m*(a + c*x^2)^(p
+ 1)*ExpandToSum[(2*a*c*(p + 1)*Q)/(d + e*x)^m + (c*R*(2*p + 3))/(d + e*x)^m, x], x], x]] /; FreeQ[{a, c, d, e
, f, g}, x] && IGtQ[n, 1] && LtQ[p, -1] && ILtQ[m, 0] && NeQ[c*d^2 + a*e^2, 0]
-
Int[((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = Po
lynomialQuotient[(f + g*x)^n, a + c*x^2, x], R = Coeff[PolynomialRemainder[(f + g*x)^n, a + c*x^2, x], x, 0],
S = Coeff[PolynomialRemainder[(f + g*x)^n, a + c*x^2, x], x, 1]}, Simp[(-(d + e*x)^(m + 1))*(a + c*x^2)^(p + 1
)*((a*(e*R - d*S) + (c*d*R + a*e*S)*x)/(2*a*(p + 1)*(c*d^2 + a*e^2))), x] + Simp[1/(2*a*(p + 1)*(c*d^2 + a*e^2
)) Int[(d + e*x)^m*(a + c*x^2)^(p + 1)*ExpandToSum[2*a*(p + 1)*(c*d^2 + a*e^2)*Q + c*d^2*R*(2*p + 3) - a*e*(
d*S*m - e*R*(m + 2*p + 3)) + e*(c*d*R + a*e*S)*(m + 2*p + 4)*x, x], x], x]] /; FreeQ[{a, c, d, e, f, g, m}, x]
&& IGtQ[n, 1] && LtQ[p, -1] && NeQ[c*d^2 + a*e^2, 0]
-
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = Pol
ynomialQuotient[(f + g*x)^n, d + e*x, x], R = PolynomialRemainder[(f + g*x)^n, d + e*x, x]}, Simp[(e*R*(d + e*
x)^(m + 1)*(a + c*x^2)^(p + 1))/((m + 1)*(c*d^2 + a*e^2)), x] + Simp[1/((m + 1)*(c*d^2 + a*e^2)) Int[(d + e*
x)^(m + 1)*(a + c*x^2)^p*ExpandToSum[(m + 1)*(c*d^2 + a*e^2)*Q + c*d*R*(m + 1) - c*e*R*(m + 2*p + 3)*x, x], x]
, x]] /; FreeQ[{a, c, d, e, f, g, p}, x] && IGtQ[n, 1] && ILtQ[m, -1] && NeQ[c*d^2 + a*e^2, 0] && (NeQ[m + n,
0] || EqQ[p, -2^(-1)])
-
Int[((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[g^n*(d
+ e*x)^(m + n - 1)*((a + c*x^2)^(p + 1)/(c*e^(n - 1)*(m + n + 2*p + 1))), x] + Simp[1/(c*e^n*(m + n + 2*p + 1)
) Int[(d + e*x)^m*(a + c*x^2)^p*ExpandToSum[c*e^n*(m + n + 2*p + 1)*(f + g*x)^n - c*g^n*(m + n + 2*p + 1)*(d
+ e*x)^n - g^n*(d + e*x)^(n - 2)*(a*e^2*(m + n - 1) - c*d^2*(m + n + 2*p + 1) - 2*c*d*e*(m + n + p)*x), x], x
], x] /; FreeQ[{a, c, d, e, f, g, m, p}, x] && IGtQ[n, 1] && IntegerQ[m] && NeQ[m + n + 2*p + 1, 0]
-
Int[((d_) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))^(n_.)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Int[(d + e*x
)^(m + p)*(f + g*x)^n*(a/d + (c/e)*x)^p, x] /; FreeQ[{a, c, d, e, f, g, m, n}, x] && EqQ[c*d^2 + a*e^2, 0] &&
GtQ[a, 0] && GtQ[d, 0]
-
Int[((d_) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))^(n_.)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(a + c*
x^2)^FracPart[p]/((d + e*x)^FracPart[p]*(a/d + (c*x)/e)^FracPart[p]) Int[(d + e*x)^(m + p)*(f + g*x)^n*(a/d
+ (c/e)*x)^p, x], x] /; FreeQ[{a, c, d, e, f, g, m, n}, x] && EqQ[c*d^2 + a*e^2, 0]
-
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[g/e Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Simp[(e*f - d*g)/e Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a
, c, d, e, f, g, m, p}, x] && !IGtQ[m, 0]
-
Int[((a_) + (c_.)*(x_)^2)^(p_)/(((d_.) + (e_.)*(x_))*((f_.) + (g_.)*(x_))), x_Symbol] :> Simp[(c*d^2 + a*e^2)/
(e*(e*f - d*g)) Int[(a + c*x^2)^(p - 1)/(d + e*x), x], x] - Simp[1/(e*(e*f - d*g)) Int[Simp[c*d*f + a*e*g
- c*(e*f - d*g)*x, x]*((a + c*x^2)^(p - 1)/(f + g*x)), x], x] /; FreeQ[{a, c, d, e, f, g}, x] && FractionQ[p]
&& GtQ[p, 0]
-
Int[((d_.) + (e_.)*(x_))^(m_.)*Sqrt[(f_.) + (g_.)*(x_)]*Sqrt[(a_) + (c_.)*(x_)^2], x_Symbol] :> Simp[(d + e*x)
^(m + 1)*Sqrt[f + g*x]*(Sqrt[a + c*x^2]/(e*(m + 1))), x] - Simp[1/(2*e*(m + 1)) Int[((d + e*x)^(m + 1)/(Sqrt
[f + g*x]*Sqrt[a + c*x^2]))*Simp[a*g + 2*c*f*x + 3*c*g*x^2, x], x], x] /; FreeQ[{a, c, d, e, f, g}, x] && Inte
gerQ[2*m] && LtQ[m, -1]
-
Int[((d_.) + (e_.)*(x_))^(m_.)*Sqrt[(f_.) + (g_.)*(x_)]*Sqrt[(a_) + (c_.)*(x_)^2], x_Symbol] :> Simp[2*(d + e*
x)^(m + 1)*Sqrt[f + g*x]*(Sqrt[a + c*x^2]/(e*(2*m + 5))), x] + Simp[1/(e*(2*m + 5)) Int[((d + e*x)^m/(Sqrt[f
+ g*x]*Sqrt[a + c*x^2]))*Simp[3*a*e*f - a*d*g - 2*(c*d*f - a*e*g)*x + (c*e*f - 3*c*d*g)*x^2, x], x], x] /; Fr
eeQ[{a, c, d, e, f, g, m}, x] && IntegerQ[2*m] && !LtQ[m, -1]
-
Int[(((d_.) + (e_.)*(x_))^(m_.)*Sqrt[(a_) + (c_.)*(x_)^2])/Sqrt[(f_.) + (g_.)*(x_)], x_Symbol] :> Simp[2*(d +
e*x)^m*Sqrt[f + g*x]*(Sqrt[a + c*x^2]/(g*(2*m + 3))), x] - Simp[1/(g*(2*m + 3)) Int[((d + e*x)^(m - 1)/(Sqrt
[f + g*x]*Sqrt[a + c*x^2]))*Simp[2*a*(e*f*m - d*g*(m + 1)) + (2*c*d*f - 2*a*e*g)*x - (2*c*(d*g*m - e*f*(m + 1)
))*x^2, x], x], x] /; FreeQ[{a, c, d, e, f, g}, x] && IntegerQ[2*m] && GtQ[m, 0]
-
Int[Sqrt[(a_) + (c_.)*(x_)^2]/(((d_.) + (e_.)*(x_))*Sqrt[(f_.) + (g_.)*(x_)]), x_Symbol] :> Simp[(c*d^2 + a*e^
2)/e^2 Int[1/((d + e*x)*Sqrt[f + g*x]*Sqrt[a + c*x^2]), x], x] - Simp[1/e^2 Int[(c*d - c*e*x)/(Sqrt[f + g*
x]*Sqrt[a + c*x^2]), x], x] /; FreeQ[{a, c, d, e, f, g}, x]
-
Int[(((d_.) + (e_.)*(x_))^(m_.)*Sqrt[(a_) + (c_.)*(x_)^2])/Sqrt[(f_.) + (g_.)*(x_)], x_Symbol] :> Simp[(d + e*
x)^(m + 1)*Sqrt[f + g*x]*(Sqrt[a + c*x^2]/((m + 1)*(e*f - d*g))), x] - Simp[1/(2*(m + 1)*(e*f - d*g)) Int[((
d + e*x)^(m + 1)/(Sqrt[f + g*x]*Sqrt[a + c*x^2]))*Simp[a*g*(2*m + 3) + 2*(c*f)*x + c*g*(2*m + 5)*x^2, x], x],
x] /; FreeQ[{a, c, d, e, f, g}, x] && IntegerQ[2*m] && LtQ[m, -1]
-
Int[Sqrt[(d_.) + (e_.)*(x_)]/(Sqrt[(f_.) + (g_.)*(x_)]*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> With[{q = Rt[-
4*a*c, 2]}, Simp[Sqrt[2]*Sqrt[2*c*f - g*q]*Sqrt[-q + 2*c*x]*(d + e*x)*Sqrt[(e*f - d*g)*((q + 2*c*x)/((2*c*f -
g*q)*(d + e*x)))]*(Sqrt[(e*f - d*g)*((2*a + q*x)/((q*f - 2*a*g)*(d + e*x)))]/(g*Sqrt[2*c*d - e*q]*Sqrt[2*a*(c/
q) + c*x]*Sqrt[a + c*x^2]))*EllipticPi[e*((2*c*f - g*q)/(g*(2*c*d - e*q))), ArcSin[Sqrt[2*c*d - e*q]*(Sqrt[f +
g*x]/(Sqrt[2*c*f - g*q]*Sqrt[d + e*x]))], (q*d - 2*a*e)*((2*c*f - g*q)/((q*f - 2*a*g)*(2*c*d - e*q)))], x]] /
; FreeQ[{a, c, d, e, f, g}, x]
-
Int[((d_.) + (e_.)*(x_))^(3/2)/(Sqrt[(f_.) + (g_.)*(x_)]*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> Simp[e/g I
nt[Sqrt[d + e*x]*(Sqrt[f + g*x]/Sqrt[a + c*x^2]), x], x] - Simp[(e*f - d*g)/g Int[Sqrt[d + e*x]/(Sqrt[f + g*
x]*Sqrt[a + c*x^2]), x], x] /; FreeQ[{a, c, d, e, f, g}, x]
-
Int[((d_.) + (e_.)*(x_))^(m_)/(Sqrt[(f_.) + (g_.)*(x_)]*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> Simp[2*e^2*(d
+ e*x)^(m - 2)*Sqrt[f + g*x]*(Sqrt[a + c*x^2]/(c*g*(2*m - 1))), x] - Simp[1/(c*g*(2*m - 1)) Int[((d + e*x)^
(m - 3)/(Sqrt[f + g*x]*Sqrt[a + c*x^2]))*Simp[a*e^2*(d*g + 2*e*f*(m - 2)) - c*d^3*g*(2*m - 1) + e*(e*(a*e*g*(2
*m - 3)) + c*d*(2*e*f - 3*d*g*(2*m - 1)))*x + 2*e^2*(c*e*f - 3*c*d*g)*(m - 1)*x^2, x], x], x] /; FreeQ[{a, c,
d, e, f, g}, x] && IntegerQ[2*m] && GeQ[m, 2]
-
Int[1/(Sqrt[(c_.) + (d_.)*(x_)]*((e_.) + (f_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^2]), x_Symbol] :> Simp[2 Subst[I
nt[1/((d*e - c*f + f*x^2)*Sqrt[(b*c^2 + a*d^2)/d^2 - 2*b*c*(x^2/d^2) + b*(x^4/d^2)]), x], x, Sqrt[c + d*x]], x
] /; FreeQ[{a, b, c, d, e, f}, x] && PosQ[b/a]
-
Int[1/(Sqrt[(c_.) + (d_.)*(x_)]*((e_.) + (f_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^2]), x_Symbol] :> With[{q = Rt[-b/
a, 2]}, Simp[1/Sqrt[a] Int[1/((e + f*x)*Sqrt[c + d*x]*Sqrt[1 - q*x]*Sqrt[1 + q*x]), x], x]] /; FreeQ[{a, b,
c, d, e, f}, x] && NegQ[b/a] && GtQ[a, 0]
-
Int[1/(Sqrt[(c_.) + (d_.)*(x_)]*((e_.) + (f_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^2]), x_Symbol] :> With[{q = Rt[-b/
a, 2]}, Simp[Sqrt[1 + b*(x^2/a)]/Sqrt[a + b*x^2] Int[1/((e + f*x)*Sqrt[c + d*x]*Sqrt[1 - q*x]*Sqrt[1 + q*x])
, x], x]] /; FreeQ[{a, b, c, d, e, f}, x] && NegQ[b/a] && !GtQ[a, 0]
-
Int[1/(Sqrt[(c_.) + (d_.)*(x_)]*Sqrt[(e_.) + (f_.)*(x_)]*Sqrt[(a_) + (b_.)*(x_)^2]), x_Symbol] :> Simp[-2*(c +
d*x)*(Sqrt[(d*e - c*f)^2*((a + b*x^2)/((b*e^2 + a*f^2)*(c + d*x)^2))]/((d*e - c*f)*Sqrt[a + b*x^2])) Subst[
Int[1/Sqrt[Simp[1 - (2*b*c*e + 2*a*d*f)*(x^2/(b*e^2 + a*f^2)) + (b*c^2 + a*d^2)*(x^4/(b*e^2 + a*f^2)), x]], x]
, x, Sqrt[e + f*x]/Sqrt[c + d*x]], x] /; FreeQ[{a, b, c, d, e, f}, x]
-
Int[1/(Sqrt[(c_.) + (d_.)*(x_)]*((e_.) + (f_.)*(x_))^(3/2)*Sqrt[(a_) + (b_.)*(x_)^2]), x_Symbol] :> Simp[d/(d*
e - c*f) Int[1/(Sqrt[c + d*x]*Sqrt[e + f*x]*Sqrt[a + b*x^2]), x], x] - Simp[f/(d*e - c*f) Int[Sqrt[c + d*x
]/((e + f*x)^(3/2)*Sqrt[a + b*x^2]), x], x] /; FreeQ[{a, b, c, d, e, f}, x]
-
Int[((d_.) + (e_.)*(x_))^(m_)/(Sqrt[(f_.) + (g_.)*(x_)]*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> Simp[e^2*(d +
e*x)^(m + 1)*Sqrt[f + g*x]*(Sqrt[a + c*x^2]/((m + 1)*(e*f - d*g)*(c*d^2 + a*e^2))), x] + Simp[1/(2*(m + 1)*(e
*f - d*g)*(c*d^2 + a*e^2)) Int[((d + e*x)^(m + 1)/(Sqrt[f + g*x]*Sqrt[a + c*x^2]))*Simp[2*c*d*(e*f - d*g)*(m
+ 1) - a*e^2*g*(2*m + 3) + 2*c*e*(d*g*(m + 1) - e*f*(m + 2))*x - c*e^2*g*(2*m + 5)*x^2, x], x], x] /; FreeQ[{
a, c, d, e, f, g}, x] && IntegerQ[2*m] && LeQ[m, -2]
-
Int[(((d_.) + (e_.)*(x_))^(m_)*Sqrt[(f_.) + (g_.)*(x_)])/Sqrt[(a_) + (c_.)*(x_)^2], x_Symbol] :> Simp[2*e*(d +
e*x)^(m - 1)*Sqrt[f + g*x]*(Sqrt[a + c*x^2]/(c*(2*m + 1))), x] - Simp[1/(c*(2*m + 1)) Int[((d + e*x)^(m - 2
)/(Sqrt[f + g*x]*Sqrt[a + c*x^2]))*Simp[a*e*(d*g + 2*e*f*(m - 1)) - c*d^2*f*(2*m + 1) + (a*e^2*g*(2*m - 1) - c
*d*(4*e*f*m + d*g*(2*m + 1)))*x - c*e*(e*f + d*g*(4*m - 1))*x^2, x], x], x] /; FreeQ[{a, c, d, e, f, g}, x] &&
IntegerQ[2*m] && GtQ[m, 1]
-
Int[Sqrt[(f_.) + (g_.)*(x_)]/(((d_.) + (e_.)*(x_))*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> Simp[g/e Int[1/(
Sqrt[f + g*x]*Sqrt[a + c*x^2]), x], x] + Simp[(e*f - d*g)/e Int[1/((d + e*x)*Sqrt[f + g*x]*Sqrt[a + c*x^2]),
x], x] /; FreeQ[{a, c, d, e, f, g}, x]
-
Int[(((d_.) + (e_.)*(x_))^(m_)*Sqrt[(f_.) + (g_.)*(x_)])/Sqrt[(a_) + (c_.)*(x_)^2], x_Symbol] :> Simp[e*(d + e
*x)^(m + 1)*Sqrt[f + g*x]*(Sqrt[a + c*x^2]/((m + 1)*(c*d^2 + a*e^2))), x] + Simp[1/(2*(m + 1)*(c*d^2 + a*e^2))
Int[((d + e*x)^(m + 1)/(Sqrt[f + g*x]*Sqrt[a + c*x^2]))*Simp[2*c*d*f*(m + 1) - e*(a*g) + 2*c*(d*g*(m + 1) -
e*f*(m + 2))*x - c*e*g*(2*m + 5)*x^2, x], x], x] /; FreeQ[{a, c, d, e, f, g}, x] && IntegerQ[2*m] && LeQ[m, -
2]
-
Int[(((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_))/((d_.) + (e_.)*(x_)), x_Symbol] :> Simp[(c*d^2 + a*
e^2)/(e*(e*f - d*g)) Int[(f + g*x)^(n + 1)*((a + c*x^2)^(p - 1)/(d + e*x)), x], x] - Simp[1/(e*(e*f - d*g))
Int[(f + g*x)^n*(c*d*f + a*e*g - c*(e*f - d*g)*x)*(a + c*x^2)^(p - 1), x], x] /; FreeQ[{a, c, d, e, f, g}, x
] && !IntegerQ[n] && !IntegerQ[p] && GtQ[p, 0] && LtQ[n, -1]
-
Int[(((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_))/((d_.) + (e_.)*(x_)), x_Symbol] :> Simp[e*((e*f - d
*g)/(c*d^2 + a*e^2)) Int[(f + g*x)^(n - 1)*((a + c*x^2)^(p + 1)/(d + e*x)), x], x] + Simp[1/(c*d^2 + a*e^2)
Int[(f + g*x)^(n - 1)*(c*d*f + a*e*g - c*(e*f - d*g)*x)*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g}, x
] && !IntegerQ[n] && !IntegerQ[p] && LtQ[p, -1] && GtQ[n, 0]
-
Int[((f_.) + (g_.)*(x_))^(n_)/(((d_.) + (e_.)*(x_))*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> Int[ExpandIntegra
nd[1/(Sqrt[f + g*x]*Sqrt[a + c*x^2]), (f + g*x)^(n + 1/2)/(d + e*x), x], x] /; FreeQ[{a, c, d, e, f, g}, x] &&
IntegerQ[n + 1/2]
-
Int[((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))^(n_.)*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[Expand
Integrand[(d + e*x)^m*(f + g*x)^n*(a + c*x^2)^p, x], x] /; FreeQ[{a, c, d, e, f, g}, x] && (IntegerQ[p] || (IL
tQ[m, 0] && ILtQ[n, 0]))
-
Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = Poly
nomialQuotient[(f + g*x)^n, d + e*x, x], R = PolynomialRemainder[(f + g*x)^n, d + e*x, x]}, Simp[(e*R*(d + e*x
)^(m + 1)*(a + c*x^2)^(p + 1))/((m + 1)*(c*d^2 + a*e^2)), x] + Simp[1/((m + 1)*(c*d^2 + a*e^2)) Int[(d + e*x
)^(m + 1)*(a + c*x^2)^p*ExpandToSum[(m + 1)*(c*d^2 + a*e^2)*Q + c*d*R*(m + 1) - c*e*R*(m + 2*p + 3)*x, x], x],
x]] /; FreeQ[{a, c, d, e, f, g, p}, x] && IGtQ[n, 1] && LtQ[m, -1]
-
Int[((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))^(n_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[g^n*(d
+ e*x)^(m + n - 1)*((a + c*x^2)^(p + 1)/(c*e^(n - 1)*(m + n + 2*p + 1))), x] + Simp[1/(c*e^n*(m + n + 2*p + 1)
) Int[(d + e*x)^m*(a + c*x^2)^p*ExpandToSum[c*e^n*(m + n + 2*p + 1)*(f + g*x)^n - c*g^n*(m + n + 2*p + 1)*(d
+ e*x)^n - g^n*(d + e*x)^(n - 2)*(a*e^2*(m + n - 1) - c*d^2*(m + n + 2*p + 1) - 2*c*d*e*(m + n + p)*x), x], x
], x] /; FreeQ[{a, c, d, e, f, g, m, p}, x] && IGtQ[n, 1] && NeQ[m + n + 2*p + 1, 0]
-
Int[((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))^(n_.)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Unintegrabl
e[(d + e*x)^m*(f + g*x)^n*(a + c*x^2)^p, x] /; FreeQ[{a, c, d, e, f, g, m, n, p}, x]
-
Int[((d_.) + (e_.)*(u_))^(m_.)*((f_.) + (g_.)*(u_))^(n_.)*((a_) + (c_.)*(u_)^2)^(p_.), x_Symbol] :> Simp[1/Coe
fficient[u, x, 1] Subst[Int[(d + e*x)^m*(f + g*x)^n*(a + c*x^2)^p, x], x, u], x] /; FreeQ[{a, c, d, e, f, g,
m, n, p}, x] && LinearQ[u, x] && NeQ[u, x]
-
Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[x*((a + b*x^n)^(p + 1)/a), x] /; FreeQ[{a, b, n, p}, x] &
& EqQ[1/n + p + 1, 0]
-
Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Int[ExpandIntegrand[(a + b*x^n)^p, x], x] /; FreeQ[{a, b}, x]
&& IGtQ[n, 0] && IGtQ[p, 0]
-
Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[x*((a + b*x^n)^p/(n*p + 1)), x] + Simp[a*n*(p/(n*p + 1))
Int[(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && GtQ[p, 0] && (IntegerQ[2*p] || LtQ[Deno
minator[p + 1/n], Denominator[p]])
-
Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(-x)*((a + b*x^n)^(p + 1)/(a*n*(p + 1))), x] + Simp[(n*(p
+ 1) + 1)/(a*n*(p + 1)) Int[(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[p, -1] &&
(IntegerQ[2*p] || Denominator[p + 1/n] < Denominator[p])
-
Int[((a_) + (b_.)*(x_)^3)^(-1), x_Symbol] :> Simp[1/(3*Rt[a, 3]^2) Int[1/(Rt[a, 3] + Rt[b, 3]*x), x], x] + S
imp[1/(3*Rt[a, 3]^2) Int[(2*Rt[a, 3] - Rt[b, 3]*x)/(Rt[a, 3]^2 - Rt[a, 3]*Rt[b, 3]*x + Rt[b, 3]^2*x^2), x],
x] /; FreeQ[{a, b}, x]
-
Int[((a_) + (b_.)*(x_)^(n_))^(-1), x_Symbol] :> Module[{r = Numerator[Rt[a/b, n]], s = Denominator[Rt[a/b, n]]
, k, u}, Simp[u = Int[(r - s*Cos[(2*k - 1)*(Pi/n)]*x)/(r^2 - 2*r*s*Cos[(2*k - 1)*(Pi/n)]*x + s^2*x^2), x]; r/(
a*n) Int[1/(r + s*x), x] + 2*(r/(a*n)) Sum[u, {k, 1, (n - 1)/2}], x]] /; FreeQ[{a, b}, x] && IGtQ[(n - 3)/
2, 0] && PosQ[a/b]
-
Int[((a_) + (b_.)*(x_)^(n_))^(-1), x_Symbol] :> Module[{r = Numerator[Rt[-a/b, n]], s = Denominator[Rt[-a/b, n
]], k, u}, Simp[u = Int[(r + s*Cos[(2*k - 1)*(Pi/n)]*x)/(r^2 + 2*r*s*Cos[(2*k - 1)*(Pi/n)]*x + s^2*x^2), x]; r
/(a*n) Int[1/(r - s*x), x] + 2*(r/(a*n)) Sum[u, {k, 1, (n - 1)/2}], x]] /; FreeQ[{a, b}, x] && IGtQ[(n - 3
)/2, 0] && NegQ[a/b]
-
Int[((a_) + (b_.)*(x_)^(n_))^(-1), x_Symbol] :> Module[{r = Numerator[Rt[a/b, n]], s = Denominator[Rt[a/b, n]]
, k, u, v}, Simp[u = Int[(r - s*Cos[(2*k - 1)*(Pi/n)]*x)/(r^2 - 2*r*s*Cos[(2*k - 1)*(Pi/n)]*x + s^2*x^2), x] +
Int[(r + s*Cos[(2*k - 1)*(Pi/n)]*x)/(r^2 + 2*r*s*Cos[(2*k - 1)*(Pi/n)]*x + s^2*x^2), x]; 2*(r^2/(a*n)) Int[
1/(r^2 + s^2*x^2), x] + 2*(r/(a*n)) Sum[u, {k, 1, (n - 2)/4}], x]] /; FreeQ[{a, b}, x] && IGtQ[(n - 2)/4, 0]
&& PosQ[a/b]
-
Int[((a_) + (b_.)*(x_)^(n_))^(-1), x_Symbol] :> Module[{r = Numerator[Rt[-a/b, n]], s = Denominator[Rt[-a/b, n
]], k, u}, Simp[u = Int[(r - s*Cos[(2*k*Pi)/n]*x)/(r^2 - 2*r*s*Cos[(2*k*Pi)/n]*x + s^2*x^2), x] + Int[(r + s*C
os[(2*k*Pi)/n]*x)/(r^2 + 2*r*s*Cos[(2*k*Pi)/n]*x + s^2*x^2), x]; 2*(r^2/(a*n)) Int[1/(r^2 - s^2*x^2), x] + 2
*(r/(a*n)) Sum[u, {k, 1, (n - 2)/4}], x]] /; FreeQ[{a, b}, x] && IGtQ[(n - 2)/4, 0] && NegQ[a/b]
-
Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]}, Si
mp[1/(2*r) Int[(r - s*x^2)/(a + b*x^4), x], x] + Simp[1/(2*r) Int[(r + s*x^2)/(a + b*x^4), x], x]] /; Free
Q[{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ,
b]]))
-
Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]},
Simp[r/(2*a) Int[1/(r - s*x^2), x], x] + Simp[r/(2*a) Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] && !
GtQ[a/b, 0]
-
Int[((a_) + (b_.)*(x_)^(n_))^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 4]], s = Denominator[Rt[a/b, 4]]},
Simp[r/(2*Sqrt[2]*a) Int[(Sqrt[2]*r - s*x^(n/4))/(r^2 - Sqrt[2]*r*s*x^(n/4) + s^2*x^(n/2)), x], x] + Simp[r
/(2*Sqrt[2]*a) Int[(Sqrt[2]*r + s*x^(n/4))/(r^2 + Sqrt[2]*r*s*x^(n/4) + s^2*x^(n/2)), x], x]] /; FreeQ[{a, b
}, x] && IGtQ[n/4, 1] && GtQ[a/b, 0]
-
Int[((a_) + (b_.)*(x_)^(n_))^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]
}, Simp[r/(2*a) Int[1/(r - s*x^(n/2)), x], x] + Simp[r/(2*a) Int[1/(r + s*x^(n/2)), x], x]] /; FreeQ[{a, b
}, x] && IGtQ[n/4, 1] && !GtQ[a/b, 0]
-
Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt
[2 + Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sq
rt[s*((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 - Sqrt[3])*s + r*x)/((1 + Sqrt[3])*s + r*x)
], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] && PosQ[a]
-
Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt
[2 - Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 - Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sq
rt[(-s)*((s + r*x)/((1 - Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 + Sqrt[3])*s + r*x)/((1 - Sqrt[3])*s + r
*x)], -7 + 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] && NegQ[a]
-
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))*EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]
-
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[(1/(Sqrt[a]*Rt[-b/a, 4]))*EllipticF[ArcSin[Rt[-b/a, 4]*x],
-1], x] /; FreeQ[{a, b}, x] && NegQ[b/a] && GtQ[a, 0]
-
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[(-a)*b, 2]}, Simp[Sqrt[-a + q*x^2]*(Sqrt[(a + q*x^2
)/q]/(Sqrt[2]*Sqrt[-a]*Sqrt[a + b*x^4]))*EllipticF[ArcSin[x/Sqrt[(a + q*x^2)/(2*q)]], 1/2], x] /; IntegerQ[q]]
/; FreeQ[{a, b}, x] && LtQ[a, 0] && GtQ[b, 0]
-
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[(-a)*b, 2]}, Simp[Sqrt[(a - q*x^2)/(a + q*x^2)]*(Sq
rt[(a + q*x^2)/q]/(Sqrt[2]*Sqrt[a + b*x^4]*Sqrt[a/(a + q*x^2)]))*EllipticF[ArcSin[x/Sqrt[(a + q*x^2)/(2*q)]],
1/2], x]] /; FreeQ[{a, b}, x] && LtQ[a, 0] && GtQ[b, 0]
-
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[Sqrt[1 + b*(x^4/a)]/Sqrt[a + b*x^4] Int[1/Sqrt[1 + b*(x^4
/a)], x], x] /; FreeQ[{a, b}, x] && NegQ[b/a] && !GtQ[a, 0]
-
Int[1/Sqrt[(a_) + (b_.)*(x_)^6], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[x*(s +
r*x^2)*(Sqrt[(s^2 - r*s*x^2 + r^2*x^4)/(s + (1 + Sqrt[3])*r*x^2)^2]/(2*3^(1/4)*s*Sqrt[a + b*x^6]*Sqrt[r*x^2*(
(s + r*x^2)/(s + (1 + Sqrt[3])*r*x^2)^2)]))*EllipticF[ArcCos[(s + (1 - Sqrt[3])*r*x^2)/(s + (1 + Sqrt[3])*r*x^
2)], (2 + Sqrt[3])/4], x]] /; FreeQ[{a, b}, x]
-
Int[1/Sqrt[(a_) + (b_.)*(x_)^8], x_Symbol] :> Simp[1/2 Int[(1 - Rt[b/a, 4]*x^2)/Sqrt[a + b*x^8], x], x] + Si
mp[1/2 Int[(1 + Rt[b/a, 4]*x^2)/Sqrt[a + b*x^8], x], x] /; FreeQ[{a, b}, x]
-
Int[((a_) + (b_.)*(x_)^4)^(-3/4), x_Symbol] :> Simp[x^3*((1 + a/(b*x^4))^(3/4)/(a + b*x^4)^(3/4)) Int[1/(x^3
*(1 + a/(b*x^4))^(3/4)), x], x] /; FreeQ[{a, b}, x]
-
Int[((a_) + (b_.)*(x_)^3)^(-1/3), x_Symbol] :> Simp[ArcTan[(1 + 2*Rt[b, 3]*(x/(a + b*x^3)^(1/3)))/Sqrt[3]]/(Sq
rt[3]*Rt[b, 3]), x] - Simp[Log[(a + b*x^3)^(1/3) - Rt[b, 3]*x]/(2*Rt[b, 3]), x] /; FreeQ[{a, b}, x]
-
Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[a^(p + 1/n) Subst[Int[1/(1 - b*x^n)^(p + 1/n + 1), x],
x, x/(a + b*x^n)^(1/n)], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[-1, p, 0] && NeQ[p, -2^(-1)] && IntegerQ[
p + 1/n]
-
Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a/(a + b*x^n))^(p + 1/n)*(a + b*x^n)^(p + 1/n) Subst[I
nt[1/(1 - b*x^n)^(p + 1/n + 1), x], x, x/(a + b*x^n)^(1/n)], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[-1, p
, 0] && NeQ[p, -2^(-1)] && LtQ[Denominator[p + 1/n], Denominator[p]]
-
Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Int[x^(n*p)*(b + a/x^n)^p, x] /; FreeQ[{a, b}, x] && ILtQ[n, 0
] && IntegerQ[p]
-
Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Subst[Int[(a + b/x^n)^p/x^2, x], x, 1/x] /; FreeQ[{a, b, p},
x] && ILtQ[n, 0] && !IntegerQ[p]
-
Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[n]}, Simp[k Subst[Int[x^(k - 1)*(a + b
*x^(k*n))^p, x], x, x^(1/k)], x]] /; FreeQ[{a, b, p}, x] && FractionQ[n]
-
Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Int[ExpandIntegrand[(a + b*x^n)^p, x], x] /; FreeQ[{a, b, n},
x] && IGtQ[p, 0]
-
Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[x*(a + b*x^n)^p*((x^n/(a + b*x^n))^p/n) Subst[Int[1/(x^
(p + 1)*(1 - b*x)), x], x, x^n/(a + b*x^n)], x] /; FreeQ[{a, b, n, p}, x] && EqQ[1/n + p, 0]
-
Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(-x)*((a + b*x^n)^(p + 1)/(a*n*(p + 1))), x] + Simp[(n*(p
+ 1) + 1)/(a*n*(p + 1)) Int[(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b, n, p}, x] && ILtQ[Simplify[1/n + p
+ 1], 0] && NeQ[p, -1]
-
Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[a^p*x*Hypergeometric2F1[-p, 1/n, 1/n + 1, (-b)*(x^n/a)],
x] /; FreeQ[{a, b, n, p}, x] && !IGtQ[p, 0] && !IntegerQ[1/n] && !ILtQ[Simplify[1/n + p], 0] && (IntegerQ[p
] || GtQ[a, 0])
-
Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[a^IntPart[p]*((a + b*x^n)^FracPart[p]/(1 + b*(x^n/a))^Fra
cPart[p]) Int[(1 + b*(x^n/a))^p, x], x] /; FreeQ[{a, b, n, p}, x] && !IGtQ[p, 0] && !IntegerQ[1/n] && !IL
tQ[Simplify[1/n + p], 0] && !(IntegerQ[p] || GtQ[a, 0])
-
Int[((a1_.) + (b1_.)*(x_)^(n_))^(p_.)*((a2_.) + (b2_.)*(x_)^(n_))^(p_.), x_Symbol] :> Int[(a1*a2 + b1*b2*x^(2*
n))^p, x] /; FreeQ[{a1, b1, a2, b2, n, p}, x] && EqQ[a2*b1 + a1*b2, 0] && (IntegerQ[p] || (GtQ[a1, 0] && GtQ[a
2, 0]))
-
Int[((a1_) + (b1_.)*(x_)^(n_.))^(p_.)*((a2_) + (b2_.)*(x_)^(n_.))^(p_.), x_Symbol] :> Simp[x*(a1 + b1*x^n)^p*(
(a2 + b2*x^n)^p/(2*n*p + 1)), x] + Simp[2*a1*a2*n*(p/(2*n*p + 1)) Int[(a1 + b1*x^n)^(p - 1)*(a2 + b2*x^n)^(p
- 1), x], x] /; FreeQ[{a1, b1, a2, b2}, x] && EqQ[a2*b1 + a1*b2, 0] && IGtQ[2*n, 0] && GtQ[p, 0] && (IntegerQ
[2*p] || Denominator[p + 1/n] < Denominator[p])
-
Int[((a1_) + (b1_.)*(x_)^(n_.))^(p_)*((a2_) + (b2_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[(-x)*(a1 + b1*x^n)^(p
+ 1)*((a2 + b2*x^n)^(p + 1)/(2*a1*a2*n*(p + 1))), x] + Simp[(2*n*(p + 1) + 1)/(2*a1*a2*n*(p + 1)) Int[(a1 +
b1*x^n)^(p + 1)*(a2 + b2*x^n)^(p + 1), x], x] /; FreeQ[{a1, b1, a2, b2}, x] && EqQ[a2*b1 + a1*b2, 0] && IGtQ[
2*n, 0] && LtQ[p, -1] && (IntegerQ[2*p] || Denominator[p + 1/n] < Denominator[p])
-
Int[((a1_) + (b1_.)*(x_)^(n_))^(p_)*((a2_) + (b2_.)*(x_)^(n_))^(p_), x_Symbol] :> -Subst[Int[(a1 + b1/x^n)^p*(
(a2 + b2/x^n)^p/x^2), x], x, 1/x] /; FreeQ[{a1, b1, a2, b2, p}, x] && EqQ[a2*b1 + a1*b2, 0] && ILtQ[2*n, 0]
-
Int[((a1_) + (b1_.)*(x_)^(n_))^(p_)*((a2_) + (b2_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[2*n]},
Simp[k Subst[Int[x^(k - 1)*(a1 + b1*x^(k*n))^p*(a2 + b2*x^(k*n))^p, x], x, x^(1/k)], x]] /; FreeQ[{a1, b1,
a2, b2, p}, x] && EqQ[a2*b1 + a1*b2, 0] && FractionQ[2*n]
-
Int[((a1_.) + (b1_.)*(x_)^(n_))^(p_)*((a2_.) + (b2_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a1 + b1*x^n)^FracPar
t[p]*((a2 + b2*x^n)^FracPart[p]/(a1*a2 + b1*b2*x^(2*n))^FracPart[p]) Int[(a1*a2 + b1*b2*x^(2*n))^p, x], x] /
; FreeQ[{a1, b1, a2, b2, n, p}, x] && EqQ[a2*b1 + a1*b2, 0] && !IntegerQ[p]
-
Int[((a_) + (b_.)*((c_.)*(x_)^(q_.))^(n_))^(p_), x_Symbol] :> Simp[x/(c*x^q)^(1/q) Subst[Int[(a + b*x^(n*q))
^p, x], x, (c*x^q)^(1/q)], x] /; FreeQ[{a, b, c, n, p, q}, x] && IntegerQ[n*q] && NeQ[x, (c*x^q)^(1/q)]
-
Int[((a_) + (b_.)*((c_.)*(x_)^(q_.))^(n_))^(p_), x_Symbol] :> With[{k = Denominator[n]}, Subst[Int[(a + b*c^n*
x^(n*q))^p, x], x^(1/k), (c*x^q)^(1/k)/(c^(1/k)*(x^(1/k))^(q - 1))]] /; FreeQ[{a, b, c, p, q}, x] && FractionQ
[n]
-
Int[((a_) + (b_.)*((c_.)*(x_)^(q_.))^(n_))^(p_), x_Symbol] :> Subst[Int[(a + b*c^n*x^(n*q))^p, x], x^(n*q), (c
*x^q)^n/c^n] /; FreeQ[{a, b, c, n, p, q}, x] && !RationalQ[n]
-
Int[((a_) + (b_.)*((d_.)*(x_)^(q_.))^(n_))^(p_), x_Symbol] :> -Subst[Int[(a + b*(d/x^q)^n)^p/x^2, x], x, 1/x]
/; FreeQ[{a, b, d, n, p}, x] && ILtQ[q, 0]
-
Int[((a_) + (b_.)*((d_.)*(x_)^(q_.))^(n_))^(p_), x_Symbol] :> With[{s = Denominator[q]}, Simp[s Subst[Int[x^
(s - 1)*(a + b*(d*x^(q*s))^n)^p, x], x, x^(1/s)], x]] /; FreeQ[{a, b, d, n, p}, x] && FractionQ[q]
-
Int[((c_.)*(x_))^(m_.)*((a1_) + (b1_.)*(x_)^(n_))^(p_)*((a2_) + (b2_.)*(x_)^(n_))^(p_), x_Symbol] :> Int[(c*x)
^m*(a1*a2 + b1*b2*x^(2*n))^p, x] /; FreeQ[{a1, b1, a2, b2, c, m, n, p}, x] && EqQ[a2*b1 + a1*b2, 0] && (Intege
rQ[p] || (GtQ[a1, 0] && GtQ[a2, 0]))
-
Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Simp[Log[RemoveContent[a + b*x^n, x]]/(b*n), x] /; FreeQ
[{a, b, m, n}, x] && EqQ[m, n - 1]
-
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a + b*x^n)^(p + 1)/(b*n*(p + 1)), x] /; FreeQ
[{a, b, m, n, p}, x] && EqQ[m, n - 1] && NeQ[p, -1]
-
Int[(x_)^(m_.)*((a1_) + (b1_.)*(x_)^(n_.))^(p_)*((a2_) + (b2_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[(a1 + b1*x
^n)^(p + 1)*((a2 + b2*x^n)^(p + 1)/(2*b1*b2*n*(p + 1))), x] /; FreeQ[{a1, b1, a2, b2, m, n, p}, x] && EqQ[a2*b
1 + a1*b2, 0] && EqQ[m, 2*n - 1] && NeQ[p, -1]
-
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Int[x^(m + n*p)*(b + a/x^n)^p, x] /; FreeQ[{a, b, m
, n}, x] && IntegerQ[p] && NegQ[n]
-
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a + b*x^n)^(p + 1)/(a*
c*(m + 1))), x] /; FreeQ[{a, b, c, m, n, p}, x] && EqQ[(m + 1)/n + p + 1, 0] && NeQ[m, -1]
-
Int[((c_.)*(x_))^(m_.)*((a1_) + (b1_.)*(x_)^(n_))^(p_)*((a2_) + (b2_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x
)^(m + 1)*(a1 + b1*x^n)^(p + 1)*((a2 + b2*x^n)^(p + 1)/(a1*a2*c*(m + 1))), x] /; FreeQ[{a1, b1, a2, b2, c, m,
n, p}, x] && EqQ[a2*b1 + a1*b2, 0] && EqQ[(m + 1)/(2*n) + p + 1, 0] && NeQ[m, -1]
-
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[1/n Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]
-
Int[(x_)^(m_.)*((a1_) + (b1_.)*(x_)^(n_))^(p_)*((a2_) + (b2_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[1/n Subst[
Int[x^(Simplify[(m + 1)/n] - 1)*(a1 + b1*x)^p*(a2 + b2*x)^p, x], x, x^n], x] /; FreeQ[{a1, b1, a2, b2, m, n, p
}, x] && EqQ[a2*b1 + a1*b2, 0] && IntegerQ[Simplify[(m + 1)/(2*n)]]
-
Int[((c_)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^IntPart[m]*((c*x)^FracPart[m]/x^FracPa
rt[m]) Int[x^m*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]
-
Int[((c_)*(x_))^(m_)*((a1_) + (b1_.)*(x_)^(n_))^(p_)*((a2_) + (b2_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^IntP
art[m]*((c*x)^FracPart[m]/x^FracPart[m]) Int[x^m*(a1 + b1*x^n)^p*(a2 + b2*x^n)^p, x], x] /; FreeQ[{a1, b1, a
2, b2, c, m, n, p}, x] && EqQ[a2*b1 + a1*b2, 0] && IntegerQ[Simplify[(m + 1)/(2*n)]]
-
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*(a + b*x^n)^p,
x], x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 0]
-
Int[(x_)^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[x^(m + 1)*((a + b*x^n)^(p + 1)/(a*(m + 1))), x]
- Simp[b*((m + n*(p + 1) + 1)/(a*(m + 1))) Int[x^(m + n)*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, m, n, p}, x]
&& ILtQ[Simplify[(m + 1)/n + p + 1], 0] && NeQ[m, -1]
-
Int[(x_)^(m_)*((a1_) + (b1_.)*(x_)^(n_))^(p_)*((a2_) + (b2_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[x^(m + 1)*(a1
+ b1*x^n)^(p + 1)*((a2 + b2*x^n)^(p + 1)/(a1*a2*(m + 1))), x] - Simp[b1*b2*((m + 2*n*(p + 1) + 1)/(a1*a2*(m +
1))) Int[x^(m + 2*n)*(a1 + b1*x^n)^p*(a2 + b2*x^n)^p, x], x] /; FreeQ[{a1, b1, a2, b2, m, n, p}, x] && EqQ[
a2*b1 + a1*b2, 0] && ILtQ[Simplify[(m + 1)/(2*n) + p + 1], 0] && NeQ[m, -1]
-
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(-(c*x)^(m + 1))*((a + b*x^n)^(p + 1)/
(a*c*n*(p + 1))), x] + Simp[(m + n*(p + 1) + 1)/(a*n*(p + 1)) Int[(c*x)^m*(a + b*x^n)^(p + 1), x], x] /; Fre
eQ[{a, b, c, m, n, p}, x] && ILtQ[Simplify[(m + 1)/n + p + 1], 0] && NeQ[p, -1]
-
Int[((c_.)*(x_))^(m_.)*((a1_) + (b1_.)*(x_)^(n_))^(p_)*((a2_) + (b2_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(-(c
*x)^(m + 1))*(a1 + b1*x^n)^(p + 1)*((a2 + b2*x^n)^(p + 1)/(2*a1*a2*c*n*(p + 1))), x] + Simp[(m + 2*n*(p + 1) +
1)/(2*a1*a2*n*(p + 1)) Int[(c*x)^m*(a1 + b1*x^n)^(p + 1)*(a2 + b2*x^n)^(p + 1), x], x] /; FreeQ[{a1, b1, a2
, b2, c, m, n, p}, x] && EqQ[a2*b1 + a1*b2, 0] && ILtQ[Simplify[(m + 1)/(2*n) + p + 1], 0] && NeQ[p, -1]
-
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m + 1, n]}, Simp[1/k Subst[Int[x^((
m + 1)/k - 1)*(a + b*x^(n/k))^p, x], x, x^k], x] /; k != 1] /; FreeQ[{a, b, p}, x] && IGtQ[n, 0] && IntegerQ[m
]
-
Int[(x_)^(m_.)*((a1_) + (b1_.)*(x_)^(n_))^(p_)*((a2_) + (b2_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m +
1, 2*n]}, Simp[1/k Subst[Int[x^((m + 1)/k - 1)*(a1 + b1*x^(n/k))^p*(a2 + b2*x^(n/k))^p, x], x, x^k], x] /;
k != 1] /; FreeQ[{a1, b1, a2, b2, p}, x] && EqQ[a2*b1 + a1*b2, 0] && IGtQ[2*n, 0] && IntegerQ[m]
-
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a + b*x^n)^p/(c*(m + 1
))), x] - Simp[b*n*(p/(c^n*(m + 1))) Int[(c*x)^(m + n)*(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b, c}, x] &&
IGtQ[n, 0] && GtQ[p, 0] && LtQ[m, -1] && !ILtQ[(m + n*p + n + 1)/n, 0] && IntBinomialQ[a, b, c, n, m, p, x]
-
Int[((c_.)*(x_))^(m_.)*((a1_) + (b1_.)*(x_)^(n_))^(p_)*((a2_) + (b2_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x
)^(m + 1)*(a1 + b1*x^n)^p*((a2 + b2*x^n)^p/(c*(m + 1))), x] - Simp[2*b1*b2*n*(p/(c^(2*n)*(m + 1))) Int[(c*x)
^(m + 2*n)*(a1 + b1*x^n)^(p - 1)*(a2 + b2*x^n)^(p - 1), x], x] /; FreeQ[{a1, b1, a2, b2, c, m}, x] && EqQ[a2*b
1 + a1*b2, 0] && IGtQ[2*n, 0] && GtQ[p, 0] && LtQ[m, -1] && NeQ[m + 2*n*p + 1, 0] && IntBinomialQ[a1*a2, b1*b2
, c, 2*n, m, p, x]
-
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a + b*x^n)^p/(c*(m + n
*p + 1))), x] + Simp[a*n*(p/(m + n*p + 1)) Int[(c*x)^m*(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b, c, m}, x]
&& IGtQ[n, 0] && GtQ[p, 0] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b, c, n, m, p, x]
-
Int[((c_.)*(x_))^(m_.)*((a1_) + (b1_.)*(x_)^(n_))^(p_)*((a2_) + (b2_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x
)^(m + 1)*(a1 + b1*x^n)^p*((a2 + b2*x^n)^p/(c*(m + 2*n*p + 1))), x] + Simp[2*a1*a2*n*(p/(m + 2*n*p + 1)) Int
[(c*x)^m*(a1 + b1*x^n)^(p - 1)*(a2 + b2*x^n)^(p - 1), x], x] /; FreeQ[{a1, b1, a2, b2, c, m}, x] && EqQ[a2*b1
+ a1*b2, 0] && IGtQ[2*n, 0] && GtQ[p, 0] && NeQ[m + 2*n*p + 1, 0] && IntBinomialQ[a1*a2, b1*b2, c, 2*n, m, p,
x]
-
Int[(x_)^2/((a_) + (b_.)*(x_)^4)^(5/4), x_Symbol] :> Simp[x*((1 + a/(b*x^4))^(1/4)/(b*(a + b*x^4)^(1/4))) In
t[1/(x^3*(1 + a/(b*x^4))^(5/4)), x], x] /; FreeQ[{a, b}, x] && PosQ[b/a]
-
Int[(x_)^2/((a_) + (b_.)*(x_)^4)^(5/4), x_Symbol] :> -Simp[(b*x*(a + b*x^4)^(1/4))^(-1), x] - Simp[1/b Int[1
/(x^2*(a + b*x^4)^(1/4)), x], x] /; FreeQ[{a, b}, x] && NegQ[b/a]
-
Int[(x_)^(m_)/((a_) + (b_.)*(x_)^4)^(5/4), x_Symbol] :> Simp[x^(m - 3)/(b*(m - 4)*(a + b*x^4)^(1/4)), x] - Sim
p[a*((m - 3)/(b*(m - 4))) Int[x^(m - 4)/(a + b*x^4)^(5/4), x], x] /; FreeQ[{a, b}, x] && PosQ[b/a] && IGtQ[(
m - 2)/4, 0]
-
Int[(x_)^(m_)/((a_) + (b_.)*(x_)^4)^(5/4), x_Symbol] :> Simp[x^(m + 1)/(a*(m + 1)*(a + b*x^4)^(1/4)), x] - Sim
p[b*(m/(a*(m + 1))) Int[x^(m + 4)/(a + b*x^4)^(5/4), x], x] /; FreeQ[{a, b}, x] && PosQ[b/a] && ILtQ[(m - 2)
/4, 0]
-
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^
n)^(p + 1)/(b*n*(p + 1))), x] - Simp[c^n*((m - n + 1)/(b*n*(p + 1))) Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1),
x], x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] && !ILtQ[(m + n*(p + 1) + 1)/n, 0]
&& IntBinomialQ[a, b, c, n, m, p, x]
-
Int[((c_.)*(x_))^(m_.)*((a1_) + (b1_.)*(x_)^(n_))^(p_)*((a2_) + (b2_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(2
*n - 1)*(c*x)^(m - 2*n + 1)*(a1 + b1*x^n)^(p + 1)*((a2 + b2*x^n)^(p + 1)/(2*b1*b2*n*(p + 1))), x] - Simp[c^(2*
n)*((m - 2*n + 1)/(2*b1*b2*n*(p + 1))) Int[(c*x)^(m - 2*n)*(a1 + b1*x^n)^(p + 1)*(a2 + b2*x^n)^(p + 1), x],
x] /; FreeQ[{a1, b1, a2, b2, c}, x] && EqQ[a2*b1 + a1*b2, 0] && IGtQ[2*n, 0] && LtQ[p, -1] && m + 1 > 2*n &&
!ILtQ[(m + 2*n*(p + 1) + 1)/(2*n), 0] && IntBinomialQ[a1*a2, b1*b2, c, 2*n, m, p, x]
-
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(-(c*x)^(m + 1))*((a + b*x^n)^(p + 1)/
(a*c*n*(p + 1))), x] + Simp[(m + n*(p + 1) + 1)/(a*n*(p + 1)) Int[(c*x)^m*(a + b*x^n)^(p + 1), x], x] /; Fre
eQ[{a, b, c, m}, x] && IGtQ[n, 0] && LtQ[p, -1] && IntBinomialQ[a, b, c, n, m, p, x]
-
Int[((c_.)*(x_))^(m_.)*((a1_) + (b1_.)*(x_)^(n_))^(p_)*((a2_) + (b2_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(-(c
*x)^(m + 1))*(a1 + b1*x^n)^(p + 1)*((a2 + b2*x^n)^(p + 1)/(2*a1*a2*c*n*(p + 1))), x] + Simp[(m + 2*n*(p + 1) +
1)/(2*a1*a2*n*(p + 1)) Int[(c*x)^m*(a1 + b1*x^n)^(p + 1)*(a2 + b2*x^n)^(p + 1), x], x] /; FreeQ[{a1, b1, a2
, b2, c, m}, x] && EqQ[a2*b1 + a1*b2, 0] && IGtQ[2*n, 0] && LtQ[p, -1] && IntBinomialQ[a1*a2, b1*b2, c, 2*n, m
, p, x]
-
Int[(x_)/((a_) + (b_.)*(x_)^3), x_Symbol] :> Simp[-(3*Rt[a, 3]*Rt[b, 3])^(-1) Int[1/(Rt[a, 3] + Rt[b, 3]*x),
x], x] + Simp[1/(3*Rt[a, 3]*Rt[b, 3]) Int[(Rt[a, 3] + Rt[b, 3]*x)/(Rt[a, 3]^2 - Rt[a, 3]*Rt[b, 3]*x + Rt[b,
3]^2*x^2), x], x] /; FreeQ[{a, b}, x]
-
Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Module[{r = Numerator[Rt[a/b, n]], s = Denominator[Rt[a/
b, n]], k, u}, Simp[u = Int[(r*Cos[(2*k - 1)*m*(Pi/n)] - s*Cos[(2*k - 1)*(m + 1)*(Pi/n)]*x)/(r^2 - 2*r*s*Cos[(
2*k - 1)*(Pi/n)]*x + s^2*x^2), x]; -(-r)^(m + 1)/(a*n*s^m) Int[1/(r + s*x), x] + 2*(r^(m + 1)/(a*n*s^m)) S
um[u, {k, 1, (n - 1)/2}], x]] /; FreeQ[{a, b}, x] && IGtQ[(n - 1)/2, 0] && IGtQ[m, 0] && LtQ[m, n - 1] && PosQ
[a/b]
-
Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Module[{r = Numerator[Rt[-a/b, n]], s = Denominator[Rt[-
a/b, n]], k, u}, Simp[u = Int[(r*Cos[(2*k - 1)*m*(Pi/n)] + s*Cos[(2*k - 1)*(m + 1)*(Pi/n)]*x)/(r^2 + 2*r*s*Cos
[(2*k - 1)*(Pi/n)]*x + s^2*x^2), x]; r^(m + 1)/(a*n*s^m) Int[1/(r - s*x), x] - 2*((-r)^(m + 1)/(a*n*s^m))
Sum[u, {k, 1, (n - 1)/2}], x]] /; FreeQ[{a, b}, x] && IGtQ[(n - 1)/2, 0] && IGtQ[m, 0] && LtQ[m, n - 1] && Neg
Q[a/b]
-
Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Module[{r = Numerator[Rt[a/b, n]], s = Denominator[Rt[a/
b, n]], k, u}, Simp[u = Int[(r*Cos[(2*k - 1)*m*(Pi/n)] - s*Cos[(2*k - 1)*(m + 1)*(Pi/n)]*x)/(r^2 - 2*r*s*Cos[(
2*k - 1)*(Pi/n)]*x + s^2*x^2), x] + Int[(r*Cos[(2*k - 1)*m*(Pi/n)] + s*Cos[(2*k - 1)*(m + 1)*(Pi/n)]*x)/(r^2 +
2*r*s*Cos[(2*k - 1)*(Pi/n)]*x + s^2*x^2), x]; 2*(-1)^(m/2)*(r^(m + 2)/(a*n*s^m)) Int[1/(r^2 + s^2*x^2), x]
+ 2*(r^(m + 1)/(a*n*s^m)) Sum[u, {k, 1, (n - 2)/4}], x]] /; FreeQ[{a, b}, x] && IGtQ[(n - 2)/4, 0] && IGtQ[m
, 0] && LtQ[m, n - 1] && PosQ[a/b]
-
Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Module[{r = Numerator[Rt[-a/b, n]], s = Denominator[Rt[-
a/b, n]], k, u}, Simp[u = Int[(r*Cos[2*k*m*(Pi/n)] - s*Cos[2*k*(m + 1)*(Pi/n)]*x)/(r^2 - 2*r*s*Cos[2*k*(Pi/n)]
*x + s^2*x^2), x] + Int[(r*Cos[2*k*m*(Pi/n)] + s*Cos[2*k*(m + 1)*(Pi/n)]*x)/(r^2 + 2*r*s*Cos[2*k*(Pi/n)]*x + s
^2*x^2), x]; 2*(r^(m + 2)/(a*n*s^m)) Int[1/(r^2 - s^2*x^2), x] + 2*(r^(m + 1)/(a*n*s^m)) Sum[u, {k, 1, (n
- 2)/4}], x]] /; FreeQ[{a, b}, x] && IGtQ[(n - 2)/4, 0] && IGtQ[m, 0] && LtQ[m, n - 1] && NegQ[a/b]
-
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]},
Simp[1/(2*s) Int[(r + s*x^2)/(a + b*x^4), x], x] - Simp[1/(2*s) Int[(r - s*x^2)/(a + b*x^4), x], x]] /; Fr
eeQ[{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBase
Q, b]]))
-
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b, 2]]}
, Simp[s/(2*b) Int[1/(r + s*x^2), x], x] - Simp[s/(2*b) Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &&
!GtQ[a/b, 0]
-
Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{r = Numerator[Rt[a/b, 4]], s = Denominator[Rt[a/b,
4]]}, Simp[s^3/(2*Sqrt[2]*b*r) Int[x^(m - n/4)/(r^2 - Sqrt[2]*r*s*x^(n/4) + s^2*x^(n/2)), x], x] - Simp[s^3
/(2*Sqrt[2]*b*r) Int[x^(m - n/4)/(r^2 + Sqrt[2]*r*s*x^(n/4) + s^2*x^(n/2)), x], x]] /; FreeQ[{a, b}, x] && I
GtQ[n/4, 0] && IGtQ[m, 0] && LtQ[m, n - 1] && GtQ[a/b, 0]
-
Int[(x_)^(m_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b
, 2]]}, Simp[r/(2*a) Int[x^m/(r + s*x^(n/2)), x], x] + Simp[r/(2*a) Int[x^m/(r - s*x^(n/2)), x], x]] /; Fr
eeQ[{a, b}, x] && IGtQ[n/4, 0] && IGtQ[m, 0] && LtQ[m, n/2] && !GtQ[a/b, 0]
-
Int[(x_)^(m_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s = Denominator[Rt[-a/b
, 2]]}, Simp[s/(2*b) Int[x^(m - n/2)/(r + s*x^(n/2)), x], x] - Simp[s/(2*b) Int[x^(m - n/2)/(r - s*x^(n/2)
), x], x]] /; FreeQ[{a, b}, x] && IGtQ[n/4, 0] && IGtQ[m, 0] && LeQ[n/2, m] && LtQ[m, n] && !GtQ[a/b, 0]
-
Int[(x_)^(m_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Int[PolynomialDivide[x^m, a + b*x^n, x], x] /; FreeQ[{a,
b}, x] && IGtQ[m, 0] && IGtQ[n, 0] && GtQ[m, 2*n - 1]
-
Int[(x_)/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(-(
1 - Sqrt[3]))*(s/r) Int[1/Sqrt[a + b*x^3], x], x] + Simp[1/r Int[((1 - Sqrt[3])*s + r*x)/Sqrt[a + b*x^3],
x], x]] /; FreeQ[{a, b}, x] && PosQ[a]
-
Int[(x_)/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(-(
1 + Sqrt[3]))*(s/r) Int[1/Sqrt[a + b*x^3], x], x] + Simp[1/r Int[((1 + Sqrt[3])*s + r*x)/Sqrt[a + b*x^3],
x], x]] /; FreeQ[{a, b}, x] && NegQ[a]
-
Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 2]}, Simp[1/q Int[1/Sqrt[a + b*x^4], x]
, x] - Simp[1/q Int[(1 - q*x^2)/Sqrt[a + b*x^4], x], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]
-
Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[-b/a, 2]}, Simp[1/q Int[1/Sqrt[a + b*x^4], x
], x] - Simp[1/q Int[(1 - q*x^2)/Sqrt[a + b*x^4], x], x]] /; FreeQ[{a, b}, x] && LtQ[a, 0] && GtQ[b, 0]
-
Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[-b/a, 2]}, Simp[-q^(-1) Int[1/Sqrt[a + b*x^4
], x], x] + Simp[1/q Int[(1 + q*x^2)/Sqrt[a + b*x^4], x], x]] /; FreeQ[{a, b}, x] && NegQ[b/a]
-
Int[(x_)^4/Sqrt[(a_) + (b_.)*(x_)^6], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a, 3]]}, Simp[(
Sqrt[3] - 1)*(s^2/(2*r^2)) Int[1/Sqrt[a + b*x^6], x], x] - Simp[1/(2*r^2) Int[((Sqrt[3] - 1)*s^2 - 2*r^2*x
^4)/Sqrt[a + b*x^6], x], x]] /; FreeQ[{a, b}, x]
-
Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^8], x_Symbol] :> Simp[1/(2*Rt[b/a, 4]) Int[(1 + Rt[b/a, 4]*x^2)/Sqrt[a + b
*x^8], x], x] - Simp[1/(2*Rt[b/a, 4]) Int[(1 - Rt[b/a, 4]*x^2)/Sqrt[a + b*x^8], x], x] /; FreeQ[{a, b}, x]
-
Int[(x_)^2/((a_) + (b_.)*(x_)^4)^(1/4), x_Symbol] :> Simp[x^3/(2*(a + b*x^4)^(1/4)), x] - Simp[a/2 Int[x^2/(
a + b*x^4)^(5/4), x], x] /; FreeQ[{a, b}, x] && PosQ[b/a]
-
Int[(x_)^2/((a_) + (b_.)*(x_)^4)^(1/4), x_Symbol] :> Simp[(a + b*x^4)^(3/4)/(2*b*x), x] + Simp[a/(2*b) Int[1
/(x^2*(a + b*x^4)^(1/4)), x], x] /; FreeQ[{a, b}, x] && NegQ[b/a]
-
Int[1/((x_)^2*((a_) + (b_.)*(x_)^4)^(1/4)), x_Symbol] :> -Simp[(x*(a + b*x^4)^(1/4))^(-1), x] - Simp[b Int[x
^2/(a + b*x^4)^(5/4), x], x] /; FreeQ[{a, b}, x] && PosQ[b/a]
-
Int[1/((x_)^2*((a_) + (b_.)*(x_)^4)^(1/4)), x_Symbol] :> Simp[x*((1 + a/(b*x^4))^(1/4)/(a + b*x^4)^(1/4)) In
t[1/(x^3*(1 + a/(b*x^4))^(1/4)), x], x] /; FreeQ[{a, b}, x] && NegQ[b/a]
-
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^n
)^(p + 1)/(b*(m + n*p + 1))), x] - Simp[a*c^n*((m - n + 1)/(b*(m + n*p + 1))) Int[(c*x)^(m - n)*(a + b*x^n)^
p, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b
, c, n, m, p, x]
-
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a + b*x^n
)^(p + 1)/(b*(m + n*p + 1))), x] - Simp[a*c^n*((m - n + 1)/(b*(m + n*p + 1))) Int[(c*x)^(m - n)*(a + b*x^n)^
p, x], x] /; FreeQ[{a, b, c, m, p}, x] && IGtQ[n, 0] && SumSimplerQ[m, -n] && NeQ[m + n*p + 1, 0] && ILtQ[Simp
lify[(m + 1)/n + p], 0]
-
Int[((c_.)*(x_))^(m_)*((a1_) + (b1_.)*(x_)^(n_))^(p_)*((a2_) + (b2_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(2*
n - 1)*(c*x)^(m - 2*n + 1)*(a1 + b1*x^n)^(p + 1)*((a2 + b2*x^n)^(p + 1)/(b1*b2*(m + 2*n*p + 1))), x] - Simp[a1
*a2*c^(2*n)*((m - 2*n + 1)/(b1*b2*(m + 2*n*p + 1))) Int[(c*x)^(m - 2*n)*(a1 + b1*x^n)^p*(a2 + b2*x^n)^p, x],
x] /; FreeQ[{a1, b1, a2, b2, c, p}, x] && EqQ[a2*b1 + a1*b2, 0] && IGtQ[2*n, 0] && GtQ[m, 2*n - 1] && NeQ[m +
2*n*p + 1, 0] && IntBinomialQ[a1*a2, b1*b2, c, 2*n, m, p, x]
-
Int[((c_.)*(x_))^(m_)*((a1_) + (b1_.)*(x_)^(n_))^(p_)*((a2_) + (b2_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(2*
n - 1)*(c*x)^(m - 2*n + 1)*(a1 + b1*x^n)^(p + 1)*((a2 + b2*x^n)^(p + 1)/(b1*b2*(m + 2*n*p + 1))), x] - Simp[a1
*a2*c^(2*n)*((m - 2*n + 1)/(b1*b2*(m + 2*n*p + 1))) Int[(c*x)^(m - 2*n)*(a1 + b1*x^n)^p*(a2 + b2*x^n)^p, x],
x] /; FreeQ[{a1, b1, a2, b2, c, m, p}, x] && EqQ[a2*b1 + a1*b2, 0] && IGtQ[2*n, 0] && SumSimplerQ[m, -2*n] &&
NeQ[m + 2*n*p + 1, 0] && ILtQ[Simplify[(m + 1)/(2*n) + p], 0]
-
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a + b*x^n)^(p + 1)/(a*c
*(m + 1))), x] - Simp[b*((m + n*(p + 1) + 1)/(a*c^n*(m + 1))) Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Fre
eQ[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]
-
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a + b*x^n)^(p + 1)/(a*c
*(m + 1))), x] - Simp[b*((m + n*(p + 1) + 1)/(a*c^n*(m + 1))) Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Fre
eQ[{a, b, c, m, p}, x] && IGtQ[n, 0] && SumSimplerQ[m, n] && ILtQ[Simplify[(m + 1)/n + p], 0]
-
Int[((c_.)*(x_))^(m_)*((a1_) + (b1_.)*(x_)^(n_))^(p_)*((a2_) + (b2_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x)
^(m + 1)*(a1 + b1*x^n)^(p + 1)*((a2 + b2*x^n)^(p + 1)/(a1*a2*c*(m + 1))), x] - Simp[b1*b2*((m + 2*n*(p + 1) +
1)/(a1*a2*c^(2*n)*(m + 1))) Int[(c*x)^(m + 2*n)*(a1 + b1*x^n)^p*(a2 + b2*x^n)^p, x], x] /; FreeQ[{a1, b1, a2
, b2, c, p}, x] && EqQ[a2*b1 + a1*b2, 0] && IGtQ[2*n, 0] && LtQ[m, -1] && IntBinomialQ[a1*a2, b1*b2, c, 2*n, m
, p, x]
-
Int[((c_.)*(x_))^(m_)*((a1_) + (b1_.)*(x_)^(n_))^(p_)*((a2_) + (b2_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x)
^(m + 1)*(a1 + b1*x^n)^(p + 1)*((a2 + b2*x^n)^(p + 1)/(a1*a2*c*(m + 1))), x] - Simp[b1*b2*((m + 2*n*(p + 1) +
1)/(a1*a2*c^(2*n)*(m + 1))) Int[(c*x)^(m + 2*n)*(a1 + b1*x^n)^p*(a2 + b2*x^n)^p, x], x] /; FreeQ[{a1, b1, a2
, b2, c, m, p}, x] && EqQ[a2*b1 + a1*b2, 0] && IGtQ[2*n, 0] && SumSimplerQ[m, 2*n] && ILtQ[Simplify[(m + 1)/(2
*n) + p], 0]
-
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Simp[k/c Subst[
Int[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/c^n))^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0
] && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]
-
Int[((c_.)*(x_))^(m_)*((a1_) + (b1_.)*(x_)^(n_))^(p_)*((a2_) + (b2_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k =
Denominator[m]}, Simp[k/c Subst[Int[x^(k*(m + 1) - 1)*(a1 + b1*(x^(k*n)/c^n))^p*(a2 + b2*(x^(k*n)/c^n))^p, x
], x, (c*x)^(1/k)], x]] /; FreeQ[{a1, b1, a2, b2, c, p}, x] && EqQ[a2*b1 + a1*b2, 0] && IGtQ[2*n, 0] && Fracti
onQ[m] && IntBinomialQ[a1*a2, b1*b2, c, 2*n, m, p, x]
-
Int[(x_)/((a_) + (b_.)*(x_)^3)^(2/3), x_Symbol] :> With[{q = Rt[b, 3]}, Simp[-ArcTan[(1 + 2*q*(x/(a + b*x^3)^(
1/3)))/Sqrt[3]]/(Sqrt[3]*q^2), x] - Simp[Log[q*x - (a + b*x^3)^(1/3)]/(2*q^2), x]] /; FreeQ[{a, b}, x]
-
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[a^(p + (m + 1)/n) Subst[Int[x^m/(1 - b*x^n)^
(p + (m + 1)/n + 1), x], x, x/(a + b*x^n)^(1/n)], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[-1, p, 0] && NeQ
[p, -2^(-1)] && IntegersQ[m, p + (m + 1)/n]
-
Int[(x_)^(m_.)*((a1_) + (b1_.)*(x_)^(n_))^(p_)*((a2_) + (b2_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a1*a2)^(p +
(m + 1)/(2*n)) Subst[Int[x^m/((1 - b1*x^n)^(p + (m + 1)/(2*n) + 1)*(1 - b2*x^n)^(p + (m + 1)/(2*n) + 1)), x
], x, x/((a1 + b1*x^n)^(1/(2*n))*(a2 + b2*x^n)^(1/(2*n)))], x] /; FreeQ[{a1, b1, a2, b2}, x] && EqQ[a2*b1 + a1
*b2, 0] && IGtQ[2*n, 0] && LtQ[-1, p, 0] && NeQ[p, -2^(-1)] && IntegersQ[m, p + (m + 1)/(2*n)]
-
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a/(a + b*x^n))^(p + (m + 1)/n)*(a + b*x^n)^(p
+ (m + 1)/n) Subst[Int[x^m/(1 - b*x^n)^(p + (m + 1)/n + 1), x], x, x/(a + b*x^n)^(1/n)], x] /; FreeQ[{a, b}
, x] && IGtQ[n, 0] && LtQ[-1, p, 0] && NeQ[p, -2^(-1)] && IntegerQ[m] && LtQ[Denominator[p + (m + 1)/n], Denom
inator[p]]
-
Int[(x_)^(m_.)*((a1_) + (b1_.)*(x_)^(n_))^(p_)*((a2_) + (b2_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a1/(a1 + b1
*x^n))^(p + (m + 1)/(2*n))*(a1 + b1*x^n)^(p + (m + 1)/(2*n))*(a2/(a2 + b2*x^n))^(p + (m + 1)/(2*n))*(a2 + b2*x
^n)^(p + (m + 1)/(2*n)) Subst[Int[x^m/((1 - b1*x^n)^(p + (m + 1)/(2*n) + 1)*(1 - b2*x^n)^(p + (m + 1)/(2*n)
+ 1)), x], x, x/((a1 + b1*x^n)^(1/(2*n))*(a2 + b2*x^n)^(1/(2*n)))], x] /; FreeQ[{a1, b1, a2, b2}, x] && EqQ[a2
*b1 + a1*b2, 0] && IGtQ[2*n, 0] && LtQ[-1, p, 0] && NeQ[p, -2^(-1)] && IntegerQ[m] && LtQ[Denominator[p + (m +
1)/(2*n)], Denominator[p]]
-
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Subst[Int[(a + b/x^n)^p/x^(m + 2), x], x, 1/x] /;
FreeQ[{a, b, p}, x] && ILtQ[n, 0] && IntegerQ[m]
-
Int[(x_)^(m_.)*((a1_) + (b1_.)*(x_)^(n_))^(p_)*((a2_) + (b2_.)*(x_)^(n_))^(p_), x_Symbol] :> -Subst[Int[(a1 +
b1/x^n)^p*((a2 + b2/x^n)^p/x^(m + 2)), x], x, 1/x] /; FreeQ[{a1, b1, a2, b2, p}, x] && EqQ[a2*b1 + a1*b2, 0] &
& ILtQ[2*n, 0] && IntegerQ[m]
-
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Simp[-k/c Subst
[Int[(a + b/(c^n*x^(k*n)))^p/x^(k*(m + 1) + 1), x], x, 1/(c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && ILtQ[n
, 0] && FractionQ[m]
-
Int[((c_.)*(x_))^(m_)*((a1_) + (b1_.)*(x_)^(n_))^(p_)*((a2_) + (b2_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k =
Denominator[m]}, Simp[-k/c Subst[Int[(a1 + b1/(c^n*x^(k*n)))^p*((a2 + b2/(c^n*x^(k*n)))^p/x^(k*(m + 1) + 1))
, x], x, 1/(c*x)^(1/k)], x]] /; FreeQ[{a1, b1, a2, b2, c, p}, x] && EqQ[a2*b1 + a1*b2, 0] && ILtQ[2*n, 0] && F
ractionQ[m]
-
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(-c^(-1))*(c*x)^(m + 1)*(1/x)^(m + 1)
Subst[Int[(a + b/x^n)^p/x^(m + 2), x], x, 1/x], x] /; FreeQ[{a, b, c, m, p}, x] && ILtQ[n, 0] && !RationalQ[
m]
-
Int[((c_.)*(x_))^(m_)*((a1_) + (b1_.)*(x_)^(n_))^(p_)*((a2_) + (b2_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(-c^(
-1))*(c*x)^(m + 1)*(1/x)^(m + 1) Subst[Int[(a1 + b1/x^n)^p*((a2 + b2/x^n)^p/x^(m + 2)), x], x, 1/x], x] /; F
reeQ[{a1, b1, a2, b2, c, m, p}, x] && EqQ[a2*b1 + a1*b2, 0] && ILtQ[2*n, 0] && !RationalQ[m]
-
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[n]}, Simp[k Subst[Int[x^(k*
(m + 1) - 1)*(a + b*x^(k*n))^p, x], x, x^(1/k)], x]] /; FreeQ[{a, b, m, p}, x] && FractionQ[n]
-
Int[(x_)^(m_.)*((a1_) + (b1_.)*(x_)^(n_))^(p_)*((a2_) + (b2_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denomin
ator[2*n]}, Simp[k Subst[Int[x^(k*(m + 1) - 1)*(a1 + b1*x^(k*n))^p*(a2 + b2*x^(k*n))^p, x], x, x^(1/k)], x]]
/; FreeQ[{a1, b1, a2, b2, m, p}, x] && EqQ[a2*b1 + a1*b2, 0] && FractionQ[2*n]
-
Int[((c_)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^IntPart[m]*((c*x)^FracPart[m]/x^FracPa
rt[m]) Int[x^m*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, m, p}, x] && FractionQ[n]
-
Int[((c_)*(x_))^(m_)*((a1_) + (b1_.)*(x_)^(n_))^(p_)*((a2_) + (b2_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^IntP
art[m]*((c*x)^FracPart[m]/x^FracPart[m]) Int[x^m*(a1 + b1*x^n)^p*(a2 + b2*x^n)^p, x], x] /; FreeQ[{a1, b1, a
2, b2, c, m, p}, x] && EqQ[a2*b1 + a1*b2, 0] && FractionQ[2*n]
-
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[1/(m + 1) Subst[Int[(a + b*x^Simplify[n/(m +
1)])^p, x], x, x^(m + 1)], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[n/(m + 1)]] && !IntegerQ[n]
-
Int[(x_)^(m_.)*((a1_) + (b1_.)*(x_)^(n_))^(p_)*((a2_) + (b2_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[1/(m + 1)
Subst[Int[(a1 + b1*x^Simplify[n/(m + 1)])^p*(a2 + b2*x^Simplify[n/(m + 1)])^p, x], x, x^(m + 1)], x] /; FreeQ[
{a1, b1, a2, b2, m, n, p}, x] && EqQ[a2*b1 + a1*b2, 0] && IntegerQ[Simplify[2*(n/(m + 1))]] && !IntegerQ[2*n]
-
Int[((c_)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^IntPart[m]*((c*x)^FracPart[m]/x^FracPa
rt[m]) Int[x^m*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, m, n, p}, x] && IntegerQ[Simplify[n/(m + 1)]] && !I
ntegerQ[n]
-
Int[((c_)*(x_))^(m_)*((a1_) + (b1_.)*(x_)^(n_))^(p_)*((a2_) + (b2_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^IntP
art[m]*((c*x)^FracPart[m]/x^FracPart[m]) Int[x^m*(a1 + b1*x^n)^p*(a2 + b2*x^n)^p, x], x] /; FreeQ[{a1, b1, a
2, b2, c, m, n, p}, x] && EqQ[a2*b1 + a1*b2, 0] && IntegerQ[Simplify[2*(n/(m + 1))]] && !IntegerQ[2*n]
-
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[x^(m + 1)*((a + b*x^n)^p/(m + 1)), x] - Simp[b
*n*(p/(m + 1)) Int[x^(m + n)*(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b, m, n}, x] && EqQ[(m + 1)/n + p, 0]
&& GtQ[p, 0]
-
Int[(x_)^(m_.)*((a1_) + (b1_.)*(x_)^(n_))^(p_)*((a2_) + (b2_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[x^(m + 1)*(a
1 + b1*x^n)^p*((a2 + b2*x^n)^p/(m + 1)), x] - Simp[2*b1*b2*n*(p/(m + 1)) Int[x^(m + 2*n)*(a1 + b1*x^n)^(p -
1)*(a2 + b2*x^n)^(p - 1), x], x] /; FreeQ[{a1, b1, a2, b2, m, n}, x] && EqQ[a2*b1 + a1*b2, 0] && EqQ[(m + 1)/(
2*n) + p, 0] && GtQ[p, 0]
-
Int[((c_)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^IntPart[m]*((c*x)^FracPart[m]/x^FracPa
rt[m]) Int[x^m*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, m, n}, x] && EqQ[(m + 1)/n + p, 0] && GtQ[p, 0]
-
Int[((c_)*(x_))^(m_)*((a1_) + (b1_.)*(x_)^(n_))^(p_)*((a2_) + (b2_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^IntP
art[m]*((c*x)^FracPart[m]/x^FracPart[m]) Int[x^m*(a1 + b1*x^n)^p*(a2 + b2*x^n)^p, x], x] /; FreeQ[{a1, b1, a
2, b2, c, m, n}, x] && EqQ[a2*b1 + a1*b2, 0] && EqQ[(m + 1)/(2*n) + p, 0] && GtQ[p, 0]
-
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a + b*x^n)^p/(c*(m + n
*p + 1))), x] + Simp[a*n*(p/(m + n*p + 1)) Int[(c*x)^m*(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b, c, m, n},
x] && IntegerQ[p + Simplify[(m + 1)/n]] && GtQ[p, 0] && NeQ[m + n*p + 1, 0]
-
Int[((c_.)*(x_))^(m_.)*((a1_) + (b1_.)*(x_)^(n_))^(p_)*((a2_) + (b2_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x
)^(m + 1)*(a1 + b1*x^n)^p*((a2 + b2*x^n)^p/(c*(m + 2*n*p + 1))), x] + Simp[2*a1*a2*n*(p/(m + 2*n*p + 1)) Int
[(c*x)^m*(a1 + b1*x^n)^(p - 1)*(a2 + b2*x^n)^(p - 1), x], x] /; FreeQ[{a1, b1, a2, b2, c, m, n}, x] && EqQ[a2*
b1 + a1*b2, 0] && IntegerQ[p + Simplify[(m + 1)/(2*n)]] && GtQ[p, 0] && NeQ[m + 2*n*p + 1, 0]
-
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(-(c*x)^(m + 1))*((a + b*x^n)^(p + 1)/
(a*c*n*(p + 1))), x] + Simp[(m + n*(p + 1) + 1)/(a*n*(p + 1)) Int[(c*x)^m*(a + b*x^n)^(p + 1), x], x] /; Fre
eQ[{a, b, c, m, n}, x] && IntegerQ[p + Simplify[(m + 1)/n]] && LtQ[p, -1]
-
Int[((c_.)*(x_))^(m_.)*((a1_) + (b1_.)*(x_)^(n_))^(p_)*((a2_) + (b2_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(-(c
*x)^(m + 1))*(a1 + b1*x^n)^(p + 1)*((a2 + b2*x^n)^(p + 1)/(2*a1*a2*c*n*(p + 1))), x] + Simp[(m + 2*n*(p + 1) +
1)/(2*a1*a2*n*(p + 1)) Int[(c*x)^m*(a1 + b1*x^n)^(p + 1)*(a2 + b2*x^n)^(p + 1), x], x] /; FreeQ[{a1, b1, a2
, b2, c, m, n}, x] && EqQ[a2*b1 + a1*b2, 0] && IntegerQ[p + Simplify[(m + 1)/(2*n)]] && LtQ[p, -1]
-
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[p]}, Simp[k*(a^(p + Simplify[
(m + 1)/n])/n) Subst[Int[x^(k*Simplify[(m + 1)/n] - 1)/(1 - b*x^k)^(p + Simplify[(m + 1)/n] + 1), x], x, x^(
n/k)/(a + b*x^n)^(1/k)], x]] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[p + Simplify[(m + 1)/n]] && LtQ[-1, p, 0
]
-
Int[(x_)^(m_.)*((a1_) + (b1_.)*(x_)^(n_))^(p_)*((a2_) + (b2_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denomin
ator[p]}, Simp[k*((a1*a2)^(p + Simplify[(m + 1)/(2*n)])/(2*n)) Subst[Int[x^(k*Simplify[(m + 1)/(2*n)] - 1)/(
1 - b1*b2*x^k)^(p + Simplify[(m + 1)/(2*n)] + 1), x], x, x^(2*(n/k))/((a1 + b1*x^n)^(1/k)*(a2 + b2*x^n)^(1/k))
], x]] /; FreeQ[{a1, b1, a2, b2, m, n, p}, x] && EqQ[a2*b1 + a1*b2, 0] && IntegerQ[p + Simplify[(m + 1)/(2*n)]
] && LtQ[-1, p, 0]
-
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[a^Simplify[(m + 1)/n + p]*x^m*(a + b*x^n)^p*((
x^n/(a + b*x^n))^p/(n*x^Simplify[m + n*p])) Subst[Int[x^((m + 1)/n - 1)/(1 - b*x)^(Simplify[(m + 1)/n + p] +
1), x], x, x^n/(a + b*x^n)], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n + p]]
-
Int[((c_)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^IntPart[m]*((c*x)^FracPart[m]/x^FracPa
rt[m]) Int[x^m*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n + p]]
-
Int[((c_)*(x_))^(m_)*((a1_) + (b1_.)*(x_)^(n_))^(p_)*((a2_) + (b2_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^IntP
art[m]*((c*x)^FracPart[m]/x^FracPart[m]) Int[x^m*(a1 + b1*x^n)^p*(a2 + b2*x^n)^p, x], x] /; FreeQ[{a1, b1, a
2, b2, c, m, n, p}, x] && EqQ[a2*b1 + a1*b2, 0] && IntegerQ[p + Simplify[(m + 1)/(2*n)]]
-
Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{mn = Simplify[m - n]}, Simp[x^(mn + 1)/(b*(mn + 1)
), x] - Simp[a/b Int[x^mn/(a + b*x^n), x], x]] /; FreeQ[{a, b, m, n}, x] && FractionQ[Simplify[(m + 1)/n]] &
& SumSimplerQ[m, -n]
-
Int[(x_)^(m_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Simp[x^(m + 1)/(a*(m + 1)), x] - Simp[b/a Int[x^Simplif
y[m + n]/(a + b*x^n), x], x] /; FreeQ[{a, b, m, n}, x] && FractionQ[Simplify[(m + 1)/n]] && SumSimplerQ[m, n]
-
Int[((c_)*(x_))^(m_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Simp[c^IntPart[m]*((c*x)^FracPart[m]/x^FracPart[m]
) Int[x^m/(a + b*x^n), x], x] /; FreeQ[{a, b, c, m, n}, x] && FractionQ[Simplify[(m + 1)/n]] && (SumSimplerQ
[m, n] || SumSimplerQ[m, -n])
-
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[a^p*((c*x)^(m + 1)/(c*(m + 1)))*Hyperg
eometric2F1[-p, (m + 1)/n, (m + 1)/n + 1, (-b)*(x^n/a)], x] /; FreeQ[{a, b, c, m, n, p}, x] && !IGtQ[p, 0] &&
(ILtQ[p, 0] || GtQ[a, 0])
-
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[a^IntPart[p]*((a + b*x^n)^FracPart[p]/
(1 + b*(x^n/a))^FracPart[p]) Int[(c*x)^m*(1 + b*(x^n/a))^p, x], x] /; FreeQ[{a, b, c, m, n, p}, x] && !IGtQ
[p, 0] && !(ILtQ[p, 0] || GtQ[a, 0])
-
Int[((c_.)*(x_))^(m_.)*((a1_) + (b1_.)*(x_)^(n_))^(p_)*((a2_) + (b2_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a1
+ b1*x^n)^FracPart[p]*((a2 + b2*x^n)^FracPart[p]/(a1*a2 + b1*b2*x^(2*n))^FracPart[p]) Int[(c*x)^m*(a1*a2 + b
1*b2*x^(2*n))^p, x], x] /; FreeQ[{a1, b1, a2, b2, c, m, n, p}, x] && EqQ[a2*b1 + a1*b2, 0] && !IntegerQ[p]
-
Int[((d_.)*(x_))^(m_.)*((a_) + (b_.)*((c_)*(x_))^(n_))^(p_.), x_Symbol] :> Simp[1/c Subst[Int[(d*(x/c))^m*(a
+ b*x^n)^p, x], x, c*x], x] /; FreeQ[{a, b, c, d, m, n, p}, x]
-
Int[((d_.)*(x_))^(m_.)*((a_) + (b_.)*((c_.)*(x_)^(q_))^(n_))^(p_.), x_Symbol] :> Simp[(d*x)^(m + 1)/(d*((c*x^q
)^(1/q))^(m + 1)) Subst[Int[x^m*(a + b*x^(n*q))^p, x], x, (c*x^q)^(1/q)], x] /; FreeQ[{a, b, c, d, m, n, p,
q}, x] && IntegerQ[n*q] && NeQ[x, (c*x^q)^(1/q)]
-
Int[((d_.)*(x_))^(m_.)*((a_) + (b_.)*((c_.)*(x_)^(q_))^(n_))^(p_.), x_Symbol] :> With[{k = Denominator[n]}, Su
bst[Int[(d*x)^m*(a + b*c^n*x^(n*q))^p, x], x^(1/k), (c*x^q)^(1/k)/(c^(1/k)*(x^(1/k))^(q - 1))]] /; FreeQ[{a, b
, c, d, m, p, q}, x] && FractionQ[n]
-
Int[((d_.)*(x_))^(m_.)*((a_) + (b_.)*((c_.)*(x_)^(q_))^(n_))^(p_.), x_Symbol] :> Subst[Int[(d*x)^m*(a + b*c^n*
x^(n*q))^p, x], x^(n*q), (c*x^q)^n/c^n] /; FreeQ[{a, b, c, d, m, n, p, q}, x] && !RationalQ[n]
-
Int[(u_)^(m_.)*((a_) + (b_.)*(v_)^(n_))^(p_.), x_Symbol] :> Simp[u^m/(Coefficient[v, x, 1]*v^m) Subst[Int[x^
m*(a + b*x^n)^p, x], x, v], x] /; FreeQ[{a, b, m, n, p}, x] && LinearPairQ[u, v, x]
-
Int[((a_) + (b_.)*(v_)^(n_))^(p_.)*(x_)^(m_.), x_Symbol] :> With[{c = Coefficient[v, x, 0], d = Coefficient[v,
x, 1]}, Simp[1/d^(m + 1) Subst[Int[SimplifyIntegrand[(x - c)^m*(a + b*x^n)^p, x], x], x, v], x] /; NeQ[c, 0
]] /; FreeQ[{a, b, n, p}, x] && LinearQ[v, x] && IntegerQ[m]
-
Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x^n
)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[p, 0] && IGtQ[q, 0]
-
Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Int[x^(n*(p + q))*(b + a/x^n)^
p*(d + c/x^n)^q, x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IntegersQ[p, q] && NegQ[n]
-
Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> -Subst[Int[(a + b/x^n)^p*((c +
d/x^n)^q/x^2), x], x, 1/x] /; FreeQ[{a, b, c, d, p, q}, x] && NeQ[b*c - a*d, 0] && ILtQ[n, 0]
-
Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> With[{g = Denominator[n]}, Sim
p[g Subst[Int[x^(g - 1)*(a + b*x^(g*n))^p*(c + d*x^(g*n))^q, x], x, x^(1/g)], x]] /; FreeQ[{a, b, c, d, p, q
}, x] && NeQ[b*c - a*d, 0] && FractionQ[n]
-
Int[1/(((a_) + (b_.)*(x_)^3)^(1/3)*((c_) + (d_.)*(x_)^3)), x_Symbol] :> With[{q = Rt[(b*c - a*d)/c, 3]}, Simp[
ArcTan[(1 + (2*q*x)/(a + b*x^3)^(1/3))/Sqrt[3]]/(Sqrt[3]*c*q), x] + (-Simp[Log[q*x - (a + b*x^3)^(1/3)]/(2*c*q
), x] + Simp[Log[c + d*x^3]/(6*c*q), x])] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0]
-
Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]
-
Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Simp[(-x)*(a + b*x^n)^(p + 1)*(
(c + d*x^n)^q/(a*n*(p + 1))), x] - Simp[c*(q/(a*(p + 1))) Int[(a + b*x^n)^(p + 1)*(c + d*x^n)^(q - 1), x], x
] /; FreeQ[{a, b, c, d, n, p}, x] && NeQ[b*c - a*d, 0] && EqQ[n*(p + q + 1) + 1, 0] && GtQ[q, 0] && NeQ[p, -1]
-
Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[a^p*(x/(c^(p + 1)*(c + d*x^
n)^(1/n)))*Hypergeometric2F1[1/n, -p, 1 + 1/n, (-(b*c - a*d))*(x^n/(a*(c + d*x^n)))], x] /; FreeQ[{a, b, c, d,
n, q}, x] && NeQ[b*c - a*d, 0] && EqQ[n*(p + q + 1) + 1, 0] && ILtQ[p, 0]
-
Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[x*((a + b*x^n)^p/(c*(c*((a
+ b*x^n)/(a*(c + d*x^n))))^p*(c + d*x^n)^(1/n + p)))*Hypergeometric2F1[1/n, -p, 1 + 1/n, (-(b*c - a*d))*(x^n/(
a*(c + d*x^n)))], x] /; FreeQ[{a, b, c, d, n, p, q}, x] && NeQ[b*c - a*d, 0] && EqQ[n*(p + q + 1) + 1, 0]
-
Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[x*(a + b*x^n)^(p + 1)*((c +
d*x^n)^(q + 1)/(a*c)), x] /; FreeQ[{a, b, c, d, n, p, q}, x] && NeQ[b*c - a*d, 0] && EqQ[n*(p + q + 2) + 1, 0
] && EqQ[a*d*(p + 1) + b*c*(q + 1), 0]
-
Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(-b)*x*(a + b*x^n)^(p + 1)*
((c + d*x^n)^(q + 1)/(a*n*(p + 1)*(b*c - a*d))), x] + Simp[(b*c + n*(p + 1)*(b*c - a*d))/(a*n*(p + 1)*(b*c - a
*d)) Int[(a + b*x^n)^(p + 1)*(c + d*x^n)^q, x], x] /; FreeQ[{a, b, c, d, n, q}, x] && NeQ[b*c - a*d, 0] && E
qQ[n*(p + q + 2) + 1, 0] && (LtQ[p, -1] || !LtQ[q, -1]) && NeQ[p, -1]
-
Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[c*x*((a + b*x^n)^(p + 1)/a), x]
/; FreeQ[{a, b, c, d, n, p}, x] && NeQ[b*c - a*d, 0] && EqQ[a*d - b*c*(n*(p + 1) + 1), 0]
-
Int[((a1_) + (b1_.)*(x_)^(non2_.))^(p_.)*((a2_) + (b2_.)*(x_)^(non2_.))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symb
ol] :> Simp[c*x*(a1 + b1*x^(n/2))^(p + 1)*((a2 + b2*x^(n/2))^(p + 1)/(a1*a2)), x] /; FreeQ[{a1, b1, a2, b2, c,
d, n, p}, x] && EqQ[non2, n/2] && EqQ[a2*b1 + a1*b2, 0] && EqQ[a1*a2*d - b1*b2*c*(n*(p + 1) + 1), 0]
-
Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(-(b*c - a*d))*x*((a + b*x^n)^(p
+ 1)/(a*b*n*(p + 1))), x] - Simp[(a*d - b*c*(n*(p + 1) + 1))/(a*b*n*(p + 1)) Int[(a + b*x^n)^(p + 1), x], x
] /; FreeQ[{a, b, c, d, n, p}, x] && NeQ[b*c - a*d, 0] && (LtQ[p, -1] || ILtQ[1/n + p, 0])
-
Int[((a1_) + (b1_.)*(x_)^(non2_.))^(p_.)*((a2_) + (b2_.)*(x_)^(non2_.))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symb
ol] :> Simp[(-(b1*b2*c - a1*a2*d))*x*(a1 + b1*x^(n/2))^(p + 1)*((a2 + b2*x^(n/2))^(p + 1)/(a1*a2*b1*b2*n*(p +
1))), x] - Simp[(a1*a2*d - b1*b2*c*(n*(p + 1) + 1))/(a1*a2*b1*b2*n*(p + 1)) Int[(a1 + b1*x^(n/2))^(p + 1)*(a
2 + b2*x^(n/2))^(p + 1), x], x] /; FreeQ[{a1, b1, a2, b2, c, d, n}, x] && EqQ[non2, n/2] && EqQ[a2*b1 + a1*b2,
0] && (LtQ[p, -1] || ILtQ[1/n + p, 0])
-
Int[((c_) + (d_.)*(x_)^(n_))/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Simp[c*(x/a), x] - Simp[(b*c - a*d)/a In
t[1/(b + a/x^n), x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[n, 0]
-
Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[d*x*((a + b*x^n)^(p + 1)/(b*(n*(
p + 1) + 1))), x] - Simp[(a*d - b*c*(n*(p + 1) + 1))/(b*(n*(p + 1) + 1)) Int[(a + b*x^n)^p, x], x] /; FreeQ[
{a, b, c, d, n, p}, x] && NeQ[b*c - a*d, 0] && NeQ[n*(p + 1) + 1, 0]
-
Int[((a1_) + (b1_.)*(x_)^(non2_.))^(p_.)*((a2_) + (b2_.)*(x_)^(non2_.))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symb
ol] :> Simp[d*x*(a1 + b1*x^(n/2))^(p + 1)*((a2 + b2*x^(n/2))^(p + 1)/(b1*b2*(n*(p + 1) + 1))), x] - Simp[(a1*a
2*d - b1*b2*c*(n*(p + 1) + 1))/(b1*b2*(n*(p + 1) + 1)) Int[(a1 + b1*x^(n/2))^p*(a2 + b2*x^(n/2))^p, x], x] /
; FreeQ[{a1, b1, a2, b2, c, d, n, p}, x] && EqQ[non2, n/2] && EqQ[a2*b1 + a1*b2, 0] && NeQ[n*(p + 1) + 1, 0]
-
Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Int[PolynomialDivide[(a + b*x^n)
^p, (c + d*x^n)^(-q), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && IGtQ[p, 0] && ILt
Q[q, 0] && GeQ[p, -q]
-
Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[b/d Int[(a + b*x^n)^(p - 1), x
], x] - Simp[(b*c - a*d)/d Int[(a + b*x^n)^(p - 1)/(c + d*x^n), x], x] /; FreeQ[{a, b, c, d, p}, x] && NeQ[b
*c - a*d, 0] && EqQ[n*(p - 1) + 1, 0] && IntegerQ[n]
-
Int[1/(((a_) + (b_.)*(x_)^(n_))*((c_) + (d_.)*(x_)^(n_))), x_Symbol] :> Simp[b/(b*c - a*d) Int[1/(a + b*x^n)
, x], x] - Simp[d/(b*c - a*d) Int[1/(c + d*x^n), x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0]
-
Int[((a_) + (b_.)*(x_)^2)^(2/3)/((c_) + (d_.)*(x_)^2), x_Symbol] :> Simp[b/d Int[1/(a + b*x^2)^(1/3), x], x]
- Simp[(b*c - a*d)/d Int[1/((a + b*x^2)^(1/3)*(c + d*x^2)), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a
*d, 0] && EqQ[b*c + 3*a*d, 0]
-
Int[((a_) + (b_.)*(x_)^2)^(p_.)/((c_) + (d_.)*(x_)^2), x_Symbol] :> Simp[b/d Int[(a + b*x^2)^(p - 1), x], x]
- Simp[(b*c - a*d)/d Int[(a + b*x^2)^(p - 1)/(c + d*x^2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d
, 0] && GtQ[p, 0] && (EqQ[p, 1/2] || EqQ[Denominator[p], 4])
-
Int[Sqrt[(a_) + (b_.)*(x_)^4]/((c_) + (d_.)*(x_)^4), x_Symbol] :> Simp[a/c Subst[Int[1/(1 - 4*a*b*x^4), x],
x, x/Sqrt[a + b*x^4]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[b*c + a*d, 0] && PosQ[a*b]
-
Int[Sqrt[(a_) + (b_.)*(x_)^4]/((c_) + (d_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-a)*b, 4]}, Simp[(a/(2*c*q))*A
rcTan[q*x*((a + q^2*x^2)/(a*Sqrt[a + b*x^4]))], x] + Simp[(a/(2*c*q))*ArcTanh[q*x*((a - q^2*x^2)/(a*Sqrt[a + b
*x^4]))], x]] /; FreeQ[{a, b, c, d}, x] && EqQ[b*c + a*d, 0] && NegQ[a*b]
-
Int[Sqrt[(a_) + (b_.)*(x_)^4]/((c_) + (d_.)*(x_)^4), x_Symbol] :> Simp[b/d Int[1/Sqrt[a + b*x^4], x], x] - S
imp[(b*c - a*d)/d Int[1/(Sqrt[a + b*x^4]*(c + d*x^4)), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0]
-
Int[((a_) + (b_.)*(x_)^4)^(1/4)/((c_) + (d_.)*(x_)^4), x_Symbol] :> Simp[Sqrt[a + b*x^4]*Sqrt[a/(a + b*x^4)]
Subst[Int[1/(Sqrt[1 - b*x^4]*(c - (b*c - a*d)*x^4)), x], x, x/(a + b*x^4)^(1/4)], x] /; FreeQ[{a, b, c, d}, x
] && NeQ[b*c - a*d, 0]
-
Int[((a_) + (b_.)*(x_)^4)^(5/4)/((c_) + (d_.)*(x_)^4), x_Symbol] :> Simp[b/d Int[(a + b*x^4)^(1/4), x], x] -
Simp[(b*c - a*d)/d Int[(a + b*x^4)^(1/4)/(c + d*x^4), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0]
-
Int[1/(Sqrt[(a_) + (b_.)*(x_)^4]*((c_) + (d_.)*(x_)^4)), x_Symbol] :> Simp[1/(2*c) Int[1/(Sqrt[a + b*x^4]*(1
- Rt[-d/c, 2]*x^2)), x], x] + Simp[1/(2*c) Int[1/(Sqrt[a + b*x^4]*(1 + Rt[-d/c, 2]*x^2)), x], x] /; FreeQ[{
a, b, c, d}, x] && NeQ[b*c - a*d, 0]
-
Int[1/(((a_) + (b_.)*(x_)^4)^(3/4)*((c_) + (d_.)*(x_)^4)), x_Symbol] :> Simp[b/(b*c - a*d) Int[1/(a + b*x^4)
^(3/4), x], x] - Simp[d/(b*c - a*d) Int[(a + b*x^4)^(1/4)/(c + d*x^4), x], x] /; FreeQ[{a, b, c, d}, x] && N
eQ[b*c - a*d, 0]
-
Int[((a_) + (b_.)*(x_)^3)^(1/3)/((c_) + (d_.)*(x_)^3), x_Symbol] :> With[{q = Rt[b/a, 3]}, Simp[9*(a/(c*q))
Subst[Int[x/((4 - a*x^3)*(1 + 2*a*x^3)), x], x, (1 + q*x)/(a + b*x^3)^(1/3)], x]] /; FreeQ[{a, b, c, d}, x] &&
NeQ[b*c - a*d, 0] && EqQ[b*c + a*d, 0]
-
Int[1/(((a_) + (b_.)*(x_)^3)^(2/3)*((c_) + (d_.)*(x_)^3)), x_Symbol] :> Simp[b/(b*c - a*d) Int[1/(a + b*x^3)
^(2/3), x], x] - Simp[d/(b*c - a*d) Int[(a + b*x^3)^(1/3)/(c + d*x^3), x], x] /; FreeQ[{a, b, c, d}, x] && N
eQ[b*c - a*d, 0] && EqQ[b*c + a*d, 0]
-
Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(-x)*(a + b*x^n)^(p + 1)*((
c + d*x^n)^q/(a*n*(p + 1))), x] + Simp[1/(a*n*(p + 1)) Int[(a + b*x^n)^(p + 1)*(c + d*x^n)^(q - 1)*Simp[c*(n
*(p + 1) + 1) + d*(n*(p + q + 1) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ
[p, -1] && LtQ[0, q, 1] && IntBinomialQ[a, b, c, d, n, p, q, x]
-
Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(a*d - c*b)*x*(a + b*x^n)^(
p + 1)*((c + d*x^n)^(q - 1)/(a*b*n*(p + 1))), x] - Simp[1/(a*b*n*(p + 1)) Int[(a + b*x^n)^(p + 1)*(c + d*x^n
)^(q - 2)*Simp[c*(a*d - c*b*(n*(p + 1) + 1)) + d*(a*d*(n*(q - 1) + 1) - b*c*(n*(p + q) + 1))*x^n, x], x], x] /
; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && GtQ[q, 1] && IntBinomialQ[a, b, c, d, n, p,
q, x]
-
Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(-b)*x*(a + b*x^n)^(p + 1)*
((c + d*x^n)^(q + 1)/(a*n*(p + 1)*(b*c - a*d))), x] + Simp[1/(a*n*(p + 1)*(b*c - a*d)) Int[(a + b*x^n)^(p +
1)*(c + d*x^n)^q*Simp[b*c + n*(p + 1)*(b*c - a*d) + d*b*(n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c,
d, n, q}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && !( !IntegerQ[p] && IntegerQ[q] && LtQ[q, -1]) && IntBinom
ialQ[a, b, c, d, n, p, q, x]
-
Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Int[ExpandIntegrand[(a + b*x^n)^
p*(c + d*x^n)^q, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && IntegersQ[p, q] && GtQ
[p + q, 0]
-
Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[d*x*(a + b*x^n)^(p + 1)*((c
+ d*x^n)^(q - 1)/(b*(n*(p + q) + 1))), x] + Simp[1/(b*(n*(p + q) + 1)) Int[(a + b*x^n)^p*(c + d*x^n)^(q - 2
)*Simp[c*(b*c*(n*(p + q) + 1) - a*d) + d*(b*c*(n*(p + 2*q - 1) + 1) - a*d*(n*(q - 1) + 1))*x^n, x], x], x] /;
FreeQ[{a, b, c, d, n, p}, x] && NeQ[b*c - a*d, 0] && GtQ[q, 1] && NeQ[n*(p + q) + 1, 0] && !IGtQ[p, 1] && Int
BinomialQ[a, b, c, d, n, p, q, x]
-
Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[x*(a + b*x^n)^p*((c + d*x^n
)^q/(n*(p + q) + 1)), x] + Simp[n/(n*(p + q) + 1) Int[(a + b*x^n)^(p - 1)*(c + d*x^n)^(q - 1)*Simp[a*c*(p +
q) + (q*(b*c - a*d) + a*d*(p + q))*x^n, x], x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && GtQ[q,
0] && GtQ[p, 0] && IntBinomialQ[a, b, c, d, n, p, q, x]
-
Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Int[ExpandIntegrand[(a + b*x^n)
^p*(c + d*x^n)^q, x], x] /; FreeQ[{a, b, c, d, n, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[p, 0]
-
Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[a^p*c^q*x*AppellF1[1/n, -p,
-q, 1 + 1/n, (-b)*(x^n/a), (-d)*(x^n/c)], x] /; FreeQ[{a, b, c, d, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[n
, -1] && (IntegerQ[p] || GtQ[a, 0]) && (IntegerQ[q] || GtQ[c, 0])
-
Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[a^IntPart[p]*((a + b*x^n)^F
racPart[p]/(1 + b*(x^n/a))^FracPart[p]) Int[(1 + b*(x^n/a))^p*(c + d*x^n)^q, x], x] /; FreeQ[{a, b, c, d, n,
p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[n, -1] && !(IntegerQ[p] || GtQ[a, 0])
-
Int[((a_.) + (b_.)*(u_)^(n_))^(p_.)*((c_.) + (d_.)*(u_)^(n_))^(q_.), x_Symbol] :> Simp[1/Coefficient[u, x, 1]
Subst[Int[(a + b*x^n)^p*(c + d*x^n)^q, x], x, u], x] /; FreeQ[{a, b, c, d, n, p, q}, x] && LinearQ[u, x] &&
NeQ[u, x]
-
Int[(u_)^(p_.)*(v_)^(q_.), x_Symbol] :> Int[NormalizePseudoBinomial[u, x]^p*NormalizePseudoBinomial[v, x]^q, x
] /; FreeQ[{p, q}, x] && PseudoBinomialPairQ[u, v, x]
-
Int[(u_)^(p_.)*(v_)^(q_.)*(x_)^(m_.), x_Symbol] :> Int[NormalizePseudoBinomial[x^(m/p)*u, x]^p*NormalizePseudo
Binomial[v, x]^q, x] /; FreeQ[{p, q}, x] && IntegersQ[p, m/p] && PseudoBinomialPairQ[x^(m/p)*u, v, x]
-
Int[((c_) + (d_.)*(x_)^(mn_.))^(q_.)*((a_) + (b_.)*(x_)^(n_.))^(p_.), x_Symbol] :> Int[(a + b*x^n)^p*((d + c*x
^n)^q/x^(n*q)), x] /; FreeQ[{a, b, c, d, n, p}, x] && EqQ[mn, -n] && IntegerQ[q] && (PosQ[n] || !IntegerQ[p])
-
Int[((c_) + (d_.)*(x_)^(mn_.))^(q_)*((a_) + (b_.)*(x_)^(n_.))^(p_.), x_Symbol] :> Simp[x^(n*FracPart[q])*((c +
d/x^n)^FracPart[q]/(d + c*x^n)^FracPart[q]) Int[(a + b*x^n)^p*((d + c*x^n)^q/x^(n*q)), x], x] /; FreeQ[{a,
b, c, d, n, p, q}, x] && EqQ[mn, -n] && !IntegerQ[q] && !IntegerQ[p]
-
Int[((e_.)*(x_))^(m_.)*((b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Simp[e^m/(n*b^(Simp
lify[(m + 1)/n] - 1)) Subst[Int[(b*x)^(p + Simplify[(m + 1)/n] - 1)*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{b
, c, d, e, m, n, p, q}, x] && (IntegerQ[m] || GtQ[e, 0]) && IntegerQ[Simplify[(m + 1)/n]]
-
Int[((e_.)*(x_))^(m_.)*((b_.)*(x_)^(n_.))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Simp[e^m*b^IntPart
[p]*((b*x^n)^FracPart[p]/x^(n*FracPart[p])) Int[x^(m + n*p)*(c + d*x^n)^q, x], x] /; FreeQ[{b, c, d, e, m, n
, p, q}, x] && (IntegerQ[m] || GtQ[e, 0]) && !IntegerQ[Simplify[(m + 1)/n]]
-
Int[((e_)*(x_))^(m_)*((b_.)*(x_)^(n_.))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Simp[e^IntPart[m]*((
e*x)^FracPart[m]/x^FracPart[m]) Int[x^m*(b*x^n)^p*(c + d*x^n)^q, x], x] /; FreeQ[{b, c, d, e, m, n, p, q}, x
] && !IntegerQ[m]
-
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Simp[1/n Subst[In
t[(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && EqQ[m
- n + 1, 0]
-
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Int[x^(m + n*(p + q
))*(b + a/x^n)^p*(d + c/x^n)^q, x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[b*c - a*d, 0] && IntegersQ[p, q] &&
NegQ[n]
-
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Simp[1/n Subst[In
t[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &
& NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]
-
Int[((e_)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Simp[e^IntPa
rt[m]*((e*x)^FracPart[m]/x^FracPart[m]) Int[x^m*(a + b*x^n)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a, b, c, d, e,
m, n, p, q}, x] && NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]
-
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Int[ExpandI
ntegrand[(e*x)^m*(a + b*x^n)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && NeQ[b*c - a*d, 0] &
& IGtQ[p, 0] && IGtQ[q, 0]
-
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[c*(e*x)^(m +
1)*((a + b*x^n)^(p + 1)/(a*e*(m + 1))), x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && NeQ[b*c - a*d, 0] && EqQ[
a*d*(m + 1) - b*c*(m + n*(p + 1) + 1), 0] && NeQ[m, -1]
-
Int[((e_.)*(x_))^(m_.)*((a1_) + (b1_.)*(x_)^(non2_.))^(p_.)*((a2_) + (b2_.)*(x_)^(non2_.))^(p_.)*((c_) + (d_.)
*(x_)^(n_)), x_Symbol] :> Simp[c*(e*x)^(m + 1)*(a1 + b1*x^(n/2))^(p + 1)*((a2 + b2*x^(n/2))^(p + 1)/(a1*a2*e*(
m + 1))), x] /; FreeQ[{a1, b1, a2, b2, c, d, e, m, n, p}, x] && EqQ[non2, n/2] && EqQ[a2*b1 + a1*b2, 0] && EqQ
[a1*a2*d*(m + 1) - b1*b2*c*(m + n*(p + 1) + 1), 0] && NeQ[m, -1]
-
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[c*(e*x)^(m +
1)*((a + b*x^n)^(p + 1)/(a*e*(m + 1))), x] + Simp[d/e^n Int[(e*x)^(m + n)*(a + b*x^n)^p, x], x] /; FreeQ[{a
, b, c, d, e, m, n, p}, x] && NeQ[b*c - a*d, 0] && EqQ[m + n*(p + 1) + 1, 0] && (IntegerQ[n] || GtQ[e, 0]) &&
((GtQ[n, 0] && LtQ[m, -1]) || (LtQ[n, 0] && GtQ[m + n, -1]))
-
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(b*c - a*d)*
(e*x)^(m + 1)*((a + b*x^n)^(p + 1)/(a*b*e*(m + 1))), x] + Simp[d/b Int[(e*x)^m*(a + b*x^n)^(p + 1), x], x] /
; FreeQ[{a, b, c, d, e, m, n, p}, x] && NeQ[b*c - a*d, 0] && EqQ[m + n*(p + 1) + 1, 0] && NeQ[m, -1]
-
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[c*(e*x)^(m +
1)*((a + b*x^n)^(p + 1)/(a*e*(m + 1))), x] + Simp[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(a*e^n*(m + 1)) I
nt[(e*x)^(m + n)*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && (IntegerQ[n] ||
GtQ[e, 0]) && ((GtQ[n, 0] && LtQ[m, -1]) || (LtQ[n, 0] && GtQ[m + n, -1])) && !ILtQ[p, -1]
-
Int[((e_.)*(x_))^(m_.)*((a1_) + (b1_.)*(x_)^(non2_.))^(p_.)*((a2_) + (b2_.)*(x_)^(non2_.))^(p_.)*((c_) + (d_.)
*(x_)^(n_)), x_Symbol] :> Simp[c*(e*x)^(m + 1)*(a1 + b1*x^(n/2))^(p + 1)*((a2 + b2*x^(n/2))^(p + 1)/(a1*a2*e*(
m + 1))), x] + Simp[(a1*a2*d*(m + 1) - b1*b2*c*(m + n*(p + 1) + 1))/(a1*a2*e^n*(m + 1)) Int[(e*x)^(m + n)*(a
1 + b1*x^(n/2))^p*(a2 + b2*x^(n/2))^p, x], x] /; FreeQ[{a1, b1, a2, b2, c, d, e, p}, x] && EqQ[non2, n/2] && E
qQ[a2*b1 + a1*b2, 0] && (IntegerQ[n] || GtQ[e, 0]) && ((GtQ[n, 0] && LtQ[m, -1]) || (LtQ[n, 0] && GtQ[m + n, -
1])) && !ILtQ[p, -1]
-
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[(-(b*c - a*d
))*(e*x)^(m + 1)*((a + b*x^n)^(p + 1)/(a*b*e*n*(p + 1))), x] - Simp[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(a
*b*n*(p + 1)) Int[(e*x)^m*(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && NeQ[b*c - a*d, 0
] && LtQ[p, -1] && (( !IntegerQ[p + 1/2] && NeQ[p, -5/4]) || !RationalQ[m] || (IGtQ[n, 0] && ILtQ[p + 1/2, 0]
&& LeQ[-1, m, (-n)*(p + 1)]))
-
Int[((e_.)*(x_))^(m_.)*((a1_) + (b1_.)*(x_)^(non2_.))^(p_.)*((a2_) + (b2_.)*(x_)^(non2_.))^(p_.)*((c_) + (d_.)
*(x_)^(n_)), x_Symbol] :> Simp[(-(b1*b2*c - a1*a2*d))*(e*x)^(m + 1)*(a1 + b1*x^(n/2))^(p + 1)*((a2 + b2*x^(n/2
))^(p + 1)/(a1*a2*b1*b2*e*n*(p + 1))), x] - Simp[(a1*a2*d*(m + 1) - b1*b2*c*(m + n*(p + 1) + 1))/(a1*a2*b1*b2*
n*(p + 1)) Int[(e*x)^m*(a1 + b1*x^(n/2))^(p + 1)*(a2 + b2*x^(n/2))^(p + 1), x], x] /; FreeQ[{a1, b1, a2, b2,
c, d, e, m, n}, x] && EqQ[non2, n/2] && EqQ[a2*b1 + a1*b2, 0] && LtQ[p, -1] && (( !IntegerQ[p + 1/2] && NeQ[p
, -5/4]) || !RationalQ[m] || (IGtQ[n, 0] && ILtQ[p + 1/2, 0] && LeQ[-1, m, (-n)*(p + 1)]))
-
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[d*(e*x)^(m +
1)*((a + b*x^n)^(p + 1)/(b*e*(m + n*(p + 1) + 1))), x] - Simp[(a*d*(m + 1) - b*c*(m + n*(p + 1) + 1))/(b*(m +
n*(p + 1) + 1)) Int[(e*x)^m*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && NeQ[b*c - a*d, 0
] && NeQ[m + n*(p + 1) + 1, 0]
-
Int[((e_.)*(x_))^(m_.)*((a1_) + (b1_.)*(x_)^(non2_.))^(p_.)*((a2_) + (b2_.)*(x_)^(non2_.))^(p_.)*((c_) + (d_.)
*(x_)^(n_)), x_Symbol] :> Simp[d*(e*x)^(m + 1)*(a1 + b1*x^(n/2))^(p + 1)*((a2 + b2*x^(n/2))^(p + 1)/(b1*b2*e*(
m + n*(p + 1) + 1))), x] - Simp[(a1*a2*d*(m + 1) - b1*b2*c*(m + n*(p + 1) + 1))/(b1*b2*(m + n*(p + 1) + 1))
Int[(e*x)^m*(a1 + b1*x^(n/2))^p*(a2 + b2*x^(n/2))^p, x], x] /; FreeQ[{a1, b1, a2, b2, c, d, e, m, n, p}, x] &&
EqQ[non2, n/2] && EqQ[a2*b1 + a1*b2, 0] && NeQ[m + n*(p + 1) + 1, 0]
-
Int[(((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_))/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Int[ExpandIntegr
and[(e*x)^m*((a + b*x^n)^p/(c + d*x^n)), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b*c - a*d, 0] && IGtQ[n
, 0] && IGtQ[p, 0] && (IntegerQ[m] || IGtQ[2*(m + 1), 0] || !RationalQ[m])
-
Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^2, x_Symbol] :> Simp[c^2*(e*x)^(m
+ 1)*((a + b*x^n)^(p + 1)/(a*e*(m + 1))), x] - Simp[1/(a*e^n*(m + 1)) Int[(e*x)^(m + n)*(a + b*x^n)^p*Simp[
b*c^2*n*(p + 1) + c*(b*c - 2*a*d)*(m + 1) - a*(m + 1)*d^2*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, p}, x] && N
eQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[m, -1] && GtQ[n, 0]
-
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^2, x_Symbol] :> Simp[(-(b*c - a*
d)^2)*(e*x)^(m + 1)*((a + b*x^n)^(p + 1)/(a*b^2*e*n*(p + 1))), x] + Simp[1/(a*b^2*n*(p + 1)) Int[(e*x)^m*(a
+ b*x^n)^(p + 1)*Simp[(b*c - a*d)^2*(m + 1) + b^2*c^2*n*(p + 1) + a*b*d^2*n*(p + 1)*x^n, x], x], x] /; FreeQ[{
a, b, c, d, e, m, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[p, -1]
-
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^2, x_Symbol] :> Simp[d^2*(e*x)^(
m + n + 1)*((a + b*x^n)^(p + 1)/(b*e^(n + 1)*(m + n*(p + 2) + 1))), x] + Simp[1/(b*(m + n*(p + 2) + 1)) Int[
(e*x)^m*(a + b*x^n)^p*Simp[b*c^2*(m + n*(p + 2) + 1) - d*(a*d*(m + n + 1) - 2*b*c*(m + n*(p + 2) + 1))*x^n, x]
, x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && NeQ[m + n*(p + 2) + 1, 0]
-
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> With[{k = GCD[m + 1,
n]}, Simp[1/k Subst[Int[x^((m + 1)/k - 1)*(a + b*x^(n/k))^p*(c + d*x^(n/k))^q, x], x, x^k], x] /; k != 1] /;
FreeQ[{a, b, c, d, p, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && IntegerQ[m]
-
Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> With[{k = Deno
minator[m]}, Simp[k/e Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/e^n))^p*(c + d*(x^(k*n)/e^n))^q, x], x, (e
*x)^(1/k)], x]] /; FreeQ[{a, b, c, d, e, p, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && FractionQ[m] && Integ
erQ[p]
-
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[e^(n - 1
)*(e*x)^(m - n + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^q/(b*n*(p + 1))), x] - Simp[e^n/(b*n*(p + 1)) Int[(e*x)
^(m - n)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q - 1)*Simp[c*(m - n + 1) + d*(m + n*(q - 1) + 1)*x^n, x], x], x] /;
FreeQ[{a, b, c, d, e}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[q, 0] && GtQ[m - n + 1, 0]
&& IntBinomialQ[a, b, c, d, e, m, n, p, q, x]
-
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(-(c*b -
a*d))*(e*x)^(m + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q - 1)/(a*b*e*n*(p + 1))), x] + Simp[1/(a*b*n*(p + 1))
Int[(e*x)^m*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q - 2)*Simp[c*(c*b*n*(p + 1) + (c*b - a*d)*(m + 1)) + d*(c*b*n*
(p + 1) + (c*b - a*d)*(m + n*(q - 1) + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b*c - a*d, 0
] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[q, 1] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]
-
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(-(e*x)^
(m + 1))*(a + b*x^n)^(p + 1)*((c + d*x^n)^q/(a*e*n*(p + 1))), x] + Simp[1/(a*n*(p + 1)) Int[(e*x)^m*(a + b*x
^n)^(p + 1)*(c + d*x^n)^(q - 1)*Simp[c*(m + n*(p + 1) + 1) + d*(m + n*(p + q + 1) + 1)*x^n, x], x], x] /; Free
Q[{a, b, c, d, e, m}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[p, -1] && LtQ[0, q, 1] && IntBinomialQ[a, b
, c, d, e, m, n, p, q, x]
-
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(-a)*e^(
2*n - 1)*(e*x)^(m - 2*n + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(b*n*(b*c - a*d)*(p + 1))), x] + Simp[e^
(2*n)/(b*n*(b*c - a*d)*(p + 1)) Int[(e*x)^(m - 2*n)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[a*c*(m - 2*n + 1)
+ (a*d*(m - n + n*q + 1) + b*c*n*(p + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[b*c - a*d, 0
] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m - n + 1, n] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]
-
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[e^(n - 1
)*(e*x)^(m - n + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(n*(b*c - a*d)*(p + 1))), x] - Simp[e^n/(n*(b*c -
a*d)*(p + 1)) Int[(e*x)^(m - n)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[c*(m - n + 1) + d*(m + n*(p + q + 1)
+ 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[p, -1] && GeQ[
n, m - n + 1] && GtQ[m - n + 1, 0] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]
-
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(-b)*(e*
x)^(m + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(a*e*n*(b*c - a*d)*(p + 1))), x] + Simp[1/(a*n*(b*c - a*d)
*(p + 1)) Int[(e*x)^m*(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[c*b*(m + 1) + n*(b*c - a*d)*(p + 1) + d*b*(m +
n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, m, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && Lt
Q[p, -1] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]
-
Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(e*x)^(m
+ 1)*(a + b*x^n)^p*((c + d*x^n)^q/(e*(m + 1))), x] - Simp[n/(e^n*(m + 1)) Int[(e*x)^(m + n)*(a + b*x^n)^(p -
1)*(c + d*x^n)^(q - 1)*Simp[b*c*p + a*d*q + b*d*(p + q)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b
*c - a*d, 0] && IGtQ[n, 0] && GtQ[q, 0] && LtQ[m, -1] && GtQ[p, 0] && IntBinomialQ[a, b, c, d, e, m, n, p, q,
x]
-
Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[c*(e*x)^(
m + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q - 1)/(a*e*(m + 1))), x] - Simp[1/(a*e^n*(m + 1)) Int[(e*x)^(m + n
)*(a + b*x^n)^p*(c + d*x^n)^(q - 2)*Simp[c*(c*b - a*d)*(m + 1) + c*n*(b*c*(p + 1) + a*d*(q - 1)) + d*((c*b - a
*d)*(m + 1) + c*b*n*(p + q))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0
] && GtQ[q, 1] && LtQ[m, -1] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]
-
Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(e*x)^(m
+ 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^q/(a*e*(m + 1))), x] - Simp[1/(a*e^n*(m + 1)) Int[(e*x)^(m + n)*(a + b
*x^n)^p*(c + d*x^n)^(q - 1)*Simp[c*b*(m + 1) + n*(b*c*(p + 1) + a*d*q) + d*(b*(m + 1) + b*n*(p + q + 1))*x^n,
x], x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[0, q, 1] && LtQ[m, -1] &&
IntBinomialQ[a, b, c, d, e, m, n, p, q, x]
-
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(e*x)^(m
+ 1)*(a + b*x^n)^p*((c + d*x^n)^q/(e*(m + n*(p + q) + 1))), x] + Simp[n/(m + n*(p + q) + 1) Int[(e*x)^m*(a
+ b*x^n)^(p - 1)*(c + d*x^n)^(q - 1)*Simp[a*c*(p + q) + (q*(b*c - a*d) + a*d*(p + q))*x^n, x], x], x] /; FreeQ
[{a, b, c, d, e, m}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && GtQ[q, 0] && GtQ[p, 0] && IntBinomialQ[a, b, c,
d, e, m, n, p, q, x]
-
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[d*(e*x)^
(m + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q - 1)/(b*e*(m + n*(p + q) + 1))), x] + Simp[1/(b*(m + n*(p + q) + 1
)) Int[(e*x)^m*(a + b*x^n)^p*(c + d*x^n)^(q - 2)*Simp[c*((c*b - a*d)*(m + 1) + c*b*n*(p + q)) + (d*(c*b - a*
d)*(m + 1) + d*n*(q - 1)*(b*c - a*d) + c*b*d*n*(p + q))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] &&
NeQ[b*c - a*d, 0] && IGtQ[n, 0] && GtQ[q, 1] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]
-
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[e^(n - 1
)*(e*x)^(m - n + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^q/(b*(m + n*(p + q) + 1))), x] - Simp[e^n/(b*(m + n*(p +
q) + 1)) Int[(e*x)^(m - n)*(a + b*x^n)^p*(c + d*x^n)^(q - 1)*Simp[a*c*(m - n + 1) + (a*d*(m - n + 1) - n*q*(
b*c - a*d))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && GtQ[q, 0] &&
GtQ[m - n + 1, 0] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]
-
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[e^(2*n -
1)*(e*x)^(m - 2*n + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(b*d*(m + n*(p + q) + 1))), x] - Simp[e^(2*n)
/(b*d*(m + n*(p + q) + 1)) Int[(e*x)^(m - 2*n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[a*c*(m - 2*n + 1) + (a*d*(m
+ n*(q - 1) + 1) + b*c*(m + n*(p - 1) + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, p, q}, x] && NeQ[b*c - a*
d, 0] && IGtQ[n, 0] && GtQ[m - n + 1, n] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]
-
Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(e*x)^(m
+ 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(a*c*e*(m + 1))), x] - Simp[1/(a*c*e^n*(m + 1)) Int[(e*x)^(m +
n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[(b*c + a*d)*(m + n + 1) + n*(b*c*p + a*d*q) + b*d*(m + n*(p + q + 2) + 1)
*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, p, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[m, -1] && IntBin
omialQ[a, b, c, d, e, m, n, p, q, x]
-
Int[((e_.)*(x_))^(m_.)/(((a_) + (b_.)*(x_)^(n_))*((c_) + (d_.)*(x_)^(n_))), x_Symbol] :> Simp[(-a)*(e^n/(b*c -
a*d)) Int[(e*x)^(m - n)/(a + b*x^n), x], x] + Simp[c*(e^n/(b*c - a*d)) Int[(e*x)^(m - n)/(c + d*x^n), x],
x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LeQ[n, m, 2*n - 1]
-
Int[((e_.)*(x_))^(m_.)/(((a_) + (b_.)*(x_)^(n_))*((c_) + (d_.)*(x_)^(n_))), x_Symbol] :> Simp[b/(b*c - a*d)
Int[(e*x)^m/(a + b*x^n), x], x] - Simp[d/(b*c - a*d) Int[(e*x)^m/(c + d*x^n), x], x] /; FreeQ[{a, b, c, d, e
, m}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0]
-
Int[(((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_)^(n_))^(q_.))/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Simp[e^n/b Int
[(e*x)^(m - n)*(c + d*x^n)^q, x], x] - Simp[a*(e^n/b) Int[(e*x)^(m - n)*((c + d*x^n)^q/(a + b*x^n)), x], x]
/; FreeQ[{a, b, c, d, e, m, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LeQ[n, m, 2*n - 1] && IntBinomialQ[a,
b, c, d, e, m, n, -1, q, x]
-
Int[((x_)*((a_) + (b_.)*(x_)^(n_))^(p_))/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[b/d Int[x*(a + b*x^n)^(
p - 1), x], x] - Simp[(b*c - a*d)/d Int[x*((a + b*x^n)^(p - 1)/(c + d*x^n)), x], x] /; FreeQ[{a, b, c, d}, x
] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && GtQ[p, 0] && IntBinomialQ[a, b, c, d, 1, 1, n, p, -1, x]
-
Int[((x_)*((a_) + (b_.)*(x_)^(n_))^(p_))/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[b/(b*c - a*d) Int[x*(a
+ b*x^n)^(p - 1), x], x] - Simp[d/(b*c - a*d) Int[x*((a + b*x^n)^(p + 1)/(c + d*x^n)), x], x] /; FreeQ[{a, b
, c, d}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[p, -1] && IntBinomialQ[a, b, c, d, 1, 1, n, p, -1, x]
-
Int[(x_)/(((a_) + (b_.)*(x_)^3)*Sqrt[(c_) + (d_.)*(x_)^3]), x_Symbol] :> With[{q = Rt[d/c, 3]}, Simp[q*(ArcTan
h[Sqrt[c + d*x^3]/Rt[c, 2]]/(9*2^(2/3)*b*Rt[c, 2])), x] + (-Simp[q*(ArcTanh[Rt[c, 2]*((1 - 2^(1/3)*q*x)/Sqrt[c
+ d*x^3])]/(3*2^(2/3)*b*Rt[c, 2])), x] + Simp[q*(ArcTan[Sqrt[c + d*x^3]/(Sqrt[3]*Rt[c, 2])]/(3*2^(2/3)*Sqrt[3
]*b*Rt[c, 2])), x] - Simp[q*(ArcTan[Sqrt[3]*Rt[c, 2]*((1 + 2^(1/3)*q*x)/Sqrt[c + d*x^3])]/(3*2^(2/3)*Sqrt[3]*b
*Rt[c, 2])), x])] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[4*b*c - a*d, 0] && PosQ[c]
-
Int[(x_)/(((a_) + (b_.)*(x_)^3)*Sqrt[(c_) + (d_.)*(x_)^3]), x_Symbol] :> With[{q = Rt[d/c, 3]}, Simp[(-q)*(Arc
Tan[Sqrt[c + d*x^3]/Rt[-c, 2]]/(9*2^(2/3)*b*Rt[-c, 2])), x] + (-Simp[q*(ArcTan[Rt[-c, 2]*((1 - 2^(1/3)*q*x)/Sq
rt[c + d*x^3])]/(3*2^(2/3)*b*Rt[-c, 2])), x] - Simp[q*(ArcTanh[Sqrt[c + d*x^3]/(Sqrt[3]*Rt[-c, 2])]/(3*2^(2/3)
*Sqrt[3]*b*Rt[-c, 2])), x] - Simp[q*(ArcTanh[Sqrt[3]*Rt[-c, 2]*((1 + 2^(1/3)*q*x)/Sqrt[c + d*x^3])]/(3*2^(2/3)
*Sqrt[3]*b*Rt[-c, 2])), x])] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[4*b*c - a*d, 0] && NegQ[c]
-
Int[(x_)/(((a_) + (b_.)*(x_)^3)*Sqrt[(c_) + (d_.)*(x_)^3]), x_Symbol] :> With[{q = Rt[d/c, 3]}, Simp[d*(q/(4*b
)) Int[x^2/((8*c - d*x^3)*Sqrt[c + d*x^3]), x], x] + (-Simp[q^2/(12*b) Int[(1 + q*x)/((2 - q*x)*Sqrt[c + d
*x^3]), x], x] + Simp[1/(12*b*c) Int[(2*c*q^2 - 2*d*x - d*q*x^2)/((4 + 2*q*x + q^2*x^2)*Sqrt[c + d*x^3]), x]
, x])] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[8*b*c + a*d, 0]
-
Int[(x_)/(Sqrt[(a_) + (b_.)*(x_)^3]*((c_) + (d_.)*(x_)^3)), x_Symbol] :> With[{q = Rt[b/a, 3], r = Simplify[(b
*c - 10*a*d)/(6*a*d)]}, Simp[(-q)*(2 - r)*(ArcTan[(1 - r)*(Sqrt[a + b*x^3]/(Sqrt[2]*Rt[a, 2]*r^(3/2)))]/(3*Sqr
t[2]*Rt[a, 2]*d*r^(3/2))), x] + (-Simp[q*(2 - r)*(ArcTan[Rt[a, 2]*Sqrt[r]*(1 + r)*((1 + q*x)/(Sqrt[2]*Sqrt[a +
b*x^3]))]/(2*Sqrt[2]*Rt[a, 2]*d*r^(3/2))), x] - Simp[q*(2 - r)*(ArcTanh[Rt[a, 2]*Sqrt[r]*((1 + r - 2*q*x)/(Sq
rt[2]*Sqrt[a + b*x^3]))]/(3*Sqrt[2]*Rt[a, 2]*d*Sqrt[r])), x] - Simp[q*(2 - r)*(ArcTanh[Rt[a, 2]*(1 - r)*Sqrt[r
]*((1 + q*x)/(Sqrt[2]*Sqrt[a + b*x^3]))]/(6*Sqrt[2]*Rt[a, 2]*d*Sqrt[r])), x])] /; FreeQ[{a, b, c, d}, x] && Ne
Q[b*c - a*d, 0] && EqQ[b^2*c^2 - 20*a*b*c*d - 8*a^2*d^2, 0] && PosQ[a]
-
Int[(x_)/(Sqrt[(a_) + (b_.)*(x_)^3]*((c_) + (d_.)*(x_)^3)), x_Symbol] :> With[{q = Rt[b/a, 3], r = Simplify[(b
*c - 10*a*d)/(6*a*d)]}, Simp[q*(2 - r)*(ArcTanh[(1 - r)*(Sqrt[a + b*x^3]/(Sqrt[2]*Rt[-a, 2]*r^(3/2)))]/(3*Sqrt
[2]*Rt[-a, 2]*d*r^(3/2))), x] + (-Simp[q*(2 - r)*(ArcTanh[Rt[-a, 2]*Sqrt[r]*(1 + r)*((1 + q*x)/(Sqrt[2]*Sqrt[a
+ b*x^3]))]/(2*Sqrt[2]*Rt[-a, 2]*d*r^(3/2))), x] - Simp[q*(2 - r)*(ArcTan[Rt[-a, 2]*Sqrt[r]*((1 + r - 2*q*x)/
(Sqrt[2]*Sqrt[a + b*x^3]))]/(3*Sqrt[2]*Rt[-a, 2]*d*Sqrt[r])), x] - Simp[q*(2 - r)*(ArcTan[Rt[-a, 2]*(1 - r)*Sq
rt[r]*((1 + q*x)/(Sqrt[2]*Sqrt[a + b*x^3]))]/(6*Sqrt[2]*Rt[-a, 2]*d*Sqrt[r])), x])] /; FreeQ[{a, b, c, d}, x]
&& NeQ[b*c - a*d, 0] && EqQ[b^2*c^2 - 20*a*b*c*d - 8*a^2*d^2, 0] && NegQ[a]
-
Int[(x_)/(((a_) + (b_.)*(x_)^3)^(1/3)*((c_) + (d_.)*(x_)^3)), x_Symbol] :> With[{q = Rt[b/a, 3]}, Simp[-q^2/(3
*d) Int[1/((1 - q*x)*(a + b*x^3)^(1/3)), x], x] + Simp[q/d Subst[Int[1/(1 + 2*a*x^3), x], x, (1 + q*x)/(a
+ b*x^3)^(1/3)], x]] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[b*c + a*d, 0]
-
Int[(x_)/(((a_) + (b_.)*(x_)^3)^(2/3)*((c_) + (d_.)*(x_)^3)), x_Symbol] :> With[{q = Rt[(b*c - a*d)/c, 3]}, Si
mp[-ArcTan[(1 + (2*q*x)/(a + b*x^3)^(1/3))/Sqrt[3]]/(Sqrt[3]*c*q^2), x] + (-Simp[Log[q*x - (a + b*x^3)^(1/3)]/
(2*c*q^2), x] + Simp[Log[c + d*x^3]/(6*c*q^2), x])] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0]
-
Int[(x_)^2/(((a_) + (b_.)*(x_)^4)*Sqrt[(c_) + (d_.)*(x_)^4]), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2]], s
= Denominator[Rt[-a/b, 2]]}, Simp[s/(2*b) Int[1/((r + s*x^2)*Sqrt[c + d*x^4]), x], x] - Simp[s/(2*b) Int[
1/((r - s*x^2)*Sqrt[c + d*x^4]), x], x]] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0]
-
Int[((x_)^2*Sqrt[(c_) + (d_.)*(x_)^4])/((a_) + (b_.)*(x_)^4), x_Symbol] :> Simp[d/b Int[x^2/Sqrt[c + d*x^4],
x], x] + Simp[(b*c - a*d)/b Int[x^2/((a + b*x^4)*Sqrt[c + d*x^4]), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[
b*c - a*d, 0]
-
Int[(x_)^4/(Sqrt[(a_) + (b_.)*(x_)^4]*Sqrt[(c_) + (d_.)*(x_)^4]), x_Symbol] :> Simp[1/b Int[Sqrt[a + b*x^4]/
Sqrt[c + d*x^4], x], x] - Simp[a/b Int[1/(Sqrt[a + b*x^4]*Sqrt[c + d*x^4]), x], x] /; FreeQ[{a, b, c, d}, x]
&& NeQ[b*c - a*d, 0]
-
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> With[{k = Denominato
r[p]}, Simp[k*(a^(p + (m + 1)/n)/n) Subst[Int[x^(k*((m + 1)/n) - 1)*((c - (b*c - a*d)*x^k)^q/(1 - b*x^k)^(p
+ q + (m + 1)/n + 1)), x], x, x^(n/k)/(a + b*x^n)^(1/k)], x]] /; FreeQ[{a, b, c, d}, x] && IGtQ[n, 0] && Ratio
nalQ[m, p] && IntegersQ[p + (m + 1)/n, q] && LtQ[-1, p, 0]
-
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> -Subst[Int[(a + b/x^n
)^p*((c + d/x^n)^q/x^(m + 2)), x], x, 1/x] /; FreeQ[{a, b, c, d, p, q}, x] && NeQ[b*c - a*d, 0] && ILtQ[n, 0]
&& IntegerQ[m]
-
Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> With[{g = Deno
minator[m]}, Simp[-g/e Subst[Int[(a + b/(e^n*x^(g*n)))^p*((c + d/(e^n*x^(g*n)))^q/x^(g*(m + 1) + 1)), x], x,
1/(e*x)^(1/g)], x]] /; FreeQ[{a, b, c, d, e, p, q}, x] && ILtQ[n, 0] && FractionQ[m]
-
Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(-(e*x)^m
)*(x^(-1))^m Subst[Int[(a + b/x^n)^p*((c + d/x^n)^q/x^(m + 2)), x], x, 1/x], x] /; FreeQ[{a, b, c, d, e, m,
p, q}, x] && NeQ[b*c - a*d, 0] && ILtQ[n, 0] && !RationalQ[m]
-
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> With[{g = Denominator
[n]}, Simp[g Subst[Int[x^(g*(m + 1) - 1)*(a + b*x^(g*n))^p*(c + d*x^(g*n))^q, x], x, x^(1/g)], x]] /; FreeQ[
{a, b, c, d, m, p, q}, x] && NeQ[b*c - a*d, 0] && FractionQ[n]
-
Int[((e_)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[e^IntPart[
m]*((e*x)^FracPart[m]/x^FracPart[m]) Int[x^m*(a + b*x^n)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a, b, c, d, e, m,
p, q}, x] && NeQ[b*c - a*d, 0] && FractionQ[n]
-
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[1/(m + 1) Subs
t[Int[(a + b*x^Simplify[n/(m + 1)])^p*(c + d*x^Simplify[n/(m + 1)])^q, x], x, x^(m + 1)], x] /; FreeQ[{a, b, c
, d, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && IntegerQ[Simplify[n/(m + 1)]] && !IntegerQ[n]
-
Int[((e_)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[e^IntPart
[m]*((e*x)^FracPart[m]/x^FracPart[m]) Int[x^m*(a + b*x^n)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a, b, c, d, e, m
, n, p, q}, x] && NeQ[b*c - a*d, 0] && IntegerQ[Simplify[n/(m + 1)]] && !IntegerQ[n]
-
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(-(c*b -
a*d))*(e*x)^(m + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q - 1)/(a*b*e*n*(p + 1))), x] + Simp[1/(a*b*n*(p + 1))
Int[(e*x)^m*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q - 2)*Simp[c*(c*b*n*(p + 1) + (c*b - a*d)*(m + 1)) + d*(c*b*n*
(p + 1) + (c*b - a*d)*(m + n*(q - 1) + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && NeQ[b*c - a*d
, 0] && LtQ[p, -1] && GtQ[q, 1] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]
-
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(-(e*x)^
(m + 1))*(a + b*x^n)^(p + 1)*((c + d*x^n)^q/(a*e*n*(p + 1))), x] + Simp[1/(a*n*(p + 1)) Int[(e*x)^m*(a + b*x
^n)^(p + 1)*(c + d*x^n)^(q - 1)*Simp[c*(m + n*(p + 1) + 1) + d*(m + n*(p + q + 1) + 1)*x^n, x], x], x] /; Free
Q[{a, b, c, d, e, m, n}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] && LtQ[0, q, 1] && IntBinomialQ[a, b, c, d, e,
m, n, p, q, x]
-
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(-b)*(e*
x)^(m + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(a*e*n*(b*c - a*d)*(p + 1))), x] + Simp[1/(a*n*(b*c - a*d)
*(p + 1)) Int[(e*x)^m*(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[c*b*(m + 1) + n*(b*c - a*d)*(p + 1) + d*b*(m +
n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, m, n, q}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] &&
IntBinomialQ[a, b, c, d, e, m, n, p, q, x]
-
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(e*x)^(m
+ 1)*(a + b*x^n)^p*((c + d*x^n)^q/(e*(m + n*(p + q) + 1))), x] + Simp[n/(m + n*(p + q) + 1) Int[(e*x)^m*(a
+ b*x^n)^(p - 1)*(c + d*x^n)^(q - 1)*Simp[a*c*(p + q) + (q*(b*c - a*d) + a*d*(p + q))*x^n, x], x], x] /; FreeQ
[{a, b, c, d, e, m, n}, x] && NeQ[b*c - a*d, 0] && GtQ[q, 0] && GtQ[p, 0] && IntBinomialQ[a, b, c, d, e, m, n,
p, q, x]
-
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[d*(e*x)^
(m + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q - 1)/(b*e*(m + n*(p + q) + 1))), x] + Simp[1/(b*(m + n*(p + q) + 1
)) Int[(e*x)^m*(a + b*x^n)^p*(c + d*x^n)^(q - 2)*Simp[c*((c*b - a*d)*(m + 1) + c*b*n*(p + q)) + (d*(c*b - a*
d)*(m + 1) + d*n*(q - 1)*(b*c - a*d) + c*b*d*n*(p + q))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x]
&& NeQ[b*c - a*d, 0] && GtQ[q, 1] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]
-
Int[(x_)^(m_)/(((a_) + (b_.)*(x_)^(n_))*((c_) + (d_.)*(x_)^(n_))), x_Symbol] :> Simp[-a/(b*c - a*d) Int[x^(m
- n)/(a + b*x^n), x], x] + Simp[c/(b*c - a*d) Int[x^(m - n)/(c + d*x^n), x], x] /; FreeQ[{a, b, c, d, m, n}
, x] && NeQ[b*c - a*d, 0] && (EqQ[m, n] || EqQ[m, 2*n - 1])
-
Int[((e_.)*(x_))^(m_.)/(((a_) + (b_.)*(x_)^(n_))*((c_) + (d_.)*(x_)^(n_))), x_Symbol] :> Simp[b/(b*c - a*d)
Int[(e*x)^m/(a + b*x^n), x], x] - Simp[d/(b*c - a*d) Int[(e*x)^m/(c + d*x^n), x], x] /; FreeQ[{a, b, c, d, e
, n, m}, x] && NeQ[b*c - a*d, 0]
-
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Int[ExpandInt
egrand[(e*x)^m*(a + b*x^n)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b*c - a*d, 0] && IGt
Q[p, -2] && (IGtQ[q, -2] || (EqQ[q, -3] && IntegerQ[(m - 1)/2]))
-
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[a^p*c^q*
((e*x)^(m + 1)/(e*(m + 1)))*AppellF1[(m + 1)/n, -p, -q, 1 + (m + 1)/n, (-b)*(x^n/a), (-d)*(x^n/c)], x] /; Free
Q[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] && (IntegerQ[p] || GtQ[a
, 0]) && (IntegerQ[q] || GtQ[c, 0])
-
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[a^IntPar
t[p]*((a + b*x^n)^FracPart[p]/(1 + b*(x^n/a))^FracPart[p]) Int[(e*x)^m*(1 + b*(x^n/a))^p*(c + d*x^n)^q, x],
x] /; FreeQ[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] && !(IntegerQ
[p] || GtQ[a, 0])
-
Int[(u_)^(m_.)*((a_.) + (b_.)*(v_)^(n_))^(p_.)*((c_.) + (d_.)*(v_)^(n_))^(q_.), x_Symbol] :> Simp[u^m/(Coeffic
ient[v, x, 1]*v^m) Subst[Int[x^m*(a + b*x^n)^p*(c + d*x^n)^q, x], x, v], x] /; FreeQ[{a, b, c, d, m, n, p, q
}, x] && LinearPairQ[u, v, x]
-
Int[((a_.) + (b_.)*(v_)^(n_))^(p_.)*((c_.) + (d_.)*(v_)^(n_))^(q_.)*(x_)^(m_.), x_Symbol] :> Simp[1/Coefficien
t[v, x, 1]^(m + 1) Subst[Int[SimplifyIntegrand[(x - Coefficient[v, x, 0])^m*(a + b*x^n)^p*(c + d*x^n)^q, x],
x], x, v], x] /; FreeQ[{a, b, c, d, n, p, q}, x] && LinearQ[v, x] && IntegerQ[m] && NeQ[v, x]
-
Int[(x_)^(m_.)*((c_) + (d_.)*(x_)^(mn_.))^(q_.)*((a_) + (b_.)*(x_)^(n_.))^(p_.), x_Symbol] :> Int[x^(m - n*q)*
(a + b*x^n)^p*(d + c*x^n)^q, x] /; FreeQ[{a, b, c, d, m, n, p}, x] && EqQ[mn, -n] && IntegerQ[q] && (PosQ[n] |
| !IntegerQ[p])
-
Int[(x_)^(m_.)*((c_) + (d_.)*(x_)^(mn_.))^(q_)*((a_) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[x^(n*FracPart
[q])*((c + d/x^n)^FracPart[q]/(d + c*x^n)^FracPart[q]) Int[x^(m - n*q)*(a + b*x^n)^p*(d + c*x^n)^q, x], x] /
; FreeQ[{a, b, c, d, m, n, p, q}, x] && EqQ[mn, -n] && !IntegerQ[q] && !IntegerQ[p]
-
Int[((e_)*(x_))^(m_)*((c_) + (d_.)*(x_)^(mn_.))^(q_.)*((a_) + (b_.)*(x_)^(n_.))^(p_.), x_Symbol] :> Simp[e^Int
Part[m]*((e*x)^FracPart[m]/x^FracPart[m]) Int[x^m*(a + b*x^n)^p*(c + d/x^n)^q, x], x] /; FreeQ[{a, b, c, d,
e, m, n, p, q}, x] && EqQ[mn, -n]
-
Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_))^(r_.), x_Symbol] :>
Int[ExpandIntegrand[(a + b*x^n)^p*(c + d*x^n)^q*(e + f*x^n)^r, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && I
GtQ[p, 0] && IGtQ[q, 0] && IGtQ[r, 0]
-
Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*((c_) + (d_.)*(x_)^(n_))), x_Symbol] :> Simp[(b*e - a*f
)/(b*c - a*d) Int[1/(a + b*x^n), x], x] - Simp[(d*e - c*f)/(b*c - a*d) Int[1/(c + d*x^n), x], x] /; FreeQ[
{a, b, c, d, e, f, n}, x]
-
Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Simp[f/b
Int[1/Sqrt[c + d*x^n], x], x] + Simp[(b*e - a*f)/b Int[1/((a + b*x^n)*Sqrt[c + d*x^n]), x], x] /; FreeQ[{a,
b, c, d, e, f, n}, x]
-
Int[((e_) + (f_.)*(x_)^(n_))/(Sqrt[(a_) + (b_.)*(x_)^(n_)]*Sqrt[(c_) + (d_.)*(x_)^(n_)]), x_Symbol] :> Simp[f/
b Int[Sqrt[a + b*x^n]/Sqrt[c + d*x^n], x], x] + Simp[(b*e - a*f)/b Int[1/(Sqrt[a + b*x^n]*Sqrt[c + d*x^n])
, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && !(EqQ[n, 2] && ((PosQ[b/a] && PosQ[d/c]) || (NegQ[b/a] && (Pos
Q[d/c] || (GtQ[a, 0] && ( !GtQ[c, 0] || SimplerSqrtQ[-b/a, -d/c]))))))
-
Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Simp[(
-(b*e - a*f))*x*(a + b*x^n)^(p + 1)*((c + d*x^n)^q/(a*b*n*(p + 1))), x] + Simp[1/(a*b*n*(p + 1)) Int[(a + b*
x^n)^(p + 1)*(c + d*x^n)^(q - 1)*Simp[c*(b*e*n*(p + 1) + b*e - a*f) + d*(b*e*n*(p + 1) + (b*e - a*f)*(n*q + 1)
)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && LtQ[p, -1] && GtQ[q, 0]
-
Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Simp[(
-(b*e - a*f))*x*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(a*n*(b*c - a*d)*(p + 1))), x] + Simp[1/(a*n*(b*c - a
*d)*(p + 1)) Int[(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[c*(b*e - a*f) + e*n*(b*c - a*d)*(p + 1) + d*(b*e - a
*f)*(n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, q}, x] && LtQ[p, -1]
-
Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Simp[
f*x*(a + b*x^n)^(p + 1)*((c + d*x^n)^q/(b*(n*(p + q + 1) + 1))), x] + Simp[1/(b*(n*(p + q + 1) + 1)) Int[(a
+ b*x^n)^p*(c + d*x^n)^(q - 1)*Simp[c*(b*e - a*f + b*e*n*(p + q + 1)) + (d*(b*e - a*f) + f*n*q*(b*c - a*d) + b
*d*e*n*(p + q + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && GtQ[q, 0] && NeQ[n*(p + q + 1) +
1, 0]
-
Int[(((a_) + (b_.)*(x_)^(n_))^(p_)*((e_) + (f_.)*(x_)^(n_)))/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Simp[f/d
Int[(a + b*x^n)^p, x], x] + Simp[(d*e - c*f)/d Int[(a + b*x^n)^p/(c + d*x^n), x], x] /; FreeQ[{a, b, c, d,
e, f, p, n}, x]
-
Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Simp[
e Int[(a + b*x^n)^p*(c + d*x^n)^q, x], x] + Simp[f Int[x^n*(a + b*x^n)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a
, b, c, d, e, f, n, p, q}, x]
-
Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_)*((e_) + (f_.)*(x_)^(n_))^(r_), x_Symbol] :> Si
mp[d/b Int[(a + b*x^n)^(p + 1)*(c + d*x^n)^(q - 1)*(e + f*x^n)^r, x], x] + Simp[(b*c - a*d)/b Int[(a + b*x
^n)^p*(c + d*x^n)^(q - 1)*(e + f*x^n)^r, x], x] /; FreeQ[{a, b, c, d, e, f, n, r}, x] && ILtQ[p, 0] && GtQ[q,
0]
-
Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_)*((e_) + (f_.)*(x_)^(n_))^(r_), x_Symbol] :> Si
mp[b/(b*c - a*d) Int[(a + b*x^n)^p*(c + d*x^n)^(q + 1)*(e + f*x^n)^r, x], x] - Simp[d/(b*c - a*d) Int[(a +
b*x^n)^(p + 1)*(c + d*x^n)^q*(e + f*x^n)^r, x], x] /; FreeQ[{a, b, c, d, e, f, n, q}, x] && ILtQ[p, 0] && LeQ
[q, -1]
-
Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_)*((e_) + (f_.)*(x_)^(n_))^(r_), x_Symbol] :> Wi
th[{u = ExpandIntegrand[(a + b*x^n)^p*(c + d*x^n)^q*(e + f*x^n)^r, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b,
c, d, e, f, p, q, r}, x] && IGtQ[n, 0]
-
Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_)*((e_) + (f_.)*(x_)^(n_))^(r_), x_Symbol] :> -S
ubst[Int[(a + b/x^n)^p*(c + d/x^n)^q*((e + f/x^n)^r/x^2), x], x, 1/x] /; FreeQ[{a, b, c, d, e, f, p, q, r}, x]
&& ILtQ[n, 0]
-
Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_))^(r_.), x_Symbol] :>
Unintegrable[(a + b*x^n)^p*(c + d*x^n)^q*(e + f*x^n)^r, x] /; FreeQ[{a, b, c, d, e, f, n, p, q, r}, x]
-
Int[((a_.) + (b_.)*(u_)^(n_))^(p_.)*((c_.) + (d_.)*(v_)^(n_))^(q_.)*((e_.) + (f_.)*(w_)^(n_))^(r_.), x_Symbol]
:> Simp[1/Coefficient[u, x, 1] Subst[Int[(a + b*x^n)^p*(c + d*x^n)^q*(e + f*x^n)^r, x], x, u], x] /; FreeQ[
{a, b, c, d, e, f, p, n, q, r}, x] && EqQ[u, v] && EqQ[u, w] && LinearQ[u, x] && NeQ[u, x]
-
Int[((c_) + (d_.)*(x_)^(mn_.))^(q_.)*((a_.) + (b_.)*(x_)^(n_.))^(p_.)*((e_) + (f_.)*(x_)^(n_.))^(r_.), x_Symbo
l] :> Int[(a + b*x^n)^p*(d + c*x^n)^q*((e + f*x^n)^r/x^(n*q)), x] /; FreeQ[{a, b, c, d, e, f, n, p, r}, x] &&
EqQ[mn, -n] && IntegerQ[q]
-
Int[((c_) + (d_.)*(x_)^(mn_.))^(q_.)*((a_.) + (b_.)*(x_)^(n_.))^(p_.)*((e_) + (f_.)*(x_)^(n_.))^(r_.), x_Symbo
l] :> Int[x^(n*(p + r))*(b + a/x^n)^p*(c + d/x^n)^q*(f + e/x^n)^r, x] /; FreeQ[{a, b, c, d, e, f, n, q}, x] &&
EqQ[mn, -n] && IntegerQ[p] && IntegerQ[r]
-
Int[((c_) + (d_.)*(x_)^(mn_.))^(q_)*((a_.) + (b_.)*(x_)^(n_.))^(p_.)*((e_) + (f_.)*(x_)^(n_.))^(r_.), x_Symbol
] :> Simp[x^(n*FracPart[q])*((c + d/x^n)^FracPart[q]/(d + c*x^n)^FracPart[q]) Int[(a + b*x^n)^p*(d + c*x^n)^
q*((e + f*x^n)^r/x^(n*q)), x], x] /; FreeQ[{a, b, c, d, e, f, n, p, q, r}, x] && EqQ[mn, -n] && !IntegerQ[q]
-
Int[((g_.)*(x_))^(m_.)*((b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_))^(r_.), x
_Symbol] :> Simp[g^m/(n*b^(Simplify[(m + 1)/n] - 1)) Subst[Int[(b*x)^(p + Simplify[(m + 1)/n] - 1)*(c + d*x)
^q*(e + f*x)^r, x], x, x^n], x] /; FreeQ[{b, c, d, e, f, g, m, n, p, q, r}, x] && (IntegerQ[m] || GtQ[g, 0]) &
& IntegerQ[Simplify[(m + 1)/n]]
-
Int[((g_.)*(x_))^(m_.)*((b_.)*(x_)^(n_.))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_))^(r_.),
x_Symbol] :> Simp[g^m*b^IntPart[p]*((b*x^n)^FracPart[p]/x^(n*FracPart[p])) Int[x^(m + n*p)*(c + d*x^n)^q*(e
+ f*x^n)^r, x], x] /; FreeQ[{b, c, d, e, f, g, m, n, p, q, r}, x] && (IntegerQ[m] || GtQ[g, 0]) && !IntegerQ[
Simplify[(m + 1)/n]]
-
Int[((g_)*(x_))^(m_)*((b_.)*(x_)^(n_.))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_))^(r_.), x_
Symbol] :> Simp[g^IntPart[m]*((g*x)^FracPart[m]/x^FracPart[m]) Int[x^m*(b*x^n)^p*(c + d*x^n)^q*(e + f*x^n)^r
, x], x] /; FreeQ[{b, c, d, e, f, g, m, n, p, q, r}, x] && !IntegerQ[m]
-
Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_))^
(r_.), x_Symbol] :> Int[ExpandIntegrand[(g*x)^m*(a + b*x^n)^p*(c + d*x^n)^q*(e + f*x^n)^r, x], x] /; FreeQ[{a,
b, c, d, e, f, g, m, n}, x] && IGtQ[p, -2] && IGtQ[q, 0] && IGtQ[r, 0]
-
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_))^(r_.), x
_Symbol] :> Simp[1/n Subst[Int[(a + b*x)^p*(c + d*x)^q*(e + f*x)^r, x], x, x^n], x] /; FreeQ[{a, b, c, d, e,
f, m, n, p, q, r}, x] && EqQ[m - n + 1, 0]
-
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_))^(r_.), x
_Symbol] :> Int[x^(m + n*(p + q + r))*(b + a/x^n)^p*(d + c/x^n)^q*(f + e/x^n)^r, x] /; FreeQ[{a, b, c, d, e, f
, m, n}, x] && IntegersQ[p, q, r] && NegQ[n]
-
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_))^(r_.), x
_Symbol] :> Simp[1/n Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q*(e + f*x)^r, x], x, x^n],
x] /; FreeQ[{a, b, c, d, e, f, m, n, p, q, r}, x] && IntegerQ[Simplify[(m + 1)/n]]
-
Int[((g_)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_))^(
r_.), x_Symbol] :> Simp[g^IntPart[m]*((g*x)^FracPart[m]/x^FracPart[m]) Int[x^m*(a + b*x^n)^p*(c + d*x^n)^q*(
e + f*x^n)^r, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p, q, r}, x] && IntegerQ[Simplify[(m + 1)/n]]
-
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_))^(r_.), x
_Symbol] :> With[{k = GCD[m + 1, n]}, Simp[1/k Subst[Int[x^((m + 1)/k - 1)*(a + b*x^(n/k))^p*(c + d*x^(n/k))
^q*(e + f*x^(n/k))^r, x], x, x^k], x] /; k != 1] /; FreeQ[{a, b, c, d, e, f, p, q, r}, x] && IGtQ[n, 0] && Int
egerQ[m]
-
Int[((g_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_)*((e_) + (f_.)*(x_)^(n_))^(r_
), x_Symbol] :> With[{k = Denominator[m]}, Simp[k/g Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/g^n))^p*(c +
d*(x^(k*n)/g^n))^q*(e + f*(x^(k*n)/g^n))^r, x], x, (g*x)^(1/k)], x]] /; FreeQ[{a, b, c, d, e, f, g, p, q, r},
x] && IGtQ[n, 0] && FractionQ[m]
-
Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)),
x_Symbol] :> Simp[(-(b*e - a*f))*(g*x)^(m + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^q/(a*b*g*n*(p + 1))), x] + Sim
p[1/(a*b*n*(p + 1)) Int[(g*x)^m*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q - 1)*Simp[c*(b*e*n*(p + 1) + (b*e - a*f)*
(m + 1)) + d*(b*e*n*(p + 1) + (b*e - a*f)*(m + n*q + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x]
&& IGtQ[n, 0] && LtQ[p, -1] && GtQ[q, 0] && !(EqQ[q, 1] && SimplerQ[b*c - a*d, b*e - a*f])
-
Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_)*((e_) + (f_.)*(x_)^(n_)), x
_Symbol] :> Simp[g^(n - 1)*(b*e - a*f)*(g*x)^(m - n + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(b*n*(b*c -
a*d)*(p + 1))), x] - Simp[g^n/(b*n*(b*c - a*d)*(p + 1)) Int[(g*x)^(m - n)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q*
Simp[c*(b*e - a*f)*(m - n + 1) + (d*(b*e - a*f)*(m + n*q + 1) - b*n*(c*f - d*e)*(p + 1))*x^n, x], x], x] /; Fr
eeQ[{a, b, c, d, e, f, g, q}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m - n + 1, 0]
-
Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_)*((e_) + (f_.)*(x_)^(n_)), x
_Symbol] :> Simp[(-(b*e - a*f))*(g*x)^(m + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(a*g*n*(b*c - a*d)*(p +
1))), x] + Simp[1/(a*n*(b*c - a*d)*(p + 1)) Int[(g*x)^m*(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[c*(b*e - a*f
)*(m + 1) + e*n*(b*c - a*d)*(p + 1) + d*(b*e - a*f)*(m + n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c,
d, e, f, g, m, q}, x] && IGtQ[n, 0] && LtQ[p, -1]
-
Int[((g_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)),
x_Symbol] :> Simp[e*(g*x)^(m + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^q/(a*g*(m + 1))), x] - Simp[1/(a*g^n*(m + 1
)) Int[(g*x)^(m + n)*(a + b*x^n)^p*(c + d*x^n)^(q - 1)*Simp[c*(b*e - a*f)*(m + 1) + e*n*(b*c*(p + 1) + a*d*q
) + d*((b*e - a*f)*(m + 1) + b*e*n*(p + q + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && IGtQ[
n, 0] && GtQ[q, 0] && LtQ[m, -1] && !(EqQ[q, 1] && SimplerQ[e + f*x^n, c + d*x^n])
-
Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)),
x_Symbol] :> Simp[f*(g*x)^(m + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^q/(b*g*(m + n*(p + q + 1) + 1))), x] + Sim
p[1/(b*(m + n*(p + q + 1) + 1)) Int[(g*x)^m*(a + b*x^n)^p*(c + d*x^n)^(q - 1)*Simp[c*((b*e - a*f)*(m + 1) +
b*e*n*(p + q + 1)) + (d*(b*e - a*f)*(m + 1) + f*n*q*(b*c - a*d) + b*e*d*n*(p + q + 1))*x^n, x], x], x] /; Free
Q[{a, b, c, d, e, f, g, m, p}, x] && IGtQ[n, 0] && GtQ[q, 0] && !(EqQ[q, 1] && SimplerQ[e + f*x^n, c + d*x^n]
)
-
Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)),
x_Symbol] :> Simp[f*g^(n - 1)*(g*x)^(m - n + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(b*d*(m + n*(p + q +
1) + 1))), x] - Simp[g^n/(b*d*(m + n*(p + q + 1) + 1)) Int[(g*x)^(m - n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[a
*f*c*(m - n + 1) + (a*f*d*(m + n*q + 1) + b*(f*c*(m + n*p + 1) - e*d*(m + n*(p + q + 1) + 1)))*x^n, x], x], x]
/; FreeQ[{a, b, c, d, e, f, g, p, q}, x] && IGtQ[n, 0] && GtQ[m, n - 1]
-
Int[((g_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)),
x_Symbol] :> Simp[e*(g*x)^(m + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(a*c*g*(m + 1))), x] + Simp[1/(a*c*
g^n*(m + 1)) Int[(g*x)^(m + n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[a*f*c*(m + 1) - e*(b*c + a*d)*(m + n + 1) -
e*n*(b*c*p + a*d*q) - b*e*d*(m + n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p, q}, x] &
& IGtQ[n, 0] && LtQ[m, -1]
-
Int[(((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((e_) + (f_.)*(x_)^(n_)))/((c_) + (d_.)*(x_)^(n_)), x_Sy
mbol] :> Int[ExpandIntegrand[(g*x)^m*(a + b*x^n)^p*((e + f*x^n)/(c + d*x^n)), x], x] /; FreeQ[{a, b, c, d, e,
f, g, m, p}, x] && IGtQ[n, 0]
-
Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)),
x_Symbol] :> Simp[e Int[(g*x)^m*(a + b*x^n)^p*(c + d*x^n)^q, x], x] + Simp[f/e^n Int[(g*x)^(m + n)*(a + b
*x^n)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p, q}, x] && IGtQ[n, 0]
-
Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_))^
(r_.), x_Symbol] :> Simp[e Int[(g*x)^m*(a + b*x^n)^p*(c + d*x^n)^q*(e + f*x^n)^(r - 1), x], x] + Simp[f/e^n
Int[(g*x)^(m + n)*(a + b*x^n)^p*(c + d*x^n)^q*(e + f*x^n)^(r - 1), x], x] /; FreeQ[{a, b, c, d, e, f, g, m,
p, q}, x] && IGtQ[n, 0] && IGtQ[r, 0]
-
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_))^(r_.), x
_Symbol] :> -Subst[Int[(a + b/x^n)^p*(c + d/x^n)^q*((e + f/x^n)^r/x^(m + 2)), x], x, 1/x] /; FreeQ[{a, b, c, d
, e, f, p, q, r}, x] && ILtQ[n, 0] && IntegerQ[m]
-
Int[((g_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_))^(
r_.), x_Symbol] :> With[{k = Denominator[m]}, Simp[-k/g Subst[Int[(a + b/(g^n*x^(k*n)))^p*(c + d/(g^n*x^(k*n
)))^q*((e + f/(g^n*x^(k*n)))^r/x^(k*(m + 1) + 1)), x], x, 1/(g*x)^(1/k)], x]] /; FreeQ[{a, b, c, d, e, f, g, p
, q, r}, x] && ILtQ[n, 0] && FractionQ[m]
-
Int[((g_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_))^(
r_.), x_Symbol] :> Simp[(-(g*x)^m)*(x^(-1))^m Subst[Int[(a + b/x^n)^p*(c + d/x^n)^q*((e + f/x^n)^r/x^(m + 2)
), x], x, 1/x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p, q, r}, x] && ILtQ[n, 0] && !RationalQ[m]
-
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_))^(r_.), x
_Symbol] :> With[{k = Denominator[n]}, Simp[k Subst[Int[x^(k*(m + 1) - 1)*(a + b*x^(k*n))^p*(c + d*x^(k*n))^
q*(e + f*x^(k*n))^r, x], x, x^(1/k)], x]] /; FreeQ[{a, b, c, d, e, f, m, p, q, r}, x] && FractionQ[n]
-
Int[((g_)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_))^(r
_.), x_Symbol] :> Simp[g^IntPart[m]*((g*x)^FracPart[m]/x^FracPart[m]) Int[x^m*(a + b*x^n)^p*(c + d*x^n)^q*(e
+ f*x^n)^r, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p, q, r}, x] && FractionQ[n]
-
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_))^(r_.), x
_Symbol] :> Simp[1/(m + 1) Subst[Int[(a + b*x^Simplify[n/(m + 1)])^p*(c + d*x^Simplify[n/(m + 1)])^q*(e + f*
x^Simplify[n/(m + 1)])^r, x], x, x^(m + 1)], x] /; FreeQ[{a, b, c, d, e, f, m, n, p, q, r}, x] && IntegerQ[Sim
plify[n/(m + 1)]]
-
Int[((g_)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_))^(
r_.), x_Symbol] :> Simp[g^IntPart[m]*((g*x)^FracPart[m]/x^FracPart[m]) Int[x^m*(a + b*x^n)^p*(c + d*x^n)^q*(
e + f*x^n)^r, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p, q, r}, x] && IntegerQ[Simplify[n/(m + 1)]]
-
Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)),
x_Symbol] :> Simp[(-(b*e - a*f))*(g*x)^(m + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^q/(a*b*g*n*(p + 1))), x] + Sim
p[1/(a*b*n*(p + 1)) Int[(g*x)^m*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q - 1)*Simp[c*(b*e*n*(p + 1) + (b*e - a*f)*
(m + 1)) + d*(b*e*n*(p + 1) + (b*e - a*f)*(m + n*q + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n},
x] && LtQ[p, -1] && GtQ[q, 0] && !(EqQ[q, 1] && SimplerQ[b*c - a*d, b*e - a*f])
-
Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_)*((e_) + (f_.)*(x_)^(n_)), x
_Symbol] :> Simp[(-(b*e - a*f))*(g*x)^(m + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(a*g*n*(b*c - a*d)*(p +
1))), x] + Simp[1/(a*n*(b*c - a*d)*(p + 1)) Int[(g*x)^m*(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[c*(b*e - a*f
)*(m + 1) + e*n*(b*c - a*d)*(p + 1) + d*(b*e - a*f)*(m + n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c,
d, e, f, g, m, n, q}, x] && LtQ[p, -1]
-
Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)),
x_Symbol] :> Simp[f*(g*x)^(m + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^q/(b*g*(m + n*(p + q + 1) + 1))), x] + Sim
p[1/(b*(m + n*(p + q + 1) + 1)) Int[(g*x)^m*(a + b*x^n)^p*(c + d*x^n)^(q - 1)*Simp[c*((b*e - a*f)*(m + 1) +
b*e*n*(p + q + 1)) + (d*(b*e - a*f)*(m + 1) + f*n*q*(b*c - a*d) + b*e*d*n*(p + q + 1))*x^n, x], x], x] /; Free
Q[{a, b, c, d, e, f, g, m, n, p}, x] && GtQ[q, 0] && !(EqQ[q, 1] && SimplerQ[e + f*x^n, c + d*x^n])
-
Int[(((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((e_) + (f_.)*(x_)^(n_)))/((c_) + (d_.)*(x_)^(n_)), x_Sy
mbol] :> Int[ExpandIntegrand[(g*x)^m*(a + b*x^n)^p*((e + f*x^n)/(c + d*x^n)), x], x] /; FreeQ[{a, b, c, d, e,
f, g, m, n, p}, x]
-
Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_)*((e_) + (f_.)*(x_)^(n_)), x
_Symbol] :> Simp[e Int[(g*x)^m*(a + b*x^n)^p*(c + d*x^n)^q, x], x] + Simp[f*((g*x)^m/x^m) Int[x^(m + n)*(a
+ b*x^n)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p, q}, x]
-
Int[(x_)^(m_.)*((c_) + (d_.)*(x_)^(mn_.))^(q_.)*((a_) + (b_.)*(x_)^(n_.))^(p_.)*((e_) + (f_.)*(x_)^(n_.))^(r_.
), x_Symbol] :> Int[x^(m - n*q)*(a + b*x^n)^p*(d + c*x^n)^q*(e + f*x^n)^r, x] /; FreeQ[{a, b, c, d, e, f, m, n
, p, r}, x] && EqQ[mn, -n] && IntegerQ[q]
-
Int[(x_)^(m_.)*((c_) + (d_.)*(x_)^(mn_.))^(q_.)*((a_.) + (b_.)*(x_)^(n_.))^(p_.)*((e_) + (f_.)*(x_)^(n_.))^(r_
.), x_Symbol] :> Int[x^(m + n*(p + r))*(b + a/x^n)^p*(c + d/x^n)^q*(f + e/x^n)^r, x] /; FreeQ[{a, b, c, d, e,
f, m, n, q}, x] && EqQ[mn, -n] && IntegerQ[p] && IntegerQ[r]
-
Int[(x_)^(m_.)*((c_) + (d_.)*(x_)^(mn_.))^(q_)*((a_.) + (b_.)*(x_)^(n_.))^(p_.)*((e_) + (f_.)*(x_)^(n_.))^(r_.
), x_Symbol] :> Simp[x^(n*FracPart[q])*((c + d/x^n)^FracPart[q]/(d + c*x^n)^FracPart[q]) Int[x^(m - n*q)*(a
+ b*x^n)^p*(d + c*x^n)^q*(e + f*x^n)^r, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p, q, r}, x] && EqQ[mn, -n] &
& !IntegerQ[q]
-
Int[((g_)*(x_))^(m_)*((c_) + (d_.)*(x_)^(mn_.))^(q_.)*((a_) + (b_.)*(x_)^(n_.))^(p_.)*((e_) + (f_.)*(x_)^(n_.)
)^(r_.), x_Symbol] :> Simp[g^IntPart[m]*((g*x)^FracPart[m]/x^FracPart[m]) Int[x^m*(a + b*x^n)^p*(c + d/x^n)^
q*(e + f*x^n)^r, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p, q, r}, x] && EqQ[mn, -n]
-
Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_))^
(r_.), x_Symbol] :> Unintegrable[(g*x)^m*(a + b*x^n)^p*(c + d*x^n)^q*(e + f*x^n)^r, x] /; FreeQ[{a, b, c, d, e
, f, g, m, n, p, q, r}, x]
-
Int[(u_)^(m_.)*((a_.) + (b_.)*(v_)^(n_))^(p_.)*((c_.) + (d_.)*(v_)^(n_))^(q_.)*((e_) + (f_.)*(v_)^(n_))^(r_.),
x_Symbol] :> Simp[u^m/(Coefficient[v, x, 1]*v^m) Subst[Int[x^m*(a + b*x^n)^p*(c + d*x^n)^q*(e + f*x^n)^r, x
], x, v], x] /; FreeQ[{a, b, c, d, e, f, m, n, p, q, r}, x] && LinearPairQ[u, v, x]
-
Int[((g_.)*(x_))^(m_.)*((e1_) + (f1_.)*(x_)^(n2_.))^(r_.)*((e2_) + (f2_.)*(x_)^(n2_.))^(r_.)*((a_) + (b_.)*(x_
)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Int[(g*x)^m*(a + b*x^n)^p*(c + d*x^n)^q*(e1*e2 + f1
*f2*x^n)^r, x] /; FreeQ[{a, b, c, d, e1, f1, e2, f2, g, m, n, p, q, r}, x] && EqQ[n2, n/2] && EqQ[e2*f1 + e1*f
2, 0] && (IntegerQ[r] || (GtQ[e1, 0] && GtQ[e2, 0]))
-
Int[((g_.)*(x_))^(m_.)*((e1_) + (f1_.)*(x_)^(n2_.))^(r_.)*((e2_) + (f2_.)*(x_)^(n2_.))^(r_.)*((a_) + (b_.)*(x_
)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Simp[(e1 + f1*x^(n/2))^FracPart[r]*((e2 + f2*x^(n/2
))^FracPart[r]/(e1*e2 + f1*f2*x^n)^FracPart[r]) Int[(g*x)^m*(a + b*x^n)^p*(c + d*x^n)^q*(e1*e2 + f1*f2*x^n)^
r, x], x] /; FreeQ[{a, b, c, d, e1, f1, e2, f2, g, m, n, p, q, r}, x] && EqQ[n2, n/2] && EqQ[e2*f1 + e1*f2, 0]
-
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[1/c^p Int[(b/2 + c*x)^(2*p), x], x] /; FreeQ
[{a, b, c}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]
-
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[2*((a + b*x + c*x^2)^(p + 1)/((2*p + 1)*(b + 2*
c*x))), x] /; FreeQ[{a, b, c, p}, x] && EqQ[b^2 - 4*a*c, 0] && LtQ[p, -1]
-
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(a + b*x + c*x^2)^FracPart[p]/(c^IntPart[p]*(b/
2 + c*x)^(2*FracPart[p])) Int[(b/2 + c*x)^(2*p), x], x] /; FreeQ[{a, b, c, p}, x] && EqQ[b^2 - 4*a*c, 0]
-
Int[((b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Int[ExpandIntegrand[x^p*(b + c*x)^p, x], x] /; FreeQ[{b, c}
, x] && IntegerQ[p]
-
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[c Int[ExpandIn
tegrand[1/((b/2 - q/2 + c*x)*(b/2 + q/2 + c*x)), x], x], x]] /; FreeQ[{a, b, c}, x] && NiceSqrtQ[b^2 - 4*a*c]
-
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Simp[-2/b Su
bst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] || !RationalQ[b^2 - 4*a*c])] /
; FreeQ[{a, b, c}, x]
-
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Simp[-2 Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x]
-
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[1/c^p Int[Expa
ndIntegrand[(b/2 - q/2 + c*x)^p*(b/2 + q/2 + c*x)^p, x], x], x] /; !FractionalPowerFactorQ[q]] /; FreeQ[{a, b
, c}, x] && IntegerQ[p] && NiceSqrtQ[b^2 - 4*a*c]
-
Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Int[ExpandIntegrand[(a + b*x + c*x^2)^p, x], x] /;
FreeQ[{a, b, c}, x] && IntegerQ[p] && (GtQ[p, 0] || EqQ[a, 0])
-
Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(b + 2*c*x)*((a + b*x + c*x^2)^(p + 1)/((p + 1
)*(b^2 - 4*a*c))), x] - Simp[2*c*((2*p + 3)/((p + 1)*(b^2 - 4*a*c))) Int[(a + b*x + c*x^2)^(p + 1), x], x] /
; FreeQ[{a, b, c}, x] && ILtQ[p, -1]
-
Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(b + 2*c*x)*((a + b*x + c*x^2)^p/(2*c*(2*p + 1
))), x] - Simp[p*((b^2 - 4*a*c)/(2*c*(2*p + 1))) Int[(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c}, x
] && GtQ[p, 0] && (IntegerQ[4*p] || IntegerQ[3*p])
-
Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-3/2), x_Symbol] :> Simp[-2*((b + 2*c*x)/((b^2 - 4*a*c)*Sqrt[a + b*x
+ c*x^2])), x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]
-
Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(b + 2*c*x)*((a + b*x + c*x^2)^(p + 1)/((p + 1
)*(b^2 - 4*a*c))), x] - Simp[2*c*((2*p + 3)/((p + 1)*(b^2 - 4*a*c))) Int[(a + b*x + c*x^2)^(p + 1), x], x] /
; FreeQ[{a, b, c}, x] && LtQ[p, -1] && (IntegerQ[4*p] || IntegerQ[3*p])
-
Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[1/(2*c*(-4*(c/(b^2 - 4*a*c)))^p) Subst[Int[S
imp[1 - x^2/(b^2 - 4*a*c), x]^p, x], x, b + 2*c*x], x] /; FreeQ[{a, b, c, p}, x] && GtQ[4*a - b^2/c, 0]
-
Int[1/Sqrt[(b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Simp[2 Subst[Int[1/(1 - c*x^2), x], x, x/Sqrt[b*x + c*x^
2]], x] /; FreeQ[{b, c}, x]
-
Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Simp[2 Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x
)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x]
-
Int[((b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(b*x + c*x^2)^p/((-c)*((b*x + c*x^2)/b^2))^p Int[((-
c)*(x/b) - c^2*(x^2/b^2))^p, x], x] /; FreeQ[{b, c}, x] && (IntegerQ[4*p] || IntegerQ[3*p])
-
Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[4*(Sqrt[(b + 2*c*x)^2]/(b + 2*c*x)) Subst[In
t[x^(4*(p + 1) - 1)/Sqrt[b^2 - 4*a*c + 4*c*x^4], x], x, (a + b*x + c*x^2)^(1/4)], x] /; FreeQ[{a, b, c}, x] &&
IntegerQ[4*p]
-
Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[3*(Sqrt[(b + 2*c*x)^2]/(b + 2*c*x)) Subst[In
t[x^(3*(p + 1) - 1)/Sqrt[b^2 - 4*a*c + 4*c*x^3], x], x, (a + b*x + c*x^2)^(1/3)], x] /; FreeQ[{a, b, c}, x] &&
IntegerQ[3*p]
-
Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(-(a + b*x + c*
x^2)^(p + 1)/(q*(p + 1)*((q - b - 2*c*x)/(2*q))^(p + 1)))*Hypergeometric2F1[-p, p + 1, p + 2, (b + q + 2*c*x)/
(2*q)], x]] /; FreeQ[{a, b, c, p}, x] && !IntegerQ[4*p] && !IntegerQ[3*p]
-
Int[((a_.) + (b_.)*(u_) + (c_.)*(u_)^2)^(p_), x_Symbol] :> Simp[1/Coefficient[u, x, 1] Subst[Int[(a + b*x +
c*x^2)^p, x], x, u], x] /; FreeQ[{a, b, c, p}, x] && LinearQ[u, x] && NeQ[u, x]
-
Int[((d_.) + (e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[1/c^p Int[(d + e*
x)^m*(b/2 + c*x)^(2*p), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]
-
Int[((d_) + (e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e^m*((a + b*x + c*x^2
)^(p + (m + 1)/2)/(c^((m + 1)/2)*(m + 2*p + 1))), x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[b^2 - 4*a*c, 0] &&
EqQ[2*c*d - b*e, 0] && IntegerQ[(m - 1)/2]
-
Int[((d_.) + (e_.)*(x_))*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e*((a + b*x + c*x^2)^(p +
1)/(2*c*(p + 1))), x] + Simp[(2*c*d - b*e)/(2*c) Int[(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}
, x] && EqQ[b^2 - 4*a*c, 0]
-
Int[(x_)^(m_)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(a + b*x + c*x^2)^FracPart[p]/(c^IntP
art[p]*(b/2 + c*x)^(2*FracPart[p])) Int[ExpandLinearProduct[(b/2 + c*x)^(2*p), x^m, b/2, c, x], x], x] /; Fr
eeQ[{a, b, c, m, p}, x] && EqQ[b^2 - 4*a*c, 0] && IGtQ[m, 0] && EqQ[m - 2*p + 1, 0]
-
Int[((d_.) + (e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(a + b*x + c*x^2)^Fr
acPart[p]/(c^IntPart[p]*(b/2 + c*x)^(2*FracPart[p])) Int[(d + e*x)^m*(b/2 + c*x)^(2*p), x], x] /; FreeQ[{a,
b, c, d, e, m, p}, x] && EqQ[b^2 - 4*a*c, 0]
-
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]
-
Int[((d_) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[d*((a + b*x + c*x^2)^(p +
1)/(b*(p + 1))), x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[2*c*d - b*e, 0]
-
Int[1/(((d_) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)), x_Symbol] :> Simp[-4*b*(c/(d*(b^2 - 4*a*c)))
Int[1/(b + 2*c*x), x], x] + Simp[b^2/(d^2*(b^2 - 4*a*c)) Int[(d + e*x)/(a + b*x + c*x^2), x], x] /; FreeQ[
{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]
-
Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[2*c*(d + e*x)^(m + 1
)*((a + b*x + c*x^2)^(p + 1)/(e*(p + 1)*(b^2 - 4*a*c))), x] /; FreeQ[{a, b, c, d, e, m, p}, x] && EqQ[2*c*d -
b*e, 0] && EqQ[m + 2*p + 3, 0]
-
Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(d +
e*x)^m*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && EqQ[2*c*d - b*e, 0] && IGtQ[p, 0] && !
(EqQ[m, 3] && NeQ[p, 1])
-
Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x)^(m + 1)*((
a + b*x + c*x^2)^p/(e*(m + 1))), x] - Simp[b*(p/(d*e*(m + 1))) Int[(d + e*x)^(m + 2)*(a + b*x + c*x^2)^(p -
1), x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0] && NeQ[m + 2*p + 3, 0] && GtQ[p, 0] && LtQ[m, -
1] && !(IntegerQ[m/2] && LtQ[m + 2*p + 3, 0]) && IntegerQ[2*p]
-
Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x)^(m + 1)*((
a + b*x + c*x^2)^p/(e*(m + 2*p + 1))), x] - Simp[d*p*((b^2 - 4*a*c)/(b*e*(m + 2*p + 1))) Int[(d + e*x)^m*(a
+ b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && EqQ[2*c*d - b*e, 0] && NeQ[m + 2*p + 3, 0] &
& GtQ[p, 0] && !LtQ[m, -1] && !(IGtQ[(m - 1)/2, 0] && ( !IntegerQ[p] || LtQ[m, 2*p])) && RationalQ[m] && Int
egerQ[2*p]
-
Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[d*(d + e*x)^(m - 1)*(
(a + b*x + c*x^2)^(p + 1)/(b*(p + 1))), x] - Simp[d*e*((m - 1)/(b*(p + 1))) Int[(d + e*x)^(m - 2)*(a + b*x +
c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0] && NeQ[m + 2*p + 3, 0] && LtQ[p, -
1] && GtQ[m, 1] && IntegerQ[2*p]
-
Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[2*c*(d + e*x)^(m + 1
)*((a + b*x + c*x^2)^(p + 1)/(e*(p + 1)*(b^2 - 4*a*c))), x] - Simp[2*c*e*((m + 2*p + 3)/(e*(p + 1)*(b^2 - 4*a*
c))) Int[(d + e*x)^m*(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && EqQ[2*c*d - b*e, 0
] && NeQ[m + 2*p + 3, 0] && LtQ[p, -1] && !GtQ[m, 1] && RationalQ[m] && IntegerQ[2*p]
-
Int[1/(((d_) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Simp[4*c Subst[Int[1/(b^2*
e - 4*a*c*e + 4*c*e*x^2), x], x, Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0
]
-
Int[1/(Sqrt[(d_) + (e_.)*(x_)]*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Simp[(4/e)*Sqrt[-c/(b^2
- 4*a*c)] Subst[Int[1/Sqrt[Simp[1 - b^2*(x^4/(d^2*(b^2 - 4*a*c))), x]], x], x, Sqrt[d + e*x]], x] /; FreeQ[{
a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0] && LtQ[c/(b^2 - 4*a*c), 0]
-
Int[Sqrt[(d_) + (e_.)*(x_)]/Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Simp[(4/e)*Sqrt[-c/(b^2 - 4*
a*c)] Subst[Int[x^2/Sqrt[Simp[1 - b^2*(x^4/(d^2*(b^2 - 4*a*c))), x]], x], x, Sqrt[d + e*x]], x] /; FreeQ[{a,
b, c, d, e}, x] && EqQ[2*c*d - b*e, 0] && LtQ[c/(b^2 - 4*a*c), 0]
-
Int[((d_) + (e_.)*(x_))^(m_)/Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Simp[Sqrt[(-c)*((a + b*x +
c*x^2)/(b^2 - 4*a*c))]/Sqrt[a + b*x + c*x^2] Int[(d + e*x)^m/Sqrt[(-a)*(c/(b^2 - 4*a*c)) - b*c*(x/(b^2 - 4*a
*c)) - c^2*(x^2/(b^2 - 4*a*c))], x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0] && EqQ[m^2, 1/4]
-
Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[2*d*(d + e*x)^(m - 1
)*((a + b*x + c*x^2)^(p + 1)/(b*(m + 2*p + 1))), x] + Simp[d^2*(m - 1)*((b^2 - 4*a*c)/(b^2*(m + 2*p + 1))) I
nt[(d + e*x)^(m - 2)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[2*c*d - b*e, 0] && NeQ
[m + 2*p + 3, 0] && GtQ[m, 1] && NeQ[m + 2*p + 1, 0] && (IntegerQ[2*p] || (IntegerQ[m] && RationalQ[p]) || Odd
Q[m])
-
Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[-2*b*d*(d + e*x)^(m
+ 1)*((a + b*x + c*x^2)^(p + 1)/(d^2*(m + 1)*(b^2 - 4*a*c))), x] + Simp[b^2*((m + 2*p + 3)/(d^2*(m + 1)*(b^2 -
4*a*c))) Int[(d + e*x)^(m + 2)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[2*c*d - b
*e, 0] && NeQ[m + 2*p + 3, 0] && LtQ[m, -1] && (IntegerQ[2*p] || (IntegerQ[m] && RationalQ[p]) || IntegerQ[(m
+ 2*p + 3)/2])
-
Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[1/e Subst[Int[x^m*
(a - b^2/(4*c) + (c*x^2)/e^2)^p, x], x, d + e*x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && EqQ[2*c*d - b*e, 0]
-
Int[((e_.)*(x_))^(m_.)*((b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[1/e^p Int[(e*x)^(m + p)*(b + c*x
)^p, x], x] /; FreeQ[{b, c, e, m}, x] && IntegerQ[p]
-
Int[((d_) + (e_.)*(x_))^(m_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[(d + e*x)^(m + p)*(a
/d + (c/e)*x)^p, x] /; FreeQ[{a, b, c, d, e, m}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && IntegerQ[p] && (EqQ[m
+ p, 0] || EqQ[m + 2*p + 2, 0])
-
Int[((d_) + (e_.)*(x_))^(m_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(d +
e*x)^(m + p)*(a/d + (c/e)*x)^p, x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] &&
(IntegerQ[p] || (GtQ[a, 0] && GtQ[d, 0] && LtQ[c, 0]))
-
Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e*(d + e*x)^(m - 1)*
((a + b*x + c*x^2)^(p + 1)/(c*(p + 1))), x] /; FreeQ[{a, b, c, d, e, m, p}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0
] && EqQ[m + p, 0]
-
Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e*(d + e*x)^m*((a +
b*x + c*x^2)^(p + 1)/((p + 1)*(2*c*d - b*e))), x] /; FreeQ[{a, b, c, d, e, m, p}, x] && EqQ[c*d^2 - b*d*e + a*
e^2, 0] && EqQ[m + 2*p + 2, 0]
-
Int[((d_.) + (e_.)*(x_))^(m_.)/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[-2*e*(2*c*d - b*e)
^(m - 2)*((d + e*x)/(c^(m - 1)*Sqrt[a + b*x + c*x^2])), x] + Simp[e^2/c^(m - 1) Int[(1/Sqrt[a + b*x + c*x^2]
)*ExpandToSum[((2*c*d - b*e)^(m - 1) - c^(m - 1)*(d + e*x)^(m - 1))/(c*d - b*e - c*e*x), x], x], x] /; FreeQ[{
a, b, c, d, e}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && IGtQ[m, 0]
-
Int[((d_.) + (e_.)*(x_))^(m_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[-2*e^(2*m + 3)*(Sqr
t[a + b*x + c*x^2]/((-2*c*d + b*e)^(m + 2)*(d + e*x))), x] - Simp[e^(2*m + 2) Int[(1/Sqrt[a + b*x + c*x^2])*
ExpandToSum[((-2*c*d + b*e)^(-m - 1) - ((-c)*d + b*e + c*e*x)^(-m - 1))/(d + e*x), x], x], x] /; FreeQ[{a, b,
c, d, e}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && ILtQ[m, 0] && EqQ[m + p, -3/2]
-
Int[((d_.) + (e_.)*(x_))^2*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e*(d + e*x)*((a + b*x +
c*x^2)^(p + 1)/(c*(p + 1))), x] - Simp[e^2*((p + 2)/(c*(p + 1))) Int[(a + b*x + c*x^2)^(p + 1), x], x] /; F
reeQ[{a, b, c, d, e, p}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && LtQ[p, -1]
-
Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Int[(a + b*x + c*x^2)^(m +
p)/(a/d + c*(x/e))^m, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && IntegerQ[m] && Rati
onalQ[p] && (LtQ[0, -m, p] || LtQ[p, -m, 0]) && NeQ[m, 2] && NeQ[m, -1]
-
Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e*(d + e*x)^(m - 1)*
((a + b*x + c*x^2)^(p + 1)/(c*(m + 2*p + 1))), x] + Simp[Simplify[m + p]*((2*c*d - b*e)/(c*(m + 2*p + 1))) I
nt[(d + e*x)^(m - 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && EqQ[c*d^2 - b*d*e + a*e
^2, 0] && IGtQ[Simplify[m + p], 0]
-
Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-e)*(d + e*x)^m*((a
+ b*x + c*x^2)^(p + 1)/((m + p + 1)*(2*c*d - b*e))), x] + Simp[c*(Simplify[m + 2*p + 2]/((m + p + 1)*(2*c*d -
b*e))) Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && EqQ[c*d^2 -
b*d*e + a*e^2, 0] && ILtQ[Simplify[m + 2*p + 2], 0]
-
Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(d + e*x)^(m + 1)*((
a + b*x + c*x^2)^p/(e*(m + p + 1))), x] - Simp[c*(p/(e^2*(m + p + 1))) Int[(d + e*x)^(m + 2)*(a + b*x + c*x^
2)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && GtQ[p, 0] && (LtQ[m, -2] |
| EqQ[m + 2*p + 1, 0]) && NeQ[m + p + 1, 0] && IntegerQ[2*p]
-
Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(d + e*x)^(m + 1)*((
a + b*x + c*x^2)^p/(e*(m + 2*p + 1))), x] - Simp[p*((2*c*d - b*e)/(e^2*(m + 2*p + 1))) Int[(d + e*x)^(m + 1)
*(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && GtQ[p, 0]
&& (LeQ[-2, m, 0] || EqQ[m + p + 1, 0]) && NeQ[m + 2*p + 1, 0] && IntegerQ[2*p]
-
Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(2*c*d - b*e)*(d + e
*x)^m*((a + b*x + c*x^2)^(p + 1)/(e*(p + 1)*(b^2 - 4*a*c))), x] - Simp[(2*c*d - b*e)*((m + 2*p + 2)/((p + 1)*(
b^2 - 4*a*c))) Int[(d + e*x)^(m - 1)*(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c
*d^2 - b*d*e + a*e^2, 0] && LtQ[p, -1] && LtQ[0, m, 1] && IntegerQ[2*p]
-
Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e*(d + e*x)^(m - 1)*
((a + b*x + c*x^2)^(p + 1)/(c*(p + 1))), x] - Simp[e^2*((m + p)/(c*(p + 1))) Int[(d + e*x)^(m - 2)*(a + b*x
+ c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && LtQ[p, -1] && GtQ[m,
1] && IntegerQ[2*p]
-
Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e*(d + e*x)^(m - 1)*
((a + b*x + c*x^2)^(p + 1)/(c*(m + 2*p + 1))), x] + Simp[(m + p)*((2*c*d - b*e)/(c*(m + 2*p + 1))) Int[(d +
e*x)^(m - 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && G
tQ[m, 1] && NeQ[m + 2*p + 1, 0] && IntegerQ[2*p]
-
Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-e)*(d + e*x)^m*((a
+ b*x + c*x^2)^(p + 1)/((m + p + 1)*(2*c*d - b*e))), x] + Simp[c*((m + 2*p + 2)/((m + p + 1)*(2*c*d - b*e)))
Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c*d^2 - b*d*e + a*e
^2, 0] && LtQ[m, 0] && NeQ[m + p + 1, 0] && IntegerQ[2*p]
-
Int[1/(Sqrt[(d_.) + (e_.)*(x_)]*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Simp[2*e Subst[Int[1/
(2*c*d - b*e + e^2*x^2), x], x, Sqrt[a + b*x + c*x^2]/Sqrt[d + e*x]], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c
*d^2 - b*d*e + a*e^2, 0]
-
Int[((e_.)*(x_))^(m_)*((b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*x)^m*((b*x + c*x^2)^p/(x^(m + p)*
(b + c*x)^p)) Int[x^(m + p)*(b + c*x)^p, x], x] /; FreeQ[{b, c, e, m}, x]
-
Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[d^m*((a + b*x + c*x^2
)^FracPart[p]/((1 + e*(x/d))^FracPart[p]*(a/d + (c*x)/e)^FracPart[p])) Int[(1 + e*(x/d))^(m + p)*(a/d + (c/e
)*x)^p, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && (IntegerQ[m] || GtQ[d, 0])
&& !(IGtQ[m, 0] && (IntegerQ[3*p] || IntegerQ[4*p]))
-
Int[((d_) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[d^IntPart[m]*((d + e*
x)^FracPart[m]/(1 + e*(x/d))^FracPart[m]) Int[(1 + e*(x/d))^m*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c,
d, e, m}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && !(IntegerQ[m] || GtQ[d, 0])
-
Int[((d_.) + (e_.)*(x_))^(m_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(d
+ e*x)^m*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && IGtQ[p, 0]
-
Int[((d_.) + (e_.)*(x_))^(m_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c
, 2]}, Simp[1/c^p Int[ExpandIntegrand[(d + e*x)^m*(b/2 - q/2 + c*x)^p*(b/2 + q/2 + c*x)^p, x], x], x] /; EqQ
[p, -1] || !FractionalPowerFactorQ[q]] /; FreeQ[{a, b, c, d, e}, x] && ILtQ[p, 0] && IntegerQ[m] && NiceSqrtQ
[b^2 - 4*a*c]
-
Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(2*c*d - b*e)/(2*c) Int[1/(a
+ b*x + c*x^2), x], x] + Simp[e/(2*c) Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x]
-
Int[((d_.) + (e_.)*(x_))^(m_)/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Int[ExpandIntegrand[(d + e*x)^m
/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[m, 1]
-
Int[1/(((d_.) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)), x_Symbol] :> Simp[e*(Log[RemoveContent[d + e
*x, x]]/(c*d^2 - b*d*e + a*e^2)), x] + Simp[1/(c*d^2 - b*d*e + a*e^2) Int[(c*d - b*e - c*e*x)/(a + b*x + c*x
^2), x], x] /; FreeQ[{a, b, c, d, e}, x]
-
Int[((d_.) + (e_.)*(x_))^(m_)/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[e*((d + e*x)^(m + 1)/((m +
1)*(c*d^2 - b*d*e + a*e^2))), x] + Simp[1/(c*d^2 - b*d*e + a*e^2) Int[(d + e*x)^(m + 1)*(Simp[c*d - b*e - c
*e*x, x]/(a + b*x + c*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && ILtQ[m, -1]
-
Int[((d_.) + (e_.)*(x_))^(m_)/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[e*((d + e*x)^(m - 1)/(c*(
m - 1))), x] + Simp[1/c Int[(d + e*x)^(m - 2)*(Simp[c*d^2 - a*e^2 + e*(2*c*d - b*e)*x, x]/(a + b*x + c*x^2))
, x], x] /; FreeQ[{a, b, c, d, e}, x] && GtQ[m, 1]
-
Int[((d_.) + (e_.)*(x_))^(m_)/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[e*((d + e*x)^(m + 1)/((m
+ 1)*(c*d^2 - b*d*e + a*e^2))), x] + Simp[1/(c*d^2 - b*d*e + a*e^2) Int[(d + e*x)^(m + 1)*(Simp[c*d - b*e -
c*e*x, x]/(a + b*x + c*x^2)), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && LtQ[m, -1]
-
Int[Sqrt[(d_.) + (e_.)*(x_)]/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[2*e Subst[Int[x^2/(c*d^2
- b*d*e + a*e^2 - (2*c*d - b*e)*x^2 + c*x^4), x], x, Sqrt[d + e*x]], x] /; FreeQ[{a, b, c, d, e}, x]
-
Int[1/(Sqrt[(d_.) + (e_.)*(x_)]*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)), x_Symbol] :> Simp[2*e Subst[Int[1/(c*d
^2 - b*d*e + a*e^2 - (2*c*d - b*e)*x^2 + c*x^4), x], x, Sqrt[d + e*x]], x] /; FreeQ[{a, b, c, d, e}, x]
-
Int[((d_.) + (e_.)*(x_))^(m_)/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Int[ExpandIntegrand[(d + e*x)^
m, 1/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && !IntegerQ[2*m]
-
Int[((d_.) + (e_.)*(x_))^(m_)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(d + e*x)^FracPart[p]
*((a + b*x + c*x^2)^FracPart[p]/(a*d + c*e*x^3)^FracPart[p]) Int[(d + e*x)^(m - p)*(a*d + c*e*x^3)^p, x], x]
/; FreeQ[{a, b, c, d, e, m, p}, x] && EqQ[b*d + a*e, 0] && EqQ[c*d + b*e, 0] && IGtQ[m - p + 1, 0] && !Integ
erQ[p]
-
Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-(d + e*x)^(m + 1))
*(d*b - 2*a*e + (2*c*d - b*e)*x)*((a + b*x + c*x^2)^p/(2*(m + 1)*(c*d^2 - b*d*e + a*e^2))), x] + Simp[p*((b^2
- 4*a*c)/(2*(m + 1)*(c*d^2 - b*d*e + a*e^2))) Int[(d + e*x)^(m + 2)*(a + b*x + c*x^2)^(p - 1), x], x] /; Fre
eQ[{a, b, c, d, e}, x] && EqQ[m + 2*p + 2, 0] && GtQ[p, 0]
-
Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(d + e*x)^(m - 1)*(d
*b - 2*a*e + (2*c*d - b*e)*x)*((a + b*x + c*x^2)^(p + 1)/((p + 1)*(b^2 - 4*a*c))), x] - Simp[2*(2*p + 3)*((c*d
^2 - b*d*e + a*e^2)/((p + 1)*(b^2 - 4*a*c))) Int[(d + e*x)^(m - 2)*(a + b*x + c*x^2)^(p + 1), x], x] /; Free
Q[{a, b, c, d, e}, x] && EqQ[m + 2*p + 2, 0] && LtQ[p, -1]
-
Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Simp[-2 Subst[Int[1/(4*c*
d^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x]
-
Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c,
2]}, Simp[(-(b - q + 2*c*x))*(d + e*x)^(m + 1)*((a + b*x + c*x^2)^p/((m + 1)*(2*c*d - b*e + e*q)*((2*c*d - b*
e + e*q)*((b + q + 2*c*x)/((2*c*d - b*e - e*q)*(b - q + 2*c*x))))^p))*Hypergeometric2F1[m + 1, -p, m + 2, -4*c
*q*((d + e*x)/((2*c*d - b*e - e*q)*(b - q + 2*c*x)))], x]] /; FreeQ[{a, b, c, d, e, m, p}, x] && EqQ[m + 2*p +
2, 0]
-
Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(d + e*x)^m*(b + 2*c
*x)*((a + b*x + c*x^2)^(p + 1)/((p + 1)*(b^2 - 4*a*c))), x] + Simp[m*((2*c*d - b*e)/((p + 1)*(b^2 - 4*a*c)))
Int[(d + e*x)^(m - 1)*(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && EqQ[m + 2*p + 3
, 0] && LtQ[p, -1]
-
Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e*(d + e*x)^(m + 1)*
((a + b*x + c*x^2)^(p + 1)/((m + 1)*(c*d^2 - b*d*e + a*e^2))), x] + Simp[(2*c*d - b*e)/(2*(c*d^2 - b*d*e + a*e
^2)) Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && EqQ[m + 2*p + 3
, 0]
-
Int[((d_.) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[-2*((b*d - 2*a*e + (2*c*
d - b*e)*x)/((b^2 - 4*a*c)*Sqrt[a + b*x + c*x^2])), x] /; FreeQ[{a, b, c, d, e}, x]
-
Int[((d_.) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((b*d - 2*a*e + (2*c*d -
b*e)*x)/((p + 1)*(b^2 - 4*a*c)))*(a + b*x + c*x^2)^(p + 1), x] - Simp[(2*p + 3)*((2*c*d - b*e)/((p + 1)*(b^2 -
4*a*c))) Int[(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && LtQ[p, -1] && NeQ[p, -3/2]
-
Int[((d_.) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e*((a + b*x + c*x^2)^(p +
1)/(2*c*(p + 1))), x] + Simp[(2*c*d - b*e)/(2*c) Int[(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p
}, x] && NeQ[p, -1]
-
Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(d + e*x)^(m + 1)*((
a + b*x + c*x^2)^p/(e*(m + 1))), x] - Simp[p/(e*(m + 1)) Int[(d + e*x)^(m + 1)*(b + 2*c*x)*(a + b*x + c*x^2)
^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && GtQ[p, 0] && (IntegerQ[p] || LtQ[m, -1]) && NeQ[m, -1] &&
!ILtQ[m + 2*p + 1, 0] && IntQuadraticQ[a, b, c, d, e, m, p, x]
-
Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(d + e*x)^(m + 1)*((
a + b*x + c*x^2)^p/(e*(m + 2*p + 1))), x] - Simp[p/(e*(m + 2*p + 1)) Int[(d + e*x)^m*Simp[b*d - 2*a*e + (2*c
*d - b*e)*x, x]*(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && GtQ[p, 0] && NeQ[m + 2*p
+ 1, 0] && ( !RationalQ[m] || LtQ[m, 1]) && !ILtQ[m + 2*p, 0] && IntQuadraticQ[a, b, c, d, e, m, p, x]
-
Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(d + e*x)^m*(b + 2*c
*x)*((a + b*x + c*x^2)^(p + 1)/((p + 1)*(b^2 - 4*a*c))), x] - Simp[1/((p + 1)*(b^2 - 4*a*c)) Int[(d + e*x)^(
m - 1)*(b*e*m + 2*c*d*(2*p + 3) + 2*c*e*(m + 2*p + 3)*x)*(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c,
d, e}, x] && LtQ[p, -1] && GtQ[m, 0] && (LtQ[m, 1] || (ILtQ[m + 2*p + 3, 0] && NeQ[m, 2])) && IntQuadraticQ[a,
b, c, d, e, m, p, x]
-
Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(d + e*x)^(m - 1)*(d
*b - 2*a*e + (2*c*d - b*e)*x)*((a + b*x + c*x^2)^(p + 1)/((p + 1)*(b^2 - 4*a*c))), x] + Simp[1/((p + 1)*(b^2 -
4*a*c)) Int[(d + e*x)^(m - 2)*Simp[e*(2*a*e*(m - 1) + b*d*(2*p - m + 4)) - 2*c*d^2*(2*p + 3) + e*(b*e - 2*d
*c)*(m + 2*p + 2)*x, x]*(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && LtQ[p, -1] && GtQ[m,
1] && IntQuadraticQ[a, b, c, d, e, m, p, x]
-
Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(d + e*x)^(m + 1)*(b
*c*d - b^2*e + 2*a*c*e + c*(2*c*d - b*e)*x)*((a + b*x + c*x^2)^(p + 1)/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e +
a*e^2))), x] + Simp[1/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2)) Int[(d + e*x)^m*Simp[b*c*d*e*(2*p - m
+ 2) + b^2*e^2*(m + p + 2) - 2*c^2*d^2*(2*p + 3) - 2*a*c*e^2*(m + 2*p + 3) - c*e*(2*c*d - b*e)*(m + 2*p + 4)*
x, x]*(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && LtQ[p, -1] && IntQuadraticQ[a, b, c
, d, e, m, p, x]
-
Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e*(d + e*x)^(m - 1)*
((a + b*x + c*x^2)^(p + 1)/(c*(m + 2*p + 1))), x] + Simp[1/(c*(m + 2*p + 1)) Int[(d + e*x)^(m - 2)*Simp[c*d^
2*(m + 2*p + 1) - e*(a*e*(m - 1) + b*d*(p + 1)) + e*(2*c*d - b*e)*(m + p)*x, x]*(a + b*x + c*x^2)^p, x], x] /;
FreeQ[{a, b, c, d, e, m, p}, x] && If[RationalQ[m], GtQ[m, 1], SumSimplerQ[m, -2]] && NeQ[m + 2*p + 1, 0] &&
IntQuadraticQ[a, b, c, d, e, m, p, x]
-
Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[e*(d + e*x)^(m + 1)*
((a + b*x + c*x^2)^(p + 1)/((m + 1)*(c*d^2 - b*d*e + a*e^2))), x] + Simp[1/((m + 1)*(c*d^2 - b*d*e + a*e^2))
Int[(d + e*x)^(m + 1)*Simp[c*d*(m + 1) - b*e*(m + p + 2) - c*e*(m + 2*p + 3)*x, x]*(a + b*x + c*x^2)^p, x], x
] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[m, -1] && ((LtQ[m, -1] && IntQuadraticQ[a, b, c, d, e, m, p, x]) |
| (SumSimplerQ[m, 1] && IntegerQ[p]) || ILtQ[Simplify[m + 2*p + 3], 0])
-
Int[((d_.) + (e_.)*(x_))^(m_)/Sqrt[(b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Int[(d + e*x)^m/(Sqrt[b*x]*Sqrt[1
+ (c/b)*x]), x] /; FreeQ[{b, c, d, e}, x] && NeQ[c*d - b*e, 0] && EqQ[m^2, 1/4] && LtQ[c, 0] && RationalQ[b]
-
Int[((d_.) + (e_.)*(x_))^(m_)/Sqrt[(b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Simp[Sqrt[x]*(Sqrt[b + c*x]/Sqrt[b
*x + c*x^2]) Int[(d + e*x)^m/(Sqrt[x]*Sqrt[b + c*x]), x], x] /; FreeQ[{b, c, d, e}, x] && NeQ[c*d - b*e, 0]
&& EqQ[m^2, 1/4]
-
Int[(x_)^(m_)/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Simp[2 Subst[Int[x^(2*m + 1)/Sqrt[a + b*x
^2 + c*x^4], x], x, Sqrt[x]], x] /; FreeQ[{a, b, c}, x] && EqQ[m^2, 1/4]
-
Int[((e_)*(x_))^(m_)/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Simp[(e*x)^m/x^m Int[x^m/Sqrt[a +
b*x + c*x^2], x], x] /; FreeQ[{a, b, c, e}, x] && EqQ[m^2, 1/4]
-
Int[((d_.) + (e_.)*(x_))^(m_)/Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Simp[2*Rt[b^2 - 4*a*c, 2]*
(d + e*x)^m*(Sqrt[(-c)*((a + b*x + c*x^2)/(b^2 - 4*a*c))]/(c*Sqrt[a + b*x + c*x^2]*(2*c*((d + e*x)/(2*c*d - b*
e - e*Rt[b^2 - 4*a*c, 2])))^m)) Subst[Int[(1 + 2*e*Rt[b^2 - 4*a*c, 2]*(x^2/(2*c*d - b*e - e*Rt[b^2 - 4*a*c,
2])))^m/Sqrt[1 - x^2], x], x, Sqrt[(b + Rt[b^2 - 4*a*c, 2] + 2*c*x)/(2*Rt[b^2 - 4*a*c, 2])]], x] /; FreeQ[{a,
b, c, d, e}, x] && EqQ[m^2, 1/4]
-
Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)/((d_.) + (e_.)*(x_)), x_Symbol] :> Simp[1/(-4*(c/(b^2 - 4*a*c)))^
p Subst[Int[Simp[1 - x^2/(b^2 - 4*a*c), x]^p/Simp[2*c*d - b*e + e*x, x], x], x, b + 2*c*x], x] /; FreeQ[{a,
b, c, d, e, p}, x] && GtQ[4*a - b^2/c, 0] && IntegerQ[4*p]
-
Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)/((d_.) + (e_.)*(x_)), x_Symbol] :> Simp[(a + b*x + c*x^2)^p/((-c)
*((a + b*x + c*x^2)/(b^2 - 4*a*c)))^p Int[((-a)*(c/(b^2 - 4*a*c)) - b*c*(x/(b^2 - 4*a*c)) - c^2*(x^2/(b^2 -
4*a*c)))^p/(d + e*x), x], x] /; FreeQ[{a, b, c, d, e, p}, x] && !GtQ[4*a - b^2/c, 0] && IntegerQ[4*p]
-
Int[1/(((d_.) + (e_.)*(x_))*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(1/3)), x_Symbol] :> With[{q = Rt[3*c*e^2*(2*c*
d - b*e), 3]}, Simp[(-Sqrt[3])*c*e*(ArcTan[1/Sqrt[3] + 2*((c*d - b*e - c*e*x)/(Sqrt[3]*q*(a + b*x + c*x^2)^(1/
3)))]/q^2), x] + (-Simp[3*c*e*(Log[d + e*x]/(2*q^2)), x] + Simp[3*c*e*(Log[c*d - b*e - c*e*x - q*(a + b*x + c*
x^2)^(1/3)]/(2*q^2)), x])] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d^2 - b*c*d*e + b^2*e^2 - 3*a*c*e^2, 0] &&
PosQ[c*e^2*(2*c*d - b*e)]
-
Int[1/(((d_.) + (e_.)*(x_))*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(1/3)), x_Symbol] :> With[{q = Rt[-3*c*e^2*(2*c
*d - b*e), 3]}, Simp[(-Sqrt[3])*c*e*(ArcTan[1/Sqrt[3] - 2*((c*d - b*e - c*e*x)/(Sqrt[3]*q*(a + b*x + c*x^2)^(1
/3)))]/q^2), x] + (-Simp[3*c*e*(Log[d + e*x]/(2*q^2)), x] + Simp[3*c*e*(Log[c*d - b*e - c*e*x + q*(a + b*x + c
*x^2)^(1/3)]/(2*q^2)), x])] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d^2 - b*c*d*e + b^2*e^2 - 3*a*c*e^2, 0] &&
NegQ[c*e^2*(2*c*d - b*e)]
-
Int[1/(((d_.) + (e_.)*(x_))*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(1/3)), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c,
2]}, Simp[(b + q + 2*c*x)^(1/3)*((b - q + 2*c*x)^(1/3)/(a + b*x + c*x^2)^(1/3)) Int[1/((d + e*x)*(b + q + 2*
c*x)^(1/3)*(b - q + 2*c*x)^(1/3)), x], x]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d^2 - b*c*d*e - 2*b^2*e^2 +
9*a*c*e^2, 0]
-
Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c,
2]}, Simp[(-(1/(d + e*x))^(2*p))*((a + b*x + c*x^2)^p/(e*(e*((b - q + 2*c*x)/(2*c*(d + e*x))))^p*(e*((b + q +
2*c*x)/(2*c*(d + e*x))))^p)) Subst[Int[x^(-m - 2*(p + 1))*Simp[1 - (d - e*((b - q)/(2*c)))*x, x]^p*Simp[1 -
(d - e*((b + q)/(2*c)))*x, x]^p, x], x, 1/(d + e*x)], x]] /; FreeQ[{a, b, c, d, e, p}, x] && ILtQ[m, 0]
-
Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c,
2]}, Simp[(a + b*x + c*x^2)^p/(e*(1 - (d + e*x)/(d - e*((b - q)/(2*c))))^p*(1 - (d + e*x)/(d - e*((b + q)/(2*
c))))^p) Subst[Int[x^m*Simp[1 - x/(d - e*((b - q)/(2*c))), x]^p*Simp[1 - x/(d - e*((b + q)/(2*c))), x]^p, x]
, x, d + e*x], x]] /; FreeQ[{a, b, c, d, e, m, p}, x]
-
Int[((d_.) + (e_.)*(u_))^(m_.)*((a_) + (b_.)*(u_) + (c_.)*(u_)^2)^(p_.), x_Symbol] :> Simp[1/Coefficient[u, x,
1] Subst[Int[(d + e*x)^m*(a + b*x + c*x^2)^p, x], x, u], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && LinearQ[u
, x] && NeQ[u, x]
-
Int[((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))^(n_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol]
:> Simp[(g/e)^n Int[(d + e*x)^(m + n)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x]
&& EqQ[e*f - d*g, 0] && IntegerQ[n] && !(IntegerQ[m] && SimplerQ[f + g*x, d + e*x])
-
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :
> Simp[(e/g)^m Int[(f + g*x)^(m + n)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x]
&& EqQ[e*f - d*g, 0] && GtQ[e/g, 0]
-
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :
> Simp[(d + e*x)^m/(f + g*x)^m Int[(f + g*x)^(m + n)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f,
g, m, n, p}, x] && EqQ[e*f - d*g, 0]
-
Int[((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))^(n_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol]
:> Simp[1/c^p Int[(d + e*x)^m*(f + g*x)^n*(b/2 + c*x)^(2*p), x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n}, x]
&& EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]
-
Int[((d_.) + (e_.)*(x_))^(m_.)*((f_) + (g_.)*(x_))*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp
[(-f)*g*(d + e*x)^(m + 1)*((a + b*x + c*x^2)^(p + 1)/(b*(p + 1)*(e*f - d*g))), x] /; FreeQ[{a, b, c, d, e, f,
g, m, p}, x] && EqQ[b^2 - 4*a*c, 0] && EqQ[m + 2*p + 3, 0] && EqQ[2*c*f - b*g, 0]
-
Int[((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp
[-2*c*(e*f - d*g)*(d + e*x)^(m + 1)*((a + b*x + c*x^2)^(p + 1)/((p + 1)*(2*c*d - b*e)^2)), x] + Simp[(2*c*f -
b*g)/(2*c*d - b*e) Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x
] && EqQ[b^2 - 4*a*c, 0] && EqQ[m + 2*p + 3, 0] && NeQ[2*c*f - b*g, 0] && NeQ[2*c*d - b*e, 0]
-
Int[((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))^(n_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :
> Simp[(a + b*x + c*x^2)^FracPart[p]/(c^IntPart[p]*(b/2 + c*x)^(2*FracPart[p])) Int[(d + e*x)^m*(f + g*x)^n*
(b/2 + c*x)^(2*p), x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && EqQ[b^2 - 4*a*c, 0] && !IntegerQ[p]
-
Int[((d_) + (e_.)*(x_))^(m_.)*((f_) + (g_.)*(x_))^(n_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :
> Int[(d*f + e*g*x^2)^m*(a + b*x + c*x^2)^p, x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && EqQ[m, n] && Eq
Q[e*f + d*g, 0] && (IntegerQ[m] || (GtQ[d, 0] && GtQ[f, 0]))
-
Int[((d_) + (e_.)*(x_))^(m_.)*((f_) + (g_.)*(x_))^(n_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp
[b Int[x*(d + e*x)^m*(f + g*x)^n, x], x] + Int[(d + e*x)^m*(f + g*x)^n*(a + c*x^2), x] /; FreeQ[{a, b, c, d,
e, f, g, m, n}, x] && EqQ[m, n] && EqQ[e*f + d*g, 0]
-
Int[(Sqrt[(d_) + (e_.)*(x_)]*Sqrt[(f_) + (g_.)*(x_)])/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[e
*(g/c) Int[1/(Sqrt[d + e*x]*Sqrt[f + g*x]), x], x] + Simp[1/c Int[(c*d*f - a*e*g - b*e*g*x)/(Sqrt[d + e*x]
*Sqrt[f + g*x]*(a + b*x + c*x^2)), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && EqQ[e*f + d*g, 0]
-
Int[((d_) + (e_.)*(x_))^(m_.)*((f_) + (g_.)*(x_))^(n_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Simp[(d + e*x)^FracPart[m]*((f + g*x)^FracPart[m]/(d*f + e*g*x^2)^FracPart[m]) Int[(d*f + e*g*x^2)^m*(a + b
*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && EqQ[m, n] && EqQ[e*f + d*g, 0] && !(EqQ[
p, 2] && LtQ[m, -1])
-
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :
> Simp[2/e^(n + 2*p + 1) Subst[Int[x^(2*m + 1)*(e*f - d*g + g*x^2)^n*(c*d^2 - b*d*e + a*e^2 - (2*c*d - b*e)*
x^2 + c*x^4)^p, x], x, Sqrt[d + e*x]], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && IGtQ[p, 0] && ILtQ[n, 0] && In
tegerQ[m + 1/2]
-
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :
> With[{Qx = PolynomialQuotient[(a + b*x + c*x^2)^p, d + e*x, x], R = PolynomialRemainder[(a + b*x + c*x^2)^p,
d + e*x, x]}, Simp[R*(d + e*x)^(m + 1)*((f + g*x)^(n + 1)/((m + 1)*(e*f - d*g))), x] + Simp[1/((m + 1)*(e*f -
d*g)) Int[(d + e*x)^(m + 1)*(f + g*x)^n*ExpandToSum[(m + 1)*(e*f - d*g)*Qx - g*R*(m + n + 2), x], x], x]] /
; FreeQ[{a, b, c, d, e, f, g, n}, x] && IGtQ[p, 0] && ILtQ[2*m, -2] && !IntegerQ[n] && !(EqQ[m, -2] && EqQ[p
, 1] && EqQ[2*c*d - b*e, 0])
-
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :
> Simp[c^p*(d + e*x)^(m + 2*p)*((f + g*x)^(n + 1)/(g*e^(2*p)*(m + n + 2*p + 1))), x] + Simp[1/(g*e^(2*p)*(m +
n + 2*p + 1)) Int[(d + e*x)^m*(f + g*x)^n*ExpandToSum[g*(m + n + 2*p + 1)*(e^(2*p)*(a + b*x + c*x^2)^p - c^p
*(d + e*x)^(2*p)) - c^p*(e*f - d*g)*(m + 2*p)*(d + e*x)^(2*p - 1), x], x], x] /; FreeQ[{a, b, c, d, e, f, g},
x] && IGtQ[p, 0] && !IntegerQ[m] && !IntegerQ[n] && NeQ[m + n + 2*p + 1, 0]
-
Int[((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))^(n_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol]
:> Int[ExpandIntegrand[(d + e*x)^m*(f + g*x)^n*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m,
n}, x] && IGtQ[p, 0]
-
Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_)))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[g*
((d + e*x)^m/(c*m)), x] + Simp[1/c Int[(d + e*x)^(m - 1)*(Simp[c*d*f - a*e*g + (g*c*d - b*e*g + c*e*f)*x, x]
/(a + b*x + c*x^2)), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && FractionQ[m] && GtQ[m, 0]
-
Int[((f_.) + (g_.)*(x_))/(Sqrt[(d_.) + (e_.)*(x_)]*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)), x_Symbol] :> Simp[2
Subst[Int[(e*f - d*g + g*x^2)/(c*d^2 - b*d*e + a*e^2 - (2*c*d - b*e)*x^2 + c*x^4), x], x, Sqrt[d + e*x]], x]
/; FreeQ[{a, b, c, d, e, f, g}, x]
-
Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_)))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(e
*f - d*g)*((d + e*x)^(m + 1)/((m + 1)*(c*d^2 - b*d*e + a*e^2))), x] + Simp[1/(c*d^2 - b*d*e + a*e^2) Int[(d
+ e*x)^(m + 1)*(Simp[c*d*f - f*b*e + a*e*g - c*(e*f - d*g)*x, x]/(a + b*x + c*x^2)), x], x] /; FreeQ[{a, b, c,
d, e, f, g}, x] && FractionQ[m] && LtQ[m, -1]
-
Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Wi
th[{q = Denominator[m]}, Simp[q/e Subst[Int[ExpandIntegrand[x^(q*(m + 1) - 1)*(((e*f - d*g)/e + g*(x^q/e))^n
/((c*d^2 - b*d*e + a*e^2)/e^2 - (2*c*d - b*e)*(x^q/e^2) + c*(x^(2*q)/e^2))), x], x], x, (d + e*x)^(1/q)], x]]
/; FreeQ[{a, b, c, d, e, f, g}, x] && IntegerQ[n] && FractionQ[m]
-
Int[(((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))^(n_.))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :>
Int[ExpandIntegrand[(d + e*x)^m*((f + g*x)^n/(a + b*x + c*x^2)), x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x]
&& IntegersQ[n]
-
Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Si
mp[g/c^2 Int[Simp[2*c*e*f + c*d*g - b*e*g + c*e*g*x, x]*(d + e*x)^(m - 1)*(f + g*x)^(n - 2), x], x] + Simp[1
/c^2 Int[Simp[c^2*d*f^2 - 2*a*c*e*f*g - a*c*d*g^2 + a*b*e*g^2 + (c^2*e*f^2 + 2*c^2*d*f*g - 2*b*c*e*f*g - b*c
*d*g^2 + b^2*e*g^2 - a*c*e*g^2)*x, x]*(d + e*x)^(m - 1)*((f + g*x)^(n - 2)/(a + b*x + c*x^2)), x], x] /; FreeQ
[{a, b, c, d, e, f, g}, x] && !IntegerQ[m] && !IntegerQ[n] && GtQ[m, 0] && GtQ[n, 1]
-
Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Si
mp[e*(g/c) Int[(d + e*x)^(m - 1)*(f + g*x)^(n - 1), x], x] + Simp[1/c Int[Simp[c*d*f - a*e*g + (c*e*f + c*
d*g - b*e*g)*x, x]*(d + e*x)^(m - 1)*((f + g*x)^(n - 1)/(a + b*x + c*x^2)), x], x] /; FreeQ[{a, b, c, d, e, f,
g}, x] && !IntegerQ[m] && !IntegerQ[n] && GtQ[m, 0] && GtQ[n, 0]
-
Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Si
mp[(-g)*((e*f - d*g)/(c*f^2 - b*f*g + a*g^2)) Int[(d + e*x)^(m - 1)*(f + g*x)^n, x], x] + Simp[1/(c*f^2 - b*
f*g + a*g^2) Int[Simp[c*d*f - b*d*g + a*e*g + c*(e*f - d*g)*x, x]*(d + e*x)^(m - 1)*((f + g*x)^(n + 1)/(a +
b*x + c*x^2)), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && !IntegerQ[m] && !IntegerQ[n] && GtQ[m, 0] && LtQ
[n, -1]
-
Int[((d_.) + (e_.)*(x_))^(m_)/(Sqrt[(f_.) + (g_.)*(x_)]*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)), x_Symbol] :> Int
[ExpandIntegrand[1/(Sqrt[d + e*x]*Sqrt[f + g*x]), (d + e*x)^(m + 1/2)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b
, c, d, e, f, g}, x] && IGtQ[m + 1/2, 0]
-
Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> In
t[ExpandIntegrand[(d + e*x)^m*(f + g*x)^n, 1/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n}, x
] && !IntegerQ[m] && !IntegerQ[n]
-
Int[((d_) + (e_.)*(x_))^(m_.)*((f_) + (g_.)*(x_))^(n_.)*((b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Int[Exp
andIntegrand[x^p*(d + e*x)^m*(f + g*x)^n*(b + c*x)^p, x], x] /; FreeQ[{b, c, d, e, f, g}, x] && ILtQ[p, -1] &&
IntegersQ[m, n]
-
Int[((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))^(n_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol]
:> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[1/c^p Int[ExpandIntegrand[(d + e*x)^m*(f + g*x)^n*(b/2 - q/2 + c*x)^p
*(b/2 + q/2 + c*x)^p, x], x], x] /; !FractionalPowerFactorQ[q]] /; FreeQ[{a, b, c, d, e, f, g}, x] && ILtQ[p,
-1] && IntegersQ[m, n] && NiceSqrtQ[b^2 - 4*a*c]
-
Int[((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))^2*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :>
Simp[g^2*(d + e*x)^(m + 1)*((a + b*x + c*x^2)^(p + 1)/(c*e*(m + 2*p + 3))), x] /; FreeQ[{a, b, c, d, e, f, g,
m, p}, x] && EqQ[b*e*g*(m + p + 2) + 2*c*(d*g*(p + 1) - e*f*(m + 2*p + 3)), 0] && EqQ[e*(c*f^2 - b*f*g + a*g^2
)*(m + 1) + (2*c*f - b*g)*(e*f - d*g)*(p + 1), 0] && NeQ[m + 2*p + 3, 0]
-
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Int[(f + g*x)^n*(a*d + c*e*x^3)^p, x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && EqQ[b*d + a*e, 0] && EqQ[c*
d + b*e, 0] && EqQ[m, p] && ILtQ[p, -1]
-
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Simp[(d + e*x)^FracPart[p]*((a + b*x + c*x^2)^FracPart[p]/(a*d + c*e*x^3)^FracPart[p]) Int[(f + g*x)^n*(a*d
+ c*e*x^3)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && EqQ[b*d + a*e, 0] && EqQ[c*d + b*e, 0] && Eq
Q[m, p]
-
Int[(((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))^(n_.))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(3/2), x_Symbo
l] :> Simp[-2*(2*c*d - b*e)^(m - 2)*(c*(e*f + d*g) - b*e*g)^n*((d + e*x)/(c^(m + n - 1)*e^(n - 1)*Sqrt[a + b*x
+ c*x^2])), x] + Simp[1/(c^(m + n - 1)*e^(n - 2)) Int[ExpandToSum[((2*c*d - b*e)^(m - 1)*(c*(e*f + d*g) - b
*e*g)^n - c^(m + n - 1)*e^n*(d + e*x)^(m - 1)*(f + g*x)^n)/(c*d - b*e - c*e*x), x]/Sqrt[a + b*x + c*x^2], x],
x] /; FreeQ[{a, b, c, d, e, f, g}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && IGtQ[m, 0] && IGtQ[n, 0]
-
Int[((x_)^(n_.)*((d_.) + (e_.)*(x_))^(m_.))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[-2*(2*
c*d - b*e)^(m - 2)*(c*d - b*e)^n*((d + e*x)/(c^(m + n - 1)*e^(n - 1)*Sqrt[a + b*x + c*x^2])), x] - Simp[e^2/c^
(m + n - 1) Int[ExpandToSum[(c^(m + n - 1)*(d + e*x)^(m - 1) - ((c*d - b*e)^n*(2*c*d - b*e)^(m - 1))/(e^n*x^
n))/(c*d - b*e - c*e*x), x]/(Sqrt[a + b*x + c*x^2]/x^n), x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c*d^2 - b*
d*e + a*e^2, 0] && IGtQ[m, 0] && ILtQ[n, 0]
-
Int[(x_)^(n_.)*((d_.) + (e_.)*(x_))^(m_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[-2*(-d)^
n*e^(2*m - n + 3)*(Sqrt[a + b*x + c*x^2]/((-2*c*d + b*e)^(m + 2)*(d + e*x))), x] - Simp[e^(2*m - n + 2) Int[
ExpandToSum[((-d)^n*(-2*c*d + b*e)^(-m - 1) - e^n*x^n*((-c)*d + b*e + c*e*x)^(-m - 1))/(d + e*x), x]/Sqrt[a +
b*x + c*x^2], x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && ILtQ[m, 0] && IGtQ[n, 0]
&& EqQ[m + p, -3/2]
-
Int[(x_)^(n_.)*((d_.) + (e_.)*(x_))^(m_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[-2*(-d)^
n*e^(2*m - n + 3)*(Sqrt[a + b*x + c*x^2]/((-2*c*d + b*e)^(m + 2)*(d + e*x))), x] - Simp[e^(2*m + 2) Int[Expa
ndToSum[(((-d)^n*(-2*c*d + b*e)^(-m - 1))/(e^n*x^n) - ((-c)*d + b*e + c*e*x)^(-m - 1))/(d + e*x), x]/(Sqrt[a +
b*x + c*x^2]/x^n), x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && ILtQ[m, 0] && ILtQ
[n, 0] && EqQ[m + p, -3/2]
-
Int[(((f_.) + (g_.)*(x_))^(n_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_))/((d_) + (e_.)*(x_)), x_Symbol] :> In
t[(a/d + c*(x/e))*(f + g*x)^n*(a + b*x + c*x^2)^(p - 1), x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && EqQ[c*
d^2 - b*d*e + a*e^2, 0] && GtQ[p, 0]
-
Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_.)*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :>
Int[((f + g*x)^n*(a + b*x + c*x^2)^(m + 1/2))/(a/d + c*(x/e))^m, x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && E
qQ[c*d^2 - b*d*e + a*e^2, 0] && ILtQ[m, 0] && IntegerQ[n]
-
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp
[g*(d + e*x)^m*((a + b*x + c*x^2)^(p + 1)/(c*(m + 2*p + 2))), x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && E
qQ[c*d^2 - b*d*e + a*e^2, 0] && EqQ[c*e*f*(m + 2*p + 2) + g*(c*d*m - b*e*(m + p + 1)), 0]
-
Int[((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Sim
p[(g*(c*d - b*e) + c*e*f)*(d + e*x)^m*((a + b*x + c*x^2)^(p + 1)/(c*(p + 1)*(2*c*d - b*e))), x] - Simp[e*((m*(
g*(c*d - b*e) + c*e*f) + e*(p + 1)*(2*c*f - b*g))/(c*(p + 1)*(2*c*d - b*e))) Int[(d + e*x)^(m - 1)*(a + b*x
+ c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && LtQ[p, -1] &&
GtQ[m, 0]
-
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp
[(g*(c*d - b*e) + c*e*f)*(d + e*x)^m*((a + b*x + c*x^2)^(p + 1)/(c*(p + 1)*(2*c*d - b*e))), x] - Simp[e*((m*(g
*(c*d - b*e) + c*e*f) + e*(p + 1)*(2*c*f - b*g))/(c*(p + 1)*(2*c*d - b*e))) Int[(d + e*x)^Simplify[m - 1]*(a
+ b*x + c*x^2)^Simplify[p + 1], x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && EqQ[c*d^2 - b*d*e + a*e^2,
0] && SumSimplerQ[p, 1] && SumSimplerQ[m, -1] && NeQ[p, -1]
-
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp
[(d*g - e*f)*(d + e*x)^m*((a + b*x + c*x^2)^(p + 1)/((2*c*d - b*e)*(m + p + 1))), x] + Simp[(m*(g*(c*d - b*e)
+ c*e*f) + e*(p + 1)*(2*c*f - b*g))/(e*(2*c*d - b*e)*(m + p + 1)) Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p,
x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && ((LtQ[m, -1] && !IGtQ[m
+ p + 1, 0]) || (LtQ[m, 0] && LtQ[p, -1]) || EqQ[m + 2*p + 2, 0]) && NeQ[m + p + 1, 0]
-
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp
[g*(d + e*x)^m*((a + b*x + c*x^2)^(p + 1)/(c*(m + 2*p + 2))), x] + Simp[(m*(g*(c*d - b*e) + c*e*f) + e*(p + 1)
*(2*c*f - b*g))/(c*e*(m + 2*p + 2)) Int[(d + e*x)^m*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f,
g, m, p}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[m + 2*p + 2, 0]
-
Int[((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Sim
p[g*(d + e*x)^m*((a + b*x + c*x^2)^(p + 1)/(2*c*(p + 1))), x] - Simp[e*g*(m/(2*c*(p + 1))) Int[(d + e*x)^(m
- 1)*(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && EqQ[2*c*f - b*g, 0] && LtQ[p, -1]
&& GtQ[m, 0]
-
Int[((d_.) + (e_.)*(x_))*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-(b
*e*g*(p + 2) - c*(e*f + d*g)*(2*p + 3) - 2*c*e*g*(p + 1)*x))*((a + b*x + c*x^2)^(p + 1)/(2*c^2*(p + 1)*(2*p +
3))), x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && EqQ[b^2*e*g*(p + 2) - 2*a*c*e*g + c*(2*c*d*f - b*(e*f + d*g)
)*(2*p + 3), 0] && NeQ[p, -1]
-
Int[((d_.) + (e_.)*(x_))*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-(2
*a*c*(e*f + d*g) - b*(c*d*f + a*e*g) - (b^2*e*g - b*c*(e*f + d*g) + 2*c*(c*d*f - a*e*g))*x))*((a + b*x + c*x^2
)^(p + 1)/(c*(p + 1)*(b^2 - 4*a*c))), x] - Simp[(b^2*e*g*(p + 2) - 2*a*c*e*g + c*(2*c*d*f - b*(e*f + d*g))*(2*
p + 3))/(c*(p + 1)*(b^2 - 4*a*c)) Int[(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] &
& LtQ[p, -1] && !(IntegerQ[p] && NeQ[a, 0] && NiceSqrtQ[b^2 - 4*a*c])
-
Int[((d_.) + (e_.)*(x_))*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-(b
*e*g*(p + 2) - c*(e*f + d*g)*(2*p + 3) - 2*c*e*g*(p + 1)*x))*((a + b*x + c*x^2)^(p + 1)/(2*c^2*(p + 1)*(2*p +
3))), x] + Simp[(b^2*e*g*(p + 2) - 2*a*c*e*g + c*(2*c*d*f - b*(e*f + d*g))*(2*p + 3))/(2*c^2*(2*p + 3)) Int[
(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && !LeQ[p, -1]
-
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[(-(e*f - d*g))*(d + e*x)^(m + 1)*((a + b*x + c*x^2)^(p + 1)/(2*(p + 1)*(c*d^2 - b*d*e + a*e^2))), x] /; Free
Q[{a, b, c, d, e, f, g, m, p}, x] && EqQ[Simplify[m + 2*p + 3], 0] && EqQ[b*(e*f + d*g) - 2*(c*d*f + a*e*g), 0
]
-
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp
[(d + e*x)^m*(a + b*x + c*x^2)^(p + 1)*((b*f - 2*a*g + (2*c*f - b*g)*x)/((p + 1)*(b^2 - 4*a*c))), x] - Simp[m*
((b*(e*f + d*g) - 2*(c*d*f + a*e*g))/((p + 1)*(b^2 - 4*a*c))) Int[(d + e*x)^(m - 1)*(a + b*x + c*x^2)^(p + 1
), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && EqQ[Simplify[m + 2*p + 3], 0] && LtQ[p, -1]
-
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[(-(e*f - d*g))*(d + e*x)^(m + 1)*((a + b*x + c*x^2)^(p + 1)/(2*(p + 1)*(c*d^2 - b*d*e + a*e^2))), x] - Simp[
(b*(e*f + d*g) - 2*(c*d*f + a*e*g))/(2*(c*d^2 - b*d*e + a*e^2)) Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x
], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && EqQ[Simplify[m + 2*p + 3], 0]
-
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[(-(d + e*x)^(m + 1))*((a + b*x + c*x^2)^p/(e^2*(m + 1)*(m + 2)*(c*d^2 - b*d*e + a*e^2)))*((d*g - e*f*(m + 2)
)*(c*d^2 - b*d*e + a*e^2) - d*p*(2*c*d - b*e)*(e*f - d*g) - e*(g*(m + 1)*(c*d^2 - b*d*e + a*e^2) + p*(2*c*d -
b*e)*(e*f - d*g))*x), x] - Simp[p/(e^2*(m + 1)*(m + 2)*(c*d^2 - b*d*e + a*e^2)) Int[(d + e*x)^(m + 2)*(a + b
*x + c*x^2)^(p - 1)*Simp[2*a*c*e*(e*f - d*g)*(m + 2) + b^2*e*(d*g*(p + 1) - e*f*(m + p + 2)) + b*(a*e^2*g*(m +
1) - c*d*(d*g*(2*p + 1) - e*f*(m + 2*p + 2))) - c*(2*c*d*(d*g*(2*p + 1) - e*f*(m + 2*p + 2)) - e*(2*a*e*g*(m
+ 1) - b*(d*g*(m - 2*p) + e*f*(m + 2*p + 2))))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && GtQ[p, 0] &
& LtQ[m, -2] && LtQ[m + 2*p, 0] && !ILtQ[m + 2*p + 3, 0]
-
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[(d + e*x)^(m + 1)*(e*f*(m + 2*p + 2) - d*g*(2*p + 1) + e*g*(m + 1)*x)*((a + b*x + c*x^2)^p/(e^2*(m + 1)*(m +
2*p + 2))), x] + Simp[p/(e^2*(m + 1)*(m + 2*p + 2)) Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^(p - 1)*Simp[g*
(b*d + 2*a*e + 2*a*e*m + 2*b*d*p) - f*b*e*(m + 2*p + 2) + (g*(2*c*d + b*e + b*e*m + 4*c*d*p) - 2*c*e*f*(m + 2*
p + 2))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && GtQ[p, 0] && (LtQ[m, -1] || EqQ[p, 1] || (Integ
erQ[p] && !RationalQ[m])) && NeQ[m, -1] && !ILtQ[m + 2*p + 1, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ
[2*m, 2*p])
-
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[(d + e*x)^(m + 1)*(c*e*f*(m + 2*p + 2) - g*(c*d + 2*c*d*p - b*e*p) + g*c*e*(m + 2*p + 1)*x)*((a + b*x + c*x^
2)^p/(c*e^2*(m + 2*p + 1)*(m + 2*p + 2))), x] - Simp[p/(c*e^2*(m + 2*p + 1)*(m + 2*p + 2)) Int[(d + e*x)^m*(
a + b*x + c*x^2)^(p - 1)*Simp[c*e*f*(b*d - 2*a*e)*(m + 2*p + 2) + g*(a*e*(b*e - 2*c*d*m + b*e*m) + b*d*(b*e*p
- c*d - 2*c*d*p)) + (c*e*f*(2*c*d - b*e)*(m + 2*p + 2) + g*(b^2*e^2*(p + m + 1) - 2*c^2*d^2*(1 + 2*p) - c*e*(b
*d*(m - 2*p) + 2*a*e*(m + 2*p + 1))))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && GtQ[p, 0] && (Int
egerQ[p] || !RationalQ[m] || (GeQ[m, -1] && LtQ[m, 0])) && !ILtQ[m + 2*p, 0] && (IntegerQ[m] || IntegerQ[p]
|| IntegersQ[2*m, 2*p])
-
Int[((d_) + (e_.)*(x_))^(m_)*((f_) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Int[(a
+ b*x + c*x^2)^p*ExpandIntegrand[(d + e*x)^m*(f + g*x), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && ILtQ[p,
-1] && IGtQ[m, 0] && RationalQ[a, b, c, d, e, f, g]
-
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[(-(d + e*x)^(m - 1))*(a + b*x + c*x^2)^(p + 1)*((2*a*c*(e*f + d*g) - b*(c*d*f + a*e*g) - (2*c^2*d*f + b^2*e*
g - c*(b*e*f + b*d*g + 2*a*e*g))*x)/(c*(p + 1)*(b^2 - 4*a*c))), x] - Simp[1/(c*(p + 1)*(b^2 - 4*a*c)) Int[(d
+ e*x)^(m - 2)*(a + b*x + c*x^2)^(p + 1)*Simp[2*c^2*d^2*f*(2*p + 3) + b*e*g*(a*e*(m - 1) + b*d*(p + 2)) - c*(
2*a*e*(e*f*(m - 1) + d*g*m) + b*d*(d*g*(2*p + 3) - e*f*(m - 2*p - 4))) + e*(b^2*e*g*(m + p + 1) + 2*c^2*d*f*(m
+ 2*p + 2) - c*(2*a*e*g*m + b*(e*f + d*g)*(m + 2*p + 2)))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] &&
LtQ[p, -1] && GtQ[m, 1] && ((EqQ[m, 2] && EqQ[p, -3] && RationalQ[a, b, c, d, e, f, g]) || !ILtQ[m + 2*p + 3
, 0])
-
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp
[(d + e*x)^m*(a + b*x + c*x^2)^(p + 1)*((f*b - 2*a*g + (2*c*f - b*g)*x)/((p + 1)*(b^2 - 4*a*c))), x] + Simp[1/
((p + 1)*(b^2 - 4*a*c)) Int[(d + e*x)^(m - 1)*(a + b*x + c*x^2)^(p + 1)*Simp[g*(2*a*e*m + b*d*(2*p + 3)) - f
*(b*e*m + 2*c*d*(2*p + 3)) - e*(2*c*f - b*g)*(m + 2*p + 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] &&
LtQ[p, -1] && GtQ[m, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])
-
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp
[(d + e*x)^(m + 1)*(f*(b*c*d - b^2*e + 2*a*c*e) - a*g*(2*c*d - b*e) + c*(f*(2*c*d - b*e) - g*(b*d - 2*a*e))*x)
*((a + b*x + c*x^2)^(p + 1)/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2))), x] + Simp[1/((p + 1)*(b^2 - 4*a*
c)*(c*d^2 - b*d*e + a*e^2)) Int[(d + e*x)^m*(a + b*x + c*x^2)^(p + 1)*Simp[f*(b*c*d*e*(2*p - m + 2) + b^2*e^
2*(p + m + 2) - 2*c^2*d^2*(2*p + 3) - 2*a*c*e^2*(m + 2*p + 3)) - g*(a*e*(b*e - 2*c*d*m + b*e*m) - b*d*(3*c*d -
b*e + 2*c*d*p - b*e*p)) + c*e*(g*(b*d - 2*a*e) - f*(2*c*d - b*e))*(m + 2*p + 4)*x, x], x], x] /; FreeQ[{a, b,
c, d, e, f, g, m}, x] && LtQ[p, -1] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])
-
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[g*(d + e*x)^m*((a + b*x + c*x^2)^(p + 1)/(c*(m + 2*p + 2))), x] + Simp[1/(c*(m + 2*p + 2)) Int[(d + e*x)^(
m - 1)*(a + b*x + c*x^2)^p*Simp[m*(c*d*f - a*e*g) + d*(2*c*f - b*g)*(p + 1) + (m*(c*e*f + c*d*g - b*e*g) + e*(
p + 1)*(2*c*f - b*g))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && GtQ[m, 0] && NeQ[m + 2*p + 2, 0]
&& (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p]) && !(IGtQ[m, 0] && EqQ[f, 0])
-
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[(e*f - d*g)*(d + e*x)^(m + 1)*((a + b*x + c*x^2)^(p + 1)/((m + 1)*(c*d^2 - b*d*e + a*e^2))), x] + Simp[1/((m
+ 1)*(c*d^2 - b*d*e + a*e^2)) Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p*Simp[(c*d*f - f*b*e + a*e*g)*(m + 1
) + b*(d*g - e*f)*(p + 1) - c*(e*f - d*g)*(m + 2*p + 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] &&
LtQ[m, -1] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])
-
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[(e*f - d*g)*(d + e*x)^(m + 1)*((a + b*x + c*x^2)^(p + 1)/((m + 1)*(c*d^2 - b*d*e + a*e^2))), x] + Simp[1/((m
+ 1)*(c*d^2 - b*d*e + a*e^2)) Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p*Simp[(c*d*f - f*b*e + a*e*g)*(m + 1
) + b*(d*g - e*f)*(p + 1) - c*(e*f - d*g)*(m + 2*p + 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x]
&& ILtQ[Simplify[m + 2*p + 3], 0] && NeQ[m, -1]
-
Int[((f_) + (g_.)*(x_))/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Simp[4*f*
((a - d)/(b*d - a*e)) Subst[Int[1/(4*(a - d) - x^2), x], x, (2*(a - d) + (b - e)*x)/Sqrt[a + b*x + c*x^2]],
x] /; FreeQ[{a, b, c, d, e, f, g}, x] && EqQ[4*c*(a - d) - (b - e)^2, 0] && EqQ[e*f*(b - e) - 2*g*(b*d - a*e),
0] && NeQ[b*d - a*e, 0]
-
Int[((f_) + (g_.)*(x_))/(Sqrt[x_]*Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Simp[2 Subst[Int[(f
+ g*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x, Sqrt[x]], x] /; FreeQ[{a, b, c, f, g}, x]
-
Int[((f_) + (g_.)*(x_))/(Sqrt[(e_)*(x_)]*Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Simp[Sqrt[x]/Sq
rt[e*x] Int[(f + g*x)/(Sqrt[x]*Sqrt[a + b*x + c*x^2]), x], x] /; FreeQ[{a, b, c, e, f, g}, x]
-
Int[((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :
> With[{Q = PolynomialQuotient[(f + g*x)^n, a*e + c*d*x, x], R = PolynomialRemainder[(f + g*x)^n, a*e + c*d*x,
x]}, Simp[R*(2*c*d - b*e)*(d + e*x)^m*((a + b*x + c*x^2)^(p + 1)/(e*(p + 1)*(b^2 - 4*a*c))), x] + Simp[1/((p
+ 1)*(b^2 - 4*a*c)) Int[(d + e*x)^(m - 1)*(a + b*x + c*x^2)^(p + 1)*ExpandToSum[d*e*(p + 1)*(b^2 - 4*a*c)*Q
- R*(2*c*d - b*e)*(m + 2*p + 2), x], x], x]] /; FreeQ[{a, b, c, d, e, f, g}, x] && IGtQ[n, 1] && IGtQ[m, 0] &&
LtQ[p, -1] && EqQ[c*d^2 - b*d*e + a*e^2, 0]
-
Int[(((f_.) + (g_.)*(x_))^(n_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_))/((d_) + (e_.)*(x_)), x_Symbol] :> Si
mp[(-(2*c*d - b*e))*(f + g*x)^n*((a + b*x + c*x^2)^(p + 1)/(e*p*(b^2 - 4*a*c)*(d + e*x))), x] + Simp[n*((a*g*(
2*c*d - b*e) - c*f*(b*d - 2*a*e))/(d*e*p*(b^2 - 4*a*c))) Int[(f + g*x)^(n - 1)*(a + b*x + c*x^2)^p, x], x] /
; FreeQ[{a, b, c, d, e, f, g}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && IGtQ[n, 1] && LtQ[p, -1] && EqQ[n + 2*p
+ 1, 0]
-
Int[(((f_.) + (g_.)*(x_))^(n_)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_))/((d_) + (e_.)*(x_)), x_Symbol] :> Simp
[(-(e*f - d*g))*(f + g*x)^(n - 1)*((a + b*x + c*x^2)^(p + 1)/(p*(2*c*d - b*e)*(d + e*x))), x] + Simp[1/(p*e^2*
(2*c*d - b*e)) Int[(f + g*x)^(n - 2)*(a + b*x + c*x^2)^p*Simp[b*e*g*((-e)*f + d*g + e*f*n - d*g*n - e*f*p) +
c*(d^2*g^2*(n - 1) - d*e*f*g*n + e^2*f^2*(2*p + 1)) - e*g*(b*e*g*p - c*(e*f*n - d*g*n + 2*e*f*p))*x, x], x],
x] /; FreeQ[{a, b, c, d, e, f, g}, x] && IGtQ[n, 1] && LtQ[p, -1] && EqQ[c*d^2 - b*d*e + a*e^2, 0]
-
Int[((d_) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))^(n_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Int[(d + e*x)^(m + p)*(f + g*x)^n*(a/d + (c/e)*x)^p, x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && EqQ[c*
d^2 - b*d*e + a*e^2, 0] && GtQ[a, 0] && GtQ[d, 0] && LtQ[c, 0]
-
Int[(((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_))/((d_) + (e_.)*(x_)), x_Symbol] :> Sim
p[(f + g*x)^(n + 1)*(a + b*x + c*x^2)^p*((c*d - b*e - c*e*x)/(p*(2*c*d - b*e)*(e*f - d*g))), x] + Simp[1/(p*(2
*c*d - b*e)*(e*f - d*g)) Int[(f + g*x)^n*(a + b*x + c*x^2)^p*(b*e*g*(n + p + 1) + c*e*f*(2*p + 1) - c*d*g*(n
+ 2*p + 1) + c*e*g*(n + 2*p + 2)*x), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && EqQ[c*d^2 - b*d*e + a*e^2,
0] && ILtQ[n, 0] && ILtQ[n + 2*p, 0] && !IGtQ[n, 0]
-
Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Simp[(-e)*(d + e*x)^(m - 1)*(f + g*x)^n*((a + b*x + c*x^2)^(p + 1)/(c*(m - n - 1))), x] /; FreeQ[{a, b, c, d,
e, f, g, m, n, p}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && EqQ[m + p, 0] && EqQ[c*e*f + c*d*g - b*e*g, 0] && Ne
Q[m - n - 1, 0]
-
Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Simp[(-e^2)*(d + e*x)^(m - 1)*(f + g*x)^(n + 1)*((a + b*x + c*x^2)^(p + 1)/((n + 1)*(c*e*f + c*d*g - b*e*g))),
x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && EqQ[m + p, 0] && EqQ[m - n
- 2, 0]
-
Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Simp[(d + e*x)^m*(f + g*x)^(n + 1)*((a + b*x + c*x^2)^p/(g*(n + 1))), x] + Simp[c*(m/(e*g*(n + 1))) Int[(d +
e*x)^(m + 1)*(f + g*x)^(n + 1)*(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && EqQ[c*
d^2 - b*d*e + a*e^2, 0] && EqQ[m + p, 0] && GtQ[p, 0] && LtQ[n, -1] && !(IntegerQ[n + p] && LeQ[n + p + 2, 0]
)
-
Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Simp[(-(d + e*x)^m)*(f + g*x)^(n + 1)*((a + b*x + c*x^2)^p/(g*(m - n - 1))), x] - Simp[m*((c*e*f + c*d*g - b*e
*g)/(e^2*g*(m - n - 1))) Int[(d + e*x)^(m + 1)*(f + g*x)^n*(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b,
c, d, e, f, g, n}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && EqQ[m + p, 0] && GtQ[p, 0] && NeQ[m - n - 1, 0] &&
!IGtQ[n, 0] && !(IntegerQ[n + p] && LtQ[n + p + 2, 0]) && RationalQ[n]
-
Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Simp[e*(d + e*x)^(m - 1)*(f + g*x)^n*((a + b*x + c*x^2)^(p + 1)/(c*(p + 1))), x] - Simp[e*g*(n/(c*(p + 1)))
Int[(d + e*x)^(m - 1)*(f + g*x)^(n - 1)*(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] &
& EqQ[c*d^2 - b*d*e + a*e^2, 0] && EqQ[m + p, 0] && LtQ[p, -1] && GtQ[n, 0]
-
Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Simp[e^2*(d + e*x)^(m - 1)*(f + g*x)^(n + 1)*((a + b*x + c*x^2)^(p + 1)/((p + 1)*(c*e*f + c*d*g - b*e*g))), x]
+ Simp[e^2*g*((m - n - 2)/((p + 1)*(c*e*f + c*d*g - b*e*g))) Int[(d + e*x)^(m - 1)*(f + g*x)^n*(a + b*x + c
*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && EqQ[m + p, 0]
&& LtQ[p, -1] && RationalQ[n]
-
Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Simp[(-e)*(d + e*x)^(m - 1)*(f + g*x)^n*((a + b*x + c*x^2)^(p + 1)/(c*(m - n - 1))), x] - Simp[n*((c*e*f + c*d
*g - b*e*g)/(c*e*(m - n - 1))) Int[(d + e*x)^m*(f + g*x)^(n - 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b,
c, d, e, f, g, m, p}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && EqQ[m + p, 0] && GtQ[n, 0] && NeQ[m - n - 1, 0]
&& (IntegerQ[2*p] || IntegerQ[n])
-
Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Simp[(-e^2)*(d + e*x)^(m - 1)*(f + g*x)^(n + 1)*((a + b*x + c*x^2)^(p + 1)/((n + 1)*(c*e*f + c*d*g - b*e*g))),
x] - Simp[c*e*((m - n - 2)/((n + 1)*(c*e*f + c*d*g - b*e*g))) Int[(d + e*x)^m*(f + g*x)^(n + 1)*(a + b*x +
c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && EqQ[m + p, 0] &&
LtQ[n, -1] && IntegerQ[2*p]
-
Int[Sqrt[(d_) + (e_.)*(x_)]/(((f_.) + (g_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Simp[
2*e^2 Subst[Int[1/(c*(e*f + d*g) - b*e*g + e^2*g*x^2), x], x, Sqrt[a + b*x + c*x^2]/Sqrt[d + e*x]], x] /; Fr
eeQ[{a, b, c, d, e, f, g}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0]
-
Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Simp[e^2*(d + e*x)^(m - 2)*(f + g*x)^(n + 1)*((a + b*x + c*x^2)^(p + 1)/(c*g*(n + p + 2))), x] /; FreeQ[{a, b,
c, d, e, f, g, m, n, p}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && EqQ[m + p - 1, 0] && EqQ[b*e*g*(n + 1) + c*e*
f*(p + 1) - c*d*g*(2*n + p + 3), 0] && NeQ[n + p + 2, 0]
-
Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Simp[e^2*(e*f - d*g)*(d + e*x)^(m - 2)*(f + g*x)^(n + 1)*((a + b*x + c*x^2)^(p + 1)/(g*(n + 1)*(c*e*f + c*d*g
- b*e*g))), x] - Simp[e*((b*e*g*(n + 1) + c*e*f*(p + 1) - c*d*g*(2*n + p + 3))/(g*(n + 1)*(c*e*f + c*d*g - b*e
*g))) Int[(d + e*x)^(m - 1)*(f + g*x)^(n + 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m,
p}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && EqQ[m + p - 1, 0] && LtQ[n, -1] && IntegerQ[2*p]
-
Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Simp[e^2*(d + e*x)^(m - 2)*(f + g*x)^(n + 1)*((a + b*x + c*x^2)^(p + 1)/(c*g*(n + p + 2))), x] - Simp[(b*e*g*(
n + 1) + c*e*f*(p + 1) - c*d*g*(2*n + p + 3))/(c*g*(n + p + 2)) Int[(d + e*x)^(m - 1)*(f + g*x)^n*(a + b*x +
c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && EqQ[m + p -
1, 0] && !LtQ[n, -1] && IntegerQ[2*p]
-
Int[((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Int[ExpandIntegrand[(d + e*x)^m*(f + g*x)^n*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p},
x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && ILtQ[m, 0] && (ILtQ[n, 0] || (IGtQ[n, 0] && ILtQ[p + 1/2, 0])) && !IGt
Q[n, 0]
-
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
Int[ExpandIntegrand[(a + b*x + c*x^2)^p, (d + e*x)^m*(f + g*x)^n, x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] &
& EqQ[c*d^2 - b*d*e + a*e^2, 0] && EqQ[m + n + 2*p + 1, 0] && ILtQ[m, 0] && ILtQ[n, 0]
-
Int[((e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*x)^m*((
b*x + c*x^2)^p/(x^(m + p)*(b + c*x)^p)) Int[x^(m + p)*(f + g*x)^n*(b + c*x)^p, x], x] /; FreeQ[{b, c, e, f,
g, m, n}, x] && !IGtQ[n, 0]
-
Int[((d_.) + (e_.)*(x_))^(m_.)*((f_) + (g_.)*(x_))^(n_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :
> Simp[g^n*(d + e*x)^(m + n - 1)*((a + b*x + c*x^2)^(p + 1)/(c*e^(n - 1)*(m + n + 2*p + 1))), x] + Simp[1/(c*e
^n*(m + n + 2*p + 1)) Int[(d + e*x)^m*(a + b*x + c*x^2)^p*ExpandToSum[c*e^n*(m + n + 2*p + 1)*(f + g*x)^n -
c*g^n*(m + n + 2*p + 1)*(d + e*x)^n + e*g^n*(m + p + n)*(d + e*x)^(n - 2)*(b*d - 2*a*e + (2*c*d - b*e)*x), x],
x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && IGtQ[n, 0] && NeQ[m + n +
2*p + 1, 0]
-
Int[((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :
> With[{Q = PolynomialQuotient[(f + g*x)^n, a + b*x + c*x^2, x], R = Coeff[PolynomialRemainder[(f + g*x)^n, a
+ b*x + c*x^2, x], x, 0], S = Coeff[PolynomialRemainder[(f + g*x)^n, a + b*x + c*x^2, x], x, 1]}, Simp[(d + e*
x)^m*(a + b*x + c*x^2)^(p + 1)*((R*b - 2*a*S + (2*c*R - b*S)*x)/((p + 1)*(b^2 - 4*a*c))), x] + Simp[1/((p + 1)
*(b^2 - 4*a*c)) Int[(d + e*x)^(m - 1)*(a + b*x + c*x^2)^(p + 1)*ExpandToSum[(p + 1)*(b^2 - 4*a*c)*(d + e*x)*
Q + S*(2*a*e*m + b*d*(2*p + 3)) - R*(b*e*m + 2*c*d*(2*p + 3)) - e*(2*c*R - b*S)*(m + 2*p + 3)*x, x], x], x]] /
; FreeQ[{a, b, c, d, e, f, g}, x] && IGtQ[n, 1] && LtQ[p, -1] && GtQ[m, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
-
Int[((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :
> With[{Q = PolynomialQuotient[(d + e*x)^m*(f + g*x)^n, a + b*x + c*x^2, x], R = Coeff[PolynomialRemainder[(d
+ e*x)^m*(f + g*x)^n, a + b*x + c*x^2, x], x, 0], S = Coeff[PolynomialRemainder[(d + e*x)^m*(f + g*x)^n, a + b
*x + c*x^2, x], x, 1]}, Simp[(b*R - 2*a*S + (2*c*R - b*S)*x)*((a + b*x + c*x^2)^(p + 1)/((p + 1)*(b^2 - 4*a*c)
)), x] + Simp[1/((p + 1)*(b^2 - 4*a*c)) Int[(d + e*x)^m*(a + b*x + c*x^2)^(p + 1)*ExpandToSum[((p + 1)*(b^2
- 4*a*c)*Q)/(d + e*x)^m - ((2*p + 3)*(2*c*R - b*S))/(d + e*x)^m, x], x], x]] /; FreeQ[{a, b, c, d, e, f, g}, x
] && IGtQ[n, 1] && LtQ[p, -1] && ILtQ[m, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
-
Int[((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :
> With[{Q = PolynomialQuotient[(f + g*x)^n, a + b*x + c*x^2, x], R = Coeff[PolynomialRemainder[(f + g*x)^n, a
+ b*x + c*x^2, x], x, 0], S = Coeff[PolynomialRemainder[(f + g*x)^n, a + b*x + c*x^2, x], x, 1]}, Simp[(d + e*
x)^(m + 1)*(a + b*x + c*x^2)^(p + 1)*((R*(b*c*d - b^2*e + 2*a*c*e) - a*S*(2*c*d - b*e) + c*(R*(2*c*d - b*e) -
S*(b*d - 2*a*e))*x)/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2))), x] + Simp[1/((p + 1)*(b^2 - 4*a*c)*(c*d^
2 - b*d*e + a*e^2)) Int[(d + e*x)^m*(a + b*x + c*x^2)^(p + 1)*ExpandToSum[(p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d
*e + a*e^2)*Q + R*(b*c*d*e*(2*p - m + 2) + b^2*e^2*(p + m + 2) - 2*c^2*d^2*(2*p + 3) - 2*a*c*e^2*(m + 2*p + 3)
) - S*(a*e*(b*e - 2*c*d*m + b*e*m) - b*d*(3*c*d - b*e + 2*c*d*p - b*e*p)) + c*e*(S*(b*d - 2*a*e) - R*(2*c*d -
b*e))*(m + 2*p + 4)*x, x], x], x]] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && IGtQ[n, 1] && LtQ[p, -1] && NeQ[c*
d^2 - b*d*e + a*e^2, 0]
-
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
With[{Q = PolynomialQuotient[(f + g*x)^n, d + e*x, x], R = PolynomialRemainder[(f + g*x)^n, d + e*x, x]}, Sim
p[(e*R*(d + e*x)^(m + 1)*(a + b*x + c*x^2)^(p + 1))/((m + 1)*(c*d^2 - b*d*e + a*e^2)), x] + Simp[1/((m + 1)*(c
*d^2 - b*d*e + a*e^2)) Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p*ExpandToSum[(m + 1)*(c*d^2 - b*d*e + a*e^2)
*Q + c*d*R*(m + 1) - b*e*R*(m + p + 2) - c*e*R*(m + 2*p + 3)*x, x], x], x]] /; FreeQ[{a, b, c, d, e, f, g, p},
x] && IGtQ[n, 1] && ILtQ[m, -1] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && (NeQ[m + n, 0] || EqQ[p, -2^(-1)])
-
Int[((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :
> Simp[g^n*(d + e*x)^(m + n - 1)*((a + b*x + c*x^2)^(p + 1)/(c*e^(n - 1)*(m + n + 2*p + 1))), x] + Simp[1/(c*e
^n*(m + n + 2*p + 1)) Int[(d + e*x)^m*(a + b*x + c*x^2)^p*ExpandToSum[c*e^n*(m + n + 2*p + 1)*(f + g*x)^n -
c*g^n*(m + n + 2*p + 1)*(d + e*x)^n - g^n*(d + e*x)^(n - 2)*(b*d*e*(p + 1) + a*e^2*(m + n - 1) - c*d^2*(m + n
+ 2*p + 1) - e*(2*c*d - b*e)*(m + n + p)*x), x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && IGtQ[n, 1]
&& IntegerQ[m] && NeQ[m + n + 2*p + 1, 0]
-
Int[((d_) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))^(n_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :
> Simp[(a + b*x + c*x^2)^FracPart[p]/((d + e*x)^FracPart[p]*(a/d + (c*x)/e)^FracPart[p]) Int[(d + e*x)^(m +
p)*(f + g*x)^n*(a/d + (c/e)*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n}, x] && EqQ[c*d^2 - b*d*e + a*e^2
, 0]
-
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[g/e Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] + Simp[(e*f - d*g)/e Int[(d + e*x)^m*(a + b*x + c*
x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && !IGtQ[m, 0]
-
Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)/(((d_.) + (e_.)*(x_))*((f_.) + (g_.)*(x_))), x_Symbol] :> Simp[(c
*d^2 - b*d*e + a*e^2)/(e*(e*f - d*g)) Int[(a + b*x + c*x^2)^(p - 1)/(d + e*x), x], x] - Simp[1/(e*(e*f - d*g
)) Int[Simp[c*d*f - b*e*f + a*e*g - c*(e*f - d*g)*x, x]*((a + b*x + c*x^2)^(p - 1)/(f + g*x)), x], x] /; Fre
eQ[{a, b, c, d, e, f, g}, x] && FractionQ[p] && GtQ[p, 0]
-
Int[((d_.) + (e_.)*(x_))^(m_.)*Sqrt[(f_.) + (g_.)*(x_)]*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :>
Simp[(d + e*x)^(m + 1)*Sqrt[f + g*x]*(Sqrt[a + b*x + c*x^2]/(e*(m + 1))), x] - Simp[1/(2*e*(m + 1)) Int[((d
+ e*x)^(m + 1)/(Sqrt[f + g*x]*Sqrt[a + b*x + c*x^2]))*Simp[b*f + a*g + 2*(c*f + b*g)*x + 3*c*g*x^2, x], x], x]
/; FreeQ[{a, b, c, d, e, f, g}, x] && IntegerQ[2*m] && LtQ[m, -1]
-
Int[((d_.) + (e_.)*(x_))^(m_.)*Sqrt[(f_.) + (g_.)*(x_)]*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :>
Simp[2*(d + e*x)^(m + 1)*Sqrt[f + g*x]*(Sqrt[a + b*x + c*x^2]/(e*(2*m + 5))), x] - Simp[1/(e*(2*m + 5)) Int[
((d + e*x)^m/(Sqrt[f + g*x]*Sqrt[a + b*x + c*x^2]))*Simp[b*d*f - 3*a*e*f + a*d*g + 2*(c*d*f - b*e*f + b*d*g -
a*e*g)*x - (c*e*f - 3*c*d*g + b*e*g)*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && IntegerQ[2*m] &&
!LtQ[m, -1]
-
Int[(((d_.) + (e_.)*(x_))^(m_.)*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2])/Sqrt[(f_.) + (g_.)*(x_)], x_Symbol] :
> Simp[2*(d + e*x)^m*Sqrt[f + g*x]*(Sqrt[a + b*x + c*x^2]/(g*(2*m + 3))), x] - Simp[1/(g*(2*m + 3)) Int[((d
+ e*x)^(m - 1)/(Sqrt[f + g*x]*Sqrt[a + b*x + c*x^2]))*Simp[b*d*f + 2*a*(e*f*m - d*g*(m + 1)) + (2*c*d*f - 2*a*
e*g + b*(e*f - d*g)*(2*m + 1))*x - (b*e*g + 2*c*(d*g*m - e*f*(m + 1)))*x^2, x], x], x] /; FreeQ[{a, b, c, d, e
, f, g}, x] && IntegerQ[2*m] && GtQ[m, 0]
-
Int[Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]/(((d_.) + (e_.)*(x_))*Sqrt[(f_.) + (g_.)*(x_)]), x_Symbol] :> Simp
[(c*d^2 - b*d*e + a*e^2)/e^2 Int[1/((d + e*x)*Sqrt[f + g*x]*Sqrt[a + b*x + c*x^2]), x], x] - Simp[1/e^2 In
t[(c*d - b*e - c*e*x)/(Sqrt[f + g*x]*Sqrt[a + b*x + c*x^2]), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x]
-
Int[(((d_.) + (e_.)*(x_))^(m_.)*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2])/Sqrt[(f_.) + (g_.)*(x_)], x_Symbol] :
> Simp[(d + e*x)^(m + 1)*Sqrt[f + g*x]*(Sqrt[a + b*x + c*x^2]/((m + 1)*(e*f - d*g))), x] - Simp[1/(2*(m + 1)*(
e*f - d*g)) Int[((d + e*x)^(m + 1)/(Sqrt[f + g*x]*Sqrt[a + b*x + c*x^2]))*Simp[b*f + a*g*(2*m + 3) + 2*(c*f
+ b*g*(m + 2))*x + c*g*(2*m + 5)*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && IntegerQ[2*m] && LtQ[m,
-1]
-
Int[Sqrt[(d_.) + (e_.)*(x_)]/(Sqrt[(f_.) + (g_.)*(x_)]*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :>
With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[Sqrt[2]*Sqrt[2*c*f - g*(b + q)]*Sqrt[b - q + 2*c*x]*(d + e*x)*Sqrt[(e*f -
d*g)*((b + q + 2*c*x)/((2*c*f - g*(b + q))*(d + e*x)))]*(Sqrt[(e*f - d*g)*((2*a + (b + q)*x)/((b*f + q*f - 2*a
*g)*(d + e*x)))]/(g*Sqrt[2*c*d - e*(b + q)]*Sqrt[2*a*(c/(b + q)) + c*x]*Sqrt[a + b*x + c*x^2]))*EllipticPi[e*(
(2*c*f - g*(b + q))/(g*(2*c*d - e*(b + q)))), ArcSin[Sqrt[2*c*d - e*(b + q)]*(Sqrt[f + g*x]/(Sqrt[2*c*f - g*(b
+ q)]*Sqrt[d + e*x]))], (b*d + q*d - 2*a*e)*((2*c*f - g*(b + q))/((b*f + q*f - 2*a*g)*(2*c*d - e*(b + q))))],
x]] /; FreeQ[{a, b, c, d, e, f, g}, x]
-
Int[((d_.) + (e_.)*(x_))^(3/2)/(Sqrt[(f_.) + (g_.)*(x_)]*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :
> Simp[e/g Int[Sqrt[d + e*x]*(Sqrt[f + g*x]/Sqrt[a + b*x + c*x^2]), x], x] - Simp[(e*f - d*g)/g Int[Sqrt[d
+ e*x]/(Sqrt[f + g*x]*Sqrt[a + b*x + c*x^2]), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x]
-
Int[((d_.) + (e_.)*(x_))^(m_)/(Sqrt[(f_.) + (g_.)*(x_)]*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :>
Simp[2*e^2*(d + e*x)^(m - 2)*Sqrt[f + g*x]*(Sqrt[a + b*x + c*x^2]/(c*g*(2*m - 1))), x] - Simp[1/(c*g*(2*m - 1
)) Int[((d + e*x)^(m - 3)/(Sqrt[f + g*x]*Sqrt[a + b*x + c*x^2]))*Simp[b*d*e^2*f + a*e^2*(d*g + 2*e*f*(m - 2)
) - c*d^3*g*(2*m - 1) + e*(e*(2*b*d*g + e*(b*f + a*g)*(2*m - 3)) + c*d*(2*e*f - 3*d*g*(2*m - 1)))*x + 2*e^2*(c
*e*f - 3*c*d*g + b*e*g)*(m - 1)*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && IntegerQ[2*m] && GeQ[m,
2]
-
Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(f_.) + (g_.)*(x_)]*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Wi
th[{q = Rt[b^2 - 4*a*c, 2]}, Simp[Sqrt[b - q + 2*c*x]*(Sqrt[b + q + 2*c*x]/Sqrt[a + b*x + c*x^2]) Int[1/((d
+ e*x)*Sqrt[f + g*x]*Sqrt[b - q + 2*c*x]*Sqrt[b + q + 2*c*x]), x], x]] /; FreeQ[{a, b, c, d, e, f, g}, x]
-
Int[1/(Sqrt[(d_.) + (e_.)*(x_)]*Sqrt[(f_.) + (g_.)*(x_)]*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :
> Simp[-2*(d + e*x)*(Sqrt[(e*f - d*g)^2*((a + b*x + c*x^2)/((c*f^2 - b*f*g + a*g^2)*(d + e*x)^2))]/((e*f - d*g
)*Sqrt[a + b*x + c*x^2])) Subst[Int[1/Sqrt[1 - (2*c*d*f - b*e*f - b*d*g + 2*a*e*g)*(x^2/(c*f^2 - b*f*g + a*g
^2)) + (c*d^2 - b*d*e + a*e^2)*(x^4/(c*f^2 - b*f*g + a*g^2))], x], x, Sqrt[f + g*x]/Sqrt[d + e*x]], x] /; Free
Q[{a, b, c, d, e, f, g}, x]
-
Int[1/(((d_.) + (e_.)*(x_))^(3/2)*Sqrt[(f_.) + (g_.)*(x_)]*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol]
:> Simp[-g/(e*f - d*g) Int[1/(Sqrt[d + e*x]*Sqrt[f + g*x]*Sqrt[a + b*x + c*x^2]), x], x] + Simp[e/(e*f - d*
g) Int[Sqrt[f + g*x]/((d + e*x)^(3/2)*Sqrt[a + b*x + c*x^2]), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x]
-
Int[((d_.) + (e_.)*(x_))^(m_)/(Sqrt[(f_.) + (g_.)*(x_)]*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :>
Simp[e^2*(d + e*x)^(m + 1)*Sqrt[f + g*x]*(Sqrt[a + b*x + c*x^2]/((m + 1)*(e*f - d*g)*(c*d^2 - b*d*e + a*e^2))
), x] + Simp[1/(2*(m + 1)*(e*f - d*g)*(c*d^2 - b*d*e + a*e^2)) Int[((d + e*x)^(m + 1)/(Sqrt[f + g*x]*Sqrt[a
+ b*x + c*x^2]))*Simp[2*d*(c*e*f - c*d*g + b*e*g)*(m + 1) - e^2*(b*f + a*g)*(2*m + 3) + 2*e*(c*d*g*(m + 1) - e
*(c*f + b*g)*(m + 2))*x - c*e^2*g*(2*m + 5)*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && IntegerQ[2*m
] && LeQ[m, -2]
-
Int[(((d_.) + (e_.)*(x_))^(m_)*Sqrt[(f_.) + (g_.)*(x_)])/Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :>
Simp[2*e*(d + e*x)^(m - 1)*Sqrt[f + g*x]*(Sqrt[a + b*x + c*x^2]/(c*(2*m + 1))), x] - Simp[1/(c*(2*m + 1)) I
nt[((d + e*x)^(m - 2)/(Sqrt[f + g*x]*Sqrt[a + b*x + c*x^2]))*Simp[e*(b*d*f + a*(d*g + 2*e*f*(m - 1))) - c*d^2*
f*(2*m + 1) + (a*e^2*g*(2*m - 1) - c*d*(4*e*f*m + d*g*(2*m + 1)) + b*e*(2*d*g + e*f*(2*m - 1)))*x + e*(2*b*e*g
*m - c*(e*f + d*g*(4*m - 1)))*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && IntegerQ[2*m] && GtQ[m, 1]
-
Int[Sqrt[(f_.) + (g_.)*(x_)]/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Simp
[g/e Int[1/(Sqrt[f + g*x]*Sqrt[a + b*x + c*x^2]), x], x] + Simp[(e*f - d*g)/e Int[1/((d + e*x)*Sqrt[f + g*
x]*Sqrt[a + b*x + c*x^2]), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x]
-
Int[(((d_.) + (e_.)*(x_))^(m_)*Sqrt[(f_.) + (g_.)*(x_)])/Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :>
Simp[e*(d + e*x)^(m + 1)*Sqrt[f + g*x]*(Sqrt[a + b*x + c*x^2]/((m + 1)*(c*d^2 - b*d*e + a*e^2))), x] + Simp[1
/(2*(m + 1)*(c*d^2 - b*d*e + a*e^2)) Int[((d + e*x)^(m + 1)/(Sqrt[f + g*x]*Sqrt[a + b*x + c*x^2]))*Simp[2*c*
d*f*(m + 1) - e*(a*g + b*f*(2*m + 3)) - 2*(b*e*g*(2 + m) - c*(d*g*(m + 1) - e*f*(m + 2)))*x - c*e*g*(2*m + 5)*
x^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && IntegerQ[2*m] && LeQ[m, -2]
-
Int[(((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_))/((d_.) + (e_.)*(x_)), x_Symbol] :> Si
mp[(c*d^2 - b*d*e + a*e^2)/(e*(e*f - d*g)) Int[(f + g*x)^(n + 1)*((a + b*x + c*x^2)^(p - 1)/(d + e*x)), x],
x] - Simp[1/(e*(e*f - d*g)) Int[(f + g*x)^n*(c*d*f - b*e*f + a*e*g - c*(e*f - d*g)*x)*(a + b*x + c*x^2)^(p -
1), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && !IntegerQ[n] && !IntegerQ[p] && GtQ[p, 0] && LtQ[n, -1]
-
Int[(((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_))/((d_.) + (e_.)*(x_)), x_Symbol] :> Si
mp[e*((e*f - d*g)/(c*d^2 - b*d*e + a*e^2)) Int[(f + g*x)^(n - 1)*((a + b*x + c*x^2)^(p + 1)/(d + e*x)), x],
x] + Simp[1/(c*d^2 - b*d*e + a*e^2) Int[(f + g*x)^(n - 1)*(c*d*f - b*e*f + a*e*g - c*(e*f - d*g)*x)*(a + b*x
+ c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && !IntegerQ[n] && !IntegerQ[p] && LtQ[p, -1] && GtQ[
n, 0]
-
Int[((f_.) + (g_.)*(x_))^(n_)/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Int
[ExpandIntegrand[1/(Sqrt[f + g*x]*Sqrt[a + b*x + c*x^2]), (f + g*x)^(n + 1/2)/(d + e*x), x], x] /; FreeQ[{a, b
, c, d, e, f, g}, x] && IntegerQ[n + 1/2]
-
Int[((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))^(n_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol]
:> Int[ExpandIntegrand[(d + e*x)^m*(f + g*x)^n*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g}, x]
&& (IntegerQ[p] || (ILtQ[m, 0] && ILtQ[n, 0]))
-
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :>
With[{Q = PolynomialQuotient[(f + g*x)^n, d + e*x, x], R = PolynomialRemainder[(f + g*x)^n, d + e*x, x]}, Sim
p[(e*R*(d + e*x)^(m + 1)*(a + b*x + c*x^2)^(p + 1))/((m + 1)*(c*d^2 - b*d*e + a*e^2)), x] + Simp[1/((m + 1)*(c
*d^2 - b*d*e + a*e^2)) Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p*ExpandToSum[(m + 1)*(c*d^2 - b*d*e + a*e^2)
*Q + c*d*R*(m + 1) - b*e*R*(m + p + 2) - c*e*R*(m + 2*p + 3)*x, x], x], x]] /; FreeQ[{a, b, c, d, e, f, g, p},
x] && IGtQ[n, 1] && LtQ[m, -1]
-
Int[((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))^(n_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :
> Simp[g^n*(d + e*x)^(m + n - 1)*((a + b*x + c*x^2)^(p + 1)/(c*e^(n - 1)*(m + n + 2*p + 1))), x] + Simp[1/(c*e
^n*(m + n + 2*p + 1)) Int[(d + e*x)^m*(a + b*x + c*x^2)^p*ExpandToSum[c*e^n*(m + n + 2*p + 1)*(f + g*x)^n -
c*g^n*(m + n + 2*p + 1)*(d + e*x)^n - g^n*(d + e*x)^(n - 2)*(b*d*e*(p + 1) + a*e^2*(m + n - 1) - c*d^2*(m + n
+ 2*p + 1) - e*(2*c*d - b*e)*(m + n + p)*x), x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && IGtQ[n, 1]
&& NeQ[m + n + 2*p + 1, 0]
-
Int[((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))^(n_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol]
:> Unintegrable[(d + e*x)^m*(f + g*x)^n*(a + b*x + c*x^2)^p, x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x]
-
Int[((d_.) + (e_.)*(u_))^(m_.)*((f_.) + (g_.)*(u_))^(n_.)*((a_) + (b_.)*(u_) + (c_.)*(u_)^2)^(p_.), x_Symbol]
:> Simp[1/Coefficient[u, x, 1] Subst[Int[(d + e*x)^m*(f + g*x)^n*(a + b*x + c*x^2)^p, x], x, u], x] /; FreeQ
[{a, b, c, d, e, f, g, m, n, p}, x] && LinearQ[u, x] && NeQ[u, x]
-
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.)*((d_.) + (e_.)*(x_) + (f_.)*(x_)^2)^(q_.), x_Symbol] :> Simp[1/c^
p Int[(b/2 + c*x)^(2*p)*(d + e*x + f*x^2)^q, x], x] /; FreeQ[{a, b, c, d, e, f, q}, x] && EqQ[b^2 - 4*a*c, 0
] && IntegerQ[p]
-
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.)*((d_) + (e_.)*(x_) + (f_.)*(x_)^2)^(q_.), x_Symbol] :> Simp[(c/f)
^p Int[(d + e*x + f*x^2)^(p + q), x], x] /; FreeQ[{a, b, c, d, e, f, p, q}, x] && EqQ[c*d - a*f, 0] && EqQ[b
*d - a*e, 0] && (IntegerQ[p] || GtQ[c/f, 0]) && ( !IntegerQ[q] || LeafCount[d + e*x + f*x^2] <= LeafCount[a +
b*x + c*x^2])
-
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)*((d_) + (e_.)*(x_) + (f_.)*(x_)^2)^(q_.), x_Symbol] :> Simp[a^IntP
art[p]*((a + b*x + c*x^2)^FracPart[p]/(d^IntPart[p]*(d + e*x + f*x^2)^FracPart[p])) Int[(d + e*x + f*x^2)^(p
+ q), x], x] /; FreeQ[{a, b, c, d, e, f, p, q}, x] && EqQ[c*d - a*f, 0] && EqQ[b*d - a*e, 0] && !IntegerQ[p]
&& !IntegerQ[q] && !GtQ[c/f, 0]
-
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)*((d_) + (e_.)*(x_) + (f_.)*(x_)^2)^(q_.), x_Symbol] :> Simp[(a + b
*x + c*x^2)^FracPart[p]/((4*c)^IntPart[p]*(b + 2*c*x)^(2*FracPart[p])) Int[(b + 2*c*x)^(2*p)*(d + e*x + f*x^
2)^q, x], x] /; FreeQ[{a, b, c, d, e, f, p, q}, x] && EqQ[b^2 - 4*a*c, 0] && !IntegerQ[p]
-
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)*((d_) + (f_.)*(x_)^2)^(q_.), x_Symbol] :> Simp[(a + b*x + c*x^2)^F
racPart[p]/((4*c)^IntPart[p]*(b + 2*c*x)^(2*FracPart[p])) Int[(b + 2*c*x)^(2*p)*(d + f*x^2)^q, x], x] /; Fre
eQ[{a, b, c, d, f, p, q}, x] && EqQ[b^2 - 4*a*c, 0] && !IntegerQ[p]
-
Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)*((d_.) + (e_.)*(x_) + (f_.)*(x_)^2)^(q_), x_Symbol] :> With[{r =
Rt[b^2 - 4*a*c, 2]}, Simp[1/c^p Int[ExpandIntegrand[(b/2 - r/2 + c*x)^p*(b/2 + r/2 + c*x)^p*(d + e*x + f*x^2
)^q, x], x], x] /; EqQ[p, -1] || !FractionalPowerFactorQ[r]] /; FreeQ[{a, b, c, d, e, f}, x] && ILtQ[p, 0] &&
IntegerQ[q] && NiceSqrtQ[b^2 - 4*a*c]
-
Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)*((d_.) + (f_.)*(x_)^2)^(q_), x_Symbol] :> With[{r = Rt[b^2 - 4*a*
c, 2]}, Simp[1/c^p Int[ExpandIntegrand[(b/2 - r/2 + c*x)^p*(b/2 + r/2 + c*x)^p*(d + f*x^2)^q, x], x], x] /;
EqQ[p, -1] || !FractionalPowerFactorQ[r]] /; FreeQ[{a, b, c, d, f}, x] && ILtQ[p, 0] && IntegerQ[q] && NiceSq
rtQ[b^2 - 4*a*c]
-
Int[((a_.) + (c_.)*(x_)^2)^(p_)*((d_.) + (e_.)*(x_) + (f_.)*(x_)^2)^(q_), x_Symbol] :> With[{r = Rt[(-a)*c, 2]
}, Simp[1/c^p Int[ExpandIntegrand[(-r + c*x)^p*(r + c*x)^p*(d + e*x + f*x^2)^q, x], x], x] /; EqQ[p, -1] ||
!FractionalPowerFactorQ[r]] /; FreeQ[{a, c, d, e, f}, x] && ILtQ[p, 0] && IntegerQ[q] && NiceSqrtQ[(-a)*c]
-
Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)*((d_.) + (e_.)*(x_) + (f_.)*(x_)^2)^(q_), x_Symbol] :> Simp[(b +
2*c*x)*(a + b*x + c*x^2)^(p + 1)*((d + e*x + f*x^2)^q/((b^2 - 4*a*c)*(p + 1))), x] - Simp[1/((b^2 - 4*a*c)*(p
+ 1)) Int[(a + b*x + c*x^2)^(p + 1)*(d + e*x + f*x^2)^(q - 1)*Simp[2*c*d*(2*p + 3) + b*e*q + (2*b*f*q + 2*c*
e*(2*p + q + 3))*x + 2*c*f*(2*p + 2*q + 3)*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b^2 - 4*a*c,
0] && NeQ[e^2 - 4*d*f, 0] && LtQ[p, -1] && GtQ[q, 0] && !IGtQ[q, 0]
-
Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)*((d_.) + (f_.)*(x_)^2)^(q_), x_Symbol] :> Simp[(b + 2*c*x)*(a + b
*x + c*x^2)^(p + 1)*((d + f*x^2)^q/((b^2 - 4*a*c)*(p + 1))), x] - Simp[1/((b^2 - 4*a*c)*(p + 1)) Int[(a + b*
x + c*x^2)^(p + 1)*(d + f*x^2)^(q - 1)*Simp[2*c*d*(2*p + 3) + (2*b*f*q)*x + 2*c*f*(2*p + 2*q + 3)*x^2, x], x],
x] /; FreeQ[{a, b, c, d, f}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && GtQ[q, 0] && !IGtQ[q, 0]
-
Int[((a_.) + (c_.)*(x_)^2)^(p_)*((d_.) + (e_.)*(x_) + (f_.)*(x_)^2)^(q_), x_Symbol] :> Simp[(2*c*x)*(a + c*x^2
)^(p + 1)*((d + e*x + f*x^2)^q/((-4*a*c)*(p + 1))), x] - Simp[1/((-4*a*c)*(p + 1)) Int[(a + c*x^2)^(p + 1)*(
d + e*x + f*x^2)^(q - 1)*Simp[2*c*d*(2*p + 3) + (2*c*e*(2*p + q + 3))*x + 2*c*f*(2*p + 2*q + 3)*x^2, x], x], x
] /; FreeQ[{a, c, d, e, f}, x] && NeQ[e^2 - 4*d*f] && LtQ[p, -1] && GtQ[q, 0] && !IGtQ[q, 0]
-
Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)*((d_.) + (e_.)*(x_) + (f_.)*(x_)^2)^(q_), x_Symbol] :> Simp[(2*a*
c^2*e - b^2*c*e + b^3*f + b*c*(c*d - 3*a*f) + c*(2*c^2*d + b^2*f - c*(b*e + 2*a*f))*x)*(a + b*x + c*x^2)^(p +
1)*((d + e*x + f*x^2)^(q + 1)/((b^2 - 4*a*c)*((c*d - a*f)^2 - (b*d - a*e)*(c*e - b*f))*(p + 1))), x] - Simp[1/
((b^2 - 4*a*c)*((c*d - a*f)^2 - (b*d - a*e)*(c*e - b*f))*(p + 1)) Int[(a + b*x + c*x^2)^(p + 1)*(d + e*x + f
*x^2)^q*Simp[2*c*((c*d - a*f)^2 - (b*d - a*e)*(c*e - b*f))*(p + 1) - (2*c^2*d + b^2*f - c*(b*e + 2*a*f))*(a*f*
(p + 1) - c*d*(p + 2)) - e*(b^2*c*e - 2*a*c^2*e - b^3*f - b*c*(c*d - 3*a*f))*(p + q + 2) + (2*f*(2*a*c^2*e - b
^2*c*e + b^3*f + b*c*(c*d - 3*a*f))*(p + q + 2) - (2*c^2*d + b^2*f - c*(b*e + 2*a*f))*(b*f*(p + 1) - c*e*(2*p
+ q + 4)))*x + c*f*(2*c^2*d + b^2*f - c*(b*e + 2*a*f))*(2*p + 2*q + 5)*x^2, x], x], x] /; FreeQ[{a, b, c, d, e
, f, q}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[e^2 - 4*d*f, 0] && LtQ[p, -1] && NeQ[(c*d - a*f)^2 - (b*d - a*e)*(c*
e - b*f), 0] && !( !IntegerQ[p] && ILtQ[q, -1]) && !IGtQ[q, 0]
-
Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)*((d_.) + (f_.)*(x_)^2)^(q_), x_Symbol] :> Simp[(b^3*f + b*c*(c*d
- 3*a*f) + c*(2*c^2*d + b^2*f - c*(2*a*f))*x)*(a + b*x + c*x^2)^(p + 1)*((d + f*x^2)^(q + 1)/((b^2 - 4*a*c)*(b
^2*d*f + (c*d - a*f)^2)*(p + 1))), x] - Simp[1/((b^2 - 4*a*c)*(b^2*d*f + (c*d - a*f)^2)*(p + 1)) Int[(a + b*
x + c*x^2)^(p + 1)*(d + f*x^2)^q*Simp[2*c*(b^2*d*f + (c*d - a*f)^2)*(p + 1) - (2*c^2*d + b^2*f - c*(2*a*f))*(a
*f*(p + 1) - c*d*(p + 2)) + (2*f*(b^3*f + b*c*(c*d - 3*a*f))*(p + q + 2) - (2*c^2*d + b^2*f - c*(2*a*f))*(b*f*
(p + 1)))*x + c*f*(2*c^2*d + b^2*f - c*(2*a*f))*(2*p + 2*q + 5)*x^2, x], x], x] /; FreeQ[{a, b, c, d, f, q}, x
] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && NeQ[b^2*d*f + (c*d - a*f)^2, 0] && !( !IntegerQ[p] && ILtQ[q, -1])
&& !IGtQ[q, 0]
-
Int[((a_.) + (c_.)*(x_)^2)^(p_)*((d_.) + (e_.)*(x_) + (f_.)*(x_)^2)^(q_), x_Symbol] :> Simp[(2*a*c^2*e + c*(2*
c^2*d - c*(2*a*f))*x)*(a + c*x^2)^(p + 1)*((d + e*x + f*x^2)^(q + 1)/((-4*a*c)*(a*c*e^2 + (c*d - a*f)^2)*(p +
1))), x] - Simp[1/((-4*a*c)*(a*c*e^2 + (c*d - a*f)^2)*(p + 1)) Int[(a + c*x^2)^(p + 1)*(d + e*x + f*x^2)^q*S
imp[2*c*((c*d - a*f)^2 - ((-a)*e)*(c*e))*(p + 1) - (2*c^2*d - c*(2*a*f))*(a*f*(p + 1) - c*d*(p + 2)) - e*(-2*a
*c^2*e)*(p + q + 2) + (2*f*(2*a*c^2*e)*(p + q + 2) - (2*c^2*d - c*(2*a*f))*((-c)*e*(2*p + q + 4)))*x + c*f*(2*
c^2*d - c*(2*a*f))*(2*p + 2*q + 5)*x^2, x], x], x] /; FreeQ[{a, c, d, e, f, q}, x] && NeQ[e^2 - 4*d*f, 0] && L
tQ[p, -1] && NeQ[a*c*e^2 + (c*d - a*f)^2, 0] && !( !IntegerQ[p] && ILtQ[q, -1]) && !IGtQ[q, 0]
-
Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)*((d_.) + (e_.)*(x_) + (f_.)*(x_)^2)^(q_), x_Symbol] :> Simp[(b*f*
(3*p + 2*q) - c*e*(2*p + q) + 2*c*f*(p + q)*x)*(a + b*x + c*x^2)^(p - 1)*((d + e*x + f*x^2)^(q + 1)/(2*f^2*(p
+ q)*(2*p + 2*q + 1))), x] - Simp[1/(2*f^2*(p + q)*(2*p + 2*q + 1)) Int[(a + b*x + c*x^2)^(p - 2)*(d + e*x +
f*x^2)^q*Simp[(b*d - a*e)*(c*e - b*f)*(1 - p)*(2*p + q) - (p + q)*(b^2*d*f*(1 - p) - a*(f*(b*e - 2*a*f)*(2*p
+ 2*q + 1) + c*(2*d*f - e^2*(2*p + q)))) + (2*(c*d - a*f)*(c*e - b*f)*(1 - p)*(2*p + q) - (p + q)*((b^2 - 4*a*
c)*e*f*(1 - p) + b*(c*(e^2 - 4*d*f)*(2*p + q) + f*(2*c*d - b*e + 2*a*f)*(2*p + 2*q + 1))))*x + ((c*e - b*f)^2*
(1 - p)*p + c*(p + q)*(f*(b*e - 2*a*f)*(4*p + 2*q - 1) - c*(2*d*f*(1 - 2*p) + e^2*(3*p + q - 1))))*x^2, x], x]
, x] /; FreeQ[{a, b, c, d, e, f, q}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[e^2 - 4*d*f, 0] && GtQ[p, 1] && NeQ[p +
q, 0] && NeQ[2*p + 2*q + 1, 0] && !IGtQ[p, 0] && !IGtQ[q, 0]
-
Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)*((d_.) + (f_.)*(x_)^2)^(q_), x_Symbol] :> Simp[(b*(3*p + 2*q) + 2
*c*(p + q)*x)*(a + b*x + c*x^2)^(p - 1)*((d + f*x^2)^(q + 1)/(2*f*(p + q)*(2*p + 2*q + 1))), x] - Simp[1/(2*f*
(p + q)*(2*p + 2*q + 1)) Int[(a + b*x + c*x^2)^(p - 2)*(d + f*x^2)^q*Simp[b^2*d*(p - 1)*(2*p + q) - (p + q)*
(b^2*d*(1 - p) - 2*a*(c*d - a*f*(2*p + 2*q + 1))) - (2*b*(c*d - a*f)*(1 - p)*(2*p + q) - 2*(p + q)*b*(2*c*d*(2
*p + q) - (c*d + a*f)*(2*p + 2*q + 1)))*x + (b^2*f*p*(1 - p) + 2*c*(p + q)*(c*d*(2*p - 1) - a*f*(4*p + 2*q - 1
)))*x^2, x], x], x] /; FreeQ[{a, b, c, d, f, q}, x] && NeQ[b^2 - 4*a*c, 0] && GtQ[p, 1] && NeQ[p + q, 0] && Ne
Q[2*p + 2*q + 1, 0] && !IGtQ[p, 0] && !IGtQ[q, 0]
-
Int[((a_.) + (c_.)*(x_)^2)^(p_)*((d_.) + (e_.)*(x_) + (f_.)*(x_)^2)^(q_), x_Symbol] :> Simp[(-c)*(e*(2*p + q)
- 2*f*(p + q)*x)*(a + c*x^2)^(p - 1)*((d + e*x + f*x^2)^(q + 1)/(2*f^2*(p + q)*(2*p + 2*q + 1))), x] - Simp[1/
(2*f^2*(p + q)*(2*p + 2*q + 1)) Int[(a + c*x^2)^(p - 2)*(d + e*x + f*x^2)^q*Simp[(-a)*c*e^2*(1 - p)*(2*p + q
) + a*(p + q)*(-2*a*f^2*(2*p + 2*q + 1) + c*(2*d*f - e^2*(2*p + q))) + (2*(c*d - a*f)*(c*e)*(1 - p)*(2*p + q)
+ 4*a*c*e*f*(1 - p)*(p + q))*x + (p*c^2*e^2*(1 - p) - c*(p + q)*(2*a*f^2*(4*p + 2*q - 1) + c*(2*d*f*(1 - 2*p)
+ e^2*(3*p + q - 1))))*x^2, x], x], x] /; FreeQ[{a, c, d, e, f, q}, x] && NeQ[e^2 - 4*d*f, 0] && GtQ[p, 1] &&
NeQ[p + q, 0] && NeQ[2*p + 2*q + 1, 0] && !IGtQ[p, 0] && !IGtQ[q, 0]
-
Int[1/(((a_) + (b_.)*(x_) + (c_.)*(x_)^2)*((d_) + (e_.)*(x_) + (f_.)*(x_)^2)), x_Symbol] :> With[{q = c^2*d^2
- b*c*d*e + a*c*e^2 + b^2*d*f - 2*a*c*d*f - a*b*e*f + a^2*f^2}, Simp[1/q Int[(c^2*d - b*c*e + b^2*f - a*c*f
- (c^2*e - b*c*f)*x)/(a + b*x + c*x^2), x], x] + Simp[1/q Int[(c*e^2 - c*d*f - b*e*f + a*f^2 + (c*e*f - b*f^
2)*x)/(d + e*x + f*x^2), x], x] /; NeQ[q, 0]] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[e^
2 - 4*d*f, 0]
-
Int[1/(((a_) + (b_.)*(x_) + (c_.)*(x_)^2)*((d_) + (f_.)*(x_)^2)), x_Symbol] :> With[{q = c^2*d^2 + b^2*d*f - 2
*a*c*d*f + a^2*f^2}, Simp[1/q Int[(c^2*d + b^2*f - a*c*f + b*c*f*x)/(a + b*x + c*x^2), x], x] - Simp[1/q I
nt[(c*d*f - a*f^2 + b*f^2*x)/(d + f*x^2), x], x] /; NeQ[q, 0]] /; FreeQ[{a, b, c, d, f}, x] && NeQ[b^2 - 4*a*c
, 0]
-
Int[1/(((a_) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symbol] :> Simp[-2*e S
ubst[Int[1/(e*(b*e - 4*a*f) - (b*d - a*e)*x^2), x], x, (e + 2*f*x)/Sqrt[d + e*x + f*x^2]], x] /; FreeQ[{a, b,
c, d, e, f}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[e^2 - 4*d*f, 0] && EqQ[c*e - b*f, 0]
-
Int[1/(((a_) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symbol] :> With[{q = Rt[
b^2 - 4*a*c, 2]}, Simp[2*(c/q) Int[1/((b - q + 2*c*x)*Sqrt[d + e*x + f*x^2]), x], x] - Simp[2*(c/q) Int[1/
((b + q + 2*c*x)*Sqrt[d + e*x + f*x^2]), x], x]] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ
[e^2 - 4*d*f, 0] && NeQ[c*e - b*f, 0] && PosQ[b^2 - 4*a*c]
-
Int[1/(((a_) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_) + (f_.)*(x_)^2]), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2
]}, Simp[2*(c/q) Int[1/((b - q + 2*c*x)*Sqrt[d + f*x^2]), x], x] - Simp[2*(c/q) Int[1/((b + q + 2*c*x)*Sqr
t[d + f*x^2]), x], x]] /; FreeQ[{a, b, c, d, f}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[b^2 - 4*a*c]
-
Int[1/(((a_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symbol] :> Simp[1/2 Int[1/((a - Rt[
(-a)*c, 2]*x)*Sqrt[d + e*x + f*x^2]), x], x] + Simp[1/2 Int[1/((a + Rt[(-a)*c, 2]*x)*Sqrt[d + e*x + f*x^2]),
x], x] /; FreeQ[{a, c, d, e, f}, x] && NeQ[e^2 - 4*d*f, 0] && PosQ[(-a)*c]
-
Int[1/(((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symbol] :> With[{q = Rt
[(c*d - a*f)^2 - (b*d - a*e)*(c*e - b*f), 2]}, Simp[1/(2*q) Int[(c*d - a*f + q + (c*e - b*f)*x)/((a + b*x +
c*x^2)*Sqrt[d + e*x + f*x^2]), x], x] - Simp[1/(2*q) Int[(c*d - a*f - q + (c*e - b*f)*x)/((a + b*x + c*x^2)*
Sqrt[d + e*x + f*x^2]), x], x]] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[e^2 - 4*d*f, 0]
&& NeQ[c*e - b*f, 0] && NegQ[b^2 - 4*a*c]
-
Int[1/(((a_.) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symbol] :> With[{q = Rt[(c*d - a*f)^
2 + a*c*e^2, 2]}, Simp[1/(2*q) Int[(c*d - a*f + q + c*e*x)/((a + c*x^2)*Sqrt[d + e*x + f*x^2]), x], x] - Sim
p[1/(2*q) Int[(c*d - a*f - q + c*e*x)/((a + c*x^2)*Sqrt[d + e*x + f*x^2]), x], x]] /; FreeQ[{a, c, d, e, f},
x] && NeQ[e^2 - 4*d*f, 0] && NegQ[(-a)*c]
-
Int[1/(((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (f_.)*(x_)^2]), x_Symbol] :> With[{q = Rt[(c*d - a*f)^
2 + b^2*d*f, 2]}, Simp[1/(2*q) Int[(c*d - a*f + q + ((-b)*f)*x)/((a + b*x + c*x^2)*Sqrt[d + f*x^2]), x], x]
- Simp[1/(2*q) Int[(c*d - a*f - q + ((-b)*f)*x)/((a + b*x + c*x^2)*Sqrt[d + f*x^2]), x], x]] /; FreeQ[{a, b,
c, d, f}, x] && NeQ[b^2 - 4*a*c, 0] && NegQ[b^2 - 4*a*c]
-
Int[Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2]/((d_) + (e_.)*(x_) + (f_.)*(x_)^2), x_Symbol] :> Simp[c/f Int[1/S
qrt[a + b*x + c*x^2], x], x] - Simp[1/f Int[(c*d - a*f + (c*e - b*f)*x)/(Sqrt[a + b*x + c*x^2]*(d + e*x + f*
x^2)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[e^2 - 4*d*f, 0]
-
Int[Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2]/((d_) + (f_.)*(x_)^2), x_Symbol] :> Simp[c/f Int[1/Sqrt[a + b*x +
c*x^2], x], x] - Simp[1/f Int[(c*d - a*f - b*f*x)/(Sqrt[a + b*x + c*x^2]*(d + f*x^2)), x], x] /; FreeQ[{a,
b, c, d, f}, x] && NeQ[b^2 - 4*a*c, 0]
-
Int[Sqrt[(a_) + (c_.)*(x_)^2]/((d_) + (e_.)*(x_) + (f_.)*(x_)^2), x_Symbol] :> Simp[c/f Int[1/Sqrt[a + c*x^2
], x], x] - Simp[1/f Int[(c*d - a*f + c*e*x)/(Sqrt[a + c*x^2]*(d + e*x + f*x^2)), x], x] /; FreeQ[{a, c, d,
e, f}, x] && NeQ[e^2 - 4*d*f, 0]
-
Int[1/(Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2]*Sqrt[(d_) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symbol] :> With[{r =
Rt[b^2 - 4*a*c, 2]}, Simp[Sqrt[b + r + 2*c*x]*(Sqrt[2*a + (b + r)*x]/Sqrt[a + b*x + c*x^2]) Int[1/(Sqrt[b +
r + 2*c*x]*Sqrt[2*a + (b + r)*x]*Sqrt[d + e*x + f*x^2]), x], x]] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b^2 -
4*a*c, 0] && NeQ[e^2 - 4*d*f, 0]
-
Int[1/(Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2]*Sqrt[(d_) + (f_.)*(x_)^2]), x_Symbol] :> With[{r = Rt[b^2 - 4*a*
c, 2]}, Simp[Sqrt[b + r + 2*c*x]*(Sqrt[2*a + (b + r)*x]/Sqrt[a + b*x + c*x^2]) Int[1/(Sqrt[b + r + 2*c*x]*Sq
rt[2*a + (b + r)*x]*Sqrt[d + f*x^2]), x], x]] /; FreeQ[{a, b, c, d, f}, x] && NeQ[b^2 - 4*a*c, 0]
-
Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)*((d_.) + (e_.)*(x_) + (f_.)*(x_)^2)^(q_), x_Symbol] :> Unintegrab
le[(a + b*x + c*x^2)^p*(d + e*x + f*x^2)^q, x] /; FreeQ[{a, b, c, d, e, f, p, q}, x] && !IGtQ[p, 0] && !IGtQ
[q, 0]
-
Int[((a_) + (c_.)*(x_)^2)^(p_)*((d_.) + (e_.)*(x_) + (f_.)*(x_)^2)^(q_), x_Symbol] :> Unintegrable[(a + c*x^2)
^p*(d + e*x + f*x^2)^q, x] /; FreeQ[{a, c, d, e, f, p, q}, x] && !IGtQ[p, 0] && !IGtQ[q, 0]
-
Int[((a_.) + (b_.)*(u_) + (c_.)*(u_)^2)^(p_.)*((d_.) + (e_.)*(u_) + (f_.)*(u_)^2)^(q_.), x_Symbol] :> Simp[1/C
oefficient[u, x, 1] Subst[Int[(a + b*x + c*x^2)^p*(d + e*x + f*x^2)^q, x], x, u], x] /; FreeQ[{a, b, c, d, e
, f, p, q}, x] && LinearQ[u, x] && NeQ[u, x]
-
Int[((a_.) + (c_.)*(u_)^2)^(p_.)*((d_.) + (e_.)*(u_) + (f_.)*(u_)^2)^(q_.), x_Symbol] :> Simp[1/Coefficient[u,
x, 1] Subst[Int[(a + c*x^2)^p*(d + e*x + f*x^2)^q, x], x, u], x] /; FreeQ[{a, c, d, e, f, p, q}, x] && Line
arQ[u, x] && NeQ[u, x]
-
Int[((g_.) + (h_.)*(x_))^(m_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)*((d_) + (e_.)*(x_) + (f_.)*(x_)^2)^(q_)
, x_Symbol] :> Simp[(c/f)^p Int[(g + h*x)^m*(d + e*x + f*x^2)^(p + q), x], x] /; FreeQ[{a, b, c, d, e, f, g,
h, p, q}, x] && EqQ[c*d - a*f, 0] && EqQ[b*d - a*e, 0] && (IntegerQ[p] || GtQ[c/f, 0]) && ( !IntegerQ[q] || L
eafCount[d + e*x + f*x^2] <= LeafCount[a + b*x + c*x^2])
-
Int[((g_.) + (h_.)*(x_))^(m_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)*((d_) + (e_.)*(x_) + (f_.)*(x_)^2)^(q_)
, x_Symbol] :> Simp[a^IntPart[p]*((a + b*x + c*x^2)^FracPart[p]/(d^IntPart[p]*(d + e*x + f*x^2)^FracPart[p]))
Int[(g + h*x)^m*(d + e*x + f*x^2)^(p + q), x], x] /; FreeQ[{a, b, c, d, e, f, g, h, p, q}, x] && EqQ[c*d - a
*f, 0] && EqQ[b*d - a*e, 0] && !IntegerQ[p] && !IntegerQ[q] && !GtQ[c/f, 0]
-
Int[((g_.) + (h_.)*(x_))^(m_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.)*((d_.) + (e_.)*(x_) + (f_.)*(x_)^2)^(q
_.), x_Symbol] :> Simp[1/c^p Int[(g + h*x)^m*(b/2 + c*x)^(2*p)*(d + e*x + f*x^2)^q, x], x] /; FreeQ[{a, b, c
, d, e, f, g, h, m, q}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]
-
Int[((g_.) + (h_.)*(x_))^(m_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.)*((d_.) + (f_.)*(x_)^2)^(q_.), x_Symbol
] :> Simp[1/c^p Int[(g + h*x)^m*(b/2 + c*x)^(2*p)*(d + f*x^2)^q, x], x] /; FreeQ[{a, b, c, d, f, g, h, m, q}
, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]
-
Int[((g_.) + (h_.)*(x_))^(m_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)*((d_) + (e_.)*(x_) + (f_.)*(x_)^2)^(q_)
, x_Symbol] :> Simp[(a + b*x + c*x^2)^FracPart[p]/((4*c)^IntPart[p]*(b + 2*c*x)^(2*FracPart[p])) Int[(g + h*
x)^m*(b + 2*c*x)^(2*p)*(d + e*x + f*x^2)^q, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, m, p, q}, x] && EqQ[b^2 -
4*a*c, 0] && !IntegerQ[p]
-
Int[((g_.) + (h_.)*(x_))^(m_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)*((d_) + (f_.)*(x_)^2)^(q_), x_Symbol] :
> Simp[(a + b*x + c*x^2)^FracPart[p]/((4*c)^IntPart[p]*(b + 2*c*x)^(2*FracPart[p])) Int[(g + h*x)^m*(b + 2*c
*x)^(2*p)*(d + f*x^2)^q, x], x] /; FreeQ[{a, b, c, d, f, g, h, m, p, q}, x] && EqQ[b^2 - 4*a*c, 0] && !Intege
rQ[p]
-
Int[((g_) + (h_.)*(x_))^(m_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)*((d_.) + (e_.)*(x_) + (f_.)*(x_)^2)^(m_.
), x_Symbol] :> Int[(d*(g/a) + f*h*(x/c))^m*(a + b*x + c*x^2)^(m + p), x] /; FreeQ[{a, b, c, d, e, f, g, h, p}
, x] && EqQ[c*g^2 - b*g*h + a*h^2, 0] && EqQ[c^2*d*g^2 - a*c*e*g*h + a^2*f*h^2, 0] && IntegerQ[m]
-
Int[((g_) + (h_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^2)^(p_)*((d_.) + (e_.)*(x_) + (f_.)*(x_)^2)^(m_.), x_Symbol]
:> Int[(d*(g/a) + f*h*(x/c))^m*(a + c*x^2)^(m + p), x] /; FreeQ[{a, c, d, e, f, g, h, p}, x] && EqQ[c*g^2 + a*
h^2, 0] && EqQ[c^2*d*g^2 - a*c*e*g*h + a^2*f*h^2, 0] && IntegerQ[m]
-
Int[((g_) + (h_.)*(x_))^(m_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)*((d_.) + (f_.)*(x_)^2)^(m_.), x_Symbol]
:> Int[(d*(g/a) + f*h*(x/c))^m*(a + b*x + c*x^2)^(m + p), x] /; FreeQ[{a, b, c, d, f, g, h, p}, x] && EqQ[c*g^
2 - b*g*h + a*h^2, 0] && EqQ[c^2*d*g^2 + a^2*f*h^2, 0] && IntegerQ[m]
-
Int[((g_) + (h_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^2)^(p_)*((d_.) + (f_.)*(x_)^2)^(m_.), x_Symbol] :> Int[(d*(g/
a) + f*h*(x/c))^m*(a + c*x^2)^(m + p), x] /; FreeQ[{a, c, d, f, g, h, p}, x] && EqQ[c*g^2 + a*h^2, 0] && EqQ[c
^2*d*g^2 + a^2*f*h^2, 0] && IntegerQ[m]
-
Int[(x_)^(p_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)*((e_.)*(x_) + (f_.)*(x_)^2)^(q_), x_Symbol] :> Int[(a/e
+ (c/f)*x)^p*(e*x + f*x^2)^(p + q), x] /; FreeQ[{a, b, c, e, f, q}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*e^2 -
b*e*f + a*f^2, 0] && IntegerQ[p]
-
Int[(x_)^(p_)*((a_) + (c_.)*(x_)^2)^(p_)*((e_.)*(x_) + (f_.)*(x_)^2)^(q_), x_Symbol] :> Int[(a/e + (c/f)*x)^p*
(e*x + f*x^2)^(p + q), x] /; FreeQ[{a, c, e, f, q}, x] && EqQ[c*e^2 + a*f^2, 0] && IntegerQ[p]
-
Int[((g_) + (h_.)*(x_))/(((a_) + (c_.)*(x_)^2)^(1/3)*((d_) + (f_.)*(x_)^2)), x_Symbol] :> Simp[Sqrt[3]*h*(ArcT
an[1/Sqrt[3] - 2^(2/3)*((1 - 3*h*(x/g))^(2/3)/(Sqrt[3]*(1 + 3*h*(x/g))^(1/3)))]/(2^(2/3)*a^(1/3)*f)), x] + (-S
imp[3*h*(Log[(1 - 3*h*(x/g))^(2/3) + 2^(1/3)*(1 + 3*h*(x/g))^(1/3)]/(2^(5/3)*a^(1/3)*f)), x] + Simp[h*(Log[d +
f*x^2]/(2^(5/3)*a^(1/3)*f)), x]) /; FreeQ[{a, c, d, f, g, h}, x] && EqQ[c*d + 3*a*f, 0] && EqQ[c*g^2 + 9*a*h^
2, 0] && GtQ[a, 0]
-
Int[((g_) + (h_.)*(x_))/(((a_) + (c_.)*(x_)^2)^(1/3)*((d_) + (f_.)*(x_)^2)), x_Symbol] :> Simp[(1 + c*(x^2/a))
^(1/3)/(a + c*x^2)^(1/3) Int[(g + h*x)/((1 + c*(x^2/a))^(1/3)*(d + f*x^2)), x], x] /; FreeQ[{a, c, d, f, g,
h}, x] && EqQ[c*d + 3*a*f, 0] && EqQ[c*g^2 + 9*a*h^2, 0] && !GtQ[a, 0]
-
Int[((g_) + (h_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_)*((d_) + (f_.)*(x_)^2)^(q_), x_Symbol] :> Simp[g Int[(a +
c*x^2)^p*(d + f*x^2)^q, x], x] + Simp[h Int[x*(a + c*x^2)^p*(d + f*x^2)^q, x], x] /; FreeQ[{a, c, d, f, g, h
, p, q}, x]
-
Int[((g_.) + (h_.)*(x_))*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)*((d_) + (e_.)*(x_) + (f_.)*(x_)^2)^(q_), x_Sy
mbol] :> Int[ExpandIntegrand[(a + b*x + c*x^2)^p*(d + e*x + f*x^2)^q*(g + h*x), x], x] /; FreeQ[{a, b, c, d, e
, f, g, h}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[e^2 - 4*d*f, 0] && IGtQ[p, 0] && IntegerQ[q]
-
Int[((g_.) + (h_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_)*((d_) + (e_.)*(x_) + (f_.)*(x_)^2)^(q_), x_Symbol] :> Int[
ExpandIntegrand[(a + c*x^2)^p*(d + e*x + f*x^2)^q*(g + h*x), x], x] /; FreeQ[{a, c, d, e, f, g, h}, x] && NeQ[
e^2 - 4*d*f, 0] && IntegersQ[p, q] && (GtQ[p, 0] || GtQ[q, 0])
-
Int[((g_.) + (h_.)*(x_))*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)*((d_) + (e_.)*(x_) + (f_.)*(x_)^2)^(q_), x_Sy
mbol] :> Simp[(g*b - 2*a*h - (b*h - 2*g*c)*x)*(a + b*x + c*x^2)^(p + 1)*((d + e*x + f*x^2)^q/((b^2 - 4*a*c)*(p
+ 1))), x] - Simp[1/((b^2 - 4*a*c)*(p + 1)) Int[(a + b*x + c*x^2)^(p + 1)*(d + e*x + f*x^2)^(q - 1)*Simp[e*
q*(g*b - 2*a*h) - d*(b*h - 2*g*c)*(2*p + 3) + (2*f*q*(g*b - 2*a*h) - e*(b*h - 2*g*c)*(2*p + q + 3))*x - f*(b*h
- 2*g*c)*(2*p + 2*q + 3)*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[
e^2 - 4*d*f, 0] && LtQ[p, -1] && GtQ[q, 0]
-
Int[((g_.) + (h_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_)*((d_) + (e_.)*(x_) + (f_.)*(x_)^2)^(q_), x_Symbol] :> Simp
[(a*h - g*c*x)*(a + c*x^2)^(p + 1)*((d + e*x + f*x^2)^q/(2*a*c*(p + 1))), x] + Simp[2/(4*a*c*(p + 1)) Int[(a
+ c*x^2)^(p + 1)*(d + e*x + f*x^2)^(q - 1)*Simp[g*c*d*(2*p + 3) - a*(h*e*q) + (g*c*e*(2*p + q + 3) - a*(2*h*f
*q))*x + g*c*f*(2*p + 2*q + 3)*x^2, x], x], x] /; FreeQ[{a, c, d, e, f, g, h}, x] && NeQ[e^2 - 4*d*f, 0] && Lt
Q[p, -1] && GtQ[q, 0]
-
Int[((g_.) + (h_.)*(x_))*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)*((d_) + (f_.)*(x_)^2)^(q_), x_Symbol] :> Simp
[(g*b - 2*a*h - (b*h - 2*g*c)*x)*(a + b*x + c*x^2)^(p + 1)*((d + f*x^2)^q/((b^2 - 4*a*c)*(p + 1))), x] - Simp[
1/((b^2 - 4*a*c)*(p + 1)) Int[(a + b*x + c*x^2)^(p + 1)*(d + f*x^2)^(q - 1)*Simp[(-d)*(b*h - 2*g*c)*(2*p + 3
) + (2*f*q*(g*b - 2*a*h))*x - f*(b*h - 2*g*c)*(2*p + 2*q + 3)*x^2, x], x], x] /; FreeQ[{a, b, c, d, f, g, h},
x] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && GtQ[q, 0]
-
Int[((g_.) + (h_.)*(x_))*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)*((d_) + (e_.)*(x_) + (f_.)*(x_)^2)^(q_), x_Sy
mbol] :> Simp[(a + b*x + c*x^2)^(p + 1)*((d + e*x + f*x^2)^(q + 1)/((b^2 - 4*a*c)*((c*d - a*f)^2 - (b*d - a*e)
*(c*e - b*f))*(p + 1)))*(g*c*(2*a*c*e - b*(c*d + a*f)) + (g*b - a*h)*(2*c^2*d + b^2*f - c*(b*e + 2*a*f)) + c*(
g*(2*c^2*d + b^2*f - c*(b*e + 2*a*f)) - h*(b*c*d - 2*a*c*e + a*b*f))*x), x] + Simp[1/((b^2 - 4*a*c)*((c*d - a*
f)^2 - (b*d - a*e)*(c*e - b*f))*(p + 1)) Int[(a + b*x + c*x^2)^(p + 1)*(d + e*x + f*x^2)^q*Simp[(b*h - 2*g*c
)*((c*d - a*f)^2 - (b*d - a*e)*(c*e - b*f))*(p + 1) + (b^2*(g*f) - b*(h*c*d + g*c*e + a*h*f) + 2*(g*c*(c*d - a
*f) - a*((-h)*c*e)))*(a*f*(p + 1) - c*d*(p + 2)) - e*((g*c)*(2*a*c*e - b*(c*d + a*f)) + (g*b - a*h)*(2*c^2*d +
b^2*f - c*(b*e + 2*a*f)))*(p + q + 2) - (2*f*((g*c)*(2*a*c*e - b*(c*d + a*f)) + (g*b - a*h)*(2*c^2*d + b^2*f
- c*(b*e + 2*a*f)))*(p + q + 2) - (b^2*g*f - b*(h*c*d + g*c*e + a*h*f) + 2*(g*c*(c*d - a*f) - a*((-h)*c*e)))*(
b*f*(p + 1) - c*e*(2*p + q + 4)))*x - c*f*(b^2*(g*f) - b*(h*c*d + g*c*e + a*h*f) + 2*(g*c*(c*d - a*f) + a*h*c*
e))*(2*p + 2*q + 5)*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, q}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[e^2
- 4*d*f, 0] && LtQ[p, -1] && NeQ[(c*d - a*f)^2 - (b*d - a*e)*(c*e - b*f), 0] && !( !IntegerQ[p] && ILtQ[q, -
1])
-
Int[((g_.) + (h_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_)*((d_) + (e_.)*(x_) + (f_.)*(x_)^2)^(q_), x_Symbol] :> Simp
[(a + c*x^2)^(p + 1)*((d + e*x + f*x^2)^(q + 1)/((-4*a*c)*(a*c*e^2 + (c*d - a*f)^2)*(p + 1)))*(g*c*(2*a*c*e) +
((-a)*h)*(2*c^2*d - c*(2*a*f)) + c*(g*(2*c^2*d - c*(2*a*f)) - h*(-2*a*c*e))*x), x] + Simp[1/((-4*a*c)*(a*c*e^
2 + (c*d - a*f)^2)*(p + 1)) Int[(a + c*x^2)^(p + 1)*(d + e*x + f*x^2)^q*Simp[(-2*g*c)*((c*d - a*f)^2 - ((-a)
*e)*(c*e))*(p + 1) + (2*(g*c*(c*d - a*f) - a*((-h)*c*e)))*(a*f*(p + 1) - c*d*(p + 2)) - e*((g*c)*(2*a*c*e) + (
(-a)*h)*(2*c^2*d - c*((Plus[2])*a*f)))*(p + q + 2) - (2*f*((g*c)*(2*a*c*e) + ((-a)*h)*(2*c^2*d + (-c)*((Plus[2
])*a*f)))*(p + q + 2) - (2*(g*c*(c*d - a*f) - a*((-h)*c*e)))*((-c)*e*(2*p + q + 4)))*x - c*f*(2*(g*c*(c*d - a*
f) - a*((-h)*c*e)))*(2*p + 2*q + 5)*x^2, x], x], x] /; FreeQ[{a, c, d, e, f, g, h, q}, x] && NeQ[e^2 - 4*d*f,
0] && LtQ[p, -1] && NeQ[a*c*e^2 + (c*d - a*f)^2, 0] && !( !IntegerQ[p] && ILtQ[q, -1])
-
Int[((g_.) + (h_.)*(x_))*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)*((d_) + (f_.)*(x_)^2)^(q_), x_Symbol] :> Simp
[(a + b*x + c*x^2)^(p + 1)*((d + f*x^2)^(q + 1)/((b^2 - 4*a*c)*(b^2*d*f + (c*d - a*f)^2)*(p + 1)))*((g*c)*((-b
)*(c*d + a*f)) + (g*b - a*h)*(2*c^2*d + b^2*f - c*(2*a*f)) + c*(g*(2*c^2*d + b^2*f - c*(2*a*f)) - h*(b*c*d + a
*b*f))*x), x] + Simp[1/((b^2 - 4*a*c)*(b^2*d*f + (c*d - a*f)^2)*(p + 1)) Int[(a + b*x + c*x^2)^(p + 1)*(d +
f*x^2)^q*Simp[(b*h - 2*g*c)*((c*d - a*f)^2 - (b*d)*((-b)*f))*(p + 1) + (b^2*(g*f) - b*(h*c*d + a*h*f) + 2*(g*c
*(c*d - a*f)))*(a*f*(p + 1) - c*d*(p + 2)) - (2*f*((g*c)*((-b)*(c*d + a*f)) + (g*b - a*h)*(2*c^2*d + b^2*f - c
*(2*a*f)))*(p + q + 2) - (b^2*(g*f) - b*(h*c*d + a*h*f) + 2*(g*c*(c*d - a*f)))*(b*f*(p + 1)))*x - c*f*(b^2*(g*
f) - b*(h*c*d + a*h*f) + 2*(g*c*(c*d - a*f)))*(2*p + 2*q + 5)*x^2, x], x], x] /; FreeQ[{a, b, c, d, f, g, h, q
}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && NeQ[b^2*d*f + (c*d - a*f)^2, 0] && !( !IntegerQ[p] && ILtQ[q, -
1])
-
Int[((g_.) + (h_.)*(x_))*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)*((d_) + (e_.)*(x_) + (f_.)*(x_)^2)^(q_), x_Sy
mbol] :> Simp[h*(a + b*x + c*x^2)^p*((d + e*x + f*x^2)^(q + 1)/(2*f*(p + q + 1))), x] - Simp[1/(2*f*(p + q + 1
)) Int[(a + b*x + c*x^2)^(p - 1)*(d + e*x + f*x^2)^q*Simp[h*p*(b*d - a*e) + a*(h*e - 2*g*f)*(p + q + 1) + (2
*h*p*(c*d - a*f) + b*(h*e - 2*g*f)*(p + q + 1))*x + (h*p*(c*e - b*f) + c*(h*e - 2*g*f)*(p + q + 1))*x^2, x], x
], x] /; FreeQ[{a, b, c, d, e, f, g, h, q}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[e^2 - 4*d*f, 0] && GtQ[p, 0] && N
eQ[p + q + 1, 0]
-
Int[((g_.) + (h_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_)*((d_) + (e_.)*(x_) + (f_.)*(x_)^2)^(q_), x_Symbol] :> Simp
[h*(a + c*x^2)^p*((d + e*x + f*x^2)^(q + 1)/(2*f*(p + q + 1))), x] + Simp[1/(2*f*(p + q + 1)) Int[(a + c*x^2
)^(p - 1)*(d + e*x + f*x^2)^q*Simp[a*h*e*p - a*(h*e - 2*g*f)*(p + q + 1) - 2*h*p*(c*d - a*f)*x - (h*c*e*p + c*
(h*e - 2*g*f)*(p + q + 1))*x^2, x], x], x] /; FreeQ[{a, c, d, e, f, g, h, q}, x] && NeQ[e^2 - 4*d*f, 0] && GtQ
[p, 0] && NeQ[p + q + 1, 0]
-
Int[((g_.) + (h_.)*(x_))*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)*((d_) + (f_.)*(x_)^2)^(q_), x_Symbol] :> Simp
[h*(a + b*x + c*x^2)^p*((d + f*x^2)^(q + 1)/(2*f*(p + q + 1))), x] - Simp[1/(2*f*(p + q + 1)) Int[(a + b*x +
c*x^2)^(p - 1)*(d + f*x^2)^q*Simp[h*p*(b*d) + a*(-2*g*f)*(p + q + 1) + (2*h*p*(c*d - a*f) + b*(-2*g*f)*(p + q
+ 1))*x + (h*p*((-b)*f) + c*(-2*g*f)*(p + q + 1))*x^2, x], x], x] /; FreeQ[{a, b, c, d, f, g, h, q}, x] && Ne
Q[b^2 - 4*a*c, 0] && GtQ[p, 0] && NeQ[p + q + 1, 0]
-
Int[((g_.) + (h_.)*(x_))/(((a_) + (b_.)*(x_) + (c_.)*(x_)^2)*((d_) + (e_.)*(x_) + (f_.)*(x_)^2)), x_Symbol] :>
With[{q = Simplify[c^2*d^2 - b*c*d*e + a*c*e^2 + b^2*d*f - 2*a*c*d*f - a*b*e*f + a^2*f^2]}, Simp[1/q Int[Si
mp[g*c^2*d - g*b*c*e + a*h*c*e + g*b^2*f - a*b*h*f - a*g*c*f + c*(h*c*d - g*c*e + g*b*f - a*h*f)*x, x]/(a + b*
x + c*x^2), x], x] + Simp[1/q Int[Simp[(-h)*c*d*e + g*c*e^2 + b*h*d*f - g*c*d*f - g*b*e*f + a*g*f^2 - f*(h*c
*d - g*c*e + g*b*f - a*h*f)*x, x]/(d + e*x + f*x^2), x], x] /; NeQ[q, 0]] /; FreeQ[{a, b, c, d, e, f, g, h}, x
] && NeQ[b^2 - 4*a*c, 0] && NeQ[e^2 - 4*d*f, 0]
-
Int[((g_.) + (h_.)*(x_))/(((a_) + (b_.)*(x_) + (c_.)*(x_)^2)*((d_) + (f_.)*(x_)^2)), x_Symbol] :> With[{q = Si
mplify[c^2*d^2 + b^2*d*f - 2*a*c*d*f + a^2*f^2]}, Simp[1/q Int[Simp[g*c^2*d + g*b^2*f - a*b*h*f - a*g*c*f +
c*(h*c*d + g*b*f - a*h*f)*x, x]/(a + b*x + c*x^2), x], x] + Simp[1/q Int[Simp[b*h*d*f - g*c*d*f + a*g*f^2 -
f*(h*c*d + g*b*f - a*h*f)*x, x]/(d + f*x^2), x], x] /; NeQ[q, 0]] /; FreeQ[{a, b, c, d, f, g, h}, x] && NeQ[b^
2 - 4*a*c, 0]
-
Int[((g_) + (h_.)*(x_))/(((a_) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symbol
] :> Simp[-2*g Subst[Int[1/(b*d - a*e - b*x^2), x], x, Sqrt[d + e*x + f*x^2]], x] /; FreeQ[{a, b, c, d, e, f
, g, h}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[e^2 - 4*d*f, 0] && EqQ[c*e - b*f, 0] && EqQ[h*e - 2*g*f, 0]
-
Int[((g_.) + (h_.)*(x_))/(((a_) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symbo
l] :> Simp[-(h*e - 2*g*f)/(2*f) Int[1/((a + b*x + c*x^2)*Sqrt[d + e*x + f*x^2]), x], x] + Simp[h/(2*f) Int
[(e + 2*f*x)/((a + b*x + c*x^2)*Sqrt[d + e*x + f*x^2]), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && NeQ[b^
2 - 4*a*c, 0] && NeQ[e^2 - 4*d*f, 0] && EqQ[c*e - b*f, 0] && NeQ[h*e - 2*g*f, 0]
-
Int[(x_)/(((a_) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symbol] :> Simp[-2*e
Subst[Int[(1 - d*x^2)/(c*e - b*f - e*(2*c*d - b*e + 2*a*f)*x^2 + d^2*(c*e - b*f)*x^4), x], x, (1 + (e + Sqrt[
e^2 - 4*d*f])*(x/(2*d)))/Sqrt[d + e*x + f*x^2]], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b^2 - 4*a*c, 0] &&
NeQ[e^2 - 4*d*f, 0] && EqQ[b*d - a*e, 0]
-
Int[((g_) + (h_.)*(x_))/(((a_) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symbol]
:> Simp[g Subst[Int[1/(a + (c*d - a*f)*x^2), x], x, x/Sqrt[d + e*x + f*x^2]], x] /; FreeQ[{a, b, c, d, e, f
, g, h}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[e^2 - 4*d*f, 0] && EqQ[b*d - a*e, 0] && EqQ[2*h*d - g*e, 0]
-
Int[((g_) + (h_.)*(x_))/(((a_) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symbol]
:> Simp[-(2*h*d - g*e)/e Int[1/((a + b*x + c*x^2)*Sqrt[d + e*x + f*x^2]), x], x] + Simp[h/e Int[(2*d + e*
x)/((a + b*x + c*x^2)*Sqrt[d + e*x + f*x^2]), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && NeQ[b^2 - 4*a*c,
0] && NeQ[e^2 - 4*d*f, 0] && EqQ[b*d - a*e, 0] && NeQ[2*h*d - g*e, 0]
-
Int[((g_.) + (h_.)*(x_))/(((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symb
ol] :> Simp[-2*g*(g*b - 2*a*h) Subst[Int[1/Simp[g*(g*b - 2*a*h)*(b^2 - 4*a*c) - (b*d - a*e)*x^2, x], x], x,
Simp[g*b - 2*a*h - (b*h - 2*g*c)*x, x]/Sqrt[d + e*x + f*x^2]], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && NeQ
[b^2 - 4*a*c, 0] && NeQ[e^2 - 4*d*f, 0] && NeQ[b*d - a*e, 0] && EqQ[h^2*(b*d - a*e) - 2*g*h*(c*d - a*f) + g^2*
(c*e - b*f), 0]
-
Int[((g_) + (h_.)*(x_))/(((a_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symbol] :> Simp[-2*
a*g*h Subst[Int[1/Simp[2*a^2*g*h*c + a*e*x^2, x], x], x, Simp[a*h - g*c*x, x]/Sqrt[d + e*x + f*x^2]], x] /;
FreeQ[{a, c, d, e, f, g, h}, x] && EqQ[a*h^2*e + 2*g*h*(c*d - a*f) - g^2*c*e, 0]
-
Int[((g_) + (h_.)*(x_))/(((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_) + (f_.)*(x_)^2]), x_Symbol] :> Simp[-2*
g*(g*b - 2*a*h) Subst[Int[1/Simp[g*(g*b - 2*a*h)*(b^2 - 4*a*c) - b*d*x^2, x], x], x, Simp[g*b - 2*a*h - (b*h
- 2*g*c)*x, x]/Sqrt[d + f*x^2]], x] /; FreeQ[{a, b, c, d, f, g, h}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[b*h^2*d
- 2*g*h*(c*d - a*f) - g^2*b*f, 0]
-
Int[((g_.) + (h_.)*(x_))/(((a_) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symbo
l] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(2*c*g - h*(b - q))/q Int[1/((b - q + 2*c*x)*Sqrt[d + e*x + f*x^2]
), x], x] - Simp[(2*c*g - h*(b + q))/q Int[1/((b + q + 2*c*x)*Sqrt[d + e*x + f*x^2]), x], x]] /; FreeQ[{a, b
, c, d, e, f, g, h}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[e^2 - 4*d*f, 0] && PosQ[b^2 - 4*a*c]
-
Int[((g_.) + (h_.)*(x_))/(((a_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symbol] :> With[{q
= Rt[(-a)*c, 2]}, Simp[(h/2 + c*(g/(2*q))) Int[1/((-q + c*x)*Sqrt[d + e*x + f*x^2]), x], x] + Simp[(h/2 - c
*(g/(2*q))) Int[1/((q + c*x)*Sqrt[d + e*x + f*x^2]), x], x]] /; FreeQ[{a, c, d, e, f, g, h}, x] && NeQ[e^2 -
4*d*f, 0] && PosQ[(-a)*c]
-
Int[((g_.) + (h_.)*(x_))/(((a_) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_) + (f_.)*(x_)^2]), x_Symbol] :> With[{q
= Rt[b^2 - 4*a*c, 2]}, Simp[(2*c*g - h*(b - q))/q Int[1/((b - q + 2*c*x)*Sqrt[d + f*x^2]), x], x] - Simp[(2*
c*g - h*(b + q))/q Int[1/((b + q + 2*c*x)*Sqrt[d + f*x^2]), x], x]] /; FreeQ[{a, b, c, d, f, g, h}, x] && Ne
Q[b^2 - 4*a*c, 0] && PosQ[b^2 - 4*a*c]
-
Int[((g_.) + (h_.)*(x_))/(((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symb
ol] :> With[{q = Rt[(c*d - a*f)^2 - (b*d - a*e)*(c*e - b*f), 2]}, Simp[1/(2*q) Int[Simp[h*(b*d - a*e) - g*(c
*d - a*f - q) - (g*(c*e - b*f) - h*(c*d - a*f + q))*x, x]/((a + b*x + c*x^2)*Sqrt[d + e*x + f*x^2]), x], x] -
Simp[1/(2*q) Int[Simp[h*(b*d - a*e) - g*(c*d - a*f + q) - (g*(c*e - b*f) - h*(c*d - a*f - q))*x, x]/((a + b*
x + c*x^2)*Sqrt[d + e*x + f*x^2]), x], x]] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ
[e^2 - 4*d*f, 0] && NeQ[b*d - a*e, 0] && NegQ[b^2 - 4*a*c]
-
Int[((g_.) + (h_.)*(x_))/(((a_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symbol] :> With[{q
= Rt[(c*d - a*f)^2 + a*c*e^2, 2]}, Simp[1/(2*q) Int[Simp[(-a)*h*e - g*(c*d - a*f - q) + (h*(c*d - a*f + q)
- g*c*e)*x, x]/((a + c*x^2)*Sqrt[d + e*x + f*x^2]), x], x] - Simp[1/(2*q) Int[Simp[(-a)*h*e - g*(c*d - a*f +
q) + (h*(c*d - a*f - q) - g*c*e)*x, x]/((a + c*x^2)*Sqrt[d + e*x + f*x^2]), x], x]] /; FreeQ[{a, c, d, e, f,
g, h}, x] && NeQ[e^2 - 4*d*f, 0] && NegQ[(-a)*c]
-
Int[((g_.) + (h_.)*(x_))/(((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_) + (f_.)*(x_)^2]), x_Symbol] :> With[{q
= Rt[(c*d - a*f)^2 + b^2*d*f, 2]}, Simp[1/(2*q) Int[Simp[h*b*d - g*(c*d - a*f - q) + (h*(c*d - a*f + q) + g
*b*f)*x, x]/((a + b*x + c*x^2)*Sqrt[d + f*x^2]), x], x] - Simp[1/(2*q) Int[Simp[h*b*d - g*(c*d - a*f + q) +
(h*(c*d - a*f - q) + g*b*f)*x, x]/((a + b*x + c*x^2)*Sqrt[d + f*x^2]), x], x]] /; FreeQ[{a, b, c, d, f, g, h},
x] && NeQ[b^2 - 4*a*c, 0] && NegQ[b^2 - 4*a*c]
-
Int[((g_.) + (h_.)*(x_))/(Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2]*Sqrt[(d_) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Sy
mbol] :> With[{s = Rt[b^2 - 4*a*c, 2], t = Rt[e^2 - 4*d*f, 2]}, Simp[Sqrt[b + s + 2*c*x]*Sqrt[2*a + (b + s)*x]
*Sqrt[e + t + 2*f*x]*(Sqrt[2*d + (e + t)*x]/(Sqrt[a + b*x + c*x^2]*Sqrt[d + e*x + f*x^2])) Int[(g + h*x)/(Sq
rt[b + s + 2*c*x]*Sqrt[2*a + (b + s)*x]*Sqrt[e + t + 2*f*x]*Sqrt[2*d + (e + t)*x]), x], x]] /; FreeQ[{a, b, c,
d, e, f, g, h}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[e^2 - 4*d*f, 0]
-
Int[((g_.) + (h_.)*(x_))/(Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2]*Sqrt[(d_) + (f_.)*(x_)^2]), x_Symbol] :> With
[{s = Rt[b^2 - 4*a*c, 2], t = Rt[-4*d*f, 2]}, Simp[Sqrt[b + s + 2*c*x]*Sqrt[2*a + (b + s)*x]*Sqrt[t + 2*f*x]*(
Sqrt[2*d + t*x]/(Sqrt[a + b*x + c*x^2]*Sqrt[d + f*x^2])) Int[(g + h*x)/(Sqrt[b + s + 2*c*x]*Sqrt[2*a + (b +
s)*x]*Sqrt[t + 2*f*x]*Sqrt[2*d + t*x]), x], x]] /; FreeQ[{a, b, c, d, f, g, h}, x] && NeQ[b^2 - 4*a*c, 0]
-
Int[((g_.) + (h_.)*(x_))/(((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(1/3)*((d_.) + (e_.)*(x_) + (f_.)*(x_)^2)), x_Sy
mbol] :> With[{q = (-9*c*(h^2/(2*c*g - b*h)^2))^(1/3)}, Simp[Sqrt[3]*h*q*(ArcTan[1/Sqrt[3] - 2^(2/3)*((1 - (3*
h*(b + 2*c*x))/(2*c*g - b*h))^(2/3)/(Sqrt[3]*(1 + (3*h*(b + 2*c*x))/(2*c*g - b*h))^(1/3)))]/f), x] + (-Simp[3*
h*q*(Log[(1 - 3*h*((b + 2*c*x)/(2*c*g - b*h)))^(2/3) + 2^(1/3)*(1 + 3*h*((b + 2*c*x)/(2*c*g - b*h)))^(1/3)]/(2
*f)), x] + Simp[h*q*(Log[d + e*x + f*x^2]/(2*f)), x])] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && EqQ[c*e - b*f,
0] && EqQ[c^2*d - f*(b^2 - 3*a*c), 0] && EqQ[c^2*g^2 - b*c*g*h - 2*b^2*h^2 + 9*a*c*h^2, 0] && GtQ[-9*c*(h^2/(
2*c*g - b*h)^2), 0]
-
Int[((g_.) + (h_.)*(x_))/(((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(1/3)*((d_.) + (e_.)*(x_) + (f_.)*(x_)^2)), x_Sy
mbol] :> With[{q = -c/(b^2 - 4*a*c)}, Simp[(q*(a + b*x + c*x^2))^(1/3)/(a + b*x + c*x^2)^(1/3) Int[(g + h*x)
/((q*a + b*q*x + c*q*x^2)^(1/3)*(d + e*x + f*x^2)), x], x]] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && EqQ[c*e -
b*f, 0] && EqQ[c^2*d - f*(b^2 - 3*a*c), 0] && EqQ[c^2*g^2 - b*c*g*h - 2*b^2*h^2 + 9*a*c*h^2, 0] && !GtQ[4*a
- b^2/c, 0]
-
Int[((g_.) + (h_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)*((d_.) + (e_.)*(x_) + (f_.)*(x_)^2)^(q_), x_
Symbol] :> Unintegrable[(g + h*x)*(a + b*x + c*x^2)^p*(d + e*x + f*x^2)^q, x] /; FreeQ[{a, b, c, d, e, f, g, h
, p, q}, x]
-
Int[((g_.) + (h_.)*(x_))*((a_.) + (c_.)*(x_)^2)^(p_)*((d_.) + (e_.)*(x_) + (f_.)*(x_)^2)^(q_), x_Symbol] :> Un
integrable[(g + h*x)*(a + c*x^2)^p*(d + e*x + f*x^2)^q, x] /; FreeQ[{a, c, d, e, f, g, h, p, q}, x]
-
Int[((g_.) + (h_.)*(u_))^(m_.)*((a_.) + (b_.)*(u_) + (c_.)*(u_)^2)^(p_.)*((d_.) + (e_.)*(u_) + (f_.)*(u_)^2)^(
q_.), x_Symbol] :> Simp[1/Coefficient[u, x, 1] Subst[Int[(g + h*x)^m*(a + b*x + c*x^2)^p*(d + e*x + f*x^2)^q
, x], x, u], x] /; FreeQ[{a, b, c, d, e, f, g, h, m, p, q}, x] && LinearQ[u, x] && NeQ[u, x]
-
Int[((g_.) + (h_.)*(u_))^(m_.)*((a_.) + (c_.)*(u_)^2)^(p_.)*((d_.) + (e_.)*(u_) + (f_.)*(u_)^2)^(q_.), x_Symbo
l] :> Simp[1/Coefficient[u, x, 1] Subst[Int[(g + h*x)^m*(a + c*x^2)^p*(d + e*x + f*x^2)^q, x], x, u], x] /;
FreeQ[{a, c, d, e, f, g, h, m, p, q}, x] && LinearQ[u, x] && NeQ[u, x]
-
Int[((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[1/c^p Int[(b/2 + c*x^n)^(2*p), x],
x] /; FreeQ[{a, b, c, n, p}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p] && NeQ[p, 1]
-
Int[(u_)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Simp[1/c^p Int[u*(b/2 + c*x^n)^(2*
p), x], x] /; FreeQ[{a, b, c, n, p}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]
-
Int[(u_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_)*((d_) + (e_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[e
^q/c^(q/2) Int[u*(a + b*x^n + c*x^(2*n))^(p + q/2), x], x] /; FreeQ[{a, b, c, d, e, n, p, q}, x] && EqQ[n2,
2*n] && EqQ[b^2 - 4*a*c, 0] && EqQ[2*c*d - b*e, 0] && !IntegerQ[p] && IntegerQ[q/2]
-
Int[(u_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_)*((d_) + (e_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[e
^(q - 1)/c^((q - 1)/2) Int[u*(d + e*x^n)*(a + b*x^n + c*x^(2*n))^(p + (q - 1)/2), x], x] /; FreeQ[{a, b, c,
d, e, p}, x] && EqQ[b^2 - 4*a*c, 0] && EqQ[2*c*d - b*e, 0] && !IntegerQ[p] && IntegerQ[(q - 1)/2]
-
Int[(u_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Symbol] :> Simp[
(a + b*x^n + c*x^(2*n))^p/(d + e*x^n)^(2*p) Int[u*(d + e*x^n)^(q + 2*p), x], x] /; FreeQ[{a, b, c, d, e, n,
p, q}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && EqQ[2*c*d - b*e, 0] && !IntegerQ[p]
-
Int[(u_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(a + b*x^n + c*x^(2*n))^FracPar
t[p]/(c^IntPart[p]*(b/2 + c*x^n)^(2*FracPart[p])) Int[u*(b/2 + c*x^n)^(2*p), x], x] /; FreeQ[{a, b, c, n, p}
, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p - 1/2] && NeQ[u, x^(n - 1)] && NeQ[u, x^(2*n - 1)] &
& !(EqQ[p, 1/2] && EqQ[u, x^(-2*n - 1)])
-
Int[(u_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[a^IntPart[p]*((a + b*x^n + c*x^
(2*n))^FracPart[p]/(1 + 2*c*(x^n/b))^(2*FracPart[p])) Int[u*(1 + 2*c*(x^n/b))^(2*p), x], x] /; FreeQ[{a, b,
c, n, p}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && !IntegerQ[2*p] && NeQ[u, x^(n - 1)] && NeQ[u, x^(2*n -
1)]
-
Int[(u_.)*((a_) + (c_.)*(x_)^(n2_.))^(p_.)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Symbol] :> Simp[(-e^2/c)^q Int[
u*(d - e*x^n)^p, x], x] /; FreeQ[{a, c, d, e, n, p, q}, x] && EqQ[n2, 2*n] && EqQ[c*d^2 + a*e^2, 0] && EqQ[p +
q, 0] && GtQ[d, 0] && LtQ[c, 0] && GtQ[e^2, 0]
-
Int[(u_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Symbol] :> Int[
u*(d + e*x^n)^(p + q)*(a/d + (c/e)*x^n)^p, x] /; FreeQ[{a, b, c, d, e, n, p, q}, x] && EqQ[n2, 2*n] && EqQ[c*d
^2 - b*d*e + a*e^2, 0] && (IntegerQ[p] || (GtQ[a, 0] && GtQ[d, 0] && LtQ[c, 0]))
-
Int[(u_.)*((a_) + (c_.)*(x_)^(n2_.))^(p_.)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Symbol] :> Int[u*(d + e*x^n)^(p +
q)*(a/d + (c/e)*x^n)^p, x] /; FreeQ[{a, c, d, e, n, p, q}, x] && EqQ[n2, 2*n] && EqQ[c*d^2 + a*e^2, 0] && (In
tegerQ[p] || (GtQ[a, 0] && GtQ[d, 0]))
-
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> Simp[d/Sqrt[a] Int[Sqrt[1 + e*(x^2/d)]/Sqr
t[1 - e*(x^2/d)], x], x] /; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 + a*e^2, 0] && NegQ[c/a] && GtQ[a, 0]
-
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> Simp[Sqrt[1 + c*(x^4/a)]/Sqrt[a + c*x^4] I
nt[(d + e*x^2)/Sqrt[1 + c*(x^4/a)], x], x] /; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 + a*e^2, 0] && NegQ[c/a] &&
!GtQ[a, 0] && !(LtQ[a, 0] && GtQ[c, 0])
-
Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> Simp[x/(d*Sqrt[a + c*x^4]), x] + (-Simp[
(Sqrt[-1 + (e/d)*x^2]*Sqrt[1 + (e/d)*x^2]*EllipticE[ArcSin[(Sqrt[2]*Rt[e/d, 2]*x)/Sqrt[-1 + (e/d)*x^2]], 1/2])
/(Sqrt[2]*d*Rt[e/d, 2]*Sqrt[a + c*x^4]), x] + Simp[(Sqrt[-1 + (e/d)*x^2]*Sqrt[1 + (e/d)*x^2]*EllipticF[ArcSin[
(Sqrt[2]*Rt[e/d, 2]*x)/Sqrt[-1 + (e/d)*x^2]], 1/2])/(Sqrt[2]*d*Rt[e/d, 2]*Sqrt[a + c*x^4]), x]) /; FreeQ[{a, c
, d, e}, x] && EqQ[c*d^2 + a*e^2, 0] && LtQ[a, 0] && GtQ[c, 0] && PosQ[e/d]
-
Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> Simp[x/(d*Sqrt[a + c*x^4]), x] - Simp[(x
/(d*Sqrt[-2*a]*Sqrt[(-e/d)*x^2]))*EllipticE[ArcSin[Sqrt[-2*a]*(Sqrt[-1 - (e/d)*x^2]/Sqrt[a + c*x^4])], 1/2], x
] /; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 + a*e^2, 0] && LtQ[a, 0] && GtQ[c, 0] && NegQ[e/d]
-
Int[(x_)^2/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> Simp[-x/(e*Sqrt[a + c*x^4]), x] + S
imp[(Sqrt[-1 + (e/d)*x^2]*Sqrt[1 + (e/d)*x^2]*EllipticE[ArcSin[(Sqrt[2]*Rt[e/d, 2]*x)/Sqrt[-1 + (e/d)*x^2]], 1
/2])/(Sqrt[2]*e*Rt[e/d, 2]*Sqrt[a + c*x^4]), x] /; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 + a*e^2, 0] && LtQ[a, 0
] && GtQ[c, 0] && PosQ[e/d]
-
Int[(x_)^2/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> Simp[-x/(e*Sqrt[a + c*x^4]), x] + (
Simp[(x/(e*Sqrt[-2*a]*Sqrt[(-e/d)*x^2]))*EllipticE[ArcSin[(Sqrt[-2*a]*Sqrt[-1 - (e/d)*x^2])/Sqrt[a + c*x^4]],
1/2], x] - Simp[(x/(e*Sqrt[-2*a]*Sqrt[(-e/d)*x^2]))*EllipticF[ArcSin[(Sqrt[-2*a]*Sqrt[-1 - (e/d)*x^2])/Sqrt[a
+ c*x^4]], 1/2], x]) /; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 + a*e^2, 0] && LtQ[a, 0] && GtQ[c, 0] && NegQ[e/d]
-
Int[(u_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Symbol] :> Simp[
(a + b*x^n + c*x^(2*n))^FracPart[p]/((d + e*x^n)^FracPart[p]*(a/d + c*(x^n/e))^FracPart[p]) Int[u*(d + e*x^n
)^(p + q)*(a/d + (c/e)*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, n, p, q}, x] && EqQ[n2, 2*n] && EqQ[c*d^2 - b*d
*e + a*e^2, 0] && !IntegerQ[p] && !(EqQ[q, 1] && EqQ[n, 2])
-
Int[(u_.)*((a_) + (c_.)*(x_)^(n2_.))^(p_)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Symbol] :> Simp[(a + c*x^(2*n))^Fr
acPart[p]/((d + e*x^n)^FracPart[p]*(a/d + c*(x^n/e))^FracPart[p]) Int[u*(d + e*x^n)^(p + q)*(a/d + (c/e)*x^n
)^p, x], x] /; FreeQ[{a, c, d, e, n, p, q}, x] && EqQ[n2, 2*n] && EqQ[c*d^2 + a*e^2, 0] && !IntegerQ[p] && !
(EqQ[q, 1] && EqQ[n, 2])
-
Int[((b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Int[x^(2*p)*(b + c*x^2)^p, x] /; FreeQ[{b, c}, x] && Inte
gerQ[p]
-
Int[Sqrt[(b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> Simp[(b*x^2 + c*x^4)^(3/2)/(3*c*x^3), x] /; FreeQ[{b, c},
x]
-
Int[((b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(b*x^2 + c*x^4)^(p + 1)/(c*(4*p + 1)*x^3), x] - Simp
[b*((2*p - 1)/(c*(4*p + 1))) Int[(b*x^2 + c*x^4)^p/x^2, x], x] /; FreeQ[{b, c, p}, x] && IGtQ[p - 1/2, 0]
-
Int[1/Sqrt[(b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> -Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[b*x^2 + c*x^4]]
/; FreeQ[{b, c}, x]
-
Int[((b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[-(b*x^2 + c*x^4)^(p + 1)/(2*b*(p + 1)*x), x] + Simp[
(4*p + 3)/(2*b*(p + 1)) Int[(b*x^2 + c*x^4)^(p + 1)/x^2, x], x] /; FreeQ[{b, c}, x] && !IntegerQ[p] && LtQ[
p, -1]
-
Int[((b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(b*x^2 + c*x^4)^p/(x^(2*p)*(b + c*x^2)^p) Int[x^(2
*p)*(b + c*x^2)^p, x], x] /; FreeQ[{b, c, p}, x] && !IntegerQ[p]
-
Int[((a_.) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Int[ExpandIntegrand[(a + b*x^2 + c*x^4)^p, x], x]
/; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && IGtQ[p, 0]
-
Int[((a_.) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[x*((a + b*x^2 + c*x^4)^p/(4*p + 1)), x] + Si
mp[2*(p/(4*p + 1)) Int[(2*a + b*x^2)*(a + b*x^2 + c*x^4)^(p - 1), x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 -
4*a*c, 0] && GtQ[p, 0] && IntegerQ[2*p]
-
Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(-x)*(b^2 - 2*a*c + b*c*x^2)*((a + b*x^2 + c*
x^4)^(p + 1)/(2*a*(p + 1)*(b^2 - 4*a*c))), x] + Simp[1/(2*a*(p + 1)*(b^2 - 4*a*c)) Int[(b^2 - 2*a*c + 2*(p +
1)*(b^2 - 4*a*c) + b*c*(4*p + 7)*x^2)*(a + b*x^2 + c*x^4)^(p + 1), x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 -
4*a*c, 0] && LtQ[p, -1] && IntegerQ[2*p]
-
Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(-1), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[c/q Int[1/(b
/2 - q/2 + c*x^2), x], x] - Simp[c/q Int[1/(b/2 + q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 -
4*a*c, 0] && PosQ[b^2 - 4*a*c]
-
Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(-1), x_Symbol] :> With[{q = Rt[a/c, 2]}, With[{r = Rt[2*q - b/c, 2]}
, Simp[1/(2*c*q*r) Int[(r - x)/(q - r*x + x^2), x], x] + Simp[1/(2*c*q*r) Int[(r + x)/(q + r*x + x^2), x],
x]]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && NegQ[b^2 - 4*a*c]
-
Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[2*Sqrt[-c]
Int[1/(Sqrt[b + q + 2*c*x^2]*Sqrt[-b + q - 2*c*x^2]), x], x]] /; FreeQ[{a, b, c}, x] && GtQ[b^2 - 4*a*c, 0] &&
LtQ[c, 0]
-
Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(
a + b*x^2 + c*x^4)/(a*(1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^2 + c*x^4]))*EllipticF[2*ArcTan[q*x], 1/2 - b*(q^2/(
4*c))], x]] /; FreeQ[{a, b, c}, x] && GtQ[b^2 - 4*a*c, 0] && GtQ[c/a, 0] && LtQ[b/a, 0]
-
Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[Sqrt[-2*a - (
b - q)*x^2]*(Sqrt[(2*a + (b + q)*x^2)/q]/(2*Sqrt[-a]*Sqrt[a + b*x^2 + c*x^4]))*EllipticF[ArcSin[x/Sqrt[(2*a +
(b + q)*x^2)/(2*q)]], (b + q)/(2*q)], x] /; IntegerQ[q]] /; FreeQ[{a, b, c}, x] && GtQ[b^2 - 4*a*c, 0] && LtQ[
a, 0] && GtQ[c, 0]
-
Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[Sqrt[(2*a + (
b - q)*x^2)/(2*a + (b + q)*x^2)]*(Sqrt[(2*a + (b + q)*x^2)/q]/(2*Sqrt[a + b*x^2 + c*x^4]*Sqrt[a/(2*a + (b + q)
*x^2)]))*EllipticF[ArcSin[x/Sqrt[(2*a + (b + q)*x^2)/(2*q)]], (b + q)/(2*q)], x]] /; FreeQ[{a, b, c}, x] && Gt
Q[b^2 - 4*a*c, 0] && LtQ[a, 0] && GtQ[c, 0]
-
Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(2*a + (b + q
)*x^2)*(Sqrt[(2*a + (b - q)*x^2)/(2*a + (b + q)*x^2)]/(2*a*Rt[(b + q)/(2*a), 2]*Sqrt[a + b*x^2 + c*x^4]))*Elli
pticF[ArcTan[Rt[(b + q)/(2*a), 2]*x], 2*(q/(b + q))], x] /; PosQ[(b + q)/a] && !(PosQ[(b - q)/a] && SimplerSq
rtQ[(b - q)/(2*a), (b + q)/(2*a)])] /; FreeQ[{a, b, c}, x] && GtQ[b^2 - 4*a*c, 0]
-
Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(2*a + (b - q
)*x^2)*(Sqrt[(2*a + (b + q)*x^2)/(2*a + (b - q)*x^2)]/(2*a*Rt[(b - q)/(2*a), 2]*Sqrt[a + b*x^2 + c*x^4]))*Elli
pticF[ArcTan[Rt[(b - q)/(2*a), 2]*x], -2*(q/(b - q))], x] /; PosQ[(b - q)/a]] /; FreeQ[{a, b, c}, x] && GtQ[b^
2 - 4*a*c, 0]
-
Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[Sqrt[1 + (b +
q)*(x^2/(2*a))]*(Sqrt[1 + (b - q)*(x^2/(2*a))]/(Rt[-(b + q)/(2*a), 2]*Sqrt[a + b*x^2 + c*x^4]))*EllipticF[Arc
Sin[Rt[-(b + q)/(2*a), 2]*x], (b - q)/(b + q)], x] /; NegQ[(b + q)/a] && !(NegQ[(b - q)/a] && SimplerSqrtQ[-(
b - q)/(2*a), -(b + q)/(2*a)])] /; FreeQ[{a, b, c}, x] && GtQ[b^2 - 4*a*c, 0]
-
Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[Sqrt[1 + (b -
q)*(x^2/(2*a))]*(Sqrt[1 + (b + q)*(x^2/(2*a))]/(Rt[-(b - q)/(2*a), 2]*Sqrt[a + b*x^2 + c*x^4]))*EllipticF[Arc
Sin[Rt[-(b - q)/(2*a), 2]*x], (b + q)/(b - q)], x] /; NegQ[(b - q)/a]] /; FreeQ[{a, b, c}, x] && GtQ[b^2 - 4*a
*c, 0]
-
Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(
a + b*x^2 + c*x^4)/(a*(1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^2 + c*x^4]))*EllipticF[2*ArcTan[q*x], 1/2 - b*(q^2/(
4*c))], x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]
-
Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[Sqrt[1 + 2*c*
(x^2/(b - q))]*(Sqrt[1 + 2*c*(x^2/(b + q))]/Sqrt[a + b*x^2 + c*x^4]) Int[1/(Sqrt[1 + 2*c*(x^2/(b - q))]*Sqrt
[1 + 2*c*(x^2/(b + q))]), x], x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && NegQ[c/a]
-
Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[a^IntPart[p]*(
(a + b*x^2 + c*x^4)^FracPart[p]/((1 + 2*c*(x^2/(b + q)))^FracPart[p]*(1 + 2*c*(x^2/(b - q)))^FracPart[p])) I
nt[(1 + 2*c*(x^2/(b + q)))^p*(1 + 2*c*(x^2/(b - q)))^p, x], x]] /; FreeQ[{a, b, c, p}, x] && NeQ[b^2 - 4*a*c,
0]
-
Int[((d_.)*(x_))^(m_.)*((b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[1/d^(2*p) Int[(d*x)^(m + 2*p)*(
b + c*x^2)^p, x], x] /; FreeQ[{b, c, d, m}, x] && IntegerQ[p]
-
Int[((d_.)*(x_))^(m_)*((b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[d^3*(d*x)^(m - 3)*((b*x^2 + c*x^4)
^(p + 1)/(2*c*(p + 1))), x] /; FreeQ[{b, c, d, m, p}, x] && !IntegerQ[p] && EqQ[m + 2*p - 1, 0]
-
Int[((d_.)*(x_))^(m_)*((b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[d^3*(d*x)^(m - 3)*((b*x^2 + c*x^4)
^(p + 1)/(c*(m + 4*p + 1))), x] - Simp[b*d^2*((m + 2*p - 1)/(c*(m + 4*p + 1))) Int[(d*x)^(m - 2)*(b*x^2 + c*
x^4)^p, x], x] /; FreeQ[{b, c, d, m, p}, x] && !IntegerQ[p] && IGtQ[Simplify[(m + 2*p - 1)/2], 0] && NeQ[m +
4*p + 1, 0]
-
Int[((d_.)*(x_))^(m_)*((b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(-d)*(d*x)^(m - 1)*((b*x^2 + c*x^4
)^(p + 1)/(2*b*(p + 1))), x] /; FreeQ[{b, c, d, m, p}, x] && !IntegerQ[p] && EqQ[m + 4*p + 3, 0]
-
Int[((d_.)*(x_))^(m_)*((b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[d*(d*x)^(m - 1)*((b*x^2 + c*x^4)^(
p + 1)/(b*(m + 2*p + 1))), x] - Simp[c*((m + 4*p + 3)/(b*d^2*(m + 2*p + 1))) Int[(d*x)^(m + 2)*(b*x^2 + c*x^
4)^p, x], x] /; FreeQ[{b, c, d, m, p}, x] && !IntegerQ[p] && ILtQ[Simplify[(m + 4*p + 3)/2], 0] && NeQ[m + 2*
p + 1, 0]
-
Int[(x_)^(m_.)*((b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[1/2 Subst[Int[x^((m - 1)/2)*(b*x + c*x^
2)^p, x], x, x^2], x] /; FreeQ[{b, c, m, p}, x] && !IntegerQ[p] && IntegerQ[(m - 1)/2]
-
Int[((d_.)*(x_))^(m_)*((b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(d*x)^(m + 1)*((b*x^2 + c*x^4)^p/(
d*(m + 2*p + 1))), x] - Simp[2*c*(p/(d^4*(m + 2*p + 1))) Int[(d*x)^(m + 4)*(b*x^2 + c*x^4)^(p - 1), x], x] /
; FreeQ[{b, c, d, m, p}, x] && !IntegerQ[p] && GtQ[p, 0] && LtQ[m + 2*p + 1, 0]
-
Int[((d_.)*(x_))^(m_)*((b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(d*x)^(m + 1)*((b*x^2 + c*x^4)^p/(
d*(m + 4*p + 1))), x] + Simp[2*b*(p/(d^2*(m + 4*p + 1))) Int[(d*x)^(m + 2)*(b*x^2 + c*x^4)^(p - 1), x], x] /
; FreeQ[{b, c, d, m, p}, x] && !IntegerQ[p] && GtQ[p, 0] && NeQ[m + 4*p + 1, 0]
-
Int[((d_.)*(x_))^(m_)*((b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[d^3*(d*x)^(m - 3)*((b*x^2 + c*x^4)
^(p + 1)/(2*c*(p + 1))), x] - Simp[d^4*((m + 2*p - 1)/(2*c*(p + 1))) Int[(d*x)^(m - 4)*(b*x^2 + c*x^4)^(p +
1), x], x] /; FreeQ[{b, c, d, m, p}, x] && !IntegerQ[p] && LtQ[p, -1] && GtQ[m + 2*p + 1, 2]
-
Int[((d_.)*(x_))^(m_)*((b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(-d)*(d*x)^(m - 1)*((b*x^2 + c*x^4
)^(p + 1)/(2*b*(p + 1))), x] + Simp[d^2*((m + 4*p + 3)/(2*b*(p + 1))) Int[(d*x)^(m - 2)*(b*x^2 + c*x^4)^(p +
1), x], x] /; FreeQ[{b, c, d, m, p}, x] && !IntegerQ[p] && LtQ[p, -1]
-
Int[((d_.)*(x_))^(m_)*((b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[d^3*(d*x)^(m - 3)*((b*x^2 + c*x^4)
^(p + 1)/(c*(m + 4*p + 1))), x] - Simp[b*d^2*((m + 2*p - 1)/(c*(m + 4*p + 1))) Int[(d*x)^(m - 2)*(b*x^2 + c*
x^4)^p, x], x] /; FreeQ[{b, c, d, m, p}, x] && !IntegerQ[p] && GtQ[m + 2*p - 1, 0] && NeQ[m + 4*p + 1, 0]
-
Int[((d_.)*(x_))^(m_)*((b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[d*(d*x)^(m - 1)*((b*x^2 + c*x^4)^(
p + 1)/(b*(m + 2*p + 1))), x] - Simp[c*((m + 4*p + 3)/(b*d^2*(m + 2*p + 1))) Int[(d*x)^(m + 2)*(b*x^2 + c*x^
4)^p, x], x] /; FreeQ[{b, c, d, m, p}, x] && !IntegerQ[p] && LtQ[m + 2*p + 1, 0]
-
Int[((d_.)*(x_))^(m_)*((b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(b*x^2 + c*x^4)^p/((d*x)^(2*p)*(b
+ c*x^2)^p) Int[(d*x)^(m + 2*p)*(b + c*x^2)^p, x], x] /; FreeQ[{b, c, d, m, p}, x] && !IntegerQ[p]
-
Int[(x_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[1/2 Subst[Int[(a + b*x + c*x^2)^p, x],
x, x^2], x] /; FreeQ[{a, b, c, p}, x]
-
Int[((d_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(d*x)^m*(a
+ b*x^2 + c*x^4)^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[p, 0] && (EqQ[p, 1] || !IntegerQ[(m + 1)/2])
-
Int[(x_)^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Simp[1/2 Subst[Int[x^((m - 1)/2)*(a +
b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, p}, x] && IntegerQ[(m - 1)/2]
-
Int[((d_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> With[{k = Denominator[m]}, Simp[
k/d Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/d^2) + c*(x^(4*k)/d^4))^p, x], x, (d*x)^(1/k)], x]] /; FreeQ
[{a, b, c, d, p}, x] && NeQ[b^2 - 4*a*c, 0] && FractionQ[m] && IntegerQ[p]
-
Int[((d_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[d*(d*x)^(m - 1)*(a + b*x^2
+ c*x^4)^p*((2*b*p + c*(m + 4*p - 1)*x^2)/(c*(m + 4*p + 1)*(m + 4*p - 1))), x] - Simp[2*p*(d^2/(c*(m + 4*p + 1
)*(m + 4*p - 1))) Int[(d*x)^(m - 2)*(a + b*x^2 + c*x^4)^(p - 1)*Simp[a*b*(m - 1) - (2*a*c*(m + 4*p - 1) - b^
2*(m + 2*p - 1))*x^2, x], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b^2 - 4*a*c, 0] && GtQ[p, 0] && GtQ[m, 1] &&
IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])
-
Int[((d_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(d*x)^(m + 1)*((a + b*x^2 +
c*x^4)^p/(d*(m + 1))), x] - Simp[2*(p/(d^2*(m + 1))) Int[(d*x)^(m + 2)*(b + 2*c*x^2)*(a + b*x^2 + c*x^4)^(p
- 1), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b^2 - 4*a*c, 0] && GtQ[p, 0] && LtQ[m, -1] && IntegerQ[2*p] &&
(IntegerQ[p] || IntegerQ[m])
-
Int[((d_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(d*x)^(m + 1)*((a + b*x^2 +
c*x^4)^p/(d*(m + 4*p + 1))), x] + Simp[2*(p/(m + 4*p + 1)) Int[(d*x)^m*(2*a + b*x^2)*(a + b*x^2 + c*x^4)^(p
- 1), x], x] /; FreeQ[{a, b, c, d, m}, x] && NeQ[b^2 - 4*a*c, 0] && GtQ[p, 0] && NeQ[m + 4*p + 1, 0] && Integ
erQ[2*p] && (IntegerQ[p] || IntegerQ[m])
-
Int[((d_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[d*(d*x)^(m - 1)*(b + 2*c*x^
2)*((a + b*x^2 + c*x^4)^(p + 1)/(2*(p + 1)*(b^2 - 4*a*c))), x] - Simp[d^2/(2*(p + 1)*(b^2 - 4*a*c)) Int[(d*x
)^(m - 2)*(b*(m - 1) + 2*c*(m + 4*p + 5)*x^2)*(a + b*x^2 + c*x^4)^(p + 1), x], x] /; FreeQ[{a, b, c, d}, x] &&
NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && GtQ[m, 1] && LeQ[m, 3] && IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])
-
Int[((d_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(-d^3)*(d*x)^(m - 3)*(2*a +
b*x^2)*((a + b*x^2 + c*x^4)^(p + 1)/(2*(p + 1)*(b^2 - 4*a*c))), x] + Simp[d^4/(2*(p + 1)*(b^2 - 4*a*c)) Int
[(d*x)^(m - 4)*(2*a*(m - 3) + b*(m + 4*p + 3)*x^2)*(a + b*x^2 + c*x^4)^(p + 1), x], x] /; FreeQ[{a, b, c, d},
x] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && GtQ[m, 3] && IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])
-
Int[((d_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(-(d*x)^(m + 1))*(b^2 - 2*a
*c + b*c*x^2)*((a + b*x^2 + c*x^4)^(p + 1)/(2*a*d*(p + 1)*(b^2 - 4*a*c))), x] + Simp[1/(2*a*(p + 1)*(b^2 - 4*a
*c)) Int[(d*x)^m*(a + b*x^2 + c*x^4)^(p + 1)*Simp[b^2*(m + 2*p + 3) - 2*a*c*(m + 4*p + 5) + b*c*(m + 4*p + 7
)*x^2, x], x], x] /; FreeQ[{a, b, c, d, m}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && IntegerQ[2*p] && (Integ
erQ[p] || IntegerQ[m])
-
Int[((d_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[d^3*(d*x)^(m - 3)*((a + b*x
^2 + c*x^4)^(p + 1)/(c*(m + 4*p + 1))), x] - Simp[d^4/(c*(m + 4*p + 1)) Int[(d*x)^(m - 4)*Simp[a*(m - 3) + b
*(m + 2*p - 1)*x^2, x]*(a + b*x^2 + c*x^4)^p, x], x] /; FreeQ[{a, b, c, d, p}, x] && NeQ[b^2 - 4*a*c, 0] && Gt
Q[m, 3] && NeQ[m + 4*p + 1, 0] && IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])
-
Int[((d_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(d*x)^(m + 1)*((a + b*x^2 +
c*x^4)^(p + 1)/(a*d*(m + 1))), x] - Simp[1/(a*d^2*(m + 1)) Int[(d*x)^(m + 2)*(b*(m + 2*p + 3) + c*(m + 4*p
+ 5)*x^2)*(a + b*x^2 + c*x^4)^p, x], x] /; FreeQ[{a, b, c, d, p}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[m, -1] && I
ntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])
-
Int[((d_.)*(x_))^(m_)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> Simp[(d*x)^(m + 1)/(a*d*(m + 1)), x]
- Simp[1/(a*d^2) Int[(d*x)^(m + 2)*((b + c*x^2)/(a + b*x^2 + c*x^4)), x], x] /; FreeQ[{a, b, c, d}, x] && Ne
Q[b^2 - 4*a*c, 0] && LtQ[m, -1]
-
Int[(x_)^(m_)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> Int[PolynomialDivide[x^m, a + b*x^2 + c*x^4,
x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && IGtQ[m, 5]
-
Int[((d_.)*(x_))^(m_)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> Simp[d^3*((d*x)^(m - 3)/(c*(m - 3))),
x] - Simp[d^4/c Int[(d*x)^(m - 4)*((a + b*x^2)/(a + b*x^2 + c*x^4)), x], x] /; FreeQ[{a, b, c, d}, x] && Ne
Q[b^2 - 4*a*c, 0] && GtQ[m, 3]
-
Int[(x_)^2/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a/c, 2]}, Simp[1/2 Int[(q + x^2)/
(a + b*x^2 + c*x^4), x], x] - Simp[1/2 Int[(q - x^2)/(a + b*x^2 + c*x^4), x], x]] /; FreeQ[{a, b, c}, x] &&
LtQ[b^2 - 4*a*c, 0] && PosQ[a*c]
-
Int[(x_)^(m_)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a/c, 2]}, With[{r = Rt[2*q - b/c
, 2]}, -Simp[1/(2*c*r) Int[x^(m - 3)*((q - r*x)/(q - r*x + x^2)), x], x] + Simp[1/(2*c*r) Int[x^(m - 3)*((
q + r*x)/(q + r*x + x^2)), x], x]]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && GeQ[m, 3] && LtQ[m, 4] &&
NegQ[b^2 - 4*a*c]
-
Int[(x_)^(m_)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a/c, 2]}, With[{r = Rt[2*q - b/c
, 2]}, Simp[1/(2*c*r) Int[x^(m - 1)/(q - r*x + x^2), x], x] - Simp[1/(2*c*r) Int[x^(m - 1)/(q + r*x + x^2)
, x], x]]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && GeQ[m, 1] && LtQ[m, 3] && NegQ[b^2 - 4*a*c]
-
Int[((d_.)*(x_))^(m_)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(
d^2/2)*(b/q + 1) Int[(d*x)^(m - 2)/(b/2 + q/2 + c*x^2), x], x] - Simp[(d^2/2)*(b/q - 1) Int[(d*x)^(m - 2)/
(b/2 - q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d}, x] && NeQ[b^2 - 4*a*c, 0] && GeQ[m, 2]
-
Int[((d_.)*(x_))^(m_)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[c
/q Int[(d*x)^m/(b/2 - q/2 + c*x^2), x], x] - Simp[c/q Int[(d*x)^m/(b/2 + q/2 + c*x^2), x], x]] /; FreeQ[{a
, b, c, d, m}, x] && NeQ[b^2 - 4*a*c, 0]
-
Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[2*Sqrt[-
c] Int[x^2/(Sqrt[b + q + 2*c*x^2]*Sqrt[-b + q - 2*c*x^2]), x], x]] /; FreeQ[{a, b, c}, x] && GtQ[b^2 - 4*a*c
, 0] && LtQ[c, 0]
-
Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 2]}, Simp[1/q Int[1/Sqrt
[a + b*x^2 + c*x^4], x], x] - Simp[1/q Int[(1 - q*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x]] /; FreeQ[{a, b, c},
x] && GtQ[b^2 - 4*a*c, 0] && GtQ[c/a, 0] && LtQ[b/a, 0]
-
Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[-(b - q)
/(2*c) Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] + Simp[1/(2*c) Int[(b - q + 2*c*x^2)/Sqrt[a + b*x^2 + c*x^4],
x], x]] /; FreeQ[{a, b, c}, x] && GtQ[b^2 - 4*a*c, 0] && LtQ[a, 0] && GtQ[c, 0]
-
Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[x*((b +
q + 2*c*x^2)/(2*c*Sqrt[a + b*x^2 + c*x^4])), x] - Simp[Rt[(b + q)/(2*a), 2]*(2*a + (b + q)*x^2)*(Sqrt[(2*a + (
b - q)*x^2)/(2*a + (b + q)*x^2)]/(2*c*Sqrt[a + b*x^2 + c*x^4]))*EllipticE[ArcTan[Rt[(b + q)/(2*a), 2]*x], 2*(q
/(b + q))], x] /; PosQ[(b + q)/a] && !(PosQ[(b - q)/a] && SimplerSqrtQ[(b - q)/(2*a), (b + q)/(2*a)])] /; Fre
eQ[{a, b, c}, x] && GtQ[b^2 - 4*a*c, 0]
-
Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[x*((b -
q + 2*c*x^2)/(2*c*Sqrt[a + b*x^2 + c*x^4])), x] - Simp[Rt[(b - q)/(2*a), 2]*(2*a + (b - q)*x^2)*(Sqrt[(2*a + (
b + q)*x^2)/(2*a + (b - q)*x^2)]/(2*c*Sqrt[a + b*x^2 + c*x^4]))*EllipticE[ArcTan[Rt[(b - q)/(2*a), 2]*x], -2*(
q/(b - q))], x] /; PosQ[(b - q)/a]] /; FreeQ[{a, b, c}, x] && GtQ[b^2 - 4*a*c, 0]
-
Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[-(b + q)
/(2*c) Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] + Simp[1/(2*c) Int[(b + q + 2*c*x^2)/Sqrt[a + b*x^2 + c*x^4],
x], x] /; NegQ[(b + q)/a] && !(NegQ[(b - q)/a] && SimplerSqrtQ[-(b - q)/(2*a), -(b + q)/(2*a)])] /; FreeQ[{a
, b, c}, x] && GtQ[b^2 - 4*a*c, 0]
-
Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[-(b - q)
/(2*c) Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] + Simp[1/(2*c) Int[(b - q + 2*c*x^2)/Sqrt[a + b*x^2 + c*x^4],
x], x] /; NegQ[(b - q)/a]] /; FreeQ[{a, b, c}, x] && GtQ[b^2 - 4*a*c, 0]
-
Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 2]}, Simp[1/q Int[1/Sqrt
[a + b*x^2 + c*x^4], x], x] - Simp[1/q Int[(1 - q*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x]] /; FreeQ[{a, b, c},
x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]
-
Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[Sqrt[1 +
2*c*(x^2/(b - q))]*(Sqrt[1 + 2*c*(x^2/(b + q))]/Sqrt[a + b*x^2 + c*x^4]) Int[x^2/(Sqrt[1 + 2*c*(x^2/(b - q)
)]*Sqrt[1 + 2*c*(x^2/(b + q))]), x], x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && NegQ[c/a]
-
Int[((d_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[a^IntPart[p]*((a + b*x^2 +
c*x^4)^FracPart[p]/((1 + 2*c*(x^2/(b + Rt[b^2 - 4*a*c, 2])))^FracPart[p]*(1 + 2*c*(x^2/(b - Rt[b^2 - 4*a*c, 2]
)))^FracPart[p])) Int[(d*x)^m*(1 + 2*c*(x^2/(b + Sqrt[b^2 - 4*a*c])))^p*(1 + 2*c*(x^2/(b - Sqrt[b^2 - 4*a*c]
)))^p, x], x] /; FreeQ[{a, b, c, d, m, p}, x]
-
Int[(u_)^(m_.)*((a_.) + (b_.)*(v_)^2 + (c_.)*(v_)^4)^(p_.), x_Symbol] :> Simp[u^m/(Coefficient[v, x, 1]*v^m)
Subst[Int[x^m*(a + b*x^2 + c*x^(2*2))^p, x], x, v], x] /; FreeQ[{a, b, c, m, p}, x] && LinearPairQ[u, v, x]
-
Int[((d_) + (e_.)*(x_)^2)/((b_.)*(x_)^2 + (c_.)*(x_)^4)^(3/4), x_Symbol] :> Simp[-2*(c*d - b*e)*((b*x^2 + c*x^
4)^(1/4)/(b*c*x)), x] + Simp[e/c Int[(b*x^2 + c*x^4)^(1/4)/x^2, x], x] /; FreeQ[{b, c, d, e}, x]
-
Int[((d_) + (e_.)*(x_)^2)*((b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[e*((b*x^2 + c*x^4)^(p + 1)/(c*
(4*p + 3)*x)), x] /; FreeQ[{b, c, d, e, p}, x] && !IntegerQ[p] && NeQ[4*p + 3, 0] && EqQ[b*e*(2*p + 1) - c*d*
(4*p + 3), 0]
-
Int[((d_) + (e_.)*(x_)^2)*((b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[e*((b*x^2 + c*x^4)^(p + 1)/(c*
(4*p + 3)*x)), x] - Simp[(b*e*(2*p + 1) - c*d*(4*p + 3))/(c*(4*p + 3)) Int[(b*x^2 + c*x^4)^p, x], x] /; Free
Q[{b, c, d, e, p}, x] && !IntegerQ[p] && NeQ[4*p + 3, 0] && NeQ[b*e*(2*p + 1) - c*d*(4*p + 3), 0]
-
Int[((d_) + (e_.)*(x_)^2)^(q_.)*((b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(b*x^2 + c*x^4)^FracPart
[p]/(x^(2*FracPart[p])*(b + c*x^2)^FracPart[p]) Int[x^(2*p)*(d + e*x^2)^q*(b + c*x^2)^p, x], x] /; FreeQ[{b,
c, d, e, p, q}, x] && !IntegerQ[p]
-
Int[((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(
d + e*x^2)^q*(a + b*x^2 + c*x^4)^p, x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 -
b*d*e + a*e^2, 0] && IGtQ[p, 0] && IGtQ[q, -2]
-
Int[((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(d + e*x^2)^q*(a
+ c*x^4)^p, x], x] /; FreeQ[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && IGtQ[p, 0] && IGtQ[q, -2]
-
Int[((d_) + (e_.)*(x_)^2)^(q_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Simp[a^p*x*((d + e*x^2
)^(q + 1)/d), x] + Simp[1/d Int[x^2*(d + e*x^2)^q*(d*PolynomialQuotient[(a + b*x^2 + c*x^4)^p - a^p, x^2, x]
- e*a^p*(2*q + 3)), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2,
0] && IGtQ[p, 0] && ILtQ[q + 1/2, 0] && LtQ[4*p + 2*q + 1, 0]
-
Int[((d_) + (e_.)*(x_)^2)^(q_)*((a_) + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Simp[a^p*x*((d + e*x^2)^(q + 1)/d), x
] + Simp[1/d Int[x^2*(d + e*x^2)^q*(d*PolynomialQuotient[(a + c*x^4)^p - a^p, x^2, x] - e*a^p*(2*q + 3)), x]
, x] /; FreeQ[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && IGtQ[p, 0] && ILtQ[q + 1/2, 0] && LtQ[4*p + 2*q + 1
, 0]
-
Int[((d_) + (e_.)*(x_)^2)^(q_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> With[{Qx = PolynomialQ
uotient[(a + b*x^2 + c*x^4)^p, d + e*x^2, x], R = Coeff[PolynomialRemainder[(a + b*x^2 + c*x^4)^p, d + e*x^2,
x], x, 0]}, Simp[(-R)*x*((d + e*x^2)^(q + 1)/(2*d*(q + 1))), x] + Simp[1/(2*d*(q + 1)) Int[(d + e*x^2)^(q +
1)*ExpandToSum[2*d*(q + 1)*Qx + R*(2*q + 3), x], x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] &
& NeQ[c*d^2 - b*d*e + a*e^2, 0] && IGtQ[p, 0] && LtQ[q, -1]
-
Int[((d_) + (e_.)*(x_)^2)^(q_)*((a_) + (c_.)*(x_)^4)^(p_.), x_Symbol] :> With[{Qx = PolynomialQuotient[(a + c*
x^4)^p, d + e*x^2, x], R = Coeff[PolynomialRemainder[(a + c*x^4)^p, d + e*x^2, x], x, 0]}, Simp[(-R)*x*((d + e
*x^2)^(q + 1)/(2*d*(q + 1))), x] + Simp[1/(2*d*(q + 1)) Int[(d + e*x^2)^(q + 1)*ExpandToSum[2*d*(q + 1)*Qx +
R*(2*q + 3), x], x], x]] /; FreeQ[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && IGtQ[p, 0] && LtQ[q, -1]
-
Int[((d_) + (e_.)*(x_)^2)^(q_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Simp[c^p*x^(4*p - 1)*(
(d + e*x^2)^(q + 1)/(e*(4*p + 2*q + 1))), x] + Simp[1/(e*(4*p + 2*q + 1)) Int[(d + e*x^2)^q*ExpandToSum[e*(4
*p + 2*q + 1)*(a + b*x^2 + c*x^4)^p - d*c^p*(4*p - 1)*x^(4*p - 2) - e*c^p*(4*p + 2*q + 1)*x^(4*p), x], x], x]
/; FreeQ[{a, b, c, d, e, q}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && IGtQ[p, 0] && !LtQ
[q, -1]
-
Int[((d_) + (e_.)*(x_)^2)^(q_)*((a_) + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Simp[c^p*x^(4*p - 1)*((d + e*x^2)^(q
+ 1)/(e*(4*p + 2*q + 1))), x] + Simp[1/(e*(4*p + 2*q + 1)) Int[(d + e*x^2)^q*ExpandToSum[e*(4*p + 2*q + 1)*(
a + c*x^4)^p - d*c^p*(4*p - 1)*x^(4*p - 2) - e*c^p*(4*p + 2*q + 1)*x^(4*p), x], x], x] /; FreeQ[{a, c, d, e, q
}, x] && NeQ[c*d^2 + a*e^2, 0] && IGtQ[p, 0] && !LtQ[q, -1]
-
Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[2*(d/e) - b/c, 2]},
Simp[e/(2*c) Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[e/(2*c) Int[1/Simp[d/e - q*x + x^2, x], x], x]]
/; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - a*e^2, 0] && (GtQ[2*(d/e) - b/c, 0] || ( !
LtQ[2*(d/e) - b/c, 0] && EqQ[d - e*Rt[a/c, 2], 0]))
-
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[2*(d/e), 2]}, Simp[e/(2*c) Int[1/
Simp[d/e + q*x + x^2, x], x], x] + Simp[e/(2*c) Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e
}, x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
-
Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Si
mp[(e/2 + (2*c*d - b*e)/(2*q)) Int[1/(b/2 - q/2 + c*x^2), x], x] + Simp[(e/2 - (2*c*d - b*e)/(2*q)) Int[1/
(b/2 + q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - a*e^2, 0] && G
tQ[b^2 - 4*a*c, 0]
-
Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[-2*(d/e) - b/c, 2]},
Simp[e/(2*c*q) Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Simp[e/(2*c*q) Int[(q + 2*x)/Simp[d/e - q
*x - x^2, x], x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - a*e^2, 0] && !GtQ[b^
2 - 4*a*c, 0]
-
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[-2*(d/e), 2]}, Simp[e/(2*c*q) Int
[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Simp[e/(2*c*q) Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]]
/; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
-
Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Si
mp[(e/2 + (2*c*d - b*e)/(2*q)) Int[1/(b/2 - q/2 + c*x^2), x], x] + Simp[(e/2 - (2*c*d - b*e)/(2*q)) Int[1/
(b/2 + q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - a*e^2, 0] && P
osQ[b^2 - 4*a*c]
-
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-a)*c, 2]}, Simp[(e/2 + c*(d/(2*q)
)) Int[1/(-q + c*x^2), x], x] + Simp[(e/2 - c*(d/(2*q))) Int[1/(q + c*x^2), x], x]] /; FreeQ[{a, c, d, e},
x] && NeQ[c*d^2 - a*e^2, 0] && PosQ[(-a)*c]
-
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a*c, 2]}, Simp[(d*q + a*e)/(2*a*c)
Int[(q + c*x^2)/(a + c*x^4), x], x] + Simp[(d*q - a*e)/(2*a*c) Int[(q - c*x^2)/(a + c*x^4), x], x]] /; Fre
eQ[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[(-a)*c]
-
Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a/c, 2]}, With[{r =
Rt[2*q - b/c, 2]}, Simp[1/(2*c*q*r) Int[(d*r - (d - e*q)*x)/(q - r*x + x^2), x], x] + Simp[1/(2*c*q*r) Int
[(d*r + (d - e*q)*x)/(q + r*x + x^2), x], x]]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^
2 - b*d*e + a*e^2, 0] && NegQ[b^2 - 4*a*c]
-
Int[((d_) + (e_.)*(x_)^2)^(q_)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> Int[ExpandIntegrand[(d + e*x
^2)^q/(a + b*x^2 + c*x^4), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a
*e^2, 0] && IntegerQ[q]
-
Int[((d_) + (e_.)*(x_)^2)^(q_)/((a_) + (c_.)*(x_)^4), x_Symbol] :> Int[ExpandIntegrand[(d + e*x^2)^q/(a + c*x^
4), x], x] /; FreeQ[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && IntegerQ[q]
-
Int[((d_) + (e_.)*(x_)^2)^(q_)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> Simp[e^2/(c*d^2 - b*d*e + a*
e^2) Int[(d + e*x^2)^q, x], x] + Simp[1/(c*d^2 - b*d*e + a*e^2) Int[(d + e*x^2)^(q + 1)*((c*d - b*e - c*e*
x^2)/(a + b*x^2 + c*x^4)), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a
*e^2, 0] && !IntegerQ[q] && LtQ[q, -1]
-
Int[((d_) + (e_.)*(x_)^2)^(q_)/((a_) + (c_.)*(x_)^4), x_Symbol] :> Simp[e^2/(c*d^2 + a*e^2) Int[(d + e*x^2)^
q, x], x] + Simp[c/(c*d^2 + a*e^2) Int[(d + e*x^2)^(q + 1)*((d - e*x^2)/(a + c*x^4)), x], x] /; FreeQ[{a, c,
d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && !IntegerQ[q] && LtQ[q, -1]
-
Int[((d_) + (e_.)*(x_)^2)^(q_)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{r = Rt[b^2 - 4*a*c, 2]
}, Simp[2*(c/r) Int[(d + e*x^2)^q/(b - r + 2*c*x^2), x], x] - Simp[2*(c/r) Int[(d + e*x^2)^q/(b + r + 2*c*
x^2), x], x]] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && !Int
egerQ[q]
-
Int[((d_) + (e_.)*(x_)^2)^(q_)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{r = Rt[(-a)*c, 2]}, Simp[-c/(2*r) I
nt[(d + e*x^2)^q/(r - c*x^2), x], x] - Simp[c/(2*r) Int[(d + e*x^2)^q/(r + c*x^2), x], x]] /; FreeQ[{a, c, d
, e, q}, x] && NeQ[c*d^2 + a*e^2, 0] && !IntegerQ[q]
-
Int[((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[x*(2*b*e*p + c*d*(4*p +
3) + c*e*(4*p + 1)*x^2)*((a + b*x^2 + c*x^4)^p/(c*(4*p + 1)*(4*p + 3))), x] + Simp[2*(p/(c*(4*p + 1)*(4*p + 3
))) Int[Simp[2*a*c*d*(4*p + 3) - a*b*e + (2*a*c*e*(4*p + 1) + b*c*d*(4*p + 3) - b^2*e*(2*p + 1))*x^2, x]*(a
+ b*x^2 + c*x^4)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*
e^2, 0] && GtQ[p, 0] && FractionQ[p] && IntegerQ[2*p]
-
Int[((d_) + (e_.)*(x_)^2)*((a_) + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[x*(d*(4*p + 3) + e*(4*p + 1)*x^2)*((a
+ c*x^4)^p/((4*p + 1)*(4*p + 3))), x] + Simp[2*(p/((4*p + 1)*(4*p + 3))) Int[Simp[2*a*d*(4*p + 3) + (2*a*e*(
4*p + 1))*x^2, x]*(a + c*x^4)^(p - 1), x], x] /; FreeQ[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && GtQ[p, 0]
&& FractionQ[p] && IntegerQ[2*p]
-
Int[((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[x*(a*b*e - d*(b^2 - 2*a
*c) - c*(b*d - 2*a*e)*x^2)*((a + b*x^2 + c*x^4)^(p + 1)/(2*a*(p + 1)*(b^2 - 4*a*c))), x] + Simp[1/(2*a*(p + 1)
*(b^2 - 4*a*c)) Int[Simp[(2*p + 3)*d*b^2 - a*b*e - 2*a*c*d*(4*p + 5) + (4*p + 7)*(d*b - 2*a*e)*c*x^2, x]*(a
+ b*x^2 + c*x^4)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*
e^2, 0] && LtQ[p, -1] && IntegerQ[2*p]
-
Int[((d_) + (e_.)*(x_)^2)*((a_) + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(-x)*(d + e*x^2)*((a + c*x^4)^(p + 1)/
(4*a*(p + 1))), x] + Simp[1/(4*a*(p + 1)) Int[Simp[d*(4*p + 5) + e*(4*p + 7)*x^2, x]*(a + c*x^4)^(p + 1), x]
, x] /; FreeQ[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && LtQ[p, -1] && IntegerQ[2*p]
-
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}
, Simp[2*Sqrt[-c] Int[(d + e*x^2)/(Sqrt[b + q + 2*c*x^2]*Sqrt[-b + q - 2*c*x^2]), x], x]] /; FreeQ[{a, b, c,
d, e}, x] && GtQ[b^2 - 4*a*c, 0] && LtQ[c, 0]
-
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[(-a)*c, 2]}, Simp[Sqrt[-c] In
t[(d + e*x^2)/(Sqrt[q + c*x^2]*Sqrt[q - c*x^2]), x], x]] /; FreeQ[{a, c, d, e}, x] && GtQ[a, 0] && LtQ[c, 0]
-
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[(
-d)*x*(Sqrt[a + b*x^2 + c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d*(1 + q^2*x^2)*(Sqrt[(a + b*x^2 + c*x^4)/(a*(1 +
q^2*x^2)^2)]/(q*Sqrt[a + b*x^2 + c*x^4]))*EllipticE[2*ArcTan[q*x], 1/2 - b*(q^2/(4*c))], x] /; EqQ[e + d*q^2,
0]] /; FreeQ[{a, b, c, d, e}, x] && GtQ[b^2 - 4*a*c, 0] && GtQ[c/a, 0] && LtQ[b/a, 0]
-
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 2]}, Simp[(
e + d*q)/q Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] - Simp[e/q Int[(1 - q*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x
] /; NeQ[e + d*q, 0]] /; FreeQ[{a, b, c, d, e}, x] && GtQ[b^2 - 4*a*c, 0] && GtQ[c/a, 0] && LtQ[b/a, 0]
-
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}
, Simp[e*x*((b + q + 2*c*x^2)/(2*c*Sqrt[a + b*x^2 + c*x^4])), x] - Simp[e*q*Sqrt[(2*a + (b - q)*x^2)/(2*a + (b
+ q)*x^2)]*(Sqrt[(2*a + (b + q)*x^2)/q]/(2*c*Sqrt[a + b*x^2 + c*x^4]*Sqrt[a/(2*a + (b + q)*x^2)]))*EllipticE[
ArcSin[x/Sqrt[(2*a + (b + q)*x^2)/(2*q)]], (b + q)/(2*q)], x] /; EqQ[2*c*d - e*(b - q), 0]] /; FreeQ[{a, b, c,
d, e}, x] && GtQ[b^2 - 4*a*c, 0] && LtQ[a, 0] && GtQ[c, 0]
-
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[(-a)*c, 2]}, Simp[e*x*((q + c*x
^2)/(c*Sqrt[a + c*x^4])), x] - Simp[Sqrt[2]*e*q*Sqrt[-a + q*x^2]*(Sqrt[(a + q*x^2)/q]/(Sqrt[-a]*c*Sqrt[a + c*x
^4]))*EllipticE[ArcSin[x/Sqrt[(a + q*x^2)/(2*q)]], 1/2], x] /; EqQ[c*d + e*q, 0] && IntegerQ[q]] /; FreeQ[{a,
c, d, e}, x] && LtQ[a, 0] && GtQ[c, 0]
-
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[(-a)*c, 2]}, Simp[e*x*((q + c*x
^2)/(c*Sqrt[a + c*x^4])), x] - Simp[Sqrt[2]*e*q*Sqrt[(a - q*x^2)/(a + q*x^2)]*(Sqrt[(a + q*x^2)/q]/(c*Sqrt[a +
c*x^4]*Sqrt[a/(a + q*x^2)]))*EllipticE[ArcSin[x/Sqrt[(a + q*x^2)/(2*q)]], 1/2], x] /; EqQ[c*d + e*q, 0]] /; F
reeQ[{a, c, d, e}, x] && LtQ[a, 0] && GtQ[c, 0]
-
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}
, Simp[(2*c*d - e*(b - q))/(2*c) Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] + Simp[e/(2*c) Int[(b - q + 2*c*x^2
)/Sqrt[a + b*x^2 + c*x^4], x], x] /; NeQ[2*c*d - e*(b - q), 0]] /; FreeQ[{a, b, c, d, e}, x] && GtQ[b^2 - 4*a*
c, 0] && LtQ[a, 0] && GtQ[c, 0]
-
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[(-a)*c, 2]}, Simp[(c*d + e*q)/c
Int[1/Sqrt[a + c*x^4], x], x] - Simp[e/c Int[(q - c*x^2)/Sqrt[a + c*x^4], x], x] /; NeQ[c*d + e*q, 0]] /;
FreeQ[{a, c, d, e}, x] && LtQ[a, 0] && GtQ[c, 0]
-
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}
, Simp[d Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] + Simp[e Int[x^2/Sqrt[a + b*x^2 + c*x^4], x], x] /; PosQ[(b
+ q)/a] || PosQ[(b - q)/a]] /; FreeQ[{a, b, c, d, e}, x] && GtQ[b^2 - 4*a*c, 0]
-
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> Simp[d Int[1/Sqrt[a + c*x^4], x], x] + Sim
p[e Int[x^2/Sqrt[a + c*x^4], x], x] /; FreeQ[{a, c, d, e}, x] && GtQ[(-a)*c, 0]
-
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}
, Simp[(-a)*e*Rt[-(b + q)/(2*a), 2]*Sqrt[1 + (b + q)*(x^2/(2*a))]*(Sqrt[1 + (b - q)*(x^2/(2*a))]/(c*Sqrt[a + b
*x^2 + c*x^4]))*EllipticE[ArcSin[Rt[-(b + q)/(2*a), 2]*x], (b - q)/(b + q)], x] /; NegQ[(b + q)/a] && EqQ[2*c*
d - e*(b + q), 0] && !SimplerSqrtQ[-(b - q)/(2*a), -(b + q)/(2*a)]] /; FreeQ[{a, b, c, d, e}, x] && GtQ[b^2 -
4*a*c, 0]
-
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}
, Simp[(2*c*d - e*(b + q))/(2*c) Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] + Simp[e/(2*c) Int[(b + q + 2*c*x^2
)/Sqrt[a + b*x^2 + c*x^4], x], x] /; NegQ[(b + q)/a] && NeQ[2*c*d - e*(b + q), 0] && !SimplerSqrtQ[-(b - q)/(
2*a), -(b + q)/(2*a)]] /; FreeQ[{a, b, c, d, e}, x] && GtQ[b^2 - 4*a*c, 0]
-
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}
, Simp[(-a)*e*Rt[-(b - q)/(2*a), 2]*Sqrt[1 + (b - q)*(x^2/(2*a))]*(Sqrt[1 + (b + q)*(x^2/(2*a))]/(c*Sqrt[a + b
*x^2 + c*x^4]))*EllipticE[ArcSin[Rt[-(b - q)/(2*a), 2]*x], (b + q)/(b - q)], x] /; NegQ[(b - q)/a] && EqQ[2*c*
d - e*(b - q), 0]] /; FreeQ[{a, b, c, d, e}, x] && GtQ[b^2 - 4*a*c, 0]
-
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}
, Simp[(2*c*d - e*(b - q))/(2*c) Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] + Simp[e/(2*c) Int[(b - q + 2*c*x^2
)/Sqrt[a + b*x^2 + c*x^4], x], x] /; NegQ[(b - q)/a] && NeQ[2*c*d - e*(b - q), 0]] /; FreeQ[{a, b, c, d, e}, x
] && GtQ[b^2 - 4*a*c, 0]
-
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[(
-d)*x*(Sqrt[a + b*x^2 + c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d*(1 + q^2*x^2)*(Sqrt[(a + b*x^2 + c*x^4)/(a*(1 +
q^2*x^2)^2)]/(q*Sqrt[a + b*x^2 + c*x^4]))*EllipticE[2*ArcTan[q*x], 1/2 - b*(q^2/(4*c))], x] /; EqQ[e + d*q^2,
0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]
-
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a +
c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d*(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]/(q*Sqrt[a + c*x^4
]))*EllipticE[2*ArcTan[q*x], 1/2], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]
-
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 2]}, Simp[(
e + d*q)/q Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] - Simp[e/q Int[(1 - q*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x
] /; NeQ[e + d*q, 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]
-
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 2]}, Simp[(e + d*q)/q In
t[1/Sqrt[a + c*x^4], x], x] - Simp[e/q Int[(1 - q*x^2)/Sqrt[a + c*x^4], x], x] /; NeQ[e + d*q, 0]] /; FreeQ[
{a, c, d, e}, x] && PosQ[c/a]
-
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[-c/a, 2]}, Simp[(d*q - e)/q I
nt[1/Sqrt[a + c*x^4], x], x] + Simp[e/q Int[(1 + q*x^2)/Sqrt[a + c*x^4], x], x]] /; FreeQ[{a, c, d, e}, x] &
& NegQ[c/a] && NeQ[c*d^2 + a*e^2, 0]
-
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}
, Simp[Sqrt[1 + 2*c*(x^2/(b - q))]*(Sqrt[1 + 2*c*(x^2/(b + q))]/Sqrt[a + b*x^2 + c*x^4]) Int[(d + e*x^2)/(Sq
rt[1 + 2*c*(x^2/(b - q))]*Sqrt[1 + 2*c*(x^2/(b + q))]), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*
c, 0] && NegQ[c/a]
-
Int[((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Int[ExpandIntegrand[(d + e*x
^2)*(a + b*x^2 + c*x^4)^p, x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a
*e^2, 0]
-
Int[((d_) + (e_.)*(x_)^2)*((a_) + (c_.)*(x_)^4)^(p_), x_Symbol] :> Int[ExpandIntegrand[(d + e*x^2)*(a + c*x^4)
^p, x], x] /; FreeQ[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0]
-
Int[((d_) + (e_.)*(x_)^2)^(q_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> With[{f = Coeff[Polynom
ialRemainder[(d + e*x^2)^q, a + b*x^2 + c*x^4, x], x, 0], g = Coeff[PolynomialRemainder[(d + e*x^2)^q, a + b*x
^2 + c*x^4, x], x, 2]}, Simp[x*(a + b*x^2 + c*x^4)^(p + 1)*((a*b*g - f*(b^2 - 2*a*c) - c*(b*f - 2*a*g)*x^2)/(2
*a*(p + 1)*(b^2 - 4*a*c))), x] + Simp[1/(2*a*(p + 1)*(b^2 - 4*a*c)) Int[(a + b*x^2 + c*x^4)^(p + 1)*ExpandTo
Sum[2*a*(p + 1)*(b^2 - 4*a*c)*PolynomialQuotient[(d + e*x^2)^q, a + b*x^2 + c*x^4, x] + b^2*f*(2*p + 3) - 2*a*
c*f*(4*p + 5) - a*b*g + c*(4*p + 7)*(b*f - 2*a*g)*x^2, x], x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4
*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && IGtQ[q, 1] && LtQ[p, -1]
-
Int[((d_) + (e_.)*(x_)^2)^(q_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[e^q*x^(2*q - 3)*((
a + b*x^2 + c*x^4)^(p + 1)/(c*(4*p + 2*q + 1))), x] + Simp[1/(c*(4*p + 2*q + 1)) Int[(a + b*x^2 + c*x^4)^p*E
xpandToSum[c*(4*p + 2*q + 1)*(d + e*x^2)^q - a*(2*q - 3)*e^q*x^(2*q - 4) - b*(2*p + 2*q - 1)*e^q*x^(2*q - 2) -
c*(4*p + 2*q + 1)*e^q*x^(2*q), x], x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2
- b*d*e + a*e^2, 0] && IGtQ[q, 1]
-
Int[((d_) + (e_.)*(x_)^2)^(q_)*((a_) + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[e^q*x^(2*q - 3)*((a + c*x^4)^(p +
1)/(c*(4*p + 2*q + 1))), x] + Simp[1/(c*(4*p + 2*q + 1)) Int[(a + c*x^4)^p*ExpandToSum[c*(4*p + 2*q + 1)*(d
+ e*x^2)^q - a*(2*q - 3)*e^q*x^(2*q - 4) - c*(4*p + 2*q + 1)*e^q*x^(2*q), x], x], x] /; FreeQ[{a, c, d, e, p}
, x] && NeQ[c*d^2 + a*e^2, 0] && IGtQ[q, 1]
-
Int[Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[-c/e^2 Int[(d - e*x^2)
/Sqrt[a + b*x^2 + c*x^4], x], x] + Int[(2*a + b*x^2)/((d + e*x^2)*Sqrt[a + b*x^2 + c*x^4]), x] /; FreeQ[{a, b,
c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && EqQ[c*d^2 - a*e^2, 0]
-
Int[Sqrt[(a_) + (c_.)*(x_)^4]/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[-c/e^2 Int[(d - e*x^2)/Sqrt[a + c*x^4
], x], x] + Simp[2*a Int[1/((d + e*x^2)*Sqrt[a + c*x^4]), x], x] /; FreeQ[{a, c, d, e}, x] && NeQ[c*d^2 + a*
e^2, 0] && EqQ[c*d^2 - a*e^2, 0]
-
Int[Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]/((d_) + (e_.)*(x_)^2), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}
, Simp[1/(2*e) Int[(b - q + 2*c*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x] - Simp[1/(2*e) Int[(b*d - 2*a*e - d*q
+ (2*c*d - b*e - e*q)*x^2)/((d + e*x^2)*Sqrt[a + b*x^2 + c*x^4]), x], x]] /; FreeQ[{a, b, c, d, e}, x] && GtQ
[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[c/a]
-
Int[Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]/((d_) + (e_.)*(x_)^2), x_Symbol] :> With[{q = Rt[c/a, 2]}, Simp[(
c*d^2 - b*d*e + a*e^2)/(e*(e - d*q)) Int[(1 + q*x^2)/((d + e*x^2)*Sqrt[a + b*x^2 + c*x^4]), x], x] - Simp[1/
(e*(e - d*q)) Int[(c*d - b*e + a*e*q - (c*e - a*d*q^3)*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x]] /; FreeQ[{a, b,
c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[c/a]
-
Int[Sqrt[(a_) + (c_.)*(x_)^4]/((d_) + (e_.)*(x_)^2), x_Symbol] :> With[{q = Rt[c/a, 2]}, Simp[(c*d^2 + a*e^2)/
(e*(e - d*q)) Int[(1 + q*x^2)/((d + e*x^2)*Sqrt[a + c*x^4]), x], x] - Simp[1/(e*(e - d*q)) Int[(c*d + a*e*
q - (c*e - a*d*q^3)*x^2)/Sqrt[a + c*x^4], x], x]] /; FreeQ[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*
d^2 - a*e^2, 0] && PosQ[c/a]
-
Int[Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(c*d^2 - b*d*e + a*e^2)/
e^2 Int[1/((d + e*x^2)*Sqrt[a + b*x^2 + c*x^4]), x], x] - Simp[1/e^2 Int[(c*d - b*e - c*e*x^2)/Sqrt[a + b*
x^2 + c*x^4], x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && N
eQ[c*d^2 - a*e^2, 0] && NegQ[c/a]
-
Int[Sqrt[(a_) + (c_.)*(x_)^4]/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(c*d^2 + a*e^2)/e^2 Int[1/((d + e*x^2
)*Sqrt[a + c*x^4]), x], x] - Simp[1/e^2 Int[(c*d - c*e*x^2)/Sqrt[a + c*x^4], x], x] /; FreeQ[{a, c, d, e}, x
] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[c/a]
-
Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_)/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[-(e^2)^(-1) Int[(c*d
- b*e - c*e*x^2)*(a + b*x^2 + c*x^4)^(p - 1), x], x] + Simp[(c*d^2 - b*d*e + a*e^2)/e^2 Int[(a + b*x^2 + c*x
^4)^(p - 1)/(d + e*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e
^2, 0] && IGtQ[p - 1/2, 0] && EqQ[c*d^2 - a*e^2, 0]
-
Int[((a_) + (c_.)*(x_)^4)^(p_)/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[-(e^2)^(-1) Int[(c*d - c*e*x^2)*(a +
c*x^4)^(p - 1), x], x] + Simp[(c*d^2 + a*e^2)/e^2 Int[(a + c*x^4)^(p - 1)/(d + e*x^2), x], x] /; FreeQ[{a,
c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && IGtQ[p - 1/2, 0] && EqQ[c*d^2 - a*e^2, 0]
-
Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_)/((d_) + (e_.)*(x_)^2), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]
}, Simp[(-(2*c*d - e*(b + q)))*((c*d^2 - b*d*e + a*e^2)^(p - 1/2)/(4*c*e^(2*p))) Int[(b - q + 2*c*x^2)/((d +
e*x^2)*Sqrt[a + b*x^2 + c*x^4]), x], x] + Simp[1/(4*c*e^(2*p)) Int[(1/Sqrt[a + b*x^2 + c*x^4])*ExpandToSum[
(4*c*e^(2*p)*(a + b*x^2 + c*x^4)^(p + 1/2) + (2*c*d - e*(b + q))*(c*d^2 - b*d*e + a*e^2)^(p - 1/2)*(b - q + 2*
c*x^2))/(d + e*x^2), x], x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*
e^2, 0] && IGtQ[p - 1/2, 0] && PosQ[b^2 - 4*a*c] && PosQ[c/a]
-
Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_)/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[-(c*d^2 - b*d*e + a*e^2
)^(p + 1/2)/(e^(2*p)*(c*d^2 - a*e^2)) Int[(a*d*Rt[c/a, 2] + a*e + (c*d + a*e*Rt[c/a, 2])*x^2)/((d + e*x^2)*S
qrt[a + b*x^2 + c*x^4]), x], x] + Simp[1/(e^(2*p)*(c*d^2 - a*e^2)) Int[(1/Sqrt[a + b*x^2 + c*x^4])*ExpandToS
um[(e^(2*p)*(c*d^2 - a*e^2)*(a + b*x^2 + c*x^4)^(p + 1/2) + (c*d^2 - b*d*e + a*e^2)^(p + 1/2)*(a*d*Rt[c/a, 2]
+ a*e + (c*d + a*e*Rt[c/a, 2])*x^2))/(d + e*x^2), x], x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c,
0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && IGtQ[p - 1/2, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[c/a]
-
Int[((a_) + (c_.)*(x_)^4)^(p_)/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[-(c*d^2 + a*e^2)^(p + 1/2)/(e^(2*p)*(c
*d^2 - a*e^2)) Int[(a*d*Rt[c/a, 2] + a*e + (c*d + a*e*Rt[c/a, 2])*x^2)/((d + e*x^2)*Sqrt[a + c*x^4]), x], x]
+ Simp[1/(e^(2*p)*(c*d^2 - a*e^2)) Int[(1/Sqrt[a + c*x^4])*ExpandToSum[(e^(2*p)*(c*d^2 - a*e^2)*(a + c*x^4)
^(p + 1/2) + (c*d^2 + a*e^2)^(p + 1/2)*(a*d*Rt[c/a, 2] + a*e + (c*d + a*e*Rt[c/a, 2])*x^2))/(d + e*x^2), x], x
], x] /; FreeQ[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && IGtQ[p - 1/2, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[
c/a]
-
Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_)/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(c*d^2 - b*d*e + a*e^2)
^(p + 1/2)/e^(2*p + 1) Int[1/((d + e*x^2)*Sqrt[a + b*x^2 + c*x^4]), x], x] + Simp[1/e^(2*p + 1) Int[(1/Sqr
t[a + b*x^2 + c*x^4])*ExpandToSum[(e^(2*p + 1)*(a + b*x^2 + c*x^4)^(p + 1/2) - (c*d^2 - b*d*e + a*e^2)^(p + 1/
2))/(d + e*x^2), x], x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2,
0] && IGtQ[p - 1/2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[c/a]
-
Int[((a_) + (c_.)*(x_)^4)^(p_)/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(c*d^2 + a*e^2)^(p + 1/2)/e^(2*p + 1)
Int[1/((d + e*x^2)*Sqrt[a + c*x^4]), x], x] + Simp[1/e^(2*p + 1) Int[(1/Sqrt[a + c*x^4])*ExpandToSum[(e^(2
*p + 1)*(a + c*x^4)^(p + 1/2) - (c*d^2 + a*e^2)^(p + 1/2))/(d + e*x^2), x], x], x] /; FreeQ[{a, c, d, e}, x] &
& NeQ[c*d^2 + a*e^2, 0] && IGtQ[p - 1/2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[c/a]
-
Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]), x_Symbol] :> Simp[1/(2*d) Int[1/Sqrt
[a + b*x^2 + c*x^4], x], x] + Simp[1/(2*d) Int[(d - e*x^2)/((d + e*x^2)*Sqrt[a + b*x^2 + c*x^4]), x], x] /;
FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && EqQ[c*d^2 - a*e^2, 0]
-
Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> Simp[1/(2*d) Int[1/Sqrt[a + c*x^4], x]
, x] + Simp[1/(2*d) Int[(d - e*x^2)/((d + e*x^2)*Sqrt[a + c*x^4]), x], x] /; FreeQ[{a, c, d, e}, x] && NeQ[c
*d^2 + a*e^2, 0] && EqQ[c*d^2 - a*e^2, 0]
-
Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c,
2]}, Simp[2*Sqrt[-c] Int[1/((d + e*x^2)*Sqrt[b + q + 2*c*x^2]*Sqrt[-b + q - 2*c*x^2]), x], x]] /; FreeQ[{a,
b, c, d, e}, x] && GtQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && LtQ[c, 0]
-
Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> With[{q = Rt[(-a)*c, 2]}, Simp[Sqrt[-c]
Int[1/((d + e*x^2)*Sqrt[q + c*x^2]*Sqrt[q - c*x^2]), x], x]] /; FreeQ[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2,
0] && GtQ[a, 0] && LtQ[c, 0]
-
Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c,
2]}, Simp[2*(c/(2*c*d - e*(b - q))) Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] - Simp[e/(2*c*d - e*(b - q)) In
t[(b - q + 2*c*x^2)/((d + e*x^2)*Sqrt[a + b*x^2 + c*x^4]), x], x]] /; FreeQ[{a, b, c, d, e}, x] && GtQ[b^2 - 4
*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && !LtQ[c, 0]
-
Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> With[{q = Rt[(-a)*c, 2]}, Simp[c/(c*d +
e*q) Int[1/Sqrt[a + c*x^4], x], x] + Simp[e/(c*d + e*q) Int[(q - c*x^2)/((d + e*x^2)*Sqrt[a + c*x^4]), x],
x]] /; FreeQ[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && GtQ[(-a)*c, 0] && !LtQ[c, 0]
-
Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]), x_Symbol] :> With[{q = Rt[c/a, 2]}, Si
mp[(c*d + a*e*q)/(c*d^2 - a*e^2) Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] - Simp[(a*e*(e + d*q))/(c*d^2 - a*e^2
) Int[(1 + q*x^2)/((d + e*x^2)*Sqrt[a + b*x^2 + c*x^4]), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4
*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[c/a]
-
Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> With[{q = Rt[c/a, 2]}, Simp[(c*d + a*e*q
)/(c*d^2 - a*e^2) Int[1/Sqrt[a + c*x^4], x], x] - Simp[(a*e*(e + d*q))/(c*d^2 - a*e^2) Int[(1 + q*x^2)/((d
+ e*x^2)*Sqrt[a + c*x^4]), x], x]] /; FreeQ[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0
] && PosQ[c/a]
-
Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> With[{q = Rt[-c/a, 4]}, Simp[(1/(d*Sqrt[
a]*q))*EllipticPi[-e/(d*q^2), ArcSin[q*x], -1], x]] /; FreeQ[{a, c, d, e}, x] && NegQ[c/a] && GtQ[a, 0]
-
Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> Simp[Sqrt[1 + c*(x^4/a)]/Sqrt[a + c*x^4]
Int[1/((d + e*x^2)*Sqrt[1 + c*(x^4/a)]), x], x] /; FreeQ[{a, c, d, e}, x] && NegQ[c/a] && !GtQ[a, 0]
-
Int[1/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c,
2]}, Simp[Sqrt[1 + 2*c*(x^2/(b - q))]*(Sqrt[1 + 2*c*(x^2/(b + q))]/Sqrt[a + b*x^2 + c*x^4]) Int[1/((d + e*x
^2)*Sqrt[1 + 2*c*(x^2/(b - q))]*Sqrt[1 + 2*c*(x^2/(b + q))]), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2
- 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && NegQ[c/a]
-
Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_)/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[1/(c*d^2 - b*d*e + a*e^
2) Int[(c*d - b*e - c*e*x^2)*(a + b*x^2 + c*x^4)^p, x], x] + Simp[e^2/(c*d^2 - b*d*e + a*e^2) Int[(a + b*x
^2 + c*x^4)^(p + 1)/(d + e*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d
*e + a*e^2, 0] && ILtQ[p + 1/2, 0] && (EqQ[c*d^2 - a*e^2, 0] || NiceSqrtQ[b^2 - 4*a*c])
-
Int[((a_) + (c_.)*(x_)^4)^(p_)/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[1/(c*d^2 + a*e^2) Int[(c*d - c*e*x^2
)*(a + c*x^4)^p, x], x] + Simp[e^2/(c*d^2 + a*e^2) Int[(a + c*x^4)^(p + 1)/(d + e*x^2), x], x] /; FreeQ[{a,
c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && ILtQ[p + 1/2, 0] && EqQ[c*d^2 - a*e^2, 0] && (EqQ[c*d^2 - a*e^2, 0] |
| NiceSqrtQ[(-a)*c])
-
Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_)/((d_.) + (e_.)*(x_)^2), x_Symbol] :> Simp[-(c*d^2 - b*d*e + a*e^
2)^(p + 1/2)/(e^(2*p)*(Rt[c/a, 2]*d - e)) Int[(1 + Rt[c/a, 2]*x^2)/((d + e*x^2)*Sqrt[a + b*x^2 + c*x^4]), x]
, x] + Simp[(c*d^2 - b*d*e + a*e^2)^(p + 1/2)/(Rt[c/a, 2]*d - e) Int[(a + b*x^2 + c*x^4)^p*ExpandToSum[((Rt[
c/a, 2]*d - e)*(c*d^2 - b*d*e + a*e^2)^(-p - 1/2) + ((1 + Rt[c/a, 2]*x^2)*(a + b*x^2 + c*x^4)^(-p - 1/2))/e^(2
*p))/(d + e*x^2), x], x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2,
0] && ILtQ[p + 1/2, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[c/a]
-
Int[((a_) + (c_.)*(x_)^4)^(p_)/((d_.) + (e_.)*(x_)^2), x_Symbol] :> Simp[-(c*d^2 + a*e^2)^(p + 1/2)/(e^(2*p)*(
Rt[c/a, 2]*d - e)) Int[(1 + Rt[c/a, 2]*x^2)/((d + e*x^2)*Sqrt[a + c*x^4]), x], x] + Simp[(c*d^2 + a*e^2)^(p
+ 1/2)/(Rt[c/a, 2]*d - e) Int[(a + c*x^4)^p*ExpandToSum[((Rt[c/a, 2]*d - e)*(c*d^2 + a*e^2)^(-p - 1/2) + ((1
+ Rt[c/a, 2]*x^2)*(a + c*x^4)^(-p - 1/2))/e^(2*p))/(d + e*x^2), x], x], x] /; FreeQ[{a, c, d, e}, x] && NeQ[c
*d^2 + a*e^2, 0] && ILtQ[p + 1/2, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[c/a]
-
Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_)/((d_.) + (e_.)*(x_)^2), x_Symbol] :> Simp[(c*d^2 - b*d*e + a*e^2
)^(p + 1/2)/e^(2*p + 1) Int[1/((d + e*x^2)*Sqrt[a + b*x^2 + c*x^4]), x], x] + Simp[(c*d^2 - b*d*e + a*e^2)^(
p + 1/2) Int[(a + b*x^2 + c*x^4)^p*ExpandToSum[((c*d^2 - b*d*e + a*e^2)^(-p - 1/2) - e^(-2*p - 1)*(a + b*x^2
+ c*x^4)^(-p - 1/2))/(d + e*x^2), x], x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2
- b*d*e + a*e^2, 0] && ILtQ[p + 1/2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[c/a]
-
Int[((a_) + (c_.)*(x_)^4)^(p_)/((d_.) + (e_.)*(x_)^2), x_Symbol] :> Simp[(c*d^2 + a*e^2)^(p + 1/2)/e^(2*p + 1)
Int[1/((d + e*x^2)*Sqrt[a + c*x^4]), x], x] + Simp[(c*d^2 + a*e^2)^(p + 1/2) Int[(a + c*x^4)^p*ExpandToSu
m[((c*d^2 + a*e^2)^(-p - 1/2) - e^(-2*p - 1)*(a + c*x^4)^(-p - 1/2))/(d + e*x^2), x], x], x] /; FreeQ[{a, c, d
, e}, x] && NeQ[c*d^2 + a*e^2, 0] && ILtQ[p + 1/2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[c/a]
-
Int[((d_) + (e_.)*(x_)^2)^(q_)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> Simp[(-e^2)*x*(d + e*x^2
)^(q + 1)*(Sqrt[a + b*x^2 + c*x^4]/(2*d*(q + 1)*(c*d^2 - b*d*e + a*e^2))), x] + Simp[1/(2*d*(q + 1)*(c*d^2 - b
*d*e + a*e^2)) Int[((d + e*x^2)^(q + 1)/Sqrt[a + b*x^2 + c*x^4])*Simp[a*e^2*(2*q + 3) + 2*d*(c*d - b*e)*(q +
1) - 2*e*(c*d*(q + 1) - b*e*(q + 2))*x^2 + c*e^2*(2*q + 5)*x^4, x], x], x] /; FreeQ[{a, b, c, d, e}, x] && Ne
Q[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && ILtQ[q, -1]
-
Int[((d_) + (e_.)*(x_)^2)^(q_)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> Simp[(-e^2)*x*(d + e*x^2)^(q + 1)*(Sqrt
[a + c*x^4]/(2*d*(q + 1)*(c*d^2 + a*e^2))), x] + Simp[1/(2*d*(q + 1)*(c*d^2 + a*e^2)) Int[((d + e*x^2)^(q +
1)/Sqrt[a + c*x^4])*Simp[a*e^2*(2*q + 3) + 2*c*d^2*(q + 1) - 2*e*c*d*(q + 1)*x^2 + c*e^2*(2*q + 5)*x^4, x], x]
, x] /; FreeQ[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && ILtQ[q, -1]
-
Int[Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]/((d_) + (e_.)*(x_)^2)^2, x_Symbol] :> With[{q = Rt[e/d, 2]}, Simp
[c*(d + e*x^2)*(Sqrt[(e^2*(a + b*x^2 + c*x^4))/(c*(d + e*x^2)^2)]/(2*d*e^2*q*Sqrt[a + b*x^2 + c*x^4]))*Ellipti
cE[2*ArcTan[q*x], (2*c*d - b*e)/(4*c*d)], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2
- b*d*e + a*e^2, 0] && EqQ[c*d^2 - a*e^2, 0] && PosQ[e/d]
-
Int[((d_) + (e_.)*(x_)^2)^(q_)*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> Simp[(-x)*(d + e*x^2)^(q
+ 1)*(Sqrt[a + b*x^2 + c*x^4]/(2*d*(q + 1))), x] + Simp[1/(2*d*(q + 1)) Int[(d + e*x^2)^(q + 1)*((a*(2*q +
3) + 2*b*(q + 2)*x^2 + c*(2*q + 5)*x^4)/Sqrt[a + b*x^2 + c*x^4]), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b
^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && ILtQ[q, -1]
-
Int[((d_) + (e_.)*(x_)^2)^(q_)*Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> Simp[(-x)*(d + e*x^2)^(q + 1)*(Sqrt[a +
c*x^4]/(2*d*(q + 1))), x] + Simp[1/(2*d*(q + 1)) Int[(d + e*x^2)^(q + 1)*((a*(2*q + 3) + c*(2*q + 5)*x^4)/S
qrt[a + c*x^4]), x], x] /; FreeQ[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && ILtQ[q, -1]
-
Int[((d_) + (e_.)*(x_)^2)^(q_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Module[{aa, bb, cc}, In
t[ExpandIntegrand[1/Sqrt[aa + bb*x^2 + cc*x^4], (d + e*x^2)^q*(aa + bb*x^2 + cc*x^4)^(p + 1/2), x] /. {aa -> a
, bb -> b, cc -> c}, x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
&& ILtQ[q, 0] && IntegerQ[p + 1/2]
-
Int[((d_) + (e_.)*(x_)^2)^(q_)*((a_) + (c_.)*(x_)^4)^(p_), x_Symbol] :> Module[{aa, cc}, Int[ExpandIntegrand[1
/Sqrt[aa + cc*x^4], (d + e*x^2)^q*(aa + cc*x^4)^(p + 1/2), x] /. {aa -> a, cc -> c}, x]] /; FreeQ[{a, c, d, e}
, x] && NeQ[c*d^2 + a*e^2, 0] && ILtQ[q, 0] && IntegerQ[p + 1/2]
-
Int[Sqrt[(d_) + (e_.)*(x_)^2]/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b^2 - 4*a*c,
2]}, Simp[Sqrt[1 + 2*c*(x^2/(b - q))]*(Sqrt[1 + 2*c*(x^2/(b + q))]/Sqrt[a + b*x^2 + c*x^4]) Int[Sqrt[d + e*
x^2]/(Sqrt[1 + 2*c*(x^2/(b - q))]*Sqrt[1 + 2*c*(x^2/(b + q))]), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^
2 - 4*a*c, 0]
-
Int[1/(Sqrt[(d_) + (e_.)*(x_)^2]*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]), x_Symbol] :> Simp[(1/(2*Sqrt[a]*Sq
rt[d]*Rt[-e/d, 2]))*EllipticF[2*ArcSin[Rt[-e/d, 2]*x], b*(d/(4*a*e))], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[
c*d - b*e, 0] && GtQ[a, 0] && GtQ[d, 0]
-
Int[1/(Sqrt[(d_) + (e_.)*(x_)^2]*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]), x_Symbol] :> Simp[Sqrt[(d + e*x^2)
/d]*(Sqrt[(a + b*x^2 + c*x^4)/a]/(Sqrt[d + e*x^2]*Sqrt[a + b*x^2 + c*x^4])) Int[1/(Sqrt[1 + (e/d)*x^2]*Sqrt[
1 + (b/a)*x^2 + (c/a)*x^4]), x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c*d - b*e, 0] && !(GtQ[a, 0] && GtQ[d
, 0])
-
Int[1/(Sqrt[(d_) + (e_.)*(x_)^2]*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]), x_Symbol] :> Simp[x^3*Sqrt[e + d/x
^2]*(Sqrt[c + b/x^2 + a/x^4]/(Sqrt[d + e*x^2]*Sqrt[a + b*x^2 + c*x^4])) Int[1/(x^3*Sqrt[e + d/x^2]*Sqrt[c +
b/x^2 + a/x^4]), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
-
Int[1/(Sqrt[(d_) + (e_.)*(x_)^2]*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> Simp[x^3*Sqrt[e + d/x^2]*(Sqrt[c + a
/x^4]/(Sqrt[d + e*x^2]*Sqrt[a + c*x^4])) Int[1/(x^3*Sqrt[e + d/x^2]*Sqrt[c + a/x^4]), x], x] /; FreeQ[{a, c,
d, e}, x] && NeQ[c*d^2 + a*e^2, 0]
-
Int[Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(Sqrt[a]/(2*Sqrt[d]*
Rt[-e/d, 2]))*EllipticE[2*ArcSin[Rt[-e/d, 2]*x], b*(d/(4*a*e))], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c*d -
b*e, 0] && GtQ[a, 0] && GtQ[d, 0]
-
Int[Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[Sqrt[a + b*x^2 + c*x
^4]*(Sqrt[(d + e*x^2)/d]/(Sqrt[d + e*x^2]*Sqrt[(a + b*x^2 + c*x^4)/a])) Int[Sqrt[1 + (b/a)*x^2 + (c/a)*x^4]/
Sqrt[1 + (e/d)*x^2], x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c*d - b*e, 0] && !(GtQ[a, 0] && GtQ[d, 0])
-
Int[Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[Sqrt[e + d/x^2]*(Sqr
t[a + b*x^2 + c*x^4]/(x*Sqrt[d + e*x^2]*Sqrt[c + b/x^2 + a/x^4])) Int[(x*Sqrt[c + b/x^2 + a/x^4])/Sqrt[e + d
/x^2], x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
-
Int[Sqrt[(a_) + (c_.)*(x_)^4]/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[Sqrt[e + d/x^2]*(Sqrt[a + c*x^4]/(x
*Sqrt[d + e*x^2]*Sqrt[c + a/x^4])) Int[(x*Sqrt[c + a/x^4])/Sqrt[e + d/x^2], x], x] /; FreeQ[{a, c, d, e}, x]
&& NeQ[c*d^2 + a*e^2, 0]
-
Int[((d_) + (e_.)*(x_)^2)^(q_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Int[ExpandIntegrand[(d
+ e*x^2)^q*(a + b*x^2 + c*x^4)^p, x], x] /; FreeQ[{a, b, c, d, e, p, q}, x] && NeQ[b^2 - 4*a*c, 0] && ((Intege
rQ[p] && IntegerQ[q]) || IGtQ[p, 0] || IGtQ[q, 0])
-
Int[((d_) + (e_.)*(x_)^2)^(q_)*((a_) + (c_.)*(x_)^4)^(p_), x_Symbol] :> Int[ExpandIntegrand[(d + e*x^2)^q*(a +
c*x^4)^p, x], x] /; FreeQ[{a, c, d, e, p, q}, x] && ((IntegerQ[p] && IntegerQ[q]) || IGtQ[p, 0])
-
Int[((d_) + (e_.)*(x_)^2)^(q_)*((a_) + (c_.)*(x_)^4)^(p_), x_Symbol] :> Int[ExpandIntegrand[(a + c*x^4)^p, (d/
(d^2 - e^2*x^4) - e*(x^2/(d^2 - e^2*x^4)))^(-q), x], x] /; FreeQ[{a, c, d, e, p}, x] && NeQ[c*d^2 + a*e^2, 0]
&& !IntegerQ[p] && ILtQ[q, 0]
-
Int[((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Unintegrable[(d + e*x
^2)^q*(a + b*x^2 + c*x^4)^p, x] /; FreeQ[{a, b, c, d, e, p, q}, x]
-
Int[((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Unintegrable[(d + e*x^2)^q*(a + c*x^
4)^p, x] /; FreeQ[{a, c, d, e, p, q}, x]
-
Int[(x_)^(m_.)*((e_.)*(x_)^2)^(q_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Simp[1/(2*e^((m -
1)/2)) Subst[Int[(e*x)^(q + (m - 1)/2)*(a + b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, e, p, q}, x]
&& !IntegerQ[q] && IntegerQ[(m - 1)/2]
-
Int[(x_)^(m_.)*((e_.)*(x_)^2)^(q_)*((a_) + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Simp[1/(2*e^((m - 1)/2)) Subst[
Int[(e*x)^(q + (m - 1)/2)*(a + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, c, e, p, q}, x] && !IntegerQ[q] && Inte
gerQ[(m - 1)/2]
-
Int[((f_.)*(x_))^(m_.)*((e_.)*(x_)^2)^(q_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Simp[e^Int
Part[q]*((e*x^2)^FracPart[q]/(f^(2*IntPart[q])*(f*x)^(2*FracPart[q]))) Int[(f*x)^(m + 2*q)*(a + b*x^2 + c*x^
4)^p, x], x] /; FreeQ[{a, b, c, e, f, m, p, q}, x] && !IntegerQ[q]
-
Int[((f_.)*(x_))^(m_.)*((e_.)*(x_)^2)^(q_)*((a_) + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Simp[e^IntPart[q]*((e*x^2
)^FracPart[q]/(f^(2*IntPart[q])*(f*x)^(2*FracPart[q]))) Int[(f*x)^(m + 2*q)*(a + c*x^4)^p, x], x] /; FreeQ[{
a, c, e, f, m, p, q}, x] && !IntegerQ[q]
-
Int[(x_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Simp[1/2 Subst
[Int[(d + e*x)^q*(a + b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, d, e, p, q}, x]
-
Int[(x_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Simp[1/2 Subst[Int[(d + e*x)^
q*(a + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, c, d, e, p, q}, x]
-
Int[(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Simp[1/2
Subst[Int[x^((m - 1)/2)*(d + e*x)^q*(a + b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, d, e, p, q}, x] &
& IntegerQ[(m - 1)/2]
-
Int[(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Simp[1/2 Subst[Int[x^((
m - 1)/2)*(d + e*x)^q*(a + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, c, d, e, p, q}, x] && IntegerQ[(m + 1)/2]
-
Int[(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Simp[(-d)^(
m/2 - 1)*(c*d^2 - b*d*e + a*e^2)^p*x*((d + e*x^2)^(q + 1)/(2*e^(2*p + m/2)*(q + 1))), x] + Simp[1/(2*e^(2*p +
m/2)*(q + 1)) Int[(d + e*x^2)^(q + 1)*ExpandToSum[Together[(1/(d + e*x^2))*(2*e^(2*p + m/2)*(q + 1)*x^m*(a +
b*x^2 + c*x^4)^p - (-d)^(m/2 - 1)*(c*d^2 - b*d*e + a*e^2)^p*(d + e*(2*q + 3)*x^2))], x], x], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && IGtQ[p, 0] && ILtQ[q, -1] && IGtQ[m/2, 0]
-
Int[(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_)*((a_) + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Simp[(-d)^(m/2 - 1)*(c*d^2
+ a*e^2)^p*x*((d + e*x^2)^(q + 1)/(2*e^(2*p + m/2)*(q + 1))), x] + Simp[1/(2*e^(2*p + m/2)*(q + 1)) Int[(d
+ e*x^2)^(q + 1)*ExpandToSum[Together[(1/(d + e*x^2))*(2*e^(2*p + m/2)*(q + 1)*x^m*(a + c*x^4)^p - (-d)^(m/2 -
1)*(c*d^2 + a*e^2)^p*(d + e*(2*q + 3)*x^2))], x], x], x] /; FreeQ[{a, c, d, e}, x] && IGtQ[p, 0] && ILtQ[q, -
1] && IGtQ[m/2, 0]
-
Int[(x_)^(m_)*((d_) + (e_.)*(x_)^2)^(q_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Simp[(-d)^(m
/2 - 1)*(c*d^2 - b*d*e + a*e^2)^p*x*((d + e*x^2)^(q + 1)/(2*e^(2*p + m/2)*(q + 1))), x] + Simp[(-d)^(m/2 - 1)/
(2*e^(2*p)*(q + 1)) Int[x^m*(d + e*x^2)^(q + 1)*ExpandToSum[Together[(1/(d + e*x^2))*(2*(-d)^(-m/2 + 1)*e^(2
*p)*(q + 1)*(a + b*x^2 + c*x^4)^p - ((c*d^2 - b*d*e + a*e^2)^p/(e^(m/2)*x^m))*(d + e*(2*q + 3)*x^2))], x], x],
x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && IGtQ[p, 0] && ILtQ[q, -1] && ILtQ[m/2, 0]
-
Int[(x_)^(m_)*((d_) + (e_.)*(x_)^2)^(q_)*((a_) + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Simp[(-d)^(m/2 - 1)*(c*d^2
+ a*e^2)^p*x*((d + e*x^2)^(q + 1)/(2*e^(2*p + m/2)*(q + 1))), x] + Simp[(-d)^(m/2 - 1)/(2*e^(2*p)*(q + 1)) I
nt[x^m*(d + e*x^2)^(q + 1)*ExpandToSum[Together[(1/(d + e*x^2))*(2*(-d)^(-m/2 + 1)*e^(2*p)*(q + 1)*(a + c*x^4)
^p - ((c*d^2 + a*e^2)^p/(e^(m/2)*x^m))*(d + e*(2*q + 3)*x^2))], x], x], x] /; FreeQ[{a, c, d, e}, x] && IGtQ[p
, 0] && ILtQ[q, -1] && ILtQ[m/2, 0]
-
Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> In
t[ExpandIntegrand[(f*x)^m*(d + e*x^2)^q*(a + b*x^2 + c*x^4)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, q}, x] &&
NeQ[b^2 - 4*a*c, 0] && IGtQ[p, 0] && IGtQ[q, -2]
-
Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Int[ExpandIntegra
nd[(f*x)^m*(d + e*x^2)^q*(a + c*x^4)^p, x], x] /; FreeQ[{a, c, d, e, f, m, q}, x] && IGtQ[p, 0] && IGtQ[q, -2]
-
Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Wit
h[{Qx = PolynomialQuotient[(a + b*x^2 + c*x^4)^p, d + e*x^2, x], R = Coeff[PolynomialRemainder[(a + b*x^2 + c*
x^4)^p, d + e*x^2, x], x, 0]}, Simp[(-R)*(f*x)^(m + 1)*((d + e*x^2)^(q + 1)/(2*d*f*(q + 1))), x] + Simp[f/(2*d
*(q + 1)) Int[(f*x)^(m - 1)*(d + e*x^2)^(q + 1)*ExpandToSum[2*d*(q + 1)*x*Qx + R*(m + 2*q + 3)*x, x], x], x]
] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b^2 - 4*a*c, 0] && IGtQ[p, 0] && LtQ[q, -1] && GtQ[m, 0]
-
Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_)*((a_) + (c_.)*(x_)^4)^(p_.), x_Symbol] :> With[{Qx = Polynom
ialQuotient[(a + c*x^4)^p, d + e*x^2, x], R = Coeff[PolynomialRemainder[(a + c*x^4)^p, d + e*x^2, x], x, 0]},
Simp[(-R)*(f*x)^(m + 1)*((d + e*x^2)^(q + 1)/(2*d*f*(q + 1))), x] + Simp[f/(2*d*(q + 1)) Int[(f*x)^(m - 1)*(
d + e*x^2)^(q + 1)*ExpandToSum[2*d*(q + 1)*x*Qx + R*(m + 2*q + 3)*x, x], x], x]] /; FreeQ[{a, c, d, e, f}, x]
&& IGtQ[p, 0] && LtQ[q, -1] && GtQ[m, 0]
-
Int[((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Wit
h[{Qx = PolynomialQuotient[(a + b*x^2 + c*x^4)^p, f*x, x], R = PolynomialRemainder[(a + b*x^2 + c*x^4)^p, f*x,
x]}, Simp[R*(f*x)^(m + 1)*((d + e*x^2)^(q + 1)/(d*f*(m + 1))), x] + Simp[1/(d*f^2*(m + 1)) Int[(f*x)^(m + 2
)*(d + e*x^2)^q*ExpandToSum[d*f*(m + 1)*(Qx/x) - e*R*(m + 2*q + 3), x], x], x]] /; FreeQ[{a, b, c, d, e, f, q}
, x] && NeQ[b^2 - 4*a*c, 0] && IGtQ[p, 0] && LtQ[m, -1]
-
Int[((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (c_.)*(x_)^4)^(p_.), x_Symbol] :> With[{Qx = Polynom
ialQuotient[(a + c*x^4)^p, f*x, x], R = PolynomialRemainder[(a + c*x^4)^p, f*x, x]}, Simp[R*(f*x)^(m + 1)*((d
+ e*x^2)^(q + 1)/(d*f*(m + 1))), x] + Simp[1/(d*f^2*(m + 1)) Int[(f*x)^(m + 2)*(d + e*x^2)^q*ExpandToSum[d*f
*(m + 1)*(Qx/x) - e*R*(m + 2*q + 3), x], x], x]] /; FreeQ[{a, c, d, e, f, q}, x] && IGtQ[p, 0] && LtQ[m, -1]
-
Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Si
mp[c^p*(f*x)^(m + 4*p - 1)*((d + e*x^2)^(q + 1)/(e*f^(4*p - 1)*(m + 4*p + 2*q + 1))), x] + Simp[1/(e*(m + 4*p
+ 2*q + 1)) Int[(f*x)^m*(d + e*x^2)^q*ExpandToSum[e*(m + 4*p + 2*q + 1)*((a + b*x^2 + c*x^4)^p - c^p*x^(4*p)
) - d*c^p*(m + 4*p - 1)*x^(4*p - 2), x], x], x] /; FreeQ[{a, b, c, d, e, f, m, q}, x] && NeQ[b^2 - 4*a*c, 0] &
& IGtQ[p, 0] && !IntegerQ[q] && NeQ[m + 4*p + 2*q + 1, 0]
-
Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Simp[c^p*(f*x)^(m
+ 4*p - 1)*((d + e*x^2)^(q + 1)/(e*f^(4*p - 1)*(m + 4*p + 2*q + 1))), x] + Simp[1/(e*(m + 4*p + 2*q + 1)) I
nt[(f*x)^m*(d + e*x^2)^q*ExpandToSum[e*(m + 4*p + 2*q + 1)*((a + c*x^4)^p - c^p*x^(4*p)) - d*c^p*(m + 4*p - 1)
*x^(4*p - 2), x], x], x] /; FreeQ[{a, c, d, e, f, m, q}, x] && IGtQ[p, 0] && !IntegerQ[q] && NeQ[m + 4*p + 2*
q + 1, 0]
-
Int[((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> With
[{k = Denominator[m]}, Simp[k/f Subst[Int[x^(k*(m + 1) - 1)*(d + e*(x^(2*k)/f^2))^q*(a + b*(x^(2*k)/f^k) + c
*(x^(4*k)/f^4))^p, x], x, (f*x)^(1/k)], x]] /; FreeQ[{a, b, c, d, e, f, p, q}, x] && NeQ[b^2 - 4*a*c, 0] && Fr
actionQ[m] && IntegerQ[p]
-
Int[((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (c_.)*(x_)^4)^(p_), x_Symbol] :> With[{k = Denominat
or[m]}, Simp[k/f Subst[Int[x^(k*(m + 1) - 1)*(d + e*(x^(2*k)/f))^q*(a + c*(x^(4*k)/f))^p, x], x, (f*x)^(1/k)
], x]] /; FreeQ[{a, c, d, e, f, p, q}, x] && FractionQ[m] && IntegerQ[p]
-
Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Simp[(f*
x)^(m + 1)*(a + b*x^2 + c*x^4)^p*((d*(m + 4*p + 3) + e*(m + 1)*x^2)/(f*(m + 1)*(m + 4*p + 3))), x] + Simp[2*(p
/(f^2*(m + 1)*(m + 4*p + 3))) Int[(f*x)^(m + 2)*(a + b*x^2 + c*x^4)^(p - 1)*Simp[2*a*e*(m + 1) - b*d*(m + 4*
p + 3) + (b*e*(m + 1) - 2*c*d*(m + 4*p + 3))*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b^2 - 4*a*
c, 0] && GtQ[p, 0] && LtQ[m, -1] && m + 4*p + 3 != 0 && IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])
-
Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)*((a_) + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Simp[(f*x)^(m + 1)*(a +
c*x^4)^p*((d*(m + 4*p + 3) + e*(m + 1)*x^2)/(f*(m + 1)*(m + 4*p + 3))), x] + Simp[4*(p/(f^2*(m + 1)*(m + 4*p
+ 3))) Int[(f*x)^(m + 2)*(a + c*x^4)^(p - 1)*(a*e*(m + 1) - c*d*(m + 4*p + 3)*x^2), x], x] /; FreeQ[{a, c, d
, e, f}, x] && GtQ[p, 0] && LtQ[m, -1] && m + 4*p + 3 != 0 && IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])
-
Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Simp[(f*
x)^(m + 1)*(a + b*x^2 + c*x^4)^p*((b*e*2*p + c*d*(m + 4*p + 3) + c*e*(4*p + m + 1)*x^2)/(c*f*(4*p + m + 1)*(m
+ 4*p + 3))), x] + Simp[2*(p/(c*(4*p + m + 1)*(m + 4*p + 3))) Int[(f*x)^m*(a + b*x^2 + c*x^4)^(p - 1)*Simp[2
*a*c*d*(m + 4*p + 3) - a*b*e*(m + 1) + (2*a*c*e*(4*p + m + 1) + b*c*d*(m + 4*p + 3) - b^2*e*(m + 2*p + 1))*x^2
, x], x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b^2 - 4*a*c, 0] && GtQ[p, 0] && NeQ[4*p + m + 1, 0] &&
NeQ[m + 4*p + 3, 0] && IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])
-
Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)*((a_) + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Simp[(f*x)^(m + 1)*(a +
c*x^4)^p*((c*d*(m + 4*p + 3) + c*e*(4*p + m + 1)*x^2)/(c*f*(4*p + m + 1)*(m + 4*p + 3))), x] + Simp[4*a*(p/((
4*p + m + 1)*(m + 4*p + 3))) Int[(f*x)^m*(a + c*x^4)^(p - 1)*Simp[d*(m + 4*p + 3) + e*(4*p + m + 1)*x^2, x],
x], x] /; FreeQ[{a, c, d, e, f, m}, x] && GtQ[p, 0] && NeQ[4*p + m + 1, 0] && NeQ[m + 4*p + 3, 0] && IntegerQ
[2*p] && (IntegerQ[p] || IntegerQ[m])
-
Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Simp[f*(
f*x)^(m - 1)*(a + b*x^2 + c*x^4)^(p + 1)*((b*d - 2*a*e - (b*e - 2*c*d)*x^2)/(2*(p + 1)*(b^2 - 4*a*c))), x] - S
imp[f^2/(2*(p + 1)*(b^2 - 4*a*c)) Int[(f*x)^(m - 2)*(a + b*x^2 + c*x^4)^(p + 1)*Simp[(m - 1)*(b*d - 2*a*e) -
(4*p + 4 + m + 1)*(b*e - 2*c*d)*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ
[p, -1] && GtQ[m, 1] && IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])
-
Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)*((a_) + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Simp[f*(f*x)^(m - 1)*(a
+ c*x^4)^(p + 1)*((a*e - c*d*x^2)/(4*a*c*(p + 1))), x] - Simp[f^2/(4*a*c*(p + 1)) Int[(f*x)^(m - 2)*(a + c*
x^4)^(p + 1)*(a*e*(m - 1) - c*d*(4*p + 4 + m + 1)*x^2), x], x] /; FreeQ[{a, c, d, e, f}, x] && LtQ[p, -1] && G
tQ[m, 1] && IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])
-
Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(-(f
*x)^(m + 1))*(a + b*x^2 + c*x^4)^(p + 1)*((d*(b^2 - 2*a*c) - a*b*e + (b*d - 2*a*e)*c*x^2)/(2*a*f*(p + 1)*(b^2
- 4*a*c))), x] + Simp[1/(2*a*(p + 1)*(b^2 - 4*a*c)) Int[(f*x)^m*(a + b*x^2 + c*x^4)^(p + 1)*Simp[d*(b^2*(m +
2*(p + 1) + 1) - 2*a*c*(m + 4*(p + 1) + 1)) - a*b*e*(m + 1) + c*(m + 2*(2*p + 3) + 1)*(b*d - 2*a*e)*x^2, x],
x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && IntegerQ[2*p] && (IntegerQ[p
] || IntegerQ[m])
-
Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)*((a_) + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(-(f*x)^(m + 1))*(a
+ c*x^4)^(p + 1)*((d + e*x^2)/(4*a*f*(p + 1))), x] + Simp[1/(4*a*(p + 1)) Int[(f*x)^m*(a + c*x^4)^(p + 1)*S
imp[d*(m + 4*(p + 1) + 1) + e*(m + 2*(2*p + 3) + 1)*x^2, x], x], x] /; FreeQ[{a, c, d, e, f, m}, x] && LtQ[p,
-1] && IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])
-
Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[e*f*
(f*x)^(m - 1)*((a + b*x^2 + c*x^4)^(p + 1)/(c*(m + 4*p + 3))), x] - Simp[f^2/(c*(m + 4*p + 3)) Int[(f*x)^(m
- 2)*(a + b*x^2 + c*x^4)^p*Simp[a*e*(m - 1) + (b*e*(m + 2*p + 1) - c*d*(m + 4*p + 3))*x^2, x], x], x] /; FreeQ
[{a, b, c, d, e, f, p}, x] && NeQ[b^2 - 4*a*c, 0] && GtQ[m, 1] && NeQ[m + 4*p + 3, 0] && IntegerQ[2*p] && (Int
egerQ[p] || IntegerQ[m])
-
Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)*((a_) + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[e*f*(f*x)^(m - 1)*(
(a + c*x^4)^(p + 1)/(c*(m + 4*p + 3))), x] - Simp[f^2/(c*(m + 4*p + 3)) Int[(f*x)^(m - 2)*(a + c*x^4)^p*(a*e
*(m - 1) - c*d*(m + 4*p + 3)*x^2), x], x] /; FreeQ[{a, c, d, e, f, p}, x] && GtQ[m, 1] && NeQ[m + 4*p + 3, 0]
&& IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])
-
Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[d*(f
*x)^(m + 1)*((a + b*x^2 + c*x^4)^(p + 1)/(a*f*(m + 1))), x] + Simp[1/(a*f^2*(m + 1)) Int[(f*x)^(m + 2)*(a +
b*x^2 + c*x^4)^p*Simp[a*e*(m + 1) - b*d*(m + 2*p + 3) - c*d*(m + 4*p + 5)*x^2, x], x], x] /; FreeQ[{a, b, c, d
, e, f, p}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[m, -1] && IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])
-
Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)*((a_) + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[d*(f*x)^(m + 1)*((a
+ c*x^4)^(p + 1)/(a*f*(m + 1))), x] + Simp[1/(a*f^2*(m + 1)) Int[(f*x)^(m + 2)*(a + c*x^4)^p*(a*e*(m + 1) -
c*d*(m + 4*p + 5)*x^2), x], x] /; FreeQ[{a, c, d, e, f, p}, x] && LtQ[m, -1] && IntegerQ[2*p] && (IntegerQ[p]
|| IntegerQ[m])
-
Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2))/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{r = Rt
[(c/e)*(2*c*d - b*e), 2]}, Simp[e/2 Int[(f*x)^m/(c*(d/e) - r*x + c*x^2), x], x] + Simp[e/2 Int[(f*x)^m/(c*
(d/e) + r*x + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - a*e^2,
0] && GtQ[d/e, 0] && PosQ[(c/e)*(2*c*d - b*e)]
-
Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2))/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{r = Rt[2*c^2*(d/e), 2
]}, Simp[e/2 Int[(f*x)^m/(c*(d/e) - r*x + c*x^2), x], x] + Simp[e/2 Int[(f*x)^m/(c*(d/e) + r*x + c*x^2), x
], x]] /; FreeQ[{a, c, d, e, f, m}, x] && EqQ[c*d^2 - a*e^2, 0] && GtQ[d/e, 0]
-
Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2))/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt
[b^2 - 4*a*c, 2]}, Simp[(e/2 + (2*c*d - b*e)/(2*q)) Int[(f*x)^m/(b/2 - q/2 + c*x^2), x], x] + Simp[(e/2 - (2
*c*d - b*e)/(2*q)) Int[(f*x)^m/(b/2 + q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b^2 -
4*a*c, 0]
-
Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2))/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-a)*c, 2]}, S
imp[-(e/2 + c*(d/(2*q))) Int[(f*x)^m/(q - c*x^2), x], x] + Simp[(e/2 - c*(d/(2*q))) Int[(f*x)^m/(q + c*x^2
), x], x]] /; FreeQ[{a, c, d, e, f, m}, x]
-
Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.))/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> Int[Ex
pandIntegrand[(f*x)^m*((d + e*x^2)^q/(a + b*x^2 + c*x^4)), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b^
2 - 4*a*c, 0] && IntegerQ[q] && IntegerQ[m]
-
Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.))/((a_) + (c_.)*(x_)^4), x_Symbol] :> Int[ExpandIntegrand[(
f*x)^m*((d + e*x^2)^q/(a + c*x^4)), x], x] /; FreeQ[{a, c, d, e, f, m}, x] && IntegerQ[q] && IntegerQ[m]
-
Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.))/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> Int[Ex
pandIntegrand[(f*x)^m, (d + e*x^2)^q/(a + b*x^2 + c*x^4), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b^2
- 4*a*c, 0] && IntegerQ[q] && !IntegerQ[m]
-
Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.))/((a_) + (c_.)*(x_)^4), x_Symbol] :> Int[ExpandIntegrand[(
f*x)^m, (d + e*x^2)^q/(a + c*x^4), x], x] /; FreeQ[{a, c, d, e, f, m}, x] && IntegerQ[q] && !IntegerQ[m]
-
Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_))/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> Simp[f^
4/c^2 Int[(f*x)^(m - 4)*(c*d - b*e + c*e*x^2)*(d + e*x^2)^(q - 1), x], x] - Simp[f^4/c^2 Int[(f*x)^(m - 4)
*(d + e*x^2)^(q - 1)*(Simp[a*(c*d - b*e) + (b*c*d - b^2*e + a*c*e)*x^2, x]/(a + b*x^2 + c*x^4)), x], x] /; Fre
eQ[{a, b, c, d, e, f}, x] && NeQ[b^2 - 4*a*c, 0] && !IntegerQ[q] && GtQ[q, 0] && GtQ[m, 3]
-
Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_))/((a_) + (c_.)*(x_)^4), x_Symbol] :> Simp[f^4/c Int[(f*x)
^(m - 4)*(d + e*x^2)^q, x], x] - Simp[a*(f^4/c) Int[(f*x)^(m - 4)*((d + e*x^2)^q/(a + c*x^4)), x], x] /; Fre
eQ[{a, c, d, e, f, q}, x] && !IntegerQ[q] && GtQ[m, 3]
-
Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_))/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> Simp[e*
(f^2/c) Int[(f*x)^(m - 2)*(d + e*x^2)^(q - 1), x], x] - Simp[f^2/c Int[(f*x)^(m - 2)*(d + e*x^2)^(q - 1)*(
Simp[a*e - (c*d - b*e)*x^2, x]/(a + b*x^2 + c*x^4)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b^2 - 4*a*c
, 0] && !IntegerQ[q] && GtQ[q, 0] && GtQ[m, 1] && LeQ[m, 3]
-
Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_))/((a_) + (c_.)*(x_)^4), x_Symbol] :> Simp[e*(f^2/c) Int[(
f*x)^(m - 2)*(d + e*x^2)^(q - 1), x], x] - Simp[f^2/c Int[(f*x)^(m - 2)*(d + e*x^2)^(q - 1)*(Simp[a*e - c*d*
x^2, x]/(a + c*x^4)), x], x] /; FreeQ[{a, c, d, e, f}, x] && !IntegerQ[q] && GtQ[q, 0] && GtQ[m, 1] && LeQ[m,
3]
-
Int[(((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(q_))/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> Simp[d/a
Int[(f*x)^m*(d + e*x^2)^(q - 1), x], x] - Simp[1/(a*f^2) Int[(f*x)^(m + 2)*(d + e*x^2)^(q - 1)*(Simp[b*d
- a*e + c*d*x^2, x]/(a + b*x^2 + c*x^4)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b^2 - 4*a*c, 0] && !I
ntegerQ[q] && GtQ[q, 0] && LtQ[m, 0]
-
Int[(((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(q_))/((a_) + (c_.)*(x_)^4), x_Symbol] :> Simp[d/a Int[(f*x)^m*
(d + e*x^2)^(q - 1), x], x] + Simp[1/(a*f^2) Int[(f*x)^(m + 2)*(d + e*x^2)^(q - 1)*(Simp[a*e - c*d*x^2, x]/(
a + c*x^4)), x], x] /; FreeQ[{a, c, d, e, f}, x] && !IntegerQ[q] && GtQ[q, 0] && LtQ[m, 0]
-
Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_))/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> Simp[d^
2*(f^4/(c*d^2 - b*d*e + a*e^2)) Int[(f*x)^(m - 4)*(d + e*x^2)^q, x], x] - Simp[f^4/(c*d^2 - b*d*e + a*e^2)
Int[(f*x)^(m - 4)*(d + e*x^2)^(q + 1)*(Simp[a*d + (b*d - a*e)*x^2, x]/(a + b*x^2 + c*x^4)), x], x] /; FreeQ[{
a, b, c, d, e, f}, x] && NeQ[b^2 - 4*a*c, 0] && !IntegerQ[q] && LtQ[q, -1] && GtQ[m, 3]
-
Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_))/((a_) + (c_.)*(x_)^4), x_Symbol] :> Simp[d^2*(f^4/(c*d^2 +
a*e^2)) Int[(f*x)^(m - 4)*(d + e*x^2)^q, x], x] - Simp[a*(f^4/(c*d^2 + a*e^2)) Int[(f*x)^(m - 4)*(d + e*x
^2)^(q + 1)*((d - e*x^2)/(a + c*x^4)), x], x] /; FreeQ[{a, c, d, e, f}, x] && !IntegerQ[q] && LtQ[q, -1] && G
tQ[m, 3]
-
Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_))/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> Simp[(-
d)*e*(f^2/(c*d^2 - b*d*e + a*e^2)) Int[(f*x)^(m - 2)*(d + e*x^2)^q, x], x] + Simp[f^2/(c*d^2 - b*d*e + a*e^2
) Int[(f*x)^(m - 2)*(d + e*x^2)^(q + 1)*(Simp[a*e + c*d*x^2, x]/(a + b*x^2 + c*x^4)), x], x] /; FreeQ[{a, b,
c, d, e, f}, x] && NeQ[b^2 - 4*a*c, 0] && !IntegerQ[q] && LtQ[q, -1] && GtQ[m, 1] && LeQ[m, 3]
-
Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_))/((a_) + (c_.)*(x_)^4), x_Symbol] :> Simp[(-d)*e*(f^2/(c*d^
2 + a*e^2)) Int[(f*x)^(m - 2)*(d + e*x^2)^q, x], x] + Simp[f^2/(c*d^2 + a*e^2) Int[(f*x)^(m - 2)*(d + e*x^
2)^(q + 1)*(Simp[a*e + c*d*x^2, x]/(a + c*x^4)), x], x] /; FreeQ[{a, c, d, e, f}, x] && !IntegerQ[q] && LtQ[q
, -1] && GtQ[m, 1] && LeQ[m, 3]
-
Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_))/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> Simp[e^
2/(c*d^2 - b*d*e + a*e^2) Int[(f*x)^m*(d + e*x^2)^q, x], x] + Simp[1/(c*d^2 - b*d*e + a*e^2) Int[(f*x)^m*(
d + e*x^2)^(q + 1)*(Simp[c*d - b*e - c*e*x^2, x]/(a + b*x^2 + c*x^4)), x], x] /; FreeQ[{a, b, c, d, e, f, m},
x] && NeQ[b^2 - 4*a*c, 0] && !IntegerQ[q] && LtQ[q, -1]
-
Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_))/((a_) + (c_.)*(x_)^4), x_Symbol] :> Simp[e^2/(c*d^2 + a*e^
2) Int[(f*x)^m*(d + e*x^2)^q, x], x] + Simp[c/(c*d^2 + a*e^2) Int[(f*x)^m*(d + e*x^2)^(q + 1)*((d - e*x^2)
/(a + c*x^4)), x], x] /; FreeQ[{a, c, d, e, f, m}, x] && !IntegerQ[q] && LtQ[q, -1]
-
Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_))/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> Int[Exp
andIntegrand[(d + e*x^2)^q, (f*x)^m/(a + b*x^2 + c*x^4), x], x] /; FreeQ[{a, b, c, d, e, f, q}, x] && NeQ[b^2
- 4*a*c, 0] && !IntegerQ[q] && IntegerQ[m]
-
Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_))/((a_) + (c_.)*(x_)^4), x_Symbol] :> Int[ExpandIntegrand[(d
+ e*x^2)^q, (f*x)^m/(a + c*x^4), x], x] /; FreeQ[{a, c, d, e, f, q}, x] && !IntegerQ[q] && IntegerQ[m]
-
Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_))/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{r
= Rt[b^2 - 4*a*c, 2]}, Simp[2*(c/r) Int[(f*x)^m*((d + e*x^2)^q/(b - r + 2*c*x^2)), x], x] - Simp[2*(c/r)
Int[(f*x)^m*((d + e*x^2)^q/(b + r + 2*c*x^2)), x], x]] /; FreeQ[{a, b, c, d, e, f, m, q}, x] && NeQ[b^2 - 4*a*
c, 0]
-
Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_))/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{r = Rt[(-a)*c, 2
]}, Simp[-c/(2*r) Int[(f*x)^m*((d + e*x^2)^q/(r - c*x^2)), x], x] - Simp[c/(2*r) Int[(f*x)^m*((d + e*x^2)^
q/(r + c*x^2)), x], x]] /; FreeQ[{a, c, d, e, f, m, q}, x]
-
Int[((x_)^(m_)*((a_.) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(-(-d/e)^(
m/2))*((c*d^2 - b*d*e + a*e^2)^(p + 1/2)/(e^(2*p)*(c*d^2 - a*e^2))) Int[(a*d*Rt[c/a, 2] + a*e + (c*d + a*e*R
t[c/a, 2])*x^2)/((d + e*x^2)*Sqrt[a + b*x^2 + c*x^4]), x], x] + Simp[1/(e^(2*p)*(c*d^2 - a*e^2)) Int[(1/Sqrt
[a + b*x^2 + c*x^4])*ExpandToSum[(e^(2*p)*(c*d^2 - a*e^2)*x^m*(a + b*x^2 + c*x^4)^(p + 1/2) + (-d/e)^(m/2)*(c*
d^2 - b*d*e + a*e^2)^(p + 1/2)*(a*d*Rt[c/a, 2] + a*e + (c*d + a*e*Rt[c/a, 2])*x^2))/(d + e*x^2), x], x], x] /;
FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && IGtQ[p + 1/2, 0] && IGtQ[m/2, 0] && NeQ[c*d^2 - a*e^2, 0]
&& PosQ[c/a]
-
Int[((x_)^(m_)*((a_) + (c_.)*(x_)^4)^(p_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(-(-d/e)^(m/2))*((c*d^2 +
a*e^2)^(p + 1/2)/(e^(2*p)*(c*d^2 - a*e^2))) Int[(a*d*Rt[c/a, 2] + a*e + (c*d + a*e*Rt[c/a, 2])*x^2)/((d + e*
x^2)*Sqrt[a + c*x^4]), x], x] + Simp[1/(e^(2*p)*(c*d^2 - a*e^2)) Int[(1/Sqrt[a + c*x^4])*ExpandToSum[(e^(2*p
)*(c*d^2 - a*e^2)*x^m*(a + c*x^4)^(p + 1/2) + (-d/e)^(m/2)*(c*d^2 + a*e^2)^(p + 1/2)*(a*d*Rt[c/a, 2] + a*e + (
c*d + a*e*Rt[c/a, 2])*x^2))/(d + e*x^2), x], x], x] /; FreeQ[{a, c, d, e}, x] && IGtQ[p + 1/2, 0] && IGtQ[m/2,
0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[c/a]
-
Int[((x_)^(m_)*((a_.) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(-d/e)^(m/
2)*((c*d^2 - b*d*e + a*e^2)^(p + 1/2)/e^(2*p + 1)) Int[1/((d + e*x^2)*Sqrt[a + b*x^2 + c*x^4]), x], x] + Sim
p[1/e^(2*p + 1) Int[(1/Sqrt[a + b*x^2 + c*x^4])*ExpandToSum[(e^(2*p + 1)*x^m*(a + b*x^2 + c*x^4)^(p + 1/2) -
(-d/e)^(m/2)*(c*d^2 - b*d*e + a*e^2)^(p + 1/2))/(d + e*x^2), x], x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b
^2 - 4*a*c, 0] && IGtQ[p + 1/2, 0] && IGtQ[m/2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[c/a]
-
Int[((x_)^(m_)*((a_) + (c_.)*(x_)^4)^(p_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(-d/e)^(m/2)*((c*d^2 + a*e
^2)^(p + 1/2)/e^(2*p + 1)) Int[1/((d + e*x^2)*Sqrt[a + c*x^4]), x], x] + Simp[1/e^(2*p + 1) Int[(1/Sqrt[a
+ c*x^4])*ExpandToSum[(e^(2*p + 1)*x^m*(a + c*x^4)^(p + 1/2) - (-d/e)^(m/2)*(c*d^2 + a*e^2)^(p + 1/2))/(d + e*
x^2), x], x], x] /; FreeQ[{a, c, d, e}, x] && IGtQ[p + 1/2, 0] && IGtQ[m/2, 0] && NeQ[c*d^2 - a*e^2, 0] && Neg
Q[c/a]
-
Int[((x_)^(m_)*((a_.) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(-(-d/e)^(
m/2))*((c*d^2 - b*d*e + a*e^2)^(p + 1/2)/(e^(2*p)*(c*d^2 - a*e^2))) Int[(a*d*Rt[c/a, 2] + a*e + (c*d + a*e*R
t[c/a, 2])*x^2)/((d + e*x^2)*Sqrt[a + b*x^2 + c*x^4]), x], x] + Simp[(-d/e)^(m/2)/(e^(2*p)*(c*d^2 - a*e^2))
Int[(x^m/Sqrt[a + b*x^2 + c*x^4])*ExpandToSum[((e^(2*p)*(c*d^2 - a*e^2)*(a + b*x^2 + c*x^4)^(p + 1/2))/(-d/e)^
(m/2) + ((a*d*Rt[c/a, 2] + a*e + (c*d + a*e*Rt[c/a, 2])*x^2)*(c*d^2 - b*d*e + a*e^2)^(p + 1/2))/x^m)/(d + e*x^
2), x], x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && IGtQ[p + 1/2, 0] && ILtQ[m/2, 0] && NeQ[
c*d^2 - a*e^2, 0] && PosQ[c/a]
-
Int[((x_)^(m_)*((a_) + (c_.)*(x_)^4)^(p_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(-(-d/e)^(m/2))*((c*d^2 +
a*e^2)^(p + 1/2)/(e^(2*p)*(c*d^2 - a*e^2))) Int[(a*d*Rt[c/a, 2] + a*e + (c*d + a*e*Rt[c/a, 2])*x^2)/((d + e*
x^2)*Sqrt[a + c*x^4]), x], x] + Simp[(-d/e)^(m/2)/(e^(2*p)*(c*d^2 - a*e^2)) Int[(x^m/Sqrt[a + c*x^4])*Expand
ToSum[((e^(2*p)*(c*d^2 - a*e^2)*(a + c*x^4)^(p + 1/2))/(-d/e)^(m/2) + ((a*d*Rt[c/a, 2] + a*e + (c*d + a*e*Rt[c
/a, 2])*x^2)*(c*d^2 + a*e^2)^(p + 1/2))/x^m)/(d + e*x^2), x], x], x] /; FreeQ[{a, c, d, e}, x] && IGtQ[p + 1/2
, 0] && ILtQ[m/2, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[c/a]
-
Int[((x_)^(m_)*((a_.) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(-d/e)^(m/
2)*((c*d^2 - b*d*e + a*e^2)^(p + 1/2)/e^(2*p + 1)) Int[1/((d + e*x^2)*Sqrt[a + b*x^2 + c*x^4]), x], x] + Sim
p[(-d/e)^(m/2)/e^(2*p + 1) Int[(x^m/Sqrt[a + b*x^2 + c*x^4])*ExpandToSum[((e^(2*p + 1)*(a + b*x^2 + c*x^4)^(
p + 1/2))/(-d/e)^(m/2) - (c*d^2 - b*d*e + a*e^2)^(p + 1/2)/x^m)/(d + e*x^2), x], x], x] /; FreeQ[{a, b, c, d,
e}, x] && NeQ[b^2 - 4*a*c, 0] && IGtQ[p + 1/2, 0] && ILtQ[m/2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[c/a]
-
Int[((x_)^(m_)*((a_) + (c_.)*(x_)^4)^(p_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(-d/e)^(m/2)*((c*d^2 + a*e
^2)^(p + 1/2)/e^(2*p + 1)) Int[1/((d + e*x^2)*Sqrt[a + c*x^4]), x], x] + Simp[(-d/e)^(m/2)/e^(2*p + 1) Int
[(x^m/Sqrt[a + c*x^4])*ExpandToSum[((e^(2*p + 1)*(a + c*x^4)^(p + 1/2))/(-d/e)^(m/2) - (c*d^2 + a*e^2)^(p + 1/
2)/x^m)/(d + e*x^2), x], x], x] /; FreeQ[{a, c, d, e}, x] && IGtQ[p + 1/2, 0] && ILtQ[m/2, 0] && NeQ[c*d^2 - a
*e^2, 0] && NegQ[c/a]
-
Int[((x_)^(m_)*((a_.) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(-(-d/e)^(
m/2))*((c*d^2 - b*d*e + a*e^2)^(p + 1/2)/(e^(2*p)*(Rt[c/a, 2]*d - e))) Int[(1 + Rt[c/a, 2]*x^2)/((d + e*x^2)
*Sqrt[a + b*x^2 + c*x^4]), x], x] + Simp[(c*d^2 - b*d*e + a*e^2)^(p + 1/2)/(Rt[c/a, 2]*d - e) Int[(a + b*x^2
+ c*x^4)^p*ExpandToSum[((Rt[c/a, 2]*d - e)*(c*d^2 - b*d*e + a*e^2)^(-p - 1/2)*x^m + ((-d/e)^(m/2)*(1 + Rt[c/a
, 2]*x^2)*(a + b*x^2 + c*x^4)^(-p - 1/2))/e^(2*p))/(d + e*x^2), x], x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ
[b^2 - 4*a*c, 0] && ILtQ[p + 1/2, 0] && IGtQ[m/2, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[c/a]
-
Int[((x_)^(m_)*((a_) + (c_.)*(x_)^4)^(p_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(-(-d/e)^(m/2))*((c*d^2 +
a*e^2)^(p + 1/2)/(e^(2*p)*(Rt[c/a, 2]*d - e))) Int[(1 + Rt[c/a, 2]*x^2)/((d + e*x^2)*Sqrt[a + c*x^4]), x], x
] + Simp[(c*d^2 + a*e^2)^(p + 1/2)/(Rt[c/a, 2]*d - e) Int[(a + c*x^4)^p*ExpandToSum[((Rt[c/a, 2]*d - e)*(c*d
^2 + a*e^2)^(-p - 1/2)*x^m + ((-d/e)^(m/2)*(1 + Rt[c/a, 2]*x^2)*(a + c*x^4)^(-p - 1/2))/e^(2*p))/(d + e*x^2),
x], x], x] /; FreeQ[{a, c, d, e}, x] && ILtQ[p + 1/2, 0] && IGtQ[m/2, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[c/a]
-
Int[((x_)^(m_)*((a_.) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(-d/e)^(m/
2)*((c*d^2 - b*d*e + a*e^2)^(p + 1/2)/e^(2*p + 1)) Int[1/((d + e*x^2)*Sqrt[a + b*x^2 + c*x^4]), x], x] + Sim
p[(c*d^2 - b*d*e + a*e^2)^(p + 1/2) Int[(a + b*x^2 + c*x^4)^p*ExpandToSum[((c*d^2 - b*d*e + a*e^2)^(-p - 1/2
)*x^m - e^(-2*p - 1)*(-d/e)^(m/2)*(a + b*x^2 + c*x^4)^(-p - 1/2))/(d + e*x^2), x], x], x] /; FreeQ[{a, b, c, d
, e}, x] && NeQ[b^2 - 4*a*c, 0] && ILtQ[p + 1/2, 0] && IGtQ[m/2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[c/a]
-
Int[((x_)^(m_)*((a_) + (c_.)*(x_)^4)^(p_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(-d/e)^(m/2)*((c*d^2 + a*e
^2)^(p + 1/2)/e^(2*p + 1)) Int[1/((d + e*x^2)*Sqrt[a + c*x^4]), x], x] + Simp[(c*d^2 + a*e^2)^(p + 1/2) In
t[(a + c*x^4)^p*ExpandToSum[((c*d^2 + a*e^2)^(-p - 1/2)*x^m - e^(-2*p - 1)*(-d/e)^(m/2)*(a + c*x^4)^(-p - 1/2)
)/(d + e*x^2), x], x], x] /; FreeQ[{a, c, d, e}, x] && ILtQ[p + 1/2, 0] && IGtQ[m/2, 0] && NeQ[c*d^2 - a*e^2,
0] && NegQ[c/a]
-
Int[((x_)^(m_)*((a_.) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(-(-d/e)^(
m/2))*((c*d^2 - b*d*e + a*e^2)^(p + 1/2)/(e^(2*p)*(Rt[c/a, 2]*d - e))) Int[(1 + Rt[c/a, 2]*x^2)/((d + e*x^2)
*Sqrt[a + b*x^2 + c*x^4]), x], x] + Simp[(-d/e)^(m/2)*((c*d^2 - b*d*e + a*e^2)^(p + 1/2)/(Rt[c/a, 2]*d - e))
Int[x^m*(a + b*x^2 + c*x^4)^p*ExpandToSum[(((Rt[c/a, 2]*d - e)*(c*d^2 - b*d*e + a*e^2)^(-p - 1/2))/(-d/e)^(m/
2) + ((1 + Rt[c/a, 2]*x^2)*(a + b*x^2 + c*x^4)^(-p - 1/2))/(e^(2*p)*x^m))/(d + e*x^2), x], x], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && ILtQ[p + 1/2, 0] && ILtQ[m/2, 0] && NeQ[c*d^2 - a*e^2, 0] && PosQ[c
/a]
-
Int[((x_)^(m_)*((a_) + (c_.)*(x_)^4)^(p_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(-(-d/e)^(m/2))*((c*d^2 +
a*e^2)^(p + 1/2)/(e^(2*p)*(Rt[c/a, 2]*d - e))) Int[(1 + Rt[c/a, 2]*x^2)/((d + e*x^2)*Sqrt[a + c*x^4]), x], x
] + Simp[(-d/e)^(m/2)*((c*d^2 + a*e^2)^(p + 1/2)/(Rt[c/a, 2]*d - e)) Int[x^m*(a + c*x^4)^p*ExpandToSum[(((Rt
[c/a, 2]*d - e)*(c*d^2 + a*e^2)^(-p - 1/2))/(-d/e)^(m/2) + ((1 + Rt[c/a, 2]*x^2)*(a + c*x^4)^(-p - 1/2))/(e^(2
*p)*x^m))/(d + e*x^2), x], x], x] /; FreeQ[{a, c, d, e}, x] && ILtQ[p + 1/2, 0] && ILtQ[m/2, 0] && NeQ[c*d^2 -
a*e^2, 0] && PosQ[c/a]
-
Int[((x_)^(m_)*((a_.) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(-d/e)^(m/
2)*((c*d^2 - b*d*e + a*e^2)^(p + 1/2)/e^(2*p + 1)) Int[1/((d + e*x^2)*Sqrt[a + b*x^2 + c*x^4]), x], x] + Sim
p[(-d/e)^(m/2)*(c*d^2 - b*d*e + a*e^2)^(p + 1/2) Int[x^m*(a + b*x^2 + c*x^4)^p*ExpandToSum[((c*d^2 - b*d*e +
a*e^2)^(-p - 1/2)/(-d/e)^(m/2) - (e^(-2*p - 1)*(a + b*x^2 + c*x^4)^(-p - 1/2))/x^m)/(d + e*x^2), x], x], x] /
; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && ILtQ[p + 1/2, 0] && ILtQ[m/2, 0] && NeQ[c*d^2 - a*e^2, 0
] && NegQ[c/a]
-
Int[((x_)^(m_)*((a_) + (c_.)*(x_)^4)^(p_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(-d/e)^(m/2)*((c*d^2 + a*e
^2)^(p + 1/2)/e^(2*p + 1)) Int[1/((d + e*x^2)*Sqrt[a + c*x^4]), x], x] + Simp[(-d/e)^(m/2)*(c*d^2 + a*e^2)^(
p + 1/2) Int[x^m*(a + c*x^4)^p*ExpandToSum[((c*d^2 + a*e^2)^(-p - 1/2)/(-d/e)^(m/2) - (e^(-2*p - 1)*(a + c*x
^4)^(-p - 1/2))/x^m)/(d + e*x^2), x], x], x] /; FreeQ[{a, c, d, e}, x] && ILtQ[p + 1/2, 0] && ILtQ[m/2, 0] &&
NeQ[c*d^2 - a*e^2, 0] && NegQ[c/a]
-
Int[(((f_.)*(x_))^(m_)*((a_.) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[1
/d^2 Int[(f*x)^m*(a*d + (b*d - a*e)*x^2)*(a + b*x^2 + c*x^4)^(p - 1), x], x] + Simp[(c*d^2 - b*d*e + a*e^2)/
(d^2*f^4) Int[(f*x)^(m + 4)*((a + b*x^2 + c*x^4)^(p - 1)/(d + e*x^2)), x], x] /; FreeQ[{a, b, c, d, e, f}, x
] && NeQ[b^2 - 4*a*c, 0] && GtQ[p, 0] && LtQ[m, -2]
-
Int[(((f_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^4)^(p_.))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[a/d^2 Int[(f*x)
^m*(d - e*x^2)*(a + c*x^4)^(p - 1), x], x] + Simp[(c*d^2 + a*e^2)/(d^2*f^4) Int[(f*x)^(m + 4)*((a + c*x^4)^(
p - 1)/(d + e*x^2)), x], x] /; FreeQ[{a, c, d, e, f}, x] && GtQ[p, 0] && LtQ[m, -2]
-
Int[(((f_.)*(x_))^(m_)*((a_.) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[1
/(d*e) Int[(f*x)^m*(a*e + c*d*x^2)*(a + b*x^2 + c*x^4)^(p - 1), x], x] - Simp[(c*d^2 - b*d*e + a*e^2)/(d*e*f
^2) Int[(f*x)^(m + 2)*((a + b*x^2 + c*x^4)^(p - 1)/(d + e*x^2)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && N
eQ[b^2 - 4*a*c, 0] && GtQ[p, 0] && LtQ[m, 0]
-
Int[(((f_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^4)^(p_.))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[1/(d*e) Int[(f*
x)^m*(a*e + c*d*x^2)*(a + c*x^4)^(p - 1), x], x] - Simp[(c*d^2 + a*e^2)/(d*e*f^2) Int[(f*x)^(m + 2)*((a + c*
x^4)^(p - 1)/(d + e*x^2)), x], x] /; FreeQ[{a, c, d, e, f}, x] && GtQ[p, 0] && LtQ[m, 0]
-
Int[(((f_.)*(x_))^(m_.)*((a_.) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[-
f^4/(c*d^2 - b*d*e + a*e^2) Int[(f*x)^(m - 4)*(a*d + (b*d - a*e)*x^2)*(a + b*x^2 + c*x^4)^p, x], x] + Simp[d
^2*(f^4/(c*d^2 - b*d*e + a*e^2)) Int[(f*x)^(m - 4)*((a + b*x^2 + c*x^4)^(p + 1)/(d + e*x^2)), x], x] /; Free
Q[{a, b, c, d, e, f}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && GtQ[m, 2]
-
Int[(((f_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^4)^(p_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(-a)*(f^4/(c*d^2
+ a*e^2)) Int[(f*x)^(m - 4)*(d - e*x^2)*(a + c*x^4)^p, x], x] + Simp[d^2*(f^4/(c*d^2 + a*e^2)) Int[(f*x)^(
m - 4)*((a + c*x^4)^(p + 1)/(d + e*x^2)), x], x] /; FreeQ[{a, c, d, e, f}, x] && LtQ[p, -1] && GtQ[m, 2]
-
Int[(((f_.)*(x_))^(m_.)*((a_.) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[f
^2/(c*d^2 - b*d*e + a*e^2) Int[(f*x)^(m - 2)*(a*e + c*d*x^2)*(a + b*x^2 + c*x^4)^p, x], x] - Simp[d*e*(f^2/(
c*d^2 - b*d*e + a*e^2)) Int[(f*x)^(m - 2)*((a + b*x^2 + c*x^4)^(p + 1)/(d + e*x^2)), x], x] /; FreeQ[{a, b,
c, d, e, f}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && GtQ[m, 0]
-
Int[(((f_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^4)^(p_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[f^2/(c*d^2 + a*e^
2) Int[(f*x)^(m - 2)*(a*e + c*d*x^2)*(a + c*x^4)^p, x], x] - Simp[d*e*(f^2/(c*d^2 + a*e^2)) Int[(f*x)^(m -
2)*((a + c*x^4)^(p + 1)/(d + e*x^2)), x], x] /; FreeQ[{a, c, d, e, f}, x] && LtQ[p, -1] && GtQ[m, 0]
-
Int[(x_)^2/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]), x_Symbol] :> Simp[1/(2*e) Int[1
/Sqrt[a + b*x^2 + c*x^4], x], x] - Simp[1/(2*e) Int[(d - e*x^2)/((d + e*x^2)*Sqrt[a + b*x^2 + c*x^4]), x], x
] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a] && EqQ[c*d^2 - a*e^2, 0]
-
Int[(x_)^2/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> Simp[1/(2*e) Int[1/Sqrt[a + c*x^4
], x], x] - Simp[1/(2*e) Int[(d - e*x^2)/((d + e*x^2)*Sqrt[a + c*x^4]), x], x] /; FreeQ[{a, c, d, e}, x] &&
PosQ[c/a] && EqQ[c*d^2 - a*e^2, 0]
-
Int[(x_)^2/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]), x_Symbol] :> With[{q = Rt[c/a, 2]
}, Simp[(-a)*((e + d*q)/(c*d^2 - a*e^2)) Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] + Simp[a*d*((e + d*q)/(c*d^2
- a*e^2)) Int[(1 + q*x^2)/((d + e*x^2)*Sqrt[a + b*x^2 + c*x^4]), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ
[b^2 - 4*a*c, 0] && PosQ[c/a] && NeQ[c*d^2 - a*e^2, 0]
-
Int[(x_)^2/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> With[{q = Rt[c/a, 2]}, Simp[(-a)*((
e + d*q)/(c*d^2 - a*e^2)) Int[1/Sqrt[a + c*x^4], x], x] + Simp[a*d*((e + d*q)/(c*d^2 - a*e^2)) Int[(1 + q*
x^2)/((d + e*x^2)*Sqrt[a + c*x^4]), x], x]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a] && NeQ[c*d^2 - a*e^2, 0]
-
Int[(x_)^2/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]), x_Symbol] :> Simp[1/e Int[1/Sqr
t[a + b*x^2 + c*x^4], x], x] - Simp[d/e Int[1/((d + e*x^2)*Sqrt[a + b*x^2 + c*x^4]), x], x] /; FreeQ[{a, b,
c, d, e}, x] && NeQ[b^2 - 4*a*c, 0]
-
Int[(x_)^2/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> Simp[1/e Int[1/Sqrt[a + c*x^4], x
], x] - Simp[d/e Int[1/((d + e*x^2)*Sqrt[a + c*x^4]), x], x] /; FreeQ[{a, c, d, e}, x]
-
Int[(x_)^4/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]), x_Symbol] :> With[{q = Rt[c/a, 2]
}, Simp[-(e*q)^(-1) Int[(1 - q*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x] + Simp[d^2/(e*(e - d*q)) Int[(1 + q*x^
2)/((d + e*x^2)*Sqrt[a + b*x^2 + c*x^4]), x], x] /; EqQ[2*c*d - a*e*q, 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ
[b^2 - 4*a*c, 0] && PosQ[c/a] && NeQ[c*d^2 - a*e^2, 0]
-
Int[(x_)^4/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> With[{q = Rt[c/a, 2]}, Simp[-(e*q)^
(-1) Int[(1 - q*x^2)/Sqrt[a + c*x^4], x], x] + Simp[d^2/(e*(e - d*q)) Int[(1 + q*x^2)/((d + e*x^2)*Sqrt[a
+ c*x^4]), x], x] /; EqQ[2*c*d - a*e*q, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a] && NeQ[c*d^2 - a*e^2, 0]
-
Int[(x_)^4/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]), x_Symbol] :> With[{q = Rt[c/a, 2]
}, Simp[-(2*c*d - a*e*q)/(c*e*(e - d*q)) Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] + (-Simp[1/(e*q) Int[(1 - q
*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x] + Simp[d^2/(e*(e - d*q)) Int[(1 + q*x^2)/((d + e*x^2)*Sqrt[a + b*x^2 +
c*x^4]), x], x])] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a] && NeQ[c*d^2 - a*e^2, 0]
-
Int[(x_)^4/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> With[{q = Rt[c/a, 2]}, Simp[-(2*c*d
- a*e*q)/(c*e*(e - d*q)) Int[1/Sqrt[a + c*x^4], x], x] + (-Simp[1/(e*q) Int[(1 - q*x^2)/Sqrt[a + c*x^4],
x], x] + Simp[d^2/(e*(e - d*q)) Int[(1 + q*x^2)/((d + e*x^2)*Sqrt[a + c*x^4]), x], x])] /; FreeQ[{a, c, d, e
}, x] && PosQ[c/a] && NeQ[c*d^2 - a*e^2, 0]
-
Int[(x_)^4/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]), x_Symbol] :> Simp[d^2/e^2 Int[1
/((d + e*x^2)*Sqrt[a + b*x^2 + c*x^4]), x], x] - Simp[1/e^2 Int[(d - e*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x]
/; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0]
-
Int[(x_)^4/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> Simp[d^2/e^2 Int[1/((d + e*x^2)*S
qrt[a + c*x^4]), x], x] - Simp[1/e^2 Int[(d - e*x^2)/Sqrt[a + c*x^4], x], x] /; FreeQ[{a, c, d, e}, x]
-
Int[(x_)^(m_)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]), x_Symbol] :> Simp[x^(m - 5)*(S
qrt[a + b*x^2 + c*x^4]/(c*e*(m - 3))), x] - Simp[1/(c*e*(m - 3)) Int[(x^(m - 6)/((d + e*x^2)*Sqrt[a + b*x^2
+ c*x^4]))*Simp[a*d*(m - 5) + (a*e*(m - 5) + b*d*(m - 4))*x^2 + (b*e*(m - 4) + c*d*(m - 3))*x^4, x], x], x] /;
FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && IGtQ[m/2, 2]
-
Int[(x_)^(m_)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> Simp[x^(m - 5)*(Sqrt[a + c*x^4]/
(c*e*(m - 3))), x] - Simp[1/(c*e*(m - 3)) Int[(x^(m - 6)/((d + e*x^2)*Sqrt[a + c*x^4]))*Simp[a*d*(m - 5) + a
*e*(m - 5)*x^2 + c*d*(m - 3)*x^4, x], x], x] /; FreeQ[{a, c, d, e}, x] && IGtQ[m/2, 2]
-
Int[(x_)^(m_)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]), x_Symbol] :> Simp[x^(m + 1)*(S
qrt[a + b*x^2 + c*x^4]/(a*d*(m + 1))), x] - Simp[1/(a*d*(m + 1)) Int[(x^(m + 2)/((d + e*x^2)*Sqrt[a + b*x^2
+ c*x^4]))*Simp[a*e*(m + 1) + b*d*(m + 2) + (b*e*(m + 2) + c*d*(m + 3))*x^2 + c*e*(m + 3)*x^4, x], x], x] /; F
reeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && ILtQ[m/2, 0]
-
Int[(x_)^(m_)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> Simp[x^(m + 1)*(Sqrt[a + c*x^4]/
(a*d*(m + 1))), x] - Simp[1/(a*d*(m + 1)) Int[(x^(m + 2)/((d + e*x^2)*Sqrt[a + c*x^4]))*Simp[a*e*(m + 1) + c
*d*(m + 3)*x^2 + c*e*(m + 3)*x^4, x], x], x] /; FreeQ[{a, c, d, e}, x] && ILtQ[m/2, 0]
-
Int[(x_)^(m_)/(Sqrt[(d_) + (e_.)*(x_)^2]*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]), x_Symbol] :> Simp[x^3*Sqrt
[e + d/x^2]*(Sqrt[c + b/x^2 + a/x^4]/(Sqrt[d + e*x^2]*Sqrt[a + b*x^2 + c*x^4])) Int[x^(m - 3)/(Sqrt[e + d/x^
2]*Sqrt[c + b/x^2 + a/x^4]), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && IntegerQ[m/2]
-
Int[(x_)^(m_)/(Sqrt[(d_) + (e_.)*(x_)^2]*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> Simp[x^3*Sqrt[e + d/x^2]*(Sq
rt[c + a/x^4]/(Sqrt[d + e*x^2]*Sqrt[a + c*x^4])) Int[x^(m - 3)/(Sqrt[e + d/x^2]*Sqrt[c + a/x^4]), x], x] /;
FreeQ[{a, c, d, e}, x] && IntegerQ[m/2]
-
Int[(x_)^(m_)*((d_) + (e_.)*(x_)^2)^(q_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> With[{f = Coe
ff[PolynomialRemainder[x^m*(d + e*x^2)^q, a + b*x^2 + c*x^4, x], x, 0], g = Coeff[PolynomialRemainder[x^m*(d +
e*x^2)^q, a + b*x^2 + c*x^4, x], x, 2]}, Simp[x*(a + b*x^2 + c*x^4)^(p + 1)*((a*b*g - f*(b^2 - 2*a*c) - c*(b*
f - 2*a*g)*x^2)/(2*a*(p + 1)*(b^2 - 4*a*c))), x] + Simp[1/(2*a*(p + 1)*(b^2 - 4*a*c)) Int[(a + b*x^2 + c*x^4
)^(p + 1)*Simp[ExpandToSum[2*a*(p + 1)*(b^2 - 4*a*c)*PolynomialQuotient[x^m*(d + e*x^2)^q, a + b*x^2 + c*x^4,
x] + b^2*f*(2*p + 3) - 2*a*c*f*(4*p + 5) - a*b*g + c*(4*p + 7)*(b*f - 2*a*g)*x^2, x], x], x], x]] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && IGtQ[q, 1] && IGtQ[m/2, 0]
-
Int[(x_)^(m_)*((d_) + (e_.)*(x_)^2)^(q_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> With[{f = Coe
ff[PolynomialRemainder[x^m*(d + e*x^2)^q, a + b*x^2 + c*x^4, x], x, 0], g = Coeff[PolynomialRemainder[x^m*(d +
e*x^2)^q, a + b*x^2 + c*x^4, x], x, 2]}, Simp[x*(a + b*x^2 + c*x^4)^(p + 1)*((a*b*g - f*(b^2 - 2*a*c) - c*(b*
f - 2*a*g)*x^2)/(2*a*(p + 1)*(b^2 - 4*a*c))), x] + Simp[1/(2*a*(p + 1)*(b^2 - 4*a*c)) Int[x^m*(a + b*x^2 + c
*x^4)^(p + 1)*Simp[ExpandToSum[(2*a*(p + 1)*(b^2 - 4*a*c)*PolynomialQuotient[x^m*(d + e*x^2)^q, a + b*x^2 + c*
x^4, x])/x^m + (b^2*f*(2*p + 3) - 2*a*c*f*(4*p + 5) - a*b*g)/x^m + c*(4*p + 7)*(b*f - 2*a*g)*x^(2 - m), x], x]
, x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && IGtQ[q, 1] && ILtQ[m/2, 0]
-
Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> In
t[ExpandIntegrand[(f*x)^m*(d + e*x^2)^q*(a + b*x^2 + c*x^4)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, p, q}, x]
&& NeQ[b^2 - 4*a*c, 0] && (IGtQ[p, 0] || IGtQ[q, 0] || IntegersQ[m, q])
-
Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Int[ExpandIntegra
nd[(f*x)^m*(d + e*x^2)^q*(a + c*x^4)^p, x], x] /; FreeQ[{a, c, d, e, f, m, p, q}, x] && (IGtQ[p, 0] || IGtQ[q,
0] || IntegersQ[m, q])
-
Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_)*((a_) + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[(f*x)^m/x^m
Int[ExpandIntegrand[x^m*(a + c*x^4)^p, (d/(d^2 - e^2*x^4) - e*(x^2/(d^2 - e^2*x^4)))^(-q), x], x], x] /; FreeQ
[{a, c, d, e, f, m, p}, x] && !IntegerQ[p] && ILtQ[q, 0]
-
Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Un
integrable[(f*x)^m*(d + e*x^2)^q*(a + b*x^2 + c*x^4)^p, x] /; FreeQ[{a, b, c, d, e, f, m, p, q}, x]
-
Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Unintegrable[(f*x
)^m*(d + e*x^2)^q*(a + c*x^4)^p, x] /; FreeQ[{a, c, d, e, f, m, p, q}, x]
-
Int[((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Int[x^(2*n*p)*(c + b/x^n + a/x^(2*n))^p, x
] /; FreeQ[{a, b, c}, x] && EqQ[n2, 2*n] && LtQ[n, 0] && IntegerQ[p]
-
Int[((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[n]}, Simp[k Subst[
Int[x^(k - 1)*(a + b*x^(k*n) + c*x^(2*k*n))^p, x], x, x^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && EqQ[n2, 2*n]
&& FractionQ[n]
-
Int[((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Subst[Int[(a + b/x^n + c/x^(2*n))^p/x^2,
x], x, 1/x] /; FreeQ[{a, b, c, p}, x] && EqQ[n2, 2*n] && ILtQ[n, 0]
-
Int[((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Int[ExpandIntegrand[(a + b*x^n + c*x^(2*n)
)^p, x], x] /; FreeQ[{a, b, c, n}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[p, 0]
-
Int[((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(-x)*(b^2 - 2*a*c + b*c*x^n)*((a + b*
x^n + c*x^(2*n))^(p + 1)/(a*n*(p + 1)*(b^2 - 4*a*c))), x] + Simp[1/(a*n*(p + 1)*(b^2 - 4*a*c)) Int[(b^2 - 2*
a*c + n*(p + 1)*(b^2 - 4*a*c) + b*c*(n*(2*p + 3) + 1)*x^n)*(a + b*x^n + c*x^(2*n))^(p + 1), x], x] /; FreeQ[{a
, b, c, n}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && ILtQ[p, -1]
-
Int[((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_))^(-1), x_Symbol] :> With[{q = Rt[a/c, 2]}, With[{r = Rt[2*q - b
/c, 2]}, Simp[1/(2*c*q*r) Int[(r - x^(n/2))/(q - r*x^(n/2) + x^n), x], x] + Simp[1/(2*c*q*r) Int[(r + x^(n
/2))/(q + r*x^(n/2) + x^n), x], x]]] /; FreeQ[{a, b, c}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n/2
, 0] && NegQ[b^2 - 4*a*c]
-
Int[((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_))^(-1), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[c/q I
nt[1/(b/2 - q/2 + c*x^n), x], x] - Simp[c/q Int[1/(b/2 + q/2 + c*x^n), x], x]] /; FreeQ[{a, b, c}, x] && EqQ
[n2, 2*n] && NeQ[b^2 - 4*a*c, 0]
-
Int[((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[a^IntPart[p]*((a + b*x^n + c*x^(2*n))
^FracPart[p]/((1 + 2*c*(x^n/(b + Rt[b^2 - 4*a*c, 2])))^FracPart[p]*(1 + 2*c*(x^n/(b - Rt[b^2 - 4*a*c, 2])))^Fr
acPart[p])) Int[(1 + 2*c*(x^n/(b + Sqrt[b^2 - 4*a*c])))^p*(1 + 2*c*(x^n/(b - Sqrt[b^2 - 4*a*c])))^p, x], x]
/; FreeQ[{a, b, c, n, p}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && !IntegerQ[p]
-
Int[((a_) + (c_.)*(u_)^(n2_.) + (b_.)*(u_)^(n_))^(p_), x_Symbol] :> Simp[1/Coefficient[u, x, 1] Subst[Int[(a
+ b*x^n + c*x^(2*n))^p, x], x, u], x] /; FreeQ[{a, b, c, n, p}, x] && EqQ[n2, 2*n] && LinearQ[u, x] && NeQ[u,
x]
-
Int[((a_) + (c_.)*(x_)^(n_.) + (b_.)*(x_)^(mn_))^(p_), x_Symbol] :> Int[(b + a*x^n + c*x^(2*n))^p/x^(n*p), x]
/; FreeQ[{a, b, c, n}, x] && EqQ[mn, -n] && IntegerQ[p] && PosQ[n]
-
Int[((a_) + (c_.)*(x_)^(n_.) + (b_.)*(x_)^(mn_))^(p_), x_Symbol] :> Simp[x^(n*FracPart[p])*((a + b/x^n + c*x^n
)^FracPart[p]/(b + a*x^n + c*x^(2*n))^FracPart[p]) Int[(b + a*x^n + c*x^(2*n))^p/x^(n*p), x], x] /; FreeQ[{a
, b, c, n, p}, x] && EqQ[mn, -n] && !IntegerQ[p] && PosQ[n]
-
Int[(x_)^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Simp[1/n Subst[Int[(a + b*x
+ c*x^2)^p, x], x, x^n], x] /; FreeQ[{a, b, c, m, n, p}, x] && EqQ[n2, 2*n] && EqQ[Simplify[m - n + 1], 0]
-
Int[((d_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Int[ExpandIntegrand[(d
*x)^m*(a + b*x^n + c*x^(2*n))^p, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && EqQ[n2, 2*n] && IGtQ[p, 0] && !Int
egerQ[Simplify[(m + 1)/n]]
-
Int[(x_)^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Int[x^(m + 2*n*p)*(c + b/x^n +
a/x^(2*n))^p, x] /; FreeQ[{a, b, c, m, n}, x] && EqQ[n2, 2*n] && ILtQ[p, 0] && NegQ[n]
-
Int[(x_)^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Simp[1/n Subst[Int[x^(Simpli
fy[(m + 1)/n] - 1)*(a + b*x + c*x^2)^p, x], x, x^n], x] /; FreeQ[{a, b, c, m, n, p}, x] && EqQ[n2, 2*n] && Int
egerQ[Simplify[(m + 1)/n]]
-
Int[((d_)*(x_))^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Simp[d^IntPart[m]*((d*x
)^FracPart[m]/x^FracPart[m]) Int[x^m*(a + b*x^n + c*x^(2*n))^p, x], x] /; FreeQ[{a, b, c, d, m, n, p}, x] &&
EqQ[n2, 2*n] && IntegerQ[Simplify[(m + 1)/n]]
-
Int[(x_)^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m + 1, n]}, Simp[
1/k Subst[Int[x^((m + 1)/k - 1)*(a + b*x^(n/k) + c*x^(2*(n/k)))^p, x], x, x^k], x] /; k != 1] /; FreeQ[{a, b
, c, p}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && IntegerQ[m]
-
Int[((d_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]
}, Simp[k/d Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(k*n)/d^n) + c*(x^(2*k*n)/d^(2*n)))^p, x], x, (d*x)^(1/k)]
, x]] /; FreeQ[{a, b, c, d, p}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && FractionQ[m] && Int
egerQ[p]
-
Int[((d_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[d^(n - 1)*(d*x)^(m
- n + 1)*(a + b*x^n + c*x^(2*n))^p*((b*n*p + c*(m + n*(2*p - 1) + 1)*x^n)/(c*(m + 2*n*p + 1)*(m + n*(2*p - 1)
+ 1))), x] - Simp[n*p*(d^n/(c*(m + 2*n*p + 1)*(m + n*(2*p - 1) + 1))) Int[(d*x)^(m - n)*(a + b*x^n + c*x^(2
*n))^(p - 1)*Simp[a*b*(m - n + 1) - (2*a*c*(m + n*(2*p - 1) + 1) - b^2*(m + n*(p - 1) + 1))*x^n, x], x], x] /;
FreeQ[{a, b, c, d}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && IGtQ[p, 0] && GtQ[m, n - 1] &&
NeQ[m + 2*n*p + 1, 0] && NeQ[m + n*(2*p - 1) + 1, 0]
-
Int[((d_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(d*x)^(m + 1)*((a
+ b*x^n + c*x^(2*n))^p/(d*(m + 1))), x] - Simp[n*(p/(d^n*(m + 1))) Int[(d*x)^(m + n)*(b + 2*c*x^n)*(a + b*x^
n + c*x^(2*n))^(p - 1), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0]
&& IGtQ[p, 0] && LtQ[m, -1]
-
Int[((d_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(d*x)^(m + 1)*((a
+ b*x^n + c*x^(2*n))^p/(d*(m + 2*n*p + 1))), x] + Simp[n*(p/(m + 2*n*p + 1)) Int[(d*x)^m*(2*a + b*x^n)*(a +
b*x^n + c*x^(2*n))^(p - 1), x], x] /; FreeQ[{a, b, c, d, m}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ
[n, 0] && IGtQ[p, 0] && NeQ[m + 2*n*p + 1, 0]
-
Int[((d_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[d^(n - 1)*(d*x)^(m
- n + 1)*(b + 2*c*x^n)*((a + b*x^n + c*x^(2*n))^(p + 1)/(n*(p + 1)*(b^2 - 4*a*c))), x] - Simp[d^n/(n*(p + 1)*
(b^2 - 4*a*c)) Int[(d*x)^(m - n)*(b*(m - n + 1) + 2*c*(m + 2*n*(p + 1) + 1)*x^n)*(a + b*x^n + c*x^(2*n))^(p
+ 1), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && ILtQ[p, -1] &&
GtQ[m, n - 1] && LeQ[m, 2*n - 1]
-
Int[((d_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(-d^(2*n - 1))*(d*
x)^(m - 2*n + 1)*(2*a + b*x^n)*((a + b*x^n + c*x^(2*n))^(p + 1)/(n*(p + 1)*(b^2 - 4*a*c))), x] + Simp[d^(2*n)/
(n*(p + 1)*(b^2 - 4*a*c)) Int[(d*x)^(m - 2*n)*(2*a*(m - 2*n + 1) + b*(m + n*(2*p + 1) + 1)*x^n)*(a + b*x^n +
c*x^(2*n))^(p + 1), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] &&
ILtQ[p, -1] && GtQ[m, 2*n - 1]
-
Int[((d_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(-(d*x)^(m + 1))*(
b^2 - 2*a*c + b*c*x^n)*((a + b*x^n + c*x^(2*n))^(p + 1)/(a*d*n*(p + 1)*(b^2 - 4*a*c))), x] + Simp[1/(a*n*(p +
1)*(b^2 - 4*a*c)) Int[(d*x)^m*(a + b*x^n + c*x^(2*n))^(p + 1)*Simp[b^2*(m + n*(p + 1) + 1) - 2*a*c*(m + 2*n*
(p + 1) + 1) + b*c*(m + n*(2*p + 3) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, m}, x] && EqQ[n2, 2*n] && NeQ[b
^2 - 4*a*c, 0] && IGtQ[n, 0] && ILtQ[p, -1]
-
Int[((d_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[d^(2*n - 1)*(d*x)^
(m - 2*n + 1)*((a + b*x^n + c*x^(2*n))^(p + 1)/(c*(m + 2*n*p + 1))), x] - Simp[d^(2*n)/(c*(m + 2*n*p + 1)) I
nt[(d*x)^(m - 2*n)*Simp[a*(m - 2*n + 1) + b*(m + n*(p - 1) + 1)*x^n, x]*(a + b*x^n + c*x^(2*n))^p, x], x] /; F
reeQ[{a, b, c, d, p}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && GtQ[m, 2*n - 1] && NeQ[m + 2*
n*p + 1, 0] && IntegerQ[p]
-
Int[((d_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(d*x)^(m + 1)*((a +
b*x^n + c*x^(2*n))^(p + 1)/(a*d*(m + 1))), x] - Simp[1/(a*d^n*(m + 1)) Int[(d*x)^(m + n)*(b*(m + n*(p + 1)
+ 1) + c*(m + 2*n*(p + 1) + 1)*x^n)*(a + b*x^n + c*x^(2*n))^p, x], x] /; FreeQ[{a, b, c, d, p}, x] && EqQ[n2,
2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && LtQ[m, -1] && IntegerQ[p]
-
Int[((d_.)*(x_))^(m_)/((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_)), x_Symbol] :> Simp[(d*x)^(m + 1)/(a*d*(m +
1)), x] - Simp[1/(a*d^n) Int[(d*x)^(m + n)*((b + c*x^n)/(a + b*x^n + c*x^(2*n))), x], x] /; FreeQ[{a, b, c,
d}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && LtQ[m, -1]
-
Int[(x_)^(m_)/((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_)), x_Symbol] :> Int[PolynomialDivide[x^m, a + b*x^n +
c*x^(2*n), x], x] /; FreeQ[{a, b, c}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && IGtQ[m, 3*n
- 1]
-
Int[((d_.)*(x_))^(m_)/((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_)), x_Symbol] :> Simp[d^(2*n - 1)*((d*x)^(m -
2*n + 1)/(c*(m - 2*n + 1))), x] - Simp[d^(2*n)/c Int[(d*x)^(m - 2*n)*((a + b*x^n)/(a + b*x^n + c*x^(2*n))),
x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && GtQ[m, 2*n - 1]
-
Int[(x_)^(m_.)/((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{q = Rt[a/c, 2]}, With[{r = Rt[
2*q - b/c, 2]}, -Simp[1/(2*c*r) Int[x^(m - 3*(n/2))*((q - r*x^(n/2))/(q - r*x^(n/2) + x^n)), x], x] + Simp[1
/(2*c*r) Int[x^(m - 3*(n/2))*((q + r*x^(n/2))/(q + r*x^(n/2) + x^n)), x], x]]] /; FreeQ[{a, b, c}, x] && EqQ
[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n/2, 0] && IGtQ[m, 0] && GeQ[m, 3*(n/2)] && LtQ[m, 2*n] && NegQ[b^2 -
4*a*c]
-
Int[(x_)^(m_.)/((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{q = Rt[a/c, 2]}, With[{r = Rt[
2*q - b/c, 2]}, Simp[1/(2*c*r) Int[x^(m - n/2)/(q - r*x^(n/2) + x^n), x], x] - Simp[1/(2*c*r) Int[x^(m - n
/2)/(q + r*x^(n/2) + x^n), x], x]]] /; FreeQ[{a, b, c}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n/2,
0] && IGtQ[m, 0] && GeQ[m, n/2] && LtQ[m, 3*(n/2)] && NegQ[b^2 - 4*a*c]
-
Int[((d_.)*(x_))^(m_)/((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}
, Simp[(d^n/2)*(b/q + 1) Int[(d*x)^(m - n)/(b/2 + q/2 + c*x^n), x], x] - Simp[(d^n/2)*(b/q - 1) Int[(d*x)^
(m - n)/(b/2 - q/2 + c*x^n), x], x]] /; FreeQ[{a, b, c, d}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[
n, 0] && GeQ[m, n]
-
Int[((d_.)*(x_))^(m_.)/((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]
}, Simp[c/q Int[(d*x)^m/(b/2 - q/2 + c*x^n), x], x] - Simp[c/q Int[(d*x)^m/(b/2 + q/2 + c*x^n), x], x]] /;
FreeQ[{a, b, c, d, m}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0]
-
Int[(x_)^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Subst[Int[(a + b/x^n + c/x^(2*
n))^p/x^(m + 2), x], x, 1/x] /; FreeQ[{a, b, c, p}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && ILtQ[n, 0] &&
IntegerQ[m]
-
Int[((d_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m
]}, Simp[-k/d Subst[Int[(a + b/(d^n*x^(k*n)) + c/(d^(2*n)*x^(2*k*n)))^p/x^(k*(m + 1) + 1), x], x, 1/(d*x)^(1
/k)], x]] /; FreeQ[{a, b, c, d, p}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && ILtQ[n, 0] && FractionQ[m]
-
Int[((d_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(-d^IntPart[m])*(d*
x)^FracPart[m]*(x^(-1))^FracPart[m] Subst[Int[(a + b/x^n + c/x^(2*n))^p/x^(m + 2), x], x, 1/x], x] /; FreeQ[
{a, b, c, d, m, p}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && ILtQ[n, 0] && !RationalQ[m]
-
Int[(x_)^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[n]}, Simp
[k Subst[Int[x^(k*(m + 1) - 1)*(a + b*x^(k*n) + c*x^(2*k*n))^p, x], x, x^(1/k)], x]] /; FreeQ[{a, b, c, m, p
}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && FractionQ[n]
-
Int[((d_)*(x_))^(m_)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[d^IntPart[m]*((d*x)^
FracPart[m]/x^FracPart[m]) Int[x^m*(a + b*x^n + c*x^(2*n))^p, x], x] /; FreeQ[{a, b, c, d, m, p}, x] && EqQ[
n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && FractionQ[n]
-
Int[(x_)^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[1/(m + 1) Subst[Int[(a +
b*x^Simplify[n/(m + 1)] + c*x^Simplify[2*(n/(m + 1))])^p, x], x, x^(m + 1)], x] /; FreeQ[{a, b, c, m, n, p},
x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IntegerQ[Simplify[n/(m + 1)]] && !IntegerQ[n]
-
Int[((d_)*(x_))^(m_)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[d^IntPart[m]*((d*x)^
FracPart[m]/x^FracPart[m]) Int[x^m*(a + b*x^n + c*x^(2*n))^p, x], x] /; FreeQ[{a, b, c, d, m, n, p}, x] && E
qQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IntegerQ[Simplify[n/(m + 1)]] && !IntegerQ[n]
-
Int[((d_.)*(x_))^(m_.)/((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]
}, Simp[2*(c/q) Int[(d*x)^m/(b - q + 2*c*x^n), x], x] - Simp[2*(c/q) Int[(d*x)^m/(b + q + 2*c*x^n), x], x]
] /; FreeQ[{a, b, c, d, m, n}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0]
-
Int[((d_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(-(d*x)^(m + 1))*(
b^2 - 2*a*c + b*c*x^n)*((a + b*x^n + c*x^(2*n))^(p + 1)/(a*d*n*(p + 1)*(b^2 - 4*a*c))), x] + Simp[1/(a*n*(p +
1)*(b^2 - 4*a*c)) Int[(d*x)^m*(a + b*x^n + c*x^(2*n))^(p + 1)*Simp[b^2*(n*(p + 1) + m + 1) - 2*a*c*(m + 2*n*
(p + 1) + 1) + b*c*(2*n*p + 3*n + m + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, m, n}, x] && EqQ[n2, 2*n] && Ne
Q[b^2 - 4*a*c, 0] && ILtQ[p + 1, 0]
-
Int[((d_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[a^IntPart[p]*((a +
b*x^n + c*x^(2*n))^FracPart[p]/((1 + 2*c*(x^n/(b + Rt[b^2 - 4*a*c, 2])))^FracPart[p]*(1 + 2*c*(x^n/(b - Rt[b^
2 - 4*a*c, 2])))^FracPart[p])) Int[(d*x)^m*(1 + 2*c*(x^n/(b + Sqrt[b^2 - 4*a*c])))^p*(1 + 2*c*(x^n/(b - Sqrt
[b^2 - 4*a*c])))^p, x], x] /; FreeQ[{a, b, c, d, m, n, p}, x] && EqQ[n2, 2*n]
-
Int[(x_)^(m_.)*((a_) + (c_.)*(x_)^(n_.) + (b_.)*(x_)^(mn_))^(p_.), x_Symbol] :> Int[x^(m - n*p)*(b + a*x^n + c
*x^(2*n))^p, x] /; FreeQ[{a, b, c, m, n}, x] && EqQ[mn, -n] && IntegerQ[p] && PosQ[n]
-
Int[(x_)^(m_.)*((a_) + (c_.)*(x_)^(n_.) + (b_.)*(x_)^(mn_))^(p_.), x_Symbol] :> Simp[x^(n*FracPart[p])*((a + b
/x^n + c*x^n)^FracPart[p]/(b + a*x^n + c*x^(2*n))^FracPart[p]) Int[x^(m - n*p)*(b + a*x^n + c*x^(2*n))^p, x]
, x] /; FreeQ[{a, b, c, m, n, p}, x] && EqQ[mn, -n] && !IntegerQ[p] && PosQ[n]
-
Int[((d_)*(x_))^(m_.)*((a_) + (c_.)*(x_)^(n_.) + (b_.)*(x_)^(mn_))^(p_.), x_Symbol] :> Simp[d^IntPart[m]*((d*x
)^FracPart[m]/x^FracPart[m]) Int[x^m*(a + b/x^n + c*x^n)^p, x], x] /; FreeQ[{a, b, c, d, m, n, p}, x] && EqQ
[mn, -n]
-
Int[(u_)^(m_.)*((a_.) + (c_.)*(v_)^(n2_.) + (b_.)*(v_)^(n_))^(p_.), x_Symbol] :> Simp[u^m/(Coefficient[v, x, 1
]*v^m) Subst[Int[x^m*(a + b*x^n + c*x^(2*n))^p, x], x, v], x] /; FreeQ[{a, b, c, m, n, p}, x] && EqQ[n2, 2*n
] && LinearPairQ[u, v, x]
-
Int[((a_.) + (c_.)*(v_)^(n2_.) + (b_.)*(v_)^(n_))^(p_.)*(x_)^(m_.), x_Symbol] :> Simp[1/Coefficient[v, x, 1]^(
m + 1) Subst[Int[SimplifyIntegrand[(x - Coefficient[v, x, 0])^m*(a + b*x^n + c*x^(2*n))^p, x], x], x, v], x]
/; FreeQ[{a, b, c, n, p}, x] && EqQ[n2, 2*n] && LinearQ[v, x] && IntegerQ[m] && NeQ[v, x]
-
Int[((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Symbol] :> Int[x^(n*(
2*p + q))*(e + d/x^n)^q*(c + b/x^n + a/x^(2*n))^p, x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[n2, 2*n] && Integ
ersQ[p, q] && NegQ[n]
-
Int[((a_) + (c_.)*(x_)^(n2_.))^(p_.)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Symbol] :> Int[x^(n*(2*p + q))*(e + d/x
^n)^q*(c + a/x^(2*n))^p, x] /; FreeQ[{a, c, d, e, n}, x] && EqQ[n2, 2*n] && IntegersQ[p, q] && NegQ[n]
-
Int[((d_) + (e_.)*(x_)^(n_))^(q_.)*((a_.) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_))^(p_), x_Symbol] :> -Subst[Int[
(d + e/x^n)^q*((a + b/x^n + c/x^(2*n))^p/x^2), x], x, 1/x] /; FreeQ[{a, b, c, d, e, p, q}, x] && EqQ[n2, 2*n]
&& ILtQ[n, 0]
-
Int[((d_) + (e_.)*(x_)^(n_))^(q_.)*((a_) + (c_.)*(x_)^(n2_))^(p_), x_Symbol] :> -Subst[Int[(d + e/x^n)^q*((a +
c/x^(2*n))^p/x^2), x], x, 1/x] /; FreeQ[{a, c, d, e, p, q}, x] && EqQ[n2, 2*n] && ILtQ[n, 0]
-
Int[((a_.) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Symbol] :> With[{g =
Denominator[n]}, Simp[g Subst[Int[x^(g - 1)*(d + e*x^(g*n))^q*(a + b*x^(g*n) + c*x^(2*g*n))^p, x], x, x^(1/
g)], x]] /; FreeQ[{a, b, c, d, e, p, q}, x] && EqQ[n2, 2*n] && FractionQ[n]
-
Int[((a_) + (c_.)*(x_)^(n2_.))^(p_.)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Symbol] :> With[{g = Denominator[n]}, S
imp[g Subst[Int[x^(g - 1)*(d + e*x^(g*n))^q*(a + c*x^(2*g*n))^p, x], x, x^(1/g)], x]] /; FreeQ[{a, c, d, e,
p, q}, x] && EqQ[n2, 2*n] && FractionQ[n]
-
Int[((d_) + (e_.)*(x_)^(n_))*((b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_))^(p_), x_Symbol] :> Simp[(b*e - d*c)*((b*x^n
+ c*x^(2*n))^(p + 1)/(b*c*n*(p + 1)*x^(2*n*(p + 1)))), x] + Simp[e/c Int[(b*x^n + c*x^(2*n))^(p + 1)/x^n, x]
, x] /; FreeQ[{b, c, d, e, n, p}, x] && EqQ[n2, 2*n] && !IntegerQ[p] && EqQ[n*(2*p + 1) + 1, 0]
-
Int[((d_) + (e_.)*(x_)^(n_))*((b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_))^(p_), x_Symbol] :> Simp[e*x^(-n + 1)*((b*x^n
+ c*x^(2*n))^(p + 1)/(c*(n*(2*p + 1) + 1))), x] /; FreeQ[{b, c, d, e, n, p}, x] && EqQ[n2, 2*n] && !IntegerQ
[p] && NeQ[n*(2*p + 1) + 1, 0] && EqQ[b*e*(n*p + 1) - c*d*(n*(2*p + 1) + 1), 0]
-
Int[((d_) + (e_.)*(x_)^(n_))*((b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_))^(p_), x_Symbol] :> Simp[e*x^(-n + 1)*((b*x^n
+ c*x^(2*n))^(p + 1)/(c*(n*(2*p + 1) + 1))), x] - Simp[(b*e*(n*p + 1) - c*d*(n*(2*p + 1) + 1))/(c*(n*(2*p + 1
) + 1)) Int[(b*x^n + c*x^(2*n))^p, x], x] /; FreeQ[{b, c, d, e, n, p}, x] && EqQ[n2, 2*n] && !IntegerQ[p] &
& NeQ[n*(2*p + 1) + 1, 0] && NeQ[b*e*(n*p + 1) - c*d*(n*(2*p + 1) + 1), 0]
-
Int[((d_) + (e_.)*(x_)^(n_))^(q_.)*((b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_))^(p_), x_Symbol] :> Simp[(b*x^n + c*x^(
2*n))^FracPart[p]/(x^(n*FracPart[p])*(b + c*x^n)^FracPart[p]) Int[x^(n*p)*(d + e*x^n)^q*(b + c*x^n)^p, x], x
] /; FreeQ[{b, c, d, e, n, p, q}, x] && EqQ[n2, 2*n] && !IntegerQ[p]
-
Int[((d_) + (e_.)*(x_)^(n_))^(q_.)*((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_)), x_Symbol] :> Int[ExpandIntegra
nd[(d + e*x^n)^q*(a + b*x^n + c*x^(2*n)), x], x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[n2, 2*n] && NeQ[b^2 -
4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && IGtQ[q, 0]
-
Int[((d_) + (e_.)*(x_)^(n_))^(q_.)*((a_) + (c_.)*(x_)^(n2_)), x_Symbol] :> Int[ExpandIntegrand[(d + e*x^n)^q*(
a + c*x^(2*n)), x], x] /; FreeQ[{a, c, d, e, n}, x] && EqQ[n2, 2*n] && NeQ[c*d^2 + a*e^2, 0] && IGtQ[q, 0]
-
Int[((d_) + (e_.)*(x_)^(n_))^(q_)*((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_)), x_Symbol] :> Simp[(-(c*d^2 - b*
d*e + a*e^2))*x*((d + e*x^n)^(q + 1)/(d*e^2*n*(q + 1))), x] + Simp[1/(n*(q + 1)*d*e^2) Int[(d + e*x^n)^(q +
1)*Simp[c*d^2 - b*d*e + a*e^2*(n*(q + 1) + 1) + c*d*e*n*(q + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, n}, x
] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && LtQ[q, -1]
-
Int[((d_) + (e_.)*(x_)^(n_))^(q_)*((a_) + (c_.)*(x_)^(n2_)), x_Symbol] :> Simp[(-(c*d^2 + a*e^2))*x*((d + e*x^
n)^(q + 1)/(d*e^2*n*(q + 1))), x] + Simp[1/(n*(q + 1)*d*e^2) Int[(d + e*x^n)^(q + 1)*Simp[c*d^2 + a*e^2*(n*(
q + 1) + 1) + c*d*e*n*(q + 1)*x^n, x], x], x] /; FreeQ[{a, c, d, e, n}, x] && EqQ[n2, 2*n] && NeQ[c*d^2 + a*e^
2, 0] && LtQ[q, -1]
-
Int[((d_) + (e_.)*(x_)^(n_))^(q_)*((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_)), x_Symbol] :> Simp[c*x^(n + 1)*(
(d + e*x^n)^(q + 1)/(e*(n*(q + 2) + 1))), x] + Simp[1/(e*(n*(q + 2) + 1)) Int[(d + e*x^n)^q*(a*e*(n*(q + 2)
+ 1) - (c*d*(n + 1) - b*e*(n*(q + 2) + 1))*x^n), x], x] /; FreeQ[{a, b, c, d, e, n, q}, x] && EqQ[n2, 2*n] &&
NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0]
-
Int[((d_) + (e_.)*(x_)^(n_))^(q_)*((a_) + (c_.)*(x_)^(n2_)), x_Symbol] :> Simp[c*x^(n + 1)*((d + e*x^n)^(q + 1
)/(e*(n*(q + 2) + 1))), x] + Simp[1/(e*(n*(q + 2) + 1)) Int[(d + e*x^n)^q*(a*e*(n*(q + 2) + 1) - c*d*(n + 1)
*x^n), x], x] /; FreeQ[{a, c, d, e, n, q}, x] && EqQ[n2, 2*n] && NeQ[c*d^2 + a*e^2, 0]
-
Int[((d_) + (e_.)*(x_)^(n_))/((a_) + (c_.)*(x_)^(n2_)), x_Symbol] :> With[{q = Rt[2*d*e, 2]}, Simp[e^2/(2*c)
Int[1/(d + q*x^(n/2) + e*x^n), x], x] + Simp[e^2/(2*c) Int[1/(d - q*x^(n/2) + e*x^n), x], x]] /; FreeQ[{a,
c, d, e}, x] && EqQ[n2, 2*n] && EqQ[c*d^2 - a*e^2, 0] && IGtQ[n/2, 0] && PosQ[d*e]
-
Int[((d_) + (e_.)*(x_)^(n_))/((a_) + (c_.)*(x_)^(n2_)), x_Symbol] :> With[{q = Rt[-2*d*e, 2]}, Simp[d/(2*a)
Int[(d - q*x^(n/2))/(d - q*x^(n/2) - e*x^n), x], x] + Simp[d/(2*a) Int[(d + q*x^(n/2))/(d + q*x^(n/2) - e*x^
n), x], x]] /; FreeQ[{a, c, d, e}, x] && EqQ[n2, 2*n] && EqQ[c*d^2 - a*e^2, 0] && IGtQ[n/2, 0] && NegQ[d*e]
-
Int[((d_) + (e_.)*(x_)^(n_))/((a_) + (c_.)*(x_)^(n2_)), x_Symbol] :> With[{q = Rt[a/c, 4]}, Simp[1/(2*Sqrt[2]*
c*q^3) Int[(Sqrt[2]*d*q - (d - e*q^2)*x^(n/2))/(q^2 - Sqrt[2]*q*x^(n/2) + x^n), x], x] + Simp[1/(2*Sqrt[2]*c
*q^3) Int[(Sqrt[2]*d*q + (d - e*q^2)*x^(n/2))/(q^2 + Sqrt[2]*q*x^(n/2) + x^n), x], x]] /; FreeQ[{a, c, d, e}
, x] && EqQ[n2, 2*n] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && IGtQ[n/2, 0] && PosQ[a*c]
-
Int[((d_) + (e_.)*(x_)^3)/((a_) + (c_.)*(x_)^6), x_Symbol] :> With[{q = Rt[c/a, 6]}, Simp[1/(3*a*q^2) Int[(q
^2*d - e*x)/(1 + q^2*x^2), x], x] + (Simp[1/(6*a*q^2) Int[(2*q^2*d - (Sqrt[3]*q^3*d - e)*x)/(1 - Sqrt[3]*q*x
+ q^2*x^2), x], x] + Simp[1/(6*a*q^2) Int[(2*q^2*d + (Sqrt[3]*q^3*d + e)*x)/(1 + Sqrt[3]*q*x + q^2*x^2), x]
, x])] /; FreeQ[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && PosQ[c/a]
-
Int[((d_) + (e_.)*(x_)^(n_))/((a_) + (c_.)*(x_)^(n2_)), x_Symbol] :> With[{q = Rt[-a/c, 2]}, Simp[(d + e*q)/2
Int[1/(a + c*q*x^n), x], x] + Simp[(d - e*q)/2 Int[1/(a - c*q*x^n), x], x]] /; FreeQ[{a, c, d, e, n}, x] &
& EqQ[n2, 2*n] && NeQ[c*d^2 + a*e^2, 0] && NegQ[a*c] && IntegerQ[n]
-
Int[((d_) + (e_.)*(x_)^(n_))/((a_) + (c_.)*(x_)^(n2_)), x_Symbol] :> Simp[d Int[1/(a + c*x^(2*n)), x], x] +
Simp[e Int[x^n/(a + c*x^(2*n)), x], x] /; FreeQ[{a, c, d, e, n}, x] && EqQ[n2, 2*n] && NeQ[c*d^2 + a*e^2, 0]
&& (PosQ[a*c] || !IntegerQ[n])
-
Int[((d_) + (e_.)*(x_)^(n_))/((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_)), x_Symbol] :> With[{q = Rt[2*(d/e) -
b/c, 2]}, Simp[e/(2*c) Int[1/Simp[d/e + q*x^(n/2) + x^n, x], x], x] + Simp[e/(2*c) Int[1/Simp[d/e - q*x^(n
/2) + x^n, x], x], x]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - a*e^
2, 0] && IGtQ[n/2, 0] && (GtQ[2*(d/e) - b/c, 0] || ( !LtQ[2*(d/e) - b/c, 0] && EqQ[d, e*Rt[a/c, 2]]))
-
Int[((d_) + (e_.)*(x_)^(n_))/((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_)), x_Symbol] :> With[{q = Rt[b^2 - 4*a*
c, 2]}, Simp[(e/2 + (2*c*d - b*e)/(2*q)) Int[1/(b/2 - q/2 + c*x^n), x], x] + Simp[(e/2 - (2*c*d - b*e)/(2*q)
) Int[1/(b/2 + q/2 + c*x^n), x], x]] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0]
&& EqQ[c*d^2 - a*e^2, 0] && IGtQ[n/2, 0] && GtQ[b^2 - 4*a*c, 0]
-
Int[((d_) + (e_.)*(x_)^(n_))/((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_)), x_Symbol] :> With[{q = Rt[-2*(d/e) -
b/c, 2]}, Simp[e/(2*c*q) Int[(q - 2*x^(n/2))/Simp[d/e + q*x^(n/2) - x^n, x], x], x] + Simp[e/(2*c*q) Int[
(q + 2*x^(n/2))/Simp[d/e - q*x^(n/2) - x^n, x], x], x]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[n2, 2*n] && NeQ[b^
2 - 4*a*c, 0] && EqQ[c*d^2 - a*e^2, 0] && IGtQ[n/2, 0] && !GtQ[b^2 - 4*a*c, 0]
-
Int[((d_) + (e_.)*(x_)^(n_))/((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_)), x_Symbol] :> With[{q = Rt[b^2 - 4*a*
c, 2]}, Simp[(e/2 + (2*c*d - b*e)/(2*q)) Int[1/(b/2 - q/2 + c*x^n), x], x] + Simp[(e/2 - (2*c*d - b*e)/(2*q)
) Int[1/(b/2 + q/2 + c*x^n), x], x]] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0]
&& NeQ[c*d^2 - b*d*e + a*e^2, 0] && (PosQ[b^2 - 4*a*c] || !IGtQ[n/2, 0])
-
Int[((d_) + (e_.)*(x_)^(n_))/((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_)), x_Symbol] :> With[{q = Rt[a/c, 2]},
With[{r = Rt[2*q - b/c, 2]}, Simp[1/(2*c*q*r) Int[(d*r - (d - e*q)*x^(n/2))/(q - r*x^(n/2) + x^n), x], x] +
Simp[1/(2*c*q*r) Int[(d*r + (d - e*q)*x^(n/2))/(q + r*x^(n/2) + x^n), x], x]]] /; FreeQ[{a, b, c, d, e}, x]
&& EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && IGtQ[n/2, 0] && NegQ[b^2 - 4*a*c]
-
Int[((d_) + (e_.)*(x_)^(n_))^(q_)/((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_)), x_Symbol] :> Int[ExpandIntegran
d[(d + e*x^n)^q/(a + b*x^n + c*x^(2*n)), x], x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4
*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && IntegerQ[q]
-
Int[((d_) + (e_.)*(x_)^(n_))^(q_)/((a_) + (c_.)*(x_)^(n2_)), x_Symbol] :> Int[ExpandIntegrand[(d + e*x^n)^q/(a
+ c*x^(2*n)), x], x] /; FreeQ[{a, c, d, e, n}, x] && EqQ[n2, 2*n] && NeQ[c*d^2 + a*e^2, 0] && IntegerQ[q]
-
Int[((d_) + (e_.)*(x_)^(n_))^(q_)/((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_)), x_Symbol] :> Simp[e^2/(c*d^2 -
b*d*e + a*e^2) Int[(d + e*x^n)^q, x], x] + Simp[1/(c*d^2 - b*d*e + a*e^2) Int[(d + e*x^n)^(q + 1)*((c*d -
b*e - c*e*x^n)/(a + b*x^n + c*x^(2*n))), x], x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4
*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && !IntegerQ[q] && LtQ[q, -1]
-
Int[((d_) + (e_.)*(x_)^(n_))^(q_)/((a_) + (c_.)*(x_)^(n2_)), x_Symbol] :> Simp[e^2/(c*d^2 + a*e^2) Int[(d +
e*x^n)^q, x], x] + Simp[c/(c*d^2 + a*e^2) Int[(d + e*x^n)^(q + 1)*((d - e*x^n)/(a + c*x^(2*n))), x], x] /; F
reeQ[{a, c, d, e, n}, x] && EqQ[n2, 2*n] && NeQ[c*d^2 + a*e^2, 0] && !IntegerQ[q] && LtQ[q, -1]
-
Int[((d_) + (e_.)*(x_)^(n_))^(q_)/((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_)), x_Symbol] :> With[{r = Rt[b^2 -
4*a*c, 2]}, Simp[2*(c/r) Int[(d + e*x^n)^q/(b - r + 2*c*x^n), x], x] - Simp[2*(c/r) Int[(d + e*x^n)^q/(b
+ r + 2*c*x^n), x], x]] /; FreeQ[{a, b, c, d, e, n, q}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2
- b*d*e + a*e^2, 0] && !IntegerQ[q]
-
Int[((d_) + (e_.)*(x_)^(n_))^(q_)/((a_) + (c_.)*(x_)^(n2_)), x_Symbol] :> With[{r = Rt[(-a)*c, 2]}, Simp[-c/(2
*r) Int[(d + e*x^n)^q/(r - c*x^n), x], x] - Simp[c/(2*r) Int[(d + e*x^n)^q/(r + c*x^n), x], x]] /; FreeQ[{
a, c, d, e, n, q}, x] && EqQ[n2, 2*n] && NeQ[c*d^2 + a*e^2, 0] && !IntegerQ[q]
-
Int[((d_) + (e_.)*(x_)^(n_))*((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_))^(p_), x_Symbol] :> Simp[(-x)*(d*b^2 -
a*b*e - 2*a*c*d + (b*d - 2*a*e)*c*x^n)*((a + b*x^n + c*x^(2*n))^(p + 1)/(a*n*(p + 1)*(b^2 - 4*a*c))), x] + Si
mp[1/(a*n*(p + 1)*(b^2 - 4*a*c)) Int[Simp[(n*p + n + 1)*d*b^2 - a*b*e - 2*a*c*d*(2*n*p + 2*n + 1) + (2*n*p +
3*n + 1)*(d*b - 2*a*e)*c*x^n, x]*(a + b*x^n + c*x^(2*n))^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, n}, x] && E
qQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && ILtQ[p, -1]
-
Int[((d_) + (e_.)*(x_)^(n_))*((a_) + (c_.)*(x_)^(n2_))^(p_), x_Symbol] :> Simp[(-x)*(d + e*x^n)*((a + c*x^(2*n
))^(p + 1)/(2*a*n*(p + 1))), x] + Simp[1/(2*a*n*(p + 1)) Int[(d*(2*n*p + 2*n + 1) + e*(2*n*p + 3*n + 1)*x^n)
*(a + c*x^(2*n))^(p + 1), x], x] /; FreeQ[{a, c, d, e, n}, x] && EqQ[n2, 2*n] && ILtQ[p, -1]
-
Int[((d_) + (e_.)*(x_)^(n_))*((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_))^(p_), x_Symbol] :> Int[ExpandIntegran
d[(d + e*x^n)*(a + b*x^n + c*x^(2*n))^p, x], x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4
*a*c, 0]
-
Int[((d_) + (e_.)*(x_)^(n_))*((a_) + (c_.)*(x_)^(n2_))^(p_), x_Symbol] :> Int[ExpandIntegrand[(d + e*x^n)*(a +
c*x^(2*n))^p, x], x] /; FreeQ[{a, c, d, e, n}, x] && EqQ[n2, 2*n]
-
Int[((d_) + (e_.)*(x_)^(n_))^(q_)*((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_))^(p_), x_Symbol] :> Simp[c^p*x^(2
*n*p - n + 1)*((d + e*x^n)^(q + 1)/(e*(2*n*p + n*q + 1))), x] + Int[(d + e*x^n)^q*ExpandToSum[(a + b*x^n + c*x
^(2*n))^p - c^p*x^(2*n*p) - d*c^p*(2*n*p - n + 1)*(x^(2*n*p - n)/(e*(2*n*p + n*q + 1))), x], x] /; FreeQ[{a, b
, c, d, e, n, q}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[p, 0] && NeQ[2*n*p + n*q + 1, 0] && IGtQ[n
, 0] && !IGtQ[q, 0]
-
Int[((d_) + (e_.)*(x_)^(n_))^(q_)*((a_) + (c_.)*(x_)^(n2_))^(p_), x_Symbol] :> Simp[c^p*x^(2*n*p - n + 1)*((d
+ e*x^n)^(q + 1)/(e*(2*n*p + n*q + 1))), x] + Int[(d + e*x^n)^q*ExpandToSum[(a + c*x^(2*n))^p - c^p*x^(2*n*p)
- d*c^p*(2*n*p - n + 1)*(x^(2*n*p - n)/(e*(2*n*p + n*q + 1))), x], x] /; FreeQ[{a, c, d, e, n, q}, x] && EqQ[n
2, 2*n] && IGtQ[p, 0] && NeQ[2*n*p + n*q + 1, 0] && IGtQ[n, 0] && !IGtQ[q, 0]
-
Int[((d_) + (e_.)*(x_)^(n_))^(q_)*((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_))^(p_), x_Symbol] :> Int[ExpandInt
egrand[(d + e*x^n)^q*(a + b*x^n + c*x^(2*n))^p, x], x] /; FreeQ[{a, b, c, d, e, n, p, q}, x] && EqQ[n2, 2*n] &
& NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && ((IntegersQ[p, q] && !IntegerQ[n]) || IGtQ[p, 0] ||
(IGtQ[q, 0] && !IntegerQ[n]))
-
Int[((d_) + (e_.)*(x_)^(n_))^(q_)*((a_) + (c_.)*(x_)^(n2_))^(p_), x_Symbol] :> Int[ExpandIntegrand[(d + e*x^n)
^q*(a + c*x^(2*n))^p, x], x] /; FreeQ[{a, c, d, e, n, p, q}, x] && EqQ[n2, 2*n] && NeQ[c*d^2 + a*e^2, 0] && ((
IntegersQ[p, q] && !IntegerQ[n]) || IGtQ[p, 0] || (IGtQ[q, 0] && !IntegerQ[n]))
-
Int[((d_) + (e_.)*(x_)^(n_))^(q_)*((a_) + (c_.)*(x_)^(n2_))^(p_), x_Symbol] :> Int[ExpandIntegrand[(a + c*x^(2
*n))^p, (d/(d^2 - e^2*x^(2*n)) - e*(x^n/(d^2 - e^2*x^(2*n))))^(-q), x], x] /; FreeQ[{a, c, d, e, n, p}, x] &&
EqQ[n2, 2*n] && NeQ[c*d^2 + a*e^2, 0] && !IntegerQ[p] && ILtQ[q, 0]
-
Int[((d_) + (e_.)*(x_)^(n_))^(q_)*((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_))^(p_), x_Symbol] :> Unintegrable[
(d + e*x^n)^q*(a + b*x^n + c*x^(2*n))^p, x] /; FreeQ[{a, b, c, d, e, n, p, q}, x] && EqQ[n2, 2*n]
-
Int[((d_) + (e_.)*(x_)^(n_))^(q_)*((a_) + (c_.)*(x_)^(n2_))^(p_), x_Symbol] :> Unintegrable[(d + e*x^n)^q*(a +
c*x^(2*n))^p, x] /; FreeQ[{a, c, d, e, n, p, q}, x] && EqQ[n2, 2*n]
-
Int[((d_) + (e_.)*(u_)^(n_))^(q_.)*((a_) + (b_.)*(u_)^(n_) + (c_.)*(u_)^(n2_))^(p_.), x_Symbol] :> Simp[1/Coef
ficient[u, x, 1] Subst[Int[(d + e*x^n)^q*(a + b*x^n + c*x^(2*n))^p, x], x, u], x] /; FreeQ[{a, b, c, d, e, n
, p, q}, x] && EqQ[n2, 2*n] && LinearQ[u, x] && NeQ[u, x]
-
Int[((d_) + (e_.)*(u_)^(n_))^(q_.)*((a_) + (c_.)*(u_)^(n2_))^(p_.), x_Symbol] :> Simp[1/Coefficient[u, x, 1]
Subst[Int[(d + e*x^n)^q*(a + c*x^(2*n))^p, x], x, u], x] /; FreeQ[{a, c, d, e, n, p, q}, x] && EqQ[n2, 2*n] &
& LinearQ[u, x] && NeQ[u, x]
-
Int[((d_) + (e_.)*(x_)^(mn_.))^(q_.)*((a_.) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.))^(p_.), x_Symbol] :> Int[((
e + d*x^n)^q*(a + b*x^n + c*x^(2*n))^p)/x^(n*q), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && EqQ[n2, 2*n] && EqQ[
mn, -n] && IntegerQ[q] && (PosQ[n] || !IntegerQ[p])
-
Int[((d_) + (e_.)*(x_)^(mn_.))^(q_.)*((a_) + (c_.)*(x_)^(n2_.))^(p_.), x_Symbol] :> Int[x^(mn*q)*(e + d/x^mn)^
q*(a + c*x^n2)^p, x] /; FreeQ[{a, c, d, e, mn, p}, x] && EqQ[n2, -2*mn] && IntegerQ[q] && (PosQ[n2] || !Integ
erQ[p])
-
Int[((a_.) + (b_.)*(x_)^(mn_.) + (c_.)*(x_)^(mn2_.))^(p_.)*((d_) + (e_.)*(x_)^(n_.))^(q_.), x_Symbol] :> Int[(
(d + e*x^n)^q*(c + b*x^n + a*x^(2*n))^p)/x^(2*n*p), x] /; FreeQ[{a, b, c, d, e, n, q}, x] && EqQ[mn, -n] && Eq
Q[mn2, 2*mn] && IntegerQ[p]
-
Int[((a_.) + (c_.)*(x_)^(mn2_.))^(p_.)*((d_) + (e_.)*(x_)^(n_.))^(q_.), x_Symbol] :> Int[((d + e*x^n)^q*(c + a
*x^(2*n))^p)/x^(2*n*p), x] /; FreeQ[{a, c, d, e, n, q}, x] && EqQ[mn2, -2*n] && IntegerQ[p]
-
Int[((d_) + (e_.)*(x_)^(mn_.))^(q_)*((a_.) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.))^(p_.), x_Symbol] :> Simp[e^
IntPart[q]*x^(n*FracPart[q])*((d + e/x^n)^FracPart[q]/(1 + d*(x^n/e))^FracPart[q]) Int[((1 + d*(x^n/e))^q*(a
+ b*x^n + c*x^(2*n))^p)/x^(n*q), x], x] /; FreeQ[{a, b, c, d, e, n, p, q}, x] && EqQ[n2, 2*n] && EqQ[mn, -n]
&& !IntegerQ[p] && !IntegerQ[q] && PosQ[n]
-
Int[((d_) + (e_.)*(x_)^(mn_.))^(q_)*((a_) + (c_.)*(x_)^(n2_.))^(p_.), x_Symbol] :> Simp[(e^IntPart[q]*((d + e*
x^mn)^FracPart[q]/(1 + d*(1/(x^mn*e)))^FracPart[q]))/x^(mn*FracPart[q]) Int[x^(mn*q)*(1 + d*(1/(x^mn*e)))^q*
(a + c*x^n2)^p, x], x] /; FreeQ[{a, c, d, e, mn, p, q}, x] && EqQ[n2, -2*mn] && !IntegerQ[p] && !IntegerQ[q]
&& PosQ[n2]
-
Int[((a_.) + (b_.)*(x_)^(mn_.) + (c_.)*(x_)^(mn2_.))^(p_)*((d_) + (e_.)*(x_)^(n_.))^(q_.), x_Symbol] :> Simp[x
^(2*n*FracPart[p])*((a + b/x^n + c/x^(2*n))^FracPart[p]/(c + b*x^n + a*x^(2*n))^FracPart[p]) Int[((d + e*x^n
)^q*(c + b*x^n + a*x^(2*n))^p)/x^(2*n*p), x], x] /; FreeQ[{a, b, c, d, e, n, p, q}, x] && EqQ[mn, -n] && EqQ[m
n2, 2*mn] && !IntegerQ[p] && !IntegerQ[q] && PosQ[n]
-
Int[((a_.) + (c_.)*(x_)^(mn2_.))^(p_)*((d_) + (e_.)*(x_)^(n_.))^(q_.), x_Symbol] :> Simp[x^(2*n*FracPart[p])*(
(a + c/x^(2*n))^FracPart[p]/(c + a*x^(2*n))^FracPart[p]) Int[((d + e*x^n)^q*(c + a*x^(2*n))^p)/x^(2*n*p), x]
, x] /; FreeQ[{a, c, d, e, n, p, q}, x] && EqQ[mn2, -2*n] && !IntegerQ[p] && !IntegerQ[q] && PosQ[n]
-
Int[((a_) + (c_.)*(x_)^(n_.) + (b_.)*(x_)^(mn_))^(p_.)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Symbol] :> Int[((d +
e*x^n)^q*(b + a*x^n + c*x^(2*n))^p)/x^(n*p), x] /; FreeQ[{a, b, c, d, e, n, q}, x] && EqQ[mn, -n] && IntegerQ[
p]
-
Int[((a_) + (c_.)*(x_)^(n_.) + (b_.)*(x_)^(mn_))^(p_.)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Symbol] :> Simp[x^(n*
FracPart[p])*((a + b/x^n + c*x^n)^FracPart[p]/(b + a*x^n + c*x^(2*n))^FracPart[p]) Int[((d + e*x^n)^q*(b + a
*x^n + c*x^(2*n))^p)/x^(n*p), x], x] /; FreeQ[{a, b, c, d, e, n, p, q}, x] && EqQ[mn, -n] && !IntegerQ[p]
-
Int[((d_) + (e_.)*(x_)^(n_))^(q_.)*((f_) + (g_.)*(x_)^(n_))^(r_.)*((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_))^
(p_), x_Symbol] :> Simp[(a + b*x^n + c*x^(2*n))^FracPart[p]/((4*c)^IntPart[p]*(b + 2*c*x^n)^(2*FracPart[p]))
Int[(d + e*x^n)^q*(f + g*x^n)^r*(b + 2*c*x^n)^(2*p), x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p, q, r}, x] &&
EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && !IntegerQ[p]
-
Int[((d_) + (e_.)*(x_)^(n_))^(q_.)*((f_) + (g_.)*(x_)^(n_))^(r_.)*((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_))^
(p_.), x_Symbol] :> Int[(d + e*x^n)^(p + q)*(f + g*x^n)^r*(a/d + (c/e)*x^n)^p, x] /; FreeQ[{a, b, c, d, e, f,
g, n, q, r}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && IntegerQ[p]
-
Int[((d_) + (e_.)*(x_)^(n_))^(q_.)*((f_) + (g_.)*(x_)^(n_))^(r_.)*((a_) + (c_.)*(x_)^(n2_))^(p_.), x_Symbol] :
> Int[(d + e*x^n)^(p + q)*(f + g*x^n)^r*(a/d + (c/e)*x^n)^p, x] /; FreeQ[{a, c, d, e, f, g, n, q, r}, x] && Eq
Q[n2, 2*n] && EqQ[c*d^2 + a*e^2, 0] && IntegerQ[p]
-
Int[((d_) + (e_.)*(x_)^(n_))^(q_.)*((f_) + (g_.)*(x_)^(n_))^(r_.)*((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_))^
(p_), x_Symbol] :> Simp[(a + b*x^n + c*x^(2*n))^FracPart[p]/((d + e*x^n)^FracPart[p]*(a/d + (c*x^n)/e)^FracPar
t[p]) Int[(d + e*x^n)^(p + q)*(f + g*x^n)^r*(a/d + (c/e)*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p,
q, r}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && !IntegerQ[p]
-
Int[((d_) + (e_.)*(x_)^(n_))^(q_.)*((f_) + (g_.)*(x_)^(n_))^(r_.)*((a_) + (c_.)*(x_)^(n2_))^(p_), x_Symbol] :>
Simp[(a + c*x^(2*n))^FracPart[p]/((d + e*x^n)^FracPart[p]*(a/d + (c*x^n)/e)^FracPart[p]) Int[(d + e*x^n)^(p
+ q)*(f + g*x^n)^r*(a/d + (c/e)*x^n)^p, x], x] /; FreeQ[{a, c, d, e, f, g, n, p, q, r}, x] && EqQ[n2, 2*n] &&
EqQ[c*d^2 + a*e^2, 0] && !IntegerQ[p]
-
Int[((d1_) + (e1_.)*(x_)^(non2_.))^(q_.)*((d2_) + (e2_.)*(x_)^(non2_.))^(q_.)*((a_.) + (b_.)*(x_)^(n_) + (c_.)
*(x_)^(n2_))^(p_.), x_Symbol] :> Int[(d1*d2 + e1*e2*x^n)^q*(a + b*x^n + c*x^(2*n))^p, x] /; FreeQ[{a, b, c, d1
, e1, d2, e2, n, p, q}, x] && EqQ[n2, 2*n] && EqQ[non2, n/2] && EqQ[d2*e1 + d1*e2, 0] && (IntegerQ[q] || (GtQ[
d1, 0] && GtQ[d2, 0]))
-
Int[((d1_) + (e1_.)*(x_)^(non2_.))^(q_.)*((d2_) + (e2_.)*(x_)^(non2_.))^(q_.)*((a_.) + (b_.)*(x_)^(n_) + (c_.)
*(x_)^(n2_))^(p_.), x_Symbol] :> Simp[(d1 + e1*x^(n/2))^FracPart[q]*((d2 + e2*x^(n/2))^FracPart[q]/(d1*d2 + e1
*e2*x^n)^FracPart[q]) Int[(d1*d2 + e1*e2*x^n)^q*(a + b*x^n + c*x^(2*n))^p, x], x] /; FreeQ[{a, b, c, d1, e1,
d2, e2, n, p, q}, x] && EqQ[n2, 2*n] && EqQ[non2, n/2] && EqQ[d2*e1 + d1*e2, 0]
-
Int[((A_) + (B_.)*(x_)^(m_.))*((d_) + (e_.)*(x_)^(n_))^(q_.)*((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_))^(p_.)
, x_Symbol] :> Simp[A Int[(d + e*x^n)^q*(a + b*x^n + c*x^(2*n))^p, x], x] + Simp[B Int[x^m*(d + e*x^n)^q*(
a + b*x^n + c*x^(2*n))^p, x], x] /; FreeQ[{a, b, c, d, e, A, B, m, n, p, q}, x] && EqQ[n2, 2*n] && EqQ[m - n +
1, 0]
-
Int[((A_) + (B_.)*(x_)^(m_.))*((d_) + (e_.)*(x_)^(n_))^(q_.)*((a_) + (c_.)*(x_)^(n2_))^(p_.), x_Symbol] :> Sim
p[A Int[(d + e*x^n)^q*(a + c*x^(2*n))^p, x], x] + Simp[B Int[x^m*(d + e*x^n)^q*(a + c*x^(2*n))^p, x], x] /
; FreeQ[{a, c, d, e, A, B, m, n, p, q}, x] && EqQ[n2, 2*n] && EqQ[m - n + 1, 0]
-
Int[((f_.)*(x_))^(m_.)*((e_.)*(x_)^(n_))^(q_)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :>
Simp[f^m/(n*e^((m + 1)/n - 1)) Subst[Int[(e*x)^(q + (m + 1)/n - 1)*(a + b*x + c*x^2)^p, x], x, x^n], x] /;
FreeQ[{a, b, c, e, f, m, n, p, q}, x] && EqQ[n2, 2*n] && (IntegerQ[m] || GtQ[f, 0]) && IntegerQ[Simplify[(m +
1)/n]]
-
Int[((f_.)*(x_))^(m_.)*((e_.)*(x_)^(n_))^(q_)*((a_) + (c_.)*(x_)^(n2_.))^(p_.), x_Symbol] :> Simp[f^m/(n*e^((m
+ 1)/n - 1)) Subst[Int[(e*x)^(q + (m + 1)/n - 1)*(a + c*x^2)^p, x], x, x^n], x] /; FreeQ[{a, c, e, f, m, n,
p, q}, x] && EqQ[n2, 2*n] && (IntegerQ[m] || GtQ[f, 0]) && IntegerQ[Simplify[(m + 1)/n]]
-
Int[((f_.)*(x_))^(m_.)*((e_.)*(x_)^(n_))^(q_)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :>
Simp[f^m*e^IntPart[q]*((e*x^n)^FracPart[q]/x^(n*FracPart[q])) Int[x^(m + n*q)*(a + b*x^n + c*x^(2*n))^p, x]
, x] /; FreeQ[{a, b, c, e, f, m, n, p, q}, x] && EqQ[n2, 2*n] && (IntegerQ[m] || GtQ[f, 0]) && !IntegerQ[Simp
lify[(m + 1)/n]]
-
Int[((f_.)*(x_))^(m_.)*((e_.)*(x_)^(n_))^(q_)*((a_) + (c_.)*(x_)^(n2_.))^(p_.), x_Symbol] :> Simp[f^m*e^IntPar
t[q]*((e*x^n)^FracPart[q]/x^(n*FracPart[q])) Int[x^(m + n*q)*(a + c*x^(2*n))^p, x], x] /; FreeQ[{a, c, e, f,
m, n, p, q}, x] && EqQ[n2, 2*n] && (IntegerQ[m] || GtQ[f, 0]) && !IntegerQ[Simplify[(m + 1)/n]]
-
Int[((f_)*(x_))^(m_.)*((e_.)*(x_)^(n_))^(q_)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :>
Simp[f^IntPart[m]*((f*x)^FracPart[m]/x^FracPart[m]) Int[x^m*(e*x^n)^q*(a + b*x^n + c*x^(2*n))^p, x], x] /; F
reeQ[{a, b, c, e, f, m, n, p, q}, x] && EqQ[n2, 2*n] && !IntegerQ[m]
-
Int[((f_)*(x_))^(m_.)*((e_.)*(x_)^(n_))^(q_)*((a_) + (c_.)*(x_)^(n2_.))^(p_.), x_Symbol] :> Simp[f^IntPart[m]*
((f*x)^FracPart[m]/x^FracPart[m]) Int[x^m*(e*x^n)^q*(a + c*x^(2*n))^p, x], x] /; FreeQ[{a, c, e, f, m, n, p,
q}, x] && EqQ[n2, 2*n] && !IntegerQ[m]
-
Int[(x_)^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Symbol] :>
Simp[1/n Subst[Int[(d + e*x)^q*(a + b*x + c*x^2)^p, x], x, x^n], x] /; FreeQ[{a, b, c, d, e, m, n, p, q}, x
] && EqQ[n2, 2*n] && EqQ[Simplify[m - n + 1], 0]
-
Int[(x_)^(m_.)*((a_) + (c_.)*(x_)^(n2_.))^(p_.)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Symbol] :> Simp[1/n Subst[
Int[(d + e*x)^q*(a + c*x^2)^p, x], x, x^n], x] /; FreeQ[{a, c, d, e, m, n, p, q}, x] && EqQ[n2, 2*n] && EqQ[Si
mplify[m - n + 1], 0]
-
Int[(x_)^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Symbol] :>
Int[x^(m + n*(2*p + q))*(e + d/x^n)^q*(c + b/x^n + a/x^(2*n))^p, x] /; FreeQ[{a, b, c, d, e, m, n}, x] && EqQ
[n2, 2*n] && IntegersQ[p, q] && NegQ[n]
-
Int[(x_)^(m_.)*((a_) + (c_.)*(x_)^(n2_.))^(p_.)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Symbol] :> Int[x^(m + n*(2*p
+ q))*(e + d/x^n)^q*(c + a/x^(2*n))^p, x] /; FreeQ[{a, c, d, e, m, n}, x] && EqQ[n2, 2*n] && IntegersQ[p, q]
&& NegQ[n]
-
Int[(x_)^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Symbol] :>
Simp[1/n Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(d + e*x)^q*(a + b*x + c*x^2)^p, x], x, x^n], x] /; FreeQ[{a
, b, c, d, e, m, n, p, q}, x] && EqQ[n2, 2*n] && IntegerQ[Simplify[(m + 1)/n]]
-
Int[(x_)^(m_.)*((a_) + (c_.)*(x_)^(n2_.))^(p_.)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Symbol] :> Simp[1/n Subst[
Int[x^(Simplify[(m + 1)/n] - 1)*(d + e*x)^q*(a + c*x^2)^p, x], x, x^n], x] /; FreeQ[{a, c, d, e, m, n, p, q},
x] && EqQ[n2, 2*n] && IntegerQ[Simplify[(m + 1)/n]]
-
Int[((f_)*(x_))^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Sym
bol] :> Simp[f^IntPart[m]*((f*x)^FracPart[m]/x^FracPart[m]) Int[x^m*(d + e*x^n)^q*(a + b*x^n + c*x^(2*n))^p,
x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p, q}, x] && EqQ[n2, 2*n] && IntegerQ[Simplify[(m + 1)/n]]
-
Int[((f_)*(x_))^(m_.)*((a_) + (c_.)*(x_)^(n2_.))^(p_.)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Symbol] :> Simp[f^Int
Part[m]*((f*x)^FracPart[m]/x^FracPart[m]) Int[x^m*(d + e*x^n)^q*(a + c*x^(2*n))^p, x], x] /; FreeQ[{a, c, d,
e, f, m, n, p, q}, x] && EqQ[n2, 2*n] && IntegerQ[Simplify[(m + 1)/n]]
-
Int[(x_)^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.)*((d_) + (e_.)*(x_)^(n_))^(q_), x_Symbol] :>
Simp[(-d)^((m - Mod[m, n])/n - 1)*(c*d^2 - b*d*e + a*e^2)^p*x^(Mod[m, n] + 1)*((d + e*x^n)^(q + 1)/(n*e^(2*p +
(m - Mod[m, n])/n)*(q + 1))), x] + Simp[1/(n*e^(2*p + (m - Mod[m, n])/n)*(q + 1)) Int[x^Mod[m, n]*(d + e*x^
n)^(q + 1)*ExpandToSum[Together[(1/(d + e*x^n))*(n*e^(2*p + (m - Mod[m, n])/n)*(q + 1)*x^(m - Mod[m, n])*(a +
b*x^n + c*x^(2*n))^p - (-d)^((m - Mod[m, n])/n - 1)*(c*d^2 - b*d*e + a*e^2)^p*(d*(Mod[m, n] + 1) + e*(Mod[m, n
] + n*(q + 1) + 1)*x^n))], x], x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && I
GtQ[n, 0] && IGtQ[p, 0] && ILtQ[q, -1] && IGtQ[m, 0]
-
Int[(x_)^(m_.)*((a_) + (c_.)*(x_)^(n2_.))^(p_.)*((d_) + (e_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(-d)^((m - Mo
d[m, n])/n - 1)*(c*d^2 + a*e^2)^p*x^(Mod[m, n] + 1)*((d + e*x^n)^(q + 1)/(n*e^(2*p + (m - Mod[m, n])/n)*(q + 1
))), x] + Simp[1/(n*e^(2*p + (m - Mod[m, n])/n)*(q + 1)) Int[x^Mod[m, n]*(d + e*x^n)^(q + 1)*ExpandToSum[Tog
ether[(1/(d + e*x^n))*(n*e^(2*p + (m - Mod[m, n])/n)*(q + 1)*x^(m - Mod[m, n])*(a + c*x^(2*n))^p - (-d)^((m -
Mod[m, n])/n - 1)*(c*d^2 + a*e^2)^p*(d*(Mod[m, n] + 1) + e*(Mod[m, n] + n*(q + 1) + 1)*x^n))], x], x], x] /; F
reeQ[{a, c, d, e}, x] && EqQ[n2, 2*n] && IGtQ[n, 0] && IGtQ[p, 0] && ILtQ[q, -1] && IGtQ[m, 0]
-
Int[(x_)^(m_)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.)*((d_) + (e_.)*(x_)^(n_))^(q_), x_Symbol] :> S
imp[(-d)^((m - Mod[m, n])/n - 1)*(c*d^2 - b*d*e + a*e^2)^p*x^(Mod[m, n] + 1)*((d + e*x^n)^(q + 1)/(n*e^(2*p +
(m - Mod[m, n])/n)*(q + 1))), x] + Simp[(-d)^((m - Mod[m, n])/n - 1)/(n*e^(2*p)*(q + 1)) Int[x^m*(d + e*x^n)
^(q + 1)*ExpandToSum[Together[(1/(d + e*x^n))*(n*(-d)^(-(m - Mod[m, n])/n + 1)*e^(2*p)*(q + 1)*(a + b*x^n + c*
x^(2*n))^p - ((c*d^2 - b*d*e + a*e^2)^p/(e^((m - Mod[m, n])/n)*x^(m - Mod[m, n])))*(d*(Mod[m, n] + 1) + e*(Mod
[m, n] + n*(q + 1) + 1)*x^n))], x], x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0]
&& IGtQ[n, 0] && IGtQ[p, 0] && ILtQ[q, -1] && ILtQ[m, 0]
-
Int[(x_)^(m_)*((a_) + (c_.)*(x_)^(n2_.))^(p_.)*((d_) + (e_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(-d)^((m - Mod
[m, n])/n - 1)*(c*d^2 + a*e^2)^p*x^(Mod[m, n] + 1)*((d + e*x^n)^(q + 1)/(n*e^(2*p + (m - Mod[m, n])/n)*(q + 1)
)), x] + Simp[(-d)^((m - Mod[m, n])/n - 1)/(n*e^(2*p)*(q + 1)) Int[x^m*(d + e*x^n)^(q + 1)*ExpandToSum[Toget
her[(1/(d + e*x^n))*(n*(-d)^(-(m - Mod[m, n])/n + 1)*e^(2*p)*(q + 1)*(a + c*x^(2*n))^p - ((c*d^2 + a*e^2)^p/(e
^((m - Mod[m, n])/n)*x^(m - Mod[m, n])))*(d*(Mod[m, n] + 1) + e*(Mod[m, n] + n*(q + 1) + 1)*x^n))], x], x], x]
/; FreeQ[{a, c, d, e}, x] && EqQ[n2, 2*n] && IGtQ[n, 0] && IGtQ[p, 0] && IntegersQ[m, q] && ILtQ[q, -1] && IL
tQ[m, 0]
-
Int[((f_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Sy
mbol] :> Simp[c^p*(f*x)^(m + 2*n*p - n + 1)*((d + e*x^n)^(q + 1)/(e*f^(2*n*p - n + 1)*(m + 2*n*p + n*q + 1))),
x] + Simp[1/(e*(m + 2*n*p + n*q + 1)) Int[(f*x)^m*(d + e*x^n)^q*ExpandToSum[e*(m + 2*n*p + n*q + 1)*((a + b
*x^n + c*x^(2*n))^p - c^p*x^(2*n*p)) - d*c^p*(m + 2*n*p - n + 1)*x^(2*n*p - n), x], x], x] /; FreeQ[{a, b, c,
d, e, f, m, q}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && IGtQ[p, 0] && GtQ[2*n*p, n - 1] &&
!IntegerQ[q] && NeQ[m + 2*n*p + n*q + 1, 0]
-
Int[((f_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^(n2_.))^(p_.)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Symbol] :> Simp[c^p*
(f*x)^(m + 2*n*p - n + 1)*((d + e*x^n)^(q + 1)/(e*f^(2*n*p - n + 1)*(m + 2*n*p + n*q + 1))), x] + Simp[1/(e*(m
+ 2*n*p + n*q + 1)) Int[(f*x)^m*(d + e*x^n)^q*ExpandToSum[e*(m + 2*n*p + n*q + 1)*((a + c*x^(2*n))^p - c^p*
x^(2*n*p)) - d*c^p*(m + 2*n*p - n + 1)*x^(2*n*p - n), x], x], x] /; FreeQ[{a, c, d, e, f, m, q}, x] && EqQ[n2,
2*n] && IGtQ[n, 0] && IGtQ[p, 0] && GtQ[2*n*p, n - 1] && !IntegerQ[q] && NeQ[m + 2*n*p + n*q + 1, 0]
-
Int[((f_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Sy
mbol] :> Int[ExpandIntegrand[(f*x)^m*(d + e*x^n)^q*(a + b*x^n + c*x^(2*n))^p, x], x] /; FreeQ[{a, b, c, d, e,
f, m, q}, x] && EqQ[n2, 2*n] && IGtQ[n, 0] && IGtQ[p, 0]
-
Int[((f_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^(n2_.))^(p_.)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Symbol] :> Int[Expan
dIntegrand[(f*x)^m*(d + e*x^n)^q*(a + c*x^(2*n))^p, x], x] /; FreeQ[{a, c, d, e, f, m, q}, x] && EqQ[n2, 2*n]
&& IGtQ[n, 0] && IGtQ[p, 0]
-
Int[(x_)^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Symbol] :>
With[{k = GCD[m + 1, n]}, Simp[1/k Subst[Int[x^((m + 1)/k - 1)*(d + e*x^(n/k))^q*(a + b*x^(n/k) + c*x^(2*(n/
k)))^p, x], x, x^k], x] /; k != 1] /; FreeQ[{a, b, c, d, e, p, q}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] &
& IGtQ[n, 0] && IntegerQ[m]
-
Int[(x_)^(m_.)*((a_) + (c_.)*(x_)^(n2_.))^(p_)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Symbol] :> With[{k = GCD[m +
1, n]}, Simp[1/k Subst[Int[x^((m + 1)/k - 1)*(d + e*x^(n/k))^q*(a + c*x^(2*(n/k)))^p, x], x, x^k], x] /; k !
= 1] /; FreeQ[{a, c, d, e, p, q}, x] && EqQ[n2, 2*n] && IGtQ[n, 0] && IntegerQ[m]
-
Int[((f_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Symb
ol] :> With[{k = Denominator[m]}, Simp[k/f Subst[Int[x^(k*(m + 1) - 1)*(d + e*(x^(k*n)/f^n))^q*(a + b*(x^(k*
n)/f^n) + c*(x^(2*k*n)/f^(2*n)))^p, x], x, (f*x)^(1/k)], x]] /; FreeQ[{a, b, c, d, e, f, p, q}, x] && EqQ[n2,
2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && FractionQ[m] && IntegerQ[p]
-
Int[((f_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^(n2_.))^(p_)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Symbol] :> With[{k = D
enominator[m]}, Simp[k/f Subst[Int[x^(k*(m + 1) - 1)*(d + e*(x^(k*n)/f))^q*(a + c*(x^(2*k*n)/f))^p, x], x, (
f*x)^(1/k)], x]] /; FreeQ[{a, c, d, e, f, p, q}, x] && EqQ[n2, 2*n] && IGtQ[n, 0] && FractionQ[m] && IntegerQ[
p]
-
Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(n_))*((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_))^(p_.), x_Symbol] :
> Simp[(f*x)^(m + 1)*(a + b*x^n + c*x^(2*n))^p*((d*(m + n*(2*p + 1) + 1) + e*(m + 1)*x^n)/(f*(m + 1)*(m + n*(2
*p + 1) + 1))), x] + Simp[n*(p/(f^n*(m + 1)*(m + n*(2*p + 1) + 1))) Int[(f*x)^(m + n)*(a + b*x^n + c*x^(2*n)
)^(p - 1)*Simp[2*a*e*(m + 1) - b*d*(m + n*(2*p + 1) + 1) + (b*e*(m + 1) - 2*c*d*(m + n*(2*p + 1) + 1))*x^n, x]
, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && GtQ[p, 0] &&
LtQ[m, -1] && NeQ[m + n*(2*p + 1) + 1, 0] && IntegerQ[p]
-
Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(n_))*((a_) + (c_.)*(x_)^(n2_))^(p_.), x_Symbol] :> Simp[(f*x)^(m +
1)*(a + c*x^(2*n))^p*((d*(m + n*(2*p + 1) + 1) + e*(m + 1)*x^n)/(f*(m + 1)*(m + n*(2*p + 1) + 1))), x] + Simp[
2*n*(p/(f^n*(m + 1)*(m + n*(2*p + 1) + 1))) Int[(f*x)^(m + n)*(a + c*x^(2*n))^(p - 1)*(a*e*(m + 1) - c*d*(m
+ n*(2*p + 1) + 1)*x^n), x], x] /; FreeQ[{a, c, d, e, f}, x] && EqQ[n2, 2*n] && IGtQ[n, 0] && GtQ[p, 0] && LtQ
[m, -1] && NeQ[m + n*(2*p + 1) + 1, 0] && IntegerQ[p]
-
Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(n_))*((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_))^(p_.), x_Symbol] :
> Simp[(f*x)^(m + 1)*(a + b*x^n + c*x^(2*n))^p*((b*e*n*p + c*d*(m + n*(2*p + 1) + 1) + c*e*(2*n*p + m + 1)*x^n
)/(c*f*(2*n*p + m + 1)*(m + n*(2*p + 1) + 1))), x] + Simp[n*(p/(c*(2*n*p + m + 1)*(m + n*(2*p + 1) + 1))) In
t[(f*x)^m*(a + b*x^n + c*x^(2*n))^(p - 1)*Simp[2*a*c*d*(m + n*(2*p + 1) + 1) - a*b*e*(m + 1) + (2*a*c*e*(2*n*p
+ m + 1) + b*c*d*(m + n*(2*p + 1) + 1) - b^2*e*(m + n*p + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, m},
x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && GtQ[p, 0] && NeQ[2*n*p + m + 1, 0] && NeQ[m + n*(2
*p + 1) + 1, 0] && IntegerQ[p]
-
Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(n_))*((a_) + (c_.)*(x_)^(n2_))^(p_.), x_Symbol] :> Simp[(f*x)^(m +
1)*(a + c*x^(2*n))^p*((c*d*(m + n*(2*p + 1) + 1) + c*e*(2*n*p + m + 1)*x^n)/(c*f*(2*n*p + m + 1)*(m + n*(2*p +
1) + 1))), x] + Simp[2*a*n*(p/((2*n*p + m + 1)*(m + n*(2*p + 1) + 1))) Int[(f*x)^m*(a + c*x^(2*n))^(p - 1)*
Simp[d*(m + n*(2*p + 1) + 1) + e*(2*n*p + m + 1)*x^n, x], x], x] /; FreeQ[{a, c, d, e, f, m}, x] && EqQ[n2, 2*
n] && IGtQ[n, 0] && GtQ[p, 0] && NeQ[2*n*p + m + 1, 0] && NeQ[m + n*(2*p + 1) + 1, 0] && IntegerQ[p]
-
Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(n_))*((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_))^(p_.), x_Symbol] :
> Simp[f^(n - 1)*(f*x)^(m - n + 1)*(a + b*x^n + c*x^(2*n))^(p + 1)*((b*d - 2*a*e - (b*e - 2*c*d)*x^n)/(n*(p +
1)*(b^2 - 4*a*c))), x] + Simp[f^n/(n*(p + 1)*(b^2 - 4*a*c)) Int[(f*x)^(m - n)*(a + b*x^n + c*x^(2*n))^(p + 1
)*Simp[(n - m - 1)*(b*d - 2*a*e) + (2*n*p + 2*n + m + 1)*(b*e - 2*c*d)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e
, f}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m, n - 1] && IntegerQ[p]
-
Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(n_))*((a_) + (c_.)*(x_)^(n2_))^(p_.), x_Symbol] :> Simp[f^(n - 1)*(
f*x)^(m - n + 1)*(a + c*x^(2*n))^(p + 1)*((a*e - c*d*x^n)/(2*a*c*n*(p + 1))), x] + Simp[f^n/(2*a*c*n*(p + 1))
Int[(f*x)^(m - n)*(a + c*x^(2*n))^(p + 1)*(a*e*(n - m - 1) + c*d*(2*n*p + 2*n + m + 1)*x^n), x], x] /; FreeQ
[{a, c, d, e, f}, x] && EqQ[n2, 2*n] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m, n - 1] && IntegerQ[p]
-
Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(n_))*((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_))^(p_), x_Symbol] :>
Simp[(-(f*x)^(m + 1))*(a + b*x^n + c*x^(2*n))^(p + 1)*((d*(b^2 - 2*a*c) - a*b*e + (b*d - 2*a*e)*c*x^n)/(a*f*n
*(p + 1)*(b^2 - 4*a*c))), x] + Simp[1/(a*n*(p + 1)*(b^2 - 4*a*c)) Int[(f*x)^m*(a + b*x^n + c*x^(2*n))^(p + 1
)*Simp[d*(b^2*(m + n*(p + 1) + 1) - 2*a*c*(m + 2*n*(p + 1) + 1)) - a*b*e*(m + 1) + c*(m + n*(2*p + 3) + 1)*(b*
d - 2*a*e)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n
, 0] && LtQ[p, -1] && IntegerQ[p]
-
Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(n_))*((a_) + (c_.)*(x_)^(n2_))^(p_), x_Symbol] :> Simp[(-(f*x)^(m +
1))*(a + c*x^(2*n))^(p + 1)*((d + e*x^n)/(2*a*f*n*(p + 1))), x] + Simp[1/(2*a*n*(p + 1)) Int[(f*x)^m*(a + c
*x^(2*n))^(p + 1)*Simp[d*(m + 2*n*(p + 1) + 1) + e*(m + n*(2*p + 3) + 1)*x^n, x], x], x] /; FreeQ[{a, c, d, e,
f, m}, x] && EqQ[n2, 2*n] && IGtQ[n, 0] && LtQ[p, -1] && IntegerQ[p]
-
Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(n_))*((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_))^(p_), x_Symbol] :>
Simp[e*f^(n - 1)*(f*x)^(m - n + 1)*((a + b*x^n + c*x^(2*n))^(p + 1)/(c*(m + n*(2*p + 1) + 1))), x] - Simp[f^n
/(c*(m + n*(2*p + 1) + 1)) Int[(f*x)^(m - n)*(a + b*x^n + c*x^(2*n))^p*Simp[a*e*(m - n + 1) + (b*e*(m + n*p
+ 1) - c*d*(m + n*(2*p + 1) + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && EqQ[n2, 2*n] && NeQ[b^
2 - 4*a*c, 0] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*(2*p + 1) + 1, 0] && IntegerQ[p]
-
Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(n_))*((a_) + (c_.)*(x_)^(n2_))^(p_), x_Symbol] :> Simp[e*f^(n - 1)*
(f*x)^(m - n + 1)*((a + c*x^(2*n))^(p + 1)/(c*(m + n*(2*p + 1) + 1))), x] - Simp[f^n/(c*(m + n*(2*p + 1) + 1))
Int[(f*x)^(m - n)*(a + c*x^(2*n))^p*(a*e*(m - n + 1) - c*d*(m + n*(2*p + 1) + 1)*x^n), x], x] /; FreeQ[{a,
c, d, e, f, p}, x] && EqQ[n2, 2*n] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*(2*p + 1) + 1, 0] && IntegerQ[p
]
-
Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(n_))*((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_))^(p_), x_Symbol] :>
Simp[d*(f*x)^(m + 1)*((a + b*x^n + c*x^(2*n))^(p + 1)/(a*f*(m + 1))), x] + Simp[1/(a*f^n*(m + 1)) Int[(f*x)
^(m + n)*(a + b*x^n + c*x^(2*n))^p*Simp[a*e*(m + 1) - b*d*(m + n*(p + 1) + 1) - c*d*(m + 2*n*(p + 1) + 1)*x^n,
x], x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && LtQ[m,
-1] && IntegerQ[p]
-
Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(n_))*((a_) + (c_.)*(x_)^(n2_))^(p_), x_Symbol] :> Simp[d*(f*x)^(m +
1)*((a + c*x^(2*n))^(p + 1)/(a*f*(m + 1))), x] + Simp[1/(a*f^n*(m + 1)) Int[(f*x)^(m + n)*(a + c*x^(2*n))^p
*(a*e*(m + 1) - c*d*(m + 2*n*(p + 1) + 1)*x^n), x], x] /; FreeQ[{a, c, d, e, f, p}, x] && EqQ[n2, 2*n] && IGtQ
[n, 0] && LtQ[m, -1] && IntegerQ[p]
-
Int[(((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^(n_)))/((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_)), x_Symbol] :> Wit
h[{q = Rt[a*c, 2]}, With[{r = Rt[2*c*q - b*c, 2]}, Simp[c/(2*q*r) Int[(f*x)^m*(Simp[d*r - (c*d - e*q)*x^(n/2
), x]/(q - r*x^(n/2) + c*x^n)), x], x] + Simp[c/(2*q*r) Int[(f*x)^m*(Simp[d*r + (c*d - e*q)*x^(n/2), x]/(q +
r*x^(n/2) + c*x^n)), x], x]] /; !LtQ[2*c*q - b*c, 0]] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[n2, 2*n] && LtQ
[b^2 - 4*a*c, 0] && IntegersQ[m, n/2] && LtQ[0, m, n] && PosQ[a*c]
-
Int[(((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^(n_)))/((a_) + (c_.)*(x_)^(n2_)), x_Symbol] :> With[{q = Rt[a*c, 2]}
, With[{r = Rt[2*c*q, 2]}, Simp[c/(2*q*r) Int[(f*x)^m*(Simp[d*r - (c*d - e*q)*x^(n/2), x]/(q - r*x^(n/2) + c
*x^n)), x], x] + Simp[c/(2*q*r) Int[(f*x)^m*(Simp[d*r + (c*d - e*q)*x^(n/2), x]/(q + r*x^(n/2) + c*x^n)), x]
, x]] /; !LtQ[2*c*q, 0]] /; FreeQ[{a, c, d, e, f}, x] && EqQ[n2, 2*n] && GtQ[a*c, 0] && IntegersQ[m, n/2] &&
LtQ[0, m, n]
-
Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(n_)))/((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_)), x_Symbol] :> Wi
th[{q = Rt[a*c, 2]}, With[{r = Rt[2*c*q - b*c, 2]}, Simp[c/(2*q*r) Int[(f*x)^m*((d*r - (c*d - e*q)*x^(n/2))/
(q - r*x^(n/2) + c*x^n)), x], x] + Simp[c/(2*q*r) Int[(f*x)^m*((d*r + (c*d - e*q)*x^(n/2))/(q + r*x^(n/2) +
c*x^n)), x], x]] /; !LtQ[2*c*q - b*c, 0]] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[n2, 2*n] && LtQ[b^2 - 4*a
*c, 0] && IGtQ[n/2, 1] && PosQ[a*c]
-
Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(n_)))/((a_) + (c_.)*(x_)^(n2_)), x_Symbol] :> With[{q = Rt[a*c, 2]
}, With[{r = Rt[2*c*q, 2]}, Simp[c/(2*q*r) Int[(f*x)^m*((d*r - (c*d - e*q)*x^(n/2))/(q - r*x^(n/2) + c*x^n))
, x], x] + Simp[c/(2*q*r) Int[(f*x)^m*((d*r + (c*d - e*q)*x^(n/2))/(q + r*x^(n/2) + c*x^n)), x], x]] /; !Lt
Q[2*c*q, 0]] /; FreeQ[{a, c, d, e, f, m}, x] && EqQ[n2, 2*n] && IGtQ[n/2, 1] && GtQ[a*c, 0]
-
Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(n_)))/((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_)), x_Symbol] :> Wi
th[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(e/2 + (2*c*d - b*e)/(2*q)) Int[(f*x)^m/(b/2 - q/2 + c*x^n), x], x] + Simp
[(e/2 - (2*c*d - b*e)/(2*q)) Int[(f*x)^m/(b/2 + q/2 + c*x^n), x], x]] /; FreeQ[{a, b, c, d, e, f, m}, x] &&
EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0]
-
Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(n_)))/((a_) + (c_.)*(x_)^(n2_)), x_Symbol] :> With[{q = Rt[(-a)*c,
2]}, Simp[-(e/2 + c*(d/(2*q))) Int[(f*x)^m/(q - c*x^n), x], x] + Simp[(e/2 - c*(d/(2*q))) Int[(f*x)^m/(q
+ c*x^n), x], x]] /; FreeQ[{a, c, d, e, f, m}, x] && EqQ[n2, 2*n] && IGtQ[n, 0]
-
Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(n_))^(q_.))/((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_)), x_Symbol
] :> Int[ExpandIntegrand[(f*x)^m*((d + e*x^n)^q/(a + b*x^n + c*x^(2*n))), x], x] /; FreeQ[{a, b, c, d, e, f, m
}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && IntegerQ[q] && IntegerQ[m]
-
Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(n_))^(q_.))/((a_) + (c_.)*(x_)^(n2_.)), x_Symbol] :> Int[ExpandInt
egrand[(f*x)^m*((d + e*x^n)^q/(a + c*x^(2*n))), x], x] /; FreeQ[{a, c, d, e, f, m}, x] && EqQ[n2, 2*n] && IGtQ
[n, 0] && IntegerQ[q] && IntegerQ[m]
-
Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(n_))^(q_.))/((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_)), x_Symbol
] :> Int[ExpandIntegrand[(f*x)^m, (d + e*x^n)^q/(a + b*x^n + c*x^(2*n)), x], x] /; FreeQ[{a, b, c, d, e, f, m}
, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && IntegerQ[q] && !IntegerQ[m]
-
Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(n_))^(q_.))/((a_) + (c_.)*(x_)^(n2_.)), x_Symbol] :> Int[ExpandInt
egrand[(f*x)^m, (d + e*x^n)^q/(a + c*x^(2*n)), x], x] /; FreeQ[{a, c, d, e, f, m}, x] && EqQ[n2, 2*n] && IGtQ[
n, 0] && IntegerQ[q] && !IntegerQ[m]
-
Int[(((f_.)*(x_))^(m_.)*((d_.) + (e_.)*(x_)^(n_))^(q_))/((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_)), x_Symbol
] :> Simp[f^(2*n)/c^2 Int[(f*x)^(m - 2*n)*(c*d - b*e + c*e*x^n)*(d + e*x^n)^(q - 1), x], x] - Simp[f^(2*n)/c
^2 Int[(f*x)^(m - 2*n)*(d + e*x^n)^(q - 1)*(Simp[a*(c*d - b*e) + (b*c*d - b^2*e + a*c*e)*x^n, x]/(a + b*x^n
+ c*x^(2*n))), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] &&
!IntegerQ[q] && GtQ[q, 0] && GtQ[m, 2*n - 1]
-
Int[(((f_.)*(x_))^(m_.)*((d_.) + (e_.)*(x_)^(n_))^(q_))/((a_) + (c_.)*(x_)^(n2_.)), x_Symbol] :> Simp[f^(2*n)/
c Int[(f*x)^(m - 2*n)*(d + e*x^n)^q, x], x] - Simp[a*(f^(2*n)/c) Int[(f*x)^(m - 2*n)*((d + e*x^n)^q/(a + c
*x^(2*n))), x], x] /; FreeQ[{a, c, d, e, f, q}, x] && EqQ[n2, 2*n] && IGtQ[n, 0] && !IntegerQ[q] && GtQ[m, 2*
n - 1]
-
Int[(((f_.)*(x_))^(m_.)*((d_.) + (e_.)*(x_)^(n_))^(q_))/((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_)), x_Symbol
] :> Simp[e*(f^n/c) Int[(f*x)^(m - n)*(d + e*x^n)^(q - 1), x], x] - Simp[f^n/c Int[(f*x)^(m - n)*(d + e*x^
n)^(q - 1)*(Simp[a*e - (c*d - b*e)*x^n, x]/(a + b*x^n + c*x^(2*n))), x], x] /; FreeQ[{a, b, c, d, e, f}, x] &&
EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && !IntegerQ[q] && GtQ[q, 0] && GtQ[m, n - 1] && LeQ[m, 2*
n - 1]
-
Int[(((f_.)*(x_))^(m_.)*((d_.) + (e_.)*(x_)^(n_))^(q_))/((a_) + (c_.)*(x_)^(n2_.)), x_Symbol] :> Simp[e*(f^n/c
) Int[(f*x)^(m - n)*(d + e*x^n)^(q - 1), x], x] - Simp[f^n/c Int[(f*x)^(m - n)*(d + e*x^n)^(q - 1)*(Simp[a
*e - c*d*x^n, x]/(a + c*x^(2*n))), x], x] /; FreeQ[{a, c, d, e, f}, x] && EqQ[n2, 2*n] && IGtQ[n, 0] && !Inte
gerQ[q] && GtQ[q, 0] && GtQ[m, n - 1] && LeQ[m, 2*n - 1]
-
Int[(((f_.)*(x_))^(m_)*((d_.) + (e_.)*(x_)^(n_))^(q_))/((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_)), x_Symbol]
:> Simp[d/a Int[(f*x)^m*(d + e*x^n)^(q - 1), x], x] - Simp[1/(a*f^n) Int[(f*x)^(m + n)*(d + e*x^n)^(q - 1
)*(Simp[b*d - a*e + c*d*x^n, x]/(a + b*x^n + c*x^(2*n))), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[n2, 2*
n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && !IntegerQ[q] && GtQ[q, 0] && LtQ[m, 0]
-
Int[(((f_.)*(x_))^(m_)*((d_.) + (e_.)*(x_)^(n_))^(q_))/((a_) + (c_.)*(x_)^(n2_.)), x_Symbol] :> Simp[d/a Int
[(f*x)^m*(d + e*x^n)^(q - 1), x], x] + Simp[1/(a*f^n) Int[(f*x)^(m + n)*(d + e*x^n)^(q - 1)*(Simp[a*e - c*d*
x^n, x]/(a + c*x^(2*n))), x], x] /; FreeQ[{a, c, d, e, f}, x] && EqQ[n2, 2*n] && IGtQ[n, 0] && !IntegerQ[q] &
& GtQ[q, 0] && LtQ[m, 0]
-
Int[(((f_.)*(x_))^(m_.)*((d_.) + (e_.)*(x_)^(n_))^(q_))/((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_)), x_Symbol
] :> Simp[d^2*(f^(2*n)/(c*d^2 - b*d*e + a*e^2)) Int[(f*x)^(m - 2*n)*(d + e*x^n)^q, x], x] - Simp[f^(2*n)/(c*
d^2 - b*d*e + a*e^2) Int[(f*x)^(m - 2*n)*(d + e*x^n)^(q + 1)*(Simp[a*d + (b*d - a*e)*x^n, x]/(a + b*x^n + c*
x^(2*n))), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && !In
tegerQ[q] && LtQ[q, -1] && GtQ[m, 2*n - 1]
-
Int[(((f_.)*(x_))^(m_.)*((d_.) + (e_.)*(x_)^(n_))^(q_))/((a_) + (c_.)*(x_)^(n2_.)), x_Symbol] :> Simp[d^2*(f^(
2*n)/(c*d^2 + a*e^2)) Int[(f*x)^(m - 2*n)*(d + e*x^n)^q, x], x] - Simp[a*(f^(2*n)/(c*d^2 + a*e^2)) Int[(f*
x)^(m - 2*n)*(d + e*x^n)^(q + 1)*((d - e*x^n)/(a + c*x^(2*n))), x], x] /; FreeQ[{a, c, d, e, f}, x] && EqQ[n2,
2*n] && IGtQ[n, 0] && !IntegerQ[q] && LtQ[q, -1] && GtQ[m, 2*n - 1]
-
Int[(((f_.)*(x_))^(m_.)*((d_.) + (e_.)*(x_)^(n_))^(q_))/((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_)), x_Symbol
] :> Simp[(-d)*e*(f^n/(c*d^2 - b*d*e + a*e^2)) Int[(f*x)^(m - n)*(d + e*x^n)^q, x], x] + Simp[f^n/(c*d^2 - b
*d*e + a*e^2) Int[(f*x)^(m - n)*(d + e*x^n)^(q + 1)*(Simp[a*e + c*d*x^n, x]/(a + b*x^n + c*x^(2*n))), x], x]
/; FreeQ[{a, b, c, d, e, f}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && !IntegerQ[q] && LtQ[
q, -1] && GtQ[m, n - 1] && LeQ[m, 2*n - 1]
-
Int[(((f_.)*(x_))^(m_.)*((d_.) + (e_.)*(x_)^(n_))^(q_))/((a_) + (c_.)*(x_)^(n2_.)), x_Symbol] :> Simp[(-d)*e*(
f^n/(c*d^2 + a*e^2)) Int[(f*x)^(m - n)*(d + e*x^n)^q, x], x] + Simp[f^n/(c*d^2 + a*e^2) Int[(f*x)^(m - n)*
(d + e*x^n)^(q + 1)*(Simp[a*e + c*d*x^n, x]/(a + c*x^(2*n))), x], x] /; FreeQ[{a, c, d, e, f}, x] && EqQ[n2, 2
*n] && IGtQ[n, 0] && !IntegerQ[q] && LtQ[q, -1] && GtQ[m, n - 1] && LeQ[m, 2*n - 1]
-
Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(n_))^(q_))/((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_)), x_Symbol]
:> Simp[e^2/(c*d^2 - b*d*e + a*e^2) Int[(f*x)^m*(d + e*x^n)^q, x], x] + Simp[1/(c*d^2 - b*d*e + a*e^2) Int
[(f*x)^m*(d + e*x^n)^(q + 1)*(Simp[c*d - b*e - c*e*x^n, x]/(a + b*x^n + c*x^(2*n))), x], x] /; FreeQ[{a, b, c,
d, e, f, m}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && !IntegerQ[q] && LtQ[q, -1]
-
Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(n_))^(q_))/((a_) + (c_.)*(x_)^(n2_)), x_Symbol] :> Simp[e^2/(c*d^2
+ a*e^2) Int[(f*x)^m*(d + e*x^n)^q, x], x] + Simp[c/(c*d^2 + a*e^2) Int[(f*x)^m*(d + e*x^n)^(q + 1)*((d -
e*x^n)/(a + c*x^(2*n))), x], x] /; FreeQ[{a, c, d, e, f, m}, x] && EqQ[n2, 2*n] && IGtQ[n, 0] && !IntegerQ[q
] && LtQ[q, -1]
-
Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(n_))^(q_))/((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_)), x_Symbol]
:> Int[ExpandIntegrand[(d + e*x^n)^q, (f*x)^m/(a + b*x^n + c*x^(2*n)), x], x] /; FreeQ[{a, b, c, d, e, f, q,
n}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && !IntegerQ[q] && IntegerQ[m]
-
Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(n_))^(q_))/((a_) + (c_.)*(x_)^(n2_.)), x_Symbol] :> Int[ExpandInte
grand[(d + e*x^n)^q, (f*x)^m/(a + c*x^(2*n)), x], x] /; FreeQ[{a, c, d, e, f, q, n}, x] && EqQ[n2, 2*n] && IGt
Q[n, 0] && !IntegerQ[q] && IntegerQ[m]
-
Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(n_))^(q_))/((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_)), x_Symbol]
:> Int[ExpandIntegrand[(f*x)^m*(d + e*x^n)^q, 1/(a + b*x^n + c*x^(2*n)), x], x] /; FreeQ[{a, b, c, d, e, f, m
, q, n}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && !IntegerQ[q] && !IntegerQ[m]
-
Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(n_))^(q_))/((a_) + (c_.)*(x_)^(n2_.)), x_Symbol] :> Int[ExpandInte
grand[(f*x)^m*(d + e*x^n)^q, 1/(a + c*x^(2*n)), x], x] /; FreeQ[{a, c, d, e, f, m, q, n}, x] && EqQ[n2, 2*n] &
& IGtQ[n, 0] && !IntegerQ[q] && !IntegerQ[m]
-
Int[(((f_.)*(x_))^(m_)*((a_.) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.))/((d_.) + (e_.)*(x_)^(n_)), x_Symbo
l] :> Simp[1/d^2 Int[(f*x)^m*(a*d + (b*d - a*e)*x^n)*(a + b*x^n + c*x^(2*n))^(p - 1), x], x] + Simp[(c*d^2 -
b*d*e + a*e^2)/(d^2*f^(2*n)) Int[(f*x)^(m + 2*n)*((a + b*x^n + c*x^(2*n))^(p - 1)/(d + e*x^n)), x], x] /; F
reeQ[{a, b, c, d, e, f}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && GtQ[p, 0] && LtQ[m, -n]
-
Int[(((f_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^(n2_.))^(p_.))/((d_.) + (e_.)*(x_)^(n_)), x_Symbol] :> Simp[a/d^2
Int[(f*x)^m*(d - e*x^n)*(a + c*x^(2*n))^(p - 1), x], x] + Simp[(c*d^2 + a*e^2)/(d^2*f^(2*n)) Int[(f*x)^(m +
2*n)*((a + c*x^(2*n))^(p - 1)/(d + e*x^n)), x], x] /; FreeQ[{a, c, d, e, f}, x] && EqQ[n2, 2*n] && IGtQ[n, 0]
&& GtQ[p, 0] && LtQ[m, -n]
-
Int[(((f_.)*(x_))^(m_)*((a_.) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.))/((d_.) + (e_.)*(x_)^(n_)), x_Symbo
l] :> Simp[1/(d*e) Int[(f*x)^m*(a*e + c*d*x^n)*(a + b*x^n + c*x^(2*n))^(p - 1), x], x] - Simp[(c*d^2 - b*d*e
+ a*e^2)/(d*e*f^n) Int[(f*x)^(m + n)*((a + b*x^n + c*x^(2*n))^(p - 1)/(d + e*x^n)), x], x] /; FreeQ[{a, b,
c, d, e, f}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && GtQ[p, 0] && LtQ[m, 0]
-
Int[(((f_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^(n2_.))^(p_.))/((d_.) + (e_.)*(x_)^(n_)), x_Symbol] :> Simp[1/(d*e)
Int[(f*x)^m*(a*e + c*d*x^n)*(a + c*x^(2*n))^(p - 1), x], x] - Simp[(c*d^2 + a*e^2)/(d*e*f^n) Int[(f*x)^(m
+ n)*((a + c*x^(2*n))^(p - 1)/(d + e*x^n)), x], x] /; FreeQ[{a, c, d, e, f}, x] && EqQ[n2, 2*n] && IGtQ[n, 0]
&& GtQ[p, 0] && LtQ[m, 0]
-
Int[(((f_.)*(x_))^(m_.)*((a_.) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_))/((d_.) + (e_.)*(x_)^(n_)), x_Symbo
l] :> Simp[-f^(2*n)/(c*d^2 - b*d*e + a*e^2) Int[(f*x)^(m - 2*n)*(a*d + (b*d - a*e)*x^n)*(a + b*x^n + c*x^(2*
n))^p, x], x] + Simp[d^2*(f^(2*n)/(c*d^2 - b*d*e + a*e^2)) Int[(f*x)^(m - 2*n)*((a + b*x^n + c*x^(2*n))^(p +
1)/(d + e*x^n)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0]
&& LtQ[p, -1] && GtQ[m, n]
-
Int[(((f_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^(n2_.))^(p_))/((d_.) + (e_.)*(x_)^(n_)), x_Symbol] :> Simp[(-a)*(f^
(2*n)/(c*d^2 + a*e^2)) Int[(f*x)^(m - 2*n)*(d - e*x^n)*(a + c*x^(2*n))^p, x], x] + Simp[d^2*(f^(2*n)/(c*d^2
+ a*e^2)) Int[(f*x)^(m - 2*n)*((a + c*x^(2*n))^(p + 1)/(d + e*x^n)), x], x] /; FreeQ[{a, c, d, e, f}, x] &&
EqQ[n2, 2*n] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m, n]
-
Int[(((f_.)*(x_))^(m_.)*((a_.) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_))/((d_.) + (e_.)*(x_)^(n_)), x_Symbo
l] :> Simp[f^n/(c*d^2 - b*d*e + a*e^2) Int[(f*x)^(m - n)*(a*e + c*d*x^n)*(a + b*x^n + c*x^(2*n))^p, x], x] -
Simp[d*e*(f^n/(c*d^2 - b*d*e + a*e^2)) Int[(f*x)^(m - n)*((a + b*x^n + c*x^(2*n))^(p + 1)/(d + e*x^n)), x],
x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[
m, 0]
-
Int[(((f_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^(n2_.))^(p_))/((d_.) + (e_.)*(x_)^(n_)), x_Symbol] :> Simp[f^n/(c*d
^2 + a*e^2) Int[(f*x)^(m - n)*(a*e + c*d*x^n)*(a + c*x^(2*n))^p, x], x] - Simp[d*e*(f^n/(c*d^2 + a*e^2)) I
nt[(f*x)^(m - n)*((a + c*x^(2*n))^(p + 1)/(d + e*x^n)), x], x] /; FreeQ[{a, c, d, e, f}, x] && EqQ[n2, 2*n] &&
IGtQ[n, 0] && LtQ[p, -1] && GtQ[m, 0]
-
Int[((f_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Sy
mbol] :> Int[ExpandIntegrand[(a + b*x^n + c*x^(2*n))^p, (f*x)^m*(d + e*x^n)^q, x], x] /; FreeQ[{a, b, c, d, e,
f, m, q}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && IGtQ[q, 0]
-
Int[((f_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^(n2_.))^(p_.)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Symbol] :> Int[Expan
dIntegrand[(a + c*x^(2*n))^p, (f*x)^m*(d + e*x^n)^q, x], x] /; FreeQ[{a, c, d, e, f, m, q}, x] && EqQ[n2, 2*n]
&& IGtQ[n, 0] && IGtQ[q, 0]
-
Int[(x_)^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Symbol] :>
-Subst[Int[(d + e/x^n)^q*((a + b/x^n + c/x^(2*n))^p/x^(m + 2)), x], x, 1/x] /; FreeQ[{a, b, c, d, e, p, q}, x]
&& EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && ILtQ[n, 0] && IntegerQ[m]
-
Int[(x_)^(m_.)*((a_) + (c_.)*(x_)^(n2_.))^(p_)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Symbol] :> -Subst[Int[(d + e/
x^n)^q*((a + c/x^(2*n))^p/x^(m + 2)), x], x, 1/x] /; FreeQ[{a, c, d, e, p, q}, x] && EqQ[n2, 2*n] && ILtQ[n, 0
] && IntegerQ[m]
-
Int[((f_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Sym
bol] :> With[{g = Denominator[m]}, Simp[-g/f Subst[Int[(d + e/(f^n*x^(g*n)))^q*((a + b/(f^n*x^(g*n)) + c/(f^
(2*n)*x^(2*g*n)))^p/x^(g*(m + 1) + 1)), x], x, 1/(f*x)^(1/g)], x]] /; FreeQ[{a, b, c, d, e, f, p, q}, x] && Eq
Q[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && ILtQ[n, 0] && FractionQ[m]
-
Int[((f_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^(n2_.))^(p_)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Symbol] :> With[{g =
Denominator[m]}, Simp[-g/f Subst[Int[(d + e/(f^n*x^(g*n)))^q*((a + c/(f^(2*n)*x^(2*g*n)))^p/x^(g*(m + 1) + 1
)), x], x, 1/(f*x)^(1/g)], x]] /; FreeQ[{a, c, d, e, f, p, q}, x] && EqQ[n2, 2*n] && ILtQ[n, 0] && FractionQ[m
]
-
Int[((f_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Symb
ol] :> Simp[(-f^IntPart[m])*(f*x)^FracPart[m]*(x^(-1))^FracPart[m] Subst[Int[(d + e/x^n)^q*((a + b/x^n + c/x
^(2*n))^p/x^(m + 2)), x], x, 1/x], x] /; FreeQ[{a, b, c, d, e, f, m, p, q}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*
a*c, 0] && ILtQ[n, 0] && !RationalQ[m]
-
Int[((f_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^(n2_.))^(p_)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Symbol] :> Simp[(-f^In
tPart[m])*(f*x)^FracPart[m]*(x^(-1))^FracPart[m] Subst[Int[(d + e/x^n)^q*((a + c/x^(2*n))^p/x^(m + 2)), x],
x, 1/x], x] /; FreeQ[{a, c, d, e, f, m, p, q}, x] && EqQ[n2, 2*n] && ILtQ[n, 0] && !RationalQ[m]
-
Int[(x_)^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Symbol] :>
With[{g = Denominator[n]}, Simp[g Subst[Int[x^(g*(m + 1) - 1)*(d + e*x^(g*n))^q*(a + b*x^(g*n) + c*x^(2*g*n)
)^p, x], x, x^(1/g)], x]] /; FreeQ[{a, b, c, d, e, m, p, q}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && Frac
tionQ[n]
-
Int[(x_)^(m_.)*((a_) + (c_.)*(x_)^(n2_.))^(p_)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Symbol] :> With[{g = Denomina
tor[n]}, Simp[g Subst[Int[x^(g*(m + 1) - 1)*(d + e*x^(g*n))^q*(a + c*x^(2*g*n))^p, x], x, x^(1/g)], x]] /; F
reeQ[{a, c, d, e, m, p, q}, x] && EqQ[n2, 2*n] && FractionQ[n]
-
Int[((f_)*(x_))^(m_)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Symbo
l] :> Simp[f^IntPart[m]*((f*x)^FracPart[m]/x^FracPart[m]) Int[x^m*(d + e*x^n)^q*(a + b*x^n + c*x^(2*n))^p, x
], x] /; FreeQ[{a, b, c, d, e, f, m, p, q}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && FractionQ[n]
-
Int[((f_)*(x_))^(m_)*((a_) + (c_.)*(x_)^(n2_.))^(p_)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Symbol] :> Simp[f^IntPa
rt[m]*((f*x)^FracPart[m]/x^FracPart[m]) Int[x^m*(d + e*x^n)^q*(a + c*x^(2*n))^p, x], x] /; FreeQ[{a, c, d, e
, f, m, p, q}, x] && EqQ[n2, 2*n] && FractionQ[n]
-
Int[(x_)^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Symbol] :>
Simp[1/(m + 1) Subst[Int[(d + e*x^Simplify[n/(m + 1)])^q*(a + b*x^Simplify[n/(m + 1)] + c*x^Simplify[2*(n/(m
+ 1))])^p, x], x, x^(m + 1)], x] /; FreeQ[{a, b, c, d, e, m, n, p, q}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c,
0] && !RationalQ[n] && IntegerQ[Simplify[n/(m + 1)]] && !IntegerQ[n]
-
Int[(x_)^(m_.)*((a_) + (c_.)*(x_)^(n2_.))^(p_)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Symbol] :> Simp[1/(m + 1) S
ubst[Int[(d + e*x^Simplify[n/(m + 1)])^q*(a + c*x^Simplify[2*(n/(m + 1))])^p, x], x, x^(m + 1)], x] /; FreeQ[{
a, c, d, e, m, n, p, q}, x] && EqQ[n2, 2*n] && !RationalQ[n] && IntegerQ[Simplify[n/(m + 1)]] && !IntegerQ[n
]
-
Int[((f_)*(x_))^(m_)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Symbo
l] :> Simp[f^IntPart[m]*((f*x)^FracPart[m]/x^FracPart[m]) Int[x^m*(d + e*x^n)^q*(a + b*x^n + c*x^(2*n))^p, x
], x] /; FreeQ[{a, b, c, d, e, f, m, p, q}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && !RationalQ[n] && Int
egerQ[Simplify[n/(m + 1)]] && !IntegerQ[n]
-
Int[((f_)*(x_))^(m_)*((a_) + (c_.)*(x_)^(n2_.))^(p_)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Symbol] :> Simp[f^IntPa
rt[m]*((f*x)^FracPart[m]/x^FracPart[m]) Int[x^m*(d + e*x^n)^q*(a + c*x^(2*n))^p, x], x] /; FreeQ[{a, c, d, e
, f, m, p, q}, x] && EqQ[n2, 2*n] && !RationalQ[n] && IntegerQ[Simplify[n/(m + 1)]] && !IntegerQ[n]
-
Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(n_))^(q_))/((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_)), x_Symbol]
:> With[{r = Rt[b^2 - 4*a*c, 2]}, Simp[2*(c/r) Int[(f*x)^m*((d + e*x^n)^q/(b - r + 2*c*x^n)), x], x] - Simp
[2*(c/r) Int[(f*x)^m*((d + e*x^n)^q/(b + r + 2*c*x^n)), x], x]] /; FreeQ[{a, b, c, d, e, f, m, n, q}, x] &&
EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && !RationalQ[n]
-
Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(n_))^(q_))/((a_) + (c_.)*(x_)^(n2_.)), x_Symbol] :> With[{r = Rt[(
-a)*c, 2]}, Simp[-c/(2*r) Int[(f*x)^m*((d + e*x^n)^q/(r - c*x^n)), x], x] - Simp[c/(2*r) Int[(f*x)^m*((d +
e*x^n)^q/(r + c*x^n)), x], x]] /; FreeQ[{a, c, d, e, f, m, n, q}, x] && EqQ[n2, 2*n] && !RationalQ[n]
-
Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(n_))*((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_))^(p_), x_Symbol] :>
Simp[(-(f*x)^(m + 1))*(a + b*x^n + c*x^(2*n))^(p + 1)*((d*(b^2 - 2*a*c) - a*b*e + (b*d - 2*a*e)*c*x^n)/(a*f*n
*(p + 1)*(b^2 - 4*a*c))), x] + Simp[1/(a*n*(p + 1)*(b^2 - 4*a*c)) Int[(f*x)^m*(a + b*x^n + c*x^(2*n))^(p + 1
)*Simp[d*(b^2*(m + n*(p + 1) + 1) - 2*a*c*(m + 2*n*(p + 1) + 1)) - a*b*e*(m + 1) + (m + n*(2*p + 3) + 1)*(b*d
- 2*a*e)*c*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && !R
ationalQ[n] && ILtQ[p + 1, 0]
-
Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(n_))*((a_) + (c_.)*(x_)^(n2_))^(p_), x_Symbol] :> Simp[(-(f*x)^(m +
1))*(a + c*x^(2*n))^(p + 1)*((d + e*x^n)/(2*a*f*n*(p + 1))), x] + Simp[1/(2*a*n*(p + 1)) Int[(f*x)^m*(a + c
*x^(2*n))^(p + 1)*Simp[d*(m + 2*n*(p + 1) + 1) + e*(m + n*(2*p + 3) + 1)*x^n, x], x], x] /; FreeQ[{a, c, d, e,
f, m, n}, x] && EqQ[n2, 2*n] && !RationalQ[n] && ILtQ[p + 1, 0]
-
Int[((f_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Sy
mbol] :> Int[ExpandIntegrand[(f*x)^m*(d + e*x^n)^q*(a + b*x^n + c*x^(2*n))^p, x], x] /; FreeQ[{a, b, c, d, e,
f, m, n, p, q}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && !RationalQ[n] && (IGtQ[p, 0] || IGtQ[q, 0])
-
Int[((f_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^(n2_.))^(p_.)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Symbol] :> Int[Expan
dIntegrand[(f*x)^m*(d + e*x^n)^q*(a + c*x^(2*n))^p, x], x] /; FreeQ[{a, c, d, e, f, m, n, p, q}, x] && EqQ[n2,
2*n] && !RationalQ[n] && (IGtQ[p, 0] || IGtQ[q, 0])
-
Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(n_))^(q_)*((a_) + (c_.)*(x_)^(n2_))^(p_), x_Symbol] :> Simp[(f*x)^m
/x^m Int[ExpandIntegrand[x^m*(a + c*x^(2*n))^p, (d/(d^2 - e^2*x^(2*n)) - e*(x^n/(d^2 - e^2*x^(2*n))))^(-q),
x], x], x] /; FreeQ[{a, c, d, e, f, m, n, p}, x] && EqQ[n2, 2*n] && !RationalQ[n] && !IntegerQ[p] && ILtQ[q,
0]
-
Int[((f_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Sy
mbol] :> Unintegrable[(f*x)^m*(d + e*x^n)^q*(a + b*x^n + c*x^(2*n))^p, x] /; FreeQ[{a, b, c, d, e, f, m, n, p,
q}, x] && EqQ[n2, 2*n]
-
Int[((f_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^(n2_.))^(p_.)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Symbol] :> Unintegra
ble[(f*x)^m*(d + e*x^n)^q*(a + c*x^(2*n))^p, x] /; FreeQ[{a, c, d, e, f, m, n, p, q}, x] && EqQ[n2, 2*n]
-
Int[(u_)^(m_.)*((a_) + (c_.)*(v_)^(n2_.) + (b_.)*(v_)^(n_))^(p_.)*((d_) + (e_.)*(v_)^(n_))^(q_.), x_Symbol] :>
Simp[u^m/(Coefficient[v, x, 1]*v^m) Subst[Int[x^m*(d + e*x^n)^q*(a + b*x^n + c*x^(2*n))^p, x], x, v], x] /;
FreeQ[{a, b, c, d, e, m, n, p, q}, x] && EqQ[n2, 2*n] && LinearPairQ[u, v, x] && NeQ[v, x]
-
Int[(u_)^(m_.)*((a_) + (c_.)*(v_)^(n2_.))^(p_.)*((d_) + (e_.)*(v_)^(n_))^(q_.), x_Symbol] :> Simp[u^m/(Coeffic
ient[v, x, 1]*v^m) Subst[Int[x^m*(d + e*x^n)^q*(a + c*x^(2*n))^p, x], x, v], x] /; FreeQ[{a, c, d, e, m, n,
p}, x] && EqQ[n2, 2*n] && LinearPairQ[u, v, x] && NeQ[v, x]
-
Int[(x_)^(m_.)*((d_) + (e_.)*(x_)^(mn_.))^(q_.)*((a_.) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.))^(p_.), x_Symbol
] :> Int[x^(m - n*q)*(e + d*x^n)^q*(a + b*x^n + c*x^(2*n))^p, x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && EqQ[
n2, 2*n] && EqQ[mn, -n] && IntegerQ[q] && (PosQ[n] || !IntegerQ[p])
-
Int[(x_)^(m_.)*((d_) + (e_.)*(x_)^(mn_.))^(q_.)*((a_) + (c_.)*(x_)^(n2_.))^(p_.), x_Symbol] :> Int[x^(m + mn*q
)*(e + d/x^mn)^q*(a + c*x^n2)^p, x] /; FreeQ[{a, c, d, e, m, mn, p}, x] && EqQ[n2, -2*mn] && IntegerQ[q] && (P
osQ[n2] || !IntegerQ[p])
-
Int[(x_)^(m_.)*((a_.) + (b_.)*(x_)^(mn_.) + (c_.)*(x_)^(mn2_.))^(p_.)*((d_) + (e_.)*(x_)^(n_.))^(q_.), x_Symbo
l] :> Int[x^(m - 2*n*p)*(d + e*x^n)^q*(c + b*x^n + a*x^(2*n))^p, x] /; FreeQ[{a, b, c, d, e, m, n, q}, x] && E
qQ[mn, -n] && EqQ[mn2, 2*mn] && IntegerQ[p]
-
Int[(x_)^(m_.)*((a_.) + (c_.)*(x_)^(mn2_.))^(p_.)*((d_) + (e_.)*(x_)^(n_.))^(q_.), x_Symbol] :> Int[x^(m - 2*n
*p)*(d + e*x^n)^q*(c + a*x^(2*n))^p, x] /; FreeQ[{a, c, d, e, m, n, q}, x] && EqQ[mn2, -2*n] && IntegerQ[p]
-
Int[(x_)^(m_.)*((d_) + (e_.)*(x_)^(mn_.))^(q_)*((a_.) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.))^(p_.), x_Symbol]
:> Simp[e^IntPart[q]*x^(n*FracPart[q])*((d + e/x^n)^FracPart[q]/(1 + d*(x^n/e))^FracPart[q]) Int[x^(m - n*q
)*(1 + d*(x^n/e))^q*(a + b*x^n + c*x^(2*n))^p, x], x] /; FreeQ[{a, b, c, d, e, m, n, p, q}, x] && EqQ[n2, 2*n]
&& EqQ[mn, -n] && !IntegerQ[p] && !IntegerQ[q] && PosQ[n]
-
Int[(x_)^(m_.)*((d_) + (e_.)*(x_)^(mn_.))^(q_)*((a_) + (c_.)*(x_)^(n2_.))^(p_.), x_Symbol] :> Simp[(e^IntPart[
q]*((d + e*x^mn)^FracPart[q]/(1 + d*(1/(x^mn*e)))^FracPart[q]))/x^(mn*FracPart[q]) Int[x^(m + mn*q)*(1 + d*(
1/(x^mn*e)))^q*(a + c*x^n2)^p, x], x] /; FreeQ[{a, c, d, e, m, mn, p, q}, x] && EqQ[n2, -2*mn] && !IntegerQ[p
] && !IntegerQ[q] && PosQ[n2]
-
Int[(x_)^(m_.)*((a_.) + (b_.)*(x_)^(mn_.) + (c_.)*(x_)^(mn2_.))^(p_)*((d_) + (e_.)*(x_)^(n_.))^(q_.), x_Symbol
] :> Simp[x^(2*n*FracPart[p])*((a + b/x^n + c/x^(2*n))^FracPart[p]/(c + b*x^n + a*x^(2*n))^FracPart[p]) Int[
x^(m - 2*n*p)*(d + e*x^n)^q*(c + b*x^n + a*x^(2*n))^p, x], x] /; FreeQ[{a, b, c, d, e, m, n, p, q}, x] && EqQ[
mn, -n] && EqQ[mn2, 2*mn] && !IntegerQ[p] && !IntegerQ[q] && PosQ[n]
-
Int[(x_)^(m_.)*((a_.) + (c_.)*(x_)^(mn2_.))^(p_)*((d_) + (e_.)*(x_)^(n_.))^(q_.), x_Symbol] :> Simp[x^(2*n*Fra
cPart[p])*((a + c/x^(2*n))^FracPart[p]/(c + a*x^(2*n))^FracPart[p]) Int[x^(m - 2*n*p)*(d + e*x^n)^q*(c + a*x
^(2*n))^p, x], x] /; FreeQ[{a, c, d, e, m, n, p, q}, x] && EqQ[mn2, -2*n] && !IntegerQ[p] && !IntegerQ[q] &&
PosQ[n]
-
Int[((f_)*(x_))^(m_)*((d_) + (e_.)*(x_)^(mn_.))^(q_.)*((a_.) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.))^(p_.), x_
Symbol] :> Simp[f^IntPart[m]*((f*x)^FracPart[m]/x^FracPart[m]) Int[x^m*(d + e*x^mn)^q*(a + b*x^n + c*x^(2*n)
)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p, q}, x] && EqQ[n2, 2*n] && EqQ[mn, -n]
-
Int[((f_)*(x_))^(m_)*((d_) + (e_.)*(x_)^(mn_.))^(q_.)*((a_) + (c_.)*(x_)^(n2_.))^(p_.), x_Symbol] :> Simp[f^In
tPart[m]*((f*x)^FracPart[m]/x^FracPart[m]) Int[x^m*(d + e*x^mn)^q*(a + c*x^n2)^p, x], x] /; FreeQ[{a, c, d,
e, f, m, mn, p, q}, x] && EqQ[n2, -2*mn]
-
Int[(x_)^(m_.)*((a_) + (c_.)*(x_)^(n_.) + (b_.)*(x_)^(mn_))^(p_.)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Symbol] :>
Int[x^(m - n*p)*(d + e*x^n)^q*(b + a*x^n + c*x^(2*n))^p, x] /; FreeQ[{a, b, c, d, e, m, n, q}, x] && EqQ[mn,
-n] && IntegerQ[p]
-
Int[(x_)^(m_.)*((a_) + (c_.)*(x_)^(n_.) + (b_.)*(x_)^(mn_))^(p_.)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Symbol] :>
Simp[x^(n*FracPart[p])*((a + b/x^n + c*x^n)^FracPart[p]/(b + a*x^n + c*x^(2*n))^FracPart[p]) Int[x^(m - n*p
)*(d + e*x^n)^q*(b + a*x^n + c*x^(2*n))^p, x], x] /; FreeQ[{a, b, c, d, e, m, n, p, q}, x] && EqQ[mn, -n] &&
!IntegerQ[p]
-
Int[((f_)*(x_))^(m_.)*((a_) + (c_.)*(x_)^(n_.) + (b_.)*(x_)^(mn_))^(p_.)*((d_) + (e_.)*(x_)^(n_))^(q_.), x_Sym
bol] :> Simp[f^IntPart[m]*((f*x)^FracPart[m]/x^FracPart[m]) Int[x^m*(d + e*x^n)^q*(a + b/x^n + c*x^n)^p, x],
x] /; FreeQ[{a, b, c, d, e, f, m, n, p, q}, x] && EqQ[mn, -n]
-
Int[((f_.)*(x_))^(m_.)*((d1_) + (e1_.)*(x_)^(non2_.))^(q_.)*((d2_) + (e2_.)*(x_)^(non2_.))^(q_.)*((a_.) + (b_.
)*(x_)^(n_) + (c_.)*(x_)^(n2_))^(p_.), x_Symbol] :> Int[(f*x)^m*(d1*d2 + e1*e2*x^n)^q*(a + b*x^n + c*x^(2*n))^
p, x] /; FreeQ[{a, b, c, d1, e1, d2, e2, f, n, p, q}, x] && EqQ[n2, 2*n] && EqQ[non2, n/2] && EqQ[d2*e1 + d1*e
2, 0] && (IntegerQ[q] || (GtQ[d1, 0] && GtQ[d2, 0]))
-
Int[((f_.)*(x_))^(m_.)*((d1_) + (e1_.)*(x_)^(non2_.))^(q_.)*((d2_) + (e2_.)*(x_)^(non2_.))^(q_.)*((a_.) + (b_.
)*(x_)^(n_) + (c_.)*(x_)^(n2_))^(p_.), x_Symbol] :> Simp[(d1 + e1*x^(n/2))^FracPart[q]*((d2 + e2*x^(n/2))^Frac
Part[q]/(d1*d2 + e1*e2*x^n)^FracPart[q]) Int[(f*x)^m*(d1*d2 + e1*e2*x^n)^q*(a + b*x^n + c*x^(2*n))^p, x], x]
/; FreeQ[{a, b, c, d1, e1, d2, e2, f, n, p, q}, x] && EqQ[n2, 2*n] && EqQ[non2, n/2] && EqQ[d2*e1 + d1*e2, 0]
-
Int[((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[(a*x^j + b*x^n)^(p + 1)/(b*(n - j)*(p + 1)*x
^(n - 1)), x] /; FreeQ[{a, b, j, n, p}, x] && !IntegerQ[p] && NeQ[n, j] && EqQ[j*p - n + j + 1, 0]
-
Int[((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[-(a*x^j + b*x^n)^(p + 1)/(a*(n - j)*(p + 1)*
x^(j - 1)), x] + Simp[(n*p + n - j + 1)/(a*(n - j)*(p + 1)) Int[(a*x^j + b*x^n)^(p + 1)/x^j, x], x] /; FreeQ
[{a, b, j, n}, x] && !IntegerQ[p] && NeQ[n, j] && ILtQ[Simplify[(n*p + n - j + 1)/(n - j)], 0] && LtQ[p, -1]
-
Int[((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[(a*x^j + b*x^n)^(p + 1)/(a*(j*p + 1)*x^(j -
1)), x] - Simp[b*((n*p + n - j + 1)/(a*(j*p + 1))) Int[x^(n - j)*(a*x^j + b*x^n)^p, x], x] /; FreeQ[{a, b, j
, n, p}, x] && !IntegerQ[p] && NeQ[n, j] && ILtQ[Simplify[(n*p + n - j + 1)/(n - j)], 0] && NeQ[j*p + 1, 0]
-
Int[((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[x*((a*x^j + b*x^n)^p/(j*p + 1)), x] - Simp[b
*(n - j)*(p/(j*p + 1)) Int[x^n*(a*x^j + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b}, x] && !IntegerQ[p] && LtQ[0
, j, n] && GtQ[p, 0] && LtQ[j*p + 1, 0]
-
Int[((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[x*((a*x^j + b*x^n)^p/(n*p + 1)), x] + Simp[a
*(n - j)*(p/(n*p + 1)) Int[x^j*(a*x^j + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b}, x] && !IntegerQ[p] && LtQ[0
, j, n] && GtQ[p, 0] && NeQ[n*p + 1, 0]
-
Int[((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[(a*x^j + b*x^n)^(p + 1)/(b*(n - j)*(p + 1)*x
^(n - 1)), x] - Simp[(j*p - n + j + 1)/(b*(n - j)*(p + 1)) Int[(a*x^j + b*x^n)^(p + 1)/x^n, x], x] /; FreeQ[
{a, b}, x] && !IntegerQ[p] && LtQ[0, j, n] && LtQ[p, -1] && GtQ[j*p + 1, n - j]
-
Int[((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[-(a*x^j + b*x^n)^(p + 1)/(a*(n - j)*(p + 1)*
x^(j - 1)), x] + Simp[(n*p + n - j + 1)/(a*(n - j)*(p + 1)) Int[(a*x^j + b*x^n)^(p + 1)/x^j, x], x] /; FreeQ
[{a, b}, x] && !IntegerQ[p] && LtQ[0, j, n] && LtQ[p, -1]
-
Int[((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[x*((a*x^j + b*x^n)^p/(p*(n - j))), x] + Simp
[a Int[x^j*(a*x^j + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b, j, n}, x] && IGtQ[p + 1/2, 0] && NeQ[n, j] && EqQ
[Simplify[j*p + 1], 0]
-
Int[1/Sqrt[(a_.)*(x_)^2 + (b_.)*(x_)^(n_.)], x_Symbol] :> Simp[2/(2 - n) Subst[Int[1/(1 - a*x^2), x], x, x/S
qrt[a*x^2 + b*x^n]], x] /; FreeQ[{a, b, n}, x] && NeQ[n, 2]
-
Int[((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[-(a*x^j + b*x^n)^(p + 1)/(a*(n - j)*(p + 1)*
x^(j - 1)), x] + Simp[(n*p + n - j + 1)/(a*(n - j)*(p + 1)) Int[(a*x^j + b*x^n)^(p + 1)/x^j, x], x] /; FreeQ
[{a, b, j, n}, x] && ILtQ[p + 1/2, 0] && NeQ[n, j] && EqQ[Simplify[j*p + 1], 0]
-
Int[1/Sqrt[(a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.)], x_Symbol] :> Simp[-2*(Sqrt[a*x^j + b*x^n]/(b*(n - 2)*x^(n - 1
))), x] - Simp[a*((2*n - j - 2)/(b*(n - 2))) Int[1/(x^(n - j)*Sqrt[a*x^j + b*x^n]), x], x] /; FreeQ[{a, b},
x] && LtQ[2*(n - 1), j, n]
-
Int[((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[(a*x^j + b*x^n)^FracPart[p]/(x^(j*FracPart[p
])*(a + b*x^(n - j))^FracPart[p]) Int[x^(j*p)*(a + b*x^(n - j))^p, x], x] /; FreeQ[{a, b, j, n, p}, x] && !
IntegerQ[p] && NeQ[n, j] && PosQ[n - j]
-
Int[((a_.)*(u_)^(j_.) + (b_.)*(u_)^(n_.))^(p_), x_Symbol] :> Simp[1/Coefficient[u, x, 1] Subst[Int[(a*x^j +
b*x^n)^p, x], x, u], x] /; FreeQ[{a, b, j, n, p}, x] && LinearQ[u, x] && NeQ[u, x]
-
Int[(x_)^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[1/n Subst[Int[(a*x^Simplify[j/n]
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, j, m, n, p}, x] && !IntegerQ[p] && NeQ[n, j] && IntegerQ[Simplify[
j/n]] && EqQ[Simplify[m - n + 1], 0]
-
Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[(-c^(j - 1))*(c*x)^(m - j
+ 1)*((a*x^j + b*x^n)^(p + 1)/(a*(n - j)*(p + 1))), x] /; FreeQ[{a, b, c, j, m, n, p}, x] && !IntegerQ[p] &&
NeQ[n, j] && EqQ[m + n*p + n - j + 1, 0] && (IntegerQ[j] || GtQ[c, 0])
-
Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[(-c^(j - 1))*(c*x)^(m - j
+ 1)*((a*x^j + b*x^n)^(p + 1)/(a*(n - j)*(p + 1))), x] + Simp[c^j*((m + n*p + n - j + 1)/(a*(n - j)*(p + 1)))
Int[(c*x)^(m - j)*(a*x^j + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b, c, j, m, n}, x] && !IntegerQ[p] && NeQ[n
, j] && ILtQ[Simplify[(m + n*p + n - j + 1)/(n - j)], 0] && LtQ[p, -1] && (IntegerQ[j] || GtQ[c, 0])
-
Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[c^(j - 1)*(c*x)^(m - j +
1)*((a*x^j + b*x^n)^(p + 1)/(a*(m + j*p + 1))), x] - Simp[b*((m + n*p + n - j + 1)/(a*c^(n - j)*(m + j*p + 1))
) Int[(c*x)^(m + n - j)*(a*x^j + b*x^n)^p, x], x] /; FreeQ[{a, b, c, j, m, n, p}, x] && !IntegerQ[p] && NeQ
[n, j] && ILtQ[Simplify[(m + n*p + n - j + 1)/(n - j)], 0] && NeQ[m + j*p + 1, 0] && (IntegersQ[j, n] || GtQ[c
, 0])
-
Int[((c_)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[c^IntPart[m]*((c*x)^FracPa
rt[m]/x^FracPart[m]) Int[x^m*(a*x^j + b*x^n)^p, x], x] /; FreeQ[{a, b, c, j, m, n, p}, x] && !IntegerQ[p] &
& NeQ[n, j] && ILtQ[Simplify[(m + n*p + n - j + 1)/(n - j)], 0]
-
Int[(x_)^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[1/n Subst[Int[x^(Simplify[(m + 1
)/n] - 1)*(a*x^Simplify[j/n] + b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, j, m, n, p}, x] && !IntegerQ[p] && NeQ
[n, j] && IntegerQ[Simplify[j/n]] && IntegerQ[Simplify[(m + 1)/n]] && NeQ[n^2, 1]
-
Int[((c_)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^IntPart[m]*((c*x)^FracPar
t[m]/x^FracPart[m]) Int[x^m*(a*x^j + b*x^n)^p, x], x] /; FreeQ[{a, b, c, j, m, n, p}, x] && !IntegerQ[p] &&
NeQ[n, j] && IntegerQ[Simplify[j/n]] && IntegerQ[Simplify[(m + 1)/n]] && NeQ[n^2, 1]
-
Int[((c_.)*(x_))^(m_)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a*x^j + b*
x^n)^p/(c*(m + j*p + 1))), x] - Simp[b*p*((n - j)/(c^n*(m + j*p + 1))) Int[(c*x)^(m + n)*(a*x^j + b*x^n)^(p
- 1), x], x] /; FreeQ[{a, b, c}, x] && !IntegerQ[p] && LtQ[0, j, n] && (IntegersQ[j, n] || GtQ[c, 0]) && GtQ[
p, 0] && LtQ[m + j*p + 1, 0]
-
Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a*x^j + b
*x^n)^p/(c*(m + n*p + 1))), x] + Simp[a*(n - j)*(p/(c^j*(m + n*p + 1))) Int[(c*x)^(m + j)*(a*x^j + b*x^n)^(p
- 1), x], x] /; FreeQ[{a, b, c, m}, x] && !IntegerQ[p] && LtQ[0, j, n] && (IntegersQ[j, n] || GtQ[c, 0]) &&
GtQ[p, 0] && NeQ[m + n*p + 1, 0]
-
Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n +
1)*((a*x^j + b*x^n)^(p + 1)/(b*(n - j)*(p + 1))), x] - Simp[c^n*((m + j*p - n + j + 1)/(b*(n - j)*(p + 1)))
Int[(c*x)^(m - n)*(a*x^j + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b, c}, x] && !IntegerQ[p] && LtQ[0, j, n] && (
IntegersQ[j, n] || GtQ[c, 0]) && LtQ[p, -1] && GtQ[m + j*p + 1, n - j]
-
Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[(-c^(j - 1))*(c*x)^(m - j
+ 1)*((a*x^j + b*x^n)^(p + 1)/(a*(n - j)*(p + 1))), x] + Simp[c^j*((m + n*p + n - j + 1)/(a*(n - j)*(p + 1)))
Int[(c*x)^(m - j)*(a*x^j + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b, c, m}, x] && !IntegerQ[p] && LtQ[0, j, n
] && (IntegersQ[j, n] || GtQ[c, 0]) && LtQ[p, -1]
-
Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[c^(n - 1)*(c*x)^(m - n +
1)*((a*x^j + b*x^n)^(p + 1)/(b*(m + n*p + 1))), x] - Simp[a*c^(n - j)*((m + j*p - n + j + 1)/(b*(m + n*p + 1))
) Int[(c*x)^(m - (n - j))*(a*x^j + b*x^n)^p, x], x] /; FreeQ[{a, b, c, m, p}, x] && !IntegerQ[p] && LtQ[0,
j, n] && (IntegersQ[j, n] || GtQ[c, 0]) && GtQ[m + j*p - n + j + 1, 0] && NeQ[m + n*p + 1, 0]
-
Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[c^(j - 1)*(c*x)^(m - j +
1)*((a*x^j + b*x^n)^(p + 1)/(a*(m + j*p + 1))), x] - Simp[b*((m + n*p + n - j + 1)/(a*c^(n - j)*(m + j*p + 1))
) Int[(c*x)^(m + n - j)*(a*x^j + b*x^n)^p, x], x] /; FreeQ[{a, b, c, m, p}, x] && !IntegerQ[p] && LtQ[0, j,
n] && (IntegersQ[j, n] || GtQ[c, 0]) && LtQ[m + j*p + 1, 0]
-
Int[(x_)^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[1/(m + 1) Subst[Int[(a*x^Simplif
y[j/(m + 1)] + b*x^Simplify[n/(m + 1)])^p, x], x, x^(m + 1)], x] /; FreeQ[{a, b, j, m, n, p}, x] && !IntegerQ
[p] && NeQ[n, j] && IntegerQ[Simplify[j/n]] && NeQ[m, -1] && IntegerQ[Simplify[n/(m + 1)]] && !IntegerQ[n]
-
Int[((c_)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^IntPart[m]*((c*x)^FracPar
t[m]/x^FracPart[m]) Int[x^m*(a*x^j + b*x^n)^p, x], x] /; FreeQ[{a, b, c, j, m, n, p}, x] && !IntegerQ[p] &&
NeQ[n, j] && IntegerQ[Simplify[j/n]] && NeQ[m, -1] && IntegerQ[Simplify[n/(m + 1)]] && !IntegerQ[n]
-
Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a*x^j + b
*x^n)^p/(c*p*(n - j))), x] + Simp[a/c^j Int[(c*x)^(m + j)*(a*x^j + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b, c,
j, m, n}, x] && IGtQ[p + 1/2, 0] && NeQ[n, j] && EqQ[Simplify[m + j*p + 1], 0] && (IntegerQ[j] || GtQ[c, 0])
-
Int[(x_)^(m_.)/Sqrt[(a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.)], x_Symbol] :> Simp[-2/(n - j) Subst[Int[1/(1 - a*x^
2), x], x, x^(j/2)/Sqrt[a*x^j + b*x^n]], x] /; FreeQ[{a, b, j, n}, x] && EqQ[m, j/2 - 1] && NeQ[n, j]
-
Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[(-c^(j - 1))*(c*x)^(m - j
+ 1)*((a*x^j + b*x^n)^(p + 1)/(a*(n - j)*(p + 1))), x] + Simp[c^j*((m + n*p + n - j + 1)/(a*(n - j)*(p + 1)))
Int[(c*x)^(m - j)*(a*x^j + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b, c, j, m, n}, x] && ILtQ[p + 1/2, 0] && Ne
Q[n, j] && EqQ[Simplify[m + j*p + 1], 0] && (IntegerQ[j] || GtQ[c, 0])
-
Int[((c_)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^IntPart[m]*((c*x)^FracPar
t[m]/x^FracPart[m]) Int[x^m*(a*x^j + b*x^n)^p, x], x] /; FreeQ[{a, b, c, j, m, n, p}, x] && IntegerQ[p + 1/2
] && NeQ[n, j] && EqQ[Simplify[m + j*p + 1], 0]
-
Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[c^IntPart[m]*(c*x)^FracPa
rt[m]*((a*x^j + b*x^n)^FracPart[p]/(x^(FracPart[m] + j*FracPart[p])*(a + b*x^(n - j))^FracPart[p])) Int[x^(m
+ j*p)*(a + b*x^(n - j))^p, x], x] /; FreeQ[{a, b, c, j, m, n, p}, x] && !IntegerQ[p] && NeQ[n, j] && PosQ[n
- j]
-
Int[(u_)^(m_.)*((a_.)*(v_)^(j_.) + (b_.)*(v_)^(n_.))^(p_.), x_Symbol] :> Simp[u^m/(Coefficient[v, x, 1]*v^m)
Subst[Int[x^m*(a*x^j + b*x^n)^p, x], x, v], x] /; FreeQ[{a, b, j, m, n, p}, x] && LinearPairQ[u, v, x]
-
Int[(x_)^(m_.)*((b_.)*(x_)^(k_.) + (a_.)*(x_)^(j_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Simp[1/n
Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a*x^Simplify[j/n] + b*x^Simplify[k/n])^p*(c + d*x)^q, x], x, x^n], x
] /; FreeQ[{a, b, c, d, j, k, m, n, p, q}, x] && !IntegerQ[p] && NeQ[k, j] && IntegerQ[Simplify[j/n]] && Inte
gerQ[Simplify[k/n]] && IntegerQ[Simplify[(m + 1)/n]] && NeQ[n^2, 1]
-
Int[((e_)*(x_))^(m_.)*((c_) + (d_.)*(x_)^(n_.))^(q_.)*((b_.)*(x_)^(k_.) + (a_.)*(x_)^(j_))^(p_), x_Symbol] :>
Simp[e^IntPart[m]*((e*x)^FracPart[m]/x^FracPart[m]) Int[x^m*(a*x^j + b*x^k)^p*(c + d*x^n)^q, x], x] /; FreeQ
[{a, b, c, d, e, j, k, m, n, p, q}, x] && !IntegerQ[p] && NeQ[k, j] && IntegerQ[Simplify[j/n]] && IntegerQ[Si
mplify[k/n]] && IntegerQ[Simplify[(m + 1)/n]] && NeQ[n^2, 1]
-
Int[((e_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(jn_.))^(p_)*((c_) + (d_.)*(x_)^(n_.)), x_Symbol] :> Sim
p[c*e^(j - 1)*(e*x)^(m - j + 1)*((a*x^j + b*x^(j + n))^(p + 1)/(a*(m + j*p + 1))), x] /; FreeQ[{a, b, c, d, e,
j, m, n, p}, x] && EqQ[jn, j + n] && !IntegerQ[p] && NeQ[b*c - a*d, 0] && EqQ[a*d*(m + j*p + 1) - b*c*(m + n
+ p*(j + n) + 1), 0] && (GtQ[e, 0] || IntegersQ[j]) && NeQ[m + j*p + 1, 0]
-
Int[((e_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(jn_.))^(p_)*((c_) + (d_.)*(x_)^(n_.)), x_Symbol] :> Sim
p[(-e^(j - 1))*(b*c - a*d)*(e*x)^(m - j + 1)*((a*x^j + b*x^(j + n))^(p + 1)/(a*b*n*(p + 1))), x] - Simp[e^j*((
a*d*(m + j*p + 1) - b*c*(m + n + p*(j + n) + 1))/(a*b*n*(p + 1))) Int[(e*x)^(m - j)*(a*x^j + b*x^(j + n))^(p
+ 1), x], x] /; FreeQ[{a, b, c, d, e, j, m, n}, x] && EqQ[jn, j + n] && !IntegerQ[p] && NeQ[b*c - a*d, 0] &&
LtQ[p, -1] && GtQ[j, 0] && LeQ[j, m] && (GtQ[e, 0] || IntegerQ[j])
-
Int[((e_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(jn_.))^(p_)*((c_) + (d_.)*(x_)^(n_.)), x_Symbol] :> Sim
p[c*e^(j - 1)*(e*x)^(m - j + 1)*((a*x^j + b*x^(j + n))^(p + 1)/(a*(m + j*p + 1))), x] + Simp[(a*d*(m + j*p + 1
) - b*c*(m + n + p*(j + n) + 1))/(a*e^n*(m + j*p + 1)) Int[(e*x)^(m + n)*(a*x^j + b*x^(j + n))^p, x], x] /;
FreeQ[{a, b, c, d, e, j, p}, x] && EqQ[jn, j + n] && !IntegerQ[p] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && (LtQ[m
+ j*p, -1] || (IntegersQ[m - 1/2, p - 1/2] && LtQ[p, 0] && LtQ[m, (-n)*p - 1])) && (GtQ[e, 0] || IntegersQ[j,
n]) && NeQ[m + j*p + 1, 0] && NeQ[m - n + j*p + 1, 0]
-
Int[((e_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(jn_.))^(p_)*((c_) + (d_.)*(x_)^(n_.)), x_Symbol] :> Sim
p[d*e^(j - 1)*(e*x)^(m - j + 1)*((a*x^j + b*x^(j + n))^(p + 1)/(b*(m + n + p*(j + n) + 1))), x] - Simp[(a*d*(m
+ j*p + 1) - b*c*(m + n + p*(j + n) + 1))/(b*(m + n + p*(j + n) + 1)) Int[(e*x)^m*(a*x^j + b*x^(j + n))^p,
x], x] /; FreeQ[{a, b, c, d, e, j, m, n, p}, x] && EqQ[jn, j + n] && !IntegerQ[p] && NeQ[b*c - a*d, 0] && NeQ
[m + n + p*(j + n) + 1, 0] && (GtQ[e, 0] || IntegerQ[j])
-
Int[(x_)^(m_.)*((c_) + (d_.)*(x_)^(n_.))^(q_.)*((b_.)*(x_)^(k_.) + (a_.)*(x_)^(j_))^(p_), x_Symbol] :> Simp[1/
(m + 1) Subst[Int[(a*x^Simplify[j/(m + 1)] + b*x^Simplify[k/(m + 1)])^p*(c + d*x^Simplify[n/(m + 1)])^q, x],
x, x^(m + 1)], x] /; FreeQ[{a, b, c, d, j, k, m, n, p, q}, x] && !IntegerQ[p] && NeQ[k, j] && IntegerQ[Simpl
ify[j/n]] && IntegerQ[Simplify[k/n]] && NeQ[m, -1] && IntegerQ[Simplify[n/(m + 1)]] && !IntegerQ[n]
-
Int[((e_)*(x_))^(m_.)*((c_) + (d_.)*(x_)^(n_.))^(q_.)*((b_.)*(x_)^(k_.) + (a_.)*(x_)^(j_))^(p_), x_Symbol] :>
Simp[e^IntPart[m]*((e*x)^FracPart[m]/x^FracPart[m]) Int[x^m*(a*x^j + b*x^k)^p*(c + d*x^n)^q, x], x] /; FreeQ
[{a, b, c, d, e, j, k, m, n, p, q}, x] && !IntegerQ[p] && NeQ[k, j] && IntegerQ[Simplify[j/n]] && IntegerQ[Si
mplify[k/n]] && NeQ[m, -1] && IntegerQ[Simplify[n/(m + 1)]] && !IntegerQ[n]
-
Int[((e_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(jn_.))^(p_)*((c_) + (d_.)*(x_)^(n_.))^(q_.), x_Symbol]
:> Simp[e^IntPart[m]*(e*x)^FracPart[m]*((a*x^j + b*x^(j + n))^FracPart[p]/(x^(FracPart[m] + j*FracPart[p])*(a
+ b*x^n)^FracPart[p])) Int[x^(m + j*p)*(a + b*x^n)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a, b, c, d, e, j, m, n,
p, q}, x] && EqQ[jn, j + n] && !IntegerQ[p] && NeQ[b*c - a*d, 0] && !(EqQ[n, 1] && EqQ[j, 1])
-
Int[((b_.)*(x_)^(n_.) + (a_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.))^(p_), x_Symbol] :> Int[x^(p*q)*(a + b*x^(n - q) +
c*x^(2*(n - q)))^p, x] /; FreeQ[{a, b, c, n, q}, x] && EqQ[r, 2*n - q] && PosQ[n - q] && IntegerQ[p]
-
Int[Sqrt[(b_.)*(x_)^(n_.) + (a_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.)], x_Symbol] :> Simp[Sqrt[a*x^q + b*x^n + c*x^(
2*n - q)]/(x^(q/2)*Sqrt[a + b*x^(n - q) + c*x^(2*(n - q))]) Int[x^(q/2)*Sqrt[a + b*x^(n - q) + c*x^(2*(n - q
))], x], x] /; FreeQ[{a, b, c, n, q}, x] && EqQ[r, 2*n - q] && PosQ[n - q]
-
Int[1/Sqrt[(a_.)*(x_)^2 + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(r_.)], x_Symbol] :> Simp[-2/(n - 2) Subst[Int[1/(4*
a - x^2), x], x, x*((2*a + b*x^(n - 2))/Sqrt[a*x^2 + b*x^n + c*x^r])], x] /; FreeQ[{a, b, c, n, r}, x] && EqQ[
r, 2*n - 2] && PosQ[n - 2] && NeQ[b^2 - 4*a*c, 0]
-
Int[1/Sqrt[(b_.)*(x_)^(n_.) + (a_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.)], x_Symbol] :> Simp[x^(q/2)*(Sqrt[a + b*x^(n
- q) + c*x^(2*(n - q))]/Sqrt[a*x^q + b*x^n + c*x^(2*n - q)]) Int[1/(x^(q/2)*Sqrt[a + b*x^(n - q) + c*x^(2*(
n - q))]), x], x] /; FreeQ[{a, b, c, n, q}, x] && EqQ[r, 2*n - q] && PosQ[n - q]
-
Int[((b_.)*(x_)^(n_.) + (a_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.))^(p_), x_Symbol] :> Simp[x*((a*x^q + b*x^n + c*x^(
2*n - q))^p/(p*(2*n - q) + 1)), x] + Simp[(n - q)*(p/(p*(2*n - q) + 1)) Int[x^q*(2*a + b*x^(n - q))*(a*x^q +
b*x^n + c*x^(2*n - q))^(p - 1), x], x] /; FreeQ[{a, b, c, n, q}, x] && EqQ[r, 2*n - q] && PosQ[n - q] && !In
tegerQ[p] && NeQ[b^2 - 4*a*c, 0] && GtQ[p, 0] && NeQ[p*(2*n - q) + 1, 0]
-
Int[((b_.)*(x_)^(n_.) + (a_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.))^(p_), x_Symbol] :> Simp[(-x^(-q + 1))*(b^2 - 2*a*
c + b*c*x^(n - q))*((a*x^q + b*x^n + c*x^(2*n - q))^(p + 1)/(a*(n - q)*(p + 1)*(b^2 - 4*a*c))), x] + Simp[1/(a
*(n - q)*(p + 1)*(b^2 - 4*a*c)) Int[(((p*q + 1)*(b^2 - 2*a*c) + (n - q)*(p + 1)*(b^2 - 4*a*c) + b*c*(p*q + (
n - q)*(2*p + 3) + 1)*x^(n - q))*(a*x^q + b*x^n + c*x^(2*n - q))^(p + 1))/x^q, x], x] /; FreeQ[{a, b, c, n, q}
, x] && EqQ[r, 2*n - q] && PosQ[n - q] && !IntegerQ[p] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1]
-
Int[((b_.)*(x_)^(n_.) + (a_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.))^(p_), x_Symbol] :> Simp[(a*x^q + b*x^n + c*x^(2*n
- q))^p/(x^(p*q)*(a + b*x^(n - q) + c*x^(2*(n - q)))^p) Int[x^(p*q)*(a + b*x^(n - q) + c*x^(2*(n - q)))^p,
x], x] /; FreeQ[{a, b, c, n, p, q}, x] && EqQ[r, 2*n - q] && PosQ[n - q] && !IntegerQ[p]
-
Int[((b_.)*(x_)^(n_.) + (a_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.))^(p_), x_Symbol] :> Unintegrable[(b*x^n + c*x^(2*n
- q) + a*x^q)^p, x] /; FreeQ[{a, b, c, n, p, q}, x] && EqQ[r, 2*n - q]
-
Int[((b_.)*(u_)^(n_.) + (a_.)*(u_)^(q_.) + (c_.)*(u_)^(r_.))^(p_), x_Symbol] :> Simp[1/Coefficient[u, x, 1]
Subst[Int[(a*x^q + b*x^n + c*x^(2*n - q))^p, x], x, u], x] /; FreeQ[{a, b, c, n, p, q}, x] && EqQ[r, 2*n - q]
&& LinearQ[u, x] && NeQ[u, x]
-
Int[(x_)^(m_.)*((b_.)*(x_)^(n_.) + (a_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.))^(p_.), x_Symbol] :> Int[x^m*((a + b +
c)*x^n)^p, x] /; FreeQ[{a, b, c, m, n, p}, x] && EqQ[q, n] && EqQ[r, n]
-
Int[(x_)^(m_.)*((b_.)*(x_)^(n_.) + (a_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.))^(p_.), x_Symbol] :> Int[x^(m + p*q)*(a
+ b*x^(n - q) + c*x^(2*(n - q)))^p, x] /; FreeQ[{a, b, c, m, n, q}, x] && EqQ[r, 2*n - q] && IntegerQ[p] && P
osQ[n - q]
-
Int[(x_)^(m_.)/Sqrt[(b_.)*(x_)^(n_.) + (a_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.)], x_Symbol] :> Simp[-2/(n - q) Su
bst[Int[1/(4*a - x^2), x], x, x^(m + 1)*((2*a + b*x^(n - q))/Sqrt[a*x^q + b*x^n + c*x^r])], x] /; FreeQ[{a, b,
c, m, n, q, r}, x] && EqQ[r, 2*n - q] && PosQ[n - q] && NeQ[b^2 - 4*a*c, 0] && EqQ[m, q/2 - 1]
-
Int[(x_)^(m_.)/Sqrt[(b_.)*(x_)^(n_.) + (a_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.)], x_Symbol] :> Simp[x^(q/2)*(Sqrt[a
+ b*x^(n - q) + c*x^(2*(n - q))]/Sqrt[a*x^q + b*x^n + c*x^(2*n - q)]) Int[x^(m - q/2)/Sqrt[a + b*x^(n - q)
+ c*x^(2*(n - q))], x], x] /; FreeQ[{a, b, c, m, n, q}, x] && EqQ[r, 2*n - q] && PosQ[n - q] && ((EqQ[m, 1] &&
EqQ[n, 3] && EqQ[q, 2]) || ((EqQ[m + 1/2] || EqQ[m, 3/2] || EqQ[m, 1/2] || EqQ[m, 5/2]) && EqQ[n, 3] && EqQ[q
, 1]))
-
Int[(x_)^(m_.)/((b_.)*(x_)^(n_.) + (a_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.))^(3/2), x_Symbol] :> Simp[-2*x^((n - 1)
/2)*((b + 2*c*x)/((b^2 - 4*a*c)*Sqrt[a*x^(n - 1) + b*x^n + c*x^(n + 1)])), x] /; FreeQ[{a, b, c, n}, x] && EqQ
[m, 3*((n - 1)/2)] && EqQ[q, n - 1] && EqQ[r, n + 1] && NeQ[b^2 - 4*a*c, 0]
-
Int[(x_)^(m_.)/((b_.)*(x_)^(n_.) + (a_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.))^(3/2), x_Symbol] :> Simp[x^((n - 1)/2)
*((4*a + 2*b*x)/((b^2 - 4*a*c)*Sqrt[a*x^(n - 1) + b*x^n + c*x^(n + 1)])), x] /; FreeQ[{a, b, c, n}, x] && EqQ[
m, (3*n - 1)/2] && EqQ[q, n - 1] && EqQ[r, n + 1] && NeQ[b^2 - 4*a*c, 0]
-
Int[(x_)^(m_.)*((b_.)*(x_)^(n_.) + (a_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.))^(p_), x_Symbol] :> Simp[x^(m - n)*((a*
x^(n - 1) + b*x^n + c*x^(n + 1))^(p + 1)/(2*c*(p + 1))), x] - Simp[b/(2*c) Int[x^(m - 1)*(a*x^(n - 1) + b*x^
n + c*x^(n + 1))^p, x], x] /; FreeQ[{a, b, c}, x] && EqQ[r, 2*n - q] && PosQ[n - q] && !IntegerQ[p] && NeQ[b^
2 - 4*a*c, 0] && IGtQ[n, 0] && RationalQ[m, p, q] && EqQ[m + p*(n - 1) - 1, 0]
-
Int[(x_)^(m_.)*((b_.)*(x_)^(n_.) + (a_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.))^(p_), x_Symbol] :> Simp[x^(m - n + q +
1)*(b + 2*c*x^(n - q))*((a*x^q + b*x^n + c*x^(2*n - q))^p/(2*c*(n - q)*(2*p + 1))), x] - Simp[p*((b^2 - 4*a*c
)/(2*c*(2*p + 1))) Int[x^(m + q)*(a*x^q + b*x^n + c*x^(2*n - q))^(p - 1), x], x] /; FreeQ[{a, b, c}, x] && E
qQ[r, 2*n - q] && PosQ[n - q] && !IntegerQ[p] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && GtQ[p, 0] && RationalQ[
m, q] && EqQ[m + p*q + 1, n - q]
-
Int[(x_)^(m_.)*((b_.)*(x_)^(n_.) + (a_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.))^(p_), x_Symbol] :> Simp[x^(m - n + q +
1)*(b*(n - q)*p + c*(m + p*q + (n - q)*(2*p - 1) + 1)*x^(n - q))*((a*x^q + b*x^n + c*x^(2*n - q))^p/(c*(m + p
*(2*n - q) + 1)*(m + p*q + (n - q)*(2*p - 1) + 1))), x] + Simp[(n - q)*(p/(c*(m + p*(2*n - q) + 1)*(m + p*q +
(n - q)*(2*p - 1) + 1))) Int[x^(m - (n - 2*q))*Simp[(-a)*b*(m + p*q - n + q + 1) + (2*a*c*(m + p*q + (n - q)
*(2*p - 1) + 1) - b^2*(m + p*q + (n - q)*(p - 1) + 1))*x^(n - q), x]*(a*x^q + b*x^n + c*x^(2*n - q))^(p - 1),
x], x] /; FreeQ[{a, b, c}, x] && EqQ[r, 2*n - q] && PosQ[n - q] && !IntegerQ[p] && NeQ[b^2 - 4*a*c, 0] && IGt
Q[n, 0] && GtQ[p, 0] && RationalQ[m, q] && GtQ[m + p*q + 1, n - q] && NeQ[m + p*(2*n - q) + 1, 0] && NeQ[m + p
*q + (n - q)*(2*p - 1) + 1, 0]
-
Int[(x_)^(m_.)*((b_.)*(x_)^(n_.) + (a_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.))^(p_), x_Symbol] :> Simp[x^(m + 1)*((a*
x^q + b*x^n + c*x^(2*n - q))^p/(m + p*q + 1)), x] - Simp[(n - q)*(p/(m + p*q + 1)) Int[x^(m + n)*(b + 2*c*x^
(n - q))*(a*x^q + b*x^n + c*x^(2*n - q))^(p - 1), x], x] /; FreeQ[{a, b, c}, x] && EqQ[r, 2*n - q] && PosQ[n -
q] && !IntegerQ[p] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && GtQ[p, 0] && RationalQ[m, q] && LeQ[m + p*q + 1,
-(n - q) + 1] && NeQ[m + p*q + 1, 0]
-
Int[(x_)^(m_.)*((b_.)*(x_)^(n_.) + (a_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.))^(p_), x_Symbol] :> Simp[x^(m + 1)*((a*
x^q + b*x^n + c*x^(2*n - q))^p/(m + p*(2*n - q) + 1)), x] + Simp[(n - q)*(p/(m + p*(2*n - q) + 1)) Int[x^(m
+ q)*(2*a + b*x^(n - q))*(a*x^q + b*x^n + c*x^(2*n - q))^(p - 1), x], x] /; FreeQ[{a, b, c}, x] && EqQ[r, 2*n
- q] && PosQ[n - q] && !IntegerQ[p] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && GtQ[p, 0] && RationalQ[m, q] && G
tQ[m + p*q + 1, -(n - q)] && NeQ[m + p*(2*n - q) + 1, 0]
-
Int[(x_)^(m_.)*((b_.)*(x_)^(n_.) + (a_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.))^(p_), x_Symbol] :> Simp[(-x^(m - q + 1
))*(b^2 - 2*a*c + b*c*x^(n - q))*((a*x^q + b*x^n + c*x^(2*n - q))^(p + 1)/(a*(n - q)*(p + 1)*(b^2 - 4*a*c))),
x] + Simp[(2*a*c - b^2*(p + 2))/(a*(p + 1)*(b^2 - 4*a*c)) Int[x^(m - q)*(a*x^q + b*x^n + c*x^(2*n - q))^(p +
1), x], x] /; FreeQ[{a, b, c}, x] && EqQ[r, 2*n - q] && PosQ[n - q] && !IntegerQ[p] && NeQ[b^2 - 4*a*c, 0] &
& IGtQ[n, 0] && LtQ[p, -1] && RationalQ[m, p, q] && EqQ[m + p*q + 1, (-(n - q))*(2*p + 3)]
-
Int[(x_)^(m_.)*((b_.)*(x_)^(n_.) + (a_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.))^(p_), x_Symbol] :> Simp[(-x^(m - 2*n +
q + 1))*(2*a + b*x^(n - q))*((a*x^q + b*x^n + c*x^(2*n - q))^(p + 1)/((n - q)*(p + 1)*(b^2 - 4*a*c))), x] + S
imp[1/((n - q)*(p + 1)*(b^2 - 4*a*c)) Int[x^(m - 2*n + q)*(2*a*(m + p*q - 2*(n - q) + 1) + b*(m + p*q + (n -
q)*(2*p + 1) + 1)*x^(n - q))*(a*x^q + b*x^n + c*x^(2*n - q))^(p + 1), x], x] /; FreeQ[{a, b, c}, x] && EqQ[r,
2*n - q] && PosQ[n - q] && !IntegerQ[p] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && LtQ[p, -1] && RationalQ[m, q
] && GtQ[m + p*q + 1, 2*(n - q)]
-
Int[(x_)^(m_.)*((b_.)*(x_)^(n_.) + (a_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.))^(p_), x_Symbol] :> Simp[(-x^(m - q + 1
))*(b^2 - 2*a*c + b*c*x^(n - q))*((a*x^q + b*x^n + c*x^(2*n - q))^(p + 1)/(a*(n - q)*(p + 1)*(b^2 - 4*a*c))),
x] + Simp[1/(a*(n - q)*(p + 1)*(b^2 - 4*a*c)) Int[x^(m - q)*(b^2*(m + p*q + (n - q)*(p + 1) + 1) - 2*a*c*(m
+ p*q + 2*(n - q)*(p + 1) + 1) + b*c*(m + p*q + (n - q)*(2*p + 3) + 1)*x^(n - q))*(a*x^q + b*x^n + c*x^(2*n -
q))^(p + 1), x], x] /; FreeQ[{a, b, c}, x] && EqQ[r, 2*n - q] && PosQ[n - q] && !IntegerQ[p] && NeQ[b^2 - 4*a
*c, 0] && IGtQ[n, 0] && LtQ[p, -1] && RationalQ[m, q] && LtQ[m + p*q + 1, n - q]
-
Int[(x_)^(m_.)*((b_.)*(x_)^(n_.) + (a_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.))^(p_), x_Symbol] :> Simp[x^(m - n + 1)*
(b + 2*c*x^(n - q))*((a*x^q + b*x^n + c*x^(2*n - q))^(p + 1)/((n - q)*(p + 1)*(b^2 - 4*a*c))), x] - Simp[1/((n
- q)*(p + 1)*(b^2 - 4*a*c)) Int[x^(m - n)*(b*(m + p*q - n + q + 1) + 2*c*(m + p*q + 2*(n - q)*(p + 1) + 1)*
x^(n - q))*(a*x^q + b*x^n + c*x^(2*n - q))^(p + 1), x], x] /; FreeQ[{a, b, c}, x] && EqQ[r, 2*n - q] && PosQ[n
- q] && !IntegerQ[p] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && LtQ[p, -1] && RationalQ[m, q] && LtQ[n - q, m +
p*q + 1, 2*(n - q)]
-
Int[(x_)^(m_.)*((b_.)*(x_)^(n_.) + (a_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.))^(p_), x_Symbol] :> Simp[x^(m - 2*n + q
+ 1)*((a*x^q + b*x^n + c*x^(2*n - q))^(p + 1)/(2*c*(n - q)*(p + 1))), x] - Simp[b/(2*c) Int[x^(m - n + q)*(
a*x^q + b*x^n + c*x^(2*n - q))^p, x], x] /; FreeQ[{a, b, c}, x] && EqQ[r, 2*n - q] && PosQ[n - q] && !Integer
Q[p] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && GeQ[p, -1] && LtQ[p, 0] && RationalQ[m, q] && EqQ[m + p*q + 1, 2*
(n - q)]
-
Int[(x_)^(m_.)*((b_.)*(x_)^(n_.) + (a_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.))^(p_), x_Symbol] :> Simp[(-x^(m - q + 1
))*((a*x^q + b*x^n + c*x^(2*n - q))^(p + 1)/(2*a*(n - q)*(p + 1))), x] - Simp[b/(2*a) Int[x^(m + n - q)*(a*x
^q + b*x^n + c*x^(2*n - q))^p, x], x] /; FreeQ[{a, b, c}, x] && EqQ[r, 2*n - q] && PosQ[n - q] && !IntegerQ[p
] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && GeQ[p, -1] && LtQ[p, 0] && RationalQ[m, q] && EqQ[m + p*q + 1, -2*(n
- q)*(p + 1)]
-
Int[(x_)^(m_.)*((b_.)*(x_)^(n_.) + (a_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.))^(p_), x_Symbol] :> Simp[x^(m - 2*n + q
+ 1)*((a*x^q + b*x^n + c*x^(2*n - q))^(p + 1)/(c*(m + p*q + 2*(n - q)*p + 1))), x] - Simp[1/(c*(m + p*q + 2*(
n - q)*p + 1)) Int[x^(m - 2*(n - q))*(a*(m + p*q - 2*(n - q) + 1) + b*(m + p*q + (n - q)*(p - 1) + 1)*x^(n -
q))*(a*x^q + b*x^n + c*x^(2*n - q))^p, x], x] /; FreeQ[{a, b, c}, x] && EqQ[r, 2*n - q] && PosQ[n - q] && !I
ntegerQ[p] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && GeQ[p, -1] && LtQ[p, 0] && RationalQ[m, q] && GtQ[m + p*q +
1, 2*(n - q)]
-
Int[(x_)^(m_.)*((b_.)*(x_)^(n_.) + (a_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.))^(p_), x_Symbol] :> Simp[x^(m - q + 1)*
((a*x^q + b*x^n + c*x^(2*n - q))^(p + 1)/(a*(m + p*q + 1))), x] - Simp[1/(a*(m + p*q + 1)) Int[x^(m + n - q)
*(b*(m + p*q + (n - q)*(p + 1) + 1) + c*(m + p*q + 2*(n - q)*(p + 1) + 1)*x^(n - q))*(a*x^q + b*x^n + c*x^(2*n
- q))^p, x], x] /; FreeQ[{a, b, c}, x] && EqQ[r, 2*n - q] && PosQ[n - q] && !IntegerQ[p] && NeQ[b^2 - 4*a*c,
0] && IGtQ[n, 0] && GeQ[p, -1] && LtQ[p, 0] && RationalQ[m, q] && LtQ[m + p*q + 1, 0]
-
Int[(x_)^(m_.)*((b_.)*(x_)^(n_.) + (a_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.))^(p_), x_Symbol] :> Simp[(a*x^q + b*x^n
+ c*x^(2*n - q))^p/(x^(p*q)*(a + b*x^(n - q) + c*x^(2*(n - q)))^p) Int[x^(m + p*q)*(a + b*x^(n - q) + c*x^(
2*(n - q)))^p, x], x] /; FreeQ[{a, b, c, m, n, p, q}, x] && EqQ[r, 2*n - q] && !IntegerQ[p] && PosQ[n - q]
-
Int[(u_)^(m_.)*((b_.)*(u_)^(n_.) + (a_.)*(u_)^(q_.) + (c_.)*(u_)^(r_.))^(p_.), x_Symbol] :> Simp[1/Coefficient
[u, x, 1] Subst[Int[x^m*(a*x^q + b*x^n + c*x^(2*n - q))^p, x], x, u], x] /; FreeQ[{a, b, c, m, n, p, q}, x]
&& EqQ[r, 2*n - q] && LinearQ[u, x] && NeQ[u, x]
-
Int[((c_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.) + (a_.)*(x_)^(q_.))^(p_.)*((A_) + (B_.)*(x_)^(r_.)), x_Symbol] :> Int
[x^(p*q)*(A + B*x^(n - q))*(a + b*x^(n - q) + c*x^(2*(n - q)))^p, x] /; FreeQ[{a, b, c, A, B, n, q}, x] && EqQ
[r, n - q] && EqQ[j, 2*n - q] && IntegerQ[p] && PosQ[n - q]
-
Int[((A_) + (B_.)*(x_)^(j_.))/Sqrt[(b_.)*(x_)^(n_.) + (a_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.)], x_Symbol] :> Simp[
x^(q/2)*(Sqrt[a + b*x^(n - q) + c*x^(2*(n - q))]/Sqrt[a*x^q + b*x^n + c*x^(2*n - q)]) Int[(A + B*x^(n - q))/
(x^(q/2)*Sqrt[a + b*x^(n - q) + c*x^(2*(n - q))]), x], x] /; FreeQ[{a, b, c, A, B, n, q}, x] && EqQ[j, n - q]
&& EqQ[r, 2*n - q] && PosQ[n - q] && EqQ[n, 3] && EqQ[q, 2]
-
Int[((c_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.) + (a_.)*(x_)^(q_.))^(p_)*((A_) + (B_.)*(x_)^(r_.)), x_Symbol] :> Simp
[x*(b*B*(n - q)*p + A*c*(p*q + (n - q)*(2*p + 1) + 1) + B*c*(p*(2*n - q) + 1)*x^(n - q))*((a*x^q + b*x^n + c*x
^(2*n - q))^p/(c*(p*(2*n - q) + 1)*(p*q + (n - q)*(2*p + 1) + 1))), x] + Simp[(n - q)*(p/(c*(p*(2*n - q) + 1)*
(p*q + (n - q)*(2*p + 1) + 1))) Int[x^q*(2*a*A*c*(p*q + (n - q)*(2*p + 1) + 1) - a*b*B*(p*q + 1) + (2*a*B*c*
(p*(2*n - q) + 1) + A*b*c*(p*q + (n - q)*(2*p + 1) + 1) - b^2*B*(p*q + (n - q)*p + 1))*x^(n - q))*(a*x^q + b*x
^n + c*x^(2*n - q))^(p - 1), x], x] /; FreeQ[{a, b, c, A, B, n, q}, x] && EqQ[r, n - q] && EqQ[j, 2*n - q] &&
!IntegerQ[p] && NeQ[b^2 - 4*a*c, 0] && GtQ[p, 0] && NeQ[p*(2*n - q) + 1, 0] && NeQ[p*q + (n - q)*(2*p + 1) +
1, 0]
-
Int[((c_.)*(x_)^(j_.) + (a_.)*(x_)^(q_.))^(p_)*((A_) + (B_.)*(x_)^(r_.)), x_Symbol] :> With[{n = q + r}, Simp[
x*(A*(p*q + (n - q)*(2*p + 1) + 1) + B*(p*(2*n - q) + 1)*x^(n - q))*((a*x^q + c*x^(2*n - q))^p/((p*(2*n - q) +
1)*(p*q + (n - q)*(2*p + 1) + 1))), x] + Simp[(n - q)*(p/((p*(2*n - q) + 1)*(p*q + (n - q)*(2*p + 1) + 1)))
Int[x^q*(2*a*A*(p*q + (n - q)*(2*p + 1) + 1) + (2*a*B*(p*(2*n - q) + 1))*x^(n - q))*(a*x^q + c*x^(2*n - q))^(
p - 1), x], x] /; EqQ[j, 2*n - q] && NeQ[p*(2*n - q) + 1, 0] && NeQ[p*q + (n - q)*(2*p + 1) + 1, 0]] /; FreeQ[
{a, c, A, B, q}, x] && !IntegerQ[p] && GtQ[p, 0]
-
Int[((c_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.) + (a_.)*(x_)^(q_.))^(p_)*((A_) + (B_.)*(x_)^(r_.)), x_Symbol] :> Simp
[(-x^(-q + 1))*(A*b^2 - a*b*B - 2*a*A*c + (A*b - 2*a*B)*c*x^(n - q))*((a*x^q + b*x^n + c*x^(2*n - q))^(p + 1)/
(a*(n - q)*(p + 1)*(b^2 - 4*a*c))), x] + Simp[1/(a*(n - q)*(p + 1)*(b^2 - 4*a*c)) Int[((A*b^2*(p*q + (n - q)
*(p + 1) + 1) - a*b*B*(p*q + 1) - 2*a*A*c*(p*q + 2*(n - q)*(p + 1) + 1) + (p*q + (n - q)*(2*p + 3) + 1)*(A*b -
2*a*B)*c*x^(n - q))*(a*x^q + b*x^n + c*x^(2*n - q))^(p + 1))/x^q, x], x] /; FreeQ[{a, b, c, A, B, n, q}, x] &
& EqQ[r, n - q] && EqQ[j, 2*n - q] && !IntegerQ[p] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1]
-
Int[((c_.)*(x_)^(j_.) + (a_.)*(x_)^(q_.))^(p_)*((A_) + (B_.)*(x_)^(r_.)), x_Symbol] :> With[{n = q + r}, Simp[
(-x^(-q + 1))*(a*A*c + a*B*c*x^(n - q))*((a*x^q + c*x^(2*n - q))^(p + 1)/(a*(n - q)*(p + 1)*(2*a*c))), x] + Si
mp[1/(a*(n - q)*(p + 1)*(2*a*c)) Int[((a*A*c*(p*q + 2*(n - q)*(p + 1) + 1) + a*B*c*(p*q + (n - q)*(2*p + 3)
+ 1)*x^(n - q))*(a*x^q + c*x^(2*n - q))^(p + 1))/x^q, x], x] /; EqQ[j, 2*n - q]] /; FreeQ[{a, c, A, B, q}, x]
&& !IntegerQ[p] && LtQ[p, -1]
-
Int[((A_) + (B_.)*(x_)^(j_.))*((b_.)*(x_)^(n_.) + (a_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.))^(p_.), x_Symbol] :> Uni
ntegrable[(A + B*x^(n - q))*(b*x^n + c*x^(2*n - q) + a*x^q)^p, x] /; FreeQ[{a, b, c, A, B, n, p, q}, x] && EqQ
[j, n - q] && EqQ[r, 2*n - q]
-
Int[((A_) + (B_.)*(u_)^(j_.))*((b_.)*(u_)^(n_.) + (a_.)*(u_)^(q_.) + (c_.)*(u_)^(r_.))^(p_.), x_Symbol] :> Sim
p[1/Coefficient[u, x, 1] Subst[Int[(A + B*x^(n - q))*(a*x^q + b*x^n + c*x^(2*n - q))^p, x], x, u], x] /; Fre
eQ[{a, b, c, A, B, n, p, q}, x] && EqQ[j, n - q] && EqQ[r, 2*n - q] && LinearQ[u, x] && NeQ[u, x]
-
Int[(x_)^(m_.)*((c_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.) + (a_.)*(x_)^(q_.))^(p_.)*((A_) + (B_.)*(x_)^(r_.)), x_Sym
bol] :> Int[x^(m + p*q)*(A + B*x^(n - q))*(a + b*x^(n - q) + c*x^(2*(n - q)))^p, x] /; FreeQ[{a, b, c, A, B, m
, n, q}, x] && EqQ[r, n - q] && EqQ[j, 2*n - q] && IntegerQ[p] && PosQ[n - q]
-
Int[(x_)^(m_.)*((c_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.) + (a_.)*(x_)^(q_.))^(p_.)*((A_) + (B_.)*(x_)^(r_.)), x_Sym
bol] :> Simp[x^(m + 1)*(A*(m + p*q + (n - q)*(2*p + 1) + 1) + B*(m + p*q + 1)*x^(n - q))*((a*x^q + b*x^n + c*x
^(2*n - q))^p/((m + p*q + 1)*(m + p*q + (n - q)*(2*p + 1) + 1))), x] + Simp[(n - q)*(p/((m + p*q + 1)*(m + p*q
+ (n - q)*(2*p + 1) + 1))) Int[x^(n + m)*Simp[2*a*B*(m + p*q + 1) - A*b*(m + p*q + (n - q)*(2*p + 1) + 1) +
(b*B*(m + p*q + 1) - 2*A*c*(m + p*q + (n - q)*(2*p + 1) + 1))*x^(n - q), x]*(a*x^q + b*x^n + c*x^(2*n - q))^(
p - 1), x], x] /; FreeQ[{a, b, c, A, B}, x] && EqQ[r, n - q] && EqQ[j, 2*n - q] && !IntegerQ[p] && NeQ[b^2 -
4*a*c, 0] && IGtQ[n, 0] && GtQ[p, 0] && RationalQ[m, q] && LeQ[m + p*q, -(n - q)] && NeQ[m + p*q + 1, 0] && Ne
Q[m + p*q + (n - q)*(2*p + 1) + 1, 0]
-
Int[(x_)^(m_.)*((c_.)*(x_)^(j_.) + (a_.)*(x_)^(q_.))^(p_.)*((A_) + (B_.)*(x_)^(r_.)), x_Symbol] :> With[{n = q
+ r}, Simp[x^(m + 1)*(A*(m + p*q + (n - q)*(2*p + 1) + 1) + B*(m + p*q + 1)*x^(n - q))*((a*x^q + c*x^(2*n - q
))^p/((m + p*q + 1)*(m + p*q + (n - q)*(2*p + 1) + 1))), x] + Simp[2*(n - q)*(p/((m + p*q + 1)*(m + p*q + (n -
q)*(2*p + 1) + 1))) Int[x^(n + m)*Simp[a*B*(m + p*q + 1) - A*c*(m + p*q + (n - q)*(2*p + 1) + 1)*x^(n - q),
x]*(a*x^q + c*x^(2*n - q))^(p - 1), x], x] /; EqQ[j, 2*n - q] && IGtQ[n, 0] && LeQ[m + p*q, -(n - q)] && NeQ[
m + p*q + 1, 0] && NeQ[m + p*q + (n - q)*(2*p + 1) + 1, 0]] /; FreeQ[{a, c, A, B}, x] && !IntegerQ[p] && Rati
onalQ[m, p, q] && GtQ[p, 0]
-
Int[(x_)^(m_.)*((c_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.) + (a_.)*(x_)^(q_.))^(p_.)*((A_) + (B_.)*(x_)^(r_.)), x_Sym
bol] :> Simp[x^(m - n + 1)*(A*b - 2*a*B - (b*B - 2*A*c)*x^(n - q))*((a*x^q + b*x^n + c*x^(2*n - q))^(p + 1)/((
n - q)*(p + 1)*(b^2 - 4*a*c))), x] + Simp[1/((n - q)*(p + 1)*(b^2 - 4*a*c)) Int[x^(m - n)*Simp[(m + p*q - n
+ q + 1)*(2*a*B - A*b) + (m + p*q + 2*(n - q)*(p + 1) + 1)*(b*B - 2*A*c)*x^(n - q), x]*(a*x^q + b*x^n + c*x^(2
*n - q))^(p + 1), x], x] /; FreeQ[{a, b, c, A, B}, x] && EqQ[r, n - q] && EqQ[j, 2*n - q] && !IntegerQ[p] &&
NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && LtQ[p, -1] && RationalQ[m, q] && GtQ[m + p*q, n - q - 1]
-
Int[(x_)^(m_.)*((c_.)*(x_)^(j_.) + (a_.)*(x_)^(q_.))^(p_.)*((A_) + (B_.)*(x_)^(r_.)), x_Symbol] :> With[{n = q
+ r}, Simp[x^(m - n + 1)*(a*B - A*c*x^(n - q))*((a*x^q + c*x^(2*n - q))^(p + 1)/(2*a*c*(n - q)*(p + 1))), x]
- Simp[1/(2*a*c*(n - q)*(p + 1)) Int[x^(m - n)*Simp[a*B*(m + p*q - n + q + 1) - A*c*(m + p*q + (n - q)*2*(p
+ 1) + 1)*x^(n - q), x]*(a*x^q + c*x^(2*n - q))^(p + 1), x], x] /; EqQ[j, 2*n - q] && IGtQ[n, 0] && m + p*q >
n - q - 1] /; FreeQ[{a, c, A, B}, x] && !IntegerQ[p] && RationalQ[m, q] && LtQ[p, -1]
-
Int[(x_)^(m_.)*((c_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.) + (a_.)*(x_)^(q_.))^(p_.)*((A_) + (B_.)*(x_)^(r_.)), x_Sym
bol] :> Simp[x^(m + 1)*(b*B*(n - q)*p + A*c*(m + p*q + (n - q)*(2*p + 1) + 1) + B*c*(m + p*q + 2*(n - q)*p + 1
)*x^(n - q))*((a*x^q + b*x^n + c*x^(2*n - q))^p/(c*(m + p*(2*n - q) + 1)*(m + p*q + (n - q)*(2*p + 1) + 1))),
x] + Simp[(n - q)*(p/(c*(m + p*(2*n - q) + 1)*(m + p*q + (n - q)*(2*p + 1) + 1))) Int[x^(m + q)*Simp[2*a*A*c
*(m + p*q + (n - q)*(2*p + 1) + 1) - a*b*B*(m + p*q + 1) + (2*a*B*c*(m + p*q + 2*(n - q)*p + 1) + A*b*c*(m + p
*q + (n - q)*(2*p + 1) + 1) - b^2*B*(m + p*q + (n - q)*p + 1))*x^(n - q), x]*(a*x^q + b*x^n + c*x^(2*n - q))^(
p - 1), x], x] /; FreeQ[{a, b, c, A, B}, x] && EqQ[r, n - q] && EqQ[j, 2*n - q] && !IntegerQ[p] && NeQ[b^2 -
4*a*c, 0] && IGtQ[n, 0] && GtQ[p, 0] && RationalQ[m, q] && GtQ[m + p*q, -(n - q) - 1] && NeQ[m + p*(2*n - q) +
1, 0] && NeQ[m + p*q + (n - q)*(2*p + 1) + 1, 0]
-
Int[(x_)^(m_.)*((c_.)*(x_)^(j_.) + (a_.)*(x_)^(q_.))^(p_.)*((A_) + (B_.)*(x_)^(r_.)), x_Symbol] :> With[{n = q
+ r}, Simp[x^(m + 1)*(A*(m + p*q + (n - q)*(2*p + 1) + 1) + B*(m + p*q + 2*(n - q)*p + 1)*x^(n - q))*((a*x^q
+ c*x^(2*n - q))^p/((m + p*(2*n - q) + 1)*(m + p*q + (n - q)*(2*p + 1) + 1))), x] + Simp[(n - q)*(p/((m + p*(2
*n - q) + 1)*(m + p*q + (n - q)*(2*p + 1) + 1))) Int[x^(m + q)*Simp[2*a*A*(m + p*q + (n - q)*(2*p + 1) + 1)
+ 2*a*B*(m + p*q + 2*(n - q)*p + 1)*x^(n - q), x]*(a*x^q + c*x^(2*n - q))^(p - 1), x], x] /; EqQ[j, 2*n - q] &
& IGtQ[n, 0] && GtQ[m + p*q, -(n - q)] && NeQ[m + p*q + 2*(n - q)*p + 1, 0] && NeQ[m + p*q + (n - q)*(2*p + 1)
+ 1, 0] && NeQ[m + 1, n]] /; FreeQ[{a, c, A, B}, x] && !IntegerQ[p] && RationalQ[m, q] && GtQ[p, 0]
-
Int[(x_)^(m_.)*((c_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.) + (a_.)*(x_)^(q_.))^(p_.)*((A_) + (B_.)*(x_)^(r_.)), x_Sym
bol] :> Simp[(-x^(m - q + 1))*(A*b^2 - a*b*B - 2*a*A*c + (A*b - 2*a*B)*c*x^(n - q))*((a*x^q + b*x^n + c*x^(2*n
- q))^(p + 1)/(a*(n - q)*(p + 1)*(b^2 - 4*a*c))), x] + Simp[1/(a*(n - q)*(p + 1)*(b^2 - 4*a*c)) Int[x^(m -
q)*Simp[A*b^2*(m + p*q + (n - q)*(p + 1) + 1) - a*b*B*(m + p*q + 1) - 2*a*A*c*(m + p*q + 2*(n - q)*(p + 1) + 1
) + (m + p*q + (n - q)*(2*p + 3) + 1)*(A*b - 2*a*B)*c*x^(n - q), x]*(a*x^q + b*x^n + c*x^(2*n - q))^(p + 1), x
], x] /; FreeQ[{a, b, c, A, B}, x] && EqQ[r, n - q] && EqQ[j, 2*n - q] && !IntegerQ[p] && NeQ[b^2 - 4*a*c, 0]
&& IGtQ[n, 0] && LtQ[p, -1] && RationalQ[m, q] && m + p*q < n - q - 1
-
Int[(x_)^(m_.)*((c_.)*(x_)^(j_.) + (a_.)*(x_)^(q_.))^(p_.)*((A_) + (B_.)*(x_)^(r_.)), x_Symbol] :> With[{n = q
+ r}, Simp[(-x^(m - q + 1))*(A*c + B*c*x^(n - q))*((a*x^q + c*x^(2*n - q))^(p + 1)/(2*a*c*(n - q)*(p + 1))),
x] + Simp[1/(2*a*c*(n - q)*(p + 1)) Int[x^(m - q)*Simp[A*c*(m + p*q + 2*(n - q)*(p + 1) + 1) + B*(m + p*q +
(n - q)*(2*p + 3) + 1)*c*x^(n - q), x]*(a*x^q + c*x^(2*n - q))^(p + 1), x], x] /; EqQ[j, 2*n - q] && IGtQ[n, 0
] && LtQ[m + p*q, n - q - 1]] /; FreeQ[{a, c, A, B}, x] && !IntegerQ[p] && RationalQ[m, q] && LtQ[p, -1]
-
Int[(x_)^(m_.)*((c_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.) + (a_.)*(x_)^(q_.))^(p_.)*((A_) + (B_.)*(x_)^(r_.)), x_Sym
bol] :> Simp[B*x^(m - n + 1)*((a*x^q + b*x^n + c*x^(2*n - q))^(p + 1)/(c*(m + p*q + (n - q)*(2*p + 1) + 1))),
x] - Simp[1/(c*(m + p*q + (n - q)*(2*p + 1) + 1)) Int[x^(m - n + q)*Simp[a*B*(m + p*q - n + q + 1) + (b*B*(m
+ p*q + (n - q)*p + 1) - A*c*(m + p*q + (n - q)*(2*p + 1) + 1))*x^(n - q), x]*(a*x^q + b*x^n + c*x^(2*n - q))
^p, x], x] /; FreeQ[{a, b, c, A, B}, x] && EqQ[r, n - q] && EqQ[j, 2*n - q] && !IntegerQ[p] && NeQ[b^2 - 4*a*
c, 0] && IGtQ[n, 0] && GeQ[p, -1] && LtQ[p, 0] && RationalQ[m, q] && GeQ[m + p*q, n - q - 1] && NeQ[m + p*q +
(n - q)*(2*p + 1) + 1, 0]
-
Int[(x_)^(m_.)*((c_.)*(x_)^(j_.) + (a_.)*(x_)^(q_.))^(p_.)*((A_) + (B_.)*(x_)^(r_.)), x_Symbol] :> With[{n = q
+ r}, Simp[B*x^(m - n + 1)*((a*x^q + c*x^(2*n - q))^(p + 1)/(c*(m + p*q + (n - q)*(2*p + 1) + 1))), x] - Simp
[1/(c*(m + p*q + (n - q)*(2*p + 1) + 1)) Int[x^(m - n + q)*Simp[a*B*(m + p*q - n + q + 1) - A*c*(m + p*q + (
n - q)*(2*p + 1) + 1)*x^(n - q), x]*(a*x^q + c*x^(2*n - q))^p, x], x] /; EqQ[j, 2*n - q] && IGtQ[n, 0] && GeQ[
m + p*q, n - q - 1] && NeQ[m + p*q + (n - q)*(2*p + 1) + 1, 0]] /; FreeQ[{a, c, A, B}, x] && !IntegerQ[p] &&
RationalQ[m, p, q] && GeQ[p, -1] && LtQ[p, 0]
-
Int[(x_)^(m_.)*((c_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.) + (a_.)*(x_)^(q_.))^(p_.)*((A_) + (B_.)*(x_)^(r_.)), x_Sym
bol] :> Simp[A*x^(m - q + 1)*((a*x^q + b*x^n + c*x^(2*n - q))^(p + 1)/(a*(m + p*q + 1))), x] + Simp[1/(a*(m +
p*q + 1)) Int[x^(m + n - q)*Simp[a*B*(m + p*q + 1) - A*b*(m + p*q + (n - q)*(p + 1) + 1) - A*c*(m + p*q + 2*
(n - q)*(p + 1) + 1)*x^(n - q), x]*(a*x^q + b*x^n + c*x^(2*n - q))^p, x], x] /; FreeQ[{a, b, c, A, B}, x] && E
qQ[r, n - q] && EqQ[j, 2*n - q] && !IntegerQ[p] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && RationalQ[m, p, q] &&
((GeQ[p, -1] && LtQ[p, 0]) || EqQ[m + p*q + (n - q)*(2*p + 1) + 1, 0]) && LeQ[m + p*q, -(n - q)] && NeQ[m + p
*q + 1, 0]
-
Int[(x_)^(m_.)*((c_.)*(x_)^(j_.) + (a_.)*(x_)^(q_.))^(p_.)*((A_) + (B_.)*(x_)^(r_.)), x_Symbol] :> With[{n = q
+ r}, Simp[A*x^(m - q + 1)*((a*x^q + c*x^(2*n - q))^(p + 1)/(a*(m + p*q + 1))), x] + Simp[1/(a*(m + p*q + 1))
Int[x^(m + n - q)*Simp[a*B*(m + p*q + 1) - A*c*(m + p*q + 2*(n - q)*(p + 1) + 1)*x^(n - q), x]*(a*x^q + c*x
^(2*n - q))^p, x], x] /; EqQ[j, 2*n - q] && IGtQ[n, 0] && ((GeQ[p, -1] && LtQ[p, 0]) || EqQ[m + p*q + (n - q)*
(2*p + 1) + 1, 0]) && LeQ[m + p*q, -(n - q)] && NeQ[m + p*q + 1, 0]] /; FreeQ[{a, c, A, B}, x] && !IntegerQ[p
] && RationalQ[m, p, q]
-
Int[((x_)^(m_.)*((A_) + (B_.)*(x_)^(j_.)))/Sqrt[(b_.)*(x_)^(n_.) + (a_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.)], x_Sym
bol] :> Simp[x^(q/2)*(Sqrt[a + b*x^(n - q) + c*x^(2*(n - q))]/Sqrt[a*x^q + b*x^n + c*x^(2*n - q)]) Int[x^(m
- q/2)*((A + B*x^(n - q))/Sqrt[a + b*x^(n - q) + c*x^(2*(n - q))]), x], x] /; FreeQ[{a, b, c, A, B, m, n, q},
x] && EqQ[j, n - q] && EqQ[r, 2*n - q] && PosQ[n - q] && (EqQ[m, 1/2] || EqQ[m, -2^(-1)]) && EqQ[n, 3] && EqQ[
q, 1]
-
Int[(x_)^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(k_.) + (c_.)*(x_)^(n_.))^(p_)*((A_) + (B_.)*(x_)^(q_)), x_Symbo
l] :> Simp[(a*x^j + b*x^k + c*x^n)^p/(x^(j*p)*(a + b*x^(k - j) + c*x^(2*(k - j)))^p) Int[x^(m + j*p)*(A + B*
x^(k - j))*(a + b*x^(k - j) + c*x^(2*(k - j)))^p, x], x] /; FreeQ[{a, b, c, A, B, j, k, m, p}, x] && EqQ[q, k
- j] && EqQ[n, 2*k - j] && !IntegerQ[p] && PosQ[k - j]
-
Int[(u_)^(m_.)*((A_) + (B_.)*(u_)^(j_.))*((b_.)*(u_)^(n_.) + (a_.)*(u_)^(q_.) + (c_.)*(u_)^(r_.))^(p_.), x_Sym
bol] :> Simp[1/Coefficient[u, x, 1] Subst[Int[x^m*(A + B*x^(n - q))*(a*x^q + b*x^n + c*x^(2*n - q))^p, x], x
, u], x] /; FreeQ[{a, b, c, A, B, m, n, p, q}, x] && EqQ[j, n - q] && EqQ[r, 2*n - q] && LinearQ[u, x] && NeQ[
u, x]
-
Int[(u_)*((c_) + (d_.)*(x_))^(n_.)*((a_) + (b_.)*(x_)^2)^(p_.), x_Symbol] :> Int[u*(c + d*x)^(n + p)*(a/c + (b
/d)*x)^p, x] /; FreeQ[{a, b, c, d, n, p}, x] && EqQ[b*c^2 + a*d^2, 0] && (IntegerQ[p] || (GtQ[a, 0] && GtQ[c,
0] && !IntegerQ[n]))
-
Int[(u_)*((d_) + (e_.)*(x_))^(q_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[u*(d + e*x)^(p +
q)*(a/d + (c/e)*x)^p, x] /; FreeQ[{a, b, c, d, e, q}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && IntegerQ[p]
-
Int[(Fx_)*(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Int[x^(m + n*p)*(b + a/x^n)^p*Fx, x] /; Free
Q[{a, b, m, n}, x] && IntegerQ[p] && NegQ[n]
-
Int[(u_.)*(Px_), x_Symbol] :> With[{a = Rt[Coeff[Px, x, 0], Expon[Px, x]], b = Rt[Coeff[Px, x, Expon[Px, x]],
Expon[Px, x]]}, Int[u*(a + b*x)^Expon[Px, x], x] /; EqQ[Px, (a + b*x)^Expon[Px, x]]] /; PolyQ[Px, x] && GtQ[Ex
pon[Px, x], 1] && NeQ[Coeff[Px, x, 0], 0] && !MatchQ[Px, (a_.)*(v_)^Expon[Px, x] /; FreeQ[a, x] && LinearQ[v,
x]]
-
Int[(u_.)*(Px_)^(p_), x_Symbol] :> With[{a = Rt[Coeff[Px, x, 0], Expon[Px, x]], b = Rt[Coeff[Px, x, Expon[Px,
x]], Expon[Px, x]]}, Int[u*(a + b*x)^(Expon[Px, x]*p), x] /; EqQ[Px, (a + b*x)^Expon[Px, x]]] /; IntegerQ[p] &
& PolyQ[Px, x] && GtQ[Expon[Px, x], 1] && NeQ[Coeff[Px, x, 0], 0]
-
Int[(u_.)*(Px_)^(p_), x_Symbol] :> With[{a = Rt[Coeff[Px, x, 0], Expon[Px, x]], b = Rt[Coeff[Px, x, Expon[Px,
x]], Expon[Px, x]]}, Simp[((a + b*x)^Expon[Px, x])^p/(a + b*x)^(Expon[Px, x]*p) Int[u*(a + b*x)^(Expon[Px, x
]*p), x], x] /; EqQ[Px, (a + b*x)^Expon[Px, x]]] /; !IntegerQ[p] && PolyQ[Px, x] && GtQ[Expon[Px, x], 1] && N
eQ[Coeff[Px, x, 0], 0]
-
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
-
Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
&& !LinearQ[u, x] && !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]
-
Int[(u_.)*((a_) + (b_.)*(v_))^(m_.)*((c_) + (d_.)*(v_))^(n_.), x_Symbol] :> Simp[(b/d)^m Int[u*(c + d*v)^(m
+ n), x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[b*c - a*d, 0] && IntegerQ[m] && ( !IntegerQ[n] || SimplerQ[c
+ d*x, a + b*x])
-
Int[(u_.)*((a_) + (b_.)*(v_))^(m_)*((c_) + (d_.)*(v_))^(n_), x_Symbol] :> Simp[(b/d)^m Int[u*(c + d*v)^(m +
n), x], x] /; FreeQ[{a, b, c, d, m, n}, x] && EqQ[b*c - a*d, 0] && GtQ[b/d, 0] && !(IntegerQ[m] || IntegerQ[n
])
-
Int[(u_.)*((a_) + (b_.)*(v_))^(m_)*((c_) + (d_.)*(v_))^(n_), x_Symbol] :> Simp[(a + b*v)^m/(c + d*v)^m Int[u
*(c + d*v)^(m + n), x], x] /; FreeQ[{a, b, c, d, m, n}, x] && EqQ[b*c - a*d, 0] && !(IntegerQ[m] || IntegerQ[
n] || GtQ[b/d, 0])
-
Int[(u_.)*((a_) + (b_.)*(v_))^(m_)*((A_.) + (B_.)*(v_) + (C_.)*(v_)^2), x_Symbol] :> Simp[1/b^2 Int[u*(a + b
*v)^(m + 1)*Simp[b*B - a*C + b*C*v, x], x], x] /; FreeQ[{a, b, A, B, C}, x] && EqQ[A*b^2 - a*b*B + a^2*C, 0] &
& LeQ[m, -1]
-
Int[(u_.)*((a_) + (b_.)*(x_)^(n_.))^(m_.)*((c_) + (d_.)*(x_)^(q_.))^(p_.), x_Symbol] :> Simp[(d/a)^p Int[u*(
(a + b*x^n)^(m + p)/x^(n*p)), x], x] /; FreeQ[{a, b, c, d, m, n}, x] && EqQ[q, -n] && IntegerQ[p] && EqQ[a*c -
b*d, 0] && !(IntegerQ[m] && NegQ[n])
-
Int[(u_.)*((a_) + (b_.)*(x_)^(n_.))^(m_.)*((c_) + (d_.)*(x_)^(j_))^(p_.), x_Symbol] :> Simp[(-b^2/d)^m Int[u
/(a - b*x^n)^m, x], x] /; FreeQ[{a, b, c, d, m, n, p}, x] && EqQ[j, 2*n] && EqQ[p, -m] && EqQ[b^2*c + a^2*d, 0
] && GtQ[a, 0] && LtQ[d, 0] && GtQ[b^2, 0]
-
Int[(Px_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[Coeff[Px, x, n - 1]*((a + b*x^n)^(p + 1)/(b*n*(p +
1))), x] + Int[(Px - Coeff[Px, x, n - 1]*x^(n - 1))*(a + b*x^n)^p, x] /; FreeQ[{a, b}, x] && PolyQ[Px, x] && I
GtQ[p, 1] && IGtQ[n, 1] && NeQ[Coeff[Px, x, n - 1], 0] && NeQ[Px, Coeff[Px, x, n - 1]*x^(n - 1)] && !MatchQ[P
x, (Qx_.)*((c_) + (d_.)*x^(m_))^(q_) /; FreeQ[{c, d}, x] && PolyQ[Qx, x] && IGtQ[q, 1] && IGtQ[m, 1] && NeQ[Co
eff[Qx*(a + b*x^n)^p, x, m - 1], 0] && GtQ[m*q, n*p]]
-
Int[(Px_)*(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[Coeff[Px, x, n - m - 1]*((a + b*x^n)^(p
+ 1)/(b*n*(p + 1))), x] + Int[(Px - Coeff[Px, x, n - m - 1]*x^(n - m - 1))*x^m*(a + b*x^n)^p, x] /; FreeQ[{a,
b, m, n}, x] && PolyQ[Px, x] && IGtQ[p, 1] && IGtQ[n - m, 0] && NeQ[Coeff[Px, x, n - m - 1], 0]
-
Int[(u_.)*(Px_)^(p_.)*(Qx_)^(q_.), x_Symbol] :> Int[u*PolynomialQuotient[Px, Qx, x]^p*Qx^(p + q), x] /; FreeQ[
q, x] && PolyQ[Px, x] && PolyQ[Qx, x] && EqQ[PolynomialRemainder[Px, Qx, x], 0] && IntegerQ[p] && LtQ[p*q, 0]
-
Int[(Pp_)/(Qq_), x_Symbol] :> With[{p = Expon[Pp, x], q = Expon[Qq, x]}, Simp[Coeff[Pp, x, p]*(Log[RemoveConte
nt[Qq, x]]/(q*Coeff[Qq, x, q])), x] /; EqQ[p, q - 1] && EqQ[Pp, Simplify[(Coeff[Pp, x, p]/(q*Coeff[Qq, x, q]))
*D[Qq, x]]]] /; PolyQ[Pp, x] && PolyQ[Qq, x]
-
Int[(Pp_)*(Qq_)^(m_.), x_Symbol] :> With[{p = Expon[Pp, x], q = Expon[Qq, x]}, Simp[Coeff[Pp, x, p]*x^(p - q +
1)*(Qq^(m + 1)/((p + m*q + 1)*Coeff[Qq, x, q])), x] /; NeQ[p + m*q + 1, 0] && EqQ[(p + m*q + 1)*Coeff[Qq, x,
q]*Pp, Coeff[Pp, x, p]*x^(p - q)*((p - q + 1)*Qq + (m + 1)*x*D[Qq, x])]] /; FreeQ[m, x] && PolyQ[Pp, x] && Pol
yQ[Qq, x] && NeQ[m, -1]
-
Int[(x_)^(m_.)*((a1_) + (b1_.)*(x_)^(n_.))^(p_)*((a2_) + (b2_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[(a1 + b1*x
^n)^(p + 1)*((a2 + b2*x^n)^(p + 1)/(2*b1*b2*n*(p + 1))), x] /; FreeQ[{a1, b1, a2, b2, m, n, p}, x] && EqQ[a2*b
1 + a1*b2, 0] && EqQ[m - 2*n + 1, 0] && NeQ[p, -1]
-
Int[(Pp_)*(Qq_)^(m_.)*(Rr_)^(n_.), x_Symbol] :> With[{p = Expon[Pp, x], q = Expon[Qq, x], r = Expon[Rr, x]}, S
imp[Coeff[Pp, x, p]*x^(p - q - r + 1)*Qq^(m + 1)*(Rr^(n + 1)/((p + m*q + n*r + 1)*Coeff[Qq, x, q]*Coeff[Rr, x,
r])), x] /; NeQ[p + m*q + n*r + 1, 0] && EqQ[(p + m*q + n*r + 1)*Coeff[Qq, x, q]*Coeff[Rr, x, r]*Pp, Coeff[Pp
, x, p]*x^(p - q - r)*((p - q - r + 1)*Qq*Rr + (m + 1)*x*Rr*D[Qq, x] + (n + 1)*x*Qq*D[Rr, x])]] /; FreeQ[{m, n
}, x] && PolyQ[Pp, x] && PolyQ[Qq, x] && PolyQ[Rr, x] && NeQ[m, -1] && NeQ[n, -1]
-
Int[((a_.) + (b_.)*(Pq_)^(n_.))^(p_.)*(Qr_), x_Symbol] :> With[{q = Expon[Pq, x], r = Expon[Qr, x]}, Simp[Coef
f[Qr, x, r]/(q*Coeff[Pq, x, q]) Subst[Int[(a + b*x^n)^p, x], x, Pq], x] /; EqQ[r, q - 1] && EqQ[Coeff[Qr, x,
r]*D[Pq, x], q*Coeff[Pq, x, q]*Qr]] /; FreeQ[{a, b, n, p}, x] && PolyQ[Pq, x] && PolyQ[Qr, x]
-
Int[((a_.) + (b_.)*(Pq_)^(n_.) + (c_.)*(Pq_)^(n2_.))^(p_.)*(Qr_), x_Symbol] :> Module[{q = Expon[Pq, x], r = E
xpon[Qr, x]}, Simp[Coeff[Qr, x, r]/(q*Coeff[Pq, x, q]) Subst[Int[(a + b*x^n + c*x^(2*n))^p, x], x, Pq], x] /
; EqQ[r, q - 1] && EqQ[Coeff[Qr, x, r]*D[Pq, x], q*Coeff[Pq, x, q]*Qr]] /; FreeQ[{a, b, c, n, p}, x] && EqQ[n2
, 2*n] && PolyQ[Pq, x] && PolyQ[Qr, x]
-
Int[(Fx_.)*(Px_)^(p_.), x_Symbol] :> With[{r = Expon[Px, x, Min]}, Int[x^(p*r)*ExpandToSum[Px/x^r, x]^p*Fx, x]
/; IGtQ[r, 0]] /; PolyQ[Px, x] && IntegerQ[p] && !MonomialQ[Px, x] && (ILtQ[p, 0] || !PolyQ[u, x])
-
Int[(Fx_.)*((a_.)*(x_)^(r_.) + (b_.)*(x_)^(s_.))^(p_.), x_Symbol] :> Int[x^(p*r)*(a + b*x^(s - r))^p*Fx, x] /;
FreeQ[{a, b, r, s}, x] && IntegerQ[p] && PosQ[s - r] && !(EqQ[p, 1] && EqQ[u, 1])
-
Int[(Fx_.)*((a_.)*(x_)^(r_.) + (b_.)*(x_)^(s_.) + (c_.)*(x_)^(t_.))^(p_.), x_Symbol] :> Int[x^(p*r)*(a + b*x^(
s - r) + c*x^(t - r))^p*Fx, x] /; FreeQ[{a, b, c, r, s, t}, x] && IntegerQ[p] && PosQ[s - r] && PosQ[t - r] &&
!(EqQ[p, 1] && EqQ[u, 1])
-
Int[(Fx_.)*((d_.)*(x_)^(q_.) + (a_.)*(x_)^(r_.) + (b_.)*(x_)^(s_.) + (c_.)*(x_)^(t_.))^(p_.), x_Symbol] :> Int
[x^(p*r)*(a + b*x^(s - r) + c*x^(t - r) + d*x^(q - r))^p*Fx, x] /; FreeQ[{a, b, c, d, r, s, t, q}, x] && Integ
erQ[p] && PosQ[s - r] && PosQ[t - r] && PosQ[q - r] && !(EqQ[p, 1] && EqQ[u, 1])
-
Int[(Fx_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Simp[1/b^m Int[(b*v)^(m + n)*Fx, x], x] /; FreeQ[{b, n}
, x] && IntegerQ[m]
-
Int[(Fx_.)*((a_.)*(v_))^(m_)*((b_.)*(v_))^(n_), x_Symbol] :> Simp[a^(m + 1/2)*b^(n - 1/2)*(Sqrt[b*v]/Sqrt[a*v]
) Int[v^(m + n)*Fx, x], x] /; FreeQ[{a, b, m}, x] && !IntegerQ[m] && IGtQ[n + 1/2, 0] && IntegerQ[m + n]
-
Int[(Fx_.)*((a_.)*(v_))^(m_)*((b_.)*(v_))^(n_), x_Symbol] :> Simp[a^(m - 1/2)*b^(n + 1/2)*(Sqrt[a*v]/Sqrt[b*v]
) Int[v^(m + n)*Fx, x], x] /; FreeQ[{a, b, m}, x] && !IntegerQ[m] && ILtQ[n - 1/2, 0] && IntegerQ[m + n]
-
Int[(Fx_.)*((a_.)*(v_))^(m_)*((b_.)*(v_))^(n_), x_Symbol] :> Simp[a^(m + n)*((b*v)^n/(a*v)^n) Int[v^(m + n)*
Fx, x], x] /; FreeQ[{a, b, m, n}, x] && !IntegerQ[m] && !IntegerQ[n] && IntegerQ[m + n]
-
Int[(Fx_.)*((a_.)*(v_))^(m_)*((b_.)*(v_))^(n_), x_Symbol] :> Simp[b^IntPart[n]*((b*v)^FracPart[n]/(a^IntPart[n
]*(a*v)^FracPart[n])) Int[(a*v)^(m + n)*Fx, x], x] /; FreeQ[{a, b, m, n}, x] && !IntegerQ[m] && !IntegerQ[
n] && !IntegerQ[m + n]
-
Int[(Fx_)*(x_)^(m_), x_Symbol] :> With[{k = Denominator[m]}, Simp[k Subst[Int[x^(k*(m + 1) - 1)*SubstPower[F
x, x, k], x], x, x^(1/k)], x]] /; FractionQ[m] && AlgebraicFunctionQ[Fx, x]
-
Int[(u_.)*((c_) + (d_.)*(x_)^(n_.))^(q_.)*((a1_) + (b1_.)*(x_)^(non2_.))^(p_.)*((a2_) + (b2_.)*(x_)^(non2_.))^
(p_.), x_Symbol] :> Int[u*(a1*a2 + b1*b2*x^n)^p*(c + d*x^n)^q, x] /; FreeQ[{a1, b1, a2, b2, c, d, n, p, q}, x]
&& EqQ[non2, n/2] && EqQ[a2*b1 + a1*b2, 0] && (IntegerQ[p] || (GtQ[a1, 0] && GtQ[a2, 0]))
-
Int[(u_.)*((c_) + (d_.)*(x_)^(n_.) + (e_.)*(x_)^(n2_.))^(q_.)*((a1_) + (b1_.)*(x_)^(non2_.))^(p_.)*((a2_) + (b
2_.)*(x_)^(non2_.))^(p_.), x_Symbol] :> Int[u*(a1*a2 + b1*b2*x^n)^p*(c + d*x^n + e*x^(2*n))^q, x] /; FreeQ[{a1
, b1, a2, b2, c, d, e, n, p, q}, x] && EqQ[non2, n/2] && EqQ[n2, 2*n] && EqQ[a2*b1 + a1*b2, 0] && (IntegerQ[p]
|| (GtQ[a1, 0] && GtQ[a2, 0]))
-
Int[(u_.)*((c_) + (d_.)*(x_)^(n_.))^(q_.)*((a1_) + (b1_.)*(x_)^(non2_.))^(p_)*((a2_) + (b2_.)*(x_)^(non2_.))^(
p_), x_Symbol] :> Simp[(a1 + b1*x^(n/2))^FracPart[p]*((a2 + b2*x^(n/2))^FracPart[p]/(a1*a2 + b1*b2*x^n)^FracPa
rt[p]) Int[u*(a1*a2 + b1*b2*x^n)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a1, b1, a2, b2, c, d, n, p, q}, x] && EqQ
[non2, n/2] && EqQ[a2*b1 + a1*b2, 0] && !(EqQ[n, 2] && IGtQ[q, 0])
-
Int[(u_.)*((c_) + (d_.)*(x_)^(n_.) + (e_.)*(x_)^(n2_.))^(q_.)*((a1_) + (b1_.)*(x_)^(non2_.))^(p_.)*((a2_) + (b
2_.)*(x_)^(non2_.))^(p_.), x_Symbol] :> Simp[(a1 + b1*x^(n/2))^FracPart[p]*((a2 + b2*x^(n/2))^FracPart[p]/(a1*
a2 + b1*b2*x^n)^FracPart[p]) Int[u*(a1*a2 + b1*b2*x^n)^p*(c + d*x^n + e*x^(2*n))^q, x], x] /; FreeQ[{a1, b1,
a2, b2, c, d, e, n, p, q}, x] && EqQ[non2, n/2] && EqQ[n2, 2*n] && EqQ[a2*b1 + a1*b2, 0]
-
Int[((e1_) + (f1_.)*(x_)^(n2_.))^(r_.)*((e2_) + (f2_.)*(x_)^(n2_.))^(r_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_)
+ (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Int[(a + b*x^n)^p*(c + d*x^n)^q*(e1*e2 + f1*f2*x^n)^r, x] /; FreeQ[{a,
b, c, d, e1, f1, e2, f2, n, p, q, r}, x] && EqQ[n2, n/2] && EqQ[e2*f1 + e1*f2, 0] && (IntegerQ[r] || (GtQ[e1,
0] && GtQ[e2, 0]))
-
Int[((e1_) + (f1_.)*(x_)^(n2_.))^(r_.)*((e2_) + (f2_.)*(x_)^(n2_.))^(r_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_)
+ (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Simp[(e1 + f1*x^(n/2))^FracPart[r]*((e2 + f2*x^(n/2))^FracPart[r]/(e1*
e2 + f1*f2*x^n)^FracPart[r]) Int[(a + b*x^n)^p*(c + d*x^n)^q*(e1*e2 + f1*f2*x^n)^r, x], x] /; FreeQ[{a, b, c
, d, e1, f1, e2, f2, n, p, q, r}, x] && EqQ[n2, n/2] && EqQ[e2*f1 + e1*f2, 0]
-
Int[(u_.)*((c_.)*((d_)*((a_.) + (b_.)*(x_)))^(q_))^(p_), x_Symbol] :> Simp[(c*(d*(a + b*x))^q)^p/(a + b*x)^(p*
q) Int[u*(a + b*x)^(p*q), x], x] /; FreeQ[{a, b, c, d, q, p}, x] && !IntegerQ[q] && !IntegerQ[p]
-
Int[(u_.)*((c_.)*((d_.)*((a_.) + (b_.)*(x_))^(n_))^(q_))^(p_), x_Symbol] :> Simp[(c*(d*(a + b*x)^n)^q)^p/(a +
b*x)^(n*p*q) Int[u*(a + b*x)^(n*p*q), x], x] /; FreeQ[{a, b, c, d, n, q, p}, x] && !IntegerQ[q] && !Intege
rQ[p]
-
Int[(u_.)*((c_.)*((a_.) + (b_.)*(x_)^(n_.))^(q_))^(p_), x_Symbol] :> Simp[Simp[(c*(a + b*x^n)^q)^p/(a + b*x^n)
^(p*q)] Int[u*(a + b*x^n)^(p*q), x], x] /; FreeQ[{a, b, c, n, p, q}, x] && GeQ[a, 0]
-
Int[(u_.)*((c_.)*((a_) + (b_.)*(x_)^(n_.))^(q_))^(p_), x_Symbol] :> Simp[Simp[(c*(a + b*x^n)^q)^p/(1 + b*(x^n/
a))^(p*q)] Int[u*(1 + b*(x^n/a))^(p*q), x], x] /; FreeQ[{a, b, c, n, p, q}, x] && !GeQ[a, 0]
-
Int[(u_.)*((e_.)*((a_.) + (b_.)*(x_)^(n_.))^(q_.)*((c_) + (d_.)*(x_)^(n_.))^(q_.))^(p_), x_Symbol] :> Int[u*(e
*(d/b)^q*(a + b*x^n)^(2*q))^p, x] /; FreeQ[{a, b, c, d, e, n, p}, x] && IntegerQ[q] && EqQ[b*c - a*d, 0]
-
Int[(u_.)*((e_.)*((a_.) + (b_.)*(x_)^(n_.))^(q_)*((c_) + (d_.)*(x_)^(n_.))^(q_))^(p_), x_Symbol] :> Int[u*(e*(
(-a^2)*(d/b) + b*d*x^(2*n))^q)^p, x] /; FreeQ[{a, b, c, d, e, n, p}, x] && IntegerQ[q] && EqQ[b*c + a*d, 0]
-
Int[(u_.)*((e_.)*((a_.) + (b_.)*(x_)^(n_.))*((c_) + (d_.)*(x_)^(n_.)))^(p_), x_Symbol] :> Int[u*(a*c*e + (b*c
+ a*d)*e*x^n + b*d*e*x^(2*n))^p, x] /; FreeQ[{a, b, c, d, e, n, p}, x]
-
Int[(u_.)*(((e_.)*((a_.) + (b_.)*(x_)^(n_.)))/((c_) + (d_.)*(x_)^(n_.)))^(p_), x_Symbol] :> Simp[(b*(e/d))^p
Int[u, x], x] /; FreeQ[{a, b, c, d, e, n, p}, x] && EqQ[b*c - a*d, 0]
-
Int[(u_.)*(((e_.)*((a_.) + (b_.)*(x_)^(n_.)))/((c_) + (d_.)*(x_)^(n_.)))^(p_), x_Symbol] :> Int[u*((a*e + b*e*
x^n)^p/(c + d*x^n)^p), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && GtQ[b*d*e, 0] && GtQ[c - a*(d/b), 0]
-
Int[(((e_.)*((a_.) + (b_.)*(x_)^(n_.)))/((c_) + (d_.)*(x_)^(n_.)))^(p_), x_Symbol] :> With[{q = Denominator[p]
}, Simp[q*e*((b*c - a*d)/n) Subst[Int[x^(q*(p + 1) - 1)*(((-a)*e + c*x^q)^(1/n - 1)/(b*e - d*x^q)^(1/n + 1))
, x], x, (e*((a + b*x^n)/(c + d*x^n)))^(1/q)], x]] /; FreeQ[{a, b, c, d, e}, x] && FractionQ[p] && IntegerQ[1/
n]
-
Int[(x_)^(m_.)*(((e_.)*((a_.) + (b_.)*(x_)))/((c_) + (d_.)*(x_)))^(p_), x_Symbol] :> With[{q = Denominator[p]}
, Simp[q*e*(b*c - a*d) Subst[Int[x^(q*(p + 1) - 1)*(((-a)*e + c*x^q)^m/(b*e - d*x^q)^(m + 2)), x], x, (e*((a
+ b*x)/(c + d*x)))^(1/q)], x]] /; FreeQ[{a, b, c, d, e, m}, x] && FractionQ[p] && IntegerQ[m]
-
Int[(x_)^(m_.)*(((e_.)*((a_.) + (b_.)*(x_)^(n_.)))/((c_) + (d_.)*(x_)^(n_.)))^(p_), x_Symbol] :> Simp[1/n Su
bst[Int[x^(Simplify[(m + 1)/n] - 1)*(e*((a + b*x)/(c + d*x)))^p, x], x, x^n], x] /; FreeQ[{a, b, c, d, e, m, n
, p}, x] && IntegerQ[Simplify[(m + 1)/n]]
-
Int[((f_)*(x_))^(m_)*(((e_.)*((a_.) + (b_.)*(x_)^(n_.)))/((c_) + (d_.)*(x_)^(n_.)))^(p_), x_Symbol] :> Simp[Si
mp[(c*x)^m/x^m] Int[x^m*(e*((a + b*x^n)/(c + d*x^n)))^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] &&
IntegerQ[Simplify[(m + 1)/n]]
-
Int[(u_)^(r_.)*(((e_.)*((a_.) + (b_.)*(x_)^(n_.)))/((c_) + (d_.)*(x_)^(n_.)))^(p_), x_Symbol] :> With[{q = Den
ominator[p]}, Simp[q*e*((b*c - a*d)/n) Subst[Int[SimplifyIntegrand[x^(q*(p + 1) - 1)*(((-a)*e + c*x^q)^(1/n
- 1)/(b*e - d*x^q)^(1/n + 1))*(u /. x -> ((-a)*e + c*x^q)^(1/n)/(b*e - d*x^q)^(1/n))^r, x], x], x, (e*((a + b*
x^n)/(c + d*x^n)))^(1/q)], x]] /; FreeQ[{a, b, c, d, e}, x] && PolynomialQ[u, x] && FractionQ[p] && IntegerQ[1
/n] && IntegerQ[r]
-
Int[(u_)^(r_.)*(x_)^(m_.)*(((e_.)*((a_.) + (b_.)*(x_)^(n_.)))/((c_) + (d_.)*(x_)^(n_.)))^(p_), x_Symbol] :> Wi
th[{q = Denominator[p]}, Simp[q*e*((b*c - a*d)/n) Subst[Int[SimplifyIntegrand[x^(q*(p + 1) - 1)*(((-a)*e + c
*x^q)^((m + 1)/n - 1)/(b*e - d*x^q)^((m + 1)/n + 1))*(u /. x -> ((-a)*e + c*x^q)^(1/n)/(b*e - d*x^q)^(1/n))^r,
x], x], x, (e*((a + b*x^n)/(c + d*x^n)))^(1/q)], x]] /; FreeQ[{a, b, c, d, e}, x] && PolynomialQ[u, x] && Fra
ctionQ[p] && IntegerQ[1/n] && IntegersQ[m, r]
-
Int[(u_.)*((a_) + (b_.)/((c_) + (d_.)*(x_)^(n_)))^(p_), x_Symbol] :> Int[u*((b + a*c + a*d*x^n)/(c + d*x^n))^p
, x] /; FreeQ[{a, b, c, d, n, p}, x]
-
Int[(u_.)*((e_.)*((a_.) + (b_.)*(x_)^(n_.))^(q_.)*((c_) + (d_.)*(x_)^(n_))^(r_.))^(p_), x_Symbol] :> Simp[Simp
[(e*(a + b*x^n)^q*(c + d*x^n)^r)^p/((a + b*x^n)^(p*q)*(c + d*x^n)^(p*r))] Int[u*(a + b*x^n)^(p*q)*(c + d*x^n
)^(p*r), x], x] /; FreeQ[{a, b, c, d, e, n, p, q, r}, x]
-
Int[((a_.) + (b_.)*((c_.)/(x_))^(n_))^(p_), x_Symbol] :> Simp[-c Subst[Int[(a + b*x^n)^p/x^2, x], x, c/x], x
] /; FreeQ[{a, b, c, n, p}, x]
-
Int[((a_.) + (b_.)*((c_.)/(x_))^(n_))^(p_)*(x_)^(m_.), x_Symbol] :> Simp[-c^(m + 1) Subst[Int[(a + b*x^n)^p/
x^(m + 2), x], x, c/x], x] /; FreeQ[{a, b, c, n, p}, x] && IntegerQ[m]
-
Int[((a_.) + (b_.)*((c_.)/(x_))^(n_))^(p_)*((d_.)*(x_))^(m_), x_Symbol] :> Simp[(-c)*(d*x)^m*(c/x)^m Subst[I
nt[(a + b*x^n)^p/x^(m + 2), x], x, c/x], x] /; FreeQ[{a, b, c, d, m, n, p}, x] && !IntegerQ[m]
-
Int[((a_.) + (c_.)*((d_.)/(x_))^(n2_.) + (b_.)*((d_.)/(x_))^(n_))^(p_), x_Symbol] :> Simp[-d Subst[Int[(a +
b*x^n + c*x^(2*n))^p/x^2, x], x, d/x], x] /; FreeQ[{a, b, c, d, n, p}, x] && EqQ[n2, 2*n]
-
Int[((a_) + (c_.)*((d_.)/(x_))^(n2_.) + (b_.)*((d_.)/(x_))^(n_))^(p_)*(x_)^(m_.), x_Symbol] :> Simp[-d^(m + 1)
Subst[Int[(a + b*x^n + c*x^(2*n))^p/x^(m + 2), x], x, d/x], x] /; FreeQ[{a, b, c, d, n, p}, x] && EqQ[n2, 2
*n] && IntegerQ[m]
-
Int[((a_) + (c_.)*((d_.)/(x_))^(n2_.) + (b_.)*((d_.)/(x_))^(n_))^(p_)*((e_.)*(x_))^(m_), x_Symbol] :> Simp[(-d
)*(e*x)^m*(d/x)^m Subst[Int[(a + b*x^n + c*x^(2*n))^p/x^(m + 2), x], x, d/x], x] /; FreeQ[{a, b, c, d, e, m,
n, p}, x] && EqQ[n2, 2*n] && !IntegerQ[m]
-
Int[((a_.) + (b_.)*((d_.)/(x_))^(n_) + (c_.)*(x_)^(n2_.))^(p_), x_Symbol] :> Simp[-d Subst[Int[(a + b*x^n +
(c/d^(2*n))*x^(2*n))^p/x^2, x], x, d/x], x] /; FreeQ[{a, b, c, d, n, p}, x] && EqQ[n2, -2*n] && IntegerQ[2*n]
-
Int[(x_)^(m_.)*((a_) + (b_.)*((d_.)/(x_))^(n_) + (c_.)*(x_)^(n2_.))^(p_), x_Symbol] :> Simp[-d^(m + 1) Subst
[Int[(a + b*x^n + (c/d^(2*n))*x^(2*n))^p/x^(m + 2), x], x, d/x], x] /; FreeQ[{a, b, c, d, n, p}, x] && EqQ[n2,
-2*n] && IntegerQ[2*n] && IntegerQ[m]
-
Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*((d_.)/(x_))^(n_) + (c_.)*(x_)^(n2_.))^(p_), x_Symbol] :> Simp[(-d)*(e*x)^
m*(d/x)^m Subst[Int[(a + b*x^n + (c/d^(2*n))*x^(2*n))^p/x^(m + 2), x], x, d/x], x] /; FreeQ[{a, b, c, d, e,
n, p}, x] && EqQ[n2, -2*n] && !IntegerQ[m] && IntegerQ[2*n]
-
Int[(u_.)*((e_.)*((a_) + (b_.)*(x_)^(n_.))^(r_.))^(p_)*((f_.)*((c_) + (d_.)*(x_)^(n_.))^(s_))^(q_), x_Symbol]
:> Simp[(e*(a + b*x^n)^r)^p*((f*(c + d*x^n)^s)^q/((a + b*x^n)^(p*r)*(c + d*x^n)^(q*s))) Int[u*(a + b*x^n)^(p
*r)*(c + d*x^n)^(q*s), x], x] /; FreeQ[{a, b, c, d, e, f, n, p, q, r, s}, x]
-
Int[(u_.)*(Px_), x_Symbol] :> With[{a = Rt[Coeff[Px, x^2, 0], Expon[Px, x^2]], b = Rt[Coeff[Px, x^2, Expon[Px,
x^2]], Expon[Px, x^2]]}, Int[u*(a + b*x^2)^Expon[Px, x^2], x] /; EqQ[Px, (a + b*x^2)^Expon[Px, x^2]]] /; Poly
Q[Px, x^2] && GtQ[Expon[Px, x^2], 1] && NeQ[Coeff[Px, x^2, 0], 0] && !MatchQ[Px, (a_.)*(v_)^Expon[Px, x^2] /;
FreeQ[a, x] && BinomialQ[v, x, 2]]
-
Int[(u_.)*(Px_)^(p_), x_Symbol] :> With[{a = Rt[Coeff[Px, x^2, 0], Expon[Px, x^2]], b = Rt[Coeff[Px, x^2, Expo
n[Px, x^2]], Expon[Px, x^2]]}, Int[u*(a + b*x^2)^(Expon[Px, x^2]*p), x] /; EqQ[Px, (a + b*x^2)^Expon[Px, x^2]]
] /; IntegerQ[p] && PolyQ[Px, x^2] && GtQ[Expon[Px, x^2], 1] && NeQ[Coeff[Px, x^2, 0], 0]
-
Int[(u_.)*(Px_)^(p_), x_Symbol] :> With[{a = Rt[Coeff[Px, x^2, 0], Expon[Px, x^2]], b = Rt[Coeff[Px, x^2, Expo
n[Px, x^2]], Expon[Px, x^2]]}, Simp[((a + b*x^2)^Expon[Px, x^2])^p/(a + b*x^2)^(Expon[Px, x^2]*p) Int[u*(a +
b*x^2)^(Expon[Px, x^2]*p), x], x] /; EqQ[Px, (a + b*x^2)^Expon[Px, x^2]]] /; !IntegerQ[p] && PolyQ[Px, x^2]
&& GtQ[Expon[Px, x^2], 1] && NeQ[Coeff[Px, x^2, 0], 0]
-
Int[(u_)^(p_), x_Symbol] :> Int[ExpandToSum[u, x]^p, x] /; FreeQ[p, x] && BinomialQ[u, x] && !BinomialMatchQ[
u, x]
-
Int[(u_)^(p_.)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[(c*x)^m*ExpandToSum[u, x]^p, x] /; FreeQ[{c, m, p}, x] &&
BinomialQ[u, x] && !BinomialMatchQ[u, x]
-
Int[(u_)^(p_.)*(v_)^(q_.), x_Symbol] :> Int[ExpandToSum[u, x]^p*ExpandToSum[v, x]^q, x] /; FreeQ[{p, q}, x] &&
BinomialQ[{u, v}, x] && EqQ[BinomialDegree[u, x] - BinomialDegree[v, x], 0] && !BinomialMatchQ[{u, v}, x]
-
Int[(u_)^(p_.)*(v_)^(q_.)*((e_.)*(x_))^(m_.), x_Symbol] :> Int[(e*x)^m*ExpandToSum[u, x]^p*ExpandToSum[v, x]^q
, x] /; FreeQ[{e, m, p, q}, x] && BinomialQ[{u, v}, x] && EqQ[BinomialDegree[u, x] - BinomialDegree[v, x], 0]
&& !BinomialMatchQ[{u, v}, x]
-
Int[(u_)^(m_.)*(v_)^(p_.)*(w_)^(q_.), x_Symbol] :> Int[ExpandToSum[u, x]^m*ExpandToSum[v, x]^p*ExpandToSum[w,
x]^q, x] /; FreeQ[{m, p, q}, x] && BinomialQ[{u, v, w}, x] && EqQ[BinomialDegree[u, x] - BinomialDegree[v, x],
0] && EqQ[BinomialDegree[u, x] - BinomialDegree[w, x], 0] && !BinomialMatchQ[{u, v, w}, x]
-
Int[(u_)^(p_.)*(v_)^(q_.)*((g_.)*(x_))^(m_.)*(z_)^(r_.), x_Symbol] :> Int[(g*x)^m*ExpandToSum[u, x]^p*ExpandTo
Sum[v, x]^q*ExpandToSum[z, x]^r, x] /; FreeQ[{g, m, p, q, r}, x] && BinomialQ[{u, v, z}, x] && EqQ[BinomialDeg
ree[u, x] - BinomialDegree[v, x], 0] && EqQ[BinomialDegree[u, x] - BinomialDegree[z, x], 0] && !BinomialMatch
Q[{u, v, z}, x]
-
Int[(u_)^(p_), x_Symbol] :> Int[ExpandToSum[u, x]^p, x] /; FreeQ[p, x] && GeneralizedBinomialQ[u, x] && !Gene
ralizedBinomialMatchQ[u, x]
-
Int[(u_)^(p_.)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[(c*x)^m*ExpandToSum[u, x]^p, x] /; FreeQ[{c, m, p}, x] &&
GeneralizedBinomialQ[u, x] && !GeneralizedBinomialMatchQ[u, x]
-
Int[(u_)^(p_), x_Symbol] :> Int[ExpandToSum[u, x]^p, x] /; FreeQ[p, x] && QuadraticQ[u, x] && !QuadraticMatch
Q[u, x]
-
Int[(u_)^(m_.)*(v_)^(p_.), x_Symbol] :> Int[ExpandToSum[u, x]^m*ExpandToSum[v, x]^p, x] /; FreeQ[{m, p}, x] &&
LinearQ[u, x] && QuadraticQ[v, x] && !(LinearMatchQ[u, x] && QuadraticMatchQ[v, x])
-
Int[(u_)^(m_.)*(v_)^(n_.)*(w_)^(p_.), x_Symbol] :> Int[ExpandToSum[u, x]^m*ExpandToSum[v, x]^n*ExpandToSum[w,
x]^p, x] /; FreeQ[{m, n, p}, x] && LinearQ[{u, v}, x] && QuadraticQ[w, x] && !(LinearMatchQ[{u, v}, x] && Qua
draticMatchQ[w, x])
-
Int[(u_)^(p_.)*(v_)^(q_.), x_Symbol] :> Int[ExpandToSum[u, x]^p*ExpandToSum[v, x]^q, x] /; FreeQ[{p, q}, x] &&
QuadraticQ[{u, v}, x] && !QuadraticMatchQ[{u, v}, x]
-
Int[(u_)^(p_.)*(v_)^(q_.)*(z_)^(m_.), x_Symbol] :> Int[ExpandToSum[z, x]^m*ExpandToSum[u, x]^p*ExpandToSum[v,
x]^q, x] /; FreeQ[{m, p, q}, x] && LinearQ[z, x] && QuadraticQ[{u, v}, x] && !(LinearMatchQ[z, x] && Quadrati
cMatchQ[{u, v}, x]) && !MatchQ[z^m*u^p*v^q, ((d_.) + (e_.)*x)^m*((f_.) + (g_.)*x)^2*((a_.) + (b_.)*x + (c_.)*
x^2)^(t_.) /; FreeQ[{a, b, c, d, e, f, g, t}, x]] && !MatchQ[z^m*u^p*v^q, ((d_.) + (e_.)*x)^m*((f_.) + (g_.)*
x)^2*((a_.) + (c_.)*x^2)^(t_.) /; FreeQ[{a, c, d, e, f, g, t}, x]]
-
Int[(u_)^(p_), x_Symbol] :> Int[ExpandToSum[u, x]^p, x] /; FreeQ[p, x] && TrinomialQ[u, x] && !TrinomialMatch
Q[u, x]
-
Int[(u_)^(p_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Int[(d*x)^m*ExpandToSum[u, x]^p, x] /; FreeQ[{d, m, p}, x] &&
TrinomialQ[u, x] && !TrinomialMatchQ[u, x]
-
Int[(u_)^(q_.)*(v_)^(p_.), x_Symbol] :> Int[ExpandToSum[u, x]^q*ExpandToSum[v, x]^p, x] /; FreeQ[{p, q}, x] &&
BinomialQ[u, x] && TrinomialQ[v, x] && !(BinomialMatchQ[u, x] && TrinomialMatchQ[v, x])
-
Int[(u_)^(q_.)*(v_)^(p_.), x_Symbol] :> Int[ExpandToSum[u, x]^q*ExpandToSum[v, x]^p, x] /; FreeQ[{p, q}, x] &&
BinomialQ[u, x] && BinomialQ[v, x] && !(BinomialMatchQ[u, x] && BinomialMatchQ[v, x])
-
Int[(u_)^(p_.)*((f_.)*(x_))^(m_.)*(z_)^(q_.), x_Symbol] :> Int[(f*x)^m*ExpandToSum[z, x]^q*ExpandToSum[u, x]^p
, x] /; FreeQ[{f, m, p, q}, x] && BinomialQ[z, x] && TrinomialQ[u, x] && !(BinomialMatchQ[z, x] && TrinomialM
atchQ[u, x])
-
Int[(u_)^(p_.)*((f_.)*(x_))^(m_.)*(z_)^(q_.), x_Symbol] :> Int[(f*x)^m*ExpandToSum[z, x]^q*ExpandToSum[u, x]^p
, x] /; FreeQ[{f, m, p, q}, x] && BinomialQ[z, x] && BinomialQ[u, x] && !(BinomialMatchQ[z, x] && BinomialMat
chQ[u, x])
-
Int[(Px_)*(u_)^(p_.)*(z_)^(q_.), x_Symbol] :> Int[Px*ExpandToSum[z, x]^q*ExpandToSum[u, x]^p, x] /; FreeQ[{p,
q}, x] && PolyQ[Px, x] && BinomialQ[z, x] && TrinomialQ[u, x] && !(BinomialMatchQ[z, x] && TrinomialMatchQ[u,
x])
-
Int[(Px_)*(u_)^(p_.)*(z_)^(q_.), x_Symbol] :> Int[Px*ExpandToSum[z, x]^q*ExpandToSum[u, x]^p, x] /; FreeQ[{p,
q}, x] && BinomialQ[z, x] && BinomialQ[u, x] && !(BinomialMatchQ[z, x] && BinomialMatchQ[u, x])
-
Int[(u_)^(p_), x_Symbol] :> Int[ExpandToSum[u, x]^p, x] /; FreeQ[p, x] && GeneralizedTrinomialQ[u, x] && !Gen
eralizedTrinomialMatchQ[u, x]
-
Int[(u_)^(p_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Int[(d*x)^m*ExpandToSum[u, x]^p, x] /; FreeQ[{d, m, p}, x] &&
GeneralizedTrinomialQ[u, x] && !GeneralizedTrinomialMatchQ[u, x]
-
Int[(u_)^(p_.)*(z_), x_Symbol] :> Int[ExpandToSum[z, x]*ExpandToSum[u, x]^p, x] /; FreeQ[p, x] && BinomialQ[z,
x] && GeneralizedTrinomialQ[u, x] && EqQ[BinomialDegree[z, x] - GeneralizedTrinomialDegree[u, x], 0] && !(Bi
nomialMatchQ[z, x] && GeneralizedTrinomialMatchQ[u, x])
-
Int[(u_)^(p_.)*((f_.)*(x_))^(m_.)*(z_), x_Symbol] :> Int[(f*x)^m*ExpandToSum[z, x]*ExpandToSum[u, x]^p, x] /;
FreeQ[{f, m, p}, x] && BinomialQ[z, x] && GeneralizedTrinomialQ[u, x] && EqQ[BinomialDegree[z, x] - Generalize
dTrinomialDegree[u, x], 0] && !(BinomialMatchQ[z, x] && GeneralizedTrinomialMatchQ[u, x])
-
Int[(((a_.) + (b_.)*(x_))*((A_.) + (B_.)*(x_)))/(Sqrt[(c_.) + (d_.)*(x_)]*Sqrt[(e_.) + (f_.)*(x_)]*Sqrt[(g_.)
+ (h_.)*(x_)]), x_Symbol] :> Simp[2*b*B*Sqrt[c + d*x]*Sqrt[e + f*x]*(Sqrt[g + h*x]/(3*d*f*h)), x] + Simp[1/(3*
d*f*h) Int[(1/(Sqrt[c + d*x]*Sqrt[e + f*x]*Sqrt[g + h*x]))*Simp[3*a*A*d*f*h - b*B*(d*e*g + c*f*g + c*e*h) +
(3*A*b*d*f*h + B*(3*a*d*f*h - 2*b*(d*f*g + d*e*h + c*f*h)))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, A,
B}, x]
-
Int[(Sqrt[(a_.) + (b_.)*(x_)]*((A_.) + (B_.)*(x_)))/(Sqrt[(c_.) + (d_.)*(x_)]*Sqrt[(e_.) + (f_.)*(x_)]*Sqrt[(g
_.) + (h_.)*(x_)]), x_Symbol] :> Simp[b*B*Sqrt[c + d*x]*Sqrt[e + f*x]*(Sqrt[g + h*x]/(d*f*h*Sqrt[a + b*x])), x
] + (-Simp[B*((b*g - a*h)/(2*f*h)) Int[Sqrt[e + f*x]/(Sqrt[a + b*x]*Sqrt[c + d*x]*Sqrt[g + h*x]), x], x] + S
imp[B*(b*e - a*f)*((b*g - a*h)/(2*d*f*h)) Int[Sqrt[c + d*x]/((a + b*x)^(3/2)*Sqrt[e + f*x]*Sqrt[g + h*x]), x
], x]) /; FreeQ[{a, b, c, d, e, f, g, h, A, B}, x] && EqQ[2*A*d*f - B*(d*e + c*f), 0]
-
Int[(Sqrt[(a_.) + (b_.)*(x_)]*((A_.) + (B_.)*(x_)))/(Sqrt[(c_.) + (d_.)*(x_)]*Sqrt[(e_.) + (f_.)*(x_)]*Sqrt[(g
_.) + (h_.)*(x_)]), x_Symbol] :> Simp[B*Sqrt[a + b*x]*Sqrt[e + f*x]*(Sqrt[g + h*x]/(f*h*Sqrt[c + d*x])), x] +
(-Simp[B*(b*e - a*f)*((b*g - a*h)/(2*b*f*h)) Int[1/(Sqrt[a + b*x]*Sqrt[c + d*x]*Sqrt[e + f*x]*Sqrt[g + h*x])
, x], x] + Simp[B*(d*e - c*f)*((d*g - c*h)/(2*d*f*h)) Int[Sqrt[a + b*x]/((c + d*x)^(3/2)*Sqrt[e + f*x]*Sqrt[
g + h*x]), x], x] + Simp[(2*A*b*d*f*h + B*(a*d*f*h - b*(d*f*g + d*e*h + c*f*h)))/(2*b*d*f*h) Int[Sqrt[a + b*
x]/(Sqrt[c + d*x]*Sqrt[e + f*x]*Sqrt[g + h*x]), x], x]) /; FreeQ[{a, b, c, d, e, f, g, h, A, B}, x] && NeQ[2*A
*d*f - B*(d*e + c*f), 0]
-
Int[(((a_.) + (b_.)*(x_))^(m_)*((A_.) + (B_.)*(x_)))/(Sqrt[(c_.) + (d_.)*(x_)]*Sqrt[(e_.) + (f_.)*(x_)]*Sqrt[(
g_.) + (h_.)*(x_)]), x_Symbol] :> Simp[2*b*B*(a + b*x)^(m - 1)*Sqrt[c + d*x]*Sqrt[e + f*x]*(Sqrt[g + h*x]/(d*f
*h*(2*m + 1))), x] + Simp[1/(d*f*h*(2*m + 1)) Int[((a + b*x)^(m - 2)/(Sqrt[c + d*x]*Sqrt[e + f*x]*Sqrt[g + h
*x]))*Simp[(-b)*B*(a*(d*e*g + c*f*g + c*e*h) + 2*b*c*e*g*(m - 1)) + a^2*A*d*f*h*(2*m + 1) + (2*a*A*b*d*f*h*(2*
m + 1) - B*(2*a*b*(d*f*g + d*e*h + c*f*h) + b^2*(d*e*g + c*f*g + c*e*h)*(2*m - 1) - a^2*d*f*h*(2*m + 1)))*x +
b*(A*b*d*f*h*(2*m + 1) - B*(2*b*(d*f*g + d*e*h + c*f*h)*m - a*d*f*h*(4*m - 1)))*x^2, x], x], x] /; FreeQ[{a, b
, c, d, e, f, g, h, A, B}, x] && IntegerQ[2*m] && GtQ[m, 1]
-
Int[((A_.) + (B_.)*(x_))/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_.) + (d_.)*(x_)]*Sqrt[(e_.) + (f_.)*(x_)]*Sqrt[(g_.
) + (h_.)*(x_)]), x_Symbol] :> Simp[(A*b - a*B)/b Int[1/(Sqrt[a + b*x]*Sqrt[c + d*x]*Sqrt[e + f*x]*Sqrt[g +
h*x]), x], x] + Simp[B/b Int[Sqrt[a + b*x]/(Sqrt[c + d*x]*Sqrt[e + f*x]*Sqrt[g + h*x]), x], x] /; FreeQ[{a,
b, c, d, e, f, g, h, A, B}, x]
-
Int[(((a_.) + (b_.)*(x_))^(m_)*((A_.) + (B_.)*(x_)))/(Sqrt[(c_.) + (d_.)*(x_)]*Sqrt[(e_.) + (f_.)*(x_)]*Sqrt[(
g_.) + (h_.)*(x_)]), x_Symbol] :> Simp[(A*b^2 - a*b*B)*(a + b*x)^(m + 1)*Sqrt[c + d*x]*Sqrt[e + f*x]*(Sqrt[g +
h*x]/((m + 1)*(b*c - a*d)*(b*e - a*f)*(b*g - a*h))), x] - Simp[1/(2*(m + 1)*(b*c - a*d)*(b*e - a*f)*(b*g - a*
h)) Int[((a + b*x)^(m + 1)/(Sqrt[c + d*x]*Sqrt[e + f*x]*Sqrt[g + h*x]))*Simp[A*(2*a^2*d*f*h*(m + 1) - 2*a*b*
(m + 1)*(d*f*g + d*e*h + c*f*h) + b^2*(2*m + 3)*(d*e*g + c*f*g + c*e*h)) - b*B*(a*(d*e*g + c*f*g + c*e*h) + 2*
b*c*e*g*(m + 1)) - 2*((A*b - a*B)*(a*d*f*h*(m + 1) - b*(m + 2)*(d*f*g + d*e*h + c*f*h)))*x + d*f*h*(2*m + 5)*(
A*b^2 - a*b*B)*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, A, B}, x] && IntegerQ[2*m] && LtQ[m, -1]
-
Int[(((a_.) + (b_.)*(x_))^(m_.)*((A_.) + (B_.)*(x_) + (C_.)*(x_)^2))/(Sqrt[(c_.) + (d_.)*(x_)]*Sqrt[(e_.) + (f
_.)*(x_)]*Sqrt[(g_.) + (h_.)*(x_)]), x_Symbol] :> Simp[2*C*(a + b*x)^m*Sqrt[c + d*x]*Sqrt[e + f*x]*(Sqrt[g + h
*x]/(d*f*h*(2*m + 3))), x] + Simp[1/(d*f*h*(2*m + 3)) Int[((a + b*x)^(m - 1)/(Sqrt[c + d*x]*Sqrt[e + f*x]*Sq
rt[g + h*x]))*Simp[a*A*d*f*h*(2*m + 3) - C*(a*(d*e*g + c*f*g + c*e*h) + 2*b*c*e*g*m) + ((A*b + a*B)*d*f*h*(2*m
+ 3) - C*(2*a*(d*f*g + d*e*h + c*f*h) + b*(2*m + 1)*(d*e*g + c*f*g + c*e*h)))*x + (b*B*d*f*h*(2*m + 3) + 2*C*
(a*d*f*h*m - b*(m + 1)*(d*f*g + d*e*h + c*f*h)))*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, A, B, C}, x
] && IntegerQ[2*m] && GtQ[m, 0]
-
Int[(((a_.) + (b_.)*(x_))^(m_.)*((A_.) + (C_.)*(x_)^2))/(Sqrt[(c_.) + (d_.)*(x_)]*Sqrt[(e_.) + (f_.)*(x_)]*Sqr
t[(g_.) + (h_.)*(x_)]), x_Symbol] :> Simp[2*C*(a + b*x)^m*Sqrt[c + d*x]*Sqrt[e + f*x]*(Sqrt[g + h*x]/(d*f*h*(2
*m + 3))), x] + Simp[1/(d*f*h*(2*m + 3)) Int[((a + b*x)^(m - 1)/(Sqrt[c + d*x]*Sqrt[e + f*x]*Sqrt[g + h*x]))
*Simp[a*A*d*f*h*(2*m + 3) - C*(a*(d*e*g + c*f*g + c*e*h) + 2*b*c*e*g*m) + (A*b*d*f*h*(2*m + 3) - C*(2*a*(d*f*g
+ d*e*h + c*f*h) + b*(2*m + 1)*(d*e*g + c*f*g + c*e*h)))*x + 2*C*(a*d*f*h*m - b*(m + 1)*(d*f*g + d*e*h + c*f*
h))*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, A, C}, x] && IntegerQ[2*m] && GtQ[m, 0]
-
Int[((A_.) + (B_.)*(x_) + (C_.)*(x_)^2)/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_.) + (d_.)*(x_)]*Sqrt[(e_.) + (f_.)*
(x_)]*Sqrt[(g_.) + (h_.)*(x_)]), x_Symbol] :> Simp[C*Sqrt[a + b*x]*Sqrt[e + f*x]*(Sqrt[g + h*x]/(b*f*h*Sqrt[c
+ d*x])), x] + (Simp[1/(2*b*d*f*h) Int[(1/(Sqrt[a + b*x]*Sqrt[c + d*x]*Sqrt[e + f*x]*Sqrt[g + h*x]))*Simp[2*
A*b*d*f*h - C*(b*d*e*g + a*c*f*h) + (2*b*B*d*f*h - C*(a*d*f*h + b*(d*f*g + d*e*h + c*f*h)))*x, x], x], x] + Si
mp[C*(d*e - c*f)*((d*g - c*h)/(2*b*d*f*h)) Int[Sqrt[a + b*x]/((c + d*x)^(3/2)*Sqrt[e + f*x]*Sqrt[g + h*x]),
x], x]) /; FreeQ[{a, b, c, d, e, f, g, h, A, B, C}, x]
-
Int[((A_.) + (C_.)*(x_)^2)/(Sqrt[(a_.) + (b_.)*(x_)]*Sqrt[(c_.) + (d_.)*(x_)]*Sqrt[(e_.) + (f_.)*(x_)]*Sqrt[(g
_.) + (h_.)*(x_)]), x_Symbol] :> Simp[C*Sqrt[a + b*x]*Sqrt[e + f*x]*(Sqrt[g + h*x]/(b*f*h*Sqrt[c + d*x])), x]
+ (Simp[1/(2*b*d*f*h) Int[(1/(Sqrt[a + b*x]*Sqrt[c + d*x]*Sqrt[e + f*x]*Sqrt[g + h*x]))*Simp[2*A*b*d*f*h - C
*(b*d*e*g + a*c*f*h) - C*(a*d*f*h + b*(d*f*g + d*e*h + c*f*h))*x, x], x], x] + Simp[C*(d*e - c*f)*((d*g - c*h)
/(2*b*d*f*h)) Int[Sqrt[a + b*x]/((c + d*x)^(3/2)*Sqrt[e + f*x]*Sqrt[g + h*x]), x], x]) /; FreeQ[{a, b, c, d,
e, f, g, h, A, C}, x]
-
Int[(((a_.) + (b_.)*(x_))^(m_)*((A_.) + (B_.)*(x_) + (C_.)*(x_)^2))/(Sqrt[(c_.) + (d_.)*(x_)]*Sqrt[(e_.) + (f_
.)*(x_)]*Sqrt[(g_.) + (h_.)*(x_)]), x_Symbol] :> Simp[(A*b^2 - a*b*B + a^2*C)*(a + b*x)^(m + 1)*Sqrt[c + d*x]*
Sqrt[e + f*x]*(Sqrt[g + h*x]/((m + 1)*(b*c - a*d)*(b*e - a*f)*(b*g - a*h))), x] - Simp[1/(2*(m + 1)*(b*c - a*d
)*(b*e - a*f)*(b*g - a*h)) Int[((a + b*x)^(m + 1)/(Sqrt[c + d*x]*Sqrt[e + f*x]*Sqrt[g + h*x]))*Simp[A*(2*a^2
*d*f*h*(m + 1) - 2*a*b*(m + 1)*(d*f*g + d*e*h + c*f*h) + b^2*(2*m + 3)*(d*e*g + c*f*g + c*e*h)) - (b*B - a*C)*
(a*(d*e*g + c*f*g + c*e*h) + 2*b*c*e*g*(m + 1)) - 2*((A*b - a*B)*(a*d*f*h*(m + 1) - b*(m + 2)*(d*f*g + d*e*h +
c*f*h)) - C*(a^2*(d*f*g + d*e*h + c*f*h) - b^2*c*e*g*(m + 1) + a*b*(m + 1)*(d*e*g + c*f*g + c*e*h)))*x + d*f*
h*(2*m + 5)*(A*b^2 - a*b*B + a^2*C)*x^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, h, A, B, C}, x] && IntegerQ
[2*m] && LtQ[m, -1]
-
Int[(((a_.) + (b_.)*(x_))^(m_)*((A_.) + (C_.)*(x_)^2))/(Sqrt[(c_.) + (d_.)*(x_)]*Sqrt[(e_.) + (f_.)*(x_)]*Sqrt
[(g_.) + (h_.)*(x_)]), x_Symbol] :> Simp[(A*b^2 + a^2*C)*(a + b*x)^(m + 1)*Sqrt[c + d*x]*Sqrt[e + f*x]*(Sqrt[g
+ h*x]/((m + 1)*(b*c - a*d)*(b*e - a*f)*(b*g - a*h))), x] - Simp[1/(2*(m + 1)*(b*c - a*d)*(b*e - a*f)*(b*g -
a*h)) Int[((a + b*x)^(m + 1)/(Sqrt[c + d*x]*Sqrt[e + f*x]*Sqrt[g + h*x]))*Simp[A*(2*a^2*d*f*h*(m + 1) - 2*a*
b*(m + 1)*(d*f*g + d*e*h + c*f*h) + b^2*(2*m + 3)*(d*e*g + c*f*g + c*e*h)) + a*C*(a*(d*e*g + c*f*g + c*e*h) +
2*b*c*e*g*(m + 1)) - 2*(A*b*(a*d*f*h*(m + 1) - b*(m + 2)*(d*f*g + d*e*h + c*f*h)) - C*(a^2*(d*f*g + d*e*h + c*
f*h) - b^2*c*e*g*(m + 1) + a*b*(m + 1)*(d*e*g + c*f*g + c*e*h)))*x + d*f*h*(2*m + 5)*(A*b^2 + a^2*C)*x^2, x],
x], x] /; FreeQ[{a, b, c, d, e, f, g, h, A, C}, x] && IntegerQ[2*m] && LtQ[m, -1]
-
Int[(Px_)*((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.)*((g_.) + (h_.)*(x_)
)^(q_.), x_Symbol] :> Int[ExpandIntegrand[Px*(a + b*x)^m*(c + d*x)^n*(e + f*x)^p*(g + h*x)^q, x], x] /; FreeQ[
{a, b, c, d, e, f, g, h, m, n, p, q}, x] && PolyQ[Px, x] && IntegersQ[m, n]
-
Int[(Px_)*((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.)*((g_.) + (h_.)*(x_)
)^(q_.), x_Symbol] :> Simp[PolynomialRemainder[Px, a + b*x, x] Int[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p*(g +
h*x)^q, x], x] + Int[PolynomialQuotient[Px, a + b*x, x]*(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*(g + h*x)^q,
x] /; FreeQ[{a, b, c, d, e, f, g, h, m, n, p, q}, x] && PolyQ[Px, x] && EqQ[m, -1]
-
Int[(Px_)*((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.)*((g_.) + (h_.)*(x_)
)^(q_.), x_Symbol] :> Simp[PolynomialRemainder[Px, a + b*x, x] Int[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p*(g +
h*x)^q, x], x] + Int[PolynomialQuotient[Px, a + b*x, x]*(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*(g + h*x)^q,
x] /; FreeQ[{a, b, c, d, e, f, g, h, m, n, p, q}, x] && PolyQ[Px, x]
-
Int[(Px_)*((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[P
x*(a*c + b*d*x^2)^m*(e + f*x)^p, x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && PolyQ[Px, x] && EqQ[b*c + a*d,
0] && EqQ[m, n] && (IntegerQ[m] || (GtQ[a, 0] && GtQ[c, 0]))
-
Int[(Px_)*((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(a
+ b*x)^FracPart[m]*((c + d*x)^FracPart[m]/(a*c + b*d*x^2)^FracPart[m]) Int[Px*(a*c + b*d*x^2)^m*(e + f*x)^p
, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && PolyQ[Px, x] && EqQ[b*c + a*d, 0] && EqQ[m, n] && !Integ
erQ[m]
-
Int[(Px_)*((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[P
olynomialQuotient[Px, a + b*x, x]*(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p, x] /; FreeQ[{a, b, c, d, e, f, m,
n, p}, x] && PolyQ[Px, x] && EqQ[PolynomialRemainder[Px, a + b*x, x], 0]
-
Int[(Px_)*((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Int[E
xpandIntegrand[Px*(a + b*x)^m*(c + d*x)^n*(e + f*x)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && Poly
Q[Px, x] && IntegersQ[m, n]
-
Int[(Px_)*((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> With[{
Qx = PolynomialQuotient[Px, a + b*x, x], R = PolynomialRemainder[Px, a + b*x, x]}, Simp[b*R*(a + b*x)^(m + 1)*
(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] + Simp[1/((m + 1)*(b*c - a*d)*(b*e
- a*f)) Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*ExpandToSum[(m + 1)*(b*c - a*d)*(b*e - a*f)*Qx + a*d*
f*R*(m + 1) - b*R*(d*e*(m + n + 2) + c*f*(m + p + 2)) - b*d*f*R*(m + n + p + 3)*x, x], x], x]] /; FreeQ[{a, b,
c, d, e, f, n, p}, x] && PolyQ[Px, x] && ILtQ[m, -1]
-
Int[(Px_)*((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> With[{
Qx = PolynomialQuotient[Px, a + b*x, x], R = PolynomialRemainder[Px, a + b*x, x]}, Simp[b*R*(a + b*x)^(m + 1)*
(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/((m + 1)*(b*c - a*d)*(b*e - a*f))), x] + Simp[1/((m + 1)*(b*c - a*d)*(b*e
- a*f)) Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*ExpandToSum[(m + 1)*(b*c - a*d)*(b*e - a*f)*Qx + a*d*
f*R*(m + 1) - b*R*(d*e*(m + n + 2) + c*f*(m + p + 2)) - b*d*f*R*(m + n + p + 3)*x, x], x], x]] /; FreeQ[{a, b,
c, d, e, f, n, p}, x] && PolyQ[Px, x] && LtQ[m, -1] && IntegersQ[2*m, 2*n, 2*p]
-
Int[(Px_)*((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> With[
{q = Expon[Px, x], k = Coeff[Px, x, Expon[Px, x]]}, Simp[k*(a + b*x)^(m + q - 1)*(c + d*x)^(n + 1)*((e + f*x)^
(p + 1)/(d*f*b^(q - 1)*(m + n + p + q + 1))), x] + Simp[1/(d*f*b^q*(m + n + p + q + 1)) Int[(a + b*x)^m*(c +
d*x)^n*(e + f*x)^p*ExpandToSum[d*f*b^q*(m + n + p + q + 1)*Px - d*f*k*(m + n + p + q + 1)*(a + b*x)^q + k*(a
+ b*x)^(q - 2)*(a^2*d*f*(m + n + p + q + 1) - b*(b*c*e*(m + q - 1) + a*(d*e*(n + 1) + c*f*(p + 1))) + b*(a*d*f
*(2*(m + q) + n + p) - b*(d*e*(m + q + n) + c*f*(m + q + p)))*x), x], x], x] /; NeQ[m + n + p + q + 1, 0]] /;
FreeQ[{a, b, c, d, e, f, m, n, p}, x] && PolyQ[Px, x]
-
Int[(Px_)*((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[Px*(a*c + b*d*x^2)^m, x] /;
FreeQ[{a, b, c, d, m, n}, x] && PolyQ[Px, x] && EqQ[b*c + a*d, 0] && EqQ[m, n] && (IntegerQ[m] || (GtQ[a, 0] &
& GtQ[c, 0]))
-
Int[(Px_)*((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^FracPart[m]*((c + d
*x)^FracPart[m]/(a*c + b*d*x^2)^FracPart[m]) Int[Px*(a*c + b*d*x^2)^m, x], x] /; FreeQ[{a, b, c, d, m, n}, x
] && PolyQ[Px, x] && EqQ[b*c + a*d, 0] && EqQ[m, n] && !IntegerQ[m]
-
Int[(Px_)*((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[PolynomialQuotient[Px, a + b
*x, x]*(a + b*x)^(m + 1)*(c + d*x)^n, x] /; FreeQ[{a, b, c, d, m, n}, x] && PolyQ[Px, x] && EqQ[PolynomialRema
inder[Px, a + b*x, x], 0]
-
Int[((Px_)*((c_.) + (d_.)*(x_))^(n_))/((a_.) + (b_.)*(x_)), x_Symbol] :> Int[ExpandIntegrand[1/Sqrt[c + d*x],
Px*((c + d*x)^(n + 1/2)/(a + b*x)), x], x] /; FreeQ[{a, b, c, d, n}, x] && PolyQ[Px, x] && ILtQ[n + 1/2, 0]
-
Int[(Px_)*((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[Px*(a + b*x)
^m*(c + d*x)^n, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && PolyQ[Px, x] && (IntegersQ[m, n] || IGtQ[m, -2])
-
Int[(Px_)*((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> With[{Qx = PolynomialQuotient[Px,
a + b*x, x], R = PolynomialRemainder[Px, a + b*x, x]}, Simp[R*(a + b*x)^(m + 1)*((c + d*x)^(n + 1)/((m + 1)*(
b*c - a*d))), x] + Simp[1/((m + 1)*(b*c - a*d)) Int[(a + b*x)^(m + 1)*(c + d*x)^n*ExpandToSum[(m + 1)*(b*c -
a*d)*Qx - d*R*(m + n + 2), x], x], x]] /; FreeQ[{a, b, c, d, n}, x] && PolyQ[Px, x] && LtQ[m, -1] && (Integer
Q[m] || !ILtQ[n, -1])
-
Int[(Px_)*((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> With[{q = Expon[Px, x], k = Coef
f[Px, x, Expon[Px, x]]}, Simp[k*(a + b*x)^(m + q)*((c + d*x)^(n + 1)/(d*b^q*(m + n + q + 1))), x] + Simp[1/(d*
b^q*(m + n + q + 1)) Int[(a + b*x)^m*(c + d*x)^n*ExpandToSum[d*b^q*(m + n + q + 1)*Px - d*k*(m + n + q + 1)*
(a + b*x)^q - k*(b*c - a*d)*(m + q)*(a + b*x)^(q - 1), x], x], x] /; NeQ[m + n + q + 1, 0]] /; FreeQ[{a, b, c,
d, m, n}, x] && PolyQ[Px, x]
-
Int[(Px_)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.)*((d_) + (e_.)*(x_) + (f_.)*(x_)^2)^(q_.), x_Symbol] :> Simp
[(c/f)^p Int[Px*(d + e*x + f*x^2)^(p + q), x], x] /; FreeQ[{a, b, c, d, e, f, p, q}, x] && PolyQ[Px, x] && E
qQ[c*d - a*f, 0] && EqQ[b*d - a*e, 0] && (IntegerQ[p] || GtQ[c/f, 0]) && ( !IntegerQ[q] || LeafCount[d + e*x +
f*x^2] <= LeafCount[a + b*x + c*x^2])
-
Int[(Px_)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.)*((d_) + (e_.)*(x_) + (f_.)*(x_)^2)^(q_.), x_Symbol] :> Simp
[a^IntPart[p]*((a + b*x + c*x^2)^FracPart[p]/(d^IntPart[p]*(d + e*x + f*x^2)^FracPart[p])) Int[Px*(d + e*x +
f*x^2)^(p + q), x], x] /; FreeQ[{a, b, c, d, e, f, p, q}, x] && PolyQ[Px, x] && EqQ[c*d - a*f, 0] && EqQ[b*d
- a*e, 0] && !IntegerQ[p] && !IntegerQ[q] && !GtQ[c/f, 0]
-
Int[(Px_)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.)*((d_.) + (e_.)*(x_) + (f_.)*(x_)^2)^(q_.), x_Symbol] :> Sim
p[1/c^p Int[Px*(b/2 + c*x)^(2*p)*(d + e*x + f*x^2)^q, x], x] /; FreeQ[{a, b, c, d, e, f, p, q}, x] && PolyQ[
Px, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]
-
Int[(Px_)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.)*((d_.) + (f_.)*(x_)^2)^(q_.), x_Symbol] :> Simp[1/c^p Int
[Px*(b/2 + c*x)^(2*p)*(d + f*x^2)^q, x], x] /; FreeQ[{a, b, c, d, f, p, q}, x] && PolyQ[Px, x] && EqQ[b^2 - 4*
a*c, 0] && IntegerQ[p]
-
Int[(Px_)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.)*((d_.) + (e_.)*(x_) + (f_.)*(x_)^2)^(q_.), x_Symbol] :> Sim
p[(a + b*x + c*x^2)^FracPart[p]/((4*c)^IntPart[p]*(b + 2*c*x)^(2*FracPart[p])) Int[(b + 2*c*x)^(2*p)*(d + e*
x + f*x^2)^q, x], x] /; FreeQ[{a, b, c, d, e, f, p, q}, x] && PolyQ[Px, x] && EqQ[b^2 - 4*a*c, 0] && !Integer
Q[p]
-
Int[(Px_)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.)*((d_.) + (f_.)*(x_)^2)^(q_.), x_Symbol] :> Simp[(a + b*x +
c*x^2)^FracPart[p]/((4*c)^IntPart[p]*(b + 2*c*x)^(2*FracPart[p])) Int[(b + 2*c*x)^(2*p)*(d + f*x^2)^q, x], x
] /; FreeQ[{a, b, c, d, f, p, q}, x] && PolyQ[Px, x] && EqQ[b^2 - 4*a*c, 0] && !IntegerQ[p]
-
Int[(Px_)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)*((d_) + (e_.)*(x_) + (f_.)*(x_)^2)^(q_), x_Symbol] :> With[{
A = Coeff[Px, x, 0], B = Coeff[Px, x, 1], C = Coeff[Px, x, 2]}, Simp[(A*b*c - 2*a*B*c + a*b*C - (c*(b*B - 2*A*
c) - C*(b^2 - 2*a*c))*x)*(a + b*x + c*x^2)^(p + 1)*((d + e*x + f*x^2)^q/(c*(b^2 - 4*a*c)*(p + 1))), x] - Simp[
1/(c*(b^2 - 4*a*c)*(p + 1)) Int[(a + b*x + c*x^2)^(p + 1)*(d + e*x + f*x^2)^(q - 1)*Simp[e*q*(A*b*c - 2*a*B*
c + a*b*C) - d*(c*(b*B - 2*A*c)*(2*p + 3) + C*(2*a*c - b^2*(p + 2))) + (2*f*q*(A*b*c - 2*a*B*c + a*b*C) - e*(c
*(b*B - 2*A*c)*(2*p + q + 3) + C*(2*a*c*(q + 1) - b^2*(p + q + 2))))*x - f*(c*(b*B - 2*A*c)*(2*p + 2*q + 3) +
C*(2*a*c*(2*q + 1) - b^2*(p + 2*q + 2)))*x^2, x], x], x]] /; FreeQ[{a, b, c, d, e, f}, x] && PolyQ[Px, x, 2] &
& LtQ[p, -1] && GtQ[q, 0] && !IGtQ[q, 0]
-
Int[(Px_)*((a_) + (c_.)*(x_)^2)^(p_)*((d_) + (e_.)*(x_) + (f_.)*(x_)^2)^(q_), x_Symbol] :> With[{A = Coeff[Px,
x, 0], B = Coeff[Px, x, 1], C = Coeff[Px, x, 2]}, Simp[(a*B - (A*c - a*C)*x)*(a + c*x^2)^(p + 1)*((d + e*x +
f*x^2)^q/(2*a*c*(p + 1))), x] - Simp[2/((-4*a*c)*(p + 1)) Int[(a + c*x^2)^(p + 1)*(d + e*x + f*x^2)^(q - 1)*
Simp[A*c*d*(2*p + 3) - a*(C*d + B*e*q) + (A*c*e*(2*p + q + 3) - a*(2*B*f*q + C*e*(q + 1)))*x - f*(a*C*(2*q + 1
) - A*c*(2*p + 2*q + 3))*x^2, x], x], x]] /; FreeQ[{a, c, d, e, f}, x] && PolyQ[Px, x, 2] && LtQ[p, -1] && GtQ
[q, 0] && !IGtQ[q, 0]
-
Int[(Px_)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)*((d_) + (f_.)*(x_)^2)^(q_), x_Symbol] :> With[{A = Coeff[Px,
x, 0], B = Coeff[Px, x, 1], C = Coeff[Px, x, 2]}, Simp[(A*b*c - 2*a*B*c + a*b*C - (c*(b*B - 2*A*c) - C*(b^2 -
2*a*c))*x)*(a + b*x + c*x^2)^(p + 1)*((d + f*x^2)^q/(c*(b^2 - 4*a*c)*(p + 1))), x] - Simp[1/(c*(b^2 - 4*a*c)*
(p + 1)) Int[(a + b*x + c*x^2)^(p + 1)*(d + f*x^2)^(q - 1)*Simp[(-d)*(c*(b*B - 2*A*c)*(2*p + 3) + C*(2*a*c -
b^2*(p + 2))) + (2*f*q*(A*b*c - 2*a*B*c + a*b*C))*x - f*(c*(b*B - 2*A*c)*(2*p + 2*q + 3) + C*(2*a*c*(2*q + 1)
- b^2*(p + 2*q + 2)))*x^2, x], x], x]] /; FreeQ[{a, b, c, d, f}, x] && PolyQ[Px, x, 2] && LtQ[p, -1] && GtQ[q
, 0] && !IGtQ[q, 0]
-
Int[(Px_)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)*((d_) + (e_.)*(x_) + (f_.)*(x_)^2)^(q_), x_Symbol] :> With[{
A = Coeff[Px, x, 0], B = Coeff[Px, x, 1], C = Coeff[Px, x, 2]}, Simp[(a + b*x + c*x^2)^(p + 1)*((d + e*x + f*x
^2)^(q + 1)/((b^2 - 4*a*c)*((c*d - a*f)^2 - (b*d - a*e)*(c*e - b*f))*(p + 1)))*((A*c - a*C)*(2*a*c*e - b*(c*d
+ a*f)) + (A*b - a*B)*(2*c^2*d + b^2*f - c*(b*e + 2*a*f)) + c*(A*(2*c^2*d + b^2*f - c*(b*e + 2*a*f)) - B*(b*c*
d - 2*a*c*e + a*b*f) + C*(b^2*d - a*b*e - 2*a*(c*d - a*f)))*x), x] + Simp[1/((b^2 - 4*a*c)*((c*d - a*f)^2 - (b
*d - a*e)*(c*e - b*f))*(p + 1)) Int[(a + b*x + c*x^2)^(p + 1)*(d + e*x + f*x^2)^q*Simp[(b*B - 2*A*c - 2*a*C)
*((c*d - a*f)^2 - (b*d - a*e)*(c*e - b*f))*(p + 1) + (b^2*(C*d + A*f) - b*(B*c*d + A*c*e + a*C*e + a*B*f) + 2*
(A*c*(c*d - a*f) - a*(c*C*d - B*c*e - a*C*f)))*(a*f*(p + 1) - c*d*(p + 2)) - e*((A*c - a*C)*(2*a*c*e - b*(c*d
+ a*f)) + (A*b - a*B)*(2*c^2*d + b^2*f - c*(b*e + 2*a*f)))*(p + q + 2) - (2*f*((A*c - a*C)*(2*a*c*e - b*(c*d +
a*f)) + (A*b - a*B)*(2*c^2*d + b^2*f - c*(b*e + 2*a*f)))*(p + q + 2) - (b^2*(C*d + A*f) - b*(B*c*d + A*c*e +
a*C*e + a*B*f) + 2*(A*c*(c*d - a*f) - a*(c*C*d - B*c*e - a*C*f)))*(b*f*(p + 1) - c*e*(2*p + q + 4)))*x - c*f*(
b^2*(C*d + A*f) - b*(B*c*d + A*c*e + a*C*e + a*B*f) + 2*(A*c*(c*d - a*f) - a*(c*C*d - B*c*e - a*C*f)))*(2*p +
2*q + 5)*x^2, x], x], x]] /; FreeQ[{a, b, c, d, e, f, q}, x] && PolyQ[Px, x, 2] && LtQ[p, -1] && NeQ[(c*d - a*
f)^2 - (b*d - a*e)*(c*e - b*f), 0] && !( !IntegerQ[p] && ILtQ[q, -1]) && !IGtQ[q, 0]
-
Int[(Px_)*((a_) + (c_.)*(x_)^2)^(p_)*((d_) + (e_.)*(x_) + (f_.)*(x_)^2)^(q_), x_Symbol] :> With[{A = Coeff[Px,
x, 0], B = Coeff[Px, x, 1], C = Coeff[Px, x, 2]}, Simp[(a + c*x^2)^(p + 1)*((d + e*x + f*x^2)^(q + 1)/((-4*a*
c)*(a*c*e^2 + (c*d - a*f)^2)*(p + 1)))*((A*c - a*C)*(2*a*c*e) + ((-a)*B)*(2*c^2*d - c*(2*a*f)) + c*(A*(2*c^2*d
- c*(2*a*f)) - B*(-2*a*c*e) + C*(-2*a*(c*d - a*f)))*x), x] + Simp[1/((-4*a*c)*(a*c*e^2 + (c*d - a*f)^2)*(p +
1)) Int[(a + c*x^2)^(p + 1)*(d + e*x + f*x^2)^q*Simp[(-2*A*c - 2*a*C)*((c*d - a*f)^2 - ((-a)*e)*(c*e))*(p +
1) + (2*(A*c*(c*d - a*f) - a*(c*C*d - B*c*e - a*C*f)))*(a*f*(p + 1) - c*d*(p + 2)) - e*((A*c - a*C)*(2*a*c*e)
+ ((-a)*B)*(2*c^2*d - c*((Plus[2])*a*f)))*(p + q + 2) - (2*f*((A*c - a*C)*(2*a*c*e) + ((-a)*B)*(2*c^2*d + (-c)
*((Plus[2])*a*f)))*(p + q + 2) - (2*(A*c*(c*d - a*f) - a*(c*C*d - B*c*e - a*C*f)))*((-c)*e*(2*p + q + 4)))*x -
c*f*(2*(A*c*(c*d - a*f) - a*(c*C*d - B*c*e - a*C*f)))*(2*p + 2*q + 5)*x^2, x], x], x]] /; FreeQ[{a, c, d, e,
f, q}, x] && PolyQ[Px, x, 2] && LtQ[p, -1] && NeQ[a*c*e^2 + (c*d - a*f)^2, 0] && !( !IntegerQ[p] && ILtQ[q, -
1]) && !IGtQ[q, 0]
-
Int[(Px_)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)*((d_) + (f_.)*(x_)^2)^(q_), x_Symbol] :> With[{A = Coeff[Px,
x, 0], B = Coeff[Px, x, 1], C = Coeff[Px, x, 2]}, Simp[(a + b*x + c*x^2)^(p + 1)*((d + f*x^2)^(q + 1)/((b^2 -
4*a*c)*(b^2*d*f + (c*d - a*f)^2)*(p + 1)))*((A*c - a*C)*((-b)*(c*d + a*f)) + (A*b - a*B)*(2*c^2*d + b^2*f - c
*(2*a*f)) + c*(A*(2*c^2*d + b^2*f - c*(2*a*f)) - B*(b*c*d + a*b*f) + C*(b^2*d - 2*a*(c*d - a*f)))*x), x] + Sim
p[1/((b^2 - 4*a*c)*(b^2*d*f + (c*d - a*f)^2)*(p + 1)) Int[(a + b*x + c*x^2)^(p + 1)*(d + f*x^2)^q*Simp[(b*B
- 2*A*c - 2*a*C)*((c*d - a*f)^2 - (b*d)*((-b)*f))*(p + 1) + (b^2*(C*d + A*f) - b*(B*c*d + a*B*f) + 2*(A*c*(c*d
- a*f) - a*(c*C*d - a*C*f)))*(a*f*(p + 1) - c*d*(p + 2)) - (2*f*((A*c - a*C)*((-b)*(c*d + a*f)) + (A*b - a*B)
*(2*c^2*d + b^2*f - c*(2*a*f)))*(p + q + 2) - (b^2*(C*d + A*f) - b*(B*c*d + a*B*f) + 2*(A*c*(c*d - a*f) - a*(c
*C*d - a*C*f)))*(b*f*(p + 1)))*x - c*f*(b^2*(C*d + A*f) - b*(B*c*d + a*B*f) + 2*(A*c*(c*d - a*f) - a*(c*C*d -
a*C*f)))*(2*p + 2*q + 5)*x^2, x], x], x]] /; FreeQ[{a, b, c, d, f, q}, x] && PolyQ[Px, x, 2] && LtQ[p, -1] &&
NeQ[b^2*d*f + (c*d - a*f)^2, 0] && !( !IntegerQ[p] && ILtQ[q, -1]) && !IGtQ[q, 0]
-
Int[(Px_)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)*((d_) + (e_.)*(x_) + (f_.)*(x_)^2)^(q_), x_Symbol] :> With[{
A = Coeff[Px, x, 0], B = Coeff[Px, x, 1], C = Coeff[Px, x, 2]}, Simp[(B*c*f*(2*p + 2*q + 3) + C*(b*f*p - c*e*(
2*p + q + 2)) + 2*c*C*f*(p + q + 1)*x)*(a + b*x + c*x^2)^p*((d + e*x + f*x^2)^(q + 1)/(2*c*f^2*(p + q + 1)*(2*
p + 2*q + 3))), x] - Simp[1/(2*c*f^2*(p + q + 1)*(2*p + 2*q + 3)) Int[(a + b*x + c*x^2)^(p - 1)*(d + e*x + f
*x^2)^q*Simp[p*(b*d - a*e)*(C*(c*e - b*f)*(q + 1) - c*(C*e - B*f)*(2*p + 2*q + 3)) + (p + q + 1)*(b^2*C*d*f*p
+ a*c*(C*(2*d*f - e^2*(2*p + q + 2)) + f*(B*e - 2*A*f)*(2*p + 2*q + 3))) + (2*p*(c*d - a*f)*(C*(c*e - b*f)*(q
+ 1) - c*(C*e - B*f)*(2*p + 2*q + 3)) + (p + q + 1)*(C*e*f*p*(b^2 - 4*a*c) - b*c*(C*(e^2 - 4*d*f)*(2*p + q + 2
) + f*(2*C*d - B*e + 2*A*f)*(2*p + 2*q + 3))))*x + (p*(c*e - b*f)*(C*(c*e - b*f)*(q + 1) - c*(C*e - B*f)*(2*p
+ 2*q + 3)) + (p + q + 1)*(C*f^2*p*(b^2 - 4*a*c) - c^2*(C*(e^2 - 4*d*f)*(2*p + q + 2) + f*(2*C*d - B*e + 2*A*f
)*(2*p + 2*q + 3))))*x^2, x], x], x]] /; FreeQ[{a, b, c, d, e, f, q}, x] && PolyQ[Px, x, 2] && GtQ[p, 0] && Ne
Q[p + q + 1, 0] && NeQ[2*p + 2*q + 3, 0] && !IGtQ[p, 0] && !IGtQ[q, 0]
-
Int[(Px_)*((a_) + (c_.)*(x_)^2)^(p_)*((d_) + (e_.)*(x_) + (f_.)*(x_)^2)^(q_), x_Symbol] :> With[{A = Coeff[Px,
x, 0], B = Coeff[Px, x, 1], C = Coeff[Px, x, 2]}, Simp[(B*c*f*(2*p + 2*q + 3) + C*((-c)*e*(2*p + q + 2)) + 2*
c*C*f*(p + q + 1)*x)*(a + c*x^2)^p*((d + e*x + f*x^2)^(q + 1)/(2*c*f^2*(p + q + 1)*(2*p + 2*q + 3))), x] - Sim
p[1/(2*c*f^2*(p + q + 1)*(2*p + 2*q + 3)) Int[(a + c*x^2)^(p - 1)*(d + e*x + f*x^2)^q*Simp[p*((-a)*e)*(C*(c*
e)*(q + 1) - c*(C*e - B*f)*(2*p + 2*q + 3)) + (p + q + 1)*(a*c*(C*(2*d*f - e^2*(2*p + q + 2)) + f*(B*e - 2*A*f
)*(2*p + 2*q + 3))) + (2*p*(c*d - a*f)*(C*(c*e)*(q + 1) - c*(C*e - B*f)*(2*p + 2*q + 3)) + (p + q + 1)*(C*e*f*
p*(-4*a*c)))*x + (p*(c*e)*(C*(c*e)*(q + 1) - c*(C*e - B*f)*(2*p + 2*q + 3)) + (p + q + 1)*(C*f^2*p*(-4*a*c) -
c^2*(C*(e^2 - 4*d*f)*(2*p + q + 2) + f*(2*C*d - B*e + 2*A*f)*(2*p + 2*q + 3))))*x^2, x], x], x]] /; FreeQ[{a,
c, d, e, f, q}, x] && PolyQ[Px, x, 2] && GtQ[p, 0] && NeQ[p + q + 1, 0] && NeQ[2*p + 2*q + 3, 0] && !IGtQ[p,
0] && !IGtQ[q, 0]
-
Int[(Px_)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)*((d_) + (f_.)*(x_)^2)^(q_), x_Symbol] :> With[{A = Coeff[Px,
x, 0], B = Coeff[Px, x, 1], C = Coeff[Px, x, 2]}, Simp[(B*c*f*(2*p + 2*q + 3) + C*(b*f*p) + 2*c*C*f*(p + q +
1)*x)*(a + b*x + c*x^2)^p*((d + f*x^2)^(q + 1)/(2*c*f^2*(p + q + 1)*(2*p + 2*q + 3))), x] - Simp[1/(2*c*f^2*(p
+ q + 1)*(2*p + 2*q + 3)) Int[(a + b*x + c*x^2)^(p - 1)*(d + f*x^2)^q*Simp[p*(b*d)*(C*((-b)*f)*(q + 1) - c*
((-B)*f)*(2*p + 2*q + 3)) + (p + q + 1)*(b^2*C*d*f*p + a*c*(C*(2*d*f) + f*(-2*A*f)*(2*p + 2*q + 3))) + (2*p*(c
*d - a*f)*(C*((-b)*f)*(q + 1) - c*((-B)*f)*(2*p + 2*q + 3)) + (p + q + 1)*((-b)*c*(C*(-4*d*f)*(2*p + q + 2) +
f*(2*C*d + 2*A*f)*(2*p + 2*q + 3))))*x + (p*((-b)*f)*(C*((-b)*f)*(q + 1) - c*((-B)*f)*(2*p + 2*q + 3)) + (p +
q + 1)*(C*f^2*p*(b^2 - 4*a*c) - c^2*(C*(-4*d*f)*(2*p + q + 2) + f*(2*C*d + 2*A*f)*(2*p + 2*q + 3))))*x^2, x],
x], x]] /; FreeQ[{a, b, c, d, f, q}, x] && PolyQ[Px, x, 2] && GtQ[p, 0] && NeQ[p + q + 1, 0] && NeQ[2*p + 2*q
+ 3, 0] && !IGtQ[p, 0] && !IGtQ[q, 0]
-
Int[(Px_)/(((a_) + (b_.)*(x_) + (c_.)*(x_)^2)*((d_) + (e_.)*(x_) + (f_.)*(x_)^2)), x_Symbol] :> With[{A = Coef
f[Px, x, 0], B = Coeff[Px, x, 1], C = Coeff[Px, x, 2], q = c^2*d^2 - b*c*d*e + a*c*e^2 + b^2*d*f - 2*a*c*d*f -
a*b*e*f + a^2*f^2}, Simp[1/q Int[(A*c^2*d - a*c*C*d - A*b*c*e + a*B*c*e + A*b^2*f - a*b*B*f - a*A*c*f + a^2
*C*f + c*(B*c*d - b*C*d - A*c*e + a*C*e + A*b*f - a*B*f)*x)/(a + b*x + c*x^2), x], x] + Simp[1/q Int[(c*C*d^
2 - B*c*d*e + A*c*e^2 + b*B*d*f - A*c*d*f - a*C*d*f - A*b*e*f + a*A*f^2 - f*(B*c*d - b*C*d - A*c*e + a*C*e + A
*b*f - a*B*f)*x)/(d + e*x + f*x^2), x], x] /; NeQ[q, 0]] /; FreeQ[{a, b, c, d, e, f}, x] && PolyQ[Px, x, 2]
-
Int[(Px_)/(((a_) + (b_.)*(x_) + (c_.)*(x_)^2)*((d_) + (f_.)*(x_)^2)), x_Symbol] :> With[{A = Coeff[Px, x, 0],
B = Coeff[Px, x, 1], C = Coeff[Px, x, 2], q = c^2*d^2 + b^2*d*f - 2*a*c*d*f + a^2*f^2}, Simp[1/q Int[(A*c^2*
d - a*c*C*d + A*b^2*f - a*b*B*f - a*A*c*f + a^2*C*f + c*(B*c*d - b*C*d + A*b*f - a*B*f)*x)/(a + b*x + c*x^2),
x], x] + Simp[1/q Int[(c*C*d^2 + b*B*d*f - A*c*d*f - a*C*d*f + a*A*f^2 - f*(B*c*d - b*C*d + A*b*f - a*B*f)*x
)/(d + f*x^2), x], x] /; NeQ[q, 0]] /; FreeQ[{a, b, c, d, f}, x] && PolyQ[Px, x, 2]
-
Int[(Px_)/(((a_) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symbol] :> With[{A =
Coeff[Px, x, 0], B = Coeff[Px, x, 1], C = Coeff[Px, x, 2]}, Simp[C/c Int[1/Sqrt[d + e*x + f*x^2], x], x] +
Simp[1/c Int[(A*c - a*C + (B*c - b*C)*x)/((a + b*x + c*x^2)*Sqrt[d + e*x + f*x^2]), x], x]] /; FreeQ[{a, b,
c, d, e, f}, x] && PolyQ[Px, x, 2]
-
Int[(Px_)/(((a_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symbol] :> With[{A = Coeff[Px, x,
0], B = Coeff[Px, x, 1], C = Coeff[Px, x, 2]}, Simp[C/c Int[1/Sqrt[d + e*x + f*x^2], x], x] + Simp[1/c In
t[(A*c - a*C + B*c*x)/((a + c*x^2)*Sqrt[d + e*x + f*x^2]), x], x]] /; FreeQ[{a, c, d, e, f}, x] && PolyQ[Px, x
, 2]
-
Int[(Px_)/(((a_) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (f_.)*(x_)^2]), x_Symbol] :> With[{A = Coeff[Px, x,
0], B = Coeff[Px, x, 1], C = Coeff[Px, x, 2]}, Simp[C/c Int[1/Sqrt[d + f*x^2], x], x] + Simp[1/c Int[(A*c
- a*C + (B*c - b*C)*x)/((a + b*x + c*x^2)*Sqrt[d + f*x^2]), x], x]] /; FreeQ[{a, b, c, d, f}, x] && PolyQ[Px,
x, 2]
-
Int[((a_.) + (b_.)*(u_) + (c_.)*(u_)^2)^(p_.)*((A_.) + (B_.)*(u_) + (C_.)*(u_)^2)*((d_.) + (e_.)*(u_) + (f_.)*
(u_)^2)^(q_.), x_Symbol] :> Simp[1/Coefficient[u, x, 1] Subst[Int[(a + b*x + c*x^2)^p*(d + e*x + f*x^2)^q*(A
+ B*x + C*x^2), x], x, u], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, p, q}, x] && LinearQ[u, x] && NeQ[u, x]
-
Int[((A_.) + (B_.)*(u_))*((a_.) + (b_.)*(u_) + (c_.)*(u_)^2)^(p_.)*((d_.) + (e_.)*(u_) + (f_.)*(u_)^2)^(q_.),
x_Symbol] :> Simp[1/Coefficient[u, x, 1] Subst[Int[(a + b*x + c*x^2)^p*(d + e*x + f*x^2)^q*(A + B*x), x], x,
u], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, p, q}, x] && LinearQ[u, x] && NeQ[u, x]
-
Int[((a_.) + (b_.)*(u_) + (c_.)*(u_)^2)^(p_.)*((A_.) + (C_.)*(u_)^2)*((d_.) + (e_.)*(u_) + (f_.)*(u_)^2)^(q_.)
, x_Symbol] :> Simp[1/Coefficient[u, x, 1] Subst[Int[(a + b*x + c*x^2)^p*(d + e*x + f*x^2)^q*(A + C*x^2), x]
, x, u], x] /; FreeQ[{a, b, c, d, e, f, A, C, p, q}, x] && LinearQ[u, x] && NeQ[u, x]
-
Int[((a_.) + (c_.)*(u_)^2)^(p_.)*((A_.) + (B_.)*(u_) + (C_.)*(u_)^2)*((d_.) + (e_.)*(u_) + (f_.)*(u_)^2)^(q_.)
, x_Symbol] :> Simp[1/Coefficient[u, x, 1] Subst[Int[(a + c*x^2)^p*(d + e*x + f*x^2)^q*(A + B*x + C*x^2), x]
, x, u], x] /; FreeQ[{a, c, d, e, f, A, B, C, p, q}, x] && LinearQ[u, x] && NeQ[u, x]
-
Int[((A_.) + (B_.)*(u_))*((a_.) + (c_.)*(u_)^2)^(p_.)*((d_.) + (e_.)*(u_) + (f_.)*(u_)^2)^(q_.), x_Symbol] :>
Simp[1/Coefficient[u, x, 1] Subst[Int[(a + c*x^2)^p*(d + e*x + f*x^2)^q*(A + B*x), x], x, u], x] /; FreeQ[{a
, c, d, e, f, A, B, C, p, q}, x] && LinearQ[u, x] && NeQ[u, x]
-
Int[((a_.) + (c_.)*(u_)^2)^(p_.)*((A_.) + (C_.)*(u_)^2)*((d_.) + (e_.)*(u_) + (f_.)*(u_)^2)^(q_.), x_Symbol] :
> Simp[1/Coefficient[u, x, 1] Subst[Int[(a + c*x^2)^p*(d + e*x + f*x^2)^q*(A + C*x^2), x], x, u], x] /; Free
Q[{a, c, d, e, f, A, C, p, q}, x] && LinearQ[u, x] && NeQ[u, x]
-
Int[(Px_)*((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))^(n_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_S
ymbol] :> Int[PolynomialQuotient[Px, d + e*x, x]*(d + e*x)^(m + 1)*(f + g*x)^n*(a + b*x + c*x^2)^p, x] /; Free
Q[{a, b, c, d, e, f, g, m, n, p}, x] && PolynomialQ[Px, x] && EqQ[PolynomialRemainder[Px, d + e*x, x], 0]
-
Int[(Px_)*((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))^(n_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_S
ymbol] :> Int[ExpandIntegrand[Px*(d + e*x)^m*(f + g*x)^n*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e,
f, g, m, n, p}, x] && PolyQ[Px, x] && (IntegerQ[p] || (IntegerQ[2*p] && IntegerQ[m] && ILtQ[n, 0])) && !(IGtQ
[m, 0] && IGtQ[n, 0])
-
Int[(Px_)*((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))^(n_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_S
ymbol] :> Int[PolynomialQuotient[Px, d + e*x, x]*(d + e*x)^(m + 1)*(f + g*x)^n*(a + b*x + c*x^2)^p, x] + Simp[
PolynomialRemainder[Px, d + e*x, x] Int[(d + e*x)^m*(f + g*x)^n*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b,
c, d, e, f, g, n, p}, x] && PolynomialQ[Px, x] && LtQ[m, 0] && !IntegerQ[n] && IntegersQ[2*m, 2*n, 2*p]
-
Int[(Pq_)*((d_.) + (e_.)*(x_))^(m_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[(d + e*x)^(m
+ 1)*PolynomialQuotient[Pq, d + e*x, x]*(a + b*x + c*x^2)^p, x] /; FreeQ[{a, b, c, d, e, m, p}, x] && PolyQ[Pq
, x] && EqQ[PolynomialRemainder[Pq, d + e*x, x], 0]
-
Int[(Pq_)*((d_) + (e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.), x_Symbol] :> Int[(d + e*x)^(m + 1)*Polynomial
Quotient[Pq, d + e*x, x]*(a + b*x^2)^p, x] /; FreeQ[{a, b, d, e, m, p}, x] && PolyQ[Pq, x] && EqQ[PolynomialRe
mainder[Pq, d + e*x, x], 0]
-
Int[(P2_)*((d_.) + (e_.)*(x_))^(m_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> With[{f = Coeff[P
2, x, 0], g = Coeff[P2, x, 1], h = Coeff[P2, x, 2]}, Simp[h*(d + e*x)^(m + 1)*((a + b*x + c*x^2)^(p + 1)/(c*e*
(m + 2*p + 3))), x] /; EqQ[b*e*h*(m + p + 2) + 2*c*d*h*(p + 1) - c*e*g*(m + 2*p + 3), 0] && EqQ[b*d*h*(p + 1)
+ a*e*h*(m + 1) - c*e*f*(m + 2*p + 3), 0]] /; FreeQ[{a, b, c, d, e, m, p}, x] && PolyQ[P2, x, 2] && NeQ[m + 2*
p + 3, 0]
-
Int[(P2_)*((d_) + (e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.), x_Symbol] :> With[{f = Coeff[P2, x, 0], g = C
oeff[P2, x, 1], h = Coeff[P2, x, 2]}, Simp[h*(d + e*x)^(m + 1)*((a + b*x^2)^(p + 1)/(b*e*(m + 2*p + 3))), x] /
; EqQ[2*d*h*(p + 1) - e*g*(m + 2*p + 3), 0] && EqQ[a*h*(m + 1) - b*f*(m + 2*p + 3), 0]] /; FreeQ[{a, b, d, e,
m, p}, x] && PolyQ[P2, x, 2] && NeQ[m + 2*p + 3, 0]
-
Int[(Pq_)*((d_.) + (e_.)*(x_))^(m_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegra
nd[(d + e*x)^m*Pq*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && PolyQ[Pq, x] && IGtQ[p, -2]
-
Int[(Pq_)*((d_) + (e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(d + e*x)^m*
Pq*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, d, e, m}, x] && PolyQ[Pq, x] && IGtQ[p, -2]
-
Int[(Pq_)*((d_.) + (e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(a + b*x + c*x
^2)^FracPart[p]/((4*c)^IntPart[p]*(b + 2*c*x)^(2*FracPart[p])) Int[(d + e*x)^m*Pq*(b + 2*c*x)^(2*p), x], x]
/; FreeQ[{a, b, c, d, e, m, p}, x] && PolyQ[Pq, x] && EqQ[b^2 - 4*a*c, 0]
-
Int[(Pq_)*((e_.)*(x_))^(m_.)*((b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[e Int[(e*x)^(m - 1)*Polyno
mialQuotient[Pq, b + c*x, x]*(b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{b, c, e, m, p}, x] && PolyQ[Pq, x] && EqQ
[PolynomialRemainder[Pq, b + c*x, x], 0]
-
Int[(Pq_)*((d_) + (e_.)*(x_))^(m_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[d*e Int[(d
+ e*x)^(m - 1)*PolynomialQuotient[Pq, a*e + c*d*x, x]*(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d,
e, m, p}, x] && PolyQ[Pq, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && EqQ[PolynomialRemainde
r[Pq, a*e + c*d*x, x], 0]
-
Int[(Pq_)*((d_) + (e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[d*e Int[(d + e*x)^(m - 1)
*PolynomialQuotient[Pq, a*e + b*d*x, x]*(a + b*x^2)^(p + 1), x], x] /; FreeQ[{a, b, d, e, m, p}, x] && PolyQ[P
q, x] && EqQ[b*d^2 + a*e^2, 0] && EqQ[PolynomialRemainder[Pq, a*e + b*d*x, x], 0]
-
Int[(Pq_)*((d_.) + (e_.)*(x_))^(m_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{Qx = Polynom
ialQuotient[Pq, a*e + c*d*x, x], R = PolynomialRemainder[Pq, a*e + c*d*x, x]}, Simp[R*(2*c*d - b*e)*(d + e*x)^
m*((a + b*x + c*x^2)^(p + 1)/(e*(p + 1)*(b^2 - 4*a*c))), x] + Simp[1/((p + 1)*(b^2 - 4*a*c)) Int[(d + e*x)^(
m - 1)*(a + b*x + c*x^2)^(p + 1)*ExpandToSum[d*e*(p + 1)*(b^2 - 4*a*c)*Qx - R*(2*c*d - b*e)*(m + 2*p + 2), x],
x], x]] /; FreeQ[{a, b, c, d, e}, x] && PolyQ[Pq, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0]
&& ILtQ[p + 1/2, 0] && GtQ[m, 0]
-
Int[(Pq_)*((d_) + (e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Qx = PolynomialQuotient[Pq,
a*e + b*d*x, x], R = PolynomialRemainder[Pq, a*e + b*d*x, x]}, Simp[(-d)*R*(d + e*x)^m*((a + b*x^2)^(p + 1)/(
2*a*e*(p + 1))), x] + Simp[d/(2*a*(p + 1)) Int[(d + e*x)^(m - 1)*(a + b*x^2)^(p + 1)*ExpandToSum[2*a*e*(p +
1)*Qx + R*(m + 2*p + 2), x], x], x]] /; FreeQ[{a, b, d, e}, x] && PolyQ[Pq, x] && EqQ[b*d^2 + a*e^2, 0] && ILt
Q[p + 1/2, 0] && GtQ[m, 0]
-
Int[(Pq_)*((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Int[ExpandIntegrand
[(a + b*x + c*x^2)^p, (d + e*x)^m*Pq, x], x] /; FreeQ[{a, b, c, d, e}, x] && PolyQ[Pq, x] && NeQ[b^2 - 4*a*c,
0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && EqQ[m + Expon[Pq, x] + 2*p + 1, 0] && ILtQ[m, 0]
-
Int[(Pq_)*((d_) + (e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Int[ExpandIntegrand[(a + b*x^2)^p,
(d + e*x)^m*Pq, x], x] /; FreeQ[{a, b, d, e}, x] && PolyQ[Pq, x] && EqQ[b*d^2 + a*e^2, 0] && EqQ[m + Expon[Pq
, x] + 2*p + 1, 0] && ILtQ[m, 0]
-
Int[(Pq_)*((d_.) + (e_.)*(x_))^(m_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{q = Expon[Pq
, x], f = Coeff[Pq, x, Expon[Pq, x]]}, Simp[f*(d + e*x)^(m + q - 1)*((a + b*x + c*x^2)^(p + 1)/(c*e^(q - 1)*(m
+ q + 2*p + 1))), x] + Simp[1/(c*e^q*(m + q + 2*p + 1)) Int[(d + e*x)^m*(a + b*x + c*x^2)^p*ExpandToSum[c*e
^q*(m + q + 2*p + 1)*Pq - c*f*(m + q + 2*p + 1)*(d + e*x)^q + e*f*(m + p + q)*(d + e*x)^(q - 2)*(b*d - 2*a*e +
(2*c*d - b*e)*x), x], x], x] /; NeQ[m + q + 2*p + 1, 0]] /; FreeQ[{a, b, c, d, e, m, p}, x] && PolyQ[Pq, x] &
& NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0]
-
Int[(Pq_)*((d_) + (e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{q = Expon[Pq, x], f = Coeff
[Pq, x, Expon[Pq, x]]}, Simp[f*(d + e*x)^(m + q - 1)*((a + b*x^2)^(p + 1)/(b*e^(q - 1)*(m + q + 2*p + 1))), x]
+ Simp[1/(b*e^q*(m + q + 2*p + 1)) Int[(d + e*x)^m*(a + b*x^2)^p*ExpandToSum[b*e^q*(m + q + 2*p + 1)*Pq - b
*f*(m + q + 2*p + 1)*(d + e*x)^q - 2*e*f*(m + p + q)*(d + e*x)^(q - 2)*(a*e - b*d*x), x], x], x] /; NeQ[m + q
+ 2*p + 1, 0]] /; FreeQ[{a, b, d, e, m, p}, x] && PolyQ[Pq, x] && EqQ[b*d^2 + a*e^2, 0] && !IGtQ[m, 0]
-
Int[(Pq_)*((d_.) + (e_.)*(x_))^(m_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[(d + e*x)^(m
+ p)*(a/d + (c/e)*x)^p*Pq, x] /; FreeQ[{a, b, c, d, e, m}, x] && PolyQ[Pq, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*
d^2 - b*d*e + a*e^2, 0] && IntegerQ[p]
-
Int[(Pq_)*((d_) + (e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.), x_Symbol] :> Int[(d + e*x)^(m + p)*(a/d + (b/
e)*x)^p*Pq, x] /; FreeQ[{a, b, d, e, m}, x] && PolyQ[Pq, x] && EqQ[b*d^2 + a*e^2, 0] && IntegerQ[p]
-
Int[(Pq_)*((d_.) + (e_.)*(x_))^(m_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(a + b*x + c*
x^2)^FracPart[p]/((d + e*x)^FracPart[p]*(a/d + (c*x)/e)^FracPart[p]) Int[(d + e*x)^(m + p)*(a/d + (c/e)*x)^p
*Pq, x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && PolyQ[Pq, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a
*e^2, 0] && !IntegerQ[p] && !IGtQ[m, 0]
-
Int[(Pq_)*((d_) + (e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(a + b*x^2)^FracPart[p]/((d
+ e*x)^FracPart[p]*(a/d + (b*x)/e)^FracPart[p]) Int[(d + e*x)^(m + p)*(a/d + (b/e)*x)^p*Pq, x], x] /; FreeQ[
{a, b, d, e, m, p}, x] && PolyQ[Pq, x] && EqQ[b*d^2 + a*e^2, 0] && !IntegerQ[p] && !IGtQ[m, 0]
-
Int[(Pq_)*((d_.) + (e_.)*(x_))^(m_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{Qx = Polynom
ialQuotient[Pq, a + b*x + c*x^2, x], R = Coeff[PolynomialRemainder[Pq, a + b*x + c*x^2, x], x, 0], S = Coeff[P
olynomialRemainder[Pq, a + b*x + c*x^2, x], x, 1]}, Simp[(d + e*x)^m*(a + b*x + c*x^2)^(p + 1)*((R*b - 2*a*S +
(2*c*R - b*S)*x)/((p + 1)*(b^2 - 4*a*c))), x] + Simp[1/((p + 1)*(b^2 - 4*a*c)) Int[(d + e*x)^(m - 1)*(a + b
*x + c*x^2)^(p + 1)*ExpandToSum[(p + 1)*(b^2 - 4*a*c)*(d + e*x)*Qx + S*(2*a*e*m + b*d*(2*p + 3)) - R*(b*e*m +
2*c*d*(2*p + 3)) - e*(2*c*R - b*S)*(m + 2*p + 3)*x, x], x], x]] /; FreeQ[{a, b, c, d, e}, x] && PolyQ[Pq, x] &
& NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && LtQ[p, -1] && GtQ[m, 0] && (IntegerQ[p] || !Integer
Q[m] || !RationalQ[a, b, c, d, e]) && !(IGtQ[m, 0] && RationalQ[a, b, c, d, e] && (IntegerQ[p] || ILtQ[p + 1
/2, 0]))
-
Int[(Pq_)*((d_) + (e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Qx = PolynomialQuotient[Pq,
a + b*x^2, x], R = Coeff[PolynomialRemainder[Pq, a + b*x^2, x], x, 0], S = Coeff[PolynomialRemainder[Pq, a +
b*x^2, x], x, 1]}, Simp[(d + e*x)^m*(a + b*x^2)^(p + 1)*((a*S - b*R*x)/(2*a*b*(p + 1))), x] + Simp[1/(2*a*b*(p
+ 1)) Int[(d + e*x)^(m - 1)*(a + b*x^2)^(p + 1)*ExpandToSum[2*a*b*(p + 1)*(d + e*x)*Qx - a*e*S*m + b*d*R*(2
*p + 3) + b*e*R*(m + 2*p + 3)*x, x], x], x]] /; FreeQ[{a, b, d, e}, x] && PolyQ[Pq, x] && NeQ[b*d^2 + a*e^2, 0
] && LtQ[p, -1] && GtQ[m, 0] && !(IGtQ[m, 0] && RationalQ[a, b, d, e] && (IntegerQ[p] || ILtQ[p + 1/2, 0]))
-
Int[(Pq_)*((d_.) + (e_.)*(x_))^(m_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{Qx = Polynom
ialQuotient[(d + e*x)^m*Pq, a + b*x + c*x^2, x], R = Coeff[PolynomialRemainder[(d + e*x)^m*Pq, a + b*x + c*x^2
, x], x, 0], S = Coeff[PolynomialRemainder[(d + e*x)^m*Pq, a + b*x + c*x^2, x], x, 1]}, Simp[(b*R - 2*a*S + (2
*c*R - b*S)*x)*((a + b*x + c*x^2)^(p + 1)/((p + 1)*(b^2 - 4*a*c))), x] + Simp[1/((p + 1)*(b^2 - 4*a*c)) Int[
(d + e*x)^m*(a + b*x + c*x^2)^(p + 1)*ExpandToSum[((p + 1)*(b^2 - 4*a*c)*Qx)/(d + e*x)^m - ((2*p + 3)*(2*c*R -
b*S))/(d + e*x)^m, x], x], x]] /; FreeQ[{a, b, c, d, e}, x] && PolyQ[Pq, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d
^2 - b*d*e + a*e^2, 0] && LtQ[p, -1] && ILtQ[m, 0]
-
Int[(Pq_)*((d_) + (e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Qx = PolynomialQuotient[(d
+ e*x)^m*Pq, a + b*x^2, x], R = Coeff[PolynomialRemainder[(d + e*x)^m*Pq, a + b*x^2, x], x, 0], S = Coeff[Poly
nomialRemainder[(d + e*x)^m*Pq, a + b*x^2, x], x, 1]}, Simp[(a*S - b*R*x)*((a + b*x^2)^(p + 1)/(2*a*b*(p + 1))
), x] + Simp[1/(2*a*b*(p + 1)) Int[(d + e*x)^m*(a + b*x^2)^(p + 1)*ExpandToSum[(2*a*b*(p + 1)*Qx)/(d + e*x)^
m + (b*R*(2*p + 3))/(d + e*x)^m, x], x], x]] /; FreeQ[{a, b, d, e}, x] && PolyQ[Pq, x] && NeQ[b*d^2 + a*e^2, 0
] && LtQ[p, -1] && ILtQ[m, 0]
-
Int[(Pq_)*((d_.) + (e_.)*(x_))^(m_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{Qx = Polynom
ialQuotient[Pq, a + b*x + c*x^2, x], R = Coeff[PolynomialRemainder[Pq, a + b*x + c*x^2, x], x, 0], S = Coeff[P
olynomialRemainder[Pq, a + b*x + c*x^2, x], x, 1]}, Simp[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^(p + 1)*((R*(b*c*
d - b^2*e + 2*a*c*e) - a*S*(2*c*d - b*e) + c*(R*(2*c*d - b*e) - S*(b*d - 2*a*e))*x)/((p + 1)*(b^2 - 4*a*c)*(c*
d^2 - b*d*e + a*e^2))), x] + Simp[1/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2)) Int[(d + e*x)^m*(a + b*x
+ c*x^2)^(p + 1)*ExpandToSum[(p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2)*Qx + R*(b*c*d*e*(2*p - m + 2) + b^
2*e^2*(p + m + 2) - 2*c^2*d^2*(2*p + 3) - 2*a*c*e^2*(m + 2*p + 3)) - S*(a*e*(b*e - 2*c*d*m + b*e*m) - b*d*(3*c
*d - b*e + 2*c*d*p - b*e*p)) + c*e*(S*(b*d - 2*a*e) - R*(2*c*d - b*e))*(m + 2*p + 4)*x, x], x], x]] /; FreeQ[{
a, b, c, d, e, m}, x] && PolyQ[Pq, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && LtQ[p, -1] &&
!(IGtQ[m, 0] && RationalQ[a, b, c, d, e] && (IntegerQ[p] || ILtQ[p + 1/2, 0]))
-
Int[(Pq_)*((d_) + (e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Qx = PolynomialQuotient[Pq,
a + b*x^2, x], R = Coeff[PolynomialRemainder[Pq, a + b*x^2, x], x, 0], S = Coeff[PolynomialRemainder[Pq, a +
b*x^2, x], x, 1]}, Simp[(-(d + e*x)^(m + 1))*(a + b*x^2)^(p + 1)*((a*(e*R - d*S) + (b*d*R + a*e*S)*x)/(2*a*(p
+ 1)*(b*d^2 + a*e^2))), x] + Simp[1/(2*a*(p + 1)*(b*d^2 + a*e^2)) Int[(d + e*x)^m*(a + b*x^2)^(p + 1)*Expand
ToSum[2*a*(p + 1)*(b*d^2 + a*e^2)*Qx + b*d^2*R*(2*p + 3) - a*e*(d*S*m - e*R*(m + 2*p + 3)) + e*(b*d*R + a*e*S)
*(m + 2*p + 4)*x, x], x], x]] /; FreeQ[{a, b, d, e, m}, x] && PolyQ[Pq, x] && NeQ[b*d^2 + a*e^2, 0] && LtQ[p,
-1] && !(IGtQ[m, 0] && RationalQ[a, b, d, e] && (IntegerQ[p] || ILtQ[p + 1/2, 0]))
-
Int[(Pq_)*((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{Qx = Polynomi
alQuotient[Pq, d + e*x, x], R = PolynomialRemainder[Pq, d + e*x, x]}, Simp[(e*R*(d + e*x)^(m + 1)*(a + b*x + c
*x^2)^(p + 1))/((m + 1)*(c*d^2 - b*d*e + a*e^2)), x] + Simp[1/((m + 1)*(c*d^2 - b*d*e + a*e^2)) Int[(d + e*x
)^(m + 1)*(a + b*x + c*x^2)^p*ExpandToSum[(m + 1)*(c*d^2 - b*d*e + a*e^2)*Qx + c*d*R*(m + 1) - b*e*R*(m + p +
2) - c*e*R*(m + 2*p + 3)*x, x], x], x]] /; FreeQ[{a, b, c, d, e, p}, x] && PolyQ[Pq, x] && NeQ[b^2 - 4*a*c, 0]
&& NeQ[c*d^2 - b*d*e + a*e^2, 0] && LtQ[m, -1]
-
Int[(Pq_)*((d_) + (e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Qx = PolynomialQuotient[Pq,
d + e*x, x], R = PolynomialRemainder[Pq, d + e*x, x]}, Simp[e*R*(d + e*x)^(m + 1)*((a + b*x^2)^(p + 1)/((m + 1
)*(b*d^2 + a*e^2))), x] + Simp[1/((m + 1)*(b*d^2 + a*e^2)) Int[(d + e*x)^(m + 1)*(a + b*x^2)^p*ExpandToSum[(
m + 1)*(b*d^2 + a*e^2)*Qx + b*d*R*(m + 1) - b*e*R*(m + 2*p + 3)*x, x], x], x]] /; FreeQ[{a, b, d, e, p}, x] &&
PolyQ[Pq, x] && NeQ[b*d^2 + a*e^2, 0] && LtQ[m, -1]
-
Int[(Pq_)*(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Module[{q = Expon[Pq, x], k}, Int[x^m*Sum[Coeff[
Pq, x, 2*k]*x^(2*k), {k, 0, q/2}]*(a + b*x^2)^p, x] + Int[x^(m + 1)*Sum[Coeff[Pq, x, 2*k + 1]*x^(2*k), {k, 0,
(q - 1)/2}]*(a + b*x^2)^p, x]] /; FreeQ[{a, b, p}, x] && PolyQ[Pq, x] && !PolyQ[Pq, x^2] && IGtQ[m, -2] && !
IntegerQ[2*p]
-
Int[(Pq_)*((d_.) + (e_.)*(x_))^(m_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{q = Expon[Pq
, x], f = Coeff[Pq, x, Expon[Pq, x]]}, Simp[f*(d + e*x)^(m + q - 1)*((a + b*x + c*x^2)^(p + 1)/(c*e^(q - 1)*(m
+ q + 2*p + 1))), x] + Simp[1/(c*e^q*(m + q + 2*p + 1)) Int[(d + e*x)^m*(a + b*x + c*x^2)^p*ExpandToSum[c*e
^q*(m + q + 2*p + 1)*Pq - c*f*(m + q + 2*p + 1)*(d + e*x)^q - f*(d + e*x)^(q - 2)*(b*d*e*(p + 1) + a*e^2*(m +
q - 1) - c*d^2*(m + q + 2*p + 1) - e*(2*c*d - b*e)*(m + q + p)*x), x], x], x] /; GtQ[q, 1] && NeQ[m + q + 2*p
+ 1, 0]] /; FreeQ[{a, b, c, d, e, m, p}, x] && PolyQ[Pq, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^
2, 0] && !(IGtQ[m, 0] && RationalQ[a, b, c, d, e] && (IntegerQ[p] || ILtQ[p + 1/2, 0]))
-
Int[(Pq_)*((d_) + (e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{q = Expon[Pq, x], f = Coeff
[Pq, x, Expon[Pq, x]]}, Simp[f*(d + e*x)^(m + q - 1)*((a + b*x^2)^(p + 1)/(b*e^(q - 1)*(m + q + 2*p + 1))), x]
+ Simp[1/(b*e^q*(m + q + 2*p + 1)) Int[(d + e*x)^m*(a + b*x^2)^p*ExpandToSum[b*e^q*(m + q + 2*p + 1)*Pq - b
*f*(m + q + 2*p + 1)*(d + e*x)^q - f*(d + e*x)^(q - 2)*(a*e^2*(m + q - 1) - b*d^2*(m + q + 2*p + 1) - 2*b*d*e*
(m + q + p)*x), x], x], x] /; GtQ[q, 1] && NeQ[m + q + 2*p + 1, 0]] /; FreeQ[{a, b, d, e, m, p}, x] && PolyQ[P
q, x] && NeQ[b*d^2 + a*e^2, 0] && !(EqQ[d, 0] && True) && !(IGtQ[m, 0] && RationalQ[a, b, d, e] && (IntegerQ
[p] || ILtQ[p + 1/2, 0]))
-
Int[(Pq_)*((d_.) + (e_.)*(x_))^(m_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> With[{q = Expon[P
q, x]}, Simp[Coeff[Pq, x, q]/e^q Int[(d + e*x)^(m + q)*(a + b*x + c*x^2)^p, x], x] + Simp[1/e^q Int[(d + e
*x)^m*(a + b*x + c*x^2)^p*ExpandToSum[e^q*Pq - Coeff[Pq, x, q]*(d + e*x)^q, x], x], x]] /; FreeQ[{a, b, c, d,
e, m, p}, x] && PolyQ[Pq, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && !(IGtQ[m, 0] && Ratio
nalQ[a, b, c, d, e] && (IntegerQ[p] || ILtQ[p + 1/2, 0]))
-
Int[(Pq_)*((d_) + (e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.), x_Symbol] :> With[{q = Expon[Pq, x]}, Simp[Co
eff[Pq, x, q]/e^q Int[(d + e*x)^(m + q)*(a + b*x^2)^p, x], x] + Simp[1/e^q Int[(d + e*x)^m*(a + b*x^2)^p*E
xpandToSum[e^q*Pq - Coeff[Pq, x, q]*(d + e*x)^q, x], x], x]] /; FreeQ[{a, b, d, e, m, p}, x] && PolyQ[Pq, x] &
& NeQ[b*d^2 + a*e^2, 0] && !(IGtQ[m, 0] && RationalQ[a, b, d, e] && (IntegerQ[p] || ILtQ[p + 1/2, 0]))
-
Int[(Pq_)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[Pq*(a + b*x + c*x^2)^p, x
], x] /; FreeQ[{a, b, c}, x] && PolyQ[Pq, x] && IGtQ[p, -2]
-
Int[(Pq_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Int[x*PolynomialQuotient[Pq, x, x]*(a + b*x +
c*x^2)^p, x] /; FreeQ[{a, b, c, p}, x] && PolyQ[Pq, x] && EqQ[Coeff[Pq, x, 0], 0] && !MatchQ[Pq, x^(m_.)*(u_
.) /; IntegerQ[m]]
-
Int[(Pq_)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(a + b*x + c*x^2)^FracPart[p]/((4*c)^IntP
art[p]*(b + 2*c*x)^(2*FracPart[p])) Int[Pq*(b + 2*c*x)^(2*p), x], x] /; FreeQ[{a, b, c, p}, x] && PolyQ[Pq,
x] && EqQ[b^2 - 4*a*c, 0]
-
Int[(Pq_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[Pq, a + b*x + c*
x^2, x], f = Coeff[PolynomialRemainder[Pq, a + b*x + c*x^2, x], x, 0], g = Coeff[PolynomialRemainder[Pq, a + b
*x + c*x^2, x], x, 1]}, Simp[(b*f - 2*a*g + (2*c*f - b*g)*x)*((a + b*x + c*x^2)^(p + 1)/((p + 1)*(b^2 - 4*a*c)
)), x] + Simp[1/((p + 1)*(b^2 - 4*a*c)) Int[(a + b*x + c*x^2)^(p + 1)*ExpandToSum[(p + 1)*(b^2 - 4*a*c)*Q -
(2*p + 3)*(2*c*f - b*g), x], x], x]] /; FreeQ[{a, b, c}, x] && PolyQ[Pq, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -
1]
-
Int[(Pq_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{q = Expon[Pq, x], e = Coeff[Pq, x, Expo
n[Pq, x]]}, Simp[e*x^(q - 1)*((a + b*x + c*x^2)^(p + 1)/(c*(q + 2*p + 1))), x] + Simp[1/(c*(q + 2*p + 1)) In
t[(a + b*x + c*x^2)^p*ExpandToSum[c*(q + 2*p + 1)*Pq - a*e*(q - 1)*x^(q - 2) - b*e*(q + p)*x^(q - 1) - c*e*(q
+ 2*p + 1)*x^q, x], x], x]] /; FreeQ[{a, b, c, p}, x] && PolyQ[Pq, x] && NeQ[b^2 - 4*a*c, 0] && !LeQ[p, -1]
-
Int[(Pq_)*((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Module[{q = Expon[Pq, x],
k}, Int[Sum[Coeff[Pq, x, 2*k]*x^(2*k), {k, 0, q/2 + 1}]*(d*x)^m*(a + b*x^2 + c*x^4)^p, x] + Simp[1/d Int[Su
m[Coeff[Pq, x, 2*k + 1]*x^(2*k), {k, 0, (q + 1)/2}]*(d*x)^(m + 1)*(a + b*x^2 + c*x^4)^p, x], x]] /; FreeQ[{a,
b, c, d, m, p}, x] && PolyQ[Pq, x] && !PolyQ[Pq, x^2]
-
Int[(Pq_)*(x_)^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[1/2 Subst[Int[x^((m - 1)/2
)*SubstFor[x^2, Pq, x]*(a + b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, p}, x] && PolyQ[Pq, x^2] && Int
egerQ[(m - 1)/2]
-
Int[(Pq_)*((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(d*x
)^m*Pq*(a + b*x^2 + c*x^4)^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && PolyQ[Pq, x^2] && IGtQ[p, -2]
-
Int[(Pq_)*((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> With[{e = Coeff[Pq, x, 0
], f = Coeff[Pq, x, 2], g = Coeff[Pq, x, 4]}, Simp[e*(d*x)^(m + 1)*((a + b*x^2 + c*x^4)^(p + 1)/(a*d*(m + 1)))
, x] /; EqQ[a*f*(m + 1) - b*e*(m + 2*p + 3), 0] && EqQ[a*g*(m + 1) - c*e*(m + 4*p + 5), 0] && NeQ[m, -1]] /; F
reeQ[{a, b, c, d, m, p}, x] && PolyQ[Pq, x^2] && EqQ[Expon[Pq, x], 4]
-
Int[(Pq_)*(x_)^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> With[{Qx = PolynomialQuotient[x^m*
Pq, a + b*x^2 + c*x^4, x], d = Coeff[PolynomialRemainder[x^m*Pq, a + b*x^2 + c*x^4, x], x, 0], e = Coeff[Polyn
omialRemainder[x^m*Pq, a + b*x^2 + c*x^4, x], x, 2]}, Simp[x*(a + b*x^2 + c*x^4)^(p + 1)*((a*b*e - d*(b^2 - 2*
a*c) - c*(b*d - 2*a*e)*x^2)/(2*a*(p + 1)*(b^2 - 4*a*c))), x] + Simp[1/(2*a*(p + 1)*(b^2 - 4*a*c)) Int[(a + b
*x^2 + c*x^4)^(p + 1)*ExpandToSum[2*a*(p + 1)*(b^2 - 4*a*c)*Qx + b^2*d*(2*p + 3) - 2*a*c*d*(4*p + 5) - a*b*e +
c*(4*p + 7)*(b*d - 2*a*e)*x^2, x], x], x]] /; FreeQ[{a, b, c}, x] && PolyQ[Pq, x^2] && GtQ[Expon[Pq, x^2], 1]
&& NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && IGtQ[m/2, 0]
-
Int[(Pq_)*(x_)^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> With[{Qx = PolynomialQuotient[x^m*
Pq, a + b*x^2 + c*x^4, x], d = Coeff[PolynomialRemainder[x^m*Pq, a + b*x^2 + c*x^4, x], x, 0], e = Coeff[Polyn
omialRemainder[x^m*Pq, a + b*x^2 + c*x^4, x], x, 2]}, Simp[x*(a + b*x^2 + c*x^4)^(p + 1)*((a*b*e - d*(b^2 - 2*
a*c) - c*(b*d - 2*a*e)*x^2)/(2*a*(p + 1)*(b^2 - 4*a*c))), x] + Simp[1/(2*a*(p + 1)*(b^2 - 4*a*c)) Int[x^m*(a
+ b*x^2 + c*x^4)^(p + 1)*ExpandToSum[(2*a*(p + 1)*(b^2 - 4*a*c)*Qx)/x^m + (b^2*d*(2*p + 3) - 2*a*c*d*(4*p + 5
) - a*b*e)/x^m + c*(4*p + 7)*(b*d - 2*a*e)*x^(2 - m), x], x], x]] /; FreeQ[{a, b, c}, x] && PolyQ[Pq, x^2] &&
GtQ[Expon[Pq, x^2], 1] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && ILtQ[m/2, 0]
-
Int[(Px_)*((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> With[{q = Expon[Px, x^2]}
, Simp[Coeff[Px, x^2, q]*(d*x)^(m + 2*q - 3)*((a + b*x^2 + c*x^4)^(p + 1)/(c*d^(2*q - 3)*(m + 4*p + 2*q + 1)))
, x] + Int[(d*x)^m*(a + b*x^2 + c*x^4)^p*ExpandToSum[Px - Coeff[Px, x^2, q]*x^(2*q) - Coeff[Px, x^2, q]*((a*(m
+ 2*q - 3)*x^(2*(q - 2)) + b*(m + 2*p + 2*q - 1)*x^(2*(q - 1)))/(c*(m + 4*p + 2*q + 1))), x], x] /; GtQ[q, 1]
&& NeQ[m + 4*p + 2*q + 1, 0]] /; FreeQ[{a, b, c, d, m, p}, x] && PolyQ[Px, x^2] && NeQ[b^2 - 4*a*c, 0]
-
Int[(Px_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Int[ExpandIntegrand[Px*(a + b*x^2 + c*x^4)^
p, x], x] /; FreeQ[{a, b, c}, x] && PolyQ[Px, x] && IGtQ[p, 0]
-
Int[(Px_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> With[{m = Expon[Px, x, Min]}, Int[x^m*Expand
ToSum[Px/x^m, x]*(a + b*x^2 + c*x^4)^p, x] /; GtQ[m, 0] && !MatchQ[Px, x^m*(u_.)]] /; FreeQ[{a, b, c, p}, x]
&& PolyQ[Px, x]
-
Int[(Pn_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Module[{n = Expon[Pn, x], k}, Int[Sum[Coeff[
Pn, x, 2*k]*x^(2*k), {k, 0, n/2}]*(a + b*x^2 + c*x^4)^p, x] + Int[x*Sum[Coeff[Pn, x, 2*k + 1]*x^(2*k), {k, 0,
(n - 1)/2}]*(a + b*x^2 + c*x^4)^p, x]] /; FreeQ[{a, b, c, p}, x] && PolyQ[Pn, x] && !PolyQ[Pn, x^2]
-
Int[(Px_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> With[{d = Coeff[Px, x, 0], e = Coeff[Px, x,
2], f = Coeff[Px, x, 4]}, Simp[d*x*((a + b*x^2 + c*x^4)^(p + 1)/a), x] /; EqQ[a*e - b*d*(2*p + 3), 0] && EqQ[
a*f - c*d*(4*p + 5), 0]] /; FreeQ[{a, b, c, p}, x] && PolyQ[Px, x^2] && EqQ[Expon[Px, x], 4]
-
Int[(Px_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> With[{d = Coeff[Px, x, 0], e = Coeff[Px, x,
2], f = Coeff[Px, x, 4], g = Coeff[Px, x, 6]}, Simp[x*(3*a*d + (a*e - b*d*(2*p + 3))*x^2)*((a + b*x^2 + c*x^4
)^(p + 1)/(3*a^2)), x] /; EqQ[3*a^2*g - c*(4*p + 7)*(a*e - b*d*(2*p + 3)), 0] && EqQ[3*a^2*f - 3*a*c*d*(4*p +
5) - b*(2*p + 5)*(a*e - b*d*(2*p + 3)), 0]] /; FreeQ[{a, b, c, p}, x] && PolyQ[Px, x^2] && EqQ[Expon[Px, x], 6
]
-
Int[(Px_)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> Int[ExpandIntegrand[Px/(a + b*x^2 + c*x^4), x], x
] /; FreeQ[{a, b, c}, x] && PolyQ[Px, x^2] && Expon[Px, x^2] > 1
-
Int[(Px_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> With[{d = Coeff[PolynomialRemainder[Px, a +
b*x^2 + c*x^4, x], x, 0], e = Coeff[PolynomialRemainder[Px, a + b*x^2 + c*x^4, x], x, 2]}, Simp[x*(a + b*x^2 +
c*x^4)^(p + 1)*((a*b*e - d*(b^2 - 2*a*c) - c*(b*d - 2*a*e)*x^2)/(2*a*(p + 1)*(b^2 - 4*a*c))), x] + Simp[1/(2*
a*(p + 1)*(b^2 - 4*a*c)) Int[(a + b*x^2 + c*x^4)^(p + 1)*ExpandToSum[2*a*(p + 1)*(b^2 - 4*a*c)*PolynomialQuo
tient[Px, a + b*x^2 + c*x^4, x] + b^2*d*(2*p + 3) - 2*a*c*d*(4*p + 5) - a*b*e + c*(4*p + 7)*(b*d - 2*a*e)*x^2,
x], x], x]] /; FreeQ[{a, b, c}, x] && PolyQ[Px, x^2] && Expon[Px, x^2] > 1 && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -
1]
-
Int[(Px_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> With[{n = Expon[Px, x^2], e = Coeff[Px, x^2,
Expon[Px, x^2]]}, Simp[e*x^(2*n - 3)*((a + b*x^2 + c*x^4)^(p + 1)/(c*(2*n + 4*p + 1))), x] + Simp[1/(c*(2*n +
4*p + 1)) Int[(a + b*x^2 + c*x^4)^p*ExpandToSum[c*(2*n + 4*p + 1)*Px - a*e*(2*n - 3)*x^(2*n - 4) - b*e*(2*n
+ 2*p - 1)*x^(2*n - 2) - c*e*(2*n + 4*p + 1)*x^(2*n), x], x], x]] /; FreeQ[{a, b, c, p}, x] && PolyQ[Px, x^2]
&& Expon[Px, x^2] > 1 && NeQ[b^2 - 4*a*c, 0] && !LtQ[p, -1]
-
Int[((P4x_)*((d_) + (e_.)*(x_)^2)^(q_))/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{A = Coeff
[P4x, x, 0], B = Coeff[P4x, x, 2], C = Coeff[P4x, x, 4]}, Simp[C*x*(d + e*x^2)^q*(Sqrt[a + b*x^2 + c*x^4]/(c*(
2*q + 3))), x] + Simp[1/(c*(2*q + 3)) Int[((d + e*x^2)^(q - 1)/Sqrt[a + b*x^2 + c*x^4])*Simp[A*c*d*(2*q + 3)
- a*C*d + (c*(B*d + A*e)*(2*q + 3) - C*(2*b*d + a*e + 2*a*e*q))*x^2 + (B*c*e*(2*q + 3) - 2*C*(b*e - c*d*q + b
*e*q))*x^4, x], x], x]] /; FreeQ[{a, b, c, d, e}, x] && PolyQ[P4x, x^2] && EqQ[Expon[P4x, x], 4] && IGtQ[q, 0]
-
Int[((P4x_)*((d_) + (e_.)*(x_)^2)^(q_))/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{A = Coeff[P4x, x, 0], B
= Coeff[P4x, x, 2], C = Coeff[P4x, x, 4]}, Simp[C*x*(d + e*x^2)^q*(Sqrt[a + c*x^4]/(c*(2*q + 3))), x] + Simp[1
/(c*(2*q + 3)) Int[((d + e*x^2)^(q - 1)/Sqrt[a + c*x^4])*Simp[A*c*d*(2*q + 3) - a*C*d + (c*(B*d + A*e)*(2*q
+ 3) - a*C*e*(2*q + 1))*x^2 + (B*c*e*(2*q + 3) + 2*c*C*d*q)*x^4, x], x], x]] /; FreeQ[{a, c, d, e}, x] && Poly
Q[P4x, x^2] && EqQ[Expon[P4x, x], 4] && IGtQ[q, 0]
-
Int[((P4x_)*((d_) + (e_.)*(x_)^2)^(q_))/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{A = Coeff
[P4x, x, 0], B = Coeff[P4x, x, 2], C = Coeff[P4x, x, 4]}, Simp[(-(C*d^2 - B*d*e + A*e^2))*x*(d + e*x^2)^(q + 1
)*(Sqrt[a + b*x^2 + c*x^4]/(2*d*(q + 1)*(c*d^2 - b*d*e + a*e^2))), x] + Simp[1/(2*d*(q + 1)*(c*d^2 - b*d*e + a
*e^2)) Int[((d + e*x^2)^(q + 1)/Sqrt[a + b*x^2 + c*x^4])*Simp[a*d*(C*d - B*e) + A*(a*e^2*(2*q + 3) + 2*d*(c*
d - b*e)*(q + 1)) - 2*((B*d - A*e)*(b*e*(q + 2) - c*d*(q + 1)) - C*d*(b*d + a*e*(q + 1)))*x^2 + c*(C*d^2 - B*d
*e + A*e^2)*(2*q + 5)*x^4, x], x], x]] /; FreeQ[{a, b, c, d, e}, x] && PolyQ[P4x, x^2] && LeQ[Expon[P4x, x], 4
] && ILtQ[q, -1]
-
Int[((P4x_)*((d_) + (e_.)*(x_)^2)^(q_))/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{A = Coeff[P4x, x, 0], B
= Coeff[P4x, x, 2], C = Coeff[P4x, x, 4]}, Simp[(-(C*d^2 - B*d*e + A*e^2))*x*(d + e*x^2)^(q + 1)*(Sqrt[a + c*x
^4]/(2*d*(q + 1)*(c*d^2 + a*e^2))), x] + Simp[1/(2*d*(q + 1)*(c*d^2 + a*e^2)) Int[((d + e*x^2)^(q + 1)/Sqrt[
a + c*x^4])*Simp[a*d*(C*d - B*e) + A*(a*e^2*(2*q + 3) + 2*c*d^2*(q + 1)) + 2*d*(B*c*d - A*c*e + a*C*e)*(q + 1)
*x^2 + c*(C*d^2 - B*d*e + A*e^2)*(2*q + 5)*x^4, x], x], x]] /; FreeQ[{a, c, d, e}, x] && PolyQ[P4x, x^2] && Le
Q[Expon[P4x, x], 4] && ILtQ[q, -1]
-
Int[((A_) + (B_.)*(x_)^2)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]), x_Symbol] :> Simp[
A Subst[Int[1/(d - (b*d - 2*a*e)*x^2), x], x, x/Sqrt[a + b*x^2 + c*x^4]], x] /; FreeQ[{a, b, c, d, e, A, B},
x] && EqQ[c*d^2 - a*e^2, 0] && EqQ[B*d + A*e, 0]
-
Int[((A_) + (B_.)*(x_)^2)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> Simp[A Subst[Int[1
/(d + 2*a*e*x^2), x], x, x/Sqrt[a + c*x^4]], x] /; FreeQ[{a, c, d, e, A, B}, x] && EqQ[c*d^2 - a*e^2, 0] && Eq
Q[B*d + A*e, 0]
-
Int[((A_) + (B_.)*(x_)^2)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]), x_Symbol] :> Simp[
(B*d + A*e)/(2*d*e) Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] - Simp[(B*d - A*e)/(2*d*e) Int[(d - e*x^2)/((d +
e*x^2)*Sqrt[a + b*x^2 + c*x^4]), x], x] /; FreeQ[{a, b, c, d, e, A, B}, x] && EqQ[c*d^2 - a*e^2, 0] && NeQ[B*
d + A*e, 0]
-
Int[((A_) + (B_.)*(x_)^2)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> Simp[(B*d + A*e)/(2*
d*e) Int[1/Sqrt[a + c*x^4], x], x] - Simp[(B*d - A*e)/(2*d*e) Int[(d - e*x^2)/((d + e*x^2)*Sqrt[a + c*x^4]
), x], x] /; FreeQ[{a, c, d, e, A, B}, x] && EqQ[c*d^2 - a*e^2, 0] && NeQ[B*d + A*e, 0]
-
Int[((A_) + (B_.)*(x_)^2)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]), x_Symbol] :> Simp[
Sqrt[A + B*x^2]*(Sqrt[a/A + c*(x^2/B)]/Sqrt[a + b*x^2 + c*x^4]) Int[Sqrt[A + B*x^2]/((d + e*x^2)*Sqrt[a/A +
c*(x^2/B)]), x], x] /; FreeQ[{a, b, c, d, e, A, B}, x] && EqQ[c*A^2 - b*A*B + a*B^2, 0]
-
Int[((A_) + (B_.)*(x_)^2)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> Simp[Sqrt[A + B*x^2]
*(Sqrt[a/A + c*(x^2/B)]/Sqrt[a + c*x^4]) Int[Sqrt[A + B*x^2]/((d + e*x^2)*Sqrt[a/A + c*(x^2/B)]), x], x] /;
FreeQ[{a, c, d, e, A, B}, x] && EqQ[c*A^2 + a*B^2, 0]
-
Int[((A_) + (B_.)*(x_)^2)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]), x_Symbol] :> With[
{q = Sqrt[b^2 - 4*a*c]}, Simp[(2*a*B - A*(b + q))/(2*a*e - d*(b + q)) Int[1/Sqrt[a + b*x^2 + c*x^4], x], x]
- Simp[(B*d - A*e)/(2*a*e - d*(b + q)) Int[(2*a + (b + q)*x^2)/((d + e*x^2)*Sqrt[a + b*x^2 + c*x^4]), x], x]
/; RationalQ[q]] /; FreeQ[{a, b, c, d, e, A, B}, x] && GtQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] &
& NeQ[c*A^2 - b*A*B + a*B^2, 0]
-
Int[((A_) + (B_.)*(x_)^2)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> With[{q = Sqrt[(-a)*
c]}, Simp[(a*B - A*q)/(a*e - d*q) Int[1/Sqrt[a + c*x^4], x], x] - Simp[(B*d - A*e)/(a*e - d*q) Int[(a + q*
x^2)/((d + e*x^2)*Sqrt[a + c*x^4]), x], x] /; RationalQ[q]] /; FreeQ[{a, c, d, e, A, B}, x] && GtQ[(-a)*c, 0]
&& EqQ[c*d^2 + a*e^2, 0] && NeQ[c*A^2 + a*B^2, 0]
-
Int[((A_) + (B_.)*(x_)^2)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]), x_Symbol] :> With[
{q = Rt[B/A, 2]}, Simp[(-(B*d - A*e))*(ArcTan[Rt[-b + c*(d/e) + a*(e/d), 2]*(x/Sqrt[a + b*x^2 + c*x^4])]/(2*d*
e*Rt[-b + c*(d/e) + a*(e/d), 2])), x] + Simp[(B*d + A*e)*(1 + q^2*x^2)*(Sqrt[(a + b*x^2 + c*x^4)/(a*(1 + q^2*x
^2)^2)]/(4*d*e*q*Sqrt[a + b*x^2 + c*x^4]))*EllipticPi[-(e - d*q^2)^2/(4*d*e*q^2), 2*ArcTan[q*x], 1/2 - b/(4*a*
q^2)], x]] /; FreeQ[{a, b, c, d, e, A, B}, x] && NeQ[c*d^2 - a*e^2, 0] && PosQ[c/a] && EqQ[c*A^2 - a*B^2, 0] &
& PosQ[B/A] && PosQ[-b + c*(d/e) + a*(e/d)]
-
Int[((A_) + (B_.)*(x_)^2)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> With[{q = Rt[B/A, 2]
}, Simp[(-(B*d - A*e))*(ArcTan[Rt[c*(d/e) + a*(e/d), 2]*(x/Sqrt[a + c*x^4])]/(2*d*e*Rt[c*(d/e) + a*(e/d), 2]))
, x] + Simp[(B*d + A*e)*(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]/(4*d*e*q*Sqrt[a + c*x^4]))*Ellipt
icPi[-(e - d*q^2)^2/(4*d*e*q^2), 2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, c, d, e, A, B}, x] && NeQ[c*d^2 - a*e^2
, 0] && PosQ[c/a] && EqQ[c*A^2 - a*B^2, 0] && PosQ[B/A] && PosQ[c*(d/e) + a*(e/d)]
-
Int[((A_) + (B_.)*(x_)^2)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]), x_Symbol] :> With[
{q = Rt[B/A, 2]}, Simp[(-(B*d - A*e))*(ArcTanh[Rt[b - c*(d/e) - a*(e/d), 2]*(x/Sqrt[a + b*x^2 + c*x^4])]/(2*d*
e*Rt[b - c*(d/e) - a*(e/d), 2])), x] + Simp[(B*d + A*e)*(1 + q^2*x^2)*(Sqrt[(a + b*x^2 + c*x^4)/(a*(1 + q^2*x^
2)^2)]/(4*d*e*q*Sqrt[a + b*x^2 + c*x^4]))*EllipticPi[-(e - d*q^2)^2/(4*d*e*q^2), 2*ArcTan[q*x], 1/2 - b/(4*a*q
^2)], x]] /; FreeQ[{a, b, c, d, e, A, B}, x] && NeQ[c*d^2 - a*e^2, 0] && PosQ[c/a] && EqQ[c*A^2 - a*B^2, 0] &&
PosQ[B/A] && NegQ[-b + c*(d/e) + a*(e/d)]
-
Int[((A_) + (B_.)*(x_)^2)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> With[{q = Rt[B/A, 2]
}, Simp[(-(B*d - A*e))*(ArcTanh[Rt[(-c)*(d/e) - a*(e/d), 2]*(x/Sqrt[a + c*x^4])]/(2*d*e*Rt[(-c)*(d/e) - a*(e/d
), 2])), x] + Simp[(B*d + A*e)*(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]/(4*d*e*q*Sqrt[a + c*x^4]))
*EllipticPi[-(e - d*q^2)^2/(4*d*e*q^2), 2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, c, d, e, A, B}, x] && NeQ[c*d^2
- a*e^2, 0] && PosQ[c/a] && EqQ[c*A^2 - a*B^2, 0] && PosQ[B/A] && NegQ[c*(d/e) + a*(e/d)]
-
Int[((A_) + (B_.)*(x_)^2)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]), x_Symbol] :> Simp[
2*A*(B/(B*d + A*e)) Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] - Simp[(B*d - A*e)/(B*d + A*e) Int[(A - B*x^2)/(
(d + e*x^2)*Sqrt[a + b*x^2 + c*x^4]), x], x] /; FreeQ[{a, b, c, d, e, A, B}, x] && NeQ[c*d^2 - a*e^2, 0] && Po
sQ[c/a] && EqQ[c*A^2 - a*B^2, 0] && NegQ[B/A]
-
Int[((A_) + (B_.)*(x_)^2)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> Simp[2*A*(B/(B*d + A
*e)) Int[1/Sqrt[a + c*x^4], x], x] - Simp[(B*d - A*e)/(B*d + A*e) Int[(A - B*x^2)/((d + e*x^2)*Sqrt[a + c*
x^4]), x], x] /; FreeQ[{a, c, d, e, A, B}, x] && NeQ[c*d^2 - a*e^2, 0] && PosQ[c/a] && EqQ[c*A^2 - a*B^2, 0] &
& NegQ[B/A]
-
Int[((A_) + (B_.)*(x_)^2)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]), x_Symbol] :> With[
{q = Rt[c/a, 2]}, Simp[(A*(c*d + a*e*q) - a*B*(e + d*q))/(c*d^2 - a*e^2) Int[1/Sqrt[a + b*x^2 + c*x^4], x],
x] + Simp[a*(B*d - A*e)*((e + d*q)/(c*d^2 - a*e^2)) Int[(1 + q*x^2)/((d + e*x^2)*Sqrt[a + b*x^2 + c*x^4]), x
], x]] /; FreeQ[{a, b, c, d, e, A, B}, x] && NeQ[c*d^2 - a*e^2, 0] && PosQ[c/a] && NeQ[c*A^2 - a*B^2, 0]
-
Int[((A_) + (B_.)*(x_)^2)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> With[{q = Rt[c/a, 2]
}, Simp[(A*(c*d + a*e*q) - a*B*(e + d*q))/(c*d^2 - a*e^2) Int[1/Sqrt[a + c*x^4], x], x] + Simp[a*(B*d - A*e)
*((e + d*q)/(c*d^2 - a*e^2)) Int[(1 + q*x^2)/((d + e*x^2)*Sqrt[a + c*x^4]), x], x]] /; FreeQ[{a, c, d, e, A,
B}, x] && NeQ[c*d^2 - a*e^2, 0] && PosQ[c/a] && NeQ[c*A^2 - a*B^2, 0]
-
Int[((A_) + (B_.)*(x_)^2)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]), x_Symbol] :> Simp[
B/e Int[1/Sqrt[a + b*x^2 + c*x^4], x], x] + Simp[(e*A - d*B)/e Int[1/((d + e*x^2)*Sqrt[a + b*x^2 + c*x^4])
, x], x] /; FreeQ[{a, b, c, d, e, A, B}, x] && NeQ[c*d^2 - a*e^2, 0] && NegQ[c/a]
-
Int[((A_) + (B_.)*(x_)^2)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> Simp[B/e Int[1/Sqr
t[a + c*x^4], x], x] + Simp[(e*A - d*B)/e Int[1/((d + e*x^2)*Sqrt[a + c*x^4]), x], x] /; FreeQ[{a, c, d, e,
A, B}, x] && NeQ[c*d^2 - a*e^2, 0] && NegQ[c/a]
-
Int[(P4x_)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]), x_Symbol] :> With[{A = Coeff[P4x,
x, 0], B = Coeff[P4x, x, 2], C = Coeff[P4x, x, 4]}, Simp[-C/e^2 Int[(d - e*x^2)/Sqrt[a + b*x^2 + c*x^4], x]
, x] + Simp[1/e^2 Int[(C*d^2 + A*e^2 + B*e^2*x^2)/((d + e*x^2)*Sqrt[a + b*x^2 + c*x^4]), x], x]] /; FreeQ[{a
, b, c, d, e}, x] && PolyQ[P4x, x^2, 2] && EqQ[c*d^2 - a*e^2, 0]
-
Int[(P4x_)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> With[{A = Coeff[P4x, x, 0], B = Coe
ff[P4x, x, 2], C = Coeff[P4x, x, 4]}, Simp[-C/e^2 Int[(d - e*x^2)/Sqrt[a + c*x^4], x], x] + Simp[1/e^2 Int
[(C*d^2 + A*e^2 + B*e^2*x^2)/((d + e*x^2)*Sqrt[a + c*x^4]), x], x]] /; FreeQ[{a, c, d, e}, x] && PolyQ[P4x, x^
2, 2] && EqQ[c*d^2 - a*e^2, 0]
-
Int[(P4x_)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]), x_Symbol] :> With[{q = Rt[c/a, 2]
, A = Coeff[P4x, x, 0], B = Coeff[P4x, x, 2], C = Coeff[P4x, x, 4]}, Simp[-C/(e*q) Int[(1 - q*x^2)/Sqrt[a +
b*x^2 + c*x^4], x], x] + Simp[1/(c*e) Int[(A*c*e + a*C*d*q + (B*c*e - C*(c*d - a*e*q))*x^2)/((d + e*x^2)*Sqr
t[a + b*x^2 + c*x^4]), x], x]] /; FreeQ[{a, b, c, d, e}, x] && PolyQ[P4x, x^2, 2] && NeQ[c*d^2 - a*e^2, 0] &&
PosQ[c/a] && !GtQ[b^2 - 4*a*c, 0]
-
Int[(P4x_)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> With[{q = Rt[c/a, 2], A = Coeff[P4x
, x, 0], B = Coeff[P4x, x, 2], C = Coeff[P4x, x, 4]}, Simp[-C/(e*q) Int[(1 - q*x^2)/Sqrt[a + c*x^4], x], x]
+ Simp[1/(c*e) Int[(A*c*e + a*C*d*q + (B*c*e - C*(c*d - a*e*q))*x^2)/((d + e*x^2)*Sqrt[a + c*x^4]), x], x]]
/; FreeQ[{a, c, d, e}, x] && PolyQ[P4x, x^2, 2] && NeQ[c*d^2 - a*e^2, 0] && PosQ[c/a]
-
Int[(P4x_)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]), x_Symbol] :> With[{A = Coeff[P4x,
x, 0], B = Coeff[P4x, x, 2], C = Coeff[P4x, x, 4]}, Simp[-(e^2)^(-1) Int[(C*d - B*e - C*e*x^2)/Sqrt[a + b*x
^2 + c*x^4], x], x] + Simp[(C*d^2 - B*d*e + A*e^2)/e^2 Int[1/((d + e*x^2)*Sqrt[a + b*x^2 + c*x^4]), x], x]]
/; FreeQ[{a, b, c, d, e}, x] && PolyQ[P4x, x^2, 2] && NeQ[c*d^2 - a*e^2, 0]
-
Int[(P4x_)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> With[{A = Coeff[P4x, x, 0], B = Coe
ff[P4x, x, 2], C = Coeff[P4x, x, 4]}, Simp[-(e^2)^(-1) Int[(C*d - B*e - C*e*x^2)/Sqrt[a + c*x^4], x], x] + S
imp[(C*d^2 - B*d*e + A*e^2)/e^2 Int[1/((d + e*x^2)*Sqrt[a + c*x^4]), x], x]] /; FreeQ[{a, c, d, e}, x] && Po
lyQ[P4x, x^2, 2] && NeQ[c*d^2 - a*e^2, 0]
-
Int[(Px_)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]), x_Symbol] :> With[{q = Expon[Px, x
]}, Simp[Coeff[Px, x, q]*x^(q - 5)*(Sqrt[a + b*x^2 + c*x^4]/(c*e*(q - 3))), x] + Simp[1/(c*e*(q - 3)) Int[(c
*e*(q - 3)*Px - Coeff[Px, x, q]*x^(q - 6)*(d + e*x^2)*(a*(q - 5) + b*(q - 4)*x^2 + c*(q - 3)*x^4))/((d + e*x^2
)*Sqrt[a + b*x^2 + c*x^4]), x], x] /; GtQ[q, 4]] /; FreeQ[{a, b, c, d, e}, x] && PolyQ[Px, x]
-
Int[(Px_)/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> With[{q = Expon[Px, x]}, Simp[Coeff[
Px, x, q]*x^(q - 5)*(Sqrt[a + c*x^4]/(c*e*(q - 3))), x] + Simp[1/(c*e*(q - 3)) Int[(c*e*(q - 3)*Px - Coeff[P
x, x, q]*x^(q - 6)*(d + e*x^2)*(a*(q - 5) + c*(q - 3)*x^4))/((d + e*x^2)*Sqrt[a + c*x^4]), x], x] /; GtQ[q, 4]
] /; FreeQ[{a, c, d, e}, x] && PolyQ[Px, x]
-
Int[(Px_)*(x_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Simp[1/2
Subst[Int[(Px /. x -> Sqrt[x])*(d + e*x)^q*(a + b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, d, e, p, q
}, x] && PolyQ[Px, x^2]
-
Int[(Px_)*(x_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Simp[1/2 Subst[Int[(Px
/. x -> Sqrt[x])*(d + e*x)^q*(a + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, c, d, e, p, q}, x] && PolyQ[Px, x^2]
-
Int[(Pr_)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol]
:> Module[{r = Expon[Pr, x], k}, Int[Sum[Coeff[Pr, x, 2*k]*x^(2*k), {k, 0, r/2 + 1}]*(f*x)^m*(d + e*x^2)^q*(a
+ b*x^2 + c*x^4)^p, x] + Simp[1/f Int[Sum[Coeff[Pr, x, 2*k + 1]*x^(2*k), {k, 0, (r + 1)/2}]*(f*x)^(m + 1)*(d
+ e*x^2)^q*(a + b*x^2 + c*x^4)^p, x], x]] /; FreeQ[{a, b, c, d, e, f, m, p, q}, x] && PolyQ[Pr, x] && !PolyQ
[Pr, x^2]
-
Int[(Pr_)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (c_.)*(x_)^4)^(p_), x_Symbol] :> Module[{r =
Expon[Pr, x], k}, Int[Sum[Coeff[Pr, x, 2*k]*x^(2*k), {k, 0, r/2 + 1}]*(f*x)^m*(d + e*x^2)^q*(a + c*x^4)^p, x]
+ Simp[1/f Int[Sum[Coeff[Pr, x, 2*k + 1]*x^(2*k), {k, 0, (r + 1)/2}]*(f*x)^(m + 1)*(d + e*x^2)^q*(a + c*x^4)
^p, x], x]] /; FreeQ[{a, c, d, e, f, m, p, q}, x] && PolyQ[Pr, x] && !PolyQ[Pr, x^2]
-
Int[((Px_)*(x_)^(m_))/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]), x_Symbol] :> With[{A =
Coeff[Px, x, 0], B = Coeff[Px, x, 2], C = Coeff[Px, x, 4]}, Simp[C*x^(m - 1)*(Sqrt[a + b*x^2 + c*x^4]/(c*e*(m
+ 1))), x] - Simp[1/(c*e*(m + 1)) Int[(x^(m - 2)/((d + e*x^2)*Sqrt[a + b*x^2 + c*x^4]))*Simp[a*C*d*(m - 1)
- (A*c*e*(m + 1) - C*(a*e*(m - 1) + b*d*m))*x^2 - (B*c*e*(m + 1) - C*(b*e*m + c*d*(m + 1)))*x^4, x], x], x]] /
; FreeQ[{a, b, c, d, e}, x] && PolyQ[Px, x^2, 2] && NeQ[b^2 - 4*a*c, 0] && IGtQ[m/2, 0]
-
Int[((Px_)*(x_)^(m_))/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> With[{A = Coeff[Px, x, 0
], B = Coeff[Px, x, 2], C = Coeff[Px, x, 4]}, Simp[C*x^(m - 1)*(Sqrt[a + c*x^4]/(c*e*(m + 1))), x] - Simp[1/(c
*e*(m + 1)) Int[(x^(m - 2)/((d + e*x^2)*Sqrt[a + c*x^4]))*Simp[a*C*d*(m - 1) - (A*c*e*(m + 1) - C*a*e*(m - 1
))*x^2 - (B*c*e*(m + 1) - C*c*d*(m + 1))*x^4, x], x], x]] /; FreeQ[{a, c, d, e}, x] && PolyQ[Px, x^2, 2] && IG
tQ[m/2, 0]
-
Int[((Px_)*(x_)^(m_))/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]), x_Symbol] :> With[{A =
Coeff[Px, x, 0], B = Coeff[Px, x, 2], C = Coeff[Px, x, 4]}, Simp[A*x^(m + 1)*(Sqrt[a + b*x^2 + c*x^4]/(a*d*(m
+ 1))), x] + Simp[1/(a*d*(m + 1)) Int[(x^(m + 2)/((d + e*x^2)*Sqrt[a + b*x^2 + c*x^4]))*Simp[a*B*d*(m + 1)
- A*(a*e*(m + 1) + b*d*(m + 2)) + (a*C*d*(m + 1) - A*(b*e*(m + 2) + c*d*(m + 3)))*x^2 - A*c*e*(m + 3)*x^4, x],
x], x]] /; FreeQ[{a, b, c, d, e}, x] && PolyQ[Px, x^2, 2] && NeQ[b^2 - 4*a*c, 0] && ILtQ[m/2, 0]
-
Int[((Px_)*(x_)^(m_))/(((d_) + (e_.)*(x_)^2)*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> With[{A = Coeff[Px, x, 0
], B = Coeff[Px, x, 2], C = Coeff[Px, x, 4]}, Simp[A*x^(m + 1)*(Sqrt[a + c*x^4]/(a*d*(m + 1))), x] + Simp[1/(a
*d*(m + 1)) Int[(x^(m + 2)/((d + e*x^2)*Sqrt[a + c*x^4]))*Simp[a*B*d*(m + 1) - A*a*e*(m + 1) + (a*C*d*(m + 1
) - A*c*d*(m + 3))*x^2 - A*c*e*(m + 3)*x^4, x], x], x]] /; FreeQ[{a, c, d, e}, x] && PolyQ[Px, x^2, 2] && ILtQ
[m/2, 0]
-
Int[(Px_)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol]
:> Int[ExpandIntegrand[Px*(f*x)^m*(d + e*x^2)^q*(a + b*x^2 + c*x^4)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m,
q}, x] && PolyQ[Px, x] && IntegerQ[p]
-
Int[(Px_)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Int[ExpandI
ntegrand[Px*(f*x)^m*(d + e*x^2)^q*(a + c*x^4)^p, x], x] /; FreeQ[{a, c, d, e, f, m, q}, x] && PolyQ[Px, x] &&
IntegerQ[p]
-
Int[(Px_)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol]
:> Int[ExpandIntegrand[1/Sqrt[a + b*x^2 + c*x^4], Px*(f*x)^m*(d + e*x^2)^q*(a + b*x^2 + c*x^4)^(p + 1/2), x],
x] /; FreeQ[{a, b, c, d, e, f, m}, x] && PolyQ[Px, x] && IntegerQ[p + 1/2] && IntegerQ[q]
-
Int[(Px_)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (c_.)*(x_)^4)^(p_), x_Symbol] :> Int[ExpandIn
tegrand[1/Sqrt[a + c*x^4], Px*(f*x)^m*(d + e*x^2)^q*(a + c*x^4)^(p + 1/2), x], x] /; FreeQ[{a, c, d, e, f, m},
x] && PolyQ[Px, x] && IntegerQ[p + 1/2] && IntegerQ[q]
-
Int[(Px_)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol]
:> Unintegrable[Px*(f*x)^m*(d + e*x^2)^q*(a + b*x^2 + c*x^4)^p, x] /; FreeQ[{a, b, c, d, e, f, m, p, q}, x] &
& PolyQ[Px, x]
-
Int[(Px_)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Unintegrabl
e[Px*(f*x)^m*(d + e*x^2)^q*(a + c*x^4)^p, x] /; FreeQ[{a, c, d, e, f, m, p, q}, x] && PolyQ[Px, x]
-
Int[(Px_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> With[{m = Expon[
Px, x, Min]}, Int[x^m*ExpandToSum[Px/x^m, x]*(d + e*x^2)^q*(a + b*x^2 + c*x^4)^p, x] /; GtQ[m, 0] && !MatchQ[
Px, x^m*(u_.)]] /; FreeQ[{a, b, c, d, e, p, q}, x] && PolyQ[Px, x]
-
Int[(Px_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (c_.)*(x_)^4)^(p_), x_Symbol] :> With[{m = Expon[Px, x, Min]}, I
nt[x^m*ExpandToSum[Px/x^m, x]*(d + e*x^2)^q*(a + c*x^4)^p, x] /; GtQ[m, 0] && !MatchQ[Px, x^m*(u_.)]] /; Free
Q[{a, c, d, e, p, q}, x] && PolyQ[Px, x]
-
Int[(Pr_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Module[{r = Expo
n[Pr, x], k}, Int[Sum[Coeff[Pr, x, 2*k]*x^(2*k), {k, 0, r/2}]*(d + e*x^2)^q*(a + b*x^2 + c*x^4)^p, x] + Int[x*
Sum[Coeff[Pr, x, 2*k + 1]*x^(2*k), {k, 0, (r - 1)/2}]*(d + e*x^2)^q*(a + b*x^2 + c*x^4)^p, x]] /; FreeQ[{a, b,
c, d, e, p, q}, x] && PolyQ[Pr, x] && !PolyQ[Pr, x^2]
-
Int[(Pr_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (c_.)*(x_)^4)^(p_), x_Symbol] :> Module[{r = Expon[Pr, x], k}, I
nt[Sum[Coeff[Pr, x, 2*k]*x^(2*k), {k, 0, r/2}]*(d + e*x^2)^q*(a + c*x^4)^p, x] + Int[x*Sum[Coeff[Pr, x, 2*k +
1]*x^(2*k), {k, 0, (r - 1)/2}]*(d + e*x^2)^q*(a + c*x^4)^p, x]] /; FreeQ[{a, c, d, e, p, q}, x] && PolyQ[Pr, x
] && !PolyQ[Pr, x^2]
-
Int[(Px_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Int[ExpandInteg
rand[Px*(d + e*x^2)^q*(a + b*x^2 + c*x^4)^p, x], x] /; FreeQ[{a, b, c, d, e, q}, x] && PolyQ[Px, x] && Integer
Q[p]
-
Int[(Px_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Int[ExpandIntegrand[Px*(d + e*
x^2)^q*(a + c*x^4)^p, x], x] /; FreeQ[{a, c, d, e, q}, x] && PolyQ[Px, x] && IntegerQ[p]
-
Int[(Px_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Int[ExpandIntegr
and[1/Sqrt[a + b*x^2 + c*x^4], Px*(d + e*x^2)^q*(a + b*x^2 + c*x^4)^(p + 1/2), x], x] /; FreeQ[{a, b, c, d, e}
, x] && PolyQ[Px, x] && IntegerQ[p + 1/2] && IntegerQ[q]
-
Int[(Px_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (c_.)*(x_)^4)^(p_), x_Symbol] :> Int[ExpandIntegrand[1/Sqrt[a +
c*x^4], Px*(d + e*x^2)^q*(a + c*x^4)^(p + 1/2), x], x] /; FreeQ[{a, c, d, e}, x] && PolyQ[Px, x] && IntegerQ[p
+ 1/2] && IntegerQ[q]
-
Int[(Px_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Unintegrable[Px
*(d + e*x^2)^q*(a + b*x^2 + c*x^4)^p, x] /; FreeQ[{a, b, c, d, e, p, q}, x] && PolyQ[Px, x]
-
Int[(Px_)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Unintegrable[Px*(d + e*x^2)^q*
(a + c*x^4)^p, x] /; FreeQ[{a, c, d, e, p, q}, x] && PolyQ[Px, x]
-
Int[1/(((d_) + (e_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]), x_Symbol] :> Simp[d Int[1/((d^2 - e^2*
x^2)*Sqrt[a + b*x^2 + c*x^4]), x], x] - Simp[e Int[x/((d^2 - e^2*x^2)*Sqrt[a + b*x^2 + c*x^4]), x], x] /; Fr
eeQ[{a, b, c, d, e}, x]
-
Int[1/(((d_) + (e_.)*(x_))*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> Simp[d Int[1/((d^2 - e^2*x^2)*Sqrt[a + c
*x^4]), x], x] - Simp[e Int[x/((d^2 - e^2*x^2)*Sqrt[a + c*x^4]), x], x] /; FreeQ[{a, c, d, e}, x]
-
Int[((d_) + (e_.)*(x_))^(q_)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> Simp[e^3*(d + e*x)^(q + 1)
*(Sqrt[a + b*x^2 + c*x^4]/((q + 1)*(c*d^4 + b*d^2*e^2 + a*e^4))), x] + Simp[1/((q + 1)*(c*d^4 + b*d^2*e^2 + a*
e^4)) Int[((d + e*x)^(q + 1)/Sqrt[a + b*x^2 + c*x^4])*Simp[d*(q + 1)*(c*d^2 + b*e^2) - e*(c*d^2*(q + 1) + b*
e^2*(q + 2))*x + c*d*e^2*(q + 1)*x^2 - c*e^3*(q + 3)*x^3, x], x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[c*d^4
+ b*d^2*e^2 + a*e^4, 0] && ILtQ[q, -1]
-
Int[((d_) + (e_.)*(x_))^(q_)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> Simp[e^3*(d + e*x)^(q + 1)*(Sqrt[a + c*x^
4]/((q + 1)*(c*d^4 + a*e^4))), x] + Simp[c/((q + 1)*(c*d^4 + a*e^4)) Int[((d + e*x)^(q + 1)/Sqrt[a + c*x^4])
*Simp[d^3*(q + 1) - d^2*e*(q + 1)*x + d*e^2*(q + 1)*x^2 - e^3*(q + 3)*x^3, x], x], x] /; FreeQ[{a, c, d, e}, x
] && NeQ[c*d^4 + a*e^4, 0] && ILtQ[q, -1]
-
Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.)/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[d Int[(a + b*x^2 + c*x
^4)^p/(d^2 - e^2*x^2), x], x] - Simp[e Int[x*((a + b*x^2 + c*x^4)^p/(d^2 - e^2*x^2)), x], x] /; FreeQ[{a, b,
c, d, e}, x] && IntegerQ[p + 1/2]
-
Int[((a_) + (c_.)*(x_)^4)^(p_.)/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[d Int[(a + c*x^4)^p/(d^2 - e^2*x^2),
x], x] - Simp[e Int[x*((a + c*x^4)^p/(d^2 - e^2*x^2)), x], x] /; FreeQ[{a, c, d, e}, x] && IntegerQ[p + 1/2]
-
Int[(Px_)*((d_) + (e_.)*(x_))^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Int[PolynomialQuo
tient[Px, d + e*x, x]*(d + e*x)^(q + 1)*(a + b*x^2 + c*x^4)^p, x] /; FreeQ[{a, b, c, d, e, p, q}, x] && PolyQ[
Px, x] && EqQ[PolynomialRemainder[Px, d + e*x, x], 0]
-
Int[(Px_)*((d_) + (e_.)*(x_))^(q_.)*((a_) + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Int[PolynomialQuotient[Px, d + e
*x, x]*(d + e*x)^(q + 1)*(a + c*x^4)^p, x] /; FreeQ[{a, c, d, e, p, q}, x] && PolyQ[Px, x] && EqQ[PolynomialRe
mainder[Px, d + e*x, x], 0]
-
Int[(Px_)*((d_) + (e_.)*(x_))^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Int[PolynomialQuo
tient[Px, a + b*x^2 + c*x^4, x]*(d + e*x)^q*(a + b*x^2 + c*x^4)^(p + 1), x] /; FreeQ[{a, b, c, d, e, p, q}, x]
&& PolyQ[Px, x] && EqQ[PolynomialRemainder[Px, a + b*x^2 + c*x^4, x], 0]
-
Int[(Px_)*((d_) + (e_.)*(x_))^(q_.)*((a_) + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Int[PolynomialQuotient[Px, a + c
*x^4, x]*(d + e*x)^q*(a + c*x^4)^(p + 1), x] /; FreeQ[{a, c, d, e, p, q}, x] && PolyQ[Px, x] && EqQ[Polynomial
Remainder[Px, a + c*x^4, x], 0]
-
Int[((Px_)*((d_) + (e_.)*(x_))^(q_))/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{A = Coeff[Px
, x, 0], B = Coeff[Px, x, 1], C = Coeff[Px, x, 2], D = Coeff[Px, x, 3]}, Int[(d + e*x)^(q - 1)*((A*d + (B*d +
A*e)*x + (C*d + B*e)*x^2 + C*e*x^3)/Sqrt[a + b*x^2 + c*x^4]), x]] /; FreeQ[{a, b, c, d, e}, x] && PolyQ[Px, x]
&& LeQ[Expon[Px, x], 2] && NeQ[c*d^4 + b*d^2*e^2 + a*e^4, 0] && GtQ[q, 0]
-
Int[((Px_)*((d_) + (e_.)*(x_))^(q_))/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{A = Coeff[Px, x, 0], B = Co
eff[Px, x, 1], C = Coeff[Px, x, 2], D = Coeff[Px, x, 3]}, Int[(d + e*x)^(q - 1)*((A*d + (B*d + A*e)*x + (C*d +
B*e)*x^2 + C*e*x^3)/Sqrt[a + c*x^4]), x]] /; FreeQ[{a, c, d, e}, x] && PolyQ[Px, x] && LeQ[Expon[Px, x], 2] &
& NeQ[c*d^4 + a*e^4, 0] && GtQ[q, 0]
-
Int[((Px_)*((d_) + (e_.)*(x_))^(q_))/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{A = Coeff[Px
, x, 0], B = Coeff[Px, x, 1], C = Coeff[Px, x, 2], D = Coeff[Px, x, 3]}, Simp[D*(d + e*x)^q*(Sqrt[a + b*x^2 +
c*x^4]/(c*(q + 2))), x] - Simp[1/(c*(q + 2)) Int[((d + e*x)^(q - 1)/Sqrt[a + b*x^2 + c*x^4])*Simp[a*D*e*q -
A*c*d*(q + 2) + (b*d*D - B*c*d*(q + 2) - A*c*e*(q + 2))*x + (b*D*e*(q + 1) - c*(C*d + B*e)*(q + 2))*x^2 - c*(d
*D*q + C*e*(q + 2))*x^3, x], x], x]] /; FreeQ[{a, b, c, d, e}, x] && PolyQ[Px, x, 3] && NeQ[c*d^4 + b*d^2*e^2
+ a*e^4, 0] && GtQ[q, 0]
-
Int[((Px_)*((d_) + (e_.)*(x_))^(q_))/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{A = Coeff[Px, x, 0], B = Co
eff[Px, x, 1], C = Coeff[Px, x, 2], D = Coeff[Px, x, 3]}, Simp[D*(d + e*x)^q*(Sqrt[a + c*x^4]/(c*(q + 2))), x]
- Simp[1/(c*(q + 2)) Int[((d + e*x)^(q - 1)/Sqrt[a + c*x^4])*Simp[a*D*e*q - A*c*d*(q + 2) - c*(B*d*(q + 2)
+ A*e*(q + 2))*x - c*(C*d + B*e)*(q + 2)*x^2 - c*(d*D*q + C*e*(q + 2))*x^3, x], x], x]] /; FreeQ[{a, c, d, e},
x] && PolyQ[Px, x, 3] && NeQ[c*d^4 + a*e^4, 0] && GtQ[q, 0]
-
Int[((Px_)*((d_) + (e_.)*(x_))^(q_))/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{A = Coeff[Px
, x, 0], B = Coeff[Px, x, 1], C = Coeff[Px, x, 2], D = Coeff[Px, x, 3]}, Simp[(-(d^3*D - C*d^2*e + B*d*e^2 - A
*e^3))*(d + e*x)^(q + 1)*(Sqrt[a + b*x^2 + c*x^4]/((q + 1)*(c*d^4 + b*d^2*e^2 + a*e^4))), x] + Simp[1/((q + 1)
*(c*d^4 + b*d^2*e^2 + a*e^4)) Int[((d + e*x)^(q + 1)/Sqrt[a + b*x^2 + c*x^4])*Simp[(q + 1)*(a*e*(d^2*D - C*d
*e + B*e^2) + A*d*(c*d^2 + b*e^2)) - (e*(q + 1)*(A*c*d^2 + a*e*(d*D - C*e)) - B*d*(c*d^2*(q + 1) + b*e^2*(q +
2)) - b*(d^3*D - C*d^2*e - A*e^3*(q + 2)))*x + (q + 1)*(D*e*(b*d^2 + a*e^2) + c*d*(C*d^2 - e*(B*d - A*e)))*x^2
+ c*(q + 3)*(d^3*D - C*d^2*e + B*d*e^2 - A*e^3)*x^3, x], x], x]] /; FreeQ[{a, b, c, d, e}, x] && PolyQ[Px, x]
&& LeQ[Expon[Px, x], 3] && NeQ[c*d^4 + b*d^2*e^2 + a*e^4, 0] && LtQ[q, -1]
-
Int[((Px_)*((d_) + (e_.)*(x_))^(q_))/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{A = Coeff[Px, x, 0], B = Co
eff[Px, x, 1], C = Coeff[Px, x, 2], D = Coeff[Px, x, 3]}, Simp[(-(d^3*D - C*d^2*e + B*d*e^2 - A*e^3))*(d + e*x
)^(q + 1)*(Sqrt[a + c*x^4]/((q + 1)*(c*d^4 + a*e^4))), x] + Simp[1/((q + 1)*(c*d^4 + a*e^4)) Int[((d + e*x)^
(q + 1)/Sqrt[a + c*x^4])*Simp[(q + 1)*(a*e*(d^2*D - C*d*e + B*e^2) + A*d*(c*d^2)) - (e*(q + 1)*(A*c*d^2 + a*e*
(d*D - C*e)) - B*d*(c*d^2*(q + 1)))*x + (q + 1)*(D*e*(a*e^2) + c*d*(C*d^2 - e*(B*d - A*e)))*x^2 + c*(q + 3)*(d
^3*D - C*d^2*e + B*d*e^2 - A*e^3)*x^3, x], x], x]] /; FreeQ[{a, c, d, e}, x] && PolyQ[Px, x] && LeQ[Expon[Px,
x], 3] && NeQ[c*d^4 + a*e^4, 0] && LtQ[q, -1]
-
Int[((A_) + (B_.)*(x_))/(((d_) + (e_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]), x_Symbol] :> Simp[(-A^
2)*((B*d + A*e)/e) Subst[Int[1/(6*A^3*B*d + 3*A^4*e - a*e*x^2), x], x, (A + B*x)^2/Sqrt[a + b*x^2 + c*x^4]],
x] /; FreeQ[{a, b, c, d, e, A, B}, x] && NeQ[B*d - A*e, 0] && EqQ[c^2*d^6 + a*e^4*(13*c*d^2 + b*e^2), 0] && E
qQ[b^2*e^4 - 12*c*d^2*(c*d^2 - b*e^2), 0] && EqQ[4*A*c*d*e + B*(2*c*d^2 - b*e^2), 0]
-
Int[(Px_)/(((d_) + (e_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]), x_Symbol] :> With[{A = Coeff[Px, x,
0], B = Coeff[Px, x, 1], C = Coeff[Px, x, 2], D = Coeff[Px, x, 3]}, Int[(x*(B*d - A*e + (d*D - C*e)*x^2))/((d^
2 - e^2*x^2)*Sqrt[a + b*x^2 + c*x^4]), x] + Int[(A*d + (C*d - B*e)*x^2 - D*e*x^4)/((d^2 - e^2*x^2)*Sqrt[a + b*
x^2 + c*x^4]), x]] /; FreeQ[{a, b, c, d, e}, x] && PolyQ[Px, x] && LeQ[Expon[Px, x], 3] && NeQ[c*d^4 + b*d^2*e
^2 + a*e^4, 0]
-
Int[(Px_)/(((d_) + (e_.)*(x_))*Sqrt[(a_) + (c_.)*(x_)^4]), x_Symbol] :> With[{A = Coeff[Px, x, 0], B = Coeff[P
x, x, 1], C = Coeff[Px, x, 2], D = Coeff[Px, x, 3]}, Int[(x*(B*d - A*e + (d*D - C*e)*x^2))/((d^2 - e^2*x^2)*Sq
rt[a + c*x^4]), x] + Int[(A*d + (C*d - B*e)*x^2 - D*e*x^4)/((d^2 - e^2*x^2)*Sqrt[a + c*x^4]), x]] /; FreeQ[{a,
c, d, e}, x] && PolyQ[Px, x] && LeQ[Expon[Px, x], 3] && NeQ[c*d^4 + a*e^4, 0]
-
Int[((Px_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.))/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[d Int[Px*((a +
b*x^2 + c*x^4)^p/(d^2 - e^2*x^2)), x], x] - Simp[e Int[x*Px*((a + b*x^2 + c*x^4)^p/(d^2 - e^2*x^2)), x], x]
/; FreeQ[{a, b, c, d, e}, x] && PolyQ[Px, x] && IntegerQ[p + 1/2]
-
Int[((Px_)*((a_) + (c_.)*(x_)^4)^(p_.))/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[d Int[Px*((a + c*x^4)^p/(d^2
- e^2*x^2)), x], x] - Simp[e Int[x*Px*((a + c*x^4)^p/(d^2 - e^2*x^2)), x], x] /; FreeQ[{a, c, d, e}, x] && P
olyQ[Px, x] && IntegerQ[p + 1/2]
-
Int[(Px_)*(x_)^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Simp[1/n Subst[Int[Sub
stFor[x^n, Px, x]*(a + b*x + c*x^2)^p, x], x, x^n], x] /; FreeQ[{a, b, c, m, n, p}, x] && EqQ[n2, 2*n] && Poly
Q[Px, x^n] && EqQ[Simplify[m - n + 1], 0]
-
Int[(Px_)*((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.))^(p_.), x_Symbol] :> Int[ExpandInteg
rand[(d*x)^m*Px*(a + b*x^n + c*x^(2*n))^p, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && EqQ[n2, 2*n] && PolyQ[Px,
x] && IGtQ[p, 0]
-
Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.))^(p_.)*((d_) + (e_.)*(x_)^(n_.) + (f_.)*(x
_)^(n2_.)), x_Symbol] :> Simp[d*(g*x)^(m + 1)*((a + b*x^n + c*x^(2*n))^(p + 1)/(a*g*(m + 1))), x] /; FreeQ[{a,
b, c, d, e, f, g, m, n, p}, x] && EqQ[n2, 2*n] && EqQ[a*e*(m + 1) - b*d*(m + n*(p + 1) + 1), 0] && EqQ[a*f*(m
+ 1) - c*d*(m + 2*n*(p + 1) + 1), 0] && NeQ[m, -1]
-
Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.))^(p_.)*((d_) + (f_.)*(x_)^(n2_.)), x_Symbo
l] :> Simp[d*(g*x)^(m + 1)*((a + b*x^n + c*x^(2*n))^(p + 1)/(a*g*(m + 1))), x] /; FreeQ[{a, b, c, d, f, g, m,
n, p}, x] && EqQ[n2, 2*n] && EqQ[m + n*(p + 1) + 1, 0] && EqQ[c*d + a*f, 0] && NeQ[m, -1]
-
Int[(Px_)*(x_)^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[1/n Subst[Int[x^(S
implify[(m + 1)/n] - 1)*SubstFor[x^n, Px, x]*(a + b*x + c*x^2)^p, x], x, x^n], x] /; FreeQ[{a, b, c, m, n, p},
x] && EqQ[n2, 2*n] && PolyQ[Px, x^n] && NeQ[b^2 - 4*a*c, 0] && IntegerQ[Simplify[(m + 1)/n]]
-
Int[(Px_)*((d_)*(x_))^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(d*x)^m/x^m
Int[x^m*Px*(a + b*x^n + c*x^(2*n))^p, x], x] /; FreeQ[{a, b, c, d, m, n, p}, x] && EqQ[n2, 2*n] && PolyQ[Px,
x^n] && NeQ[b^2 - 4*a*c, 0] && IntegerQ[Simplify[(m + 1)/n]]
-
Int[((x_)^(m_.)*((e_) + (f_.)*(x_)^(q_.) + (g_.)*(x_)^(r_.) + (h_.)*(x_)^(s_.)))/((a_) + (b_.)*(x_)^(n_.) + (c
_.)*(x_)^(n2_.))^(3/2), x_Symbol] :> Simp[-(2*c*(b*f - 2*a*g) + 2*h*(b^2 - 4*a*c)*x^(n/2) + 2*c*(2*c*f - b*g)*
x^n)/(c*n*(b^2 - 4*a*c)*Sqrt[a + b*x^n + c*x^(2*n)]), x] /; FreeQ[{a, b, c, e, f, g, h, m, n}, x] && EqQ[n2, 2
*n] && EqQ[q, n/2] && EqQ[r, 3*(n/2)] && EqQ[s, 2*n] && NeQ[b^2 - 4*a*c, 0] && EqQ[2*m - n + 2, 0] && EqQ[c*e
+ a*h, 0]
-
Int[(((d_)*(x_))^(m_.)*((e_) + (f_.)*(x_)^(q_.) + (g_.)*(x_)^(r_.) + (h_.)*(x_)^(s_.)))/((a_) + (b_.)*(x_)^(n_
.) + (c_.)*(x_)^(n2_.))^(3/2), x_Symbol] :> Simp[(d*x)^m/x^m Int[x^m*((e + f*x^(n/2) + g*x^((3*n)/2) + h*x^(
2*n))/(a + b*x^n + c*x^(2*n))^(3/2)), x], x] /; FreeQ[{a, b, c, d, e, f, g, h, m, n}, x] && EqQ[n2, 2*n] && Eq
Q[q, n/2] && EqQ[r, 3*(n/2)] && EqQ[s, 2*n] && NeQ[b^2 - 4*a*c, 0] && EqQ[2*m - n + 2, 0] && EqQ[c*e + a*h, 0]
-
Int[(Px_)*(x_)^(m_)*((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_))^(p_), x_Symbol] :> Module[{q = Expon[Px, x]},
Module[{Q = PolynomialQuotient[a*(b*c)^(Floor[(q - 1)/n] + 1)*x^m*Px, a + b*x^n + c*x^(2*n), x], R = Polynomia
lRemainder[a*(b*c)^(Floor[(q - 1)/n] + 1)*x^m*Px, a + b*x^n + c*x^(2*n), x], i}, Simp[1/(a*n*(p + 1)*(b^2 - 4*
a*c)*(b*c)^(Floor[(q - 1)/n] + 1)) Int[x^m*(a + b*x^n + c*x^(2*n))^(p + 1)*ExpandToSum[(n*(p + 1)*(b^2 - 4*a
*c)*Q)/x^m + Sum[((b^2*((n*(p + 1) + i + 1)/a) - 2*c*(2*n*(p + 1) + i + 1))*Coeff[R, x, i] - b*(i + 1)*Coeff[R
, x, n + i])*x^(i - m) + c*(n*(2*p + 3) + i + 1)*((b/a)*Coeff[R, x, i] - 2*Coeff[R, x, n + i])*x^(n + i - m),
{i, 0, n - 1}], x], x], x] + Simp[(-x)*((a + b*x^n + c*x^(2*n))^(p + 1)/(a^2*n*(p + 1)*(b^2 - 4*a*c)*(b*c)^(Fl
oor[(q - 1)/n] + 1)))*Sum[((b^2 - 2*a*c)*Coeff[R, x, i] - a*b*Coeff[R, x, n + i])*x^i + c*(b*Coeff[R, x, i] -
2*a*Coeff[R, x, n + i])*x^(n + i), {i, 0, n - 1}], x]] /; GeQ[q, 2*n]] /; FreeQ[{a, b, c}, x] && EqQ[n2, 2*n]
&& PolyQ[Px, x] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && LtQ[p, -1] && ILtQ[m, 0]
-
Int[(Px_)*(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_))^(p_), x_Symbol] :> With[{g = GCD[m + 1, n]},
Simp[1/g Subst[Int[x^((m + 1)/g - 1)*(Px /. x -> x^(1/g))*(a + b*x^(n/g) + c*x^(2*(n/g)))^p, x], x, x^g], x]
/; NeQ[g, 1]] /; FreeQ[{a, b, c, p}, x] && EqQ[n2, 2*n] && PolyQ[Px, x^n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0
] && IntegerQ[m]
-
Int[(Px_)*((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_))^(p_), x_Symbol] :> With[{q = Expon[P
x, x^n]}, Simp[Coeff[Px, x^n, q]*(d*x)^(m + n*q - 2*n + 1)*((a + b*x^n + c*x^(2*n))^(p + 1)/(c*d^(n*q - 2*n +
1)*(m + n*(2*p + q) + 1))), x] + Int[(d*x)^m*(a + b*x^n + c*x^(2*n))^p*ExpandToSum[Px - Coeff[Px, x^n, q]*x^(n
*q) - Coeff[Px, x^n, q]*((a*(m + n*q - 2*n + 1)*x^(n*(q - 2)) + b*(m + n*(p + q - 1) + 1)*x^(n*(q - 1)))/(c*(m
+ n*(2*p + q) + 1))), x], x] /; GtQ[q, 1] && NeQ[m + n*(2*p + q) + 1, 0] && (IntegerQ[2*p] || (EqQ[n, 1] && I
ntegerQ[4*p]) || IntegerQ[p + (n*q + 1)/(2*n)])] /; FreeQ[{a, b, c, d, m, p}, x] && EqQ[n2, 2*n] && PolyQ[Px,
x^n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0]
-
Int[(Px_)*((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_))^(p_), x_Symbol] :> Module[{q = Expon[
Px, x], j, k}, Int[Sum[(1/d^j)*(d*x)^(m + j)*Sum[Coeff[Px, x, j + k*n]*x^(k*n), {k, 0, (q - j)/n + 1}]*(a + b*
x^n + c*x^(2*n))^p, {j, 0, n - 1}], x]] /; FreeQ[{a, b, c, d, m, p}, x] && EqQ[n2, 2*n] && PolyQ[Px, x] && NeQ
[b^2 - 4*a*c, 0] && IGtQ[n, 0] && !PolyQ[Px, x^n]
-
Int[((Px_)*((d_.)*(x_))^(m_.))/((a_) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.)), x_Symbol] :> Int[RationalFunctio
nExpand[(d*x)^m*(Px/(a + b*x^n + c*x^(2*n))), x], x] /; FreeQ[{a, b, c, d, m}, x] && EqQ[n2, 2*n] && PolyQ[Px,
x] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0]
-
Int[(Px_)*(x_)^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{q = Expon[Px, x]},
-Subst[Int[ExpandToSum[x^q*(Px /. x -> x^(-1)), x]*((a + b/x^n + c/x^(2*n))^p/x^(m + q + 2)), x], x, 1/x]] /;
FreeQ[{a, b, c, p}, x] && EqQ[n2, 2*n] && PolyQ[Px, x] && NeQ[b^2 - 4*a*c, 0] && ILtQ[n, 0] && IntegerQ[m]
-
Int[(Px_)*((d_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{g = Denomin
ator[m], q = Expon[Px, x]}, Simp[-g/d Subst[Int[ExpandToSum[x^(g*q)*(Px /. x -> 1/(d*x^g)), x]*((a + b/(d^n*
x^(g*n)) + c/(d^(2*n)*x^(2*g*n)))^p/x^(g*(m + q + 1) + 1)), x], x, 1/(d*x)^(1/g)], x]] /; FreeQ[{a, b, c, d, p
}, x] && EqQ[n2, 2*n] && PolyQ[Px, x] && NeQ[b^2 - 4*a*c, 0] && ILtQ[n, 0] && FractionQ[m]
-
Int[(Px_)*((d_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{q = Expon[Px
, x]}, Simp[(-(d*x)^m)*(x^(-1))^m Subst[Int[ExpandToSum[x^q*(Px /. x -> x^(-1)), x]*((a + b/x^n + c/x^(2*n))
^p/x^(m + q + 2)), x], x, 1/x], x]] /; FreeQ[{a, b, c, d, m, p}, x] && EqQ[n2, 2*n] && PolyQ[Px, x] && NeQ[b^2
- 4*a*c, 0] && ILtQ[n, 0] && !RationalQ[m]
-
Int[(Px_)*(x_)^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{g = Denominator[n]}
, Simp[g Subst[Int[x^(g*(m + 1) - 1)*(Px /. x -> x^g)*(a + b*x^(g*n) + c*x^(2*g*n))^p, x], x, x^(1/g)], x]]
/; FreeQ[{a, b, c, m, p}, x] && EqQ[n2, 2*n] && PolyQ[Px, x] && NeQ[b^2 - 4*a*c, 0] && FractionQ[n]
-
Int[(Px_)*((d_)*(x_))^(m_)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[d^(m - 1/2)*(S
qrt[d*x]/Sqrt[x]) Int[x^m*Px*(a + b*x^n + c*x^(2*n))^p, x], x] /; FreeQ[{a, b, c, d, p}, x] && EqQ[n2, 2*n]
&& PolyQ[Px, x] && NeQ[b^2 - 4*a*c, 0] && FractionQ[n] && IGtQ[m + 1/2, 0]
-
Int[(Px_)*((d_)*(x_))^(m_)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[d^(m + 1/2)*(S
qrt[x]/Sqrt[d*x]) Int[x^m*Px*(a + b*x^n + c*x^(2*n))^p, x], x] /; FreeQ[{a, b, c, d, p}, x] && EqQ[n2, 2*n]
&& PolyQ[Px, x] && NeQ[b^2 - 4*a*c, 0] && FractionQ[n] && ILtQ[m - 1/2, 0]
-
Int[(Px_)*((d_)*(x_))^(m_)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(d*x)^m/x^m
Int[x^m*Px*(a + b*x^n + c*x^(2*n))^p, x], x] /; FreeQ[{a, b, c, d, m, p}, x] && EqQ[n2, 2*n] && PolyQ[Px, x] &
& NeQ[b^2 - 4*a*c, 0] && FractionQ[n]
-
Int[(Px_)*(x_)^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[1/(m + 1) Subst[In
t[(SubstFor[x^n, Px, x] /. x -> x^Simplify[n/(m + 1)])*(a + b*x^Simplify[n/(m + 1)] + c*x^Simplify[2*(n/(m + 1
))])^p, x], x, x^(m + 1)], x] /; FreeQ[{a, b, c, m, n, p}, x] && EqQ[n2, 2*n] && PolyQ[Px, x^n] && NeQ[b^2 - 4
*a*c, 0] && IntegerQ[Simplify[n/(m + 1)]] && !IntegerQ[n]
-
Int[(Px_)*((d_)*(x_))^(m_)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(d*x)^m/x^m
Int[x^m*Px*(a + b*x^n + c*x^(2*n))^p, x], x] /; FreeQ[{a, b, c, d, m, p}, x] && EqQ[n2, 2*n] && PolyQ[Px, x^n]
&& NeQ[b^2 - 4*a*c, 0] && IntegerQ[Simplify[n/(m + 1)]] && !IntegerQ[n]
-
Int[((Px_)*((d_.)*(x_))^(m_.))/((a_) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.)), x_Symbol] :> With[{q = Rt[b^2 -
4*a*c, 2]}, Simp[2*(c/q) Int[(d*x)^m*(Px/(b - q + 2*c*x^n)), x], x] - Simp[2*(c/q) Int[(d*x)^m*(Px/(b + q
+ 2*c*x^n)), x], x]] /; FreeQ[{a, b, c, d, m, n}, x] && EqQ[n2, 2*n] && PolyQ[Px, x] && NeQ[b^2 - 4*a*c, 0]
-
Int[(Px_)*((d_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.))^(p_), x_Symbol] :> Int[ExpandIntegr
and[(d*x)^m*Px*(a + b*x^n + c*x^(2*n))^p, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && EqQ[n2, 2*n] && PolyQ[Px,
x]
-
Int[(Px_)*(u_)^(m_.)*((a_) + (c_.)*(v_)^(n2_.) + (b_.)*(v_)^(n_))^(p_.), x_Symbol] :> Simp[u^m/(Coefficient[v,
x, 1]*v^m) Subst[Int[x^m*SubstFor[v, Px, x]*(a + b*x^n + c*x^(2*n))^p, x], x, v], x] /; FreeQ[{a, b, c, m,
n, p}, x] && EqQ[n2, 2*n] && LinearPairQ[u, v, x] && PolyQ[Px, v^n]
-
Int[(Pq_)*((a_) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.))^(p_.), x_Symbol] :> Int[ExpandIntegrand[Pq*(a + b*x^n
+ c*x^(2*n))^p, x], x] /; FreeQ[{a, b, c, n}, x] && EqQ[n2, 2*n] && PolyQ[Pq, x] && IGtQ[p, 0]
-
Int[((a_) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.))^(p_.)*((d_) + (e_.)*(x_)^(n_.) + (f_.)*(x_)^(n2_.)), x_Symbo
l] :> Simp[d*x*((a + b*x^n + c*x^(2*n))^(p + 1)/a), x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && EqQ[n2, 2*n] &
& EqQ[a*e - b*d*(n*(p + 1) + 1), 0] && EqQ[a*f - c*d*(2*n*(p + 1) + 1), 0]
-
Int[((a_) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.))^(p_.)*((d_) + (f_.)*(x_)^(n2_.)), x_Symbol] :> Simp[d*x*((a
+ b*x^n + c*x^(2*n))^(p + 1)/a), x] /; FreeQ[{a, b, c, d, f, n, p}, x] && EqQ[n2, 2*n] && EqQ[n*(p + 1) + 1, 0
] && EqQ[c*d + a*f, 0]
-
Int[(Pq_)*((a_) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.))^(p_), x_Symbol] :> Int[x*PolynomialQuotient[Pq, x, x]*
(a + b*x^n + c*x^(2*n))^p, x] /; FreeQ[{a, b, c, n, p}, x] && EqQ[n2, 2*n] && PolyQ[Pq, x] && EqQ[Coeff[Pq, x,
0], 0] && !MatchQ[Pq, x^(m_.)*(u_.) /; IntegerQ[m]]
-
Int[((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.)*((d_) + (f_.)*(x_)^(n2_.) + (g_.)*(x_)^(n3_.) + (e_.)*(
x_)^(n_)), x_Symbol] :> Simp[x*(a*d*(n + 1) + (a*e - b*d*(n*(p + 1) + 1))*x^n)*((a + b*x^n + c*x^(2*n))^(p + 1
)/(a^2*(n + 1))), x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && EqQ[n2, 2*n] && EqQ[n3, 3*n] && NeQ[b^2 - 4*a
*c, 0] && EqQ[a^2*g*(n + 1) - c*(n*(2*p + 3) + 1)*(a*e - b*d*(n*(p + 1) + 1)), 0] && EqQ[a^2*f*(n + 1) - a*c*d
*(n + 1)*(2*n*(p + 1) + 1) - b*(n*(p + 2) + 1)*(a*e - b*d*(n*(p + 1) + 1)), 0]
-
Int[((d_) + (f_.)*(x_)^(n2_.) + (g_.)*(x_)^(n3_.))*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.), x_Symbo
l] :> Simp[d*x*(a*(n + 1) - b*(n*(p + 1) + 1)*x^n)*((a + b*x^n + c*x^(2*n))^(p + 1)/(a^2*(n + 1))), x] /; Free
Q[{a, b, c, d, f, g, n, p}, x] && EqQ[n2, 2*n] && EqQ[n3, 3*n] && NeQ[b^2 - 4*a*c, 0] && EqQ[a^2*g*(n + 1) + c
*b*d*(n*(2*p + 3) + 1)*(n*(p + 1) + 1), 0] && EqQ[a^2*f*(n + 1) - a*c*d*(n + 1)*(2*n*(p + 1) + 1) + b^2*d*(n*(
p + 2) + 1)*(n*(p + 1) + 1), 0]
-
Int[((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.)*((d_) + (g_.)*(x_)^(n3_.) + (e_.)*(x_)^(n_)), x_Symbol]
:> Simp[x*(a*d*(n + 1) + (a*e - b*d*(n*(p + 1) + 1))*x^n)*((a + b*x^n + c*x^(2*n))^(p + 1)/(a^2*(n + 1))), x]
/; FreeQ[{a, b, c, d, e, g, n, p}, x] && EqQ[n2, 2*n] && EqQ[n3, 3*n] && NeQ[b^2 - 4*a*c, 0] && EqQ[a^2*g*(n
+ 1) - c*(n*(2*p + 3) + 1)*(a*e - b*d*(n*(p + 1) + 1)), 0] && EqQ[a*c*d*(n + 1)*(2*n*(p + 1) + 1) + b*(n*(p +
2) + 1)*(a*e - b*d*(n*(p + 1) + 1)), 0]
-
Int[((d_) + (g_.)*(x_)^(n3_.))*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Simp[d*x*(a*(n
+ 1) - b*(n*(p + 1) + 1)*x^n)*((a + b*x^n + c*x^(2*n))^(p + 1)/(a^2*(n + 1))), x] /; FreeQ[{a, b, c, d, g, n,
p}, x] && EqQ[n2, 2*n] && EqQ[n3, 3*n] && NeQ[b^2 - 4*a*c, 0] && EqQ[a^2*g*(n + 1) + c*b*d*(n*(2*p + 3) + 1)*
(n*(p + 1) + 1), 0] && EqQ[a*c*d*(n + 1)*(2*n*(p + 1) + 1) - b^2*d*(n*(p + 2) + 1)*(n*(p + 1) + 1), 0]
-
Int[(Pq_)*((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_))^(p_), x_Symbol] :> Module[{q = Expon[Pq, x], i}, Simp[(-
x)*((a + b*x^n + c*x^(2*n))^(p + 1)/(a*n*(p + 1)*(b^2 - 4*a*c)))*Sum[((b^2 - 2*a*c)*Coeff[Pq, x, i] - a*b*Coef
f[Pq, x, n + i])*x^i + c*(b*Coeff[Pq, x, i] - 2*a*Coeff[Pq, x, n + i])*x^(n + i), {i, 0, n - 1}], x] + Simp[1/
(a*n*(p + 1)*(b^2 - 4*a*c)) Int[(a + b*x^n + c*x^(2*n))^(p + 1)*Sum[((b^2*(n*(p + 1) + i + 1) - 2*a*c*(2*n*(
p + 1) + i + 1))*Coeff[Pq, x, i] - a*b*(i + 1)*Coeff[Pq, x, n + i])*x^i + c*(n*(2*p + 3) + i + 1)*(b*Coeff[Pq,
x, i] - 2*a*Coeff[Pq, x, n + i])*x^(n + i), {i, 0, n - 1}], x], x] /; LtQ[q, 2*n]] /; FreeQ[{a, b, c}, x] &&
EqQ[n2, 2*n] && PolyQ[Pq, x] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && LtQ[p, -1]
-
Int[(Pq_)*((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_))^(p_), x_Symbol] :> With[{q = Expon[Pq, x]}, Module[{Q =
PolynomialQuotient[(b*c)^(Floor[(q - 1)/n] + 1)*Pq, a + b*x^n + c*x^(2*n), x], R = PolynomialRemainder[(b*c)^(
Floor[(q - 1)/n] + 1)*Pq, a + b*x^n + c*x^(2*n), x], i}, Simp[1/(a*n*(p + 1)*(b^2 - 4*a*c)*(b*c)^(Floor[(q - 1
)/n] + 1)) Int[(a + b*x^n + c*x^(2*n))^(p + 1)*ExpandToSum[a*n*(p + 1)*(b^2 - 4*a*c)*Q + Sum[((b^2*(n*(p + 1
) + i + 1) - 2*a*c*(2*n*(p + 1) + i + 1))*Coeff[R, x, i] - a*b*(i + 1)*Coeff[R, x, n + i])*x^i + c*(n*(2*p + 3
) + i + 1)*(b*Coeff[R, x, i] - 2*a*Coeff[R, x, n + i])*x^(n + i), {i, 0, n - 1}], x], x], x] + Simp[(-x)*((a +
b*x^n + c*x^(2*n))^(p + 1)/(a*n*(p + 1)*(b^2 - 4*a*c)*(b*c)^(Floor[(q - 1)/n] + 1)))*Sum[((b^2 - 2*a*c)*Coeff
[R, x, i] - a*b*Coeff[R, x, n + i])*x^i + c*(b*Coeff[R, x, i] - 2*a*Coeff[R, x, n + i])*x^(n + i), {i, 0, n -
1}], x]] /; GeQ[q, 2*n]] /; FreeQ[{a, b, c}, x] && EqQ[n2, 2*n] && PolyQ[Pq, x] && NeQ[b^2 - 4*a*c, 0] && IGtQ
[n, 0] && LtQ[p, -1]
-
Int[(Pq_)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{q = Expon[Pq, x]}, With[{Pqq = Coeff[Pq,
x, q]}, Simp[c^p*Pqq*(Log[a + b*x + c*x^2]/2), x] + Simp[1/2 Int[ExpandToSum[2*Pq - c^p*Pqq*((b + 2*c*x)/(a
+ b*x + c*x^2)^(p + 1)), x]*(a + b*x + c*x^2)^p, x], x]] /; EqQ[q + 2*p + 1, 0]] /; FreeQ[{a, b, c}, x] && Po
lyQ[Pq, x] && NeQ[b^2 - 4*a*c, 0] && ILtQ[p, 0]
-
Int[(Pq_)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{q = Expon[Pq, x]}, With[{Pqq = Coeff[Pq,
x, q]}, Int[ExpandToSum[Pq - c^(p + 1/2)*(Pqq/(a + b*x + c*x^2)^(p + 1/2)), x]*(a + b*x + c*x^2)^p, x] + Simp
[c^p*Pqq*ArcTanh[(b + 2*c*x)/(2*Rt[c, 2]*Sqrt[a + b*x + c*x^2])], x]] /; EqQ[q + 2*p + 1, 0]] /; FreeQ[{a, b,
c}, x] && PolyQ[Pq, x] && NeQ[b^2 - 4*a*c, 0] && ILtQ[p + 1/2, 0] && PosQ[c]
-
Int[(Pq_)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> With[{q = Expon[Pq, x]}, With[{Pqq = Coeff[Pq,
x, q]}, Int[ExpandToSum[Pq - (-c)^(p + 1/2)*(Pqq/(a + b*x + c*x^2)^(p + 1/2)), x]*(a + b*x + c*x^2)^p, x] + S
imp[(-(-c)^p)*Pqq*ArcTan[(b + 2*c*x)/(2*Rt[-c, 2]*Sqrt[a + b*x + c*x^2])], x]] /; EqQ[q + 2*p + 1, 0]] /; Free
Q[{a, b, c}, x] && PolyQ[Pq, x] && NeQ[b^2 - 4*a*c, 0] && ILtQ[p + 1/2, 0] && NegQ[c]
-
Int[(Pq_)*((a_) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_))^(p_), x_Symbol] :> With[{q = Expon[Pq, x]}, With[{Pqq =
Coeff[Pq, x, q]}, Int[ExpandToSum[Pq - Pqq*x^q - Pqq*((a*(q - 2*n + 1)*x^(q - 2*n) + b*(q + n*(p - 1) + 1)*x^
(q - n))/(c*(q + 2*n*p + 1))), x]*(a + b*x^n + c*x^(2*n))^p, x] + Simp[Pqq*x^(q - 2*n + 1)*((a + b*x^n + c*x^(
2*n))^(p + 1)/(c*(q + 2*n*p + 1))), x]] /; GeQ[q, 2*n] && NeQ[q + 2*n*p + 1, 0] && (IntegerQ[2*p] || (EqQ[n, 1
] && IntegerQ[4*p]) || IntegerQ[p + (q + 1)/(2*n)])] /; FreeQ[{a, b, c, p}, x] && EqQ[n2, 2*n] && PolyQ[Pq, x^
n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0]
-
Int[(Pq_)*((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_))^(p_), x_Symbol] :> Module[{q = Expon[Pq, x], j, k}, Int[
Sum[x^j*Sum[Coeff[Pq, x, j + k*n]*x^(k*n), {k, 0, (q - j)/n + 1}]*(a + b*x^n + c*x^(2*n))^p, {j, 0, n - 1}], x
]] /; FreeQ[{a, b, c, p}, x] && EqQ[n2, 2*n] && PolyQ[Pq, x] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n, 0] && !PolyQ[P
q, x^n]
-
Int[(Pq_)/((a_) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.)), x_Symbol] :> Int[RationalFunctionExpand[Pq/(a + b*x^n
+ c*x^(2*n)), x], x] /; FreeQ[{a, b, c}, x] && EqQ[n2, 2*n] && PolyQ[Pq, x] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n,
0]
-
Int[(Pq_)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{g = Denominator[n]}, Simp[g
Subst[Int[x^(g - 1)*(Pq /. x -> x^g)*(a + b*x^(g*n) + c*x^(2*g*n))^p, x], x, x^(1/g)], x]] /; FreeQ[{a, b, c,
p}, x] && EqQ[n2, 2*n] && PolyQ[Pq, x] && NeQ[b^2 - 4*a*c, 0] && FractionQ[n]
-
Int[(Pq_)/((a_) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.)), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[2*(c
/q) Int[Pq/(b - q + 2*c*x^n), x], x] - Simp[2*(c/q) Int[Pq/(b + q + 2*c*x^n), x], x]] /; FreeQ[{a, b, c, n
}, x] && EqQ[n2, 2*n] && PolyQ[Pq, x] && NeQ[b^2 - 4*a*c, 0]
-
Int[(P3_)*((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_))^(p_), x_Symbol] :> With[{d = Coeff[P3, x^n, 0], e = Coef
f[P3, x^n, 1], f = Coeff[P3, x^n, 2], g = Coeff[P3, x^n, 3]}, Simp[(-x)*(b^2*c*d - 2*a*c*(c*d - a*f) - a*b*(c*
e + a*g) + (b*c*(c*d + a*f) - a*b^2*g - 2*a*c*(c*e - a*g))*x^n)*((a + b*x^n + c*x^(2*n))^(p + 1)/(a*c*n*(p + 1
)*(b^2 - 4*a*c))), x] - Simp[1/(a*c*n*(p + 1)*(b^2 - 4*a*c)) Int[(a + b*x^n + c*x^(2*n))^(p + 1)*Simp[a*b*(c
*e + a*g) - b^2*c*d*(n + n*p + 1) - 2*a*c*(a*f - c*d*(2*n*(p + 1) + 1)) + (a*b^2*g*(n*(p + 2) + 1) - b*c*(c*d
+ a*f)*(n*(2*p + 3) + 1) - 2*a*c*(a*g*(n + 1) - c*e*(n*(2*p + 3) + 1)))*x^n, x], x], x]] /; FreeQ[{a, b, c, n}
, x] && EqQ[n2, 2*n] && PolyQ[P3, x^n, 3] && NeQ[b^2 - 4*a*c, 0] && ILtQ[p, -1]
-
Int[(P2_)*((a_) + (b_.)*(x_)^(n_) + (c_.)*(x_)^(n2_))^(p_), x_Symbol] :> With[{d = Coeff[P2, x^n, 0], e = Coef
f[P2, x^n, 1], f = Coeff[P2, x^n, 2]}, Simp[(-x)*(b^2*d - 2*a*(c*d - a*f) - a*b*e + (b*(c*d + a*f) - 2*a*c*e)*
x^n)*((a + b*x^n + c*x^(2*n))^(p + 1)/(a*n*(p + 1)*(b^2 - 4*a*c))), x] - Simp[1/(a*n*(p + 1)*(b^2 - 4*a*c))
Int[(a + b*x^n + c*x^(2*n))^(p + 1)*Simp[a*b*e - b^2*d*(n + n*p + 1) - 2*a*(a*f - c*d*(2*n*(p + 1) + 1)) - (b*
(c*d + a*f)*(n*(2*p + 3) + 1) - 2*a*c*e*(n*(2*p + 3) + 1))*x^n, x], x], x]] /; FreeQ[{a, b, c, n}, x] && EqQ[n
2, 2*n] && PolyQ[P2, x^n, 2] && NeQ[b^2 - 4*a*c, 0] && ILtQ[p, -1]
-
Int[(Pq_)*((a_) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.))^(p_), x_Symbol] :> Int[ExpandIntegrand[Pq*(a + b*x^n +
c*x^(2*n))^p, x], x] /; FreeQ[{a, b, c, n}, x] && EqQ[n2, 2*n] && PolyQ[Pq, x] && ILtQ[p, -1]
-
Int[(Pq_)*((a_) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.))^(p_.), x_Symbol] :> Unintegrable[Pq*(a + b*x^n + c*x^(
2*n))^p, x] /; FreeQ[{a, b, c, n, p}, x] && EqQ[n2, 2*n] && (PolyQ[Pq, x] || PolyQ[Pq, x^n])
-
Int[(Pq_)*((a_) + (c_.)*(v_)^(n2_.) + (b_.)*(v_)^(n_))^(p_.), x_Symbol] :> Simp[1/Coefficient[v, x, 1] Subst
[Int[SubstFor[v, Pq, x]*(a + b*x^n + c*x^(2*n))^p, x], x, v], x] /; FreeQ[{a, b, c, n, p}, x] && EqQ[n2, 2*n]
&& LinearQ[v, x] && PolyQ[Pq, v^n]
-
Int[(Pq_)*(x_)^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[1/2 Subst[Int[x^((m - 1)/2)*SubstFor[x^2
, Pq, x]*(a + b*x)^p, x], x, x^2], x] /; FreeQ[{a, b, p}, x] && PolyQ[Pq, x^2] && IntegerQ[(m - 1)/2]
-
Int[(P2_)*((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.), x_Symbol] :> With[{f = Coeff[P2, x, 0], g = Coeff[P2
, x, 1], h = Coeff[P2, x, 2]}, Simp[h*(c*x)^(m + 1)*((a + b*x^2)^(p + 1)/(b*c*(m + 2*p + 3))), x] /; EqQ[g, 0]
&& EqQ[a*h*(m + 1) - b*f*(m + 2*p + 3), 0]] /; FreeQ[{a, b, c, m, p}, x] && PolyQ[P2, x, 2] && NeQ[m, -1]
-
Int[(Pq_)*((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*Pq*(a + b*x
^2)^p, x], x] /; FreeQ[{a, b, c, m}, x] && PolyQ[Pq, x] && IGtQ[p, -2]
-
Int[(Pq_)*(x_)^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{A = Coeff[Pq, x, 0], Q = PolynomialQuotient
[Pq - Coeff[Pq, x, 0], x^2, x]}, Simp[A*x^(m + 1)*((a + b*x^2)^(p + 1)/(a*(m + 1))), x] + Simp[1/(a*(m + 1))
Int[x^(m + 2)*(a + b*x^2)^p*(a*(m + 1)*Q - A*b*(m + 2*(p + 1) + 1)), x], x]] /; FreeQ[{a, b}, x] && PolyQ[Pq,
x^2] && IntegerQ[m/2] && ILtQ[(m + 1)/2 + p, 0] && LtQ[m + Expon[Pq, x] + 2*p + 1, 0]
-
Int[(Pq_)*((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[Pq, a + b*x
^2, x], f = Coeff[PolynomialRemainder[Pq, a + b*x^2, x], x, 0], g = Coeff[PolynomialRemainder[Pq, a + b*x^2, x
], x, 1]}, Simp[(c*x)^m*(a + b*x^2)^(p + 1)*((a*g - b*f*x)/(2*a*b*(p + 1))), x] + Simp[c/(2*a*b*(p + 1)) Int
[(c*x)^(m - 1)*(a + b*x^2)^(p + 1)*ExpandToSum[2*a*b*(p + 1)*x*Q - a*g*m + b*f*(m + 2*p + 3)*x, x], x], x]] /;
FreeQ[{a, b, c}, x] && PolyQ[Pq, x] && LtQ[p, -1] && GtQ[m, 0]
-
Int[(Pq_)*((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[(c*x)^m*Pq,
a + b*x^2, x], f = Coeff[PolynomialRemainder[(c*x)^m*Pq, a + b*x^2, x], x, 0], g = Coeff[PolynomialRemainder[
(c*x)^m*Pq, a + b*x^2, x], x, 1]}, Simp[(a*g - b*f*x)*((a + b*x^2)^(p + 1)/(2*a*b*(p + 1))), x] + Simp[1/(2*a*
(p + 1)) Int[(c*x)^m*(a + b*x^2)^(p + 1)*ExpandToSum[(2*a*(p + 1)*Q)/(c*x)^m + (f*(2*p + 3))/(c*x)^m, x], x]
, x]] /; FreeQ[{a, b, c}, x] && PolyQ[Pq, x] && LtQ[p, -1] && ILtQ[m, 0]
-
Int[(Pq_)*((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[Pq, a + b*x
^2, x], f = Coeff[PolynomialRemainder[Pq, a + b*x^2, x], x, 0], g = Coeff[PolynomialRemainder[Pq, a + b*x^2, x
], x, 1]}, Simp[(-(c*x)^(m + 1))*(f + g*x)*((a + b*x^2)^(p + 1)/(2*a*c*(p + 1))), x] + Simp[1/(2*a*(p + 1))
Int[(c*x)^m*(a + b*x^2)^(p + 1)*ExpandToSum[2*a*(p + 1)*Q + f*(m + 2*p + 3) + g*(m + 2*p + 4)*x, x], x], x]] /
; FreeQ[{a, b, c, m}, x] && PolyQ[Pq, x] && LtQ[p, -1] && !GtQ[m, 0]
-
Int[(Pq_)*((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[Pq, c*x, x],
R = PolynomialRemainder[Pq, c*x, x]}, Simp[R*(c*x)^(m + 1)*((a + b*x^2)^(p + 1)/(a*c*(m + 1))), x] + Simp[1/(
a*c*(m + 1)) Int[(c*x)^(m + 1)*(a + b*x^2)^p*ExpandToSum[a*c*(m + 1)*Q - b*R*(m + 2*p + 3)*x, x], x], x]] /;
FreeQ[{a, b, c, p}, x] && PolyQ[Pq, x] && LtQ[m, -1] && (IntegerQ[2*p] || NeQ[Expon[Pq, x], 1])
-
Int[(Pq_)*((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.), x_Symbol] :> With[{q = Expon[Pq, x]}, Simp[Coeff[Pq,
x, q]/c^q Int[(c*x)^(m + q)*(a + b*x^2)^p, x], x] + Simp[1/c^q Int[(c*x)^m*(a + b*x^2)^p*ExpandToSum[c^q*
Pq - Coeff[Pq, x, q]*(c*x)^q, x], x], x] /; EqQ[q, 1] || EqQ[m + q + 2*p + 1, 0]] /; FreeQ[{a, b, c, m, p}, x]
&& PolyQ[Pq, x] && !(IGtQ[m, 0] && ILtQ[p + 1/2, 0])
-
Int[(Pq_)*((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{q = Expon[Pq, x], f = Coeff[Pq, x,
Expon[Pq, x]]}, Simp[f*(c*x)^(m + q - 1)*((a + b*x^2)^(p + 1)/(b*c^(q - 1)*(m + q + 2*p + 1))), x] + Simp[1/(
b*(m + q + 2*p + 1)) Int[(c*x)^m*(a + b*x^2)^p*ExpandToSum[b*(m + q + 2*p + 1)*Pq - b*f*(m + q + 2*p + 1)*x^
q - a*f*(m + q - 1)*x^(q - 2), x], x], x] /; GtQ[q, 1] && NeQ[m + q + 2*p + 1, 0]] /; FreeQ[{a, b, c, m, p}, x
] && PolyQ[Pq, x] && ( !IGtQ[m, 0] || IGtQ[p + 1/2, -1])
-
Int[(Pq_)*((a_) + (b_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[Pq*(a + b*x^2)^p, x], x] /; FreeQ[{a,
b}, x] && PolyQ[Pq, x] && IGtQ[p, -2]
-
Int[(Pq_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Int[x*PolynomialQuotient[Pq, x, x]*(a + b*x^2)^p, x] /; Fre
eQ[{a, b, p}, x] && PolyQ[Pq, x] && EqQ[Coeff[Pq, x, 0], 0] && !MatchQ[Pq, x^(m_.)*(u_.) /; IntegerQ[m]]
-
Int[(Px_)*((a_) + (b_.)*(x_)^2)^(p_.), x_Symbol] :> Int[PolynomialQuotient[Px, a + b*x^2, x]*(a + b*x^2)^(p +
1), x] /; FreeQ[{a, b, p}, x] && PolyQ[Px, x] && EqQ[PolynomialRemainder[Px, a + b*x^2, x], 0]
-
Int[(Pq_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{A = Coeff[Pq, x, 0], Q = PolynomialQuotient[Pq - Coef
f[Pq, x, 0], x^2, x]}, Simp[A*x*((a + b*x^2)^(p + 1)/a), x] + Simp[1/a Int[x^2*(a + b*x^2)^p*(a*Q - A*b*(2*p
+ 3)), x], x]] /; FreeQ[{a, b}, x] && PolyQ[Pq, x^2] && ILtQ[p + 1/2, 0] && LtQ[Expon[Pq, x] + 2*p + 1, 0]
-
Int[(Pq_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{Q = PolynomialQuotient[Pq, a + b*x^2, x], f = Coeff[P
olynomialRemainder[Pq, a + b*x^2, x], x, 0], g = Coeff[PolynomialRemainder[Pq, a + b*x^2, x], x, 1]}, Simp[(a*
g - b*f*x)*((a + b*x^2)^(p + 1)/(2*a*b*(p + 1))), x] + Simp[1/(2*a*(p + 1)) Int[(a + b*x^2)^(p + 1)*ExpandTo
Sum[2*a*(p + 1)*Q + f*(2*p + 3), x], x], x]] /; FreeQ[{a, b}, x] && PolyQ[Pq, x] && LtQ[p, -1]
-
Int[(Pq_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{q = Expon[Pq, x], e = Coeff[Pq, x, Expon[Pq, x]]}, Si
mp[e*x^(q - 1)*((a + b*x^2)^(p + 1)/(b*(q + 2*p + 1))), x] + Simp[1/(b*(q + 2*p + 1)) Int[(a + b*x^2)^p*Expa
ndToSum[b*(q + 2*p + 1)*Pq - a*e*(q - 1)*x^(q - 2) - b*e*(q + 2*p + 1)*x^q, x], x], x]] /; FreeQ[{a, b, p}, x]
&& PolyQ[Pq, x] && !LeQ[p, -1]
-
Int[(Px_)*((c_) + (d_.)*(x_))^(m_.)*((e_) + (f_.)*(x_))^(n_.)*((a_.) + (b_.)*(x_)^2)^(p_.), x_Symbol] :> Int[P
olynomialQuotient[Px, c + d*x, x]*(c + d*x)^(m + 1)*(e + f*x)^n*(a + b*x^2)^p, x] /; FreeQ[{a, b, c, d, e, f,
m, n, p}, x] && PolynomialQ[Px, x] && EqQ[PolynomialRemainder[Px, c + d*x, x], 0]
-
Int[(Px_)*((c_) + (d_.)*(x_))^(m_.)*((e_) + (f_.)*(x_))^(n_.)*((a_.) + (b_.)*(x_)^2)^(p_.), x_Symbol] :> Int[E
xpandIntegrand[Px*(c + d*x)^m*(e + f*x)^n*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && Po
lyQ[Px, x] && (IntegerQ[p] || (IntegerQ[2*p] && IntegerQ[m] && ILtQ[n, 0])) && !(IGtQ[m, 0] && IGtQ[n, 0])
-
Int[(Px_)*((c_) + (d_.)*(x_))^(m_.)*((e_) + (f_.)*(x_))^(n_.)*((a_.) + (b_.)*(x_)^2)^(p_.), x_Symbol] :> Int[P
olynomialQuotient[Px, c + d*x, x]*(c + d*x)^(m + 1)*(e + f*x)^n*(a + b*x^2)^p, x] + Simp[PolynomialRemainder[P
x, c + d*x, x] Int[(c + d*x)^m*(e + f*x)^n*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && Po
lynomialQ[Px, x] && LtQ[m, 0] && !IntegerQ[n] && IntegersQ[2*m, 2*n, 2*p]
-
Int[(Px_)*((e_.)*(x_))^(m_.)*((c_) + (d_.)*(x_))^(n_.)*((a_) + (b_.)*(x_)^2)^(p_.), x_Symbol] :> Int[Polynomia
lQuotient[Px, c + d*x, x]*(e*x)^m*(c + d*x)^(n + 1)*(a + b*x^2)^p, x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] &&
PolynomialQ[Px, x] && EqQ[PolynomialRemainder[Px, c + d*x, x], 0]
-
Int[((Px_)*((c_) + (d_.)*(x_))^(n_.)*((a_) + (b_.)*(x_)^2)^(p_.))/(x_), x_Symbol] :> Int[PolynomialQuotient[Px
, x, x]*(c + d*x)^n*(a + b*x^2)^p, x] + Simp[PolynomialRemainder[Px, x, x] Int[(c + d*x)^n*((a + b*x^2)^p/x)
, x], x] /; FreeQ[{a, b, c, d, n, p}, x] && PolynomialQ[Px, x]
-
Int[((Px_)*((e_.)*(x_))^(m_))/(Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(a_) + (b_.)*(x_)^2]), x_Symbol] :> With[{Px0 = Co
efficient[Px, x, 0]}, Simp[Px0*(e*x)^(m + 1)*Sqrt[c + d*x]*(Sqrt[a + b*x^2]/(a*c*e*(m + 1))), x] + Simp[1/(2*a
*c*e*(m + 1)) Int[((e*x)^(m + 1)/(Sqrt[c + d*x]*Sqrt[a + b*x^2]))*ExpandToSum[2*a*c*(m + 1)*((Px - Px0)/x) -
Px0*(a*d*(2*m + 3) + 2*b*c*(m + 2)*x + b*d*(2*m + 5)*x^2), x], x], x]] /; FreeQ[{a, b, c, d, e}, x] && Polyno
mialQ[Px, x] && LtQ[m, -1]
-
Int[(Px_)*((e_.)*(x_))^(m_.)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Int[ExpandInteg
rand[Px*(e*x)^m*(c + d*x)^n*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && PolyQ[Px, x] && (In
tegerQ[p] || (IntegerQ[2*p] && IntegerQ[m] && ILtQ[n, 0]))
-
Int[(Px_)*((e_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_.)*((a_) + (b_.)*(x_)^2)^(p_.), x_Symbol] :> With[{k = Deno
minator[m]}, Simp[k/e Subst[Int[(Px /. x -> x^k/e)*x^(k*(m + 1) - 1)*(c + d*(x^k/e))^n*(a + b*(x^(2*k)/e^2))
^p, x], x, (e*x)^(1/k)], x]] /; FreeQ[{a, b, c, d, e, n, p}, x] && PolyQ[Px, x] && FractionQ[m]
-
Int[(Px_)*((e_.)*(x_))^(m_.)*((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_.), x_Symbol] :> Int[Polynomial
Quotient[Px, c + d*x, x]*(e*x)^m*(c + d*x)^(n + 1)*(a + b*x^2)^p, x] + Simp[PolynomialRemainder[Px, c + d*x, x
] Int[(e*x)^m*(c + d*x)^n*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && PolynomialQ[Px, x] &&
LtQ[n, 0]
-
Int[((x_)^(m_.)*((e_) + (h_.)*(x_)^(n_.) + (f_.)*(x_)^(q_.) + (g_.)*(x_)^(r_.)))/((a_) + (c_.)*(x_)^(n_.))^(3/
2), x_Symbol] :> Simp[-(2*a*g + 4*a*h*x^(n/4) - 2*c*f*x^(n/2))/(a*c*n*Sqrt[a + c*x^n]), x] /; FreeQ[{a, c, e,
f, g, h, m, n}, x] && EqQ[q, n/4] && EqQ[r, 3*(n/4)] && EqQ[4*m - n + 4, 0] && EqQ[c*e + a*h, 0]
-
Int[(((d_)*(x_))^(m_.)*((e_) + (h_.)*(x_)^(n_.) + (f_.)*(x_)^(q_.) + (g_.)*(x_)^(r_.)))/((a_) + (c_.)*(x_)^(n_
.))^(3/2), x_Symbol] :> Simp[(d*x)^m/x^m Int[x^m*((e + f*x^(n/4) + g*x^((3*n)/4) + h*x^n)/(a + c*x^n)^(3/2))
, x], x] /; FreeQ[{a, c, d, e, f, g, h, m, n}, x] && EqQ[4*m - n + 4, 0] && EqQ[q, n/4] && EqQ[r, 3*(n/4)] &&
EqQ[c*e + a*h, 0]
-
Int[(Pq_)*((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_))^(p_), x_Symbol] :> With[{n = Denominator[p]}, Simp[n/b Subst
[Int[x^(n*p + n - 1)*((-a)*(c/b) + c*(x^n/b))^m*(Pq /. x -> -a/b + x^n/b), x], x, (a + b*x)^(1/n)], x]] /; Fre
eQ[{a, b, c, m}, x] && PolyQ[Pq, x] && FractionQ[p] && ILtQ[m, -1]
-
Int[(Pq_)*(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Simp[1/(m + 1) Subst[Int[SubstFor[x^(m + 1
), Pq, x]*(a + b*x^Simplify[n/(m + 1)])^p, x], x, x^(m + 1)], x] /; FreeQ[{a, b, m, n, p}, x] && NeQ[m, -1] &&
IGtQ[Simplify[n/(m + 1)], 0] && PolyQ[Pq, x^(m + 1)]
-
Int[(Pq_)*((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_.))^(p_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*Pq*(a +
b*x^n)^p, x], x] /; FreeQ[{a, b, c, m, n}, x] && PolyQ[Pq, x] && (IGtQ[p, 0] || EqQ[n, 1])
-
Int[(Pq_)*(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Simp[1/n Subst[Int[x^(Simplify[(m + 1)/n]
- 1)*SubstFor[x^n, Pq, x]*(a + b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && PolyQ[Pq, x^n] && Integ
erQ[Simplify[(m + 1)/n]]
-
Int[(Pq_)*((c_)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Simp[c^IntPart[m]*((c*x)^FracPart[m]/
x^FracPart[m]) Int[x^m*Pq*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, m, n, p}, x] && PolyQ[Pq, x^n] && Integer
Q[Simplify[(m + 1)/n]]
-
Int[(Pq_)*(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[Pq*((a + b*x^n)^(p + 1)/(b*n*(p + 1))),
x] - Simp[1/(b*n*(p + 1)) Int[D[Pq, x]*(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b, m, n}, x] && PolyQ[Pq, x]
&& EqQ[m - n + 1, 0] && LtQ[p, -1]
-
Int[(Pq_)*(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Module[{u = IntHide[x^m*Pq, x]}, Simp[u*(a +
b*x^n)^p, x] - Simp[b*n*p Int[x^(m + n)*(a + b*x^n)^(p - 1)*ExpandToSum[u/x^(m + 1), x], x], x]] /; FreeQ[{
a, b}, x] && PolyQ[Pq, x] && IGtQ[n, 0] && GtQ[p, 0] && LtQ[m + Expon[Pq, x] + 1, 0]
-
Int[(Pq_)*((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Module[{q = Expon[Pq, x], i}, Simp[(
c*x)^m*(a + b*x^n)^p*Sum[Coeff[Pq, x, i]*(x^(i + 1)/(m + n*p + i + 1)), {i, 0, q}], x] + Simp[a*n*p Int[(c*x
)^m*(a + b*x^n)^(p - 1)*Sum[Coeff[Pq, x, i]*(x^i/(m + n*p + i + 1)), {i, 0, q}], x], x]] /; FreeQ[{a, b, c, m}
, x] && PolyQ[Pq, x] && IGtQ[(n - 1)/2, 0] && GtQ[p, 0]
-
Int[((P4_)*(x_)^2)/((a_) + (b_.)*(x_)^4)^(3/2), x_Symbol] :> With[{e = Coeff[P4, x, 0], f = Coeff[P4, x, 1], h
= Coeff[P4, x, 4]}, Simp[-(f - 2*h*x^3)/(2*b*Sqrt[a + b*x^4]), x] /; EqQ[b*e - 3*a*h, 0]] /; FreeQ[{a, b}, x]
&& PolyQ[P4, x, 4] && EqQ[Coeff[P4, x, 2], 0] && EqQ[Coeff[P4, x, 3], 0]
-
Int[(Pq_)*(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> With[{q = m + Expon[Pq, x]}, Module[{Q = Pol
ynomialQuotient[b^(Floor[(q - 1)/n] + 1)*x^m*Pq, a + b*x^n, x], R = PolynomialRemainder[b^(Floor[(q - 1)/n] +
1)*x^m*Pq, a + b*x^n, x]}, Simp[(-x)*R*((a + b*x^n)^(p + 1)/(a*n*(p + 1)*b^(Floor[(q - 1)/n] + 1))), x] + Simp
[1/(a*n*(p + 1)*b^(Floor[(q - 1)/n] + 1)) Int[(a + b*x^n)^(p + 1)*ExpandToSum[a*n*(p + 1)*Q + n*(p + 1)*R +
D[x*R, x], x], x], x]] /; GeQ[q, n]] /; FreeQ[{a, b}, x] && PolyQ[Pq, x] && IGtQ[n, 0] && LtQ[p, -1] && IGtQ[m
, 0]
-
Int[(Pq_)*(x_)^(m_)*((a_) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> With[{q = Expon[Pq, x]}, Module[{Q = Polynomi
alQuotient[a*b^(Floor[(q - 1)/n] + 1)*x^m*Pq, a + b*x^n, x], R = PolynomialRemainder[a*b^(Floor[(q - 1)/n] + 1
)*x^m*Pq, a + b*x^n, x], i}, Simp[(-x)*R*((a + b*x^n)^(p + 1)/(a^2*n*(p + 1)*b^(Floor[(q - 1)/n] + 1))), x] +
Simp[1/(a*n*(p + 1)*b^(Floor[(q - 1)/n] + 1)) Int[x^m*(a + b*x^n)^(p + 1)*ExpandToSum[(n*(p + 1)*Q)/x^m + Su
m[((n*(p + 1) + i + 1)/a)*Coeff[R, x, i]*x^(i - m), {i, 0, n - 1}], x], x], x]]] /; FreeQ[{a, b}, x] && PolyQ[
Pq, x] && IGtQ[n, 0] && LtQ[p, -1] && ILtQ[m, 0]
-
Int[(Pq_)*(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{g = GCD[m + 1, n]}, Simp[1/g Subst[In
t[x^((m + 1)/g - 1)*(Pq /. x -> x^(1/g))*(a + b*x^(n/g))^p, x], x, x^g], x] /; g != 1] /; FreeQ[{a, b, p}, x]
&& PolyQ[Pq, x^n] && IGtQ[n, 0] && IntegerQ[m]
-
Int[((Pq_)*((c_.)*(x_))^(m_.))/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = Sum[(c*x)^(m + ii)*((Coeff[Pq,
x, ii] + Coeff[Pq, x, n/2 + ii]*x^(n/2))/(c^ii*(a + b*x^n))), {ii, 0, n/2 - 1}]}, Int[v, x] /; SumQ[v]] /; Fr
eeQ[{a, b, c, m}, x] && PolyQ[Pq, x] && IGtQ[n/2, 0] && Expon[Pq, x] < n
-
Int[(Pq_)/((x_)*Sqrt[(a_) + (b_.)*(x_)^(n_)]), x_Symbol] :> Simp[Coeff[Pq, x, 0] Int[1/(x*Sqrt[a + b*x^n]),
x], x] + Int[ExpandToSum[(Pq - Coeff[Pq, x, 0])/x, x]/Sqrt[a + b*x^n], x] /; FreeQ[{a, b}, x] && PolyQ[Pq, x]
&& IGtQ[n, 0] && NeQ[Coeff[Pq, x, 0], 0]
-
Int[(Pq_)*((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Module[{q = Expon[Pq, x], j, k}, Int[
Sum[((c*x)^(m + j)/c^j)*Sum[Coeff[Pq, x, j + k*(n/2)]*x^(k*(n/2)), {k, 0, 2*((q - j)/n) + 1}]*(a + b*x^n)^p, {
j, 0, n/2 - 1}], x]] /; FreeQ[{a, b, c, m, p}, x] && PolyQ[Pq, x] && IGtQ[n/2, 0] && !PolyQ[Pq, x^(n/2)]
-
Int[((Pq_)*((c_.)*(x_))^(m_.))/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*(Pq/(a + b*x
^n)), x], x] /; FreeQ[{a, b, c, m}, x] && PolyQ[Pq, x] && IntegerQ[n] && !IGtQ[m, 0]
-
Int[(Pq_)*((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{Pq0 = Coeff[Pq, x, 0]}, Simp[Pq0
*(c*x)^(m + 1)*((a + b*x^n)^(p + 1)/(a*c*(m + 1))), x] + Simp[1/(2*a*c*(m + 1)) Int[(c*x)^(m + 1)*ExpandToSu
m[2*a*(m + 1)*((Pq - Pq0)/x) - 2*b*Pq0*(m + n*(p + 1) + 1)*x^(n - 1), x]*(a + b*x^n)^p, x], x] /; NeQ[Pq0, 0]]
/; FreeQ[{a, b, c, p}, x] && PolyQ[Pq, x] && IGtQ[n, 0] && LtQ[m, -1] && LeQ[n - 1, Expon[Pq, x]]
-
Int[(Pq_)*((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{q = Expon[Pq, x]}, With[{Pqq =
Coeff[Pq, x, q]}, Simp[Pqq*(c*x)^(m + q - n + 1)*((a + b*x^n)^(p + 1)/(b*c^(q - n + 1)*(m + q + n*p + 1))), x]
+ Simp[1/(b*(m + q + n*p + 1)) Int[(c*x)^m*ExpandToSum[b*(m + q + n*p + 1)*(Pq - Pqq*x^q) - a*Pqq*(m + q -
n + 1)*x^(q - n), x]*(a + b*x^n)^p, x], x]] /; NeQ[m + q + n*p + 1, 0] && q - n >= 0 && (IntegerQ[2*p] || Inte
gerQ[p + (q + 1)/(2*n)])] /; FreeQ[{a, b, c, m, p}, x] && PolyQ[Pq, x] && IGtQ[n, 0]
-
Int[(Pq_)*(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{q = Expon[Pq, x]}, -Subst[Int[ExpandToS
um[x^q*(Pq /. x -> x^(-1)), x]*((a + b/x^n)^p/x^(m + q + 2)), x], x, 1/x]] /; FreeQ[{a, b, p}, x] && PolyQ[Pq,
x] && ILtQ[n, 0] && IntegerQ[m]
-
Int[(Pq_)*((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{g = Denominator[m], q = Expon[P
q, x]}, Simp[-g/c Subst[Int[ExpandToSum[x^(g*q)*(Pq /. x -> 1/(c*x^g)), x]*((a + b/(c^n*x^(g*n)))^p/x^(g*(m
+ q + 1) + 1)), x], x, 1/(c*x)^(1/g)], x]] /; FreeQ[{a, b, c, p}, x] && PolyQ[Pq, x] && ILtQ[n, 0] && Fraction
Q[m]
-
Int[(Pq_)*((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{q = Expon[Pq, x]}, Simp[(-(c*x)^
m)*(x^(-1))^m Subst[Int[ExpandToSum[x^q*(Pq /. x -> x^(-1)), x]*((a + b/x^n)^p/x^(m + q + 2)), x], x, 1/x],
x]] /; FreeQ[{a, b, c, m, p}, x] && PolyQ[Pq, x] && ILtQ[n, 0] && !RationalQ[m]
-
Int[(Pq_)*(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{g = Denominator[n]}, Simp[g Subst[Int
[x^(g*(m + 1) - 1)*(Pq /. x -> x^g)*(a + b*x^(g*n))^p, x], x, x^(1/g)], x]] /; FreeQ[{a, b, m, p}, x] && PolyQ
[Pq, x] && FractionQ[n]
-
Int[(Pq_)*((c_)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^IntPart[m]*((c*x)^FracPart[m]/x^
FracPart[m]) Int[x^m*Pq*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, m, p}, x] && PolyQ[Pq, x] && FractionQ[n]
-
Int[(Pq_)*(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[1/(m + 1) Subst[Int[(SubstFor[x^n, Pq,
x] /. x -> x^Simplify[n/(m + 1)])*(a + b*x^Simplify[n/(m + 1)])^p, x], x, x^(m + 1)], x] /; FreeQ[{a, b, m, n
, p}, x] && PolyQ[Pq, x^n] && IntegerQ[Simplify[n/(m + 1)]] && !IntegerQ[n]
-
Int[(Pq_)*((c_)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^IntPart[m]*((c*x)^FracPart[m]/x^
FracPart[m]) Int[x^m*Pq*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, m, n, p}, x] && PolyQ[Pq, x^n] && IntegerQ[
Simplify[n/(m + 1)]] && !IntegerQ[n]
-
Int[(Pq_)*((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*Pq*(a +
b*x^n)^p, x], x] /; FreeQ[{a, b, c, m, n, p}, x] && (PolyQ[Pq, x] || PolyQ[Pq, x^n]) && !IGtQ[m, 0]
-
Int[(Pq_)*(u_)^(m_.)*((a_) + (b_.)*(v_)^(n_.))^(p_), x_Symbol] :> Simp[u^m/(Coeff[v, x, 1]*v^m) Subst[Int[x^
m*SubstFor[v, Pq, x]*(a + b*x^n)^p, x], x, v], x] /; FreeQ[{a, b, m, n, p}, x] && LinearPairQ[u, v, x] && Poly
Q[Pq, v^n]
-
Int[(Pq_)*((c_.)*(x_))^(m_.)*((a1_) + (b1_.)*(x_)^(n_.))^(p_.)*((a2_) + (b2_.)*(x_)^(n_.))^(p_.), x_Symbol] :>
Int[(c*x)^m*Pq*(a1*a2 + b1*b2*x^(2*n))^p, x] /; FreeQ[{a1, b1, a2, b2, c, m, n, p}, x] && PolyQ[Pq, x] && EqQ
[a2*b1 + a1*b2, 0] && (IntegerQ[p] || (GtQ[a1, 0] && GtQ[a2, 0]))
-
Int[(Pq_)*((c_.)*(x_))^(m_.)*((a1_) + (b1_.)*(x_)^(n_.))^(p_.)*((a2_) + (b2_.)*(x_)^(n_.))^(p_.), x_Symbol] :>
Simp[(a1 + b1*x^n)^FracPart[p]*((a2 + b2*x^n)^FracPart[p]/(a1*a2 + b1*b2*x^(2*n))^FracPart[p]) Int[(c*x)^m*
Pq*(a1*a2 + b1*b2*x^(2*n))^p, x], x] /; FreeQ[{a1, b1, a2, b2, c, m, n, p}, x] && PolyQ[Pq, x] && EqQ[a2*b1 +
a1*b2, 0] && !(EqQ[n, 1] && LinearQ[Pq, x])
-
Int[((h_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_.))^(p_.)*((c_) + (d_.)*(x_)^(n_.))^(p_.)*((e_) + (f_.)*(x_)^(n_.
) + (g_.)*(x_)^(n2_.)), x_Symbol] :> Simp[e*(h*x)^(m + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(p + 1)/(a*c*h*(m +
1))), x] /; FreeQ[{a, b, c, d, e, f, g, h, m, n, p}, x] && EqQ[n2, 2*n] && EqQ[a*c*f*(m + 1) - e*(b*c + a*d)*
(m + n*(p + 1) + 1), 0] && EqQ[a*c*g*(m + 1) - b*d*e*(m + 2*n*(p + 1) + 1), 0] && NeQ[m, -1]
-
Int[((h_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_.))^(p_.)*((c_) + (d_.)*(x_)^(n_.))^(p_.)*((e_) + (g_.)*(x_)^(n2_
.)), x_Symbol] :> Simp[e*(h*x)^(m + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(p + 1)/(a*c*h*(m + 1))), x] /; FreeQ[
{a, b, c, d, e, g, h, m, n, p}, x] && EqQ[n2, 2*n] && EqQ[m + n*(p + 1) + 1, 0] && EqQ[a*c*g*(m + 1) - b*d*e*(
m + 2*n*(p + 1) + 1), 0] && NeQ[m, -1]
-
Int[(Pq_)*((a_) + (b_.)*(x_)^(n_.))^(p_.), x_Symbol] :> Int[ExpandIntegrand[Pq*(a + b*x^n)^p, x], x] /; FreeQ[
{a, b, n}, x] && PolyQ[Pq, x] && (IGtQ[p, 0] || EqQ[n, 1])
-
Int[(Pq_)*((a_) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Int[x*PolynomialQuotient[Pq, x, x]*(a + b*x^n)^p, x] /;
FreeQ[{a, b, n, p}, x] && PolyQ[Pq, x] && EqQ[Coeff[Pq, x, 0], 0] && !MatchQ[Pq, x^(m_.)*(u_.) /; IntegerQ[m
]]
-
Int[(Pq_)*((a_) + (b_.)*(x_)^(n_.))^(p_.), x_Symbol] :> Int[PolynomialQuotient[Pq, a + b*x^n, x]*(a + b*x^n)^(
p + 1), x] /; FreeQ[{a, b, p}, x] && PolyQ[Pq, x] && IGtQ[n, 0] && GeQ[Expon[Pq, x], n] && EqQ[PolynomialRemai
nder[Pq, a + b*x^n, x], 0]
-
Int[(Pq_)*((a_) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Module[{q = Expon[Pq, x], i}, Simp[(a + b*x^n)^p*Sum[Co
eff[Pq, x, i]*(x^(i + 1)/(n*p + i + 1)), {i, 0, q}], x] + Simp[a*n*p Int[(a + b*x^n)^(p - 1)*Sum[Coeff[Pq, x
, i]*(x^i/(n*p + i + 1)), {i, 0, q}], x], x]] /; FreeQ[{a, b}, x] && PolyQ[Pq, x] && IGtQ[(n - 1)/2, 0] && GtQ
[p, 0]
-
Int[(Pq_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Module[{q = Expon[Pq, x], i}, Simp[(a*Coeff[Pq, x, q] -
b*x*ExpandToSum[Pq - Coeff[Pq, x, q]*x^q, x])*((a + b*x^n)^(p + 1)/(a*b*n*(p + 1))), x] + Simp[1/(a*n*(p + 1))
Int[Sum[(n*(p + 1) + i + 1)*Coeff[Pq, x, i]*x^i, {i, 0, q - 1}]*(a + b*x^n)^(p + 1), x], x] /; q == n - 1]
/; FreeQ[{a, b}, x] && PolyQ[Pq, x] && IGtQ[n, 0] && LtQ[p, -1]
-
Int[(Pq_)*((a_) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> Simp[(-x)*Pq*((a + b*x^n)^(p + 1)/(a*n*(p + 1))), x] +
Simp[1/(a*n*(p + 1)) Int[ExpandToSum[n*(p + 1)*Pq + D[x*Pq, x], x]*(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a,
b}, x] && PolyQ[Pq, x] && IGtQ[n, 0] && LtQ[p, -1] && LtQ[Expon[Pq, x], n - 1]
-
Int[(P4_)/((a_) + (b_.)*(x_)^4)^(3/2), x_Symbol] :> With[{d = Coeff[P4, x, 0], e = Coeff[P4, x, 1], f = Coeff[
P4, x, 3], g = Coeff[P4, x, 4]}, Simp[-(a*f + 2*a*g*x - b*e*x^2)/(2*a*b*Sqrt[a + b*x^4]), x] /; EqQ[b*d + a*g,
0]] /; FreeQ[{a, b}, x] && PolyQ[P4, x, 4] && EqQ[Coeff[P4, x, 2], 0]
-
Int[(P6_)/((a_) + (b_.)*(x_)^4)^(3/2), x_Symbol] :> With[{d = Coeff[P6, x, 0], e = Coeff[P6, x, 2], f = Coeff[
P6, x, 3], g = Coeff[P6, x, 4], h = Coeff[P6, x, 6]}, Simp[-(a*f - 2*b*d*x - 2*a*h*x^3)/(2*a*b*Sqrt[a + b*x^4]
), x] /; EqQ[b*e - 3*a*h, 0] && EqQ[b*d + a*g, 0]] /; FreeQ[{a, b}, x] && PolyQ[P6, x, 6] && EqQ[Coeff[P6, x,
1], 0] && EqQ[Coeff[P6, x, 5], 0]
-
Int[(Pq_)*((a_) + (b_.)*(x_)^(n_.))^(p_), x_Symbol] :> With[{q = Expon[Pq, x]}, Module[{Q = PolynomialQuotient
[b^(Floor[(q - 1)/n] + 1)*Pq, a + b*x^n, x], R = PolynomialRemainder[b^(Floor[(q - 1)/n] + 1)*Pq, a + b*x^n, x
]}, Simp[(-x)*R*((a + b*x^n)^(p + 1)/(a*n*(p + 1)*b^(Floor[(q - 1)/n] + 1))), x] + Simp[1/(a*n*(p + 1)*b^(Floo
r[(q - 1)/n] + 1)) Int[(a + b*x^n)^(p + 1)*ExpandToSum[a*n*(p + 1)*Q + n*(p + 1)*R + D[x*R, x], x], x], x]]
/; GeQ[q, n]] /; FreeQ[{a, b}, x] && PolyQ[Pq, x] && IGtQ[n, 0] && LtQ[p, -1]
-
Int[((A_) + (B_.)*(x_))/((a_) + (b_.)*(x_)^3), x_Symbol] :> Simp[B^3/b Int[1/(A^2 - A*B*x + B^2*x^2), x], x]
/; FreeQ[{a, b, A, B}, x] && EqQ[a*B^3 - b*A^3, 0]
-
Int[((A_) + (B_.)*(x_))/((a_) + (b_.)*(x_)^3), x_Symbol] :> With[{r = Numerator[Rt[a/b, 3]], s = Denominator[R
t[a/b, 3]]}, Simp[(-r)*((B*r - A*s)/(3*a*s)) Int[1/(r + s*x), x], x] + Simp[r/(3*a*s) Int[(r*(B*r + 2*A*s)
+ s*(B*r - A*s)*x)/(r^2 - r*s*x + s^2*x^2), x], x]] /; FreeQ[{a, b, A, B}, x] && NeQ[a*B^3 - b*A^3, 0] && Pos
Q[a/b]
-
Int[((A_) + (B_.)*(x_))/((a_) + (b_.)*(x_)^3), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 3]], s = Denominator[
Rt[-a/b, 3]]}, Simp[r*((B*r + A*s)/(3*a*s)) Int[1/(r - s*x), x], x] - Simp[r/(3*a*s) Int[(r*(B*r - 2*A*s)
- s*(B*r + A*s)*x)/(r^2 + r*s*x + s^2*x^2), x], x]] /; FreeQ[{a, b, A, B}, x] && NeQ[a*B^3 - b*A^3, 0] && NegQ
[a/b]
-
Int[(P2_)/((a_) + (b_.)*(x_)^3), x_Symbol] :> With[{A = Coeff[P2, x, 0], B = Coeff[P2, x, 1], C = Coeff[P2, x,
2]}, Simp[-C^2/b Int[1/(B - C*x), x], x] /; EqQ[B^2 - A*C, 0] && EqQ[b*B^3 + a*C^3, 0]] /; FreeQ[{a, b}, x]
&& PolyQ[P2, x, 2]
-
Int[(P2_)/((a_) + (b_.)*(x_)^3), x_Symbol] :> With[{A = Coeff[P2, x, 0], B = Coeff[P2, x, 1], C = Coeff[P2, x,
2]}, With[{q = a^(1/3)/b^(1/3)}, Simp[C/b Int[1/(q + x), x], x] + Simp[(B + C*q)/b Int[1/(q^2 - q*x + x^2
), x], x]] /; EqQ[A*b^(2/3) - a^(1/3)*b^(1/3)*B - 2*a^(2/3)*C, 0]] /; FreeQ[{a, b}, x] && PolyQ[P2, x, 2]
-
Int[(P2_)/((a_) + (b_.)*(x_)^3), x_Symbol] :> With[{A = Coeff[P2, x, 0], B = Coeff[P2, x, 1], C = Coeff[P2, x,
2]}, With[{q = (-a)^(1/3)/(-b)^(1/3)}, Simp[C/b Int[1/(q + x), x], x] + Simp[(B + C*q)/b Int[1/(q^2 - q*x
+ x^2), x], x]] /; EqQ[A*(-b)^(2/3) - (-a)^(1/3)*(-b)^(1/3)*B - 2*(-a)^(2/3)*C, 0]] /; FreeQ[{a, b}, x] && Po
lyQ[P2, x, 2]
-
Int[(P2_)/((a_) + (b_.)*(x_)^3), x_Symbol] :> With[{A = Coeff[P2, x, 0], B = Coeff[P2, x, 1], C = Coeff[P2, x,
2]}, With[{q = (-a)^(1/3)/b^(1/3)}, Simp[-C/b Int[1/(q - x), x], x] + Simp[(B - C*q)/b Int[1/(q^2 + q*x +
x^2), x], x]] /; EqQ[A*b^(2/3) + (-a)^(1/3)*b^(1/3)*B - 2*(-a)^(2/3)*C, 0]] /; FreeQ[{a, b}, x] && PolyQ[P2,
x, 2]
-
Int[(P2_)/((a_) + (b_.)*(x_)^3), x_Symbol] :> With[{A = Coeff[P2, x, 0], B = Coeff[P2, x, 1], C = Coeff[P2, x,
2]}, With[{q = a^(1/3)/(-b)^(1/3)}, Simp[-C/b Int[1/(q - x), x], x] + Simp[(B - C*q)/b Int[1/(q^2 + q*x +
x^2), x], x]] /; EqQ[A*(-b)^(2/3) + a^(1/3)*(-b)^(1/3)*B - 2*a^(2/3)*C, 0]] /; FreeQ[{a, b}, x] && PolyQ[P2,
x, 2]
-
Int[(P2_)/((a_) + (b_.)*(x_)^3), x_Symbol] :> With[{A = Coeff[P2, x, 0], B = Coeff[P2, x, 1], C = Coeff[P2, x,
2]}, With[{q = (a/b)^(1/3)}, Simp[C/b Int[1/(q + x), x], x] + Simp[(B + C*q)/b Int[1/(q^2 - q*x + x^2), x
], x]] /; EqQ[A - (a/b)^(1/3)*B - 2*(a/b)^(2/3)*C, 0]] /; FreeQ[{a, b}, x] && PolyQ[P2, x, 2]
-
Int[(P2_)/((a_) + (b_.)*(x_)^3), x_Symbol] :> With[{A = Coeff[P2, x, 0], B = Coeff[P2, x, 1], C = Coeff[P2, x,
2]}, With[{q = Rt[a/b, 3]}, Simp[C/b Int[1/(q + x), x], x] + Simp[(B + C*q)/b Int[1/(q^2 - q*x + x^2), x]
, x]] /; EqQ[A - Rt[a/b, 3]*B - 2*Rt[a/b, 3]^2*C, 0]] /; FreeQ[{a, b}, x] && PolyQ[P2, x, 2]
-
Int[(P2_)/((a_) + (b_.)*(x_)^3), x_Symbol] :> With[{A = Coeff[P2, x, 0], B = Coeff[P2, x, 1], C = Coeff[P2, x,
2]}, With[{q = (-a/b)^(1/3)}, Simp[-C/b Int[1/(q - x), x], x] + Simp[(B - C*q)/b Int[1/(q^2 + q*x + x^2),
x], x]] /; EqQ[A + (-a/b)^(1/3)*B - 2*(-a/b)^(2/3)*C, 0]] /; FreeQ[{a, b}, x] && PolyQ[P2, x, 2]
-
Int[(P2_)/((a_) + (b_.)*(x_)^3), x_Symbol] :> With[{A = Coeff[P2, x, 0], B = Coeff[P2, x, 1], C = Coeff[P2, x,
2]}, With[{q = Rt[-a/b, 3]}, Simp[-C/b Int[1/(q - x), x], x] + Simp[(B - C*q)/b Int[1/(q^2 + q*x + x^2),
x], x]] /; EqQ[A + Rt[-a/b, 3]*B - 2*Rt[-a/b, 3]^2*C, 0]] /; FreeQ[{a, b}, x] && PolyQ[P2, x, 2]
-
Int[(P2_)/((a_) + (b_.)*(x_)^3), x_Symbol] :> With[{A = Coeff[P2, x, 0], B = Coeff[P2, x, 1], C = Coeff[P2, x,
2]}, Int[(A + B*x)/(a + b*x^3), x] + Simp[C Int[x^2/(a + b*x^3), x], x] /; EqQ[a*B^3 - b*A^3, 0] || !Ratio
nalQ[a/b]] /; FreeQ[{a, b}, x] && PolyQ[P2, x, 2]
-
Int[(P2_)/((a_) + (b_.)*(x_)^3), x_Symbol] :> With[{A = Coeff[P2, x, 0], B = Coeff[P2, x, 1], C = Coeff[P2, x,
2]}, With[{q = (a/b)^(1/3)}, Simp[q^2/a Int[(A + C*q*x)/(q^2 - q*x + x^2), x], x]] /; EqQ[A - B*(a/b)^(1/3)
+ C*(a/b)^(2/3), 0]] /; FreeQ[{a, b}, x] && PolyQ[P2, x, 2]
-
Int[(P2_)/((a_) + (b_.)*(x_)^3), x_Symbol] :> With[{A = Coeff[P2, x, 0], B = Coeff[P2, x, 1], C = Coeff[P2, x,
2]}, With[{q = (-a/b)^(1/3)}, Simp[q/a Int[(A*q + (A + B*q)*x)/(q^2 + q*x + x^2), x], x]] /; EqQ[A + B*(-a/
b)^(1/3) + C*(-a/b)^(2/3), 0]] /; FreeQ[{a, b}, x] && PolyQ[P2, x, 2]
-
Int[(P2_)/((a_) + (b_.)*(x_)^3), x_Symbol] :> With[{A = Coeff[P2, x, 0], B = Coeff[P2, x, 1], C = Coeff[P2, x,
2], q = (a/b)^(1/3)}, Simp[q*((A - B*q + C*q^2)/(3*a)) Int[1/(q + x), x], x] + Simp[q/(3*a) Int[(q*(2*A +
B*q - C*q^2) - (A - B*q - 2*C*q^2)*x)/(q^2 - q*x + x^2), x], x] /; NeQ[a*B^3 - b*A^3, 0] && NeQ[A - B*q + C*q
^2, 0]] /; FreeQ[{a, b}, x] && PolyQ[P2, x, 2] && GtQ[a/b, 0]
-
Int[(P2_)/((a_) + (b_.)*(x_)^3), x_Symbol] :> With[{A = Coeff[P2, x, 0], B = Coeff[P2, x, 1], C = Coeff[P2, x,
2], q = (-a/b)^(1/3)}, Simp[q*((A + B*q + C*q^2)/(3*a)) Int[1/(q - x), x], x] + Simp[q/(3*a) Int[(q*(2*A
- B*q - C*q^2) + (A + B*q - 2*C*q^2)*x)/(q^2 + q*x + x^2), x], x] /; NeQ[a*B^3 - b*A^3, 0] && NeQ[A + B*q + C*
q^2, 0]] /; FreeQ[{a, b}, x] && PolyQ[P2, x, 2] && LtQ[a/b, 0]
-
Int[(Pq_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = Sum[x^ii*((Coeff[Pq, x, ii] + Coeff[Pq, x, n/2 + ii
]*x^(n/2))/(a + b*x^n)), {ii, 0, n/2 - 1}]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b}, x] && PolyQ[Pq, x] && IGtQ
[n/2, 0] && Expon[Pq, x] < n
-
Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Simplify[(1 - Sqrt[3])*(d/c)]]
, s = Denom[Simplify[(1 - Sqrt[3])*(d/c)]]}, Simp[2*d*s^3*(Sqrt[a + b*x^3]/(a*r^2*((1 + Sqrt[3])*s + r*x))), x
] - Simp[3^(1/4)*Sqrt[2 - Sqrt[3]]*d*s*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(r^2
*Sqrt[a + b*x^3]*Sqrt[s*((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticE[ArcSin[((1 - Sqrt[3])*s + r*x)/((1
+ Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b, c, d}, x] && PosQ[a] && EqQ[b*c^3 - 2*(5 - 3*Sqrt[3
])*a*d^3, 0]
-
Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a,
3]]}, Simp[(c*r - (1 - Sqrt[3])*d*s)/r Int[1/Sqrt[a + b*x^3], x], x] + Simp[d/r Int[((1 - Sqrt[3])*s + r*
x)/Sqrt[a + b*x^3], x], x]] /; FreeQ[{a, b, c, d}, x] && PosQ[a] && NeQ[b*c^3 - 2*(5 - 3*Sqrt[3])*a*d^3, 0]
-
Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Simplify[(1 + Sqrt[3])*(d/c)]]
, s = Denom[Simplify[(1 + Sqrt[3])*(d/c)]]}, Simp[2*d*s^3*(Sqrt[a + b*x^3]/(a*r^2*((1 - Sqrt[3])*s + r*x))), x
] + Simp[3^(1/4)*Sqrt[2 + Sqrt[3]]*d*s*(s + r*x)*(Sqrt[(s^2 - r*s*x + r^2*x^2)/((1 - Sqrt[3])*s + r*x)^2]/(r^2
*Sqrt[a + b*x^3]*Sqrt[(-s)*((s + r*x)/((1 - Sqrt[3])*s + r*x)^2)]))*EllipticE[ArcSin[((1 + Sqrt[3])*s + r*x)/(
(1 - Sqrt[3])*s + r*x)], -7 + 4*Sqrt[3]], x]] /; FreeQ[{a, b, c, d}, x] && NegQ[a] && EqQ[b*c^3 - 2*(5 + 3*Sqr
t[3])*a*d^3, 0]
-
Int[((c_) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/a,
3]]}, Simp[(c*r - (1 + Sqrt[3])*d*s)/r Int[1/Sqrt[a + b*x^3], x], x] + Simp[d/r Int[((1 + Sqrt[3])*s + r*
x)/Sqrt[a + b*x^3], x], x]] /; FreeQ[{a, b, c, d}, x] && NegQ[a] && NeQ[b*c^3 - 2*(5 + 3*Sqrt[3])*a*d^3, 0]
-
Int[((c_) + (d_.)*(x_)^4)/Sqrt[(a_) + (b_.)*(x_)^6], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], s = Denom[Rt[b/
a, 3]]}, Simp[(1 + Sqrt[3])*d*s^3*x*(Sqrt[a + b*x^6]/(2*a*r^2*(s + (1 + Sqrt[3])*r*x^2))), x] - Simp[3^(1/4)*d
*s*x*(s + r*x^2)*(Sqrt[(s^2 - r*s*x^2 + r^2*x^4)/(s + (1 + Sqrt[3])*r*x^2)^2]/(2*r^2*Sqrt[(r*x^2*(s + r*x^2))/
(s + (1 + Sqrt[3])*r*x^2)^2]*Sqrt[a + b*x^6]))*EllipticE[ArcCos[(s + (1 - Sqrt[3])*r*x^2)/(s + (1 + Sqrt[3])*r
*x^2)], (2 + Sqrt[3])/4], x]] /; FreeQ[{a, b, c, d}, x] && EqQ[2*Rt[b/a, 3]^2*c - (1 - Sqrt[3])*d, 0]
-
Int[((c_) + (d_.)*(x_)^4)/Sqrt[(a_) + (b_.)*(x_)^6], x_Symbol] :> With[{q = Rt[b/a, 3]}, Simp[(2*c*q^2 - (1 -
Sqrt[3])*d)/(2*q^2) Int[1/Sqrt[a + b*x^6], x], x] + Simp[d/(2*q^2) Int[(1 - Sqrt[3] + 2*q^2*x^4)/Sqrt[a +
b*x^6], x], x]] /; FreeQ[{a, b, c, d}, x] && NeQ[2*Rt[b/a, 3]^2*c - (1 - Sqrt[3])*d, 0]
-
Int[((c_) + (d_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^8], x_Symbol] :> Simp[(-c)*d*x^3*Sqrt[-(c - d*x^2)^2/(c*d*x^2
)]*(Sqrt[(-d^2)*((a + b*x^8)/(b*c^2*x^4))]/(Sqrt[2 + Sqrt[2]]*(c - d*x^2)*Sqrt[a + b*x^8]))*EllipticF[ArcSin[(
1/2)*Sqrt[(Sqrt[2]*c^2 + 2*c*d*x^2 + Sqrt[2]*d^2*x^4)/(c*d*x^2)]], -2*(1 - Sqrt[2])], x] /; FreeQ[{a, b, c, d}
, x] && EqQ[b*c^4 - a*d^4, 0]
-
Int[((c_) + (d_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^8], x_Symbol] :> Simp[(d + Rt[b/a, 4]*c)/(2*Rt[b/a, 4]) Int
[(1 + Rt[b/a, 4]*x^2)/Sqrt[a + b*x^8], x], x] - Simp[(d - Rt[b/a, 4]*c)/(2*Rt[b/a, 4]) Int[(1 - Rt[b/a, 4]*x
^2)/Sqrt[a + b*x^8], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c^4 - a*d^4, 0]
-
Int[(Pq_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Module[{q = Expon[Pq, x], j, k}, Int[Sum[x^j*Sum[Coeff[P
q, x, j + k*(n/2)]*x^(k*(n/2)), {k, 0, 2*((q - j)/n) + 1}]*(a + b*x^n)^p, {j, 0, n/2 - 1}], x]] /; FreeQ[{a, b
, p}, x] && PolyQ[Pq, x] && IGtQ[n/2, 0] && !PolyQ[Pq, x^(n/2)]
-
Int[(Pq_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[Coeff[Pq, x, n - 1] Int[x^(n - 1)*(a + b*x^n)^p,
x], x] + Int[ExpandToSum[Pq - Coeff[Pq, x, n - 1]*x^(n - 1), x]*(a + b*x^n)^p, x] /; FreeQ[{a, b, p}, x] && Po
lyQ[Pq, x] && IGtQ[n, 0] && Expon[Pq, x] == n - 1
-
Int[(Pq_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Int[ExpandIntegrand[Pq/(a + b*x^n), x], x] /; FreeQ[{a, b}, x
] && PolyQ[Pq, x] && IntegerQ[n]
-
Int[(Pq_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{q = Expon[Pq, x]}, With[{Pqq = Coeff[Pq, x, q]}, S
imp[Pqq*x^(q - n + 1)*((a + b*x^n)^(p + 1)/(b*(q + n*p + 1))), x] + Simp[1/(b*(q + n*p + 1)) Int[ExpandToSum
[b*(q + n*p + 1)*(Pq - Pqq*x^q) - a*Pqq*(q - n + 1)*x^(q - n), x]*(a + b*x^n)^p, x], x]] /; NeQ[q + n*p + 1, 0
] && q - n >= 0 && (IntegerQ[2*p] || IntegerQ[p + (q + 1)/(2*n)])] /; FreeQ[{a, b, p}, x] && PolyQ[Pq, x] && I
GtQ[n, 0]
-
Int[(Pq_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{q = Expon[Pq, x]}, -Subst[Int[ExpandToSum[x^q*(Pq
/. x -> x^(-1)), x]*((a + b/x^n)^p/x^(q + 2)), x], x, 1/x]] /; FreeQ[{a, b, p}, x] && PolyQ[Pq, x] && ILtQ[n,
0]
-
Int[(Pq_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{g = Denominator[n]}, Simp[g Subst[Int[x^(g - 1)*
(Pq /. x -> x^g)*(a + b*x^(g*n))^p, x], x, x^(1/g)], x]] /; FreeQ[{a, b, p}, x] && PolyQ[Pq, x] && FractionQ[n
]
-
Int[((A_) + (B_.)*(x_)^(m_.))*((a_) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Simp[A Int[(a + b*x^n)^p, x], x]
+ Simp[B Int[x^m*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, A, B, m, n, p}, x] && EqQ[m - n + 1, 0]
-
Int[(P3_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{A = Coeff[P3, x^(n/2), 0], B = Coeff[P3, x^(n/2),
1], C = Coeff[P3, x^(n/2), 2], D = Coeff[P3, x^(n/2), 3]}, Simp[-(x*(b*A - a*C + (b*B - a*D)*x^(n/2))*(a + b*x
^n)^(p + 1))/(a*b*n*(p + 1)), x] - Simp[1/(2*a*b*n*(p + 1)) Int[(a + b*x^n)^(p + 1)*Simp[2*a*C - 2*b*A*(n*(p
+ 1) + 1) + (a*D*(n + 2) - b*B*(n*(2*p + 3) + 2))*x^(n/2), x], x], x]] /; FreeQ[{a, b, n}, x] && PolyQ[P3, x^
(n/2), 3] && ILtQ[p, -1]
-
Int[(Pq_)*((a_) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Int[ExpandIntegrand[Pq*(a + b*x^n)^p, x], x] /; FreeQ[{
a, b, n, p}, x] && (PolyQ[Pq, x] || PolyQ[Pq, x^n])
-
Int[(Pq_)*((a_) + (b_.)*(v_)^(n_.))^(p_), x_Symbol] :> Simp[1/Coeff[v, x, 1] Subst[Int[SubstFor[v, Pq, x]*(a
+ b*x^n)^p, x], x, v], x] /; FreeQ[{a, b, n, p}, x] && LinearQ[v, x] && PolyQ[Pq, v^n]
-
Int[(Pq_)*((a1_) + (b1_.)*(x_)^(n_.))^(p_.)*((a2_) + (b2_.)*(x_)^(n_.))^(p_.), x_Symbol] :> Int[Pq*(a1*a2 + b1
*b2*x^(2*n))^p, x] /; FreeQ[{a1, b1, a2, b2, n, p}, x] && PolyQ[Pq, x] && EqQ[a2*b1 + a1*b2, 0] && (IntegerQ[p
] || (GtQ[a1, 0] && GtQ[a2, 0]))
-
Int[(Pq_)*((a1_) + (b1_.)*(x_)^(n_.))^(p_.)*((a2_) + (b2_.)*(x_)^(n_.))^(p_.), x_Symbol] :> Simp[(a1 + b1*x^n)
^FracPart[p]*((a2 + b2*x^n)^FracPart[p]/(a1*a2 + b1*b2*x^(2*n))^FracPart[p]) Int[Pq*(a1*a2 + b1*b2*x^(2*n))^
p, x], x] /; FreeQ[{a1, b1, a2, b2, n, p}, x] && PolyQ[Pq, x] && EqQ[a2*b1 + a1*b2, 0] && !(EqQ[n, 1] && Line
arQ[Pq, x])
-
Int[((a_) + (b_.)*(x_)^(n_.))^(p_.)*((c_) + (d_.)*(x_)^(n_.))^(p_.)*((e_) + (f_.)*(x_)^(n_.) + (g_.)*(x_)^(n2_
.)), x_Symbol] :> Simp[e*x*(a + b*x^n)^(p + 1)*((c + d*x^n)^(p + 1)/(a*c)), x] /; FreeQ[{a, b, c, d, e, f, g,
n, p}, x] && EqQ[n2, 2*n] && EqQ[a*c*f - e*(b*c + a*d)*(n*(p + 1) + 1), 0] && EqQ[a*c*g - b*d*e*(2*n*(p + 1) +
1), 0]
-
Int[((a_) + (b_.)*(x_)^(n_.))^(p_.)*((c_) + (d_.)*(x_)^(n_.))^(p_.)*((e_) + (g_.)*(x_)^(n2_.)), x_Symbol] :> S
imp[e*x*(a + b*x^n)^(p + 1)*((c + d*x^n)^(p + 1)/(a*c)), x] /; FreeQ[{a, b, c, d, e, g, n, p}, x] && EqQ[n2, 2
*n] && EqQ[n*(p + 1) + 1, 0] && EqQ[a*c*g - b*d*e*(2*n*(p + 1) + 1), 0]
-
Int[((A_) + (B_.)*(x_)^(m_.))*((a_.) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Sim
p[A Int[(a + b*x^n)^p*(c + d*x^n)^q, x], x] + Simp[B Int[x^m*(a + b*x^n)^p*(c + d*x^n)^q, x], x] /; FreeQ[
{a, b, c, d, A, B, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && EqQ[m - n + 1, 0]
-
Int[(Px_)^(q_.)*((a_.) + (b_.)*((c_) + (d_.)*(x_))^(n_))^(p_), x_Symbol] :> With[{k = Denominator[n]}, Simp[k/
d Subst[Int[SimplifyIntegrand[x^(k - 1)*(Px /. x -> x^k/d - c/d)^q*(a + b*x^(k*n))^p, x], x], x, (c + d*x)^(
1/k)], x]] /; FreeQ[{a, b, c, d, p}, x] && PolynomialQ[Px, x] && IntegerQ[q] && FractionQ[n]
-
Int[(Pq_)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{d = Denominator[n]}, Simp[d Subst[In
t[x^(d - 1)*(SubstFor[x^n, Pq, x] /. x -> x^(d*n))*(a*x^(d*j) + b*x^(d*n))^p, x], x, x^(1/d)], x]] /; FreeQ[{a
, b, j, n, p}, x] && PolyQ[Pq, x^n] && !IntegerQ[p] && NeQ[n, j] && RationalQ[j, n] && IntegerQ[j/n] && LtQ[-
1, n, 1]
-
Int[(Pq_)*(x_)^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[1/n Subst[Int[x^(Simplify[
(m + 1)/n] - 1)*SubstFor[x^n, Pq, x]*(a*x^Simplify[j/n] + b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, j, m, n, p},
x] && PolyQ[Pq, x^n] && !IntegerQ[p] && NeQ[n, j] && IntegerQ[Simplify[j/n]] && IntegerQ[Simplify[(m + 1)/n]
]
-
Int[(Pq_)*((c_)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(Sign[m]*Quotient[m
, Sign[m]])*((c*x)^Mod[m, Sign[m]]/x^Mod[m, Sign[m]]) Int[x^m*Pq*(a*x^j + b*x^n)^p, x], x] /; FreeQ[{a, b, c
, j, n, p}, x] && PolyQ[Pq, x^n] && !IntegerQ[p] && NeQ[n, j] && IntegerQ[Simplify[j/n]] && IntegerQ[Simplify
[(m + 1)/n]] && RationalQ[m] && GtQ[m^2, 1]
-
Int[(Pq_)*((c_)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x)^m/x^m Int[x^m
*Pq*(a*x^j + b*x^n)^p, x], x] /; FreeQ[{a, b, c, j, m, n, p}, x] && PolyQ[Pq, x^n] && !IntegerQ[p] && NeQ[n,
j] && IntegerQ[Simplify[j/n]] && IntegerQ[Simplify[(m + 1)/n]]
-
Int[(Pq_)*(x_)^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{g = GCD[m + 1, n]}, Simp[1/
g Subst[Int[x^((m + 1)/g - 1)*(Pq /. x -> x^(1/g))*(a*x^(j/g) + b*x^(n/g))^p, x], x, x^g], x] /; NeQ[g, 1]]
/; FreeQ[{a, b, p}, x] && PolyQ[Pq, x^n] && !IntegerQ[p] && IGtQ[j, 0] && IGtQ[n, 0] && IGtQ[j/n, 0] && Integ
erQ[m]
-
Int[(Pq_)*((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{q = Expon[Pq, x]},
With[{Pqq = Coeff[Pq, x, q]}, Int[(c*x)^m*ExpandToSum[Pq - Pqq*x^q - a*Pqq*(m + q - n + 1)*(x^(q - n)/(b*(m +
q + n*p + 1))), x]*(a*x^j + b*x^n)^p, x] + Simp[Pqq*(c*x)^(m + q - n + 1)*((a*x^j + b*x^n)^(p + 1)/(b*c^(q - n
+ 1)*(m + q + n*p + 1))), x]] /; GtQ[q, n - 1] && NeQ[m + q + n*p + 1, 0] && (IntegerQ[2*p] || IntegerQ[p + (
q + 1)/(2*n)])] /; FreeQ[{a, b, c, m, p}, x] && PolyQ[Pq, x] && !IntegerQ[p] && IGtQ[j, 0] && IGtQ[n, 0] && L
tQ[j, n]
-
Int[(Pq_)*(x_)^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[1/(m + 1) Subst[Int[(Subst
For[x^n, Pq, x] /. x -> x^Simplify[n/(m + 1)])*(a*x^Simplify[j/(m + 1)] + b*x^Simplify[n/(m + 1)])^p, x], x, x
^(m + 1)], x] /; FreeQ[{a, b, j, m, n, p}, x] && PolyQ[Pq, x^n] && !IntegerQ[p] && NeQ[n, j] && IntegerQ[Simp
lify[j/n]] && IntegerQ[Simplify[n/(m + 1)]] && !IntegerQ[n]
-
Int[(Pq_)*((c_)*(x_))^(m_)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[c^(Sign[m]*Quotient[m,
Sign[m]])*((c*x)^Mod[m, Sign[m]]/x^Mod[m, Sign[m]]) Int[x^m*Pq*(a*x^j + b*x^n)^p, x], x] /; FreeQ[{a, b, c,
j, n, p}, x] && PolyQ[Pq, x^n] && !IntegerQ[p] && NeQ[n, j] && IntegerQ[Simplify[j/n]] && IntegerQ[Simplify[
n/(m + 1)]] && !IntegerQ[n] && GtQ[m^2, 1]
-
Int[(Pq_)*((c_)*(x_))^(m_)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x)^m/x^m Int[x^m*
Pq*(a*x^j + b*x^n)^p, x], x] /; FreeQ[{a, b, c, j, m, n, p}, x] && PolyQ[Pq, x^n] && !IntegerQ[p] && NeQ[n, j
] && IntegerQ[Simplify[j/n]] && IntegerQ[Simplify[n/(m + 1)]] && !IntegerQ[n]
-
Int[(Pq_)*((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Int[ExpandIntegrand[(c*x)
^m*Pq*(a*x^j + b*x^n)^p, x], x] /; FreeQ[{a, b, c, j, m, n, p}, x] && (PolyQ[Pq, x] || PolyQ[Pq, x^n]) && !In
tegerQ[p] && NeQ[n, j]
-
Int[(Pq_)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Int[ExpandIntegrand[Pq*(a*x^j + b*x^n)^p, x]
, x] /; FreeQ[{a, b, j, n, p}, x] && (PolyQ[Pq, x] || PolyQ[Pq, x^n]) && !IntegerQ[p] && NeQ[n, j]
-
Int[(Pq_)*(u_)^(p_.)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[(c*x)^m*Pq*ExpandToSum[u, x]^p, x] /; FreeQ[{c, m, p
}, x] && PolyQ[Pq, x] && BinomialQ[u, x] && !BinomialMatchQ[u, x]
-
Int[(Pq_)*(u_)^(p_.), x_Symbol] :> Int[Pq*ExpandToSum[u, x]^p, x] /; FreeQ[p, x] && PolyQ[Pq, x] && QuadraticQ
[u, x] && !QuadraticMatchQ[u, x]
-
Int[(Pq_)*(u_)^(m_.)*(v_)^(p_.), x_Symbol] :> Int[ExpandToSum[u, x]^m*Pq*ExpandToSum[v, x]^p, x] /; FreeQ[{m,
p}, x] && PolyQ[Pq, x] && LinearQ[u, x] && QuadraticQ[v, x] && !(LinearMatchQ[u, x] && QuadraticMatchQ[v, x])
-
Int[(Pq_)*(u_)^(p_.), x_Symbol] :> Int[Pq*ExpandToSum[u, x]^p, x] /; FreeQ[p, x] && PolyQ[Pq, x] && TrinomialQ
[u, x] && !TrinomialMatchQ[u, x]
-
Int[(Pq_)*(u_)^(p_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Int[(d*x)^m*Pq*ExpandToSum[u, x]^p, x] /; FreeQ[{d, m, p
}, x] && PolyQ[Pq, x] && TrinomialQ[u, x] && !TrinomialMatchQ[u, x]
-
Int[(u_.)*(Px_)^(p_)*(Qx_)^(q_), x_Symbol] :> Module[{Rx = PolyGCD[Px, Qx, x]}, Int[u*Rx^(p + q)*PolynomialQuo
tient[Px, Rx, x]^p*PolynomialQuotient[Qx, Rx, x]^q, x] /; NeQ[Rx, 1]] /; IGtQ[p, 0] && ILtQ[q, 0] && PolyQ[Px,
x] && PolyQ[Qx, x]
-
Int[(u_.)*(Px_)*(Qx_)^(q_), x_Symbol] :> Module[{Rx = PolyGCD[Px, Qx, x]}, Int[u*Rx^(q + 1)*PolynomialQuotient
[Px, Rx, x]*PolynomialQuotient[Qx, Rx, x]^q, x] /; NeQ[Rx, 1]] /; ILtQ[q, 0] && PolyQ[Px, x] && PolyQ[Qx, x]
-
Int[(Pn_)^(p_.), x_Symbol] :> With[{S = Coeff[Pn, x, Expon[Pn, x] - 1]/(Expon[Pn, x]*Coeff[Pn, x, Expon[Pn, x]
])}, Subst[Int[ExpandToSum[Pn /. x -> x - S, x]^p, x], x, x + S] /; BinomialQ[Pn /. x -> x - S, x] || (Integer
Q[Expon[Pn, x]/2] && TrinomialQ[Pn /. x -> x - S, x])] /; FreeQ[p, x] && PolyQ[Pn, x] && GtQ[Expon[Pn, x], 2]
&& NeQ[Coeff[Pn, x, Expon[Pn, x] - 1], 0]
-
Int[(Pn_)^(p_.)*(Qx_), x_Symbol] :> With[{S = Coeff[Pn, x, Expon[Pn, x] - 1]/(Expon[Pn, x]*Coeff[Pn, x, Expon[
Pn, x]])}, Subst[Int[ExpandToSum[Pn /. x -> x - S, x]^p*ExpandToSum[Qx /. x -> x - S, x], x], x, x + S] /; Bin
omialQ[Pn /. x -> x - S, x] || (IntegerQ[Expon[Pn, x]/2] && TrinomialQ[Pn /. x -> x - S, x])] /; FreeQ[p, x] &
& PolyQ[Pn, x] && GtQ[Expon[Pn, x], 2] && NeQ[Coeff[Pn, x, Expon[Pn, x] - 1], 0] && PolyQ[Qx, x] && !(Monomia
lQ[Qx, x] && IGtQ[p, 0])
-
Int[(u_.)*(Px_)^(p_), x_Symbol] :> With[{Qx = Factor[Px /. x -> Sqrt[x]]}, Int[ExpandIntegrand[u*(Qx /. x -> x
^2)^p, x], x] /; !SumQ[NonfreeFactors[Qx, x]]] /; PolyQ[Px, x^2] && GtQ[Expon[Px, x], 2] && !BinomialQ[Px, x
] && !TrinomialQ[Px, x] && ILtQ[p, 0] && RationalFunctionQ[u, x]
-
Int[(u_.)*(Px_)^(p_), x_Symbol] :> With[{Qx = Factor[Px /. x -> Sqrt[x]]}, Int[ExpandIntegrand[u, (Qx /. x ->
x^2)^p, x], x] /; !SumQ[NonfreeFactors[Qx, x]]] /; PolyQ[Px, x^2] && GtQ[Expon[Px, x], 2] && !BinomialQ[Px,
x] && !TrinomialQ[Px, x] && ILtQ[p, 0]
-
Int[(u_.)*(Px_)^(p_), x_Symbol] :> With[{Qx = Factor[Px]}, Int[ExpandIntegrand[u*Qx^p, x], x] /; !SumQ[Nonfre
eFactors[Qx, x]]] /; PolyQ[Px, x] && GtQ[Expon[Px, x], 2] && !BinomialQ[Px, x] && !TrinomialQ[Px, x] && ILtQ
[p, 0] && RationalFunctionQ[u, x]
-
Int[(u_.)*(Px_)^(p_), x_Symbol] :> With[{Qx = Factor[Px]}, Int[ExpandIntegrand[u, Qx^p, x], x] /; !SumQ[Nonfr
eeFactors[Qx, x]]] /; PolyQ[Px, x] && GtQ[Expon[Px, x], 2] && !BinomialQ[Px, x] && !TrinomialQ[Px, x] && ILt
Q[p, 0]
-
Int[(u_.)*(Px_)^(p_), x_Symbol] :> With[{Qx = Factor[Px]}, Int[u*Qx^p, x] /; !SumQ[NonfreeFactors[Qx, x]]] /;
PolyQ[Px, x] && GtQ[Expon[Px, x], 2] && !BinomialQ[Px, x] && !TrinomialQ[Px, x] && IGtQ[p, 1]
-
Int[(u_.)*(Px_)^(p_), x_Symbol] :> Int[ExpandToSum[u, Px^p, x], x] /; PolyQ[Px, x] && GtQ[Expon[Px, x], 2] &&
!BinomialQ[Px, x] && !TrinomialQ[Px, x] && IGtQ[p, 0]
-
Int[(u_.)*(Q6_)^(p_), x_Symbol] :> With[{a = Coeff[Q6, x, 0], b = Coeff[Q6, x, 2], c = Coeff[Q6, x, 3], d = Co
eff[Q6, x, 4], e = Coeff[Q6, x, 6]}, Simp[1/(3^(3*p)*a^(2*p)) Int[ExpandIntegrand[u*(3*a + 3*Rt[a, 3]^2*Rt[c
, 3]*x + b*x^2)^p*(3*a - 3*(-1)^(1/3)*Rt[a, 3]^2*Rt[c, 3]*x + b*x^2)^p*(3*a + 3*(-1)^(2/3)*Rt[a, 3]^2*Rt[c, 3]
*x + b*x^2)^p, x], x], x] /; EqQ[b^2 - 3*a*d, 0] && EqQ[b^3 - 27*a^2*e, 0]] /; ILtQ[p, 0] && PolyQ[Q6, x, 6] &
& EqQ[Coeff[Q6, x, 1], 0] && EqQ[Coeff[Q6, x, 5], 0] && RationalFunctionQ[u, x]
-
Int[(Fx_.)*(Px_)^(p_), x_Symbol] :> With[{r = Expon[Px, x, Min]}, Simp[Px^FracPart[p]/(x^(r*FracPart[p])*Expan
dToSum[Px/x^r, x]^FracPart[p]) Int[x^(p*r)*ExpandToSum[Px/x^r, x]^p*Fx, x], x] /; IGtQ[r, 0]] /; FreeQ[p, x]
&& PolyQ[Px, x] && !IntegerQ[p] && !MonomialQ[Px, x] && !PolyQ[Fx, x]
-
Int[(Fx_.)*((a_.)*(x_)^(r_.) + (b_.)*(x_)^(s_.))^(p_), x_Symbol] :> Simp[(a*x^r + b*x^s)^p/(x^(p*r)*(a + b*x^(
s - r))^p) Int[x^(p*r)*(a + b*x^(s - r))^p*Fx, x], x] /; FreeQ[{a, b, p, r, s}, x] && !IntegerQ[p] && PosQ[
s - r] && !(EqQ[p, 1] && EqQ[Fx, 1])
-
Int[(Fx_.)*((a_.)*(x_)^(r_.) + (b_.)*(x_)^(s_.) + (c_.)*(x_)^(t_.))^(p_), x_Symbol] :> Simp[(a*x^r + b*x^s + c
*x^t)^p/(x^(p*r)*(a + b*x^(s - r) + c*x^(t - r))^p) Int[x^(p*r)*(a + b*x^(s - r) + c*x^(t - r))^p*Fx, x], x]
/; FreeQ[{a, b, c, p, r, s, t}, x] && !IntegerQ[p] && PosQ[s - r] && PosQ[t - r] && !(EqQ[p, 1] && EqQ[Fx,
1])
-
Int[(Fx_.)*((d_.)*(x_)^(q_.) + (a_.)*(x_)^(r_.) + (b_.)*(x_)^(s_.) + (c_.)*(x_)^(t_.))^(p_), x_Symbol] :> Simp
[(a*x^r + b*x^s + c*x^t + d*x^q)^p/(x^(p*r)*(a + b*x^(s - r) + c*x^(t - r) + d*x^(q - r))^p) Int[x^(p*r)*(a
+ b*x^(s - r) + c*x^(t - r) + d*x^(q - r))^p*Fx, x], x] /; FreeQ[{a, b, c, d, p, r, s, t, q}, x] && !IntegerQ
[p] && PosQ[s - r] && PosQ[t - r] && PosQ[q - r] && !(EqQ[p, 1] && EqQ[Fx, 1])
-
Int[(u_.)*(Px_)^(p_), x_Symbol] :> With[{b = Coeff[Px, x, 1], c = Coeff[Px, x, 2], d = Coeff[Px, x, 3]}, Simp[
Px^FracPart[p]/(x^FracPart[p]*(b + c*x + d*x^2)^FracPart[p]) Int[u*x^p*(b + c*x + d*x^2)^p, x], x]] /; FreeQ
[p, x] && PolyQ[Px, x, 3] && EqQ[Coeff[Px, x, 0], 0] && !IntegerQ[p]
-
Int[((a_.) + (b_.)*(x_) + (d_.)*(x_)^3)^(p_), x_Symbol] :> Simp[1/(3^(3*p)*a^(2*p)) Int[(3*a - b*x)^p*(3*a +
2*b*x)^(2*p), x], x] /; FreeQ[{a, b, d}, x] && EqQ[4*b^3 + 27*a^2*d, 0] && IntegerQ[p]
-
Int[((a_.) + (b_.)*(x_) + (d_.)*(x_)^3)^(p_), x_Symbol] :> Simp[(a + b*x + d*x^3)^p/((3*a - b*x)^p*(3*a + 2*b*
x)^(2*p)) Int[(3*a - b*x)^p*(3*a + 2*b*x)^(2*p), x], x] /; FreeQ[{a, b, d, p}, x] && EqQ[4*b^3 + 27*a^2*d, 0
] && !IntegerQ[p]
-
Int[((a_.) + (b_.)*(x_) + (d_.)*(x_)^3)^(p_), x_Symbol] :> With[{r = Rt[-9*a*d^2 + Sqrt[3]*d*Sqrt[4*b^3*d + 27
*a^2*d^2], 3]}, Simp[1/d^(2*p) Int[Simp[18^(1/3)*b*(d/(3*r)) - r/18^(1/3) + d*x, x]^p*Simp[b*(d/3) + 12^(1/3
)*b^2*(d^2/(3*r^2)) + r^2/(3*12^(1/3)) - d*(2^(1/3)*b*(d/(3^(1/3)*r)) - r/18^(1/3))*x + d^2*x^2, x]^p, x], x]]
/; FreeQ[{a, b, d}, x] && NeQ[4*b^3 + 27*a^2*d, 0] && IntegerQ[p]
-
Int[((a_.) + (b_.)*(x_) + (d_.)*(x_)^3)^(p_), x_Symbol] :> With[{r = Rt[-9*a*d^2 + Sqrt[3]*d*Sqrt[4*b^3*d + 27
*a^2*d^2], 3]}, Simp[(a + b*x + d*x^3)^p/(Simp[18^(1/3)*b*(d/(3*r)) - r/18^(1/3) + d*x, x]^p*Simp[b*(d/3) + 12
^(1/3)*b^2*(d^2/(3*r^2)) + r^2/(3*12^(1/3)) - d*(2^(1/3)*b*(d/(3^(1/3)*r)) - r/18^(1/3))*x + d^2*x^2, x]^p)
Int[Simp[18^(1/3)*b*(d/(3*r)) - r/18^(1/3) + d*x, x]^p*Simp[b*(d/3) + 12^(1/3)*b^2*(d^2/(3*r^2)) + r^2/(3*12^(
1/3)) - d*(2^(1/3)*b*(d/(3^(1/3)*r)) - r/18^(1/3))*x + d^2*x^2, x]^p, x], x]] /; FreeQ[{a, b, d, p}, x] && NeQ
[4*b^3 + 27*a^2*d, 0] && !IntegerQ[p]
-
Int[(Px_)^(p_), x_Symbol] :> With[{a = Coeff[Px, x, 0], b = Coeff[Px, x, 1], c = Coeff[Px, x, 2], d = Coeff[Px
, x, 3]}, Simp[1/d^p Int[(c + d*x)^p*(b + d*x^2)^p, x], x] /; EqQ[b*c - a*d, 0]] /; PolyQ[Px, x, 3] && Integ
erQ[p]
-
Int[(Px_)^(p_), x_Symbol] :> With[{a = Coeff[Px, x, 0], b = Coeff[Px, x, 1], c = Coeff[Px, x, 2], d = Coeff[Px
, x, 3]}, Simp[Px^p/((c + d*x)^p*(b + d*x^2)^p) Int[(c + d*x)^p*(b + d*x^2)^p, x], x] /; EqQ[b*c - a*d, 0]]
/; FreeQ[p, x] && PolyQ[Px, x, 3] && !IntegerQ[p]
-
Int[(Px_)^(p_), x_Symbol] :> With[{a = Coeff[Px, x, 0], b = Coeff[Px, x, 1], c = Coeff[Px, x, 2], d = Coeff[Px
, x, 3]}, Subst[Int[Simp[a - b^2/(3*c) + d*x^3, x]^p, x], x, c/(3*d) + x] /; EqQ[c^2 - 3*b*d, 0]] /; FreeQ[p,
x] && PolyQ[Px, x, 3]
-
Int[(Px_)^(p_), x_Symbol] :> With[{a = Coeff[Px, x, 0], b = Coeff[Px, x, 1], c = Coeff[Px, x, 2], d = Coeff[Px
, x, 3]}, Simp[1/(4^p*(c^2 - 3*b*d)^(3*p)) Int[(c^3 - 4*b*c*d + 9*a*d^2 + d*(c^2 - 3*b*d)*x)^p*(b*c - 9*a*d
+ 2*(c^2 - 3*b*d)*x)^(2*p), x], x] /; EqQ[b^2*c^2 - 4*a*c^3 - 4*b^3*d + 18*a*b*c*d - 27*a^2*d^2, 0] && NeQ[c^2
- 3*b*d, 0]] /; FreeQ[p, x] && PolyQ[Px, x, 3] && IntegerQ[p]
-
Int[(Px_)^(p_), x_Symbol] :> With[{a = Coeff[Px, x, 0], b = Coeff[Px, x, 1], c = Coeff[Px, x, 2], d = Coeff[Px
, x, 3]}, Simp[Px^p/((c^3 - 4*b*c*d + 9*a*d^2 + d*(c^2 - 3*b*d)*x)^p*(b*c - 9*a*d + 2*(c^2 - 3*b*d)*x)^(2*p))
Int[(c^3 - 4*b*c*d + 9*a*d^2 + d*(c^2 - 3*b*d)*x)^p*(b*c - 9*a*d + 2*(c^2 - 3*b*d)*x)^(2*p), x], x] /; EqQ[b
^2*c^2 - 4*a*c^3 - 4*b^3*d + 18*a*b*c*d - 27*a^2*d^2, 0] && NeQ[c^2 - 3*b*d, 0]] /; FreeQ[p, x] && PolyQ[Px, x
, 3] && !IntegerQ[p]
-
Int[(Px_)^(p_), x_Symbol] :> With[{a = Coeff[Px, x, 0], b = Coeff[Px, x, 1], c = Coeff[Px, x, 2], d = Coeff[Px
, x, 3]}, Subst[Int[Simp[(2*c^3 - 9*b*c*d + 27*a*d^2)/(27*d^2) - (c^2 - 3*b*d)*(x/(3*d)) + d*x^3, x]^p, x], x,
c/(3*d) + x]] /; FreeQ[p, x] && PolyQ[Px, x, 3]
-
Int[((e_.) + (f_.)*(x_))^(m_.)*((a_) + (b_.)*(x_) + (d_.)*(x_)^3)^(p_.), x_Symbol] :> Simp[1/(3^(3*p)*a^(2*p))
Int[(e + f*x)^m*(3*a - b*x)^p*(3*a + 2*b*x)^(2*p), x], x] /; FreeQ[{a, b, d, e, f, m}, x] && EqQ[4*b^3 + 27
*a^2*d, 0] && IntegerQ[p]
-
Int[((e_.) + (f_.)*(x_))^(m_.)*((a_) + (b_.)*(x_) + (d_.)*(x_)^3)^(p_), x_Symbol] :> Simp[(a + b*x + d*x^3)^p/
((3*a - b*x)^p*(3*a + 2*b*x)^(2*p)) Int[(e + f*x)^m*(3*a - b*x)^p*(3*a + 2*b*x)^(2*p), x], x] /; FreeQ[{a, b
, d, e, f, m, p}, x] && EqQ[4*b^3 + 27*a^2*d, 0] && !IntegerQ[p]
-
Int[((e_.) + (f_.)*(x_))^(m_.)*((a_) + (b_.)*(x_) + (d_.)*(x_)^3)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(e +
f*x)^m*(a + b*x + d*x^3)^p, x], x] /; FreeQ[{a, b, d, e, f, m}, x] && NeQ[4*b^3 + 27*a^2*d, 0] && IGtQ[p, 0]
-
Int[((e_.) + (f_.)*(x_))^(m_.)*((a_) + (b_.)*(x_) + (d_.)*(x_)^3)^(p_), x_Symbol] :> With[{r = Rt[-9*a*d^2 + S
qrt[3]*d*Sqrt[4*b^3*d + 27*a^2*d^2], 3]}, Simp[1/d^(2*p) Int[(e + f*x)^m*Simp[18^(1/3)*b*(d/(3*r)) - r/18^(1
/3) + d*x, x]^p*Simp[b*(d/3) + 12^(1/3)*b^2*(d^2/(3*r^2)) + r^2/(3*12^(1/3)) - d*(2^(1/3)*b*(d/(3^(1/3)*r)) -
r/18^(1/3))*x + d^2*x^2, x]^p, x], x]] /; FreeQ[{a, b, d, e, f, m}, x] && NeQ[4*b^3 + 27*a^2*d, 0] && ILtQ[p,
0]
-
Int[((e_.) + (f_.)*(x_))^(m_.)*((a_) + (b_.)*(x_) + (d_.)*(x_)^3)^(p_), x_Symbol] :> With[{r = Rt[-9*a*d^2 + S
qrt[3]*d*Sqrt[4*b^3*d + 27*a^2*d^2], 3]}, Simp[(a + b*x + d*x^3)^p/(Simp[18^(1/3)*b*(d/(3*r)) - r/18^(1/3) + d
*x, x]^p*Simp[b*(d/3) + 12^(1/3)*b^2*(d^2/(3*r^2)) + r^2/(3*12^(1/3)) - d*(2^(1/3)*b*(d/(3^(1/3)*r)) - r/18^(1
/3))*x + d^2*x^2, x]^p) Int[(e + f*x)^m*Simp[18^(1/3)*b*(d/(3*r)) - r/18^(1/3) + d*x, x]^p*Simp[b*(d/3) + 12
^(1/3)*b^2*(d^2/(3*r^2)) + r^2/(3*12^(1/3)) - d*(2^(1/3)*b*(d/(3^(1/3)*r)) - r/18^(1/3))*x + d^2*x^2, x]^p, x]
, x]] /; FreeQ[{a, b, d, e, f, m, p}, x] && NeQ[4*b^3 + 27*a^2*d, 0] && !IntegerQ[p]
-
Int[((e_.) + (f_.)*(x_))^(m_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2 + (d_.)*(x_)^3)^(p_), x_Symbol] :> Subst[Int
[((3*d*e - c*f)/(3*d) + f*x)^m*Simp[a - b^2/(3*c) + d*x^3, x]^p, x], x, x + c/(3*d)] /; FreeQ[{a, b, c, d, e,
f, m, p}, x] && EqQ[c^2 - 3*b*d, 0]
-
Int[((e_.) + (f_.)*(x_))^(m_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2 + (d_.)*(x_)^3)^(p_), x_Symbol] :> Simp[1/(4
^p*(c^2 - 3*b*d)^(3*p)) Int[(e + f*x)^m*(c^3 - 4*b*c*d + 9*a*d^2 + d*(c^2 - 3*b*d)*x)^p*(b*c - 9*a*d + 2*(c^
2 - 3*b*d)*x)^(2*p), x], x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && NeQ[c^2 - 3*b*d, 0] && EqQ[b^2*c^2 - 4*a*
c^3 - 4*b^3*d + 18*a*b*c*d - 27*a^2*d^2, 0] && ILtQ[p, 0]
-
Int[((e_.) + (f_.)*(x_))^(m_.)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2 + (d_.)*(x_)^3)^(p_), x_Symbol] :> Simp[(a +
b*x + c*x^2 + d*x^3)^p/((c^3 - 4*b*c*d + 9*a*d^2 + d*(c^2 - 3*b*d)*x)^p*(b*c - 9*a*d + 2*(c^2 - 3*b*d)*x)^(2*
p)) Int[(e + f*x)^m*(c^3 - 4*b*c*d + 9*a*d^2 + d*(c^2 - 3*b*d)*x)^p*(b*c - 9*a*d + 2*(c^2 - 3*b*d)*x)^(2*p),
x], x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && NeQ[c^2 - 3*b*d, 0] && EqQ[b^2*c^2 - 4*a*c^3 - 4*b^3*d + 18*a
*b*c*d - 27*a^2*d^2, 0] && !IntegerQ[p]
-
Int[(P3_)^(p_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> With[{a = Coeff[P3, x, 0], b = Coeff[P3, x, 1], c = C
oeff[P3, x, 2], d = Coeff[P3, x, 3]}, Subst[Int[((3*d*e - c*f)/(3*d) + f*x)^m*Simp[(2*c^3 - 9*b*c*d + 27*a*d^2
)/(27*d^2) - (c^2 - 3*b*d)*(x/(3*d)) + d*x^3, x]^p, x], x, x + c/(3*d)] /; NeQ[c, 0]] /; FreeQ[{e, f, m, p}, x
] && PolyQ[P3, x, 3]
-
Int[(u_.)*(Px_)^(p_), x_Symbol] :> With[{b = Coeff[Px, x, 1], c = Coeff[Px, x, 2], d = Coeff[Px, x, 3], e = Co
eff[Px, x, 4]}, Simp[Px^FracPart[p]/(x^FracPart[p]*(b + c*x + d*x^2 + e*x^3)^FracPart[p]) Int[u*x^p*(b + c*x
+ d*x^2 + e*x^3)^p, x], x]] /; FreeQ[p, x] && PolyQ[Px, x, 4] && EqQ[Coeff[Px, x, 0], 0] && !IntegerQ[p]
-
Int[(Px_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2 + (d_.)*(x_)^3 + (e_.)*(x_)^4)^(p_), x_Symbol] :> Simp[e^p Int[
ExpandIntegrand[Px*(b/d + ((d + Sqrt[e*((b^2 - 4*a*c)/a) + 8*a*d*(e/b)])/(2*e))*x + x^2)^p*(b/d + ((d - Sqrt[e
*((b^2 - 4*a*c)/a) + 8*a*d*(e/b)])/(2*e))*x + x^2)^p, x], x], x] /; FreeQ[{a, b, c, d, e}, x] && PolyQ[Px, x]
&& ILtQ[p, 0] && EqQ[a*d^2 - b^2*e, 0]
-
Int[(Px_.)*((a_) + (b_.)*(x_) + (d_.)*(x_)^3 + (e_.)*(x_)^4)^(p_), x_Symbol] :> Simp[e^p Int[ExpandIntegrand
[Px*(b/d + ((d + Sqrt[d^2 + 8*a*d*(e/b)])/(2*e))*x + x^2)^p*(b/d + ((d - Sqrt[d^2 + 8*a*d*(e/b)])/(2*e))*x + x
^2)^p, x], x], x] /; FreeQ[{a, b, d, e}, x] && PolyQ[Px, x] && ILtQ[p, 0] && EqQ[a*d^2 - b^2*e, 0]
-
Int[(Px_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2 + (d_.)*(x_)^3 + (e_.)*(x_)^4)^(p_), x_Symbol] :> With[{S = Root[
a*d^2 - b^2*e + (b*d^2 - 4*b*c*e + 8*a*d*e)*x + (c*d^2 - 4*c^2*e + 2*b*d*e + 16*a*e^2)*x^2 + (d^3 - 4*c*d*e +
8*b*e^2)*x^3, 3]}, Subst[Int[(Px /. x -> x + S)*ExpandToSum[a + b*(x + S) + c*(x + S)^2 + d*(x + S)^3 + e*(x +
S)^4, x]^p, x], x, x - S] /; RationalQ[S]] /; FreeQ[{a, b, c, d, e}, x] && PolyQ[Px, x] && ILtQ[p, 0] && Rati
onalQ[a, b, c, d, e] && NeQ[a*d^2 - b^2*e, 0]
-
Int[(Px_.)*((a_) + (b_.)*(x_) + (d_.)*(x_)^3 + (e_.)*(x_)^4)^(p_), x_Symbol] :> With[{S = Root[a*d^2 - b^2*e +
(b*d^2 + 8*a*d*e)*x + (2*b*d*e + 16*a*e^2)*x^2 + (d^3 + 8*b*e^2)*x^3, 3]}, Subst[Int[(Px /. x -> x + S)*Expan
dToSum[a + b*(x + S) + d*(x + S)^3 + e*(x + S)^4, x]^p, x], x, x - S] /; RationalQ[S]] /; FreeQ[{a, b, d, e},
x] && PolyQ[Px, x] && ILtQ[p, 0] && RationalQ[a, b, d, e] && NeQ[a*d^2 - b^2*e, 0]
-
Int[(Px_.)*(x_)^(m_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2 + (d_.)*(x_)^3 + (e_.)*(x_)^4)^(p_), x_Symbol] :> Simp
[e^p Int[ExpandIntegrand[x^m*Px*(b/d + ((d + Sqrt[e*((b^2 - 4*a*c)/a) + 8*a*d*(e/b)])/(2*e))*x + x^2)^p*(b/d
+ ((d - Sqrt[e*((b^2 - 4*a*c)/a) + 8*a*d*(e/b)])/(2*e))*x + x^2)^p, x], x], x] /; FreeQ[{a, b, c, d, e, m}, x
] && PolyQ[Px, x] && ILtQ[p, 0] && EqQ[a*d^2 - b^2*e, 0]
-
Int[(Px_.)*(x_)^(m_.)*((a_) + (b_.)*(x_) + (d_.)*(x_)^3 + (e_.)*(x_)^4)^(p_), x_Symbol] :> Simp[e^p Int[Expa
ndIntegrand[x^m*Px*(b/d + ((d + Sqrt[d^2 + 8*a*d*(e/b)])/(2*e))*x + x^2)^p*(b/d + ((d - Sqrt[d^2 + 8*a*d*(e/b)
])/(2*e))*x + x^2)^p, x], x], x] /; FreeQ[{a, b, d, e, m}, x] && PolyQ[Px, x] && ILtQ[p, 0] && EqQ[a*d^2 - b^2
*e, 0]
-
Int[(Px_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2 + (d_.)*(x_)^3 + (e_.)*(x_)^4)^(p_), x_Symbol] :> Simp[1/a^(3*p)
Int[ExpandIntegrand[Px*((a^5 - b^5*x^5)^p/(a - b*x)^p), x], x], x] /; FreeQ[{a, b, c, d, e}, x] && PolyQ[Px,
x] && ILtQ[p, 0] && NeQ[a, 0] && EqQ[c, b^2/a] && EqQ[d, b^3/a^2] && EqQ[e, b^4/a^3]
-
Int[(Px_.)*(x_)^(m_.)*((a_) + (b_.)*(x_) + (c_.)*(x_)^2 + (d_.)*(x_)^3 + (e_.)*(x_)^4)^(p_), x_Symbol] :> Simp
[1/a^(3*p) Int[ExpandIntegrand[x^m*Px*((a^5 - b^5*x^5)^p/(a - b*x)^p), x], x], x] /; FreeQ[{a, b, c, d, e, m
}, x] && PolyQ[Px, x] && ILtQ[p, 0] && NeQ[a, 0] && EqQ[c, b^2/a] && EqQ[d, b^3/a^2] && EqQ[e, b^4/a^3]
-
Int[((A_.) + (B_.)*(x_) + (C_.)*(x_)^2)/((a_) + (b_.)*(x_) + (c_.)*(x_)^2 + (d_.)*(x_)^3 + (e_.)*(x_)^4), x_Sy
mbol] :> With[{q = Rt[C*(2*e*(B*d - 4*A*e) + C*(d^2 - 4*c*e)), 2]}, Simp[-2*(C^2/q)*ArcTanh[(C*d - B*e + 2*C*e
*x)/q], x] + Simp[2*(C^2/q)*ArcTanh[C*((4*B*c*C - 3*B^2*d - 4*A*C*d + 12*A*B*e + 4*C*(2*c*C - B*d + 2*A*e)*x +
4*C*(2*C*d - B*e)*x^2 + 8*C^2*e*x^3)/(q*(B^2 - 4*A*C)))], x]] /; FreeQ[{a, b, c, d, e, A, B, C}, x] && EqQ[B^
2*d + 2*C*(b*C + A*d) - 2*B*(c*C + 2*A*e), 0] && EqQ[2*B^2*c*C - 8*a*C^3 - B^3*d - 4*A*B*C*d + 4*A*(B^2 + 2*A*
C)*e, 0] && PosQ[C*(2*e*(B*d - 4*A*e) + C*(d^2 - 4*c*e))]
-
Int[((A_.) + (C_.)*(x_)^2)/((a_) + (b_.)*(x_) + (c_.)*(x_)^2 + (d_.)*(x_)^3 + (e_.)*(x_)^4), x_Symbol] :> With
[{q = Rt[C*(-8*A*e^2 + C*(d^2 - 4*c*e)), 2]}, Simp[-2*(C^2/q)*ArcTanh[C*((d + 2*e*x)/q)], x] + Simp[2*(C^2/q)*
ArcTanh[C*((A*d - 2*(c*C + A*e)*x - 2*C*d*x^2 - 2*C*e*x^3)/(A*q))], x]] /; FreeQ[{a, b, c, d, e, A, C}, x] &&
EqQ[b*C + A*d, 0] && EqQ[a*C^2 - A^2*e, 0] && PosQ[C*(-8*A*e^2 + C*(d^2 - 4*c*e))]
-
Int[((A_.) + (B_.)*(x_) + (C_.)*(x_)^2)/((a_) + (b_.)*(x_) + (c_.)*(x_)^2 + (d_.)*(x_)^3 + (e_.)*(x_)^4), x_Sy
mbol] :> With[{q = Rt[(-C)*(2*e*(B*d - 4*A*e) + C*(d^2 - 4*c*e)), 2]}, Simp[2*(C^2/q)*ArcTan[(C*d - B*e + 2*C*
e*x)/q], x] - Simp[2*(C^2/q)*ArcTan[C*((4*B*c*C - 3*B^2*d - 4*A*C*d + 12*A*B*e + 4*C*(2*c*C - B*d + 2*A*e)*x +
4*C*(2*C*d - B*e)*x^2 + 8*C^2*e*x^3)/(q*(B^2 - 4*A*C)))], x]] /; FreeQ[{a, b, c, d, e, A, B, C}, x] && EqQ[B^
2*d + 2*C*(b*C + A*d) - 2*B*(c*C + 2*A*e), 0] && EqQ[2*B^2*c*C - 8*a*C^3 - B^3*d - 4*A*B*C*d + 4*A*(B^2 + 2*A*
C)*e, 0] && NegQ[C*(2*e*(B*d - 4*A*e) + C*(d^2 - 4*c*e))]
-
Int[((A_.) + (C_.)*(x_)^2)/((a_) + (b_.)*(x_) + (c_.)*(x_)^2 + (d_.)*(x_)^3 + (e_.)*(x_)^4), x_Symbol] :> With
[{q = Rt[(-C)*(-8*A*e^2 + C*(d^2 - 4*c*e)), 2]}, Simp[2*(C^2/q)*ArcTan[(C*d + 2*C*e*x)/q], x] - Simp[2*(C^2/q)
*ArcTan[(-C)*(((-A)*d + 2*(c*C + A*e)*x + 2*C*d*x^2 + 2*C*e*x^3)/(A*q))], x]] /; FreeQ[{a, b, c, d, e, A, C},
x] && EqQ[b*C + A*d, 0] && EqQ[a*C^2 - A^2*e, 0] && NegQ[C*(-8*A*e^2 + C*(d^2 - 4*c*e))]
-
Int[(P4_)^(p_), x_Symbol] :> With[{a = Coeff[P4, x, 0], b = Coeff[P4, x, 1], c = Coeff[P4, x, 2], d = Coeff[P4
, x, 3], e = Coeff[P4, x, 4]}, Simp[-16*a^2 Subst[Int[(1/(b - 4*a*x)^2)*(a*((-3*b^4 + 16*a*b^2*c - 64*a^2*b*
d + 256*a^3*e - 32*a^2*(3*b^2 - 8*a*c)*x^2 + 256*a^4*x^4)/(b - 4*a*x)^4))^p, x], x, b/(4*a) + 1/x], x] /; NeQ[
a, 0] && NeQ[b, 0] && EqQ[b^3 - 4*a*b*c + 8*a^2*d, 0]] /; FreeQ[p, x] && PolyQ[P4, x, 4] && IntegerQ[2*p] &&
!IGtQ[p, 0]
-
Int[(x_)/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2 + (e_.)*(x_)^4], x_Symbol] :> With[{Px = (1/320)*(33*b^2*c + 6*
a*c^2 + 40*a^2*e) - (22/5)*a*c*e*x^2 + (22/15)*b*c*e*x^3 + (1/4)*e*(5*c^2 + 4*a*e)*x^4 + (4/3)*b*e^2*x^5 + 2*c
*e^2*x^6 + e^3*x^8}, Simp[(1/(8*Rt[e, 2]))*Log[Px + (1/(8*Rt[e, 2]*x) D[Px, x])*Sqrt[a + b*x + c*x^2 + e*x^4
]], x]] /; FreeQ[{a, b, c, e}, x] && EqQ[71*c^2 + 100*a*e, 0] && EqQ[1152*c^3 - 125*b^2*e, 0]
-
Int[((A_) + (B_.)*(x_))/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2 + (d_.)*(x_)^3 + (e_.)*(x_)^4], x_Symbol] :> Sim
p[B Subst[Int[x/Sqrt[(-3*d^4 + 16*c*d^2*e - 64*b*d*e^2 + 256*a*e^3)/(256*e^3) + (d^3 - 4*c*d*e + 8*b*e^2)*(x
/(8*e^2)) - (3*d^2 - 8*c*e)*(x^2/(8*e)) + e*x^4], x], x, d/(4*e) + x], x] /; FreeQ[{a, b, c, d, e, A, B}, x] &
& EqQ[B*d - 4*A*e, 0] && EqQ[d*(141*d^3 - 752*c*d*e - 400*b*e^2) + 16*e^2*(71*c^2 + 100*a*e), 0] && EqQ[144*(3
*d^2 - 8*c*e)^3 + 125*(d^3 - 4*c*d*e + 8*b*e^2)^2, 0]
-
Int[((f_) + (g_.)*(x_)^2)/(((d_) + (e_.)*(x_) + (d_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2 + (b_.)*(x
_)^3 + (a_.)*(x_)^4]), x_Symbol] :> Simp[a*(f/(d*Rt[a^2*(2*a - c), 2]))*ArcTan[(a*b + (4*a^2 + b^2 - 2*a*c)*x
+ a*b*x^2)/(2*Rt[a^2*(2*a - c), 2]*Sqrt[a + b*x + c*x^2 + b*x^3 + a*x^4])], x] /; FreeQ[{a, b, c, d, e, f, g},
x] && EqQ[b*d - a*e, 0] && EqQ[f + g, 0] && PosQ[a^2*(2*a - c)]
-
Int[((f_) + (g_.)*(x_)^2)/(((d_) + (e_.)*(x_) + (d_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2 + (b_.)*(x
_)^3 + (a_.)*(x_)^4]), x_Symbol] :> Simp[(-a)*(f/(d*Rt[(-a^2)*(2*a - c), 2]))*ArcTanh[(a*b + (4*a^2 + b^2 - 2*
a*c)*x + a*b*x^2)/(2*Rt[(-a^2)*(2*a - c), 2]*Sqrt[a + b*x + c*x^2 + b*x^3 + a*x^4])], x] /; FreeQ[{a, b, c, d,
e, f, g}, x] && EqQ[b*d - a*e, 0] && EqQ[f + g, 0] && NegQ[a^2*(2*a - c)]
-
Int[(Pn_)^(p_.)*((g_) + (h_.)*(x_))^(m_.), x_Symbol] :> With[{Px = Pn /. x -> (x - g)/h}, Simp[1/h Subst[Int
[x^m*ExpandToSum[Px, x]^p, x], x, g + h*x], x] /; BinomialQ[Px, x]] /; FreeQ[{g, h, m, p}, x] && PolyQ[Pn, x]
-
Int[(Pn_)^(p_.)*(u_)^(m_.), x_Symbol] :> With[{Px = Pn /. x -> (x - Coeff[u, x, 0])/Coeff[u, x, 1]}, Simp[1/Co
eff[u, x, 1] Subst[Int[x^m*ExpandToSum[Px, x]^p, x], x, u], x] /; BinomialQ[Px, x]] /; FreeQ[{m, p}, x] && L
inearQ[u, x] && PolyQ[Pn, x] && NeQ[Coeff[u, x, 0], 0]
-
Int[(Pn_)^(p_.)*(Qn_)^(q_.)*((g_) + (h_.)*(x_))^(m_.), x_Symbol] :> With[{Px = Pn /. x -> (x - g)/h, Qx = Qn /
. x -> (x - g)/h}, Simp[1/h Subst[Int[x^m*ExpandToSum[Px, x]^p*ExpandToSum[Qx, x]^q, x], x, g + h*x], x] /;
BinomialQ[Px, x] && BinomialQ[Qx, x]] /; FreeQ[{g, h, m, p, q}, x] && PolyQ[Pn, x] && PolyQ[Qn, x] && EqQ[Expo
n[Pn, x], Expon[Qn, x]]
-
Int[(Pn_)^(p_.)*(Qn_)^(q_.)*(u_)^(m_.), x_Symbol] :> With[{Px = Pn /. x -> (x - Coeff[u, x, 0])/Coeff[u, x, 1]
, Qx = Qn /. x -> (x - Coeff[u, x, 0])/Coeff[u, x, 1]}, Simp[1/Coeff[u, x, 1] Subst[Int[x^m*ExpandToSum[Px,
x]^p*ExpandToSum[Qx, x]^q, x], x, u], x] /; BinomialQ[Px, x] && BinomialQ[Qx, x]] /; FreeQ[{m, p, q}, x] && Li
nearQ[u, x] && PolyQ[Pn, x] && PolyQ[Qn, x] && EqQ[Expon[Pn, x], Expon[Qn, x]] && NeQ[Coeff[u, x, 0], 0]
-
Int[(Pn_)^(p_.)*(Qn_)^(q_.)*(Rn_)^(r_.)*((g_) + (h_.)*(x_))^(m_.), x_Symbol] :> With[{Px = Pn /. x -> (x - g)/
h, Qx = Qn /. x -> (x - g)/h, Rx = Rn /. x -> (x - g)/h}, Simp[1/h Subst[Int[x^m*ExpandToSum[Px, x]^p*Expand
ToSum[Qx, x]^q*ExpandToSum[Rx, x]^r, x], x, g + h*x], x] /; BinomialQ[Px, x] && BinomialQ[Qx, x] && BinomialQ[
Rx, x]] /; FreeQ[{g, h, m, p, q, r}, x] && PolyQ[Pn, x] && PolyQ[Qn, x] && PolyQ[Rn, x] && EqQ[Expon[Pn, x], E
xpon[Qn, x]] && EqQ[Expon[Pn, x], Expon[Rn, x]]
-
Int[(Pn_)^(p_.)*(Qn_)^(q_.)*(Rn_)^(r_.)*(u_)^(m_.), x_Symbol] :> With[{Px = Pn /. x -> (x - Coeff[u, x, 0])/Co
eff[u, x, 1], Qx = Qn /. x -> (x - Coeff[u, x, 0])/Coeff[u, x, 1], Rx = Rn /. x -> (x - Coeff[u, x, 0])/Coeff[
u, x, 1]}, Simp[1/Coeff[u, x, 1] Subst[Int[x^m*ExpandToSum[Px, x]^p*ExpandToSum[Qx, x]^q*ExpandToSum[Rx, x]^
r, x], x, u], x] /; BinomialQ[Px, x] && BinomialQ[Qx, x] && BinomialQ[Rx, x]] /; FreeQ[{m, p, q, r}, x] && Lin
earQ[u, x] && PolyQ[Pn, x] && PolyQ[Qn, x] && PolyQ[Rn, x] && EqQ[Expon[Pn, x], Expon[Qn, x]] && EqQ[Expon[Pn,
x], Expon[Rn, x]] && NeQ[Coeff[u, x, 0], 0]
-
Int[(Pn_)^(p_.)*((g_) + (h_.)*(x_))^(m_.), x_Symbol] :> With[{Px = Pn /. x -> (x - g)/h}, Simp[1/h Subst[Int
[x^m*ExpandToSum[Px, x]^p, x], x, g + h*x], x] /; TrinomialQ[Px, x]] /; FreeQ[{g, h, m, p}, x] && PolyQ[Pn, x]
-
Int[(Pn_)^(p_.)*(u_)^(m_.), x_Symbol] :> With[{Px = Pn /. x -> (x - Coeff[u, x, 0])/Coeff[u, x, 1]}, Simp[1/Co
eff[u, x, 1] Subst[Int[x^m*ExpandToSum[Px, x]^p, x], x, u], x] /; TrinomialQ[Px, x]] /; FreeQ[{m, p}, x] &&
LinearQ[u, x] && PolyQ[Pn, x] && NeQ[Coeff[u, x, 0], 0]
-
Int[Sqrt[v_]/((d_) + (e_.)*(x_)^4), x_Symbol] :> With[{a = Coeff[v, x, 0], b = Coeff[v, x, 2], c = Coeff[v, x,
4]}, Simp[a/d Subst[Int[1/(1 - 2*b*x^2 + (b^2 - 4*a*c)*x^4), x], x, x/Sqrt[v]], x] /; EqQ[c*d + a*e, 0] &&
PosQ[a*c]] /; FreeQ[{d, e}, x] && PolyQ[v, x^2, 2]
-
Int[Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4]/((d_) + (e_.)*(x_)^4), x_Symbol] :> With[{q = Sqrt[b^2 - 4*a*c]},
Simp[(-a)*(Sqrt[b + q]/(2*Sqrt[2]*Rt[(-a)*c, 2]*d))*ArcTan[Sqrt[b + q]*x*((b - q + 2*c*x^2)/(2*Sqrt[2]*Rt[(-a
)*c, 2]*Sqrt[a + b*x^2 + c*x^4]))], x] + Simp[a*(Sqrt[-b + q]/(2*Sqrt[2]*Rt[(-a)*c, 2]*d))*ArcTanh[Sqrt[-b + q
]*x*((b + q + 2*c*x^2)/(2*Sqrt[2]*Rt[(-a)*c, 2]*Sqrt[a + b*x^2 + c*x^4]))], x]] /; FreeQ[{a, b, c, d, e}, x] &
& EqQ[c*d + a*e, 0] && NegQ[a*c]
-
Int[((A_) + (B_.)*(x_)^(n_))/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^(n_) + (d_.)*(x_)^(n2_)), x_Symbol] :> Simp[A^2
*(n - 1) Subst[Int[1/(a + A^2*b*(n - 1)^2*x^2), x], x, x/(A*(n - 1) - B*x^n)], x] /; FreeQ[{a, b, c, d, A, B
, n}, x] && EqQ[n2, 2*n] && NeQ[n, 2] && EqQ[a*B^2 - A^2*d*(n - 1)^2, 0] && EqQ[B*c + 2*A*d*(n - 1), 0]
-
Int[((x_)^(m_.)*((A_) + (B_.)*(x_)^(n_.)))/((a_) + (b_.)*(x_)^(k_.) + (c_.)*(x_)^(n_.) + (d_.)*(x_)^(n2_)), x_
Symbol] :> Simp[A^2*((m - n + 1)/(m + 1)) Subst[Int[1/(a + A^2*b*(m - n + 1)^2*x^2), x], x, x^(m + 1)/(A*(m
- n + 1) + B*(m + 1)*x^n)], x] /; FreeQ[{a, b, c, d, A, B, m, n}, x] && EqQ[n2, 2*n] && EqQ[k, 2*(m + 1)] && E
qQ[a*B^2*(m + 1)^2 - A^2*d*(m - n + 1)^2, 0] && EqQ[B*c*(m + 1) - 2*A*d*(m - n + 1), 0]
-
Int[((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)/((d_) + (e_.)*(x_)^2 + (f_.)*(x_)^4 + (g_.)*(x_)^6), x_Symbol] :> Wit
h[{q = Rt[((-a)*c*f^2 + 12*a^2*g^2 + f*(3*c^2*d - 2*a*b*g))/(c*g*(3*c*d - a*f)), 2], r = Rt[(a*c*f^2 + 4*g*(b*
c*d + a^2*g) - f*(3*c^2*d + 2*a*b*g))/(c*g*(3*c*d - a*f)), 2]}, Simp[(c/(g*q))*ArcTan[(r + 2*x)/q], x] + (-Sim
p[(c/(g*q))*ArcTan[(r - 2*x)/q], x] - Simp[(c/(g*q))*ArcTan[(3*c*d - a*f)*(x/(g*q*(b*c*d - 2*a^2*g)*(b*c*d - a
*b*f + 4*a^2*g)))*(b*c^2*d*f - a*b^2*f*g - 2*a^2*c*f*g + 6*a^2*b*g^2 + c*(3*c^2*d*f - a*c*f^2 - b*c*d*g + 2*a^
2*g^2)*x^2 + c^2*g*(3*c*d - a*f)*x^4)], x])] /; FreeQ[{a, b, c, d, e, f, g}, x] && EqQ[9*c^3*d^2 - c*(b^2 + 6*
a*c)*d*f + a^2*c*f^2 + 2*a*b*(3*c*d + a*f)*g - 12*a^3*g^2, 0] && EqQ[3*c^4*d^2*e - 3*a^2*c^2*d*f*g + a^3*c*f^2
*g + 2*a^3*g^2*(b*f - 6*a*g) - c^3*d*(2*b*d*f + a*e*f - 12*a*d*g), 0] && NeQ[3*c*d - a*f, 0] && NeQ[b*c*d - 2*
a^2*g, 0] && NeQ[b*c*d - a*b*f + 4*a^2*g, 0] && PosQ[((-a)*c*f^2 + 12*a^2*g^2 + f*(3*c^2*d - 2*a*b*g))/(c*g*(3
*c*d - a*f))]
-
Int[((a_) + (c_.)*(x_)^4)/((d_) + (e_.)*(x_)^2 + (f_.)*(x_)^4 + (g_.)*(x_)^6), x_Symbol] :> With[{q = Rt[((-a)
*c*f^2 + 12*a^2*g^2 + 3*f*c^2*d)/(c*g*(3*c*d - a*f)), 2], r = Rt[(a*c*f^2 + 4*a^2*g^2 - 3*c^2*d*f)/(c*g*(3*c*d
- a*f)), 2]}, Simp[(c/(g*q))*ArcTan[(r + 2*x)/q], x] + (-Simp[(c/(g*q))*ArcTan[(r - 2*x)/q], x] - Simp[(c/(g*
q))*ArcTan[(c*(3*c*d - a*f)*x*(2*a^2*f*g - (3*c^2*d*f - a*c*f^2 + 2*a^2*g^2)*x^2 - c*(3*c*d - a*f)*g*x^4))/(8*
a^4*g^3*q)], x])] /; FreeQ[{a, c, d, e, f, g}, x] && EqQ[9*c^3*d^2 - 6*a*c^2*d*f + a^2*c*f^2 - 12*a^3*g^2, 0]
&& EqQ[3*c^4*d^2*e - 3*a^2*c^2*d*f*g + a^3*c*f^2*g - 12*a^4*g^3 - a*c^3*d*(e*f - 12*d*g), 0] && NeQ[3*c*d - a*
f, 0] && PosQ[((-a)*c*f^2 + 12*a^2*g^2 + 3*c^2*d*f)/(c*g*(3*c*d - a*f))]
-
Int[(Pm_)/(Qn_), x_Symbol] :> With[{m = Expon[Pm, x], n = Expon[Qn, x]}, Simp[Coeff[Pm, x, m]*(Log[Qn]/(n*Coef
f[Qn, x, n])), x] + Simp[Simplify[Pm - Coeff[Pm, x, m]*(D[Qn, x]/(n*Coeff[Qn, x, n]))] Int[1/Qn, x], x] /; E
qQ[m, n - 1] && EqQ[D[Simplify[Pm - (Coeff[Pm, x, m]/(n*Coeff[Qn, x, n]))*D[Qn, x]], x], 0]] /; PolyQ[Pm, x] &
& PolyQ[Qn, x]
-
Int[(Pm_)*(Qn_)^(p_), x_Symbol] :> With[{m = Expon[Pm, x], n = Expon[Qn, x]}, Simp[Coeff[Pm, x, m]*(Qn^(p + 1)
/(n*(p + 1)*Coeff[Qn, x, n])), x] + Simp[Simplify[Pm - Coeff[Pm, x, m]*(D[Qn, x]/(n*Coeff[Qn, x, n]))] Int[Q
n^p, x], x] /; EqQ[m, n - 1] && EqQ[D[Simplify[Pm - (Coeff[Pm, x, m]/(n*Coeff[Qn, x, n]))*D[Qn, x]], x], 0]] /
; FreeQ[p, x] && PolyQ[Pm, x] && PolyQ[Qn, x] && NeQ[p, -1]
-
Int[(Pm_)/(Qn_), x_Symbol] :> With[{m = Expon[Pm, x], n = Expon[Qn, x]}, Simp[Coeff[Pm, x, m]*(Log[Qn]/(n*Coef
f[Qn, x, n])), x] + Simp[1/(n*Coeff[Qn, x, n]) Int[ExpandToSum[n*Coeff[Qn, x, n]*Pm - Coeff[Pm, x, m]*D[Qn,
x], x]/Qn, x], x] /; EqQ[m, n - 1]] /; PolyQ[Pm, x] && PolyQ[Qn, x]
-
Int[(Pm_)*(Qn_)^(p_), x_Symbol] :> With[{m = Expon[Pm, x], n = Expon[Qn, x]}, Simp[Coeff[Pm, x, m]*(Qn^(p + 1)
/(n*(p + 1)*Coeff[Qn, x, n])), x] + Simp[1/(n*Coeff[Qn, x, n]) Int[ExpandToSum[n*Coeff[Qn, x, n]*Pm - Coeff[
Pm, x, m]*D[Qn, x], x]*Qn^p, x], x] /; EqQ[m, n - 1]] /; FreeQ[p, x] && PolyQ[Pm, x] && PolyQ[Qn, x] && NeQ[p,
-1]
-
Int[(Pm_)*(Qn_)^(p_.), x_Symbol] :> With[{m = Expon[Pm, x], n = Expon[Qn, x]}, Simp[Coeff[Pm, x, m]*x^(m - n +
1)*(Qn^(p + 1)/((m + n*p + 1)*Coeff[Qn, x, n])), x] + Simp[1/((m + n*p + 1)*Coeff[Qn, x, n]) Int[ExpandToSu
m[(m + n*p + 1)*Coeff[Qn, x, n]*Pm - Coeff[Pm, x, m]*x^(m - n)*((m - n + 1)*Qn + (p + 1)*x*D[Qn, x]), x]*Qn^p,
x], x] /; LtQ[1, n, m + 1] && m + n*p + 1 < 0] /; FreeQ[p, x] && PolyQ[Pm, x] && PolyQ[Qn, x] && LtQ[p, -1]
-
Int[(u_)/((e_.)*Sqrt[(a_.) + (b_.)*(x_)] + (f_.)*Sqrt[(c_.) + (d_.)*(x_)]), x_Symbol] :> Simp[c/(e*(b*c - a*d)
) Int[(u*Sqrt[a + b*x])/x, x], x] - Simp[a/(f*(b*c - a*d)) Int[(u*Sqrt[c + d*x])/x, x], x] /; FreeQ[{a, b,
c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a*e^2 - c*f^2, 0]
-
Int[(u_)/((e_.)*Sqrt[(a_.) + (b_.)*(x_)] + (f_.)*Sqrt[(c_.) + (d_.)*(x_)]), x_Symbol] :> Simp[-d/(e*(b*c - a*d
)) Int[u*Sqrt[a + b*x], x], x] + Simp[b/(f*(b*c - a*d)) Int[u*Sqrt[c + d*x], x], x] /; FreeQ[{a, b, c, d,
e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[b*e^2 - d*f^2, 0]
-
Int[(u_)/((e_.)*Sqrt[(a_.) + (b_.)*(x_)] + (f_.)*Sqrt[(c_.) + (d_.)*(x_)]), x_Symbol] :> Simp[e Int[(u*Sqrt[
a + b*x])/(a*e^2 - c*f^2 + (b*e^2 - d*f^2)*x), x], x] - Simp[f Int[(u*Sqrt[c + d*x])/(a*e^2 - c*f^2 + (b*e^2
- d*f^2)*x), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[a*e^2 - c*f^2, 0] && NeQ[b*e^2 - d*f^2, 0]
-
Int[(u_.)/((d_.)*(x_)^(n_.) + (c_.)*Sqrt[(a_.) + (b_.)*(x_)^(p_.)]), x_Symbol] :> Simp[-b/(a*d) Int[u*x^n, x
], x] + Simp[1/(a*c) Int[u*Sqrt[a + b*x^(2*n)], x], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[p, 2*n] && EqQ[b*
c^2 - d^2, 0]
-
Int[(x_)^(m_.)/((d_.)*(x_)^(n_.) + (c_.)*Sqrt[(a_.) + (b_.)*(x_)^(p_.)]), x_Symbol] :> Simp[-d Int[x^(m + n)
/(a*c^2 + (b*c^2 - d^2)*x^(2*n)), x], x] + Simp[c Int[(x^m*Sqrt[a + b*x^(2*n)])/(a*c^2 + (b*c^2 - d^2)*x^(2*
n)), x], x] /; FreeQ[{a, b, c, d, m, n}, x] && EqQ[p, 2*n] && NeQ[b*c^2 - d^2, 0]
-
Int[1/(Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]*((a_) + (b_.)*(x_)^3)), x_Symbol] :> With[{r = Numerator[Rt[a/b
, 3]], s = Denominator[Rt[a/b, 3]]}, Simp[r/(3*a) Int[1/((r + s*x)*Sqrt[d + e*x + f*x^2]), x], x] + Simp[r/(
3*a) Int[(2*r - s*x)/((r^2 - r*s*x + s^2*x^2)*Sqrt[d + e*x + f*x^2]), x], x]] /; FreeQ[{a, b, d, e, f}, x] &
& PosQ[a/b]
-
Int[1/(Sqrt[(d_.) + (f_.)*(x_)^2]*((a_) + (b_.)*(x_)^3)), x_Symbol] :> With[{r = Numerator[Rt[a/b, 3]], s = De
nominator[Rt[a/b, 3]]}, Simp[r/(3*a) Int[1/((r + s*x)*Sqrt[d + f*x^2]), x], x] + Simp[r/(3*a) Int[(2*r - s
*x)/((r^2 - r*s*x + s^2*x^2)*Sqrt[d + f*x^2]), x], x]] /; FreeQ[{a, b, d, f}, x] && PosQ[a/b]
-
Int[1/(Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]*((a_) + (b_.)*(x_)^3)), x_Symbol] :> With[{r = Numerator[Rt[-a/
b, 3]], s = Denominator[Rt[-a/b, 3]]}, Simp[r/(3*a) Int[1/((r - s*x)*Sqrt[d + e*x + f*x^2]), x], x] + Simp[r
/(3*a) Int[(2*r + s*x)/((r^2 + r*s*x + s^2*x^2)*Sqrt[d + e*x + f*x^2]), x], x]] /; FreeQ[{a, b, d, e, f}, x]
&& NegQ[a/b]
-
Int[1/(Sqrt[(d_.) + (f_.)*(x_)^2]*((a_) + (b_.)*(x_)^3)), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 3]], s = D
enominator[Rt[-a/b, 3]]}, Simp[r/(3*a) Int[1/((r - s*x)*Sqrt[d + f*x^2]), x], x] + Simp[r/(3*a) Int[(2*r +
s*x)/((r^2 + r*s*x + s^2*x^2)*Sqrt[d + f*x^2]), x], x]] /; FreeQ[{a, b, d, f}, x] && NegQ[a/b]
-
Int[((u_)*((A_) + (B_.)*(x_)^4))/Sqrt[v_], x_Symbol] :> With[{a = Coeff[v, x, 0], b = Coeff[v, x, 2], c = Coef
f[v, x, 4], d = Coeff[1/u, x, 0], e = Coeff[1/u, x, 2], f = Coeff[1/u, x, 4]}, Simp[A Subst[Int[1/(d - (b*d
- a*e)*x^2), x], x, x/Sqrt[v]], x] /; EqQ[a*B + A*c, 0] && EqQ[c*d - a*f, 0]] /; FreeQ[{A, B}, x] && PolyQ[v,
x^2, 2] && PolyQ[1/u, x^2, 2]
-
Int[1/(((a_) + (b_.)*(x_))*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_)^2]), x_Symbol] :> Simp[a Int[1/(
(a^2 - b^2*x^2)*Sqrt[c + d*x^2]*Sqrt[e + f*x^2]), x], x] - Simp[b Int[x/((a^2 - b^2*x^2)*Sqrt[c + d*x^2]*Sqr
t[e + f*x^2]), x], x] /; FreeQ[{a, b, c, d, e, f}, x]
-
Int[((g_.) + (h_.)*(x_))*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]], x_Symbol] :
> Simp[2*((f*(5*b*c*g^2 - 2*b^2*g*h - 3*a*c*g*h + 2*a*b*h^2) + c*f*(10*c*g^2 - b*g*h + a*h^2)*x + 9*c^2*f*g*h*
x^2 + 3*c^2*f*h^2*x^3 - (e*g - d*h)*(5*c*g - 2*b*h + c*h*x)*Sqrt[a + b*x + c*x^2])/(15*c^2*f*(g + h*x)))*Sqrt[
d + e*x + f*Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && EqQ[(e*g - d*h)^2 - f^2*(c*g^2
- b*g*h + a*h^2), 0] && EqQ[2*e^2*g - 2*d*e*h - f^2*(2*c*g - b*h), 0]
-
Int[((u_) + (f_.)*((j_.) + (k_.)*Sqrt[v_]))^(n_.)*((g_.) + (h_.)*(x_))^(m_.), x_Symbol] :> Int[(g + h*x)^m*(Ex
pandToSum[u + f*j, x] + f*k*Sqrt[ExpandToSum[v, x]])^n, x] /; FreeQ[{f, g, h, j, k, m, n}, x] && LinearQ[u, x]
&& QuadraticQ[v, x] && !(LinearMatchQ[u, x] && QuadraticMatchQ[v, x] && (EqQ[j, 0] || EqQ[f, 1])) && EqQ[(Co
efficient[u, x, 1]*g - h*(Coefficient[u, x, 0] + f*j))^2 - f^2*k^2*(Coefficient[v, x, 2]*g^2 - Coefficient[v,
x, 1]*g*h + Coefficient[v, x, 0]*h^2), 0]
-
Int[((g_.) + (h_.)*((d_.) + (e_.)*(x_) + (f_.)*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2])^(n_))^(p_.), x_Symbol]
:> Simp[2 Subst[Int[(g + h*x^n)^p*((d^2*e - (b*d - a*e)*f^2 - (2*d*e - b*f^2)*x + e*x^2)/(-2*d*e + b*f^2 +
2*e*x)^2), x], x, d + e*x + f*Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c, d, e, f, g, h, n}, x] && EqQ[e^2 -
c*f^2, 0] && IntegerQ[p]
-
Int[((g_.) + (h_.)*((d_.) + (e_.)*(x_) + (f_.)*Sqrt[(a_) + (c_.)*(x_)^2])^(n_))^(p_.), x_Symbol] :> Simp[1/(2*
e) Subst[Int[(g + h*x^n)^p*((d^2 + a*f^2 - 2*d*x + x^2)/(d - x)^2), x], x, d + e*x + f*Sqrt[a + c*x^2]], x]
/; FreeQ[{a, c, d, e, f, g, h, n}, x] && EqQ[e^2 - c*f^2, 0] && IntegerQ[p]
-
Int[((g_.) + (h_.)*((u_) + (f_.)*Sqrt[v_])^(n_))^(p_.), x_Symbol] :> Int[(g + h*(ExpandToSum[u, x] + f*Sqrt[Ex
pandToSum[v, x]])^n)^p, x] /; FreeQ[{f, g, h, n}, x] && LinearQ[u, x] && QuadraticQ[v, x] && !(LinearMatchQ[u
, x] && QuadraticMatchQ[v, x]) && EqQ[Coefficient[u, x, 1]^2 - Coefficient[v, x, 2]*f^2, 0] && IntegerQ[p]
-
Int[((g_.) + (h_.)*(x_))^(m_.)*((e_.)*(x_) + (f_.)*Sqrt[(a_.) + (c_.)*(x_)^2])^(n_.), x_Symbol] :> Simp[1/(2^(
m + 1)*e^(m + 1)) Subst[Int[x^(n - m - 2)*(a*f^2 + x^2)*((-a)*f^2*h + 2*e*g*x + h*x^2)^m, x], x, e*x + f*Sqr
t[a + c*x^2]], x] /; FreeQ[{a, c, e, f, g, h, n}, x] && EqQ[e^2 - c*f^2, 0] && IntegerQ[m]
-
Int[(x_)^(p_.)*((g_) + (i_.)*(x_)^2)^(m_.)*((e_.)*(x_) + (f_.)*Sqrt[(a_) + (c_.)*(x_)^2])^(n_.), x_Symbol] :>
Simp[(1/(2^(2*m + p + 1)*e^(p + 1)*f^(2*m)))*(i/c)^m Subst[Int[x^(n - 2*m - p - 2)*((-a)*f^2 + x^2)^p*(a*f^2
+ x^2)^(2*m + 1), x], x, e*x + f*Sqrt[a + c*x^2]], x] /; FreeQ[{a, c, e, f, g, i, n}, x] && EqQ[e^2 - c*f^2,
0] && EqQ[c*g - a*i, 0] && IntegersQ[p, 2*m] && (IntegerQ[m] || GtQ[i/c, 0])
-
Int[((g_.) + (h_.)*(x_) + (i_.)*(x_)^2)^(m_.)*((d_.) + (e_.)*(x_) + (f_.)*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)
^2])^(n_.), x_Symbol] :> Simp[(2/f^(2*m))*(i/c)^m Subst[Int[x^n*((d^2*e - (b*d - a*e)*f^2 - (2*d*e - b*f^2)*
x + e*x^2)^(2*m + 1)/(-2*d*e + b*f^2 + 2*e*x)^(2*(m + 1))), x], x, d + e*x + f*Sqrt[a + b*x + c*x^2]], x] /; F
reeQ[{a, b, c, d, e, f, g, h, i, n}, x] && EqQ[e^2 - c*f^2, 0] && EqQ[c*g - a*i, 0] && EqQ[c*h - b*i, 0] && In
tegerQ[2*m] && (IntegerQ[m] || GtQ[i/c, 0])
-
Int[((g_) + (i_.)*(x_)^2)^(m_.)*((d_.) + (e_.)*(x_) + (f_.)*Sqrt[(a_) + (c_.)*(x_)^2])^(n_.), x_Symbol] :> Sim
p[(1/(2^(2*m + 1)*e*f^(2*m)))*(i/c)^m Subst[Int[x^n*((d^2 + a*f^2 - 2*d*x + x^2)^(2*m + 1)/(-d + x)^(2*(m +
1))), x], x, d + e*x + f*Sqrt[a + c*x^2]], x] /; FreeQ[{a, c, d, e, f, g, i, n}, x] && EqQ[e^2 - c*f^2, 0] &&
EqQ[c*g - a*i, 0] && IntegerQ[2*m] && (IntegerQ[m] || GtQ[i/c, 0])
-
Int[((g_.) + (h_.)*(x_) + (i_.)*(x_)^2)^(m_.)*((d_.) + (e_.)*(x_) + (f_.)*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)
^2])^(n_.), x_Symbol] :> Simp[(i/c)^(m - 1/2)*(Sqrt[g + h*x + i*x^2]/Sqrt[a + b*x + c*x^2]) Int[(a + b*x + c
*x^2)^m*(d + e*x + f*Sqrt[a + b*x + c*x^2])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, i, n}, x] && EqQ[e^2 -
c*f^2, 0] && EqQ[c*g - a*i, 0] && EqQ[c*h - b*i, 0] && IGtQ[m + 1/2, 0] && !GtQ[i/c, 0]
-
Int[((g_) + (i_.)*(x_)^2)^(m_.)*((d_.) + (e_.)*(x_) + (f_.)*Sqrt[(a_) + (c_.)*(x_)^2])^(n_.), x_Symbol] :> Sim
p[(i/c)^(m - 1/2)*(Sqrt[g + i*x^2]/Sqrt[a + c*x^2]) Int[(a + c*x^2)^m*(d + e*x + f*Sqrt[a + c*x^2])^n, x], x
] /; FreeQ[{a, c, d, e, f, g, i, n}, x] && EqQ[e^2 - c*f^2, 0] && EqQ[c*g - a*i, 0] && IGtQ[m + 1/2, 0] && !G
tQ[i/c, 0]
-
Int[((g_.) + (h_.)*(x_) + (i_.)*(x_)^2)^(m_.)*((d_.) + (e_.)*(x_) + (f_.)*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)
^2])^(n_.), x_Symbol] :> Simp[(i/c)^(m + 1/2)*(Sqrt[a + b*x + c*x^2]/Sqrt[g + h*x + i*x^2]) Int[(a + b*x + c
*x^2)^m*(d + e*x + f*Sqrt[a + b*x + c*x^2])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, i, n}, x] && EqQ[e^2 -
c*f^2, 0] && EqQ[c*g - a*i, 0] && EqQ[c*h - b*i, 0] && ILtQ[m - 1/2, 0] && !GtQ[i/c, 0]
-
Int[((g_) + (i_.)*(x_)^2)^(m_.)*((d_.) + (e_.)*(x_) + (f_.)*Sqrt[(a_) + (c_.)*(x_)^2])^(n_.), x_Symbol] :> Sim
p[(i/c)^(m + 1/2)*(Sqrt[a + c*x^2]/Sqrt[g + i*x^2]) Int[(a + c*x^2)^m*(d + e*x + f*Sqrt[a + c*x^2])^n, x], x
] /; FreeQ[{a, c, d, e, f, g, i, n}, x] && EqQ[e^2 - c*f^2, 0] && EqQ[c*g - a*i, 0] && ILtQ[m - 1/2, 0] && !G
tQ[i/c, 0]
-
Int[((u_) + (f_.)*((j_.) + (k_.)*Sqrt[v_]))^(n_.)*(w_)^(m_.), x_Symbol] :> Int[ExpandToSum[w, x]^m*(ExpandToSu
m[u + f*j, x] + f*k*Sqrt[ExpandToSum[v, x]])^n, x] /; FreeQ[{f, j, k, m, n}, x] && LinearQ[u, x] && QuadraticQ
[{v, w}, x] && !(LinearMatchQ[u, x] && QuadraticMatchQ[{v, w}, x] && (EqQ[j, 0] || EqQ[f, 1])) && EqQ[Coeffic
ient[u, x, 1]^2 - Coefficient[v, x, 2]*f^2*k^2, 0]
-
Int[1/(((a_) + (b_.)*(x_)^(n_.))*Sqrt[(c_.)*(x_)^2 + (d_.)*((a_) + (b_.)*(x_)^(n_.))^(p_.)]), x_Symbol] :> Sim
p[1/a Subst[Int[1/(1 - c*x^2), x], x, x/Sqrt[c*x^2 + d*(a + b*x^n)^(2/n)]], x] /; FreeQ[{a, b, c, d, n}, x]
&& EqQ[p, 2/n]
-
Int[Sqrt[(a_) + (b_.)*Sqrt[(c_) + (d_.)*(x_)^2]], x_Symbol] :> Simp[2*b^2*d*(x^3/(3*(a + b*Sqrt[c + d*x^2])^(3
/2))), x] + Simp[2*a*(x/Sqrt[a + b*Sqrt[c + d*x^2]]), x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2*c, 0]
-
Int[Sqrt[(a_.)*(x_)^2 + (b_.)*(x_)*Sqrt[(c_) + (d_.)*(x_)^2]]/((x_)*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S
imp[Sqrt[2]*(b/a) Subst[Int[1/Sqrt[1 + x^2/a], x], x, a*x + b*Sqrt[c + d*x^2]], x] /; FreeQ[{a, b, c, d}, x]
&& EqQ[a^2 - b^2*d, 0] && EqQ[b^2*c + a, 0]
-
Int[Sqrt[(e_.)*(x_)*((a_.)*(x_) + (b_.)*Sqrt[(c_) + (d_.)*(x_)^2])]/((x_)*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol
] :> Int[Sqrt[a*e*x^2 + b*e*x*Sqrt[c + d*x^2]]/(x*Sqrt[c + d*x^2]), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[a^2
- b^2*d, 0] && EqQ[b^2*c*e + a, 0]
-
Int[Sqrt[(c_.)*(x_)^2 + (d_.)*Sqrt[(a_) + (b_.)*(x_)^4]]/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> Simp[d Subs
t[Int[1/(1 - 2*c*x^2), x], x, x/Sqrt[c*x^2 + d*Sqrt[a + b*x^4]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[c^2 - b*
d^2, 0]
-
Int[(((c_.) + (d_.)*(x_))^(m_.)*Sqrt[(b_.)*(x_)^2 + Sqrt[(a_) + (e_.)*(x_)^4]])/Sqrt[(a_) + (e_.)*(x_)^4], x_S
ymbol] :> Simp[(1 - I)/2 Int[(c + d*x)^m/Sqrt[Sqrt[a] - I*b*x^2], x], x] + Simp[(1 + I)/2 Int[(c + d*x)^m/
Sqrt[Sqrt[a] + I*b*x^2], x], x] /; FreeQ[{a, b, c, d, m}, x] && EqQ[e, b^2] && GtQ[a, 0]
-
Int[1/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_Symbol] :> Simp[2/(3*c) Int[1/Sqrt[a + b*x^3], x],
x] + Simp[1/(3*c) Int[(c - 2*d*x)/((c + d*x)*Sqrt[a + b*x^3]), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[b*c^3
- 4*a*d^3, 0]
-
Int[1/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_Symbol] :> Simp[-6*a*(d^3/(c*(b*c^3 - 28*a*d^3))) I
nt[1/Sqrt[a + b*x^3], x], x] + Simp[1/(c*(b*c^3 - 28*a*d^3)) Int[Simp[c*(b*c^3 - 22*a*d^3) + 6*a*d^4*x, x]/(
(c + d*x)*Sqrt[a + b*x^3]), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[b^2*c^6 - 20*a*b*c^3*d^3 - 8*a^2*d^6, 0]
-
Int[1/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_Symbol] :> With[{q = Rt[b/a, 3]}, Simp[-q/((1 + Sqrt[
3])*d - c*q) Int[1/Sqrt[a + b*x^3], x], x] + Simp[d/((1 + Sqrt[3])*d - c*q) Int[(1 + Sqrt[3] + q*x)/((c +
d*x)*Sqrt[a + b*x^3]), x], x]] /; FreeQ[{a, b, c, d}, x] && NeQ[b^2*c^6 - 20*a*b*c^3*d^3 - 8*a^2*d^6, 0]
-
Int[((e_) + (f_.)*(x_))/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_Symbol] :> Simp[2*(e/d) Subst[Int
[1/(1 + 3*a*x^2), x], x, (1 + 2*d*(x/c))/Sqrt[a + b*x^3]], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[d*e - c*f
, 0] && EqQ[b*c^3 - 4*a*d^3, 0] && EqQ[2*d*e + c*f, 0]
-
Int[((e_) + (f_.)*(x_))/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_Symbol] :> Simp[-2*(e/d) Subst[In
t[1/(9 - a*x^2), x], x, (1 + f*(x/e))^2/Sqrt[a + b*x^3]], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[d*e - c*f,
0] && EqQ[b*c^3 + 8*a*d^3, 0] && EqQ[2*d*e + c*f, 0]
-
Int[((e_.) + (f_.)*(x_))/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_Symbol] :> Simp[(2*d*e + c*f)/(3*c
*d) Int[1/Sqrt[a + b*x^3], x], x] + Simp[(d*e - c*f)/(3*c*d) Int[(c - 2*d*x)/((c + d*x)*Sqrt[a + b*x^3]),
x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[d*e - c*f, 0] && (EqQ[b*c^3 - 4*a*d^3, 0] || EqQ[b*c^3 + 8*a*d^3
, 0]) && NeQ[2*d*e + c*f, 0]
-
Int[((e_) + (f_.)*(x_))/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_Symbol] :> With[{k = Simplify[(d*e
+ 2*c*f)/(c*f)]}, Simp[(1 + k)*(e/d) Subst[Int[1/(1 + (3 + 2*k)*a*x^2), x], x, (1 + (1 + k)*d*(x/c))/Sqrt[a
+ b*x^3]], x]] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[d*e - c*f, 0] && EqQ[b^2*c^6 - 20*a*b*c^3*d^3 - 8*a^2*d^
6, 0] && EqQ[6*a*d^4*e - c*f*(b*c^3 - 22*a*d^3), 0]
-
Int[((e_.) + (f_.)*(x_))/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_Symbol] :> Simp[-(6*a*d^4*e - c*f*
(b*c^3 - 22*a*d^3))/(c*d*(b*c^3 - 28*a*d^3)) Int[1/Sqrt[a + b*x^3], x], x] + Simp[(d*e - c*f)/(c*d*(b*c^3 -
28*a*d^3)) Int[(c*(b*c^3 - 22*a*d^3) + 6*a*d^4*x)/((c + d*x)*Sqrt[a + b*x^3]), x], x] /; FreeQ[{a, b, c, d,
e, f}, x] && NeQ[d*e - c*f, 0] && EqQ[b^2*c^6 - 20*a*b*c^3*d^3 - 8*a^2*d^6, 0] && NeQ[6*a*d^4*e - c*f*(b*c^3 -
22*a*d^3), 0]
-
Int[((e_) + (f_.)*(x_))/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_Symbol] :> With[{q = Simplify[(1 +
Sqrt[3])*(f/e)]}, Simp[4*3^(1/4)*Sqrt[2 - Sqrt[3]]*f*(1 + q*x)*(Sqrt[(1 - q*x + q^2*x^2)/(1 + Sqrt[3] + q*x)^2
]/(q*Sqrt[a + b*x^3]*Sqrt[(1 + q*x)/(1 + Sqrt[3] + q*x)^2])) Subst[Int[1/(((1 - Sqrt[3])*d - c*q + ((1 + Sqr
t[3])*d - c*q)*x)*Sqrt[1 - x^2]*Sqrt[7 - 4*Sqrt[3] + x^2]), x], x, (-1 + Sqrt[3] - q*x)/(1 + Sqrt[3] + q*x)],
x]] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[d*e - c*f, 0] && EqQ[b*e^3 - 2*(5 + 3*Sqrt[3])*a*f^3, 0] && NeQ[b*c
^3 - 2*(5 - 3*Sqrt[3])*a*d^3, 0]
-
Int[((e_) + (f_.)*(x_))/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_Symbol] :> With[{q = Simplify[(-1 +
Sqrt[3])*(f/e)]}, Simp[4*3^(1/4)*Sqrt[2 + Sqrt[3]]*f*(1 - q*x)*(Sqrt[(1 + q*x + q^2*x^2)/(1 - Sqrt[3] - q*x)^
2]/(q*Sqrt[a + b*x^3]*Sqrt[-(1 - q*x)/(1 - Sqrt[3] - q*x)^2])) Subst[Int[1/(((1 + Sqrt[3])*d + c*q + ((1 - S
qrt[3])*d + c*q)*x)*Sqrt[1 - x^2]*Sqrt[7 + 4*Sqrt[3] + x^2]), x], x, (1 + Sqrt[3] - q*x)/(-1 + Sqrt[3] + q*x)]
, x]] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[d*e - c*f, 0] && EqQ[b*e^3 - 2*(5 - 3*Sqrt[3])*a*f^3, 0] && NeQ[b
*c^3 - 2*(5 + 3*Sqrt[3])*a*d^3, 0]
-
Int[((e_.) + (f_.)*(x_))/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_Symbol] :> With[{q = Rt[b/a, 3]},
Simp[((1 + Sqrt[3])*f - e*q)/((1 + Sqrt[3])*d - c*q) Int[1/Sqrt[a + b*x^3], x], x] + Simp[(d*e - c*f)/((1 +
Sqrt[3])*d - c*q) Int[(1 + Sqrt[3] + q*x)/((c + d*x)*Sqrt[a + b*x^3]), x], x]] /; FreeQ[{a, b, c, d, e, f},
x] && NeQ[d*e - c*f, 0] && NeQ[b^2*c^6 - 20*a*b*c^3*d^3 - 8*a^2*d^6, 0] && NeQ[b^2*e^6 - 20*a*b*e^3*f^3 - 8*a^
2*f^6, 0]
-
Int[((f_) + (g_.)*(x_) + (h_.)*(x_)^2)/(((c_) + (d_.)*(x_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^3]), x_Symbo
l] :> Simp[-2*g*h Subst[Int[1/(2*e*h - (b*d*f - 2*a*e*h)*x^2), x], x, (1 + 2*h*(x/g))/Sqrt[a + b*x^3]], x] /
; FreeQ[{a, b, c, d, e, f, g, h}, x] && NeQ[b*d*f - 2*a*e*h, 0] && EqQ[b*g^3 - 8*a*h^3, 0] && EqQ[g^2 + 2*f*h,
0] && EqQ[b*d*f + b*c*g - 4*a*e*h, 0]
-
Int[((f_) + (g_.)*(x_) + (h_.)*(x_)^2)/(((c_) + (e_.)*(x_)^2)*Sqrt[(a_) + (b_.)*(x_)^3]), x_Symbol] :> Simp[-g
/e Subst[Int[1/(1 + a*x^2), x], x, (1 + 2*h*(x/g))/Sqrt[a + b*x^3]], x] /; FreeQ[{a, b, c, e, f, g, h}, x] &
& EqQ[b*g^3 - 8*a*h^3, 0] && EqQ[g^2 + 2*f*h, 0] && EqQ[b*c*g - 4*a*e*h, 0]
-
Int[Sqrt[(a_) + (b_.)*(x_)^3]/((c_) + (d_.)*(x_)), x_Symbol] :> Simp[b/d Int[x^2/Sqrt[a + b*x^3], x], x] + S
imp[b*(c/d^3) Int[(c - d*x)/Sqrt[a + b*x^3], x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[b*c^3 - a*d^3, 0]
-
Int[Sqrt[(a_) + (b_.)*(x_)^3]/((c_) + (d_.)*(x_)), x_Symbol] :> Simp[b/d Int[x^2/Sqrt[a + b*x^3], x], x] + (
-Simp[(b*c^3 - a*d^3)/d^3 Int[1/((c + d*x)*Sqrt[a + b*x^3]), x], x] + Simp[b*(c/d^3) Int[(c - d*x)/Sqrt[a
+ b*x^3], x], x]) /; FreeQ[{a, b, c, d}, x] && NeQ[b*c^3 - a*d^3, 0]
-
Int[1/(((c_) + (d_.)*(x_))*((a_) + (b_.)*(x_)^3)^(1/3)), x_Symbol] :> Simp[Sqrt[3]*(ArcTan[(1 - 2^(1/3)*Rt[b,
3]*((c - d*x)/(d*(a + b*x^3)^(1/3))))/Sqrt[3]]/(2^(4/3)*Rt[b, 3]*c)), x] + (Simp[Log[(c + d*x)^2*(c - d*x)]/(2
^(7/3)*Rt[b, 3]*c), x] - Simp[(3*Log[Rt[b, 3]*(c - d*x) + 2^(2/3)*d*(a + b*x^3)^(1/3)])/(2^(7/3)*Rt[b, 3]*c),
x]) /; FreeQ[{a, b, c, d}, x] && EqQ[b*c^3 + a*d^3, 0]
-
Int[1/(((c_) + (d_.)*(x_))*((a_) + (b_.)*(x_)^3)^(1/3)), x_Symbol] :> Simp[1/(2*c) Int[1/(a + b*x^3)^(1/3),
x], x] + Simp[1/(2*c) Int[(c - d*x)/((c + d*x)*(a + b*x^3)^(1/3)), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[2
*b*c^3 - a*d^3, 0]
-
Int[((e_) + (f_.)*(x_))/(((c_) + (d_.)*(x_))*((a_) + (b_.)*(x_)^3)^(1/3)), x_Symbol] :> Simp[Sqrt[3]*f*(ArcTan
[(1 + 2*Rt[b, 3]*((2*c + d*x)/(d*(a + b*x^3)^(1/3))))/Sqrt[3]]/(Rt[b, 3]*d)), x] + (Simp[(f*Log[c + d*x])/(Rt[
b, 3]*d), x] - Simp[(3*f*Log[Rt[b, 3]*(2*c + d*x) - d*(a + b*x^3)^(1/3)])/(2*Rt[b, 3]*d), x]) /; FreeQ[{a, b,
c, d, e, f}, x] && EqQ[d*e + c*f, 0] && EqQ[2*b*c^3 - a*d^3, 0]
-
Int[((e_.) + (f_.)*(x_))/(((c_.) + (d_.)*(x_))*((a_) + (b_.)*(x_)^3)^(1/3)), x_Symbol] :> Simp[f/d Int[1/(a
+ b*x^3)^(1/3), x], x] + Simp[(d*e - c*f)/d Int[1/((c + d*x)*(a + b*x^3)^(1/3)), x], x] /; FreeQ[{a, b, c, d
, e, f}, x]
-
Int[((a_) + (b_.)*(x_)^3)^(2/3)/((c_) + (d_.)*(x_)), x_Symbol] :> Simp[(a + b*x^3)^(2/3)/(2*d), x] + (Simp[1/d
^2 Int[(a*d^2 + b*c^2*x)/((c + d*x)*(a + b*x^3)^(1/3)), x], x] - Simp[b*(c/d^2) Int[x/(a + b*x^3)^(1/3), x
], x]) /; FreeQ[{a, b, c, d}, x]
-
Int[1/(((c_) + (d_.)*(x_))*((a_) + (b_.)*(x_)^3)^(2/3)), x_Symbol] :> With[{q = Rt[b, 3]}, Simp[(-d)*(ArcTan[(
1 + 2*q*(x/(a + b*x^3)^(1/3)))/Sqrt[3]]/(2*Sqrt[3]*q^2*c^2)), x] + (Simp[Sqrt[3]*d*(ArcTan[(1 + 2*q*((2*c + d*
x)/(d*(a + b*x^3)^(1/3))))/Sqrt[3]]/(2*q^2*c^2)), x] - Simp[d*(Log[c + d*x]/(2*q^2*c^2)), x] - Simp[d*(Log[q*x
- (a + b*x^3)^(1/3)]/(4*q^2*c^2)), x] + Simp[3*d*(Log[q*(2*c + d*x) - d*(a + b*x^3)^(1/3)]/(4*q^2*c^2)), x])]
/; FreeQ[{a, b, c, d}, x] && EqQ[2*b*c^3 - a*d^3, 0]
-
Int[(Px_)*(x_)^(m_.)*((c_) + (d_.)*(x_))^(q_)*((a_) + (b_.)*(x_)^3)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(c
^3 + d^3*x^3)^q*(a + b*x^3)^p, x^m*(Px/(c^2 - c*d*x + d^2*x^2)^q), x], x] /; FreeQ[{a, b, c, d, m, p}, x] && P
olyQ[Px, x] && ILtQ[q, 0] && IntegerQ[m] && RationalQ[p] && EqQ[Denominator[p], 3]
-
Int[(Px_.)*((c_) + (d_.)*(x_))^(q_)*((a_) + (b_.)*(x_)^3)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(c^3 + d^3*x
^3)^q*(a + b*x^3)^p, Px/(c^2 - c*d*x + d^2*x^2)^q, x], x] /; FreeQ[{a, b, c, d, p}, x] && PolyQ[Px, x] && ILtQ
[q, 0] && RationalQ[p] && EqQ[Denominator[p], 3]
-
Int[(Px_)*(x_)^(m_.)*((c_) + (d_.)*(x_) + (e_.)*(x_)^2)^(q_)*((a_) + (b_.)*(x_)^3)^(p_.), x_Symbol] :> Simp[1/
c^q Int[ExpandIntegrand[(c^3 - d^3*x^3)^q*(a + b*x^3)^p, x^m*(Px/(c - d*x)^q), x], x], x] /; FreeQ[{a, b, c,
d, e, m, p}, x] && PolyQ[Px, x] && EqQ[d^2 - c*e, 0] && ILtQ[q, 0] && IntegerQ[m] && RationalQ[p] && EqQ[Deno
minator[p], 3]
-
Int[(Px_.)*((c_) + (d_.)*(x_) + (e_.)*(x_)^2)^(q_)*((a_) + (b_.)*(x_)^3)^(p_.), x_Symbol] :> Simp[1/c^q Int[
ExpandIntegrand[(c^3 - d^3*x^3)^q*(a + b*x^3)^p, Px/(c - d*x)^q, x], x], x] /; FreeQ[{a, b, c, d, e, p}, x] &&
PolyQ[Px, x] && EqQ[d^2 - c*e, 0] && ILtQ[q, 0] && RationalQ[p] && EqQ[Denominator[p], 3]
-
Int[((c_) + (d_.)*(x_)^(n_.))^(q_)*((a_) + (b_.)*(x_)^(nn_.))^(p_), x_Symbol] :> Int[ExpandToSum[(c - d*x^n)^(
-q), x]*((a + b*x^nn)^p/(c^2 - d^2*x^(2*n))^(-q)), x] /; FreeQ[{a, b, c, d, n, nn, p}, x] && !IntegerQ[p] &&
ILtQ[q, 0] && IGtQ[Log[2, nn/n], 0]
-
Int[((e_.)*(x_))^(m_.)*((c_) + (d_.)*(x_)^(n_.))^(q_)*((a_) + (b_.)*(x_)^(nn_.))^(p_), x_Symbol] :> Simp[(e*x)
^m/x^m Int[x^m*ExpandToSum[(c - d*x^n)^(-q), x]*((a + b*x^nn)^p/(c^2 - d^2*x^(2*n))^(-q)), x], x] /; FreeQ[{
a, b, c, d, e, m, n, nn, p}, x] && !IntegerQ[p] && ILtQ[q, 0] && IGtQ[Log[2, nn/n], 0]
-
Int[(x_)^(m_.)/((c_) + (d_.)*(x_)^(n_) + (e_.)*Sqrt[(a_) + (b_.)*(x_)^(n_)]), x_Symbol] :> Simp[1/n Subst[In
t[x^((m + 1)/n - 1)/(c + d*x + e*Sqrt[a + b*x]), x], x, x^n], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && EqQ[b*c
- a*d, 0] && IntegerQ[(m + 1)/n]
-
Int[(u_.)/((c_) + (d_.)*(x_)^(n_) + (e_.)*Sqrt[(a_) + (b_.)*(x_)^(n_)]), x_Symbol] :> Simp[c Int[u/(c^2 - a*
e^2 + c*d*x^n), x], x] - Simp[a*e Int[u/((c^2 - a*e^2 + c*d*x^n)*Sqrt[a + b*x^n]), x], x] /; FreeQ[{a, b, c,
d, e, n}, x] && EqQ[b*c - a*d, 0]
-
Int[(u_)^(m_.), x_Symbol] :> With[{c = Simplify[D[u, x]]}, Simp[1/c Subst[Int[x^m, x], x, u], x]] /; FreeQ[m
, x] && PiecewiseLinearQ[u, x]
-
Int[(v_)/(u_), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[b*(x/a), x] - Simp[(b*u
- a*v)/a Int[1/u, x], x] /; NeQ[b*u - a*v, 0]] /; PiecewiseLinearQ[u, v, x]
-
Int[(v_)^(n_)/(u_), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[v^n/(a*n), x] - Sim
p[(b*u - a*v)/a Int[v^(n - 1)/u, x], x] /; NeQ[b*u - a*v, 0]] /; PiecewiseLinearQ[u, v, x] && GtQ[n, 0] && N
eQ[n, 1]
-
Int[1/((u_)*(v_)), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[b/(b*u - a*v) Int[
1/v, x], x] - Simp[a/(b*u - a*v) Int[1/u, x], x] /; NeQ[b*u - a*v, 0]] /; PiecewiseLinearQ[u, v, x]
-
Int[1/((u_)*Sqrt[v_]), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[2*(ArcTan[Sqrt[v
]/Rt[(b*u - a*v)/a, 2]]/(a*Rt[(b*u - a*v)/a, 2])), x] /; NeQ[b*u - a*v, 0] && PosQ[(b*u - a*v)/a]] /; Piecewis
eLinearQ[u, v, x]
-
Int[1/((u_)*Sqrt[v_]), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[-2*(ArcTanh[Sqrt
[v]/Rt[-(b*u - a*v)/a, 2]]/(a*Rt[-(b*u - a*v)/a, 2])), x] /; NeQ[b*u - a*v, 0] && NegQ[(b*u - a*v)/a]] /; Piec
ewiseLinearQ[u, v, x]
-
Int[(v_)^(n_)/(u_), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[v^(n + 1)/((n + 1)*
(b*u - a*v)), x] - Simp[a*((n + 1)/((n + 1)*(b*u - a*v))) Int[v^(n + 1)/u, x], x] /; NeQ[b*u - a*v, 0]] /; P
iecewiseLinearQ[u, v, x] && LtQ[n, -1]
-
Int[(v_)^(n_)/(u_), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[(v^(n + 1)/((n + 1)
*(b*u - a*v)))*Hypergeometric2F1[1, n + 1, n + 2, (-a)*(v/(b*u - a*v))], x] /; NeQ[b*u - a*v, 0]] /; Piecewise
LinearQ[u, v, x] && !IntegerQ[n]
-
Int[1/(Sqrt[u_]*Sqrt[v_]), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[(2/Rt[a*b, 2
])*ArcTanh[Rt[a*b, 2]*(Sqrt[u]/(a*Sqrt[v]))], x] /; NeQ[b*u - a*v, 0] && PosQ[a*b]] /; PiecewiseLinearQ[u, v,
x]
-
Int[1/(Sqrt[u_]*Sqrt[v_]), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[(2/Rt[(-a)*b
, 2])*ArcTan[Rt[(-a)*b, 2]*(Sqrt[u]/(a*Sqrt[v]))], x] /; NeQ[b*u - a*v, 0] && NegQ[a*b]] /; PiecewiseLinearQ[u
, v, x]
-
Int[(u_)^(m_)*(v_)^(n_), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[(-u^(m + 1))*(
v^(n + 1)/((m + 1)*(b*u - a*v))), x] /; NeQ[b*u - a*v, 0]] /; FreeQ[{m, n}, x] && PiecewiseLinearQ[u, v, x] &&
EqQ[m + n + 2, 0] && NeQ[m, -1]
-
Int[(u_)^(m_)*(v_)^(n_.), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[u^(m + 1)*(v^
n/(a*(m + 1))), x] - Simp[b*(n/(a*(m + 1))) Int[u^(m + 1)*v^(n - 1), x], x] /; NeQ[b*u - a*v, 0]] /; FreeQ[{
m, n}, x] && PiecewiseLinearQ[u, v, x] && NeQ[m, -1] && ((LtQ[m, -1] && GtQ[n, 0] && !(ILtQ[m + n, -2] && (Fr
actionQ[m] || GeQ[2*n + m + 1, 0]))) || (IGtQ[n, 0] && IGtQ[m, 0] && LeQ[n, m]) || (IGtQ[n, 0] && !IntegerQ[m
]) || (ILtQ[m, 0] && !IntegerQ[n]))
-
Int[(u_)^(m_)*(v_)^(n_.), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[u^(m + 1)*(v^
n/(a*(m + n + 1))), x] - Simp[n*((b*u - a*v)/(a*(m + n + 1))) Int[u^m*v^(n - 1), x], x] /; NeQ[b*u - a*v, 0]
] /; PiecewiseLinearQ[u, v, x] && NeQ[m + n + 2, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] && !(IGtQ[m, 0] && ( !I
ntegerQ[n] || LtQ[0, m, n])) && !ILtQ[m + n, -2]
-
Int[(u_)^(m_)*(v_)^(n_), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[u^(m + 1)*(v^n
/(a*(m + n + 1))), x] - Simp[n*((b*u - a*v)/(a*(m + n + 1))) Int[u^m*v^Simplify[n - 1], x], x] /; NeQ[b*u -
a*v, 0]] /; PiecewiseLinearQ[u, v, x] && NeQ[m + n + 1, 0] && !RationalQ[n] && SumSimplerQ[n, -1]
-
Int[(u_)^(m_)*(v_)^(n_), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[(-u^(m + 1))*(
v^(n + 1)/((m + 1)*(b*u - a*v))), x] + Simp[b*((m + n + 2)/((m + 1)*(b*u - a*v))) Int[u^(m + 1)*v^n, x], x]
/; NeQ[b*u - a*v, 0]] /; PiecewiseLinearQ[u, v, x] && NeQ[m + n + 2, 0] && LtQ[m, -1]
-
Int[(u_)^(m_)*(v_)^(n_), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[(-u^(m + 1))*(
v^(n + 1)/((m + 1)*(b*u - a*v))), x] + Simp[b*((m + n + 2)/((m + 1)*(b*u - a*v))) Int[u^Simplify[m + 1]*v^n,
x], x] /; NeQ[b*u - a*v, 0]] /; PiecewiseLinearQ[u, v, x] && !RationalQ[m] && SumSimplerQ[m, 1]
-
Int[(u_)^(m_)*(v_)^(n_), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[D[v, x]]}, Simp[u^m*(v^(n + 1)
/(b*(n + 1)*(b*(u/(b*u - a*v)))^m))*Hypergeometric2F1[-m, n + 1, n + 2, (-a)*(v/(b*u - a*v))], x] /; NeQ[b*u -
a*v, 0]] /; PiecewiseLinearQ[u, v, x] && !IntegerQ[m] && !IntegerQ[n]
-
Int[Log[(a_.) + (b_.)*(x_)]*(u_)^(n_.), x_Symbol] :> With[{c = Simplify[D[u, x]]}, Simp[u^n*(a + b*x)*(Log[a +
b*x]/b), x] + (-Int[u^n, x] - Simp[c*(n/b) Int[u^(n - 1)*(a + b*x)*Log[a + b*x], x], x])] /; FreeQ[{a, b},
x] && PiecewiseLinearQ[u, x] && !LinearQ[u, x] && GtQ[n, 0]
-
Int[Log[(a_.) + (b_.)*(x_)]*(u_)^(n_.)*((a_.) + (b_.)*(x_))^(m_.), x_Symbol] :> With[{c = Simplify[D[u, x]]},
Simp[u^n*(a + b*x)^(m + 1)*(Log[a + b*x]/(b*(m + 1))), x] + (-Simp[1/(m + 1) Int[u^n*(a + b*x)^m, x], x] - S
imp[c*(n/(b*(m + 1))) Int[u^(n - 1)*(a + b*x)^(m + 1)*Log[a + b*x], x], x])] /; FreeQ[{a, b, m}, x] && Piece
wiseLinearQ[u, x] && !LinearQ[u, x] && GtQ[n, 0] && NeQ[m, -1]
-
Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(c + d*x)^m*
((b*F^(g*(e + f*x)))^n/(f*g*n*Log[F])), x] - Simp[d*(m/(f*g*n*Log[F])) Int[(c + d*x)^(m - 1)*(b*F^(g*(e + f*
x)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && GtQ[m, 0] && IntegerQ[2*m] && !TrueQ[$UseGamma]
-
Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_), x_Symbol] :> Simp[(c + d*x)^(m
+ 1)*((b*F^(g*(e + f*x)))^n/(d*(m + 1))), x] - Simp[f*g*n*(Log[F]/(d*(m + 1))) Int[(c + d*x)^(m + 1)*(b*F^(g
*(e + f*x)))^n, x], x] /; FreeQ[{F, b, c, d, e, f, g, n}, x] && LtQ[m, -1] && IntegerQ[2*m] && !TrueQ[$UseGam
ma]
-
Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(F^(g*(e - c*(f/d)))/d)*ExpInteg
ralEi[f*g*(c + d*x)*(Log[F]/d)], x] /; FreeQ[{F, c, d, e, f, g}, x] && !TrueQ[$UseGamma]
-
Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(-d)^m*(F^(g*(e - c*(f/d))
)/(f^(m + 1)*g^(m + 1)*Log[F]^(m + 1)))*Gamma[m + 1, (-f)*g*(Log[F]/d)*(c + d*x)], x] /; FreeQ[{F, c, d, e, f,
g}, x] && IntegerQ[m]
-
Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[2/d Subst[Int[F^(g*(e - c*
(f/d)) + f*g*(x^2/d)), x], x, Sqrt[c + d*x]], x] /; FreeQ[{F, c, d, e, f, g}, x] && !TrueQ[$UseGamma]
-
Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))*((c_.) + (d_.)*(x_))^(m_), x_Symbol] :> Simp[(-F^(g*(e - c*(f/d))))*((c
+ d*x)^FracPart[m]/(d*((-f)*g*(Log[F]/d))^(IntPart[m] + 1)*((-f)*g*Log[F]*((c + d*x)/d))^FracPart[m]))*Gamma[m
+ 1, ((-f)*g*(Log[F]/d))*(c + d*x)], x] /; FreeQ[{F, c, d, e, f, g, m}, x] && !IntegerQ[m]
-
Int[((b_.)*(F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(b*F^(g*(e +
f*x)))^n/F^(g*n*(e + f*x)) Int[(c + d*x)^m*F^(g*n*(e + f*x)), x], x] /; FreeQ[{F, b, c, d, e, f, g, m, n}, x
]
-
Int[((a_) + (b_.)*((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.))^(p_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> In
t[ExpandIntegrand[(c + d*x)^m, (a + b*(F^(g*(e + f*x)))^n)^p, x], x] /; FreeQ[{F, a, b, c, d, e, f, g, m, n},
x] && IGtQ[p, 0]
-
Int[((c_.) + (d_.)*(x_))^(m_.)/((a_) + (b_.)*((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[(c
+ d*x)^(m + 1)/(a*d*(m + 1)), x] - Simp[b/a Int[(c + d*x)^m*((F^(g*(e + f*x)))^n/(a + b*(F^(g*(e + f*x)))^n)
), x], x] /; FreeQ[{F, a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]
-
Int[((a_) + (b_.)*((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.))^(p_)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Sim
p[1/a Int[(c + d*x)^m*(a + b*(F^(g*(e + f*x)))^n)^(p + 1), x], x] - Simp[b/a Int[(c + d*x)^m*(F^(g*(e + f*
x)))^n*(a + b*(F^(g*(e + f*x)))^n)^p, x], x] /; FreeQ[{F, a, b, c, d, e, f, g, n}, x] && ILtQ[p, 0] && IGtQ[m,
0]
-
Int[((a_) + (b_.)*((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.))^(p_)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Wit
h[{u = IntHide[(a + b*(F^(g*(e + f*x)))^n)^p, x]}, Simp[(c + d*x)^m u, x] - Simp[d*m Int[(c + d*x)^(m - 1)
*u, x], x]] /; FreeQ[{F, a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0] && LtQ[p, -1]
-
Int[((a_.) + (b_.)*((F_)^((g_.)*(v_)))^(n_.))^(p_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Int[(c + d*x)^m*(
a + b*(F^(g*ExpandToSum[v, x]))^n)^p, x] /; FreeQ[{F, a, b, c, d, g, n, p}, x] && LinearQ[v, x] && !LinearMat
chQ[v, x] && IntegerQ[m]
-
Int[((a_) + (b_.)*((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.))^(p_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Un
integrable[(a + b*(F^(g*(e + f*x)))^n)^p*(c + d*x)^m, x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x]
-
Int[(((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((c_.) + (d_.)*(x_))^(m_.))/((a_) + (b_.)*((F_)^((g_.)*((e_.) +
(f_.)*(x_))))^(n_.)), x_Symbol] :> Simp[((c + d*x)^m/(b*f*g*n*Log[F]))*Log[1 + b*((F^(g*(e + f*x)))^n/a)], x]
- Simp[d*(m/(b*f*g*n*Log[F])) Int[(c + d*x)^(m - 1)*Log[1 + b*((F^(g*(e + f*x)))^n/a)], x], x] /; FreeQ[{F,
a, b, c, d, e, f, g, n}, x] && IGtQ[m, 0]
-
Int[((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((a_.) + (b_.)*((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.))^(p_.)*
((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(c + d*x)^m*((a + b*(F^(g*(e + f*x)))^n)^(p + 1)/(b*f*g*n*(p + 1
)*Log[F])), x] - Simp[d*(m/(b*f*g*n*(p + 1)*Log[F])) Int[(c + d*x)^(m - 1)*(a + b*(F^(g*(e + f*x)))^n)^(p +
1), x], x] /; FreeQ[{F, a, b, c, d, e, f, g, m, n, p}, x] && NeQ[p, -1]
-
Int[((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.)*((a_.) + (b_.)*((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.))^(p_.)*
((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Unintegrable[(F^(g*(e + f*x)))^n*(a + b*(F^(g*(e + f*x)))^n)^p*(c + d
*x)^m, x] /; FreeQ[{F, a, b, c, d, e, f, g, m, n, p}, x]
-
Int[((a_.) + (b_.)*((F_)^((g_.)*((e_.) + (f_.)*(x_))))^(n_.))^(p_.)*((k_.)*(G_)^((j_.)*((h_.) + (i_.)*(x_))))^
(q_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(k*G^(j*(h + i*x)))^q/(F^(g*(e + f*x)))^n Int[(c + d*x)^
m*(F^(g*(e + f*x)))^n*(a + b*(F^(g*(e + f*x)))^n)^p, x], x] /; FreeQ[{F, a, b, c, d, e, f, g, h, i, j, k, m, n
, p, q}, x] && EqQ[f*g*n*Log[F] - i*j*q*Log[G], 0] && NeQ[(k*G^(j*(h + i*x)))^q - (F^(g*(e + f*x)))^n, 0]
-
Int[((F_)^(v_))^(n_.), x_Symbol] :> Simp[(F^v)^n/(n*Log[F]*D[v, x]), x] /; FreeQ[{F, n}, x] && LinearQ[v, x]
-
Int[(F_)^(v_)*(Px_), x_Symbol] :> Int[ExpandIntegrand[Px*F^v, x], x] /; FreeQ[F, x] && PolynomialQ[Px, x] && L
inearQ[v, x] && TrueQ[$UseGamma]
-
Int[(F_)^(v_)*(Px_), x_Symbol] :> Int[ExpandIntegrand[F^v, Px, x], x] /; FreeQ[F, x] && PolynomialQ[Px, x] &&
LinearQ[v, x] && !TrueQ[$UseGamma]
-
Int[(F_)^(v_)*((d_.) + (e_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_)), x_Symbol] :> Simp[g*(d + e*x)^(m + 1)*(F^v/(D[v
, x]*e*Log[F])), x] /; FreeQ[{F, d, e, f, g, m}, x] && LinearQ[v, x] && EqQ[e*g*(m + 1) - D[v, x]*(e*f - d*g)*
Log[F], 0]
-
Int[(F_)^(v_)*(Px_)*((d_.) + (e_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[Px*(d + e*x)^m*F^v, x], x] /;
FreeQ[{F, d, e, m}, x] && PolynomialQ[Px, x] && LinearQ[v, x] && TrueQ[$UseGamma]
-
Int[(F_)^(v_)*(Px_)*((d_.) + (e_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[F^v, Px*(d + e*x)^m, x], x] /
; FreeQ[{F, d, e, m}, x] && PolynomialQ[Px, x] && LinearQ[v, x] && !TrueQ[$UseGamma]
-
Int[Log[(d_.)*(x_)]^(n_.)*(F_)^(v_)*((e_) + Log[(d_.)*(x_)]*(h_.)*((f_.) + (g_.)*(x_))), x_Symbol] :> Simp[e*x
*F^v*(Log[d*x]^(n + 1)/(n + 1)), x] /; FreeQ[{F, d, e, f, g, h, n}, x] && LinearQ[v, x] && EqQ[e, f*h*(n + 1)]
&& EqQ[g*h*(n + 1), D[v, x]*e*Log[F]] && NeQ[n, -1]
-
Int[Log[(d_.)*(x_)]^(n_.)*(F_)^(v_)*(x_)^(m_.)*((e_) + Log[(d_.)*(x_)]*(h_.)*((f_.) + (g_.)*(x_))), x_Symbol]
:> Simp[e*x^(m + 1)*F^v*(Log[d*x]^(n + 1)/(n + 1)), x] /; FreeQ[{F, d, e, f, g, h, m, n}, x] && LinearQ[v, x]
&& EqQ[e*(m + 1), f*h*(n + 1)] && EqQ[g*h*(n + 1), D[v, x]*e*Log[F]] && NeQ[n, -1]
-
Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))), x_Symbol] :> Simp[F^(a + b*(c + d*x))/(b*d*Log[F]), x] /; FreeQ
[{F, a, b, c, d}, x]
-
Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[F^a*Sqrt[Pi]*(Erfi[(c + d*x)*Rt[b*Log[F], 2
]]/(2*d*Rt[b*Log[F], 2])), x] /; FreeQ[{F, a, b, c, d}, x] && PosQ[b]
-
Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2), x_Symbol] :> Simp[F^a*Sqrt[Pi]*(Erf[(c + d*x)*Rt[(-b)*Log[F],
2]]/(2*d*Rt[(-b)*Log[F], 2])), x] /; FreeQ[{F, a, b, c, d}, x] && NegQ[b]
-
Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^(n_)), x_Symbol] :> Simp[(c + d*x)*(F^(a + b*(c + d*x)^n)/d), x]
- Simp[b*n*Log[F] Int[(c + d*x)^n*F^(a + b*(c + d*x)^n), x], x] /; FreeQ[{F, a, b, c, d}, x] && IntegerQ[2/n
] && ILtQ[n, 0]
-
Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^(n_)), x_Symbol] :> With[{k = Denominator[n]}, Simp[k/d Subst[I
nt[x^(k - 1)*F^(a + b*x^(k*n)), x], x, (c + d*x)^(1/k)], x]] /; FreeQ[{F, a, b, c, d}, x] && IntegerQ[2/n] &&
!IntegerQ[n]
-
Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^(n_)), x_Symbol] :> Simp[(-F^a)*(c + d*x)*(Gamma[1/n, (-b)*(c + d
*x)^n*Log[F]]/(d*n*((-b)*(c + d*x)^n*Log[F])^(1/n))), x] /; FreeQ[{F, a, b, c, d, n}, x] && !IntegerQ[2/n]
-
Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^(n_))*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[(e + f*x)^n*(
F^(a + b*(c + d*x)^n)/(b*f*n*(c + d*x)^n*Log[F])), x] /; FreeQ[{F, a, b, c, d, e, f, n}, x] && EqQ[m, n - 1] &
& EqQ[d*e - c*f, 0]
-
Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> Simp[F^a*(ExpIntegralEi[
b*(c + d*x)^n*Log[F]]/(f*n)), x] /; FreeQ[{F, a, b, c, d, e, f, n}, x] && EqQ[d*e - c*f, 0]
-
Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^(n_))*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[1/(d*(m + 1))
Subst[Int[F^(a + b*x^2), x], x, (c + d*x)^(m + 1)], x] /; FreeQ[{F, a, b, c, d, m, n}, x] && EqQ[n, 2*(m +
1)]
-
Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^(n_))*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(c + d*x)^(m
- n + 1)*(F^(a + b*(c + d*x)^n)/(b*d*n*Log[F])), x] - Simp[(m - n + 1)/(b*n*Log[F]) Int[(c + d*x)^(m - n)*F^
(a + b*(c + d*x)^n), x], x] /; FreeQ[{F, a, b, c, d}, x] && IntegerQ[2*((m + 1)/n)] && LtQ[0, (m + 1)/n, 5] &&
IntegerQ[n] && (LtQ[0, n, m + 1] || LtQ[m, n, 0])
-
Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^(n_))*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(c + d*x)^(m
- n + 1)*(F^(a + b*(c + d*x)^n)/(b*d*n*Log[F])), x] - Simp[(m - n + 1)/(b*n*Log[F]) Int[(c + d*x)^Simplify[m
- n]*F^(a + b*(c + d*x)^n), x], x] /; FreeQ[{F, a, b, c, d, m, n}, x] && IntegerQ[2*Simplify[(m + 1)/n]] && L
tQ[0, Simplify[(m + 1)/n], 5] && !RationalQ[m] && SumSimplerQ[m, -n]
-
Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^(n_))*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(c + d*x)^(m
+ 1)*(F^(a + b*(c + d*x)^n)/(d*(m + 1))), x] - Simp[b*n*(Log[F]/(m + 1)) Int[(c + d*x)^(m + n)*F^(a + b*(c +
d*x)^n), x], x] /; FreeQ[{F, a, b, c, d}, x] && IntegerQ[2*((m + 1)/n)] && LtQ[-4, (m + 1)/n, 5] && IntegerQ[
n] && ((GtQ[n, 0] && LtQ[m, -1]) || (GtQ[-n, 0] && LeQ[-n, m + 1]))
-
Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^(n_))*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(c + d*x)^(m
+ 1)*(F^(a + b*(c + d*x)^n)/(d*(m + 1))), x] - Simp[b*n*(Log[F]/(m + 1)) Int[(c + d*x)^Simplify[m + n]*F^(a
+ b*(c + d*x)^n), x], x] /; FreeQ[{F, a, b, c, d, m, n}, x] && IntegerQ[2*Simplify[(m + 1)/n]] && LtQ[-4, Simp
lify[(m + 1)/n], 5] && !RationalQ[m] && SumSimplerQ[m, n]
-
Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^(n_))*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> With[{k = Denomina
tor[n]}, Simp[k/d Subst[Int[x^(k*(m + 1) - 1)*F^(a + b*x^(k*n)), x], x, (c + d*x)^(1/k)], x]] /; FreeQ[{F, a
, b, c, d, m, n}, x] && IntegerQ[2*((m + 1)/n)] && LtQ[0, (m + 1)/n, 5] && !IntegerQ[n]
-
Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^(n_))*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[(e + f*x)^m/(
c + d*x)^m Int[(c + d*x)^m*F^(a + b*(c + d*x)^n), x], x] /; FreeQ[{F, a, b, c, d, e, f, m, n}, x] && EqQ[d*e
- c*f, 0] && IntegerQ[2*Simplify[(m + 1)/n]] && !IntegerQ[m] && NeQ[f, d] && NeQ[c*e, 0]
-
Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^(n_))*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> With[{p = Simplify
[(m + 1)/n]}, Simp[(-F^a)*((f/d)^m/(d*n*((-b)*Log[F])^p))*Simplify[FunctionExpand[Gamma[p, (-b)*(c + d*x)^n*Lo
g[F]]]], x] /; IGtQ[p, 0]] /; FreeQ[{F, a, b, c, d, e, f, m, n}, x] && EqQ[d*e - c*f, 0] && !TrueQ[$UseGamma]
-
Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^(n_))*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[(-F^a)*((e +
f*x)^(m + 1)/(f*n*((-b)*(c + d*x)^n*Log[F])^((m + 1)/n)))*Gamma[(m + 1)/n, (-b)*(c + d*x)^n*Log[F]], x] /; Fre
eQ[{F, a, b, c, d, e, f, m, n}, x] && EqQ[d*e - c*f, 0]
-
Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2)*((e_.) + (f_.)*(x_))^(m_), x_Symbol] :> Simp[f*(e + f*x)^(m -
1)*(F^(a + b*(c + d*x)^2)/(2*b*d^2*Log[F])), x] + (Simp[(d*e - c*f)/d Int[(e + f*x)^(m - 1)*F^(a + b*(c + d*
x)^2), x], x] - Simp[(m - 1)*(f^2/(2*b*d^2*Log[F])) Int[(e + f*x)^(m - 2)*F^(a + b*(c + d*x)^2), x], x]) /;
FreeQ[{F, a, b, c, d, e, f}, x] && NeQ[d*e - c*f, 0] && FractionQ[m] && GtQ[m, 1]
-
Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^2)*((e_.) + (f_.)*(x_))^(m_), x_Symbol] :> Simp[f*(e + f*x)^(m +
1)*(F^(a + b*(c + d*x)^2)/((m + 1)*f^2)), x] + (-Simp[2*b*d^2*(Log[F]/(f^2*(m + 1))) Int[(e + f*x)^(m + 2)*F
^(a + b*(c + d*x)^2), x], x] + Simp[2*b*d*(d*e - c*f)*(Log[F]/(f^2*(m + 1))) Int[(e + f*x)^(m + 1)*F^(a + b*
(c + d*x)^2), x], x]) /; FreeQ[{F, a, b, c, d, e, f}, x] && NeQ[d*e - c*f, 0] && LtQ[m, -1]
-
Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^(n_))*((e_.) + (f_.)*(x_))^(m_), x_Symbol] :> Simp[(e + f*x)^(m +
1)*(F^(a + b*(c + d*x)^n)/(f*(m + 1))), x] - Simp[b*d*n*(Log[F]/(f*(m + 1))) Int[(e + f*x)^(m + 1)*(c + d*x
)^(n - 1)*F^(a + b*(c + d*x)^n), x], x] /; FreeQ[{F, a, b, c, d, e, f}, x] && NeQ[d*e - c*f, 0] && IGtQ[n, 2]
&& LtQ[m, -1]
-
Int[(F_)^((a_.) + (b_.)/((c_.) + (d_.)*(x_)))/((e_.) + (f_.)*(x_)), x_Symbol] :> Simp[d/f Int[F^(a + b/(c +
d*x))/(c + d*x), x], x] - Simp[(d*e - c*f)/f Int[F^(a + b/(c + d*x))/((c + d*x)*(e + f*x)), x], x] /; FreeQ[
{F, a, b, c, d, e, f}, x] && NeQ[d*e - c*f, 0]
-
Int[(F_)^((a_.) + (b_.)/((c_.) + (d_.)*(x_)))*((e_.) + (f_.)*(x_))^(m_), x_Symbol] :> Simp[(e + f*x)^(m + 1)*(
F^(a + b/(c + d*x))/(f*(m + 1))), x] + Simp[b*d*(Log[F]/(f*(m + 1))) Int[(e + f*x)^(m + 1)*(F^(a + b/(c + d*
x))/(c + d*x)^2), x], x] /; FreeQ[{F, a, b, c, d, e, f}, x] && NeQ[d*e - c*f, 0] && ILtQ[m, -1]
-
Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x_)), x_Symbol] :> Unintegrable[F^(a + b*(c
+ d*x)^n)/(e + f*x), x] /; FreeQ[{F, a, b, c, d, e, f, n}, x] && NeQ[d*e - c*f, 0]
-
Int[(F_)^(v_)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Int[(e + f*x)^m*F^ExpandToSum[v, x], x] /; FreeQ[{F, e,
f, m}, x] && BinomialQ[v, x] && !BinomialMatchQ[v, x]
-
Int[(F_)^((a_.) + (b_.)*((c_.) + (d_.)*(x_))^(n_))*(Px_), x_Symbol] :> Int[ExpandLinearProduct[F^(a + b*(c + d
*x)^n), Px, c, d, x], x] /; FreeQ[{F, a, b, c, d, n}, x] && PolynomialQ[Px, x]
-
Int[(Px_.)*(F_)^((a_.) + (b_.)*(v_)^(n_.)), x_Symbol] :> Int[Px*F^(a + b*ExpandToSum[v, x]^n), x] /; FreeQ[{F,
a, b, n}, x] && PolynomialQ[Px, x] && LinearQ[v, x] && !LinearMatchQ[v, x]
-
Int[(F_)^((a_.) + (b_.)/((c_.) + (d_.)*(x_)))/(((e_.) + (f_.)*(x_))*((g_.) + (h_.)*(x_))), x_Symbol] :> Simp[-
d/(f*(d*g - c*h)) Subst[Int[F^(a - b*(h/(d*g - c*h)) + d*b*(x/(d*g - c*h)))/x, x], x, (g + h*x)/(c + d*x)],
x] /; FreeQ[{F, a, b, c, d, e, f}, x] && EqQ[d*e - c*f, 0]
-
Int[(F_)^((e_.) + ((f_.)*((a_.) + (b_.)*(x_)))/((c_.) + (d_.)*(x_)))*((g_.) + (h_.)*(x_))^(m_.), x_Symbol] :>
Simp[F^(e + f*(b/d)) Int[(g + h*x)^m, x], x] /; FreeQ[{F, a, b, c, d, e, f, g, h, m}, x] && EqQ[b*c - a*d, 0
]
-
Int[(F_)^((e_.) + ((f_.)*((a_.) + (b_.)*(x_)))/((c_.) + (d_.)*(x_)))*((g_.) + (h_.)*(x_))^(m_.), x_Symbol] :>
Int[(g + h*x)^m*F^((d*e + b*f)/d - f*((b*c - a*d)/(d*(c + d*x)))), x] /; FreeQ[{F, a, b, c, d, e, f, g, h, m},
x] && NeQ[b*c - a*d, 0] && EqQ[d*g - c*h, 0]
-
Int[(F_)^((e_.) + ((f_.)*((a_.) + (b_.)*(x_)))/((c_.) + (d_.)*(x_)))/((g_.) + (h_.)*(x_)), x_Symbol] :> Simp[d
/h Int[F^(e + f*((a + b*x)/(c + d*x)))/(c + d*x), x], x] - Simp[(d*g - c*h)/h Int[F^(e + f*((a + b*x)/(c +
d*x)))/((c + d*x)*(g + h*x)), x], x] /; FreeQ[{F, a, b, c, d, e, f, g, h}, x] && NeQ[b*c - a*d, 0] && NeQ[d*g
- c*h, 0]
-
Int[(F_)^((e_.) + ((f_.)*((a_.) + (b_.)*(x_)))/((c_.) + (d_.)*(x_)))*((g_.) + (h_.)*(x_))^(m_), x_Symbol] :> S
imp[(g + h*x)^(m + 1)*(F^(e + f*((a + b*x)/(c + d*x)))/(h*(m + 1))), x] - Simp[f*(b*c - a*d)*(Log[F]/(h*(m + 1
))) Int[(g + h*x)^(m + 1)*(F^(e + f*((a + b*x)/(c + d*x)))/(c + d*x)^2), x], x] /; FreeQ[{F, a, b, c, d, e,
f, g, h}, x] && NeQ[b*c - a*d, 0] && NeQ[d*g - c*h, 0] && ILtQ[m, -1]
-
Int[(F_)^((e_.) + ((f_.)*((a_.) + (b_.)*(x_)))/((c_.) + (d_.)*(x_)))/(((g_.) + (h_.)*(x_))*((i_.) + (j_.)*(x_)
)), x_Symbol] :> Simp[-d/(h*(d*i - c*j)) Subst[Int[F^(e + f*((b*i - a*j)/(d*i - c*j)) - (b*c - a*d)*f*(x/(d*
i - c*j)))/x, x], x, (i + j*x)/(c + d*x)], x] /; FreeQ[{F, a, b, c, d, e, f, g, h}, x] && EqQ[d*g - c*h, 0]
-
Int[(F_)^((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[F^(a - b^2/(4*c)) Int[F^((b + 2*c*x)^2/(4*c)
), x], x] /; FreeQ[{F, a, b, c}, x]
-
Int[(F_)^(v_), x_Symbol] :> Int[F^ExpandToSum[v, x], x] /; FreeQ[F, x] && QuadraticQ[v, x] && !QuadraticMatch
Q[v, x]
-
Int[(F_)^((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)*((d_.) + (e_.)*(x_)), x_Symbol] :> Simp[e*(F^(a + b*x + c*x^2)/(2
*c*Log[F])), x] /; FreeQ[{F, a, b, c, d, e}, x] && EqQ[b*e - 2*c*d, 0]
-
Int[(F_)^((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)*((d_.) + (e_.)*(x_))^(m_), x_Symbol] :> Simp[e*(d + e*x)^(m - 1)*
(F^(a + b*x + c*x^2)/(2*c*Log[F])), x] - Simp[(m - 1)*(e^2/(2*c*Log[F])) Int[(d + e*x)^(m - 2)*F^(a + b*x +
c*x^2), x], x] /; FreeQ[{F, a, b, c, d, e}, x] && EqQ[b*e - 2*c*d, 0] && GtQ[m, 1]
-
Int[(F_)^((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)/((d_.) + (e_.)*(x_)), x_Symbol] :> Simp[(1/(2*e))*F^(a - b^2/(4*c
))*ExpIntegralEi[(b + 2*c*x)^2*(Log[F]/(4*c))], x] /; FreeQ[{F, a, b, c, d, e}, x] && EqQ[b*e - 2*c*d, 0]
-
Int[(F_)^((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)*((d_.) + (e_.)*(x_))^(m_), x_Symbol] :> Simp[(d + e*x)^(m + 1)*(F
^(a + b*x + c*x^2)/(e*(m + 1))), x] - Simp[2*c*(Log[F]/(e^2*(m + 1))) Int[(d + e*x)^(m + 2)*F^(a + b*x + c*x
^2), x], x] /; FreeQ[{F, a, b, c, d, e}, x] && EqQ[b*e - 2*c*d, 0] && LtQ[m, -1]
-
Int[(F_)^((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)*((d_.) + (e_.)*(x_)), x_Symbol] :> Simp[e*(F^(a + b*x + c*x^2)/(2
*c*Log[F])), x] - Simp[(b*e - 2*c*d)/(2*c) Int[F^(a + b*x + c*x^2), x], x] /; FreeQ[{F, a, b, c, d, e}, x] &
& NeQ[b*e - 2*c*d, 0]
-
Int[(F_)^((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)*((d_.) + (e_.)*(x_))^(m_), x_Symbol] :> Simp[e*(d + e*x)^(m - 1)*
(F^(a + b*x + c*x^2)/(2*c*Log[F])), x] + (-Simp[(b*e - 2*c*d)/(2*c) Int[(d + e*x)^(m - 1)*F^(a + b*x + c*x^2
), x], x] - Simp[(m - 1)*(e^2/(2*c*Log[F])) Int[(d + e*x)^(m - 2)*F^(a + b*x + c*x^2), x], x]) /; FreeQ[{F,
a, b, c, d, e}, x] && NeQ[b*e - 2*c*d, 0] && GtQ[m, 1]
-
Int[(F_)^((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)*((d_.) + (e_.)*(x_))^(m_), x_Symbol] :> Simp[(d + e*x)^(m + 1)*(F
^(a + b*x + c*x^2)/(e*(m + 1))), x] + (-Simp[2*c*(Log[F]/(e^2*(m + 1))) Int[(d + e*x)^(m + 2)*F^(a + b*x + c
*x^2), x], x] - Simp[(b*e - 2*c*d)*(Log[F]/(e^2*(m + 1))) Int[(d + e*x)^(m + 1)*F^(a + b*x + c*x^2), x], x])
/; FreeQ[{F, a, b, c, d, e}, x] && NeQ[b*e - 2*c*d, 0] && LtQ[m, -1]
-
Int[(F_)^((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)*((d_.) + (e_.)*(x_))^(m_.), x_Symbol] :> Unintegrable[F^(a + b*x
+ c*x^2)*(d + e*x)^m, x] /; FreeQ[{F, a, b, c, d, e, m}, x]
-
Int[(F_)^(v_)*(u_)^(m_.), x_Symbol] :> Int[ExpandToSum[u, x]^m*F^ExpandToSum[v, x], x] /; FreeQ[{F, m}, x] &&
LinearQ[u, x] && QuadraticQ[v, x] && !(LinearMatchQ[u, x] && QuadraticMatchQ[v, x])
-
Int[(F_)^((e_.)*((c_.) + (d_.)*(x_)))*((a_.) + (b_.)*(F_)^(v_))^(p_)*(x_)^(m_.), x_Symbol] :> With[{u = IntHid
e[F^(e*(c + d*x))*(a + b*F^v)^p, x]}, Simp[x^m u, x] - Simp[m Int[x^(m - 1)*u, x], x]] /; FreeQ[{F, a, b,
c, d, e}, x] && EqQ[v, 2*e*(c + d*x)] && GtQ[m, 0] && ILtQ[p, 0]
-
Int[((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)*((a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.))^(p_.),
x_Symbol] :> Simp[1/(d*e*n*Log[F]) Subst[Int[(a + b*x)^p, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b,
c, d, e, n, p}, x]
-
Int[((a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.))^(p_.)*((G_)^((h_.)*((f_.) + (g_.)*(x_))))^(m_.),
x_Symbol] :> Simp[(G^(h*(f + g*x)))^m/(F^(e*(c + d*x)))^n Int[(F^(e*(c + d*x)))^n*(a + b*(F^(e*(c + d*x)))^n
)^p, x], x] /; FreeQ[{F, G, a, b, c, d, e, f, g, h, m, n, p}, x] && EqQ[d*e*n*Log[F], g*h*m*Log[G]]
-
Int[((a_) + (b_.)*(F_)^((e_.)*((c_.) + (d_.)*(x_))))^(p_.)*(G_)^((h_.)*((f_.) + (g_.)*(x_))), x_Symbol] :> Wit
h[{m = FullSimplify[g*h*(Log[G]/(d*e*Log[F]))]}, Simp[Denominator[m]*(G^(f*h - c*g*(h/d))/(d*e*Log[F])) Subs
t[Int[x^(Numerator[m] - 1)*(a + b*x^Denominator[m])^p, x], x, F^(e*((c + d*x)/Denominator[m]))], x] /; LeQ[m,
-1] || GeQ[m, 1]] /; FreeQ[{F, G, a, b, c, d, e, f, g, h, p}, x]
-
Int[((a_) + (b_.)*(F_)^((e_.)*((c_.) + (d_.)*(x_))))^(p_.)*(G_)^((h_.)*((f_.) + (g_.)*(x_))), x_Symbol] :> Wit
h[{m = FullSimplify[d*e*(Log[F]/(g*h*Log[G]))]}, Simp[Denominator[m]/(g*h*Log[G]) Subst[Int[x^(Denominator[m
] - 1)*(a + b*F^(c*e - d*e*(f/g))*x^Numerator[m])^p, x], x, G^(h*((f + g*x)/Denominator[m]))], x] /; LtQ[m, -1
] || GtQ[m, 1]] /; FreeQ[{F, G, a, b, c, d, e, f, g, h, p}, x]
-
Int[((a_) + (b_.)*(F_)^((e_.)*((c_.) + (d_.)*(x_))))^(p_.)*(G_)^((h_.)*((f_.) + (g_.)*(x_))), x_Symbol] :> Int
[Expand[G^(h*(f + g*x))*(a + b*F^(e*(c + d*x)))^p, x], x] /; FreeQ[{F, G, a, b, c, d, e, f, g, h}, x] && IGtQ[
p, 0]
-
Int[((a_) + (b_.)*(F_)^((e_.)*((c_.) + (d_.)*(x_))))^(p_)*(G_)^((h_.)*((f_.) + (g_.)*(x_))), x_Symbol] :> Simp
[a^p*(G^(h*(f + g*x))/(g*h*Log[G]))*Hypergeometric2F1[-p, g*h*(Log[G]/(d*e*Log[F])), g*h*(Log[G]/(d*e*Log[F]))
+ 1, Simplify[(-b/a)*F^(e*(c + d*x))]], x] /; FreeQ[{F, G, a, b, c, d, e, f, g, h, p}, x] && (ILtQ[p, 0] || G
tQ[a, 0])
-
Int[((a_) + (b_.)*(F_)^((e_.)*((c_.) + (d_.)*(x_))))^(p_)*(G_)^((h_.)*((f_.) + (g_.)*(x_))), x_Symbol] :> Simp
[(a + b*F^(e*(c + d*x)))^p/(1 + (b/a)*F^(e*(c + d*x)))^p Int[G^(h*(f + g*x))*(1 + (b/a)*F^(e*(c + d*x)))^p,
x], x] /; FreeQ[{F, G, a, b, c, d, e, f, g, h, p}, x] && !(ILtQ[p, 0] || GtQ[a, 0])
-
Int[((a_) + (b_.)*(F_)^((e_.)*(v_)))^(p_)*(G_)^((h_.)*(u_)), x_Symbol] :> Int[G^(h*ExpandToSum[u, x])*(a + b*F
^(e*ExpandToSum[v, x]))^p, x] /; FreeQ[{F, G, a, b, e, h, p}, x] && LinearQ[{u, v}, x] && !LinearMatchQ[{u, v
}, x]
-
Int[((a_.) + (b_.)*(F_)^(u_))^(p_.)*((c_.) + (d_.)*(F_)^(v_))^(q_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> W
ith[{w = ExpandIntegrand[(e + f*x)^m, (a + b*F^u)^p*(c + d*F^v)^q, x]}, Int[w, x] /; SumQ[w]] /; FreeQ[{F, a,
b, c, d, e, f, m}, x] && IntegersQ[p, q] && LinearQ[{u, v}, x] && RationalQ[Simplify[u/v]]
-
Int[((a_) + (b_.)*(F_)^((e_.)*((c_.) + (d_.)*(x_))))^(p_.)*(G_)^((h_.)*((f_.) + (g_.)*(x_)))*(H_)^((t_.)*((r_.
) + (s_.)*(x_))), x_Symbol] :> With[{m = FullSimplify[(g*h*Log[G] + s*t*Log[H])/(d*e*Log[F])]}, Simp[Denominat
or[m]*G^(f*h - c*g*(h/d))*(H^(r*t - c*s*(t/d))/(d*e*Log[F])) Subst[Int[x^(Numerator[m] - 1)*(a + b*x^Denomin
ator[m])^p, x], x, F^(e*((c + d*x)/Denominator[m]))], x] /; RationalQ[m]] /; FreeQ[{F, G, H, a, b, c, d, e, f,
g, h, r, s, t, p}, x]
-
Int[((a_) + (b_.)*(F_)^((e_.)*((c_.) + (d_.)*(x_))))^(p_.)*(G_)^((h_.)*((f_.) + (g_.)*(x_)))*(H_)^((t_.)*((r_.
) + (s_.)*(x_))), x_Symbol] :> Simp[G^((f - c*(g/d))*h) Int[H^(t*(r + s*x))*(b + a/F^(e*(c + d*x)))^p, x], x
] /; FreeQ[{F, G, H, a, b, c, d, e, f, g, h, r, s, t}, x] && EqQ[d*e*p*Log[F] + g*h*Log[G], 0] && IntegerQ[p]
-
Int[((a_) + (b_.)*(F_)^((e_.)*((c_.) + (d_.)*(x_))))^(p_.)*(G_)^((h_.)*((f_.) + (g_.)*(x_)))*(H_)^((t_.)*((r_.
) + (s_.)*(x_))), x_Symbol] :> Int[Expand[G^(h*(f + g*x))*H^(t*(r + s*x))*(a + b*F^(e*(c + d*x)))^p, x], x] /;
FreeQ[{F, G, H, a, b, c, d, e, f, g, h, r, s, t}, x] && IGtQ[p, 0]
-
Int[((a_) + (b_.)*(F_)^((e_.)*((c_.) + (d_.)*(x_))))^(p_)*(G_)^((h_.)*((f_.) + (g_.)*(x_)))*(H_)^((t_.)*((r_.)
+ (s_.)*(x_))), x_Symbol] :> Simp[a^p*G^(h*(f + g*x))*(H^(t*(r + s*x))/(g*h*Log[G] + s*t*Log[H]))*Hypergeomet
ric2F1[-p, (g*h*Log[G] + s*t*Log[H])/(d*e*Log[F]), (g*h*Log[G] + s*t*Log[H])/(d*e*Log[F]) + 1, Simplify[(-b/a)
*F^(e*(c + d*x))]], x] /; FreeQ[{F, G, H, a, b, c, d, e, f, g, h, r, s, t}, x] && ILtQ[p, 0]
-
Int[((a_) + (b_.)*(F_)^((e_.)*((c_.) + (d_.)*(x_))))^(p_)*(G_)^((h_.)*((f_.) + (g_.)*(x_)))*(H_)^((t_.)*((r_.)
+ (s_.)*(x_))), x_Symbol] :> Simp[G^(h*(f + g*x))*H^(t*(r + s*x))*((a + b*F^(e*(c + d*x)))^p/((g*h*Log[G] + s
*t*Log[H])*((a + b*F^(e*(c + d*x)))/a)^p))*Hypergeometric2F1[-p, (g*h*Log[G] + s*t*Log[H])/(d*e*Log[F]), (g*h*
Log[G] + s*t*Log[H])/(d*e*Log[F]) + 1, Simplify[(-b/a)*F^(e*(c + d*x))]], x] /; FreeQ[{F, G, H, a, b, c, d, e,
f, g, h, r, s, t, p}, x] && !IntegerQ[p]
-
Int[((a_) + (b_.)*(F_)^((e_.)*(v_)))^(p_)*(G_)^((h_.)*(u_))*(H_)^((t_.)*(w_)), x_Symbol] :> Int[G^(h*ExpandToS
um[u, x])*H^(t*ExpandToSum[w, x])*(a + b*F^(e*ExpandToSum[v, x]))^p, x] /; FreeQ[{F, G, H, a, b, e, h, t, p},
x] && LinearQ[{u, v, w}, x] && !LinearMatchQ[{u, v, w}, x]
-
Int[(F_)^((e_.)*((c_.) + (d_.)*(x_)))*((b_.)*(F_)^((e_.)*((c_.) + (d_.)*(x_))) + (a_.)*(x_)^(n_.))^(p_.), x_Sy
mbol] :> Simp[(a*x^n + b*F^(e*(c + d*x)))^(p + 1)/(b*d*e*(p + 1)*Log[F]), x] - Simp[a*(n/(b*d*e*Log[F])) Int
[x^(n - 1)*(a*x^n + b*F^(e*(c + d*x)))^p, x], x] /; FreeQ[{F, a, b, c, d, e, n, p}, x] && NeQ[p, -1]
-
Int[(F_)^((e_.)*((c_.) + (d_.)*(x_)))*(x_)^(m_.)*((b_.)*(F_)^((e_.)*((c_.) + (d_.)*(x_))) + (a_.)*(x_)^(n_.))^
(p_.), x_Symbol] :> Simp[x^m*((a*x^n + b*F^(e*(c + d*x)))^(p + 1)/(b*d*e*(p + 1)*Log[F])), x] + (-Simp[m/(b*d*
e*(p + 1)*Log[F]) Int[x^(m - 1)*(a*x^n + b*F^(e*(c + d*x)))^(p + 1), x], x] - Simp[a*(n/(b*d*e*Log[F])) In
t[x^(m + n - 1)*(a*x^n + b*F^(e*(c + d*x)))^p, x], x]) /; FreeQ[{F, a, b, c, d, e, m, n, p}, x] && NeQ[p, -1]
-
Int[((f_.) + (g_.)*(x_))^(m_.)/((a_.) + (b_.)*(F_)^(u_) + (c_.)*(F_)^(v_)), x_Symbol] :> With[{q = Rt[b^2 - 4*
a*c, 2]}, Simp[2*(c/q) Int[(f + g*x)^m/(b - q + 2*c*F^u), x], x] - Simp[2*(c/q) Int[(f + g*x)^m/(b + q + 2
*c*F^u), x], x]] /; FreeQ[{F, a, b, c, f, g}, x] && EqQ[v, 2*u] && LinearQ[u, x] && NeQ[b^2 - 4*a*c, 0] && IGt
Q[m, 0]
-
Int[((F_)^(u_)*((f_.) + (g_.)*(x_))^(m_.))/((a_.) + (b_.)*(F_)^(u_) + (c_.)*(F_)^(v_)), x_Symbol] :> With[{q =
Rt[b^2 - 4*a*c, 2]}, Simp[2*(c/q) Int[(f + g*x)^m*(F^u/(b - q + 2*c*F^u)), x], x] - Simp[2*(c/q) Int[(f +
g*x)^m*(F^u/(b + q + 2*c*F^u)), x], x]] /; FreeQ[{F, a, b, c, f, g}, x] && EqQ[v, 2*u] && LinearQ[u, x] && Ne
Q[b^2 - 4*a*c, 0] && IGtQ[m, 0]
-
Int[(((i_.)*(F_)^(u_) + (h_))*((f_.) + (g_.)*(x_))^(m_.))/((a_.) + (b_.)*(F_)^(u_) + (c_.)*(F_)^(v_)), x_Symbo
l] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(Simplify[(2*c*h - b*i)/q] + i) Int[(f + g*x)^m/(b - q + 2*c*F^u),
x], x] - Simp[(Simplify[(2*c*h - b*i)/q] - i) Int[(f + g*x)^m/(b + q + 2*c*F^u), x], x]] /; FreeQ[{F, a, b,
c, f, g, h, i}, x] && EqQ[v, 2*u] && LinearQ[u, x] && NeQ[b^2 - 4*a*c, 0] && IGtQ[m, 0]
-
Int[(x_)^(m_.)/((b_.)*(F_)^(v_) + (a_.)*(F_)^((c_.) + (d_.)*(x_))), x_Symbol] :> With[{u = IntHide[1/(a*F^(c +
d*x) + b*F^v), x]}, Simp[x^m*u, x] - Simp[m Int[x^(m - 1)*u, x], x]] /; FreeQ[{F, a, b, c, d}, x] && EqQ[v,
-(c + d*x)] && GtQ[m, 0]
-
Int[(u_)/((a_) + (b_.)*(F_)^(v_) + (c_.)*(F_)^(w_)), x_Symbol] :> Int[u*(F^v/(c + a*F^v + b*F^(2*v))), x] /; F
reeQ[{F, a, b, c}, x] && EqQ[w, -v] && LinearQ[v, x] && If[RationalQ[D[v, x]], GtQ[D[v, x], 0], LtQ[LeafCount[
v], LeafCount[w]]]
-
Int[(F_)^((g_.)*((d_.) + (e_.)*(x_))^(n_.))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Int[ExpandIntegr
and[F^(g*(d + e*x)^n), 1/(a + b*x + c*x^2), x], x] /; FreeQ[{F, a, b, c, d, e, g, n}, x]
-
Int[(F_)^((g_.)*((d_.) + (e_.)*(x_))^(n_.))/((a_) + (c_.)*(x_)^2), x_Symbol] :> Int[ExpandIntegrand[F^(g*(d +
e*x)^n), 1/(a + c*x^2), x], x] /; FreeQ[{F, a, c, d, e, g, n}, x]
-
Int[((F_)^((g_.)*((d_.) + (e_.)*(x_))^(n_.))*(u_)^(m_.))/((a_.) + (b_.)*(x_) + (c_)*(x_)^2), x_Symbol] :> Int[
ExpandIntegrand[F^(g*(d + e*x)^n), u^m/(a + b*x + c*x^2), x], x] /; FreeQ[{F, a, b, c, d, e, g, n}, x] && Poly
nomialQ[u, x] && IntegerQ[m]
-
Int[((F_)^((g_.)*((d_.) + (e_.)*(x_))^(n_.))*(u_)^(m_.))/((a_) + (c_)*(x_)^2), x_Symbol] :> Int[ExpandIntegran
d[F^(g*(d + e*x)^n), u^m/(a + c*x^2), x], x] /; FreeQ[{F, a, c, d, e, g, n}, x] && PolynomialQ[u, x] && Intege
rQ[m]
-
Int[(F_)^(((a_.) + (b_.)*(x_)^4)/(x_)^2), x_Symbol] :> Simp[Sqrt[Pi]*Exp[2*Sqrt[(-a)*Log[F]]*Sqrt[(-b)*Log[F]]
]*(Erf[(Sqrt[(-a)*Log[F]] + Sqrt[(-b)*Log[F]]*x^2)/x]/(4*Sqrt[(-b)*Log[F]])), x] - Simp[Sqrt[Pi]*Exp[-2*Sqrt[(
-a)*Log[F]]*Sqrt[(-b)*Log[F]]]*(Erf[(Sqrt[(-a)*Log[F]] - Sqrt[(-b)*Log[F]]*x^2)/x]/(4*Sqrt[(-b)*Log[F]])), x]
/; FreeQ[{F, a, b}, x]
-
Int[(x_)^(m_.)*(E^(x_) + (x_)^(m_.))^(n_), x_Symbol] :> Simp[-(E^x + x^m)^(n + 1)/(n + 1), x] + (Int[(E^x + x^
m)^(n + 1), x] + Simp[m Int[x^(m - 1)*(E^x + x^m)^n, x], x]) /; RationalQ[m, n] && GtQ[m, 0] && LtQ[n, 0] &&
NeQ[n, -1]
-
Int[(u_.)*(F_)^((a_.)*(Log[z_]*(b_.) + (v_.))), x_Symbol] :> Int[u*F^(a*v)*z^(a*b*Log[F]), x] /; FreeQ[{F, a,
b}, x]
-
Int[(F_)^(((a_.) + Log[(c_.)*((d_.) + (e_.)*(x_))^(n_.)]^2*(b_.))*(f_.)), x_Symbol] :> Simp[(d + e*x)/(e*n*(c*
(d + e*x)^n)^(1/n)) Subst[Int[E^(a*f*Log[F] + x/n + b*f*Log[F]*x^2), x], x, Log[c*(d + e*x)^n]], x] /; FreeQ
[{F, a, b, c, d, e, f, n}, x]
-
Int[(F_)^(((a_.) + Log[(c_.)*((d_.) + (e_.)*(x_))^(n_.)]^2*(b_.))*(f_.))*((g_.) + (h_.)*(x_))^(m_.), x_Symbol]
:> Simp[(g + h*x)^(m + 1)/(h*n*(c*(d + e*x)^n)^((m + 1)/n)) Subst[Int[E^(a*f*Log[F] + ((m + 1)*x)/n + b*f*L
og[F]*x^2), x], x, Log[c*(d + e*x)^n]], x] /; FreeQ[{F, a, b, c, d, e, f, g, h, m, n}, x] && EqQ[e*g - d*h, 0]
-
Int[(F_)^(((a_.) + Log[(c_.)*((d_.) + (e_.)*(x_))^(n_.)]^2*(b_.))*(f_.))*((g_.) + (h_.)*(x_))^(m_.), x_Symbol]
:> Simp[1/e^(m + 1) Subst[Int[ExpandIntegrand[F^(f*(a + b*Log[c*x^n]^2)), (e*g - d*h + h*x)^m, x], x], x, d
+ e*x], x] /; FreeQ[{F, a, b, c, d, e, f, g, h, n}, x] && IGtQ[m, 0]
-
Int[(F_)^(((a_.) + Log[(c_.)*((d_.) + (e_.)*(x_))^(n_.)]^2*(b_.))*(f_.))*((g_.) + (h_.)*(x_))^(m_.), x_Symbol]
:> Unintegrable[F^(f*(a + b*Log[c*(d + e*x)^n]^2))*(g + h*x)^m, x] /; FreeQ[{F, a, b, c, d, e, f, g, h, m, n}
, x]
-
Int[(F_)^(((a_.) + Log[(c_.)*((d_.) + (e_.)*(x_))^(n_.)]*(b_.))^2*(f_.)), x_Symbol] :> Simp[c^(2*a*b*f*Log[F])
Int[(d + e*x)^(2*a*b*f*n*Log[F])*F^(a^2*f + b^2*f*Log[c*(d + e*x)^n]^2), x], x] /; FreeQ[{F, a, b, c, d, e,
f, n}, x] && IntegerQ[2*a*b*f*Log[F]]
-
Int[(F_)^(((a_.) + Log[(c_.)*((d_.) + (e_.)*(x_))^(n_.)]*(b_.))^2*(f_.)), x_Symbol] :> Simp[((c*(d + e*x)^n)^(
2*a*b*f*Log[F])/(d + e*x)^(2*a*b*f*n*Log[F]))*Int[(d + e*x)^(2*a*b*f*n*Log[F])*F^(a^2*f + b^2*f*Log[c*(d + e*x
)^n]^2), x], x] /; FreeQ[{F, a, b, c, d, e, f, n}, x] && !IntegerQ[2*a*b*f*Log[F]]
-
Int[(F_)^(((a_.) + Log[(c_.)*((d_.) + (e_.)*(x_))^(n_.)]*(b_.))^2*(f_.))*((g_.) + (h_.)*(x_))^(m_.), x_Symbol]
:> Simp[h^m*(c^(2*a*b*f*Log[F])/e^m) Int[(d + e*x)^(m + 2*a*b*f*n*Log[F])*F^(a^2*f + b^2*f*Log[c*(d + e*x)^
n]^2), x], x] /; FreeQ[{F, a, b, c, d, e, f, g, h, m, n}, x] && EqQ[e*g - d*h, 0] && IntegerQ[2*a*b*f*Log[F]]
&& (IntegerQ[m] || EqQ[h, e])
-
Int[(F_)^(((a_.) + Log[(c_.)*((d_.) + (e_.)*(x_))^(n_.)]*(b_.))^2*(f_.))*((g_.) + (h_.)*(x_))^(m_.), x_Symbol]
:> Simp[(g + h*x)^m*((c*(d + e*x)^n)^(2*a*b*f*Log[F])/(d + e*x)^(m + 2*a*b*f*n*Log[F]))*Int[(d + e*x)^(m + 2*
a*b*f*n*Log[F])*F^(a^2*f + b^2*f*Log[c*(d + e*x)^n]^2), x], x] /; FreeQ[{F, a, b, c, d, e, f, g, h, m, n}, x]
&& EqQ[e*g - d*h, 0]
-
Int[(F_)^(((a_.) + Log[(c_.)*((d_.) + (e_.)*(x_))^(n_.)]*(b_.))^2*(f_.))*((g_.) + (h_.)*(x_))^(m_.), x_Symbol]
:> Simp[1/e^(m + 1) Subst[Int[ExpandIntegrand[F^(f*(a + b*Log[c*x^n])^2), (e*g - d*h + h*x)^m, x], x], x, d
+ e*x], x] /; FreeQ[{F, a, b, c, d, e, f, g, h, n}, x] && IGtQ[m, 0]
-
Int[(F_)^(((a_.) + Log[(c_.)*((d_.) + (e_.)*(x_))^(n_.)]*(b_.))^2*(f_.))*((g_.) + (h_.)*(x_))^(m_.), x_Symbol]
:> Unintegrable[F^(f*(a + b*Log[c*(d + e*x)^n])^2)*(g + h*x)^m, x] /; FreeQ[{F, a, b, c, d, e, f, g, h, m, n}
, x]
-
Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Simp[1/(d*e*n*Log[F]) Subst[In
t[Log[a + b*x]/x, x], x, (F^(e*(c + d*x)))^n], x] /; FreeQ[{F, a, b, c, d, e, n}, x] && GtQ[a, 0]
-
Int[Log[(a_) + (b_.)*((F_)^((e_.)*((c_.) + (d_.)*(x_))))^(n_.)], x_Symbol] :> Simp[x*Log[a + b*(F^(e*(c + d*x)
))^n], x] - Simp[b*d*e*n*Log[F] Int[x*((F^(e*(c + d*x)))^n/(a + b*(F^(e*(c + d*x)))^n)), x], x] /; FreeQ[{F,
a, b, c, d, e, n}, x] && !GtQ[a, 0]
-
Int[(u_.)*((a_.)*(F_)^(v_))^(n_), x_Symbol] :> Simp[(a*F^v)^n/F^(n*v) Int[u*F^(n*v), x], x] /; FreeQ[{F, a,
n}, x] && !IntegerQ[n]
-
Int[(F_)^((d_.)*((c_.)*((a_.) + (b_.)*(x_))^(n_))^(m_)), x_Symbol] :> Simp[(a + b*x)*(F^(d*(c*(a + b*x)^n)^m)/
(b*d*(c*(a + b*x)^n)^m*Log[F])), x] /; FreeQ[{F, a, b, c, d, m, n}, x] && EqQ[m*n, 1]
-
Int[(F_)^((d_.)*((c_.)*((a_.) + (b_.)*(x_))^(n_))^(m_)), x_Symbol] :> Simp[(-(a + b*x))*(Gamma[1/(m*n), ((-d)*
(c*(a + b*x)^n)^m)*Log[F]]/(b*m*n*(((-d)*(c*(a + b*x)^n)^m)*Log[F])^(1/(m*n)))), x] /; FreeQ[{F, a, b, c, d, m
, n}, x]
-
Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Simp[v/D[v, x] Subst[Int[FunctionOfExponentialF
unction[u, x]/x, x], x, v], x]] /; FunctionOfExponentialQ[u, x] && !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /;
FreeQ[{a, m, n}, x] && IntegerQ[m*n]] && !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x))*(F_)[v_] /; FreeQ[{a, b, c},
x] && InverseFunctionQ[F[x]]]
-
Int[(u_.)*((a_.)*(F_)^(v_) + (b_.)*(F_)^(w_))^(n_), x_Symbol] :> Int[u*F^(n*v)*(a + b*F^ExpandToSum[w - v, x])
^n, x] /; FreeQ[{F, a, b, n}, x] && ILtQ[n, 0] && LinearQ[{v, w}, x]
-
Int[(u_.)*((a_.)*(F_)^(v_) + (b_.)*(G_)^(w_))^(n_), x_Symbol] :> Int[u*F^(n*v)*(a + b*E^ExpandToSum[Log[G]*w -
Log[F]*v, x])^n, x] /; FreeQ[{F, G, a, b, n}, x] && ILtQ[n, 0] && LinearQ[{v, w}, x]
-
Int[(u_.)*((a_.)*(F_)^(v_) + (b_.)*(F_)^(w_))^(n_), x_Symbol] :> Simp[(a*F^v + b*F^w)^n/(F^(n*v)*(a + b*F^Expa
ndToSum[w - v, x])^n) Int[u*F^(n*v)*(a + b*F^ExpandToSum[w - v, x])^n, x], x] /; FreeQ[{F, a, b, n}, x] &&
!IntegerQ[n] && LinearQ[{v, w}, x]
-
Int[(u_.)*((a_.)*(F_)^(v_) + (b_.)*(G_)^(w_))^(n_), x_Symbol] :> Simp[(a*F^v + b*G^w)^n/(F^(n*v)*(a + b*E^Expa
ndToSum[Log[G]*w - Log[F]*v, x])^n) Int[u*F^(n*v)*(a + b*E^ExpandToSum[Log[G]*w - Log[F]*v, x])^n, x], x] /;
FreeQ[{F, G, a, b, n}, x] && !IntegerQ[n] && LinearQ[{v, w}, x]
-
Int[(u_.)*(F_)^(v_)*(G_)^(w_), x_Symbol] :> With[{z = v*Log[F] + w*Log[G]}, Int[u*NormalizeIntegrand[E^z, x],
x] /; BinomialQ[z, x] || (PolynomialQ[z, x] && LeQ[Exponent[z, x], 2])] /; FreeQ[{F, G}, x]
-
Int[(y_.)*(F_)^(u_)*((v_) + (w_)), x_Symbol] :> With[{z = v*(y/(Log[F]*D[u, x]))}, Simp[F^u*z, x] /; EqQ[D[z,
x], w*y]] /; FreeQ[F, x]
-
Int[(F_)^(u_)*(v_)^(n_.)*(w_), x_Symbol] :> With[{z = Log[F]*v*D[u, x] + (n + 1)*D[v, x]}, Simp[(Coefficient[w
, x, Exponent[w, x]]/Coefficient[z, x, Exponent[z, x]])*F^u*v^(n + 1), x] /; EqQ[Exponent[w, x], Exponent[z, x
]] && EqQ[w*Coefficient[z, x, Exponent[z, x]], z*Coefficient[w, x, Exponent[w, x]]]] /; FreeQ[{F, n}, x] && Po
lynomialQ[u, x] && PolynomialQ[v, x] && PolynomialQ[w, x]
-
Int[((a_.) + (b_.)*(F_)^(((c_.)*Sqrt[(d_.) + (e_.)*(x_)])/Sqrt[(f_.) + (g_.)*(x_)]))^(n_.)/((A_.) + (B_.)*(x_)
+ (C_.)*(x_)^2), x_Symbol] :> Simp[2*e*(g/(C*(e*f - d*g))) Subst[Int[(a + b*F^(c*x))^n/x, x], x, Sqrt[d + e
*x]/Sqrt[f + g*x]], x] /; FreeQ[{a, b, c, d, e, f, g, A, B, C, F}, x] && EqQ[C*d*f - A*e*g, 0] && EqQ[B*e*g -
C*(e*f + d*g), 0] && IGtQ[n, 0]
-
Int[((a_.) + (b_.)*(F_)^(((c_.)*Sqrt[(d_.) + (e_.)*(x_)])/Sqrt[(f_.) + (g_.)*(x_)]))^(n_.)/((A_) + (C_.)*(x_)^
2), x_Symbol] :> Simp[2*e*(g/(C*(e*f - d*g))) Subst[Int[(a + b*F^(c*x))^n/x, x], x, Sqrt[d + e*x]/Sqrt[f + g
*x]], x] /; FreeQ[{a, b, c, d, e, f, g, A, C, F}, x] && EqQ[C*d*f - A*e*g, 0] && EqQ[e*f + d*g, 0] && IGtQ[n,
0]
-
Int[((a_.) + (b_.)*(F_)^(((c_.)*Sqrt[(d_.) + (e_.)*(x_)])/Sqrt[(f_.) + (g_.)*(x_)]))^(n_)/((A_.) + (B_.)*(x_)
+ (C_.)*(x_)^2), x_Symbol] :> Unintegrable[(a + b*F^((c*Sqrt[d + e*x])/Sqrt[f + g*x]))^n/(A + B*x + C*x^2), x]
/; FreeQ[{a, b, c, d, e, f, g, A, B, C, F, n}, x] && EqQ[C*d*f - A*e*g, 0] && EqQ[B*e*g - C*(e*f + d*g), 0] &
& !IGtQ[n, 0]
-
Int[((a_.) + (b_.)*(F_)^(((c_.)*Sqrt[(d_.) + (e_.)*(x_)])/Sqrt[(f_.) + (g_.)*(x_)]))^(n_)/((A_) + (C_.)*(x_)^2
), x_Symbol] :> Unintegrable[(a + b*F^((c*Sqrt[d + e*x])/Sqrt[f + g*x]))^n/(A + C*x^2), x] /; FreeQ[{a, b, c,
d, e, f, g, A, C, F, n}, x] && EqQ[C*d*f - A*e*g, 0] && EqQ[e*f + d*g, 0] && !IGtQ[n, 0]
-
Int[Log[(c_.)*(x_)^(n_.)], x_Symbol] :> Simp[x*Log[c*x^n], x] - Simp[n*x, x] /; FreeQ[{c, n}, x]
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.), x_Symbol] :> Simp[x*(a + b*Log[c*x^n])^p, x] - Simp[b*n*p I
nt[(a + b*Log[c*x^n])^(p - 1), x], x] /; FreeQ[{a, b, c, n}, x] && GtQ[p, 0] && IntegerQ[2*p]
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_), x_Symbol] :> Simp[x*((a + b*Log[c*x^n])^(p + 1)/(b*n*(p + 1)))
, x] - Simp[1/(b*n*(p + 1)) Int[(a + b*Log[c*x^n])^(p + 1), x], x] /; FreeQ[{a, b, c, n}, x] && LtQ[p, -1] &
& IntegerQ[2*p]
-
Int[Log[(c_.)*(x_)]^(-1), x_Symbol] :> Simp[LogIntegral[c*x]/c, x] /; FreeQ[c, x]
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_), x_Symbol] :> Simp[1/(n*c^(1/n)) Subst[Int[E^(x/n)*(a + b*x)^
p, x], x, Log[c*x^n]], x] /; FreeQ[{a, b, c, p}, x] && IntegerQ[1/n]
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_), x_Symbol] :> Simp[x/(n*(c*x^n)^(1/n)) Subst[Int[E^(x/n)*(a +
b*x)^p, x], x, Log[c*x^n]], x] /; FreeQ[{a, b, c, n, p}, x]
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))/(x_), x_Symbol] :> Simp[(a + b*Log[c*x^n])^2/(2*b*n), x] /; FreeQ[{a
, b, c, n}, x]
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)/(x_), x_Symbol] :> Simp[1/(b*n) Subst[Int[x^p, x], x, a + b*
Log[c*x^n]], x] /; FreeQ[{a, b, c, n, p}, x]
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[b*(d*x)^(m + 1)*(Log[c*x^n]/(d
*(m + 1))), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1] && EqQ[a*(m + 1) - b*n, 0]
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(d*x)^(m + 1)*((a + b*Log[c*x^
n])/(d*(m + 1))), x] - Simp[b*n*((d*x)^(m + 1)/(d*(m + 1)^2)), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1
]
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(d*x)^(m + 1)*((a + b*Lo
g[c*x^n])^p/(d*(m + 1))), x] - Simp[b*n*(p/(m + 1)) Int[(d*x)^m*(a + b*Log[c*x^n])^(p - 1), x], x] /; FreeQ[
{a, b, c, d, m, n}, x] && NeQ[m, -1] && GtQ[p, 0]
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(d*x)^(m + 1)*((a + b*Log
[c*x^n])^(p + 1)/(b*d*n*(p + 1))), x] - Simp[(m + 1)/(b*n*(p + 1)) Int[(d*x)^m*(a + b*Log[c*x^n])^(p + 1), x
], x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1] && LtQ[p, -1]
-
Int[(x_)^(m_.)/Log[(c_.)*(x_)^(n_)], x_Symbol] :> Simp[1/n Subst[Int[1/Log[c*x], x], x, x^n], x] /; FreeQ[{c
, m, n}, x] && EqQ[m, n - 1]
-
Int[((d_)*(x_))^(m_.)/Log[(c_.)*(x_)^(n_)], x_Symbol] :> Simp[(d*x)^m/x^m Int[x^m/Log[c*x^n], x], x] /; Free
Q[{c, d, m, n}, x] && EqQ[m, n - 1]
-
Int[((a_.) + Log[(c_.)*(x_)]*(b_.))^(p_)*(x_)^(m_.), x_Symbol] :> Simp[1/c^(m + 1) Subst[Int[E^((m + 1)*x)*(
a + b*x)^p, x], x, Log[c*x]], x] /; FreeQ[{a, b, c, p}, x] && IntegerQ[m]
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(d*x)^(m + 1)/(d*n*(c*x^n
)^((m + 1)/n)) Subst[Int[E^(((m + 1)/n)*x)*(a + b*x)^p, x], x, Log[c*x^n]], x] /; FreeQ[{a, b, c, d, m, n, p
}, x]
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_.)*(x_)^(q_))^(m_), x_Symbol] :> Simp[(d*x^q)^m/x^(m*q)
Int[x^(m*q)*(a + b*Log[c*x^n])^p, x], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x]
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d1_.)*(x_)^(q1_))^(m1_)*((d2_.)*(x_)^(q2_))^(m2_), x_Symbol]
:> Simp[(d1*x^q1)^m1*((d2*x^q2)^m2/x^(m1*q1 + m2*q2)) Int[x^(m1*q1 + m2*q2)*(a + b*Log[c*x^n])^p, x], x] /;
FreeQ[{a, b, c, d1, d2, m1, m2, n, p, q1, q2}, x]
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol] :> With[{u = IntHide[(d +
e*x^r)^q, x]}, Simp[(a + b*Log[c*x^n]) u, x] - Simp[b*n Int[SimplifyIntegrand[u/x, x], x], x]] /; FreeQ[{
a, b, c, d, e, n, r}, x] && IGtQ[q, 0]
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_) + (e_.)*(x_)^(r_.))^(q_), x_Symbol] :> Simp[x*(d + e*x^r)^(q +
1)*((a + b*Log[c*x^n])/d), x] - Simp[b*(n/d) Int[(d + e*x^r)^(q + 1), x], x] /; FreeQ[{a, b, c, d, e, n, q,
r}, x] && EqQ[r*(q + 1) + 1, 0]
-
Int[Log[(c_.)*(x_)]/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[(-e^(-1))*PolyLog[2, 1 - c*x], x] /; FreeQ[{c, d, e
}, x] && EqQ[e + c*d, 0]
-
Int[((a_.) + Log[(c_.)*(x_)]*(b_.))/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[(a + b*Log[(-c)*(d/e)])*(Log[d + e*
x]/e), x] + Simp[b Int[Log[(-e)*(x/d)]/(d + e*x), x], x] /; FreeQ[{a, b, c, d, e}, x] && GtQ[(-c)*(d/e), 0]
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[Log[1 + e*(x/d)]*((a +
b*Log[c*x^n])^p/e), x] - Simp[b*n*(p/e) Int[Log[1 + e*(x/d)]*((a + b*Log[c*x^n])^(p - 1)/x), x], x] /; FreeQ
[{a, b, c, d, e, n}, x] && IGtQ[p, 0]
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)/((d_) + (e_.)*(x_))^2, x_Symbol] :> Simp[x*((a + b*Log[c*x^n])
^p/(d*(d + e*x))), x] - Simp[b*n*(p/d) Int[(a + b*Log[c*x^n])^(p - 1)/(d + e*x), x], x] /; FreeQ[{a, b, c, d
, e, n, p}, x] && GtQ[p, 0]
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_) + (e_.)*(x_))^(q_.), x_Symbol] :> Simp[(d + e*x)^(q + 1)
*((a + b*Log[c*x^n])^p/(e*(q + 1))), x] - Simp[b*n*(p/(e*(q + 1))) Int[((d + e*x)^(q + 1)*(a + b*Log[c*x^n])
^(p - 1))/x, x], x] /; FreeQ[{a, b, c, d, e, n, p, q}, x] && GtQ[p, 0] && NeQ[q, -1] && (EqQ[p, 1] || (Integer
sQ[2*p, 2*q] && !IGtQ[q, 0]) || (EqQ[p, 2] && NeQ[q, 1]))
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_)*((d_) + (e_.)*(x_))^(q_.), x_Symbol] :> Simp[x*(d + e*x)^q*((a
+ b*Log[c*x^n])^(p + 1)/(b*n*(p + 1))), x] + (-Simp[(q + 1)/(b*n*(p + 1)) Int[(d + e*x)^q*(a + b*Log[c*x^n])
^(p + 1), x], x] + Simp[d*(q/(b*n*(p + 1))) Int[(d + e*x)^(q - 1)*(a + b*Log[c*x^n])^(p + 1), x], x]) /; Fre
eQ[{a, b, c, d, e, n}, x] && LtQ[p, -1] && GtQ[q, 0]
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Simp[x*(d + e*x^2)^q*((a +
b*Log[c*x^n])/(2*q + 1)), x] + (-Simp[b*(n/(2*q + 1)) Int[(d + e*x^2)^q, x], x] + Simp[2*d*(q/(2*q + 1))
Int[(d + e*x^2)^(q - 1)*(a + b*Log[c*x^n]), x], x]) /; FreeQ[{a, b, c, d, e, n}, x] && GtQ[q, 0]
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))/((d_) + (e_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[x*((a + b*Log[c*x^n])
/(d*Sqrt[d + e*x^2])), x] - Simp[b*(n/d) Int[1/Sqrt[d + e*x^2], x], x] /; FreeQ[{a, b, c, d, e, n}, x]
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Simp[(-x)*(d + e*x^2)^(q +
1)*((a + b*Log[c*x^n])/(2*d*(q + 1))), x] + (Simp[(2*q + 3)/(2*d*(q + 1)) Int[(d + e*x^2)^(q + 1)*(a + b*Log
[c*x^n]), x], x] + Simp[b*(n/(2*d*(q + 1))) Int[(d + e*x^2)^(q + 1), x], x]) /; FreeQ[{a, b, c, d, e, n}, x]
&& LtQ[q, -1]
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))/((d_) + (e_.)*(x_)^2), x_Symbol] :> With[{u = IntHide[1/(d + e*x^2),
x]}, Simp[u*(a + b*Log[c*x^n]), x] - Simp[b*n Int[u/x, x], x]] /; FreeQ[{a, b, c, d, e, n}, x]
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[e, 2]*(x/Sqr
t[d])]*((a + b*Log[c*x^n])/Rt[e, 2]), x] - Simp[b*(n/Rt[e, 2]) Int[ArcSinh[Rt[e, 2]*(x/Sqrt[d])]/x, x], x] /
; FreeQ[{a, b, c, d, e, n}, x] && GtQ[d, 0] && PosQ[e]
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[ArcSin[Rt[-e, 2]*(x/Sqr
t[d])]*((a + b*Log[c*x^n])/Rt[-e, 2]), x] - Simp[b*(n/Rt[-e, 2]) Int[ArcSin[Rt[-e, 2]*(x/Sqrt[d])]/x, x], x]
/; FreeQ[{a, b, c, d, e, n}, x] && GtQ[d, 0] && NegQ[e]
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[Sqrt[1 + (e/d)*x^2]/Sqr
t[d + e*x^2] Int[(a + b*Log[c*x^n])/Sqrt[1 + (e/d)*x^2], x], x] /; FreeQ[{a, b, c, d, e, n}, x] && !GtQ[d,
0]
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))/(Sqrt[(d1_) + (e1_.)*(x_)]*Sqrt[(d2_) + (e2_.)*(x_)]), x_Symbol] :>
Simp[Sqrt[1 + e1*(e2/(d1*d2))*x^2]/(Sqrt[d1 + e1*x]*Sqrt[d2 + e2*x]) Int[(a + b*Log[c*x^n])/Sqrt[1 + e1*(e2/
(d1*d2))*x^2], x], x] /; FreeQ[{a, b, c, d1, e1, d2, e2, n}, x] && EqQ[d2*e1 + d1*e2, 0]
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol] :> With[{u = IntHide[(d +
e*x^r)^q, x]}, Simp[(a + b*Log[c*x^n]) u, x] - Simp[b*n Int[SimplifyIntegrand[u/x, x], x], x] /; (EqQ[r,
1] && IntegerQ[q - 1/2]) || (EqQ[r, 2] && EqQ[q, -1]) || InverseFunctionFreeQ[u, x]] /; FreeQ[{a, b, c, d, e,
n, q, r}, x] && IntegerQ[2*q] && IntegerQ[r]
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol] :> With[{u = Expand
Integrand[(a + b*Log[c*x^n])^p, (d + e*x^r)^q, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c, d, e, n, p, q, r}
, x] && IntegerQ[q] && (GtQ[q, 0] || (IGtQ[p, 0] && IntegerQ[r]))
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol] :> Unintegrable[(d
+ e*x^r)^q*(a + b*Log[c*x^n])^p, x] /; FreeQ[{a, b, c, d, e, n, p, q, r}, x]
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*(u_)^(q_.), x_Symbol] :> Int[ExpandToSum[u, x]^q*(a + b*Log[c*
x^n])^p, x] /; FreeQ[{a, b, c, n, p, q}, x] && BinomialQ[u, x] && !BinomialMatchQ[u, x]
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_) + (e_.)/(x_))^(q_.)*(x_)^(m_.), x_Symbol] :> Int[(e + d*
x)^q*(a + b*Log[c*x^n])^p, x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && EqQ[m, q] && IntegerQ[q]
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(x_)^(m_.)*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol] :> With[{u = I
ntHide[x^m*(d + e*x^r)^q, x]}, Simp[u*(a + b*Log[c*x^n]), x] - Simp[b*n Int[SimplifyIntegrand[u/x, x], x], x
]] /; FreeQ[{a, b, c, d, e, n, r}, x] && IGtQ[q, 0] && IGtQ[m, 0]
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(x_)^(m_.)*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol] :> With[{u = I
ntHide[x^m*(d + e*x^r)^q, x]}, Simp[(a + b*Log[c*x^n]) u, x] - Simp[b*n Int[SimplifyIntegrand[u/x, x], x],
x]] /; FreeQ[{a, b, c, d, e, n, r}, x] && IGtQ[q, 0] && IntegerQ[m] && !(EqQ[q, 1] && EqQ[m, -1])
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(r_.))^(q_), x_Symbol] :> Simp
[(f*x)^(m + 1)*(d + e*x^r)^(q + 1)*((a + b*Log[c*x^n])/(d*f*(m + 1))), x] - Simp[b*(n/(d*(m + 1))) Int[(f*x)
^m*(d + e*x^r)^(q + 1), x], x] /; FreeQ[{a, b, c, d, e, f, m, n, q, r}, x] && EqQ[m + r*(q + 1) + 1, 0] && NeQ
[m, -1]
-
Int[((a_.) + Log[(c_.)*(x_)^(n_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(r_))^(q_.), x_Symbol] :>
Simp[f^m/n Subst[Int[(d + e*x)^q*(a + b*Log[c*x])^p, x], x, x^n], x] /; FreeQ[{a, b, c, d, e, f, m, n, q, r
}, x] && EqQ[m, r - 1] && IGtQ[p, 0] && (IntegerQ[m] || GtQ[f, 0]) && EqQ[r, n]
-
Int[(((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((f_.)*(x_))^(m_.))/((d_) + (e_.)*(x_)^(r_)), x_Symbol] :> Si
mp[f^m*Log[1 + e*(x^r/d)]*((a + b*Log[c*x^n])^p/(e*r)), x] - Simp[b*f^m*n*(p/(e*r)) Int[Log[1 + e*(x^r/d)]*(
(a + b*Log[c*x^n])^(p - 1)/x), x], x] /; FreeQ[{a, b, c, d, e, f, m, n, r}, x] && EqQ[m, r - 1] && IGtQ[p, 0]
&& (IntegerQ[m] || GtQ[f, 0]) && NeQ[r, n]
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(r_))^(q_.), x_Symbol] :
> Simp[f^m*(d + e*x^r)^(q + 1)*((a + b*Log[c*x^n])^p/(e*r*(q + 1))), x] - Simp[b*f^m*n*(p/(e*r*(q + 1))) Int
[(d + e*x^r)^(q + 1)*((a + b*Log[c*x^n])^(p - 1)/x), x], x] /; FreeQ[{a, b, c, d, e, f, m, n, q, r}, x] && EqQ
[m, r - 1] && IGtQ[p, 0] && (IntegerQ[m] || GtQ[f, 0]) && NeQ[r, n] && NeQ[q, -1]
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((f_)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(r_))^(q_.), x_Symbol] :>
Simp[(f*x)^m/x^m Int[x^m*(d + e*x^r)^q*(a + b*Log[c*x^n])^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, q, r}
, x] && EqQ[m, r - 1] && IGtQ[p, 0] && !(IntegerQ[m] || GtQ[f, 0])
-
Int[((a_.) + Log[(c_.)*(x_)^(n_)]*(b_.))/((x_)*((d_) + (e_.)*(x_)^(r_.))), x_Symbol] :> Simp[1/n Subst[Int[(
a + b*Log[c*x])/(x*(d + e*x^(r/n))), x], x, x^n], x] /; FreeQ[{a, b, c, d, e, n, r}, x] && IntegerQ[r/n]
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)/((x_)*((d_) + (e_.)*(x_)^(r_.))), x_Symbol] :> Simp[(-Log[1 +
d/(e*x^r)])*((a + b*Log[c*x^n])^p/(d*r)), x] + Simp[b*n*(p/(d*r)) Int[Log[1 + d/(e*x^r)]*((a + b*Log[c*x^n])
^(p - 1)/x), x], x] /; FreeQ[{a, b, c, d, e, n, r}, x] && IGtQ[p, 0]
-
Int[(((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*(x_)^(m_.))/((d_) + (e_.)*(x_)^(r_.)), x_Symbol] :> Simp[1/d
Int[x^m*(a + b*Log[c*x^n])^p, x], x] - Simp[e/d Int[(x^(m + r)*(a + b*Log[c*x^n])^p)/(d + e*x^r), x], x] /
; FreeQ[{a, b, c, d, e, m, n, r}, x] && IGtQ[p, 0] && IGtQ[r, 0] && ILtQ[m, -1]
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_))^(q_), x_Symbol] :> Simp
[(-(f*x)^(m + 1))*(d + e*x)^(q + 1)*((a + b*Log[c*x^n])^p/(d*f*(q + 1))), x] + Simp[b*n*(p/(d*(q + 1))) Int[
(f*x)^m*(d + e*x)^(q + 1)*(a + b*Log[c*x^n])^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, f, m, n, q}, x] && EqQ[m
+ q + 2, 0] && IGtQ[p, 0] && LtQ[q, -1]
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(x_)^(m_.)*((d_) + (e_.)*(x_))^(q_), x_Symbol] :> With[{u = IntHide[
x^m*(d + e*x)^q, x]}, Simp[(a + b*Log[c*x^n]) u, x] - Simp[b*n Int[SimplifyIntegrand[u/x, x], x], x]] /; F
reeQ[{a, b, c, d, e, n}, x] && ILtQ[m + q + 2, 0] && IGtQ[m, 0]
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_))^(q_), x_Symbol] :> Simp
[(-(f*x)^(m + 1))*(d + e*x)^(q + 1)*((a + b*Log[c*x^n])^p/(d*f*(q + 1))), x] + (Simp[(m + q + 2)/(d*(q + 1))
Int[(f*x)^m*(d + e*x)^(q + 1)*(a + b*Log[c*x^n])^p, x], x] + Simp[b*n*(p/(d*(q + 1))) Int[(f*x)^m*(d + e*x)
^(q + 1)*(a + b*Log[c*x^n])^(p - 1), x], x]) /; FreeQ[{a, b, c, d, e, f, n}, x] && ILtQ[m + q + 2, 0] && IGtQ[
p, 0] && LtQ[q, -1] && GtQ[m, 0]
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_))^(q_.), x_Symbol] :> Simp[(f*x
)^m*(d + e*x)^(q + 1)*((a + b*Log[c*x^n])/(e*(q + 1))), x] - Simp[f/(e*(q + 1)) Int[(f*x)^(m - 1)*(d + e*x)^
(q + 1)*(a*m + b*n + b*m*Log[c*x^n]), x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && ILtQ[q, -1] && GtQ[m, 0]
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Simp[(-
(f*x)^(m + 1))*(d + e*x^2)^(q + 1)*((a + b*Log[c*x^n])/(2*d*f*(q + 1))), x] + Simp[1/(2*d*(q + 1)) Int[(f*x)
^m*(d + e*x^2)^(q + 1)*(a*(m + 2*q + 3) + b*n + b*(m + 2*q + 3)*Log[c*x^n]), x], x] /; FreeQ[{a, b, c, d, e, f
, m, n}, x] && ILtQ[q, -1] && ILtQ[m, 0]
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Simp[d^IntPart[q
]*((d + e*x^2)^FracPart[q]/(1 + (e/d)*x^2)^FracPart[q]) Int[x^m*(1 + (e/d)*x^2)^q*(a + b*Log[c*x^n]), x], x]
/; FreeQ[{a, b, c, d, e, n}, x] && IntegerQ[m/2] && IntegerQ[q - 1/2] && !(LtQ[m + 2*q, -2] || GtQ[d, 0])
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(x_)^(m_.)*((d1_) + (e1_.)*(x_))^(q_)*((d2_) + (e2_.)*(x_))^(q_), x_
Symbol] :> Simp[(d1 + e1*x)^q*((d2 + e2*x)^q/(1 + e1*(e2/(d1*d2))*x^2)^q) Int[x^m*(1 + e1*(e2/(d1*d2))*x^2)^
q*(a + b*Log[c*x^n]), x], x] /; FreeQ[{a, b, c, d1, e1, d2, e2, n}, x] && EqQ[d2*e1 + d1*e2, 0] && IntegerQ[m]
&& IntegerQ[q - 1/2]
-
Int[(((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_) + (e_.)*(x_))^(q_.))/(x_), x_Symbol] :> Simp[d Int[(d
+ e*x)^(q - 1)*((a + b*Log[c*x^n])^p/x), x], x] + Simp[e Int[(d + e*x)^(q - 1)*(a + b*Log[c*x^n])^p, x], x]
/; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[p, 0] && GtQ[q, 0] && IntegerQ[2*q]
-
Int[(((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_) + (e_.)*(x_))^(q_))/(x_), x_Symbol] :> Simp[1/d Int[(
d + e*x)^(q + 1)*((a + b*Log[c*x^n])^p/x), x], x] - Simp[e/d Int[(d + e*x)^q*(a + b*Log[c*x^n])^p, x], x] /;
FreeQ[{a, b, c, d, e, n}, x] && IGtQ[p, 0] && LtQ[q, -1] && IntegerQ[2*q]
-
Int[(((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_) + (e_.)*(x_)^(r_.))^(q_.))/(x_), x_Symbol] :> With[{u = IntHi
de[(d + e*x^r)^q/x, x]}, Simp[u*(a + b*Log[c*x^n]), x] - Simp[b*n Int[1/x u, x], x]] /; FreeQ[{a, b, c, d,
e, n, r}, x] && IntegerQ[q - 1/2]
-
Int[(((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_) + (e_.)*(x_)^(r_.))^(q_))/(x_), x_Symbol] :> Simp[1/d
Int[(d + e*x^r)^(q + 1)*((a + b*Log[c*x^n])^p/x), x], x] - Simp[e/d Int[x^(r - 1)*(d + e*x^r)^q*(a + b*Log[
c*x^n])^p, x], x] /; FreeQ[{a, b, c, d, e, n, r}, x] && IGtQ[p, 0] && ILtQ[q, -1]
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol] :> Wit
h[{u = IntHide[(f*x)^m*(d + e*x^r)^q, x]}, Simp[(a + b*Log[c*x^n]) u, x] - Simp[b*n Int[SimplifyIntegrand[
u/x, x], x], x] /; ((EqQ[r, 1] || EqQ[r, 2]) && IntegerQ[m] && IntegerQ[q - 1/2]) || InverseFunctionFreeQ[u, x
]] /; FreeQ[{a, b, c, d, e, f, m, n, q, r}, x] && IntegerQ[2*q] && ((IntegerQ[m] && IntegerQ[r]) || IGtQ[q, 0]
)
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol] :> Wit
h[{u = ExpandIntegrand[a + b*Log[c*x^n], (f*x)^m*(d + e*x^r)^q, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c,
d, e, f, m, n, q, r}, x] && IntegerQ[q] && (GtQ[q, 0] || (IntegerQ[m] && IntegerQ[r]))
-
Int[((a_.) + Log[(c_.)*(x_)^(n_)]*(b_.))^(p_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol] :> Simp[1
/n Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(d + e*x^(r/n))^q*(a + b*Log[c*x])^p, x], x, x^n], x] /; FreeQ[{a,
b, c, d, e, m, n, p, q, r}, x] && IntegerQ[q] && IntegerQ[r/n] && IntegerQ[Simplify[(m + 1)/n]] && (GtQ[(m + 1
)/n, 0] || IGtQ[p, 0])
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol]
:> With[{u = ExpandIntegrand[(a + b*Log[c*x^n])^p, (f*x)^m*(d + e*x^r)^q, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[
{a, b, c, d, e, f, m, n, p, q, r}, x] && IntegerQ[q] && (GtQ[q, 0] || (IGtQ[p, 0] && IntegerQ[m] && IntegerQ[r
]))
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol]
:> Unintegrable[(f*x)^m*(d + e*x^r)^q*(a + b*Log[c*x^n])^p, x] /; FreeQ[{a, b, c, d, e, f, m, n, p, q, r}, x]
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*(u_)^(q_.)*((f_.)*(x_))^(m_.), x_Symbol] :> Int[(f*x)^m*Expand
ToSum[u, x]^q*(a + b*Log[c*x^n])^p, x] /; FreeQ[{a, b, c, f, m, n, p, q}, x] && BinomialQ[u, x] && !BinomialM
atchQ[u, x]
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_) + (e_.)*(x_))^(q_)*((f_) + (g_.)*(x_))^(m_.), x_Symbol]
:> Simp[(f + g*x)^(m + 1)*(d + e*x)^(q + 1)*((a + b*Log[c*x^n])^p/((q + 1)*(e*f - d*g))), x] - Simp[b*n*(p/((q
+ 1)*(e*f - d*g))) Int[(f + g*x)^(m + 1)*(d + e*x)^(q + 1)*((a + b*Log[c*x^n])^(p - 1)/x), x], x] /; FreeQ[
{a, b, c, d, e, f, g, m, n, q}, x] && NeQ[e*f - d*g, 0] && EqQ[m + q + 2, 0] && IGtQ[p, 0] && LtQ[q, -1]
-
Int[((A_.) + Log[(c_.)*((d_.) + (e_.)*(x_))^(n_.)]*(B_.))/Sqrt[Log[(c_.)*((d_.) + (e_.)*(x_))^(n_.)]*(b_.) + (
a_)], x_Symbol] :> Simp[B*(d + e*x)*(Sqrt[a + b*Log[c*(d + e*x)^n]]/(b*e)), x] + Simp[(2*A*b - B*(2*a + b*n))/
(2*b) Int[1/Sqrt[a + b*Log[c*(d + e*x)^n]], x], x] /; FreeQ[{a, b, c, d, e, A, B, n}, x]
-
Int[Log[(c_.)*(x_)^(n_.)]*(x_)^(m_.)*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol] :> With[{u = IntHide[x^m*(d +
e*x^r)^q, x]}, Simp[Log[c*x^n] u, x] - Simp[n Int[SimplifyIntegrand[u/x, x], x], x]] /; FreeQ[{c, d, e, n,
r}, x] && IGtQ[q, 0] && IntegerQ[m] && !(EqQ[q, 1] && EqQ[m, -1])
-
Int[(Log[(c_.)*(x_)^(n_.)]*(b_.) + (a_))*(x_)^(m_.)*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol] :> With[{u = In
tHide[x^m*(d + e*x^r)^q, x]}, Simp[(a + b*Log[c*x^n]) u, x] - Simp[b*n Int[SimplifyIntegrand[u/x, x], x],
x]] /; FreeQ[{a, b, c, d, e, n, r}, x] && IGtQ[q, 0] && IntegerQ[m] && !(EqQ[q, 1] && EqQ[m, -1])
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)/((x_)*((d_) + (e_.)*(x_))), x_Symbol] :> Simp[1/d Int[(a + b
*Log[c*x^n])^p/x, x], x] - Simp[e/d Int[(a + b*Log[c*x^n])^p/(d + e*x), x], x] /; FreeQ[{a, b, c, d, e, n},
x] && IGtQ[p, 0]
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*(Polyx_), x_Symbol] :> Int[ExpandIntegrand[Polyx*(a + b*Log[c*
x^n])^p, x], x] /; FreeQ[{a, b, c, n, p}, x] && PolynomialQ[Polyx, x]
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*(RFx_), x_Symbol] :> With[{u = ExpandIntegrand[(a + b*Log[c*x^
n])^p, RFx, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c, n}, x] && RationalFunctionQ[RFx, x] && IGtQ[p, 0]
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*(RFx_), x_Symbol] :> With[{u = ExpandIntegrand[RFx*(a + b*Log[
c*x^n])^p, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c, n}, x] && RationalFunctionQ[RFx, x] && IGtQ[p, 0]
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*(AFx_), x_Symbol] :> Unintegrable[AFx*(a + b*Log[c*x^n])^p, x]
/; FreeQ[{a, b, c, n, p}, x] && AlgebraicFunctionQ[AFx, x, True]
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*(Log[(c_.)*(x_)^(n_.)]*(e_.) + (d_))^(q_.), x_Symbol] :> Int[E
xpandIntegrand[(a + b*Log[c*x^n])^p*(d + e*Log[c*x^n])^q, x], x] /; FreeQ[{a, b, c, d, e, n}, x] && IntegerQ[p
] && IntegerQ[q]
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_.) + Log[(f_.)*(x_)^(r_.)]*(e_.)), x_Symbol] :> With[{u =
IntHide[(a + b*Log[c*x^n])^p, x]}, Simp[(d + e*Log[f*x^r]) u, x] - Simp[e*r Int[SimplifyIntegrand[u/x, x],
x], x]] /; FreeQ[{a, b, c, d, e, f, n, p, r}, x]
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_.) + Log[(f_.)*(x_)^(r_.)]*(e_.))^(q_.), x_Symbol] :> Simp
[x*(a + b*Log[c*x^n])^p*(d + e*Log[f*x^r])^q, x] + (-Simp[b*n*p Int[(a + b*Log[c*x^n])^(p - 1)*(d + e*Log[f*
x^r])^q, x], x] - Simp[e*q*r Int[(a + b*Log[c*x^n])^p*(d + e*Log[f*x^r])^(q - 1), x], x]) /; FreeQ[{a, b, c,
d, e, f, n, r}, x] && IGtQ[p, 0] && IGtQ[q, 0]
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_.) + Log[(f_.)*(x_)^(r_.)]*(e_.))^(q_.), x_Symbol] :> Unin
tegrable[(a + b*Log[c*x^n])^p*(d + e*Log[f*x^r])^q, x] /; FreeQ[{a, b, c, d, e, f, n, p, q, r}, x]
-
Int[((a_.) + Log[v_]*(b_.))^(p_.)*((c_.) + Log[v_]*(d_.))^(q_.), x_Symbol] :> Simp[1/Coeff[v, x, 1] Subst[In
t[(a + b*Log[x])^p*(c + d*Log[x])^q, x], x, v], x] /; FreeQ[{a, b, c, d, p, q}, x] && LinearQ[v, x] && NeQ[Coe
ff[v, x, 0], 0]
-
Int[(((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_.) + Log[(c_.)*(x_)^(n_.)]*(e_.))^(q_.))/(x_), x_Symbol]
:> Simp[1/n Subst[Int[(a + b*x)^p*(d + e*x)^q, x], x, Log[c*x^n]], x] /; FreeQ[{a, b, c, d, e, n, p, q}, x]
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_.) + Log[(f_.)*(x_)^(r_.)]*(e_.))*((g_.)*(x_))^(m_.), x_Sy
mbol] :> With[{u = IntHide[(g*x)^m*(a + b*Log[c*x^n])^p, x]}, Simp[(d + e*Log[f*x^r]) u, x] - Simp[e*r Int
[SimplifyIntegrand[u/x, x], x], x]] /; FreeQ[{a, b, c, d, e, f, g, m, n, p, r}, x] && !(EqQ[p, 1] && EqQ[a, 0
] && NeQ[d, 0])
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_.) + Log[(f_.)*(x_)^(r_.)]*(e_.))^(q_.)*((g_.)*(x_))^(m_.)
, x_Symbol] :> Simp[(g*x)^(m + 1)*(a + b*Log[c*x^n])^p*((d + e*Log[f*x^r])^q/(g*(m + 1))), x] + (-Simp[b*n*(p/
(m + 1)) Int[(g*x)^m*(a + b*Log[c*x^n])^(p - 1)*(d + e*Log[f*x^r])^q, x], x] - Simp[e*q*(r/(m + 1)) Int[(g
*x)^m*(a + b*Log[c*x^n])^p*(d + e*Log[f*x^r])^(q - 1), x], x]) /; FreeQ[{a, b, c, d, e, f, g, m, n, r}, x] &&
IGtQ[p, 0] && IGtQ[q, 0] && NeQ[m, -1]
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_.) + Log[(f_.)*(x_)^(r_.)]*(e_.))^(q_.)*((g_.)*(x_))^(m_.)
, x_Symbol] :> Unintegrable[(g*x)^m*(a + b*Log[c*x^n])^p*(d + e*Log[f*x^r])^q, x] /; FreeQ[{a, b, c, d, e, f,
g, m, n, p, q, r}, x]
-
Int[((a_.) + Log[v_]*(b_.))^(p_.)*((c_.) + Log[v_]*(d_.))^(q_.)*(u_)^(m_.), x_Symbol] :> With[{e = Coeff[u, x,
0], f = Coeff[u, x, 1], g = Coeff[v, x, 0], h = Coeff[v, x, 1]}, Simp[1/h Subst[Int[(f*(x/h))^m*(a + b*Log[
x])^p*(c + d*Log[x])^q, x], x, v], x] /; EqQ[f*g - e*h, 0] && NeQ[g, 0]] /; FreeQ[{a, b, c, d, m, p, q}, x] &&
LinearQ[{u, v}, x]
-
Int[Log[(d_.)*((e_) + (f_.)*(x_)^(m_.))^(r_.)]*((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.), x_Symbol] :> With[
{u = IntHide[Log[d*(e + f*x^m)^r], x]}, Simp[(a + b*Log[c*x^n])^p u, x] - Simp[b*n*p Int[(a + b*Log[c*x^n]
)^(p - 1)/x u, x], x]] /; FreeQ[{a, b, c, d, e, f, r, m, n}, x] && IGtQ[p, 0] && RationalQ[m] && (EqQ[p, 1]
|| (FractionQ[m] && IntegerQ[1/m]) || (EqQ[r, 1] && EqQ[m, 1] && EqQ[d*e, 1]))
-
Int[Log[(d_.)*((e_) + (f_.)*(x_)^(m_.))^(r_.)]*((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.), x_Symbol] :> With[
{u = IntHide[(a + b*Log[c*x^n])^p, x]}, Simp[Log[d*(e + f*x^m)^r] u, x] - Simp[f*m*r Int[x^(m - 1)/(e + f*
x^m) u, x], x]] /; FreeQ[{a, b, c, d, e, f, r, m, n}, x] && IGtQ[p, 0] && IntegerQ[m]
-
Int[Log[(d_.)*((e_) + (f_.)*(x_)^(m_.))^(r_.)]*((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.), x_Symbol] :> Unint
egrable[(a + b*Log[c*x^n])^p*Log[d*(e + f*x^m)^r], x] /; FreeQ[{a, b, c, d, e, f, r, m, n, p}, x]
-
Int[Log[(d_.)*(u_)^(r_.)]*((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.), x_Symbol] :> Int[Log[d*ExpandToSum[u, x
]^r]*(a + b*Log[c*x^n])^p, x] /; FreeQ[{a, b, c, d, r, n, p}, x] && BinomialQ[u, x] && !BinomialMatchQ[u, x]
-
Int[(Log[(d_.)*((e_) + (f_.)*(x_)^(m_.))]*((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.))/(x_), x_Symbol] :> Simp
[(-PolyLog[2, (-d)*f*x^m])*((a + b*Log[c*x^n])^p/m), x] + Simp[b*n*(p/m) Int[PolyLog[2, (-d)*f*x^m]*((a + b*
Log[c*x^n])^(p - 1)/x), x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && IGtQ[p, 0] && EqQ[d*e, 1]
-
Int[(Log[(d_.)*((e_) + (f_.)*(x_)^(m_.))^(r_.)]*((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.))/(x_), x_Symbol] :
> Simp[Log[d*(e + f*x^m)^r]*((a + b*Log[c*x^n])^(p + 1)/(b*n*(p + 1))), x] - Simp[f*m*(r/(b*n*(p + 1))) Int[
x^(m - 1)*((a + b*Log[c*x^n])^(p + 1)/(e + f*x^m)), x], x] /; FreeQ[{a, b, c, d, e, f, r, m, n}, x] && IGtQ[p,
0] && NeQ[d*e, 1]
-
Int[Log[(d_.)*((e_) + (f_.)*(x_)^(m_.))^(r_.)]*((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((g_.)*(x_))^(q_.), x_Sym
bol] :> With[{u = IntHide[(g*x)^q*Log[d*(e + f*x^m)^r], x]}, Simp[(a + b*Log[c*x^n]) u, x] - Simp[b*n Int[
1/x u, x], x]] /; FreeQ[{a, b, c, d, e, f, g, r, m, n, q}, x] && (IntegerQ[(q + 1)/m] || (RationalQ[m] && Ra
tionalQ[q])) && NeQ[q, -1]
-
Int[Log[(d_.)*((e_) + (f_.)*(x_)^(m_.))]*((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((g_.)*(x_))^(q_.), x_Sym
bol] :> With[{u = IntHide[(g*x)^q*Log[d*(e + f*x^m)], x]}, Simp[(a + b*Log[c*x^n])^p u, x] - Simp[b*n*p In
t[(a + b*Log[c*x^n])^(p - 1)/x u, x], x]] /; FreeQ[{a, b, c, d, e, f, g, m, n, q}, x] && IGtQ[p, 0] && Ratio
nalQ[m] && RationalQ[q] && NeQ[q, -1] && (EqQ[p, 1] || (FractionQ[m] && IntegerQ[(q + 1)/m]) || (IGtQ[q, 0] &&
IntegerQ[(q + 1)/m] && EqQ[d*e, 1]))
-
Int[Log[(d_.)*((e_) + (f_.)*(x_)^(m_.))^(r_.)]*((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((g_.)*(x_))^(q_.),
x_Symbol] :> With[{u = IntHide[(g*x)^q*(a + b*Log[c*x^n])^p, x]}, Simp[Log[d*(e + f*x^m)^r] u, x] - Simp[f*
m*r Int[x^(m - 1)/(e + f*x^m) u, x], x]] /; FreeQ[{a, b, c, d, e, f, g, r, m, n, q}, x] && IGtQ[p, 0] && R
ationalQ[m] && RationalQ[q]
-
Int[Log[(d_.)*((e_) + (f_.)*(x_)^(m_.))^(r_.)]*((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((g_.)*(x_))^(q_.),
x_Symbol] :> Unintegrable[(g*x)^q*(a + b*Log[c*x^n])^p*Log[d*(e + f*x^m)^r], x] /; FreeQ[{a, b, c, d, e, f, g
, r, m, n, p, q}, x]
-
Int[Log[(d_.)*(u_)^(r_.)]*((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((g_.)*(x_))^(q_.), x_Symbol] :> Int[(g*
x)^q*Log[d*ExpandToSum[u, x]^r]*(a + b*Log[c*x^n])^p, x] /; FreeQ[{a, b, c, d, g, r, n, p, q}, x] && BinomialQ
[u, x] && !BinomialMatchQ[u, x]
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*PolyLog[k_, (e_.)*(x_)^(q_.)], x_Symbol] :> Simp[(-b)*n*x*PolyLog[k,
e*x^q], x] + (Simp[x*PolyLog[k, e*x^q]*(a + b*Log[c*x^n]), x] - Simp[q Int[PolyLog[k - 1, e*x^q]*(a + b*Log
[c*x^n]), x], x] + Simp[b*n*q Int[PolyLog[k - 1, e*x^q], x], x]) /; FreeQ[{a, b, c, e, n, q}, x] && IGtQ[k,
0]
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*PolyLog[k_, (e_.)*(x_)^(q_.)], x_Symbol] :> Unintegrable[(a +
b*Log[c*x^n])^p*PolyLog[k, e*x^q], x] /; FreeQ[{a, b, c, e, n, p, q}, x]
-
Int[(((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*PolyLog[k_, (e_.)*(x_)^(q_.)])/(x_), x_Symbol] :> Simp[PolyLo
g[k + 1, e*x^q]*((a + b*Log[c*x^n])^p/q), x] - Simp[b*n*(p/q) Int[PolyLog[k + 1, e*x^q]*((a + b*Log[c*x^n])^
(p - 1)/x), x], x] /; FreeQ[{a, b, c, e, k, n, q}, x] && GtQ[p, 0]
-
Int[(((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*PolyLog[k_, (e_.)*(x_)^(q_.)])/(x_), x_Symbol] :> Simp[PolyLo
g[k, e*x^q]*((a + b*Log[c*x^n])^(p + 1)/(b*n*(p + 1))), x] - Simp[q/(b*n*(p + 1)) Int[PolyLog[k - 1, e*x^q]*
((a + b*Log[c*x^n])^(p + 1)/x), x], x] /; FreeQ[{a, b, c, e, k, n, q}, x] && LtQ[p, -1]
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_.)*(x_))^(m_.)*PolyLog[k_, (e_.)*(x_)^(q_.)], x_Symbol] :> Simp[
(-b)*n*(d*x)^(m + 1)*(PolyLog[k, e*x^q]/(d*(m + 1)^2)), x] + (Simp[(d*x)^(m + 1)*PolyLog[k, e*x^q]*((a + b*Log
[c*x^n])/(d*(m + 1))), x] - Simp[q/(m + 1) Int[(d*x)^m*PolyLog[k - 1, e*x^q]*(a + b*Log[c*x^n]), x], x] + Si
mp[b*n*(q/(m + 1)^2) Int[(d*x)^m*PolyLog[k - 1, e*x^q], x], x]) /; FreeQ[{a, b, c, d, e, m, n, q}, x] && IGt
Q[k, 0]
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_.)*(x_))^(m_.)*PolyLog[k_, (e_.)*(x_)^(q_.)], x_Symbol] :>
Unintegrable[(d*x)^m*(a + b*Log[c*x^n])^p*PolyLog[k, e*x^q], x] /; FreeQ[{a, b, c, d, e, m, n, p, q}, x]
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(Px_.)*(F_)[(d_.)*((e_.) + (f_.)*(x_))]^(m_.), x_Symbol] :> With[{u
= IntHide[Px*F[d*(e + f*x)]^m, x]}, Simp[(a + b*Log[c*x^n]) u, x] - Simp[b*n Int[1/x u, x], x]] /; FreeQ
[{a, b, c, d, e, f, n}, x] && PolynomialQ[Px, x] && IGtQ[m, 0] && MemberQ[{ArcSin, ArcCos, ArcSinh, ArcCosh},
F]
-
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(Px_.)*(F_)[(d_.)*((e_.) + (f_.)*(x_))], x_Symbol] :> With[{u = IntH
ide[Px*F[d*(e + f*x)], x]}, Simp[(a + b*Log[c*x^n]) u, x] - Simp[b*n Int[1/x u, x], x]] /; FreeQ[{a, b,
c, d, e, f, n}, x] && PolynomialQ[Px, x] && MemberQ[{ArcTan, ArcCot, ArcTanh, ArcCoth}, F]
-
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.), x_Symbol] :> Simp[1/e Subst[Int[(a + b*Log[c
*x^n])^p, x], x, d + e*x], x] /; FreeQ[{a, b, c, d, e, n, p}, x]
-
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*((f_) + (g_.)*(x_))^(q_.), x_Symbol] :> Simp[1/
e Subst[Int[(f*(x/d))^q*(a + b*Log[c*x^n])^p, x], x, d + e*x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p, q}, x
] && EqQ[e*f - d*g, 0]
-
Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))]/(x_), x_Symbol] :> Simp[-PolyLog[2, (-c)*e*x^n]/n, x] /; FreeQ[{c, d,
e, n}, x] && EqQ[c*d, 1]
-
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))]*(b_.))/(x_), x_Symbol] :> Simp[(a + b*Log[c*d])*Log[x], x] + Simp[
b Int[Log[1 + e*(x/d)]/x, x], x] /; FreeQ[{a, b, c, d, e}, x] && GtQ[c*d, 0]
-
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))]*(b_.))/((f_.) + (g_.)*(x_)), x_Symbol] :> Simp[1/g Subst[Int[(a
+ b*Log[1 + c*e*(x/g)])/x, x], x, f + g*x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[e*f - d*g, 0] && EqQ[
g + c*(e*f - d*g), 0]
-
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))/((f_.) + (g_.)*(x_)), x_Symbol] :> Simp[Log[e*((f + g
*x)/(e*f - d*g))]*((a + b*Log[c*(d + e*x)^n])/g), x] - Simp[b*e*(n/g) Int[Log[(e*(f + g*x))/(e*f - d*g)]/(d
+ e*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && NeQ[e*f - d*g, 0]
-
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))*((f_.) + (g_.)*(x_))^(q_.), x_Symbol] :> Simp[(f + g*
x)^(q + 1)*((a + b*Log[c*(d + e*x)^n])/(g*(q + 1))), x] - Simp[b*e*(n/(g*(q + 1))) Int[(f + g*x)^(q + 1)/(d
+ e*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, n, q}, x] && NeQ[e*f - d*g, 0] && NeQ[q, -1]
-
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_)/((f_.) + (g_.)*(x_)), x_Symbol] :> Simp[Log[e*((
f + g*x)/(e*f - d*g))]*((a + b*Log[c*(d + e*x)^n])^p/g), x] - Simp[b*e*n*(p/g) Int[Log[(e*(f + g*x))/(e*f -
d*g)]*((a + b*Log[c*(d + e*x)^n])^(p - 1)/(d + e*x)), x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && NeQ[e
*f - d*g, 0] && IGtQ[p, 1]
-
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_)/((f_.) + (g_.)*(x_))^2, x_Symbol] :> Simp[(d + e
*x)*((a + b*Log[c*(d + e*x)^n])^p/((e*f - d*g)*(f + g*x))), x] - Simp[b*e*n*(p/(e*f - d*g)) Int[(a + b*Log[c
*(d + e*x)^n])^(p - 1)/(f + g*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && NeQ[e*f - d*g, 0] && GtQ[p,
0]
-
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_)*((f_.) + (g_.)*(x_))^(q_.), x_Symbol] :> Simp[(f
+ g*x)^(q + 1)*((a + b*Log[c*(d + e*x)^n])^p/(g*(q + 1))), x] - Simp[b*e*n*(p/(g*(q + 1))) Int[(f + g*x)^(q
+ 1)*((a + b*Log[c*(d + e*x)^n])^(p - 1)/(d + e*x)), x], x] /; FreeQ[{a, b, c, d, e, f, g, n, q}, x] && NeQ[e
*f - d*g, 0] && GtQ[p, 0] && NeQ[q, -1] && IntegersQ[2*p, 2*q] && ( !IGtQ[q, 0] || (EqQ[p, 2] && NeQ[q, 1]))
-
Int[((f_.) + (g_.)*(x_))^(q_.)/((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.)), x_Symbol] :> Int[ExpandIn
tegrand[(f + g*x)^q/(a + b*Log[c*(d + e*x)^n]), x], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && NeQ[e*f - d*g,
0] && IGtQ[q, 0]
-
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_)*((f_.) + (g_.)*(x_))^(q_.), x_Symbol] :> Simp[(d
+ e*x)*(f + g*x)^q*((a + b*Log[c*(d + e*x)^n])^(p + 1)/(b*e*n*(p + 1))), x] + (-Simp[(q + 1)/(b*n*(p + 1))
Int[(f + g*x)^q*(a + b*Log[c*(d + e*x)^n])^(p + 1), x], x] + Simp[q*((e*f - d*g)/(b*e*n*(p + 1))) Int[(f + g
*x)^(q - 1)*(a + b*Log[c*(d + e*x)^n])^(p + 1), x], x]) /; FreeQ[{a, b, c, d, e, f, g, n}, x] && NeQ[e*f - d*g
, 0] && LtQ[p, -1] && GtQ[q, 0]
-
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_)*((f_.) + (g_.)*(x_))^(q_.), x_Symbol] :> Int[Exp
andIntegrand[(f + g*x)^q*(a + b*Log[c*(d + e*x)^n])^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && NeQ[
e*f - d*g, 0] && IGtQ[q, 0]
-
Int[Log[(c_.)/((d_) + (e_.)*(x_))]/((f_) + (g_.)*(x_)^2), x_Symbol] :> Simp[-e/g Subst[Int[Log[2*d*x]/(1 - 2
*d*x), x], x, 1/(d + e*x)], x] /; FreeQ[{c, d, e, f, g}, x] && EqQ[c, 2*d] && EqQ[e^2*f + d^2*g, 0]
-
Int[((a_.) + Log[(c_.)/((d_) + (e_.)*(x_))]*(b_.))/((f_) + (g_.)*(x_)^2), x_Symbol] :> Simp[(a + b*Log[c/(2*d)
]) Int[1/(f + g*x^2), x], x] + Simp[b Int[Log[2*(d/(d + e*x))]/(f + g*x^2), x], x] /; FreeQ[{a, b, c, d, e
, f, g}, x] && EqQ[e^2*f + d^2*g, 0] && GtQ[c/(2*d), 0]
-
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))/Sqrt[(f_) + (g_.)*(x_)^2], x_Symbol] :> With[{u = Int
Hide[1/Sqrt[f + g*x^2], x]}, Simp[u*(a + b*Log[c*(d + e*x)^n]), x] - Simp[b*e*n Int[SimplifyIntegrand[u/(d +
e*x), x], x], x]] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && GtQ[f, 0]
-
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))/(Sqrt[(f1_) + (g1_.)*(x_)]*Sqrt[(f2_) + (g2_.)*(x_)])
, x_Symbol] :> With[{u = IntHide[1/Sqrt[f1*f2 + g1*g2*x^2], x]}, Simp[u*(a + b*Log[c*(d + e*x)^n]), x] - Simp[
b*e*n Int[SimplifyIntegrand[u/(d + e*x), x], x], x]] /; FreeQ[{a, b, c, d, e, f1, g1, f2, g2, n}, x] && EqQ[
f2*g1 + f1*g2, 0] && GtQ[f1, 0] && GtQ[f2, 0]
-
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))/Sqrt[(f_) + (g_.)*(x_)^2], x_Symbol] :> Simp[Sqrt[1 +
(g/f)*x^2]/Sqrt[f + g*x^2] Int[(a + b*Log[c*(d + e*x)^n])/Sqrt[1 + (g/f)*x^2], x], x] /; FreeQ[{a, b, c, d,
e, f, g, n}, x] && !GtQ[f, 0]
-
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))/(Sqrt[(f1_) + (g1_.)*(x_)]*Sqrt[(f2_) + (g2_.)*(x_)])
, x_Symbol] :> Simp[Sqrt[1 + g1*(g2/(f1*f2))*x^2]/(Sqrt[f1 + g1*x]*Sqrt[f2 + g2*x]) Int[(a + b*Log[c*(d + e*
x)^n])/Sqrt[1 + g1*(g2/(f1*f2))*x^2], x], x] /; FreeQ[{a, b, c, d, e, f1, g1, f2, g2, n}, x] && EqQ[f2*g1 + f1
*g2, 0]
-
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*((f_.) + (g_.)*(x_)^(r_))^(q_.), x_Symbol] :> W
ith[{k = Denominator[r]}, Simp[k Subst[Int[x^(k - 1)*(f + g*x^(k*r))^q*(a + b*Log[c*(d + e*x^k)^n])^p, x], x
, x^(1/k)], x]] /; FreeQ[{a, b, c, d, e, f, g, n, p, q}, x] && FractionQ[r] && IGtQ[p, 0]
-
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*((f_) + (g_.)*(x_)^(r_))^(q_.), x_Symbol] :> In
t[ExpandIntegrand[(a + b*Log[c*(d + e*x)^n])^p, (f + g*x^r)^q, x], x] /; FreeQ[{a, b, c, d, e, f, g, n, r}, x]
&& IGtQ[p, 0] && IntegerQ[q] && (GtQ[q, 0] || (IntegerQ[r] && NeQ[r, 1]))
-
Int[(Log[(c_.)*((d_) + (e_.)*(x_))]*(x_)^(m_.))/((f_) + (g_.)*(x_)), x_Symbol] :> Int[ExpandIntegrand[Log[c*(d
+ e*x)], x^m/(f + g*x), x], x] /; FreeQ[{c, d, e, f, g}, x] && EqQ[e*f - d*g, 0] && EqQ[c*d, 1] && IntegerQ[m
]
-
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*((f_.) + (g_.)*(x_))^(q_.)*((h_.) + (i_.)*(x_))
^(r_.), x_Symbol] :> Simp[1/e Subst[Int[(g*(x/e))^q*((e*h - d*i)/e + i*(x/e))^r*(a + b*Log[c*x^n])^p, x], x,
d + e*x], x] /; FreeQ[{a, b, c, d, e, f, g, h, i, n, p, q, r}, x] && EqQ[e*f - d*g, 0] && (IGtQ[p, 0] || IGtQ
[r, 0]) && IntegerQ[2*r]
-
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*((f_) + (g_.)/(x_))^(q_.)*(x_)^(m_.), x_Symbol]
:> Int[(g + f*x)^q*(a + b*Log[c*(d + e*x)^n])^p, x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p, q}, x] && EqQ[m,
q] && IntegerQ[q]
-
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*(x_)^(m_.)*((f_.) + (g_.)*(x_)^(r_.))^(q_.), x_
Symbol] :> Simp[(f + g*x^r)^(q + 1)*((a + b*Log[c*(d + e*x)^n])^p/(g*r*(q + 1))), x] - Simp[b*e*n*(p/(g*r*(q +
1))) Int[(f + g*x^r)^(q + 1)*((a + b*Log[c*(d + e*x)^n])^(p - 1)/(d + e*x)), x], x] /; FreeQ[{a, b, c, d, e
, f, g, m, n, q, r}, x] && EqQ[m, r - 1] && NeQ[q, -1] && IGtQ[p, 0]
-
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))*(x_)^(m_.)*((f_) + (g_.)*(x_)^(r_.))^(q_.), x_Symbol]
:> With[{u = IntHide[x^m*(f + g*x^r)^q, x]}, Simp[(a + b*Log[c*(d + e*x)^n]) u, x] - Simp[b*e*n Int[Simpl
ifyIntegrand[u/(d + e*x), x], x], x] /; InverseFunctionFreeQ[u, x]] /; FreeQ[{a, b, c, d, e, f, g, m, n, q, r}
, x] && IntegerQ[m] && IntegerQ[q] && IntegerQ[r]
-
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*(x_)^(m_.)*((f_.) + (g_.)*(x_)^(r_))^(q_.), x_S
ymbol] :> With[{k = Denominator[r]}, Simp[k Subst[Int[x^(k*(m + 1) - 1)*(f + g*x^(k*r))^q*(a + b*Log[c*(d +
e*x^k)^n])^p, x], x, x^(1/k)], x]] /; FreeQ[{a, b, c, d, e, f, g, n, p, q}, x] && FractionQ[r] && IGtQ[p, 0] &
& IntegerQ[m]
-
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*((h_.)*(x_))^(m_.)*((f_) + (g_.)*(x_)^(r_.))^(q
_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*Log[c*(d + e*x)^n])^p, (h*x)^m*(f + g*x^r)^q, x], x] /; FreeQ[{a,
b, c, d, e, f, g, h, m, n, p, q, r}, x] && IntegerQ[m] && IntegerQ[q]
-
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*(Polyx_), x_Symbol] :> Int[ExpandIntegrand[Poly
x*(a + b*Log[c*(d + e*x)^n])^p, x], x] /; FreeQ[{a, b, c, d, e, n, p}, x] && PolynomialQ[Polyx, x]
-
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*(RFx_), x_Symbol] :> With[{u = ExpandIntegrand[
(a + b*Log[c*(d + e*x)^n])^p, RFx, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c, d, e, n}, x] && RationalFunct
ionQ[RFx, x] && IntegerQ[p]
-
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*(RFx_), x_Symbol] :> With[{u = ExpandIntegrand[
RFx*(a + b*Log[c*(d + e*x)^n])^p, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c, d, e, n}, x] && RationalFuncti
onQ[RFx, x] && IntegerQ[p]
-
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*(AFx_), x_Symbol] :> Unintegrable[AFx*(a + b*Lo
g[c*(d + e*x)^n])^p, x] /; FreeQ[{a, b, c, d, e, n, p}, x] && AlgebraicFunctionQ[AFx, x, True]
-
Int[((a_.) + Log[(c_.)*(v_)^(n_.)]*(b_.))^(p_.)*(u_)^(q_.), x_Symbol] :> Int[ExpandToSum[u, x]^q*(a + b*Log[c*
ExpandToSum[v, x]^n])^p, x] /; FreeQ[{a, b, c, n, p, q}, x] && BinomialQ[u, x] && LinearQ[v, x] && !(Binomial
MatchQ[u, x] && LinearMatchQ[v, x])
-
Int[Log[(f_.)*(x_)^(m_.)]*((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.)), x_Symbol] :> Simp[(-x)*(m - Lo
g[f*x^m])*(a + b*Log[c*(d + e*x)^n]), x] + (-Simp[b*e*n Int[(x*Log[f*x^m])/(d + e*x), x], x] + Simp[b*e*m*n
Int[x/(d + e*x), x], x]) /; FreeQ[{a, b, c, d, e, f, m, n}, x]
-
Int[Log[(f_.)*(x_)^(m_.)]*((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_), x_Symbol] :> With[{u = In
tHide[(a + b*Log[c*(d + e*x)^n])^p, x]}, Simp[Log[f*x^m] u, x] - Simp[m Int[1/x u, x], x]] /; FreeQ[{a,
b, c, d, e, f, m, n}, x] && IGtQ[p, 1]
-
Int[Log[(f_.)*(x_)^(m_.)]*((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.), x_Symbol] :> Unintegrabl
e[Log[f*x^m]*(a + b*Log[c*(d + e*x)^n])^p, x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x]
-
Int[(Log[(f_.)*(x_)^(m_.)]*((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.)))/(x_), x_Symbol] :> Simp[Log[f
*x^m]^2*((a + b*Log[c*(d + e*x)^n])/(2*m)), x] - Simp[b*e*(n/(2*m)) Int[Log[f*x^m]^2/(d + e*x), x], x] /; Fr
eeQ[{a, b, c, d, e, f, m, n}, x]
-
Int[Log[(f_.)*(x_)^(m_.)]*((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))*((g_.)*(x_))^(q_.), x_Symbol] :
> Simp[(-(g*(q + 1))^(-1))*(m*((g*x)^(q + 1)/(q + 1)) - (g*x)^(q + 1)*Log[f*x^m])*(a + b*Log[c*(d + e*x)^n]),
x] + (-Simp[b*e*(n/(g*(q + 1))) Int[(g*x)^(q + 1)*(Log[f*x^m]/(d + e*x)), x], x] + Simp[b*e*m*(n/(g*(q + 1)^
2)) Int[(g*x)^(q + 1)/(d + e*x), x], x]) /; FreeQ[{a, b, c, d, e, f, g, m, n, q}, x] && NeQ[q, -1]
-
Int[(Log[(f_.)*(x_)^(m_.)]*((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.))/(x_), x_Symbol] :> Simp
[Log[f*x^m]^2*((a + b*Log[c*(d + e*x)^n])^p/(2*m)), x] - Simp[b*e*n*(p/(2*m)) Int[Log[f*x^m]^2*((a + b*Log[c
*(d + e*x)^n])^(p - 1)/(d + e*x)), x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && IGtQ[p, 0]
-
Int[Log[(f_.)*(x_)^(m_.)]*((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_)*((g_.)*(x_))^(q_.), x_Symb
ol] :> With[{u = IntHide[(g*x)^q*(a + b*Log[c*(d + e*x)^n])^p, x]}, Simp[Log[f*x^m] u, x] - Simp[m Int[1/x
u, x], x]] /; FreeQ[{a, b, c, d, e, f, g, m, n, q}, x] && IGtQ[p, 1] && IGtQ[q, 0]
-
Int[Log[(f_.)*(x_)^(m_.)]*((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*((g_.)*(x_))^(q_.), x_Sym
bol] :> Unintegrable[(g*x)^q*Log[f*x^m]*(a + b*Log[c*(d + e*x)^n])^p, x] /; FreeQ[{a, b, c, d, e, f, g, m, n,
p, q}, x]
-
Int[Log[(f_.)*((g_.) + (h_.)*(x_))^(m_.)]*((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.), x_Symbol
] :> Simp[1/e Subst[Int[Log[f*(g*(x/d))^m]*(a + b*Log[c*x^n])^p, x], x, d + e*x], x] /; FreeQ[{a, b, c, d, e
, f, g, h, m, n, p}, x] && EqQ[e*f - d*g, 0]
-
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))*((f_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(g_.)),
x_Symbol] :> Simp[x*(a + b*Log[c*(d + e*x)^n])*(f + g*Log[c*(d + e*x)^n]), x] - Simp[e*n Int[(x*(b*f + a*g
+ 2*b*g*Log[c*(d + e*x)^n]))/(d + e*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x]
-
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*((f_.) + Log[(h_.)*((i_.) + (j_.)*(x_))^(m_.)]*
(g_.)), x_Symbol] :> Simp[x*(a + b*Log[c*(d + e*x)^n])^p*(f + g*Log[h*(i + j*x)^m]), x] + (-Simp[g*j*m Int[x
*((a + b*Log[c*(d + e*x)^n])^p/(i + j*x)), x], x] - Simp[b*e*n*p Int[x*(a + b*Log[c*(d + e*x)^n])^(p - 1)*((
f + g*Log[h*(i + j*x)^m])/(d + e*x)), x], x]) /; FreeQ[{a, b, c, d, e, f, g, h, i, j, m, n}, x] && IGtQ[p, 0]
-
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*((f_.) + Log[(h_.)*((i_.) + (j_.)*(x_))^(m_.)]*
(g_.))^(q_.), x_Symbol] :> Unintegrable[(a + b*Log[c*(d + e*x)^n])^p*(f + g*Log[h*(i + j*x)^m])^q, x] /; FreeQ
[{a, b, c, d, e, f, g, h, i, j, m, n, p}, x]
-
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*((f_.) + Log[(h_.)*((i_.) + (j_.)*(x_))^(m_.)]*
(g_.))*((k_.) + (l_.)*(x_))^(r_.), x_Symbol] :> Simp[1/e Subst[Int[(k*(x/d))^r*(a + b*Log[c*x^n])^p*(f + g*L
og[h*((e*i - d*j)/e + j*(x/e))^m]), x], x, d + e*x], x] /; FreeQ[{a, b, c, d, e, f, g, h, i, j, k, l, n, p, r}
, x] && EqQ[e*k - d*l, 0]
-
Int[(((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))*((f_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(g_.))
)/(x_), x_Symbol] :> Simp[Log[x]*(a + b*Log[c*(d + e*x)^n])*(f + g*Log[c*(d + e*x)^n]), x] - Simp[e*n Int[(L
og[x]*(b*f + a*g + 2*b*g*Log[c*(d + e*x)^n]))/(d + e*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x]
-
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))*((f_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(g_.))*
(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)*(a + b*Log[c*(d + e*x)^n])*((f + g*Log[c*(d + e*x)^n])/(m + 1)), x] -
Simp[e*(n/(m + 1)) Int[(x^(m + 1)*(b*f + a*g + 2*b*g*Log[c*(d + e*x)^n]))/(d + e*x), x], x] /; FreeQ[{a, b,
c, d, e, f, g, n, m}, x] && NeQ[m, -1]
-
Int[(((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))*((f_.) + Log[(h_.)*((i_.) + (j_.)*(x_))^(m_.)]*(g_.)
))/(x_), x_Symbol] :> Simp[Log[x]*(a + b*Log[c*(d + e*x)^n])*(f + g*Log[h*(i + j*x)^m]), x] + (-Simp[e*g*m I
nt[Log[x]*((a + b*Log[c*(d + e*x)^n])/(d + e*x)), x], x] - Simp[b*j*n Int[Log[x]*((f + g*Log[h*(i + j*x)^m])
/(i + j*x)), x], x]) /; FreeQ[{a, b, c, d, e, f, g, h, i, j, m, n}, x] && EqQ[e*i - d*j, 0]
-
Int[(Log[(a_) + (b_.)*(x_)]*Log[(c_) + (d_.)*(x_)])/(x_), x_Symbol] :> Simp[Log[(-b)*(x/a)]*Log[a + b*x]*Log[c
+ d*x], x] + (Simp[(1/2)*(Log[(-b)*(x/a)] - Log[(-(b*c - a*d))*(x/(a*(c + d*x)))] + Log[(b*c - a*d)/(b*(c + d
*x))])*Log[a*((c + d*x)/(c*(a + b*x)))]^2, x] - Simp[(1/2)*(Log[(-b)*(x/a)] - Log[(-d)*(x/c)])*(Log[a + b*x] +
Log[a*((c + d*x)/(c*(a + b*x)))])^2, x] + Simp[(Log[c + d*x] - Log[a*((c + d*x)/(c*(a + b*x)))])*PolyLog[2, 1
+ b*(x/a)], x] + Simp[(Log[a + b*x] + Log[a*((c + d*x)/(c*(a + b*x)))])*PolyLog[2, 1 + d*(x/c)], x] + Simp[Lo
g[a*((c + d*x)/(c*(a + b*x)))]*PolyLog[2, c*((a + b*x)/(a*(c + d*x)))], x] - Simp[Log[a*((c + d*x)/(c*(a + b*x
)))]*PolyLog[2, d*((a + b*x)/(b*(c + d*x)))], x] - Simp[PolyLog[3, 1 + b*(x/a)], x] - Simp[PolyLog[3, 1 + d*(x
/c)], x] + Simp[PolyLog[3, c*((a + b*x)/(a*(c + d*x)))], x] - Simp[PolyLog[3, d*((a + b*x)/(b*(c + d*x)))], x]
) /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0]
-
Int[(Log[v_]*Log[w_])/(x_), x_Symbol] :> Int[Log[ExpandToSum[v, x]]*(Log[ExpandToSum[w, x]]/x), x] /; LinearQ[
{v, w}, x] && !LinearMatchQ[{v, w}, x]
-
Int[(Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*Log[(h_.)*((i_.) + (j_.)*(x_))^(m_.)])/(x_), x_Symbol] :> Simp[m I
nt[Log[i + j*x]*(Log[c*(d + e*x)^n]/x), x], x] - Simp[(m*Log[i + j*x] - Log[h*(i + j*x)^m]) Int[Log[c*(d + e
*x)^n]/x, x], x] /; FreeQ[{c, d, e, h, i, j, m, n}, x] && NeQ[e*i - d*j, 0] && NeQ[i + j*x, h*(i + j*x)^m]
-
Int[(((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))*(Log[(h_.)*((i_.) + (j_.)*(x_))^(m_.)]*(g_.) + (f_))
)/(x_), x_Symbol] :> Simp[f Int[(a + b*Log[c*(d + e*x)^n])/x, x], x] + Simp[g Int[Log[h*(i + j*x)^m]*((a +
b*Log[c*(d + e*x)^n])/x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h, i, j, m, n}, x] && NeQ[e*i - d*j, 0]
-
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*((f_.) + Log[(h_.)*((i_.) + (j_.)*(x_))^(m_.)]*
(g_.))*(x_)^(r_.), x_Symbol] :> Simp[x^(r + 1)*(a + b*Log[c*(d + e*x)^n])^p*((f + g*Log[h*(i + j*x)^m])/(r + 1
)), x] + (-Simp[g*j*(m/(r + 1)) Int[x^(r + 1)*((a + b*Log[c*(d + e*x)^n])^p/(i + j*x)), x], x] - Simp[b*e*n*
(p/(r + 1)) Int[x^(r + 1)*(a + b*Log[c*(d + e*x)^n])^(p - 1)*((f + g*Log[h*(i + j*x)^m])/(d + e*x)), x], x])
/; FreeQ[{a, b, c, d, e, f, g, h, i, j, m, n}, x] && IGtQ[p, 0] && IntegerQ[r] && (EqQ[p, 1] || GtQ[r, 0]) &&
NeQ[r, -1]
-
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))*((f_.) + Log[(h_.)*((i_.) + (j_.)*(x_))^(m_.)]*(g_.))
*((k_) + (l_.)*(x_))^(r_.), x_Symbol] :> Simp[1/l Subst[Int[x^r*(a + b*Log[c*(-(e*k - d*l)/l + e*(x/l))^n])*
(f + g*Log[h*(-(j*k - i*l)/l + j*(x/l))^m]), x], x, k + l*x], x] /; FreeQ[{a, b, c, d, e, f, g, h, i, j, k, l,
m, n}, x] && IntegerQ[r]
-
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*((f_.) + Log[(h_.)*((i_.) + (j_.)*(x_))^(m_.)]*
(g_.))^(q_.)*((k_.) + (l_.)*(x_))^(r_.), x_Symbol] :> Unintegrable[(k + l*x)^r*(a + b*Log[c*(d + e*x)^n])^p*(f
+ g*Log[h*(i + j*x)^m])^q, x] /; FreeQ[{a, b, c, d, e, f, g, h, i, j, k, l, m, n, p, q, r}, x]
-
Int[(((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*PolyLog[k_, (h_) + (i_.)*(x_)])/((f_) + (g_.)*
(x_)), x_Symbol] :> Simp[1/g Subst[Int[PolyLog[k, h*(x/d)]*((a + b*Log[c*x^n])^p/x), x], x, d + e*x], x] /;
FreeQ[{a, b, c, d, e, f, g, h, i, k, n}, x] && EqQ[e*f - d*g, 0] && EqQ[g*h - f*i, 0] && IGtQ[p, 0]
-
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))*(Px_.)*(F_)[(f_.)*((g_.) + (h_.)*(x_))], x_Symbol] :>
With[{u = IntHide[Px*F[f*(g + h*x)], x]}, Simp[(a + b*Log[c*(d + e*x)^n]) u, x] - Simp[b*e*n Int[Simplify
Integrand[u/(d + e*x), x], x], x]] /; FreeQ[{a, b, c, d, e, f, g, h, n}, x] && PolynomialQ[Px, x] && MemberQ[{
ArcSin, ArcCos, ArcTan, ArcCot, ArcSinh, ArcCosh, ArcTanh, ArcCoth}, F]
-
Int[((a_.) + Log[(c_.)*(v_)^(n_.)]*(b_.))^(p_.)*(u_.), x_Symbol] :> Int[u*(a + b*Log[c*ExpandToSum[v, x]^n])^p
, x] /; FreeQ[{a, b, c, n, p}, x] && LinearQ[v, x] && !LinearMatchQ[v, x] && !(EqQ[n, 1] && MatchQ[c*v, (e_.
)*((f_) + (g_.)*x) /; FreeQ[{e, f, g}, x]])
-
Int[((a_.) + Log[(c_.)*((d_.)*((e_.) + (f_.)*(x_))^(m_.))^(n_)]*(b_.))^(p_.)*(u_.), x_Symbol] :> Subst[Int[u*(
a + b*Log[c*d^n*(e + f*x)^(m*n)])^p, x], c*d^n*(e + f*x)^(m*n), c*(d*(e + f*x)^m)^n] /; FreeQ[{a, b, c, d, e,
f, m, n, p}, x] && !IntegerQ[n] && !(EqQ[d, 1] && EqQ[m, 1]) && IntegralFreeQ[IntHide[u*(a + b*Log[c*d^n*(e
+ f*x)^(m*n)])^p, x]]
-
Int[((a_.) + Log[(c_.)*((d_.)*((e_.) + (f_.)*(x_))^(m_.))^(n_)]*(b_.))^(p_.)*(AFx_), x_Symbol] :> Unintegrable
[AFx*(a + b*Log[c*(d*(e + f*x)^m)^n])^p, x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && AlgebraicFunctionQ[AFx
, x, True]
-
Int[Log[u_]*(Pq_)^(m_.), x_Symbol] :> With[{C = FullSimplify[Pq^m*((1 - u)/D[u, x])]}, Simp[C*PolyLog[2, 1 - u
], x] /; FreeQ[C, x]] /; IntegerQ[m] && PolyQ[Pq, x] && RationalFunctionQ[u, x] && LeQ[RationalFunctionExponen
ts[u, x][[2]], Expon[Pq, x]]
-
Int[Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)], x_Symbol] :> Simp[x*Log[c*(d + e*x^n)^p], x] - Simp[e*n*p Int
[x^n/(d + e*x^n), x], x] /; FreeQ[{c, d, e, n, p}, x]
-
Int[((a_.) + Log[(c_.)*((d_) + (e_.)/(x_))^(p_.)]*(b_.))^(q_), x_Symbol] :> Simp[(e + d*x)*((a + b*Log[c*(d +
e/x)^p])^q/d), x] + Simp[b*e*p*(q/d) Int[(a + b*Log[c*(d + e/x)^p])^(q - 1)/x, x], x] /; FreeQ[{a, b, c, d,
e, p}, x] && IGtQ[q, 0]
-
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))^(q_), x_Symbol] :> Simp[x*(a + b*Log[c*(d + e*x^
n)^p])^q, x] - Simp[b*e*n*p*q Int[x^n*((a + b*Log[c*(d + e*x^n)^p])^(q - 1)/(d + e*x^n)), x], x] /; FreeQ[{a
, b, c, d, e, n, p}, x] && IGtQ[q, 0] && (EqQ[q, 1] || IntegerQ[n])
-
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))^(q_), x_Symbol] :> With[{k = Denominator[n]}, Si
mp[k Subst[Int[x^(k - 1)*(a + b*Log[c*(d + e*x^(k*n))^p])^q, x], x, x^(1/k)], x]] /; FreeQ[{a, b, c, d, e, p
, q}, x] && FractionQ[n]
-
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))^(q_), x_Symbol] :> Unintegrable[(a + b*Log[c*(d
+ e*x^n)^p])^q, x] /; FreeQ[{a, b, c, d, e, n, p, q}, x]
-
Int[((a_.) + Log[(c_.)*(v_)^(p_.)]*(b_.))^(q_.), x_Symbol] :> Int[(a + b*Log[c*ExpandToSum[v, x]^p])^q, x] /;
FreeQ[{a, b, c, p, q}, x] && BinomialQ[v, x] && !BinomialMatchQ[v, x]
-
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))^(q_.)*(x_)^(m_.), x_Symbol] :> Simp[1/n Subst[
Int[x^(Simplify[(m + 1)/n] - 1)*(a + b*Log[c*(d + e*x)^p])^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, e, m, n, p
, q}, x] && IntegerQ[Simplify[(m + 1)/n]] && (GtQ[(m + 1)/n, 0] || IGtQ[q, 0]) && !(EqQ[q, 1] && ILtQ[n, 0] &
& IGtQ[m, 0])
-
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))*((f_.)*(x_))^(m_.), x_Symbol] :> Simp[(f*x)^(m +
1)*((a + b*Log[c*(d + e*x^n)^p])/(f*(m + 1))), x] - Simp[b*e*n*(p/(f*(m + 1))) Int[x^(n - 1)*((f*x)^(m + 1)
/(d + e*x^n)), x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && NeQ[m, -1]
-
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))^(q_.)*((f_)*(x_))^(m_), x_Symbol] :> Simp[(f*x)^
m/x^m Int[x^m*(a + b*Log[c*(d + e*x^n)^p])^q, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p, q}, x] && IntegerQ
[Simplify[(m + 1)/n]] && (GtQ[(m + 1)/n, 0] || IGtQ[q, 0])
-
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))^(q_)*((f_.)*(x_))^(m_.), x_Symbol] :> Simp[(f*x)
^(m + 1)*((a + b*Log[c*(d + e*x^n)^p])^q/(f*(m + 1))), x] - Simp[b*e*n*p*(q/(f^n*(m + 1))) Int[(f*x)^(m + n)
*((a + b*Log[c*(d + e*x^n)^p])^(q - 1)/(d + e*x^n)), x], x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && IGtQ[q, 1
] && IntegerQ[n] && NeQ[m, -1]
-
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))^(q_)*(x_)^(m_.), x_Symbol] :> With[{k = Denomina
tor[n]}, Simp[k Subst[Int[x^(k*(m + 1) - 1)*(a + b*Log[c*(d + e*x^(k*n))^p])^q, x], x, x^(1/k)], x]] /; Free
Q[{a, b, c, d, e, m, p, q}, x] && FractionQ[n]
-
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))^(q_.)*((f_)*(x_))^(m_), x_Symbol] :> Simp[(f*x)^
m/x^m Int[x^m*(a + b*Log[c*(d + e*x^n)^p])^q, x], x] /; FreeQ[{a, b, c, d, e, f, m, p, q}, x] && FractionQ[n
]
-
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))^(q_.)*((f_.)*(x_))^(m_.), x_Symbol] :> Unintegra
ble[(f*x)^m*(a + b*Log[c*(d + e*x^n)^p])^q, x] /; FreeQ[{a, b, c, d, e, f, m, n, p, q}, x]
-
Int[((a_.) + Log[(c_.)*(v_)^(p_.)]*(b_.))^(q_.)*((f_.)*(x_))^(m_.), x_Symbol] :> Int[(f*x)^m*(a + b*Log[c*Expa
ndToSum[v, x]^p])^q, x] /; FreeQ[{a, b, c, f, m, p, q}, x] && BinomialQ[v, x] && !BinomialMatchQ[v, x]
-
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))/((f_.) + (g_.)*(x_)), x_Symbol] :> Simp[Log[f +
g*x]*((a + b*Log[c*(d + e*x^n)^p])/g), x] - Simp[b*e*n*(p/g) Int[x^(n - 1)*(Log[f + g*x]/(d + e*x^n)), x], x
] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && RationalQ[n]
-
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))*((f_.) + (g_.)*(x_))^(r_.), x_Symbol] :> Simp[(f
+ g*x)^(r + 1)*((a + b*Log[c*(d + e*x^n)^p])/(g*(r + 1))), x] - Simp[b*e*n*(p/(g*(r + 1))) Int[x^(n - 1)*((
f + g*x)^(r + 1)/(d + e*x^n)), x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p, r}, x] && (IGtQ[r, 0] || RationalQ[
n]) && NeQ[r, -1]
-
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))^(q_.)*((f_.) + (g_.)*(x_))^(r_.), x_Symbol] :> U
nintegrable[(f + g*x)^r*(a + b*Log[c*(d + e*x^n)^p])^q, x] /; FreeQ[{a, b, c, d, e, f, g, n, p, q, r}, x]
-
Int[((a_.) + Log[(c_.)*(v_)^(p_.)]*(b_.))^(q_.)*(u_)^(r_.), x_Symbol] :> Int[ExpandToSum[u, x]^r*(a + b*Log[c*
ExpandToSum[v, x]^p])^q, x] /; FreeQ[{a, b, c, p, q, r}, x] && LinearQ[u, x] && BinomialQ[v, x] && !(LinearMa
tchQ[u, x] && BinomialMatchQ[v, x])
-
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))^(q_.)*(x_)^(m_.)*((f_.) + (g_.)*(x_))^(r_.), x_S
ymbol] :> Int[ExpandIntegrand[(a + b*Log[c*(d + e*x^n)^p])^q, x^m*(f + g*x)^r, x], x] /; FreeQ[{a, b, c, d, e,
f, g, n, p, q}, x] && IntegerQ[m] && IntegerQ[r]
-
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))^(p_.)]*(b_.))^(q_.)*((h_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(r
_.), x_Symbol] :> With[{k = Denominator[m]}, Simp[k/h Subst[Int[x^(k*(m + 1) - 1)*(f + g*(x^k/h))^r*(a + b*L
og[c*(d + e*(x^(k*n)/h^n))^p])^q, x], x, (h*x)^(1/k)], x]] /; FreeQ[{a, b, c, d, e, f, g, h, p, r}, x] && Frac
tionQ[m] && IntegerQ[n] && IntegerQ[r]
-
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))^(q_.)*((h_.)*(x_))^(m_.)*((f_.) + (g_.)*(x_))^(r
_.), x_Symbol] :> Unintegrable[(h*x)^m*(f + g*x)^r*(a + b*Log[c*(d + e*x^n)^p])^q, x] /; FreeQ[{a, b, c, d, e,
f, g, h, m, n, p, q, r}, x]
-
Int[((a_.) + Log[(c_.)*(v_)^(p_.)]*(b_.))^(q_.)*(u_)^(r_.)*((h_.)*(x_))^(m_.), x_Symbol] :> Int[(h*x)^m*Expand
ToSum[u, x]^r*(a + b*Log[c*ExpandToSum[v, x]^p])^q, x] /; FreeQ[{a, b, c, h, m, p, q, r}, x] && LinearQ[u, x]
&& BinomialQ[v, x] && !(LinearMatchQ[u, x] && BinomialMatchQ[v, x])
-
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))/((f_) + (g_.)*(x_)^2), x_Symbol] :> With[{u = In
tHide[1/(f + g*x^2), x]}, Simp[u*(a + b*Log[c*(d + e*x^n)^p]), x] - Simp[b*e*n*p Int[u*(x^(n - 1)/(d + e*x^n
)), x], x]] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && IntegerQ[n]
-
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))^(q_.)*((f_) + (g_.)*(x_)^(s_))^(r_.), x_Symbol]
:> With[{t = ExpandIntegrand[(a + b*Log[c*(d + e*x^n)^p])^q, (f + g*x^s)^r, x]}, Int[t, x] /; SumQ[t]] /; Free
Q[{a, b, c, d, e, f, g, n, p, q, r, s}, x] && IntegerQ[n] && IGtQ[q, 0] && IntegerQ[r] && IntegerQ[s] && (EqQ[
q, 1] || (GtQ[r, 0] && GtQ[s, 1]) || (LtQ[s, 0] && LtQ[r, 0]))
-
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))^(q_.)*((f_) + (g_.)*(x_)^(s_))^(r_.), x_Symbol]
:> With[{k = Denominator[n]}, Simp[k Subst[Int[x^(k - 1)*(f + g*x^(k*s))^r*(a + b*Log[c*(d + e*x^(k*n))^p])^
q, x], x, x^(1/k)], x] /; IntegerQ[k*s]] /; FreeQ[{a, b, c, d, e, f, g, n, p, q, r, s}, x] && FractionQ[n]
-
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))^(q_.)*((f_) + (g_.)*(x_)^(s_))^(r_.), x_Symbol]
:> Unintegrable[(f + g*x^s)^r*(a + b*Log[c*(d + e*x^n)^p])^q, x] /; FreeQ[{a, b, c, d, e, f, g, n, p, q, r, s}
, x]
-
Int[((a_.) + Log[(c_.)*(v_)^(p_.)]*(b_.))^(q_.)*(u_)^(r_.), x_Symbol] :> Int[ExpandToSum[u, x]^r*(a + b*Log[c*
ExpandToSum[v, x]^p])^q, x] /; FreeQ[{a, b, c, p, q, r}, x] && BinomialQ[{u, v}, x] && !BinomialMatchQ[{u, v}
, x]
-
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))^(q_.)*(x_)^(m_.)*((f_) + (g_.)*(x_)^(s_))^(r_.),
x_Symbol] :> Simp[1/n Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(f + g*x^(s/n))^r*(a + b*Log[c*(d + e*x)^p])^q,
x], x, x^n], x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p, q, r, s}, x] && IntegerQ[r] && IntegerQ[s/n] && Integ
erQ[Simplify[(m + 1)/n]] && (GtQ[(m + 1)/n, 0] || IGtQ[q, 0])
-
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))^(q_.)*(x_)^(m_.)*((f_) + (g_.)*(x_)^(s_))^(r_.),
x_Symbol] :> Int[ExpandIntegrand[(a + b*Log[c*(d + e*x^n)^p])^q, x^m*(f + g*x^s)^r, x], x] /; FreeQ[{a, b, c,
d, e, f, g, m, n, p, q, r, s}, x] && IGtQ[q, 0] && IntegerQ[m] && IntegerQ[r] && IntegerQ[s]
-
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))^(q_.)*(x_)^(m_.)*((f_) + (g_.)*(x_)^(s_))^(r_.),
x_Symbol] :> Simp[1/n Subst[Int[x^(m + 1/n - 1)*(f + g*x^(s/n))^r*(a + b*Log[c*(d + e*x)^p])^q, x], x, x^n]
, x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p, q, r, s}, x] && FractionQ[n] && IntegerQ[1/n] && IntegerQ[s/n]
-
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_.))^(p_.)]*(b_.))^(q_.)*((h_.)*(x_))^(m_)*((f_.) + (g_.)*(x_)^(s_
.))^(r_.), x_Symbol] :> With[{k = Denominator[m]}, Simp[k/h Subst[Int[x^(k*(m + 1) - 1)*(f + g*(x^(k*s)/h^s)
)^r*(a + b*Log[c*(d + e*(x^(k*n)/h^n))^p])^q, x], x, (h*x)^(1/k)], x]] /; FreeQ[{a, b, c, d, e, f, g, h, p, r}
, x] && FractionQ[m] && IntegerQ[n] && IntegerQ[s]
-
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))^(q_.)*((h_.)*(x_))^(m_.)*((f_) + (g_.)*(x_)^(s_)
)^(r_.), x_Symbol] :> Unintegrable[(h*x)^m*(f + g*x^s)^r*(a + b*Log[c*(d + e*x^n)^p])^q, x] /; FreeQ[{a, b, c,
d, e, f, g, h, m, n, p, q, r, s}, x]
-
Int[((a_.) + Log[(c_.)*(v_)^(p_.)]*(b_.))^(q_.)*(u_)^(r_.)*((h_.)*(x_))^(m_.), x_Symbol] :> Int[(h*x)^m*Expand
ToSum[u, x]^r*(a + b*Log[c*ExpandToSum[v, x]^p])^q, x] /; FreeQ[{a, b, c, h, m, p, q, r}, x] && BinomialQ[{u,
v}, x] && !BinomialMatchQ[{u, v}, x]
-
Int[(Log[(f_.)*(x_)^(q_.)]^(m_.)*((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.)))/(x_), x_Symbol] :>
Simp[Log[f*x^q]^(m + 1)*((a + b*Log[c*(d + e*x^n)^p])/(q*(m + 1))), x] - Simp[b*e*n*(p/(q*(m + 1))) Int[x^(
n - 1)*(Log[f*x^q]^(m + 1)/(d + e*x^n)), x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p, q}, x] && NeQ[m, -1]
-
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))*(F_)[(f_.)*(x_)]^(m_.), x_Symbol] :> With[{u = I
ntHide[F[f*x]^m, x]}, Simp[(a + b*Log[c*(d + e*x^n)^p]) u, x] - Simp[b*e*n*p Int[SimplifyIntegrand[u*(x^(n
- 1)/(d + e*x^n)), x], x], x]] /; FreeQ[{a, b, c, d, e, f, p}, x] && MemberQ[{ArcSin, ArcCos, ArcSinh, ArcCos
h}, F] && IGtQ[m, 0] && IGtQ[n, 1]
-
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*((f_.) + (g_.)*(x_))^(n_))^(p_.)]*(b_.))^(q_.), x_Symbol] :> Simp[1/g S
ubst[Int[(a + b*Log[c*(d + e*x^n)^p])^q, x], x, f + g*x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && IGtQ[
q, 0] && (EqQ[q, 1] || IntegerQ[n])
-
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*((f_.) + (g_.)*(x_))^(n_))^(p_.)]*(b_.))^(q_.), x_Symbol] :> Unintegrable
[(a + b*Log[c*(d + e*(f + g*x)^n)^p])^q, x] /; FreeQ[{a, b, c, d, e, f, g, n, p, q}, x]
-
Int[((A_.) + Log[(e_.)*(((a_.) + (b_.)*(x_))/((c_.) + (d_.)*(x_)))^(n_.)]*(B_.))^(p_.), x_Symbol] :> Simp[(a +
b*x)*((A + B*Log[e*((a + b*x)/(c + d*x))^n])^p/b), x] - Simp[B*n*p*((b*c - a*d)/b) Int[(A + B*Log[e*((a + b
*x)/(c + d*x))^n])^(p - 1)/(c + d*x), x], x] /; FreeQ[{a, b, c, d, e, A, B, n}, x] && NeQ[b*c - a*d, 0] && IGt
Q[p, 0]
-
Int[((A_.) + Log[(e_.)*((a_.) + (b_.)*(x_))^(n_.)*((c_.) + (d_.)*(x_))^(mn_)]*(B_.))^(p_.), x_Symbol] :> Simp[
(a + b*x)*((A + B*Log[e*((a + b*x)^n/(c + d*x)^n)])^p/b), x] - Simp[B*n*p*((b*c - a*d)/b) Int[(A + B*Log[e*(
(a + b*x)^n/(c + d*x)^n)])^(p - 1)/(c + d*x), x], x] /; FreeQ[{a, b, c, d, e, A, B, n}, x] && EqQ[n + mn, 0] &
& NeQ[b*c - a*d, 0] && IGtQ[p, 0]
-
Int[((A_.) + Log[(e_.)*(((a_.) + (b_.)*(x_))/((c_.) + (d_.)*(x_)))^(n_.)]*(B_.))^(p_), x_Symbol] :> Unintegrab
le[(A + B*Log[e*((a + b*x)/(c + d*x))^n])^p, x] /; FreeQ[{a, b, c, d, e, A, B, n, p}, x]
-
Int[((A_.) + Log[(e_.)*((a_.) + (b_.)*(x_))^(n_.)*((c_.) + (d_.)*(x_))^(mn_)]*(B_.))^(p_), x_Symbol] :> Uninte
grable[(A + B*Log[(e*(a + b*x)^n)/(c + d*x)^n])^p, x] /; FreeQ[{a, b, c, d, e, A, B, n, p}, x] && EqQ[n + mn,
0]
-
Int[((A_.) + Log[(e_.)*((u_)/(v_))^(n_.)]*(B_.))^(p_.), x_Symbol] :> Int[(A + B*Log[e*(ExpandToSum[u, x]/Expan
dToSum[v, x])^n])^p, x] /; FreeQ[{e, A, B, n, p}, x] && LinearQ[{u, v}, x] && !LinearMatchQ[{u, v}, x]
-
Int[((A_.) + Log[(e_.)*(u_)^(n_.)*(v_)^(mn_)]*(B_.))^(p_.), x_Symbol] :> Int[(A + B*Log[e*(ExpandToSum[u, x]^n
/ExpandToSum[v, x]^n)])^p, x] /; FreeQ[{e, A, B, n, p}, x] && EqQ[n + mn, 0] && IGtQ[n, 0] && LinearQ[{u, v},
x] && !LinearMatchQ[{u, v}, x]
-
Int[((A_.) + Log[(e_.)*(((a_.) + (b_.)*(x_))/((c_.) + (d_.)*(x_)))^(n_.)]*(B_.))/((f_.) + (g_.)*(x_)), x_Symbo
l] :> Simp[(-Log[-(b*c - a*d)/(d*(a + b*x))])*((A + B*Log[e*((a + b*x)/(c + d*x))^n])/g), x] + Simp[B*n*((b*c
- a*d)/g) Int[Log[-(b*c - a*d)/(d*(a + b*x))]/((a + b*x)*(c + d*x)), x], x] /; FreeQ[{a, b, c, d, e, f, g, A
, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[b*f - a*g, 0]
-
Int[((A_.) + Log[(e_.)*((a_.) + (b_.)*(x_))^(n_.)*((c_.) + (d_.)*(x_))^(mn_)]*(B_.))/((f_.) + (g_.)*(x_)), x_S
ymbol] :> Simp[(-Log[-(b*c - a*d)/(d*(a + b*x))])*((A + B*Log[e*((a + b*x)^n/(c + d*x)^n)])/g), x] + Simp[B*n*
((b*c - a*d)/g) Int[Log[-(b*c - a*d)/(d*(a + b*x))]/((a + b*x)*(c + d*x)), x], x] /; FreeQ[{a, b, c, d, e, f
, g, A, B, n}, x] && EqQ[n + mn, 0] && NeQ[b*c - a*d, 0] && EqQ[b*f - a*g, 0]
-
Int[((A_.) + Log[(e_.)*(((a_.) + (b_.)*(x_))/((c_.) + (d_.)*(x_)))^(n_.)]*(B_.))/((f_.) + (g_.)*(x_)), x_Symbo
l] :> Simp[(-Log[(b*c - a*d)/(b*(c + d*x))])*((A + B*Log[e*((a + b*x)/(c + d*x))^n])/g), x] + Simp[B*n*((b*c -
a*d)/g) Int[Log[(b*c - a*d)/(b*(c + d*x))]/((a + b*x)*(c + d*x)), x], x] /; FreeQ[{a, b, c, d, e, f, g, A,
B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[d*f - c*g, 0]
-
Int[((A_.) + Log[(e_.)*((a_.) + (b_.)*(x_))^(n_.)*((c_.) + (d_.)*(x_))^(mn_)]*(B_.))/((f_.) + (g_.)*(x_)), x_S
ymbol] :> Simp[(-Log[(b*c - a*d)/(b*(c + d*x))])*((A + B*Log[e*((a + b*x)^n/(c + d*x)^n)])/g), x] + Simp[B*n*(
(b*c - a*d)/g) Int[Log[(b*c - a*d)/(b*(c + d*x))]/((a + b*x)*(c + d*x)), x], x] /; FreeQ[{a, b, c, d, e, f,
g, A, B, n}, x] && EqQ[n + mn, 0] && NeQ[b*c - a*d, 0] && EqQ[d*f - c*g, 0]
-
Int[((A_.) + Log[(e_.)*(((a_.) + (b_.)*(x_))/((c_.) + (d_.)*(x_)))^(n_.)]*(B_.))/((f_.) + (g_.)*(x_)), x_Symbo
l] :> Simp[Log[f + g*x]*((A + B*Log[e*((a + b*x)/(c + d*x))^n])/g), x] + (-Simp[b*B*(n/g) Int[Log[f + g*x]/(
a + b*x), x], x] + Simp[B*d*(n/g) Int[Log[f + g*x]/(c + d*x), x], x]) /; FreeQ[{a, b, c, d, e, f, g, A, B, n
}, x] && NeQ[b*c - a*d, 0]
-
Int[((A_.) + Log[(e_.)*((a_.) + (b_.)*(x_))^(n_.)*((c_.) + (d_.)*(x_))^(mn_)]*(B_.))/((f_.) + (g_.)*(x_)), x_S
ymbol] :> Simp[Log[f + g*x]*((A + B*Log[e*((a + b*x)^n/(c + d*x)^n)])/g), x] + (-Simp[b*B*(n/g) Int[Log[f +
g*x]/(a + b*x), x], x] + Simp[B*d*(n/g) Int[Log[f + g*x]/(c + d*x), x], x]) /; FreeQ[{a, b, c, d, e, f, g, A
, B, n}, x] && EqQ[n + mn, 0] && NeQ[b*c - a*d, 0]
-
Int[((A_.) + Log[(e_.)*(((a_.) + (b_.)*(x_))/((c_.) + (d_.)*(x_)))^(n_.)]*(B_.))*((f_.) + (g_.)*(x_))^(m_.), x
_Symbol] :> Simp[(f + g*x)^(m + 1)*((A + B*Log[e*((a + b*x)/(c + d*x))^n])/(g*(m + 1))), x] - Simp[B*n*((b*c -
a*d)/(g*(m + 1))) Int[(f + g*x)^(m + 1)/((a + b*x)*(c + d*x)), x], x] /; FreeQ[{a, b, c, d, e, f, g, A, B,
m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, -2]
-
Int[((A_.) + Log[(e_.)*((a_.) + (b_.)*(x_))^(n_.)*((c_.) + (d_.)*(x_))^(mn_)]*(B_.))*((f_.) + (g_.)*(x_))^(m_.
), x_Symbol] :> Simp[(f + g*x)^(m + 1)*((A + B*Log[e*((a + b*x)^n/(c + d*x)^n)])/(g*(m + 1))), x] - Simp[B*n*(
(b*c - a*d)/(g*(m + 1))) Int[(f + g*x)^(m + 1)/((a + b*x)*(c + d*x)), x], x] /; FreeQ[{a, b, c, d, e, f, g,
A, B, m, n}, x] && EqQ[n + mn, 0] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && !(EqQ[m, -2] && IntegerQ[n])
-
Int[((A_.) + Log[(e_.)*(((a_.) + (b_.)*(x_))/((c_.) + (d_.)*(x_)))^(n_.)]*(B_.))^(p_.)*((f_.) + (g_.)*(x_))^(m
_.), x_Symbol] :> Simp[(b*c - a*d)^(m + 1)*(g/b)^m Subst[Int[x^m*((A + B*Log[e*x^n])^p/(b - d*x)^(m + 2)), x
], x, (a + b*x)/(c + d*x)], x] /; FreeQ[{a, b, c, d, e, f, g, A, B, n}, x] && NeQ[b*c - a*d, 0] && IntegersQ[m
, p] && EqQ[b*f - a*g, 0] && (GtQ[p, 0] || LtQ[m, -1])
-
Int[((A_.) + Log[(e_.)*((a_.) + (b_.)*(x_))^(n_.)*((c_.) + (d_.)*(x_))^(mn_)]*(B_.))^(p_.)*((f_.) + (g_.)*(x_)
)^(m_.), x_Symbol] :> Simp[(b*c - a*d)^(m + 1)*(g/b)^m Subst[Int[x^m*((A + B*Log[e*x^n])^p/(b - d*x)^(m + 2)
), x], x, (a + b*x)/(c + d*x)], x] /; FreeQ[{a, b, c, d, e, f, g, A, B, n}, x] && EqQ[n + mn, 0] && IGtQ[n, 0]
&& NeQ[b*c - a*d, 0] && IntegersQ[m, p] && EqQ[b*f - a*g, 0] && (GtQ[p, 0] || LtQ[m, -1])
-
Int[((A_.) + Log[(e_.)*(((a_.) + (b_.)*(x_))/((c_.) + (d_.)*(x_)))^(n_.)]*(B_.))^(p_.)*((f_.) + (g_.)*(x_))^(m
_.), x_Symbol] :> Simp[(b*c - a*d)^(m + 1)*(g/d)^m Subst[Int[(A + B*Log[e*x^n])^p/(b - d*x)^(m + 2), x], x,
(a + b*x)/(c + d*x)], x] /; FreeQ[{a, b, c, d, e, f, g, A, B, n}, x] && NeQ[b*c - a*d, 0] && IntegersQ[m, p] &
& EqQ[d*f - c*g, 0] && (GtQ[p, 0] || LtQ[m, -1])
-
Int[((A_.) + Log[(e_.)*((a_.) + (b_.)*(x_))^(n_.)*((c_.) + (d_.)*(x_))^(mn_)]*(B_.))^(p_.)*((f_.) + (g_.)*(x_)
)^(m_.), x_Symbol] :> Simp[(b*c - a*d)^(m + 1)*(g/d)^m Subst[Int[(A + B*Log[e*x^n])^p/(b - d*x)^(m + 2), x],
x, (a + b*x)/(c + d*x)], x] /; FreeQ[{a, b, c, d, e, f, g, A, B, n}, x] && EqQ[n + mn, 0] && IGtQ[n, 0] && Ne
Q[b*c - a*d, 0] && IntegersQ[m, p] && EqQ[d*f - c*g, 0] && (GtQ[p, 0] || LtQ[m, -1])
-
Int[((A_.) + Log[(e_.)*(((a_.) + (b_.)*(x_))/((c_.) + (d_.)*(x_)))^(n_.)]*(B_.))^(p_.)*((f_.) + (g_.)*(x_))^(m
_.), x_Symbol] :> Simp[(b*c - a*d) Subst[Int[(b*f - a*g - (d*f - c*g)*x)^m*((A + B*Log[e*x^n])^p/(b - d*x)^(
m + 2)), x], x, (a + b*x)/(c + d*x)], x] /; FreeQ[{a, b, c, d, e, f, g, A, B, n}, x] && NeQ[b*c - a*d, 0] && I
ntegerQ[m] && IGtQ[p, 0]
-
Int[((A_.) + Log[(e_.)*((a_.) + (b_.)*(x_))^(n_.)*((c_.) + (d_.)*(x_))^(mn_)]*(B_.))^(p_.)*((f_.) + (g_.)*(x_)
)^(m_.), x_Symbol] :> Simp[(b*c - a*d) Subst[Int[(b*f - a*g - (d*f - c*g)*x)^m*((A + B*Log[e*x^n])^p/(b - d*
x)^(m + 2)), x], x, (a + b*x)/(c + d*x)], x] /; FreeQ[{a, b, c, d, e, f, g, A, B, n}, x] && EqQ[n + mn, 0] &&
IGtQ[n, 0] && NeQ[b*c - a*d, 0] && IntegerQ[m] && IGtQ[p, 0]
-
Int[((A_.) + Log[(e_.)*(((a_.) + (b_.)*(x_))/((c_.) + (d_.)*(x_)))^(n_.)]*(B_.))^(p_.)*((f_.) + (g_.)*(x_))^(m
_.), x_Symbol] :> Unintegrable[(f + g*x)^m*(A + B*Log[e*((a + b*x)/(c + d*x))^n])^p, x] /; FreeQ[{a, b, c, d,
e, f, g, A, B, m, n, p}, x]
-
Int[((A_.) + Log[(e_.)*((a_.) + (b_.)*(x_))^(n_.)*((c_.) + (d_.)*(x_))^(mn_)]*(B_.))^(p_.)*((f_.) + (g_.)*(x_)
)^(m_.), x_Symbol] :> Unintegrable[(f + g*x)^m*(A + B*Log[(e*(a + b*x)^n)/(c + d*x)^n])^p, x] /; FreeQ[{a, b,
c, d, e, f, g, A, B, m, n, p}, x] && EqQ[n + mn, 0] && IntegerQ[n]
-
Int[((A_.) + Log[(e_.)*((u_)/(v_))^(n_.)]*(B_.))^(p_.)*(w_)^(m_.), x_Symbol] :> Int[ExpandToSum[w, x]^m*(A + B
*Log[e*(ExpandToSum[u, x]/ExpandToSum[v, x])^n])^p, x] /; FreeQ[{e, A, B, m, n, p}, x] && LinearQ[{u, v, w}, x
] && !LinearMatchQ[{u, v, w}, x]
-
Int[((A_.) + Log[(e_.)*(u_)^(n_.)*(v_)^(mn_)]*(B_.))^(p_.)*(w_)^(m_.), x_Symbol] :> Int[ExpandToSum[w, x]^m*(A
+ B*Log[e*(ExpandToSum[u, x]^n/ExpandToSum[v, x]^n)])^p, x] /; FreeQ[{e, A, B, m, n, p}, x] && EqQ[n + mn, 0]
&& IGtQ[n, 0] && LinearQ[{u, v, w}, x] && !LinearMatchQ[{u, v, w}, x]
-
Int[((A_.) + Log[(e_.)*(((a_.) + (b_.)*(x_))/((c_.) + (d_.)*(x_)))^(n_.)]*(B_.))*((f_.) + (g_.)*(x_))^(m_.)*((
h_.) + (i_.)*(x_)), x_Symbol] :> Simp[(f + g*x)^(m + 1)*(h + i*x)*((A + B*Log[e*((a + b*x)/(c + d*x))^n])/(g*(
m + 2))), x] + Simp[i*((b*c - a*d)/(b*d*(m + 2))) Int[(f + g*x)^m*(A - B*n + B*Log[e*((a + b*x)/(c + d*x))^n
]), x], x] /; FreeQ[{a, b, c, d, e, f, g, h, i, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[b*f - a*g, 0] && E
qQ[d*h - c*i, 0] && IGtQ[m, -2]
-
Int[((A_.) + Log[(e_.)*((a_.) + (b_.)*(x_))^(n_.)*((c_.) + (d_.)*(x_))^(mn_)]*(B_.))*((f_.) + (g_.)*(x_))^(m_.
)*((h_.) + (i_.)*(x_)), x_Symbol] :> Simp[(f + g*x)^(m + 1)*(h + i*x)*((A + B*Log[e*((a + b*x)^n/(c + d*x)^n)]
)/(g*(m + 2))), x] + Simp[i*((b*c - a*d)/(b*d*(m + 2))) Int[(f + g*x)^m*(A - B*n + B*Log[e*((a + b*x)^n/(c +
d*x)^n)]), x], x] /; FreeQ[{a, b, c, d, e, f, g, h, i, A, B, m, n}, x] && EqQ[n + mn, 0] && IGtQ[n, 0] && NeQ
[b*c - a*d, 0] && EqQ[b*f - a*g, 0] && EqQ[d*h - c*i, 0] && IGtQ[m, -2]
-
Int[((A_.) + Log[(e_.)*(((a_.) + (b_.)*(x_))/((c_.) + (d_.)*(x_)))^(n_.)]*(B_.))^(p_.)*((f_.) + (g_.)*(x_))^(m
_.)*((h_.) + (i_.)*(x_))^(q_.), x_Symbol] :> Simp[(b*c - a*d)^(m + q + 1)*(g/b)^m*(i/d)^q Subst[Int[x^m*((A
+ B*Log[e*x^n])^p/(b - d*x)^(m + q + 2)), x], x, (a + b*x)/(c + d*x)], x] /; FreeQ[{a, b, c, d, e, f, g, h, i,
A, B, n, p}, x] && NeQ[b*c - a*d, 0] && EqQ[b*f - a*g, 0] && EqQ[d*h - c*i, 0] && IntegersQ[m, q]
-
Int[((A_.) + Log[(e_.)*((a_.) + (b_.)*(x_))^(n_.)*((c_.) + (d_.)*(x_))^(mn_)]*(B_.))^(p_.)*((f_.) + (g_.)*(x_)
)^(m_.)*((h_.) + (i_.)*(x_))^(q_.), x_Symbol] :> Simp[(b*c - a*d)^(m + q + 1)*(g/b)^m*(i/d)^q Subst[Int[x^m*
((A + B*Log[e*x^n])^p/(b - d*x)^(m + q + 2)), x], x, (a + b*x)/(c + d*x)], x] /; FreeQ[{a, b, c, d, e, f, g, h
, i, A, B, n, p}, x] && EqQ[n + mn, 0] && IGtQ[n, 0] && NeQ[b*c - a*d, 0] && EqQ[b*f - a*g, 0] && EqQ[d*h - c*
i, 0] && IntegersQ[m, q]
-
Int[((A_.) + Log[(e_.)*(((a_.) + (b_.)*(x_))/((c_.) + (d_.)*(x_)))^(n_.)]*(B_.))^(p_.)*((f_.) + (g_.)*(x_))^(m
_.)*((h_.) + (i_.)*(x_))^(q_.), x_Symbol] :> Simp[d^2*((g*((a + b*x)/b))^m/(i^2*(b*c - a*d)*(i*((c + d*x)/d))^
m*((a + b*x)/(c + d*x))^m)) Subst[Int[x^m*(A + B*Log[e*x^n])^p, x], x, (a + b*x)/(c + d*x)], x] /; FreeQ[{a,
b, c, d, e, f, g, h, i, A, B, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && EqQ[b*f - a*g, 0] && EqQ[d*h - c*i, 0]
&& EqQ[m + q + 2, 0]
-
Int[((A_.) + Log[(e_.)*((a_.) + (b_.)*(x_))^(n_.)*((c_.) + (d_.)*(x_))^(mn_)]*(B_.))^(p_.)*((f_.) + (g_.)*(x_)
)^(m_.)*((h_.) + (i_.)*(x_))^(q_.), x_Symbol] :> Simp[d^2*((g*((a + b*x)/b))^m/(i^2*(b*c - a*d)*(i*((c + d*x)/
d))^m*((a + b*x)/(c + d*x))^m)) Subst[Int[x^m*(A + B*Log[e*x^n])^p, x], x, (a + b*x)/(c + d*x)], x] /; FreeQ
[{a, b, c, d, e, f, g, h, i, A, B, m, n, p, q}, x] && EqQ[n + mn, 0] && IGtQ[n, 0] && NeQ[b*c - a*d, 0] && EqQ
[b*f - a*g, 0] && EqQ[d*h - c*i, 0] && EqQ[m + q + 2, 0]
-
Int[((A_.) + Log[(e_.)*(((a_.) + (b_.)*(x_))/((c_.) + (d_.)*(x_)))^(n_.)]*(B_.))^(p_.)*((f_.) + (g_.)*(x_))^(m
_.)*((h_.) + (i_.)*(x_))^(q_.), x_Symbol] :> Simp[(b*c - a*d)^(q + 1)*(i/d)^q Subst[Int[(b*f - a*g - (d*f -
c*g)*x)^m*((A + B*Log[e*x^n])^p/(b - d*x)^(m + q + 2)), x], x, (a + b*x)/(c + d*x)], x] /; FreeQ[{a, b, c, d,
e, f, g, h, i, A, B, n}, x] && NeQ[b*c - a*d, 0] && IntegersQ[m, q] && IGtQ[p, 0] && EqQ[d*h - c*i, 0]
-
Int[((A_.) + Log[(e_.)*((a_.) + (b_.)*(x_))^(n_.)*((c_.) + (d_.)*(x_))^(mn_)]*(B_.))^(p_.)*((f_.) + (g_.)*(x_)
)^(m_.)*((h_.) + (i_.)*(x_))^(q_.), x_Symbol] :> Simp[(b*c - a*d)^(q + 1)*(i/d)^q Subst[Int[(b*f - a*g - (d*
f - c*g)*x)^m*((A + B*Log[e*x^n])^p/(b - d*x)^(m + q + 2)), x], x, (a + b*x)/(c + d*x)], x] /; FreeQ[{a, b, c,
d, e, f, g, h, i, A, B, n}, x] && EqQ[n + mn, 0] && IGtQ[n, 0] && NeQ[b*c - a*d, 0] && IntegersQ[m, q] && IGt
Q[p, 0] && EqQ[d*h - c*i, 0]
-
Int[((A_.) + Log[(e_.)*(((a_.) + (b_.)*(x_))/((c_.) + (d_.)*(x_)))^(n_.)]*(B_.))^(p_.)*((f_.) + (g_.)*(x_))^(m
_.)*((h_.) + (i_.)*(x_))^(q_.), x_Symbol] :> Simp[(b*c - a*d) Subst[Int[(b*f - a*g - (d*f - c*g)*x)^m*(b*h -
a*i - (d*h - c*i)*x)^q*((A + B*Log[e*x^n])^p/(b - d*x)^(m + q + 2)), x], x, (a + b*x)/(c + d*x)], x] /; FreeQ
[{a, b, c, d, e, f, g, h, i, A, B, n}, x] && NeQ[b*c - a*d, 0] && IntegersQ[m, q] && IGtQ[p, 0]
-
Int[((A_.) + Log[(e_.)*((a_.) + (b_.)*(x_))^(n_.)*((c_.) + (d_.)*(x_))^(mn_)]*(B_.))^(p_.)*((f_.) + (g_.)*(x_)
)^(m_.)*((h_.) + (i_.)*(x_))^(q_.), x_Symbol] :> Simp[(b*c - a*d) Subst[Int[(b*f - a*g - (d*f - c*g)*x)^m*(b
*h - a*i - (d*h - c*i)*x)^q*((A + B*Log[e*x^n])^p/(b - d*x)^(m + q + 2)), x], x, (a + b*x)/(c + d*x)], x] /; F
reeQ[{a, b, c, d, e, f, g, h, i, A, B, n}, x] && EqQ[n + mn, 0] && IGtQ[n, 0] && NeQ[b*c - a*d, 0] && Integers
Q[m, q] && IGtQ[p, 0]
-
Int[((A_.) + Log[(e_.)*(((a_.) + (b_.)*(x_))/((c_.) + (d_.)*(x_)))^(n_.)]*(B_.))^(p_.)*((f_.) + (g_.)*(x_))^(m
_.)*((h_.) + (i_.)*(x_))^(q_.), x_Symbol] :> Unintegrable[(f + g*x)^m*(h + i*x)^q*(A + B*Log[e*((a + b*x)/(c +
d*x))^n])^p, x] /; FreeQ[{a, b, c, d, e, f, g, h, i, A, B, m, n, p, q}, x]
-
Int[((A_.) + Log[(e_.)*((a_.) + (b_.)*(x_))^(n_.)*((c_.) + (d_.)*(x_))^(mn_)]*(B_.))^(p_.)*((f_.) + (g_.)*(x_)
)^(m_.)*((h_.) + (i_.)*(x_))^(q_.), x_Symbol] :> Unintegrable[(f + g*x)^m*(h + i*x)^q*(A + B*Log[(e*(a + b*x)^
n)/(c + d*x)^n])^p, x] /; FreeQ[{a, b, c, d, e, f, g, h, i, A, B, m, n, p, q}, x] && EqQ[n + mn, 0] && Integer
Q[n]
-
Int[((A_.) + Log[(e_.)*((u_)/(v_))^(n_.)]*(B_.))^(p_.)*(w_)^(m_.)*(y_)^(q_.), x_Symbol] :> Int[ExpandToSum[w,
x]^m*ExpandToSum[y, x]^q*(A + B*Log[e*(ExpandToSum[u, x]/ExpandToSum[v, x])^n])^p, x] /; FreeQ[{e, A, B, m, n,
p, q}, x] && LinearQ[{u, v, w, y}, x] && !LinearMatchQ[{u, v, w, y}, x]
-
Int[((A_.) + Log[(e_.)*(u_)^(n_.)*(v_)^(mn_)]*(B_.))^(p_.)*(w_)^(m_.)*(y_)^(q_.), x_Symbol] :> Int[ExpandToSum
[w, x]^m*ExpandToSum[y, x]^q*(A + B*Log[e*(ExpandToSum[u, x]^n/ExpandToSum[v, x]^n)])^p, x] /; FreeQ[{e, A, B,
m, n, p, q}, x] && EqQ[n + mn, 0] && IGtQ[n, 0] && LinearQ[{u, v, w, y}, x] && !LinearMatchQ[{u, v, w, y}, x
]
-
Int[((A_.) + Log[(e_.)*(u_)^(n_.)*(v_)^(mn_)]*(B_.))^(p_.)*(w_.), x_Symbol] :> Subst[Int[w*(A + B*Log[e*(u/v)^
n])^p, x], e*(u/v)^n, e*(u^n/v^n)] /; FreeQ[{e, A, B, n, p}, x] && EqQ[n + mn, 0] && LinearQ[{u, v}, x] && !I
ntegerQ[n]
-
Int[((A_.) + Log[(e_.)*(((a_.) + (b_.)*(x_))/((c_.) + (d_.)*(x_)))^(n_.)]*(B_.))^(p_.)*((f_.) + (g_.)*(x_) + (
h_.)*(x_)^2)^(m_.), x_Symbol] :> Simp[h^m/(b^m*d^m) Int[(a + b*x)^m*(c + d*x)^m*(A + B*Log[e*((a + b*x)/(c +
d*x))^n])^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, A, B, n, p}, x] && EqQ[b*d*f - a*c*h, 0] && EqQ[b*d*g -
h*(b*c + a*d), 0] && IntegerQ[m]
-
Int[((A_.) + Log[(e_.)*((a_.) + (b_.)*(x_))^(n_.)*((c_.) + (d_.)*(x_))^(mn_)]*(B_.))^(p_.)*((f_.) + (g_.)*(x_)
+ (h_.)*(x_)^2)^(m_.), x_Symbol] :> Simp[h^m/(b^m*d^m) Int[(a + b*x)^m*(c + d*x)^m*(A + B*Log[e*((a + b*x)^
n/(c + d*x)^n)])^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, A, B, n, p}, x] && EqQ[n + mn, 0] && IGtQ[n, 0] &
& EqQ[b*d*f - a*c*h, 0] && EqQ[b*d*g - h*(b*c + a*d), 0] && IntegerQ[m]
-
Int[((A_.) + Log[(e_.)*(((a_.) + (b_.)*(x_))/((c_.) + (d_.)*(x_)))^(n_.)]*(B_.))^(p_.)*(P2x_)^(m_.), x_Symbol]
:> With[{f = Coeff[P2x, x, 0], g = Coeff[P2x, x, 1], h = Coeff[P2x, x, 2]}, Simp[(b*c - a*d) Subst[Int[(b^2
*f - a*b*g + a^2*h - (2*b*d*f - b*c*g - a*d*g + 2*a*c*h)*x + (d^2*f - c*d*g + c^2*h)*x^2)^m*((A + B*Log[e*x^n]
)^p/(b - d*x)^(2*(m + 1))), x], x, (a + b*x)/(c + d*x)], x]] /; FreeQ[{a, b, c, d, e, A, B, n}, x] && PolyQ[P2
x, x, 2] && NeQ[b*c - a*d, 0] && IntegerQ[m] && IGtQ[p, 0]
-
Int[((A_.) + Log[(e_.)*((a_.) + (b_.)*(x_))^(n_.)*((c_.) + (d_.)*(x_))^(mn_)]*(B_.))^(p_.)*(P2x_)^(m_.), x_Sym
bol] :> With[{f = Coeff[P2x, x, 0], g = Coeff[P2x, x, 1], h = Coeff[P2x, x, 2]}, Simp[(b*c - a*d) Subst[Int[
(b^2*f - a*b*g + a^2*h - (2*b*d*f - b*c*g - a*d*g + 2*a*c*h)*x + (d^2*f - c*d*g + c^2*h)*x^2)^m*((A + B*Log[e*
x^n])^p/(b - d*x)^(2*(m + 1))), x], x, (a + b*x)/(c + d*x)], x]] /; FreeQ[{a, b, c, d, e, A, B, n}, x] && Poly
Q[P2x, x, 2] && EqQ[n + mn, 0] && IGtQ[n, 0] && NeQ[b*c - a*d, 0] && IntegerQ[m] && IGtQ[p, 0]
-
Int[Log[(e_.)*((f_.)*((a_.) + (b_.)*(x_))^(p_.)*((c_.) + (d_.)*(x_))^(q_.))^(r_.)]^(s_.)*(u_.), x_Symbol] :> I
nt[u*Log[e*(b^p*(f/d^p)*(c + d*x)^(p + q))^r]^s, x] /; FreeQ[{a, b, c, d, e, f, p, q, r, s}, x] && EqQ[b*c - a
*d, 0] && IntegerQ[p]
-
Int[Log[(e_.)*((f_.)*((a_.) + (b_.)*(x_))^(p_.)*((c_.) + (d_.)*(x_))^(q_.))^(r_.)]^(s_.), x_Symbol] :> Simp[(a
+ b*x)*(Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r]^s/b), x] + (Simp[q*r*s*((b*c - a*d)/b) Int[Log[e*(f*(a + b*x)^
p*(c + d*x)^q)^r]^(s - 1)/(c + d*x), x], x] - Simp[r*s*(p + q) Int[Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r]^(s -
1), x], x]) /; FreeQ[{a, b, c, d, e, f, p, q, r, s}, x] && NeQ[b*c - a*d, 0] && NeQ[p + q, 0] && IGtQ[s, 0] &
& LtQ[s, 4]
-
Int[Log[(e_.)*((f_.)*((a_.) + (b_.)*(x_))^(p_.)*((c_.) + (d_.)*(x_))^(q_.))^(r_.)]/((g_.) + (h_.)*(x_)), x_Sym
bol] :> Simp[Log[g + h*x]*(Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r]/h), x] + (-Simp[b*p*(r/h) Int[Log[g + h*x]/(
a + b*x), x], x] - Simp[d*q*(r/h) Int[Log[g + h*x]/(c + d*x), x], x]) /; FreeQ[{a, b, c, d, e, f, g, h, p, q
, r}, x] && NeQ[b*c - a*d, 0]
-
Int[Log[(e_.)*((f_.)*((a_.) + (b_.)*(x_))^(p_.)*((c_.) + (d_.)*(x_))^(q_.))^(r_.)]*((g_.) + (h_.)*(x_))^(m_.),
x_Symbol] :> Simp[(g + h*x)^(m + 1)*(Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r]/(h*(m + 1))), x] + (-Simp[b*p*(r/(h
*(m + 1))) Int[(g + h*x)^(m + 1)/(a + b*x), x], x] - Simp[d*q*(r/(h*(m + 1))) Int[(g + h*x)^(m + 1)/(c + d
*x), x], x]) /; FreeQ[{a, b, c, d, e, f, g, h, m, p, q, r}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1]
-
Int[Log[(e_.)*((f_.)*((a_.) + (b_.)*(x_))^(p_.)*((c_.) + (d_.)*(x_))^(q_.))^(r_.)]^2/((g_.) + (h_.)*(x_)), x_S
ymbol] :> Int[(Log[(a + b*x)^(p*r)] + Log[(c + d*x)^(q*r)])^2/(g + h*x), x] + Simp[(Log[e*(f*(a + b*x)^p*(c +
d*x)^q)^r] - Log[(a + b*x)^(p*r)] - Log[(c + d*x)^(q*r)])*(2 Int[Log[(c + d*x)^(q*r)]/(g + h*x), x] + Int[(L
og[(a + b*x)^(p*r)] - Log[(c + d*x)^(q*r)] + Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r])/(g + h*x), x]), x] /; FreeQ
[{a, b, c, d, e, f, g, h, p, q, r}, x] && NeQ[b*c - a*d, 0] && EqQ[b*g - a*h, 0]
-
Int[Log[(e_.)*((f_.)*((a_.) + (b_.)*(x_))^(p_.)*((c_.) + (d_.)*(x_))^(q_.))^(r_.)]^2/((g_.) + (h_.)*(x_)), x_S
ymbol] :> Simp[Log[g + h*x]*(Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r]^2/h), x] + (-Simp[2*b*p*(r/h) Int[Log[g +
h*x]*(Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r]/(a + b*x)), x], x] - Simp[2*d*q*(r/h) Int[Log[g + h*x]*(Log[e*(f*
(a + b*x)^p*(c + d*x)^q)^r]/(c + d*x)), x], x]) /; FreeQ[{a, b, c, d, e, f, g, h, p, q, r}, x] && NeQ[b*c - a*
d, 0]
-
Int[Log[(e_.)*((f_.)*((a_.) + (b_.)*(x_))^(p_.)*((c_.) + (d_.)*(x_))^(q_.))^(r_.)]^(s_)*((g_.) + (h_.)*(x_))^(
m_.), x_Symbol] :> Simp[(g + h*x)^(m + 1)*(Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r]^s/(h*(m + 1))), x] + (-Simp[b*
p*r*(s/(h*(m + 1))) Int[(g + h*x)^(m + 1)*(Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r]^(s - 1)/(a + b*x)), x], x] -
Simp[d*q*r*(s/(h*(m + 1))) Int[(g + h*x)^(m + 1)*(Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r]^(s - 1)/(c + d*x)),
x], x]) /; FreeQ[{a, b, c, d, e, f, g, h, m, p, q, r, s}, x] && NeQ[b*c - a*d, 0] && IGtQ[s, 0] && NeQ[m, -1]
-
Int[(Log[(e_.)*((f_.)*((a_.) + (b_.)*(x_))^(p_.)*((c_.) + (d_.)*(x_))^(q_.))^(r_.)]*((s_.) + Log[(i_.)*((g_.)
+ (h_.)*(x_))^(n_.)]*(t_.))^(m_.))/((j_.) + (k_.)*(x_)), x_Symbol] :> Simp[(s + t*Log[i*(g + h*x)^n])^(m + 1)*
(Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r]/(k*n*t*(m + 1))), x] + (-Simp[b*p*(r/(k*n*t*(m + 1))) Int[(s + t*Log[i
*(g + h*x)^n])^(m + 1)/(a + b*x), x], x] - Simp[d*q*(r/(k*n*t*(m + 1))) Int[(s + t*Log[i*(g + h*x)^n])^(m +
1)/(c + d*x), x], x]) /; FreeQ[{a, b, c, d, e, f, g, h, i, j, k, s, t, m, n, p, q, r}, x] && NeQ[b*c - a*d, 0]
&& EqQ[h*j - g*k, 0] && IGtQ[m, 0]
-
Int[(Log[(e_.)*((f_.)*((a_.) + (b_.)*(x_))^(p_.)*((c_.) + (d_.)*(x_))^(q_.))^(r_.)]*((s_.) + Log[(i_.)*((g_.)
+ (h_.)*(x_))^(n_.)]*(t_.)))/((j_.) + (k_.)*(x_)), x_Symbol] :> Simp[(Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r] - L
og[(a + b*x)^(p*r)] - Log[(c + d*x)^(q*r)]) Int[(s + t*Log[i*(g + h*x)^n])/(j + k*x), x], x] + (Int[(Log[(a
+ b*x)^(p*r)]*(s + t*Log[i*(g + h*x)^n]))/(j + k*x), x] + Int[(Log[(c + d*x)^(q*r)]*(s + t*Log[i*(g + h*x)^n])
)/(j + k*x), x]) /; FreeQ[{a, b, c, d, e, f, g, h, i, j, k, s, t, n, p, q, r}, x] && NeQ[b*c - a*d, 0]
-
Int[(Log[(e_.)*((f_.)*((a_.) + (b_.)*(x_))^(p_.)*((c_.) + (d_.)*(x_))^(q_.))^(r_.)]^(u_.)*((s_.) + Log[(i_.)*(
(g_.) + (h_.)*(x_))^(n_.)]*(t_.))^(m_.))/((j_.) + (k_.)*(x_)), x_Symbol] :> Unintegrable[(Log[e*(f*(a + b*x)^p
*(c + d*x)^q)^r]^u*(s + t*Log[i*(g + h*x)^n])^m)/(j + k*x), x] /; FreeQ[{a, b, c, d, e, f, g, h, i, j, k, s, t
, m, n, p, q, r, u}, x] && NeQ[b*c - a*d, 0]
-
Int[Log[v_]*Log[(e_.)*((f_.)*((a_.) + (b_.)*(x_))^(p_.)*((c_.) + (d_.)*(x_))^(q_.))^(r_.)]^(s_.)*(u_), x_Symbo
l] :> With[{g = Simplify[(v - 1)*((c + d*x)/(a + b*x))], h = Simplify[u*(a + b*x)*(c + d*x)]}, Simp[(-h)*PolyL
og[2, 1 - v]*(Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r]^s/(b*c - a*d)), x] + Simp[h*p*r*s Int[PolyLog[2, 1 - v]*(
Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r]^(s - 1)/((a + b*x)*(c + d*x))), x], x] /; FreeQ[{g, h}, x]] /; FreeQ[{a,
b, c, d, e, f, p, q, r, s}, x] && NeQ[b*c - a*d, 0] && IGtQ[s, 0] && EqQ[p + q, 0]
-
Int[Log[(e_.)*((f_.)*((a_.) + (b_.)*(x_))^(p_.)*((c_.) + (d_.)*(x_))^(q_.))^(r_.)]^(s_.)*Log[(i_.)*((j_.)*((g_
.) + (h_.)*(x_))^(t_.))^(u_.)]*(v_), x_Symbol] :> With[{k = Simplify[v*(a + b*x)*(c + d*x)]}, Simp[k*Log[i*(j*
(g + h*x)^t)^u]*(Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r]^(s + 1)/(p*r*(s + 1)*(b*c - a*d))), x] - Simp[k*h*t*(u/(
p*r*(s + 1)*(b*c - a*d))) Int[Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r]^(s + 1)/(g + h*x), x], x] /; FreeQ[k, x]]
/; FreeQ[{a, b, c, d, e, f, g, h, i, j, p, q, r, s, t, u}, x] && NeQ[b*c - a*d, 0] && EqQ[p + q, 0] && NeQ[s,
-1]
-
Int[Log[(e_.)*((f_.)*((a_.) + (b_.)*(x_))^(p_.)*((c_.) + (d_.)*(x_))^(q_.))^(r_.)]^(s_.)*(u_)*PolyLog[n_, v_],
x_Symbol] :> With[{g = Simplify[v*((c + d*x)/(a + b*x))], h = Simplify[u*(a + b*x)*(c + d*x)]}, Simp[h*PolyLo
g[n + 1, v]*(Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r]^s/(b*c - a*d)), x] - Simp[h*p*r*s Int[PolyLog[n + 1, v]*(L
og[e*(f*(a + b*x)^p*(c + d*x)^q)^r]^(s - 1)/((a + b*x)*(c + d*x))), x], x] /; FreeQ[{g, h}, x]] /; FreeQ[{a, b
, c, d, e, f, n, p, q, r, s}, x] && NeQ[b*c - a*d, 0] && IGtQ[s, 0] && EqQ[p + q, 0]
-
Int[((a_.) + Log[((c_.)*Sqrt[(d_.) + (e_.)*(x_)])/Sqrt[(f_.) + (g_.)*(x_)]]*(b_.))^(n_.)/((A_.) + (B_.)*(x_) +
(C_.)*(x_)^2), x_Symbol] :> Simp[2*e*(g/(C*(e*f - d*g))) Subst[Int[(a + b*Log[c*x])^n/x, x], x, Sqrt[d + e*
x]/Sqrt[f + g*x]], x] /; FreeQ[{a, b, c, d, e, f, g, A, B, C, n}, x] && EqQ[C*d*f - A*e*g, 0] && EqQ[B*e*g - C
*(e*f + d*g), 0]
-
Int[((a_.) + Log[((c_.)*Sqrt[(d_.) + (e_.)*(x_)])/Sqrt[(f_.) + (g_.)*(x_)]]*(b_.))^(n_.)/((A_.) + (C_.)*(x_)^2
), x_Symbol] :> Simp[g/(C*f) Subst[Int[(a + b*Log[c*x])^n/x, x], x, Sqrt[d + e*x]/Sqrt[f + g*x]], x] /; Free
Q[{a, b, c, d, e, f, g, A, C, n}, x] && EqQ[C*d*f - A*e*g, 0] && EqQ[e*f + d*g, 0]
-
Int[Log[(e_.)*((f_.)*((a_.) + (b_.)*(x_))^(p_.)*((c_.) + (d_.)*(x_))^(q_.))^(r_.)]*(RFx_.), x_Symbol] :> Simp[
p*r Int[RFx*Log[a + b*x], x], x] + (Simp[q*r Int[RFx*Log[c + d*x], x], x] - Simp[(p*r*Log[a + b*x] + q*r*L
og[c + d*x] - Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r]) Int[RFx, x], x]) /; FreeQ[{a, b, c, d, e, f, p, q, r}, x
] && RationalFunctionQ[RFx, x] && NeQ[b*c - a*d, 0] && !MatchQ[RFx, (u_.)*(a + b*x)^(m_.)*(c + d*x)^(n_.) /;
IntegersQ[m, n]]
-
Int[Log[(e_.)*((f_.)*((a_.) + (b_.)*(x_))^(p_.)*((c_.) + (d_.)*(x_))^(q_.))^(r_.)]^(s_.)*(RFx_), x_Symbol] :>
With[{u = ExpandIntegrand[Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r]^s, RFx, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a,
b, c, d, e, f, p, q, r, s}, x] && RationalFunctionQ[RFx, x] && IGtQ[s, 0]
-
Int[Log[(e_.)*((f_.)*((a_.) + (b_.)*(x_))^(p_.)*((c_.) + (d_.)*(x_))^(q_.))^(r_.)]^(s_.)*(RFx_), x_Symbol] :>
Unintegrable[RFx*Log[e*(f*(a + b*x)^p*(c + d*x)^q)^r]^s, x] /; FreeQ[{a, b, c, d, e, f, p, q, r, s}, x] && Rat
ionalFunctionQ[RFx, x]
-
Int[Log[(e_.)*((f_.)*(v_)^(p_.)*(w_)^(q_.))^(r_.)]^(s_.)*(u_.), x_Symbol] :> Int[u*Log[e*(f*ExpandToSum[v, x]^
p*ExpandToSum[w, x]^q)^r]^s, x] /; FreeQ[{e, f, p, q, r, s}, x] && LinearQ[{v, w}, x] && !LinearMatchQ[{v, w}
, x] && AlgebraicFunctionQ[u, x]
-
Int[Log[(e_.)*((f_.)*((g_) + (v_.)/(w_)))^(r_.)]^(s_.)*(u_.), x_Symbol] :> Int[u*Log[e*(f*(ExpandToSum[v + g*w
, x]/ExpandToSum[w, x]))^r]^s, x] /; FreeQ[{e, f, g, r, s}, x] && LinearQ[w, x] && (FreeQ[v, x] || LinearQ[v,
x]) && AlgebraicFunctionQ[u, x]
-
Int[Log[v_]*(u_), x_Symbol] :> With[{w = DerivativeDivides[v, u*(1 - v), x]}, Simp[w*PolyLog[2, 1 - v], x] /;
!FalseQ[w]]
-
Int[Log[v_]*((a_.) + Log[u_]*(b_.))*(w_), x_Symbol] :> With[{z = DerivativeDivides[v, w*(1 - v), x]}, Simp[z*(
a + b*Log[u])*PolyLog[2, 1 - v], x] - Simp[b Int[SimplifyIntegrand[z*PolyLog[2, 1 - v]*(D[u, x]/u), x], x],
x] /; !FalseQ[z]] /; FreeQ[{a, b}, x] && InverseFunctionFreeQ[u, x]
-
Int[Log[Log[(d_.)*(x_)^(n_.)]^(p_.)*(c_.)], x_Symbol] :> Simp[x*Log[c*Log[d*x^n]^p], x] - Simp[n*p Int[1/Log
[d*x^n], x], x] /; FreeQ[{c, d, n, p}, x]
-
Int[((a_.) + Log[Log[(d_.)*(x_)^(n_.)]^(p_.)*(c_.)]*(b_.))/(x_), x_Symbol] :> Simp[Log[d*x^n]*((a + b*Log[c*Lo
g[d*x^n]^p])/n), x] - Simp[b*p*Log[x], x] /; FreeQ[{a, b, c, d, n, p}, x]
-
Int[((a_.) + Log[Log[(d_.)*(x_)^(n_.)]^(p_.)*(c_.)]*(b_.))*((e_.)*(x_))^(m_.), x_Symbol] :> Simp[(e*x)^(m + 1)
*((a + b*Log[c*Log[d*x^n]^p])/(e*(m + 1))), x] - Simp[b*n*(p/(m + 1)) Int[(e*x)^m/Log[d*x^n], x], x] /; Free
Q[{a, b, c, d, e, m, n, p}, x] && NeQ[m, -1]
-
Int[((a_.) + Log[(c_.)*(RFx_)^(p_.)]*(b_.))^(n_.), x_Symbol] :> Simp[x*(a + b*Log[c*RFx^p])^n, x] - Simp[b*n*p
Int[SimplifyIntegrand[x*(a + b*Log[c*RFx^p])^(n - 1)*(D[RFx, x]/RFx), x], x], x] /; FreeQ[{a, b, c, p}, x]
&& RationalFunctionQ[RFx, x] && IGtQ[n, 0]
-
Int[((a_.) + Log[(c_.)*(RFx_)^(p_.)]*(b_.))^(n_.)/((d_.) + (e_.)*(x_)), x_Symbol] :> Simp[Log[d + e*x]*((a + b
*Log[c*RFx^p])^n/e), x] - Simp[b*n*(p/e) Int[Log[d + e*x]*(a + b*Log[c*RFx^p])^(n - 1)*(D[RFx, x]/RFx), x],
x] /; FreeQ[{a, b, c, d, e, p}, x] && RationalFunctionQ[RFx, x] && IGtQ[n, 0]
-
Int[((a_.) + Log[(c_.)*(RFx_)^(p_.)]*(b_.))^(n_.)*((d_.) + (e_.)*(x_))^(m_.), x_Symbol] :> Simp[(d + e*x)^(m +
1)*((a + b*Log[c*RFx^p])^n/(e*(m + 1))), x] - Simp[b*n*(p/(e*(m + 1))) Int[SimplifyIntegrand[(d + e*x)^(m +
1)*(a + b*Log[c*RFx^p])^(n - 1)*(D[RFx, x]/RFx), x], x], x] /; FreeQ[{a, b, c, d, e, m, p}, x] && RationalFun
ctionQ[RFx, x] && IGtQ[n, 0] && (EqQ[n, 1] || IntegerQ[m]) && NeQ[m, -1]
-
Int[Log[(c_.)*(RFx_)^(n_.)]/((d_) + (e_.)*(x_)^2), x_Symbol] :> With[{u = IntHide[1/(d + e*x^2), x]}, Simp[u*L
og[c*RFx^n], x] - Simp[n Int[SimplifyIntegrand[u*(D[RFx, x]/RFx), x], x], x]] /; FreeQ[{c, d, e, n}, x] && R
ationalFunctionQ[RFx, x] && !PolynomialQ[RFx, x]
-
Int[Log[(c_.)*(Px_)^(n_.)]/(Qx_), x_Symbol] :> With[{u = IntHide[1/Qx, x]}, Simp[u*Log[c*Px^n], x] - Simp[n
Int[SimplifyIntegrand[u*(D[Px, x]/Px), x], x], x]] /; FreeQ[{c, n}, x] && QuadraticQ[{Qx, Px}, x] && EqQ[D[Px/
Qx, x], 0]
-
Int[((a_.) + Log[(c_.)*(RFx_)^(p_.)]*(b_.))^(n_.)*(RGx_), x_Symbol] :> With[{u = ExpandIntegrand[(a + b*Log[c*
RFx^p])^n, RGx, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c, p}, x] && RationalFunctionQ[RFx, x] && RationalF
unctionQ[RGx, x] && IGtQ[n, 0]
-
Int[((a_.) + Log[(c_.)*(RFx_)^(p_.)]*(b_.))^(n_.)*(RGx_), x_Symbol] :> With[{u = ExpandIntegrand[RGx*(a + b*Lo
g[c*RFx^p])^n, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c, p}, x] && RationalFunctionQ[RFx, x] && RationalFu
nctionQ[RGx, x] && IGtQ[n, 0]
-
Int[((a_.) + Log[u_]*(b_.))*(RFx_), x_Symbol] :> With[{lst = SubstForFractionalPowerOfLinear[RFx*(a + b*Log[u]
), x]}, Simp[lst[[2]]*lst[[4]] Subst[Int[lst[[1]], x], x, lst[[3]]^(1/lst[[2]])], x] /; !FalseQ[lst]] /; Fr
eeQ[{a, b}, x] && RationalFunctionQ[RFx, x]
-
Int[Log[1 + (e_.)*((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.)]*((f_.) + (g_.)*(x_))^(m_.), x_Symbol] :> Simp[(-(
f + g*x)^m)*(PolyLog[2, (-e)*(F^(c*(a + b*x)))^n]/(b*c*n*Log[F])), x] + Simp[g*(m/(b*c*n*Log[F])) Int[(f + g
*x)^(m - 1)*PolyLog[2, (-e)*(F^(c*(a + b*x)))^n], x], x] /; FreeQ[{F, a, b, c, e, f, g, n}, x] && GtQ[m, 0]
-
Int[Log[(d_) + (e_.)*((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.)]*((f_.) + (g_.)*(x_))^(m_.), x_Symbol] :> Simp[
(f + g*x)^(m + 1)*(Log[d + e*(F^(c*(a + b*x)))^n]/(g*(m + 1))), x] + (Int[(f + g*x)^m*Log[1 + (e/d)*(F^(c*(a +
b*x)))^n], x] - Simp[(f + g*x)^(m + 1)*(Log[1 + (e/d)*(F^(c*(a + b*x)))^n]/(g*(m + 1))), x]) /; FreeQ[{F, a,
b, c, d, e, f, g, n}, x] && GtQ[m, 0] && NeQ[d, 1]
-
Int[Log[(d_.) + (e_.)*(x_) + (f_.)*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]], x_Symbol] :> Simp[x*Log[d + e*x +
f*Sqrt[a + b*x + c*x^2]], x] + Simp[f^2*((b^2 - 4*a*c)/2) Int[x/((2*d*e - b*f^2)*(a + b*x + c*x^2) - f*(b*d
- 2*a*e + (2*c*d - b*e)*x)*Sqrt[a + b*x + c*x^2]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[e^2 - c*f^2,
0]
-
Int[Log[(d_.) + (e_.)*(x_) + (f_.)*Sqrt[(a_.) + (c_.)*(x_)^2]], x_Symbol] :> Simp[x*Log[d + e*x + f*Sqrt[a + c
*x^2]], x] - Simp[a*c*f^2 Int[x/(d*e*(a + c*x^2) + f*(a*e - c*d*x)*Sqrt[a + c*x^2]), x], x] /; FreeQ[{a, c,
d, e, f}, x] && EqQ[e^2 - c*f^2, 0]
-
Int[Log[(d_.) + (e_.)*(x_) + (f_.)*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]]*((g_.)*(x_))^(m_.), x_Symbol] :> S
imp[(g*x)^(m + 1)*(Log[d + e*x + f*Sqrt[a + b*x + c*x^2]]/(g*(m + 1))), x] + Simp[f^2*((b^2 - 4*a*c)/(2*g*(m +
1))) Int[(g*x)^(m + 1)/((2*d*e - b*f^2)*(a + b*x + c*x^2) - f*(b*d - 2*a*e + (2*c*d - b*e)*x)*Sqrt[a + b*x
+ c*x^2]), x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && EqQ[e^2 - c*f^2, 0] && NeQ[m, -1] && IntegerQ[2*m]
-
Int[Log[(d_.) + (e_.)*(x_) + (f_.)*Sqrt[(a_.) + (c_.)*(x_)^2]]*((g_.)*(x_))^(m_.), x_Symbol] :> Simp[(g*x)^(m
+ 1)*(Log[d + e*x + f*Sqrt[a + c*x^2]]/(g*(m + 1))), x] - Simp[a*c*(f^2/(g*(m + 1))) Int[(g*x)^(m + 1)/(d*e*
(a + c*x^2) + f*(a*e - c*d*x)*Sqrt[a + c*x^2]), x], x] /; FreeQ[{a, c, d, e, f, g, m}, x] && EqQ[e^2 - c*f^2,
0] && NeQ[m, -1] && IntegerQ[2*m]
-
Int[Log[(d_.) + (f_.)*Sqrt[u_] + (e_.)*(x_)]*(v_.), x_Symbol] :> Int[v*Log[d + e*x + f*Sqrt[ExpandToSum[u, x]]
], x] /; FreeQ[{d, e, f}, x] && QuadraticQ[u, x] && !QuadraticMatchQ[u, x] && (EqQ[v, 1] || MatchQ[v, ((g_.)*
x)^(m_.) /; FreeQ[{g, m}, x]])
-
Int[Log[(c_.)*(x_)^(n_.)]^(r_.)/((x_)*(Log[(c_.)*(x_)^(n_.)]^(q_)*(b_.) + (a_.)*(x_)^(m_.))), x_Symbol] :> Sim
p[Log[a*x^m + b*Log[c*x^n]^q]/(b*n*q), x] - Simp[a*(m/(b*n*q)) Int[x^(m - 1)/(a*x^m + b*Log[c*x^n]^q), x], x
] /; FreeQ[{a, b, c, m, n, q, r}, x] && EqQ[r, q - 1]
-
Int[(Log[(c_.)*(x_)^(n_.)]^(r_.)*(Log[(c_.)*(x_)^(n_.)]^(q_)*(b_.) + (a_.)*(x_)^(m_.))^(p_.))/(x_), x_Symbol]
:> Int[ExpandIntegrand[Log[c*x^n]^r/x, (a*x^m + b*Log[c*x^n]^q)^p, x], x] /; FreeQ[{a, b, c, m, n, p, q, r}, x
] && EqQ[r, q - 1] && IGtQ[p, 0]
-
Int[(Log[(c_.)*(x_)^(n_.)]^(r_.)*(Log[(c_.)*(x_)^(n_.)]^(q_)*(b_.) + (a_.)*(x_)^(m_.))^(p_.))/(x_), x_Symbol]
:> Simp[(a*x^m + b*Log[c*x^n]^q)^(p + 1)/(b*n*q*(p + 1)), x] - Simp[a*(m/(b*n*q)) Int[x^(m - 1)*(a*x^m + b*L
og[c*x^n]^q)^p, x], x] /; FreeQ[{a, b, c, m, n, p, q, r}, x] && EqQ[r, q - 1] && NeQ[p, -1]
-
Int[(Log[(c_.)*(x_)^(n_.)]^(r_.)*(e_.) + (d_.)*(x_)^(m_.))/((x_)*(Log[(c_.)*(x_)^(n_.)]^(q_)*(b_.) + (a_.)*(x_
)^(m_.))), x_Symbol] :> Simp[e*(Log[a*x^m + b*Log[c*x^n]^q]/(b*n*q)), x] /; FreeQ[{a, b, c, d, e, m, n, q, r},
x] && EqQ[r, q - 1] && EqQ[a*e*m - b*d*n*q, 0]
-
Int[(Log[(c_.)*(x_)^(n_.)]^(r_.)*(e_.) + (u_) + (d_.)*(x_)^(m_.))/((x_)*(Log[(c_.)*(x_)^(n_.)]^(q_)*(b_.) + (a
_.)*(x_)^(m_.))), x_Symbol] :> Simp[e*(Log[a*x^m + b*Log[c*x^n]^q]/(b*n*q)), x] + Int[u/(x*(a*x^m + b*Log[c*x^
n]^q)), x] /; FreeQ[{a, b, c, d, e, m, n, q, r}, x] && EqQ[r, q - 1] && EqQ[a*e*m - b*d*n*q, 0]
-
Int[(Log[(c_.)*(x_)^(n_.)]^(r_.)*(e_.) + (d_.)*(x_)^(m_.))/((x_)*(Log[(c_.)*(x_)^(n_.)]^(q_)*(b_.) + (a_.)*(x_
)^(m_.))), x_Symbol] :> Simp[e*(Log[a*x^m + b*Log[c*x^n]^q]/(b*n*q)), x] - Simp[(a*e*m - b*d*n*q)/(b*n*q) In
t[x^(m - 1)/(a*x^m + b*Log[c*x^n]^q), x], x] /; FreeQ[{a, b, c, d, e, m, n, q, r}, x] && EqQ[r, q - 1] && NeQ[
a*e*m - b*d*n*q, 0]
-
Int[((Log[(c_.)*(x_)^(n_.)]^(q_)*(b_.) + (a_.)*(x_)^(m_.))^(p_.)*(Log[(c_.)*(x_)^(n_.)]^(r_.)*(e_.) + (d_.)*(x
_)^(m_.)))/(x_), x_Symbol] :> Simp[e*((a*x^m + b*Log[c*x^n]^q)^(p + 1)/(b*n*q*(p + 1))), x] /; FreeQ[{a, b, c,
d, e, m, n, p, q, r}, x] && EqQ[r, q - 1] && NeQ[p, -1] && EqQ[a*e*m - b*d*n*q, 0]
-
Int[((Log[(c_.)*(x_)^(n_.)]^(q_)*(b_.) + (a_.)*(x_)^(m_.))^(p_.)*(Log[(c_.)*(x_)^(n_.)]^(r_.)*(e_.) + (d_.)*(x
_)^(m_.)))/(x_), x_Symbol] :> Simp[e*((a*x^m + b*Log[c*x^n]^q)^(p + 1)/(b*n*q*(p + 1))), x] - Simp[(a*e*m - b*
d*n*q)/(b*n*q) Int[x^(m - 1)*(a*x^m + b*Log[c*x^n]^q)^p, x], x] /; FreeQ[{a, b, c, d, e, m, n, p, q, r}, x]
&& EqQ[r, q - 1] && NeQ[p, -1] && NeQ[a*e*m - b*d*n*q, 0]
-
Int[(Log[(c_.)*(x_)^(n_.)]^(q_.)*(f_.) + (d_.)*(x_)^(m_.) + Log[(c_.)*(x_)^(n_.)]*(e_.)*(x_)^(m_.))/((x_)*(Log
[(c_.)*(x_)^(n_.)]^(q_)*(b_.) + (a_.)*(x_)^(m_.))^2), x_Symbol] :> Simp[d*(Log[c*x^n]/(a*n*(a*x^m + b*Log[c*x^
n]^q))), x] /; FreeQ[{a, b, c, d, e, f, m, n, q}, x] && EqQ[e*n + d*m, 0] && EqQ[a*f + b*d*(q - 1), 0]
-
Int[(Log[(c_.)*(x_)^(n_.)]*(e_.) + (d_))/(Log[(c_.)*(x_)^(n_.)]^(q_)*(b_.) + (a_.)*(x_))^2, x_Symbol] :> Simp[
(-e)*(Log[c*x^n]/(a*(a*x + b*Log[c*x^n]^q))), x] + Simp[(d + e*n)/a Int[1/(x*(a*x + b*Log[c*x^n]^q)), x], x]
/; FreeQ[{a, b, c, d, e, n, q}, x] && EqQ[d + e*n*q, 0]
-
Int[Log[u_], x_Symbol] :> Simp[x*Log[u], x] - Int[SimplifyIntegrand[x*(D[u, x]/u), x], x] /; InverseFunctionFr
eeQ[u, x]
-
Int[Log[u_], x_Symbol] :> Simp[x*Log[u], x] - Int[SimplifyIntegrand[x*Simplify[D[u, x]/u], x], x] /; ProductQ[
u]
-
Int[Log[u_]/((a_.) + (b_.)*(x_)), x_Symbol] :> Simp[Log[a + b*x]*(Log[u]/b), x] - Simp[1/b Int[SimplifyInteg
rand[Log[a + b*x]*(D[u, x]/u), x], x], x] /; FreeQ[{a, b}, x] && RationalFunctionQ[D[u, x]/u, x] && (NeQ[a, 0]
|| !(BinomialQ[u, x] && EqQ[BinomialDegree[u, x]^2, 1]))
-
Int[Log[u_]*((a_.) + (b_.)*(x_))^(m_.), x_Symbol] :> Simp[(a + b*x)^(m + 1)*(Log[u]/(b*(m + 1))), x] - Simp[1/
(b*(m + 1)) Int[SimplifyIntegrand[(a + b*x)^(m + 1)*(D[u, x]/u), x], x], x] /; FreeQ[{a, b, m}, x] && Invers
eFunctionFreeQ[u, x] && NeQ[m, -1]
-
Int[Log[u_]/(Qx_), x_Symbol] :> With[{v = IntHide[1/Qx, x]}, Simp[v*Log[u], x] - Int[SimplifyIntegrand[v*(D[u,
x]/u), x], x]] /; QuadraticQ[Qx, x] && InverseFunctionFreeQ[u, x]
-
Int[Log[u_]*(u_)^((a_.)*(x_)), x_Symbol] :> Simp[u^(a*x)/a, x] - Int[SimplifyIntegrand[x*u^(a*x - 1)*D[u, x],
x], x] /; FreeQ[a, x] && InverseFunctionFreeQ[u, x]
-
Int[Log[u_]*(v_), x_Symbol] :> With[{w = IntHide[v, x]}, Simp[Log[u] w, x] - Int[SimplifyIntegrand[w*(D[u, x
]/u), x], x] /; InverseFunctionFreeQ[w, x]] /; InverseFunctionFreeQ[u, x]
-
Int[Log[u_]*(v_), x_Symbol] :> With[{w = IntHide[v, x]}, Simp[Log[u] w, x] - Int[SimplifyIntegrand[w*Simplif
y[D[u, x]/u], x], x] /; InverseFunctionFreeQ[w, x]] /; ProductQ[u]
-
Int[Log[v_]*Log[w_], x_Symbol] :> Simp[x*Log[v]*Log[w], x] + (-Int[SimplifyIntegrand[x*Log[w]*(D[v, x]/v), x],
x] - Int[SimplifyIntegrand[x*Log[v]*(D[w, x]/w), x], x]) /; InverseFunctionFreeQ[v, x] && InverseFunctionFree
Q[w, x]
-
Int[Log[v_]*Log[w_]*(u_), x_Symbol] :> With[{z = IntHide[u, x]}, Simp[Log[v]*Log[w] z, x] + (-Int[SimplifyIn
tegrand[z*Log[w]*(D[v, x]/v), x], x] - Int[SimplifyIntegrand[z*Log[v]*(D[w, x]/w), x], x]) /; InverseFunctionF
reeQ[z, x]] /; InverseFunctionFreeQ[v, x] && InverseFunctionFreeQ[w, x]
-
Int[(f_)^(Log[u_]*(a_.)), x_Symbol] :> Int[u^(a*Log[f]), x] /; FreeQ[{a, f}, x]
-
Int[u_, x_Symbol] :> With[{lst = FunctionOfLog[Cancel[x*u], x]}, Simp[1/lst[[3]] Subst[Int[lst[[1]], x], x,
Log[lst[[2]]]], x] /; !FalseQ[lst]] /; NonsumQ[u]
-
Int[Log[Gamma[v_]]*(u_.), x_Symbol] :> Simp[(Log[Gamma[v]] - LogGamma[v]) Int[u, x], x] + Int[u*LogGamma[v],
x]
-
Int[(u_.)*((a_.)*(x_)^(m_.) + Log[(c_.)*(x_)^(n_.)]^(q_.)*(b_.)*(x_)^(r_.))^(p_.), x_Symbol] :> Int[u*x^(p*r)*
(a*x^(m - r) + b*Log[c*x^n]^q)^p, x] /; FreeQ[{a, b, c, m, n, p, q, r}, x] && IntegerQ[p]
-
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinearQ[u, x]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(b_.))^(n_.)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Simp[(a*Sin[e +
f*x])^(m + 1)*((b*Cos[e + f*x])^(n + 1)/(a*b*f*(m + 1))), x] /; FreeQ[{a, b, e, f, m, n}, x] && EqQ[m + n + 2,
0] && NeQ[m, -1]
-
Int[cos[(e_.) + (f_.)*(x_)]^(n_.)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Simp[1/(a*f) Subst[Int
[x^m*(1 - x^2/a^2)^((n - 1)/2), x], x, a*Sin[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2] &&
!(IntegerQ[(m - 1)/2] && LtQ[0, m, n])
-
Int[(cos[(e_.) + (f_.)*(x_)]*(a_.))^(m_.)*sin[(e_.) + (f_.)*(x_)]^(n_.), x_Symbol] :> Simp[-(a*f)^(-1) Subst
[Int[x^m*(1 - x^2/a^2)^((n - 1)/2), x], x, a*Cos[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2
] && !(IntegerQ[(m - 1)/2] && GtQ[m, 0] && LeQ[m, n])
-
Int[(cos[(e_.) + (f_.)*(x_)]*(b_.))^(n_)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(-a)*(a*Sin[e
+ f*x])^(m - 1)*((b*Cos[e + f*x])^(n + 1)/(b*f*(n + 1))), x] + Simp[a^2*((m - 1)/(b^2*(n + 1))) Int[(a*Sin[
e + f*x])^(m - 2)*(b*Cos[e + f*x])^(n + 2), x], x] /; FreeQ[{a, b, e, f}, x] && GtQ[m, 1] && LtQ[n, -1] && (In
tegersQ[2*m, 2*n] || EqQ[m + n, 0])
-
Int[(cos[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[a*(a*Cos[e +
f*x])^(m - 1)*((b*Sin[e + f*x])^(n + 1)/(b*f*(n + 1))), x] + Simp[a^2*((m - 1)/(b^2*(n + 1))) Int[(a*Cos[e +
f*x])^(m - 2)*(b*Sin[e + f*x])^(n + 2), x], x] /; FreeQ[{a, b, e, f}, x] && GtQ[m, 1] && LtQ[n, -1] && (Integ
ersQ[2*m, 2*n] || EqQ[m + n, 0])
-
Int[(cos[(e_.) + (f_.)*(x_)]*(b_.))^(n_)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(-a)*(b*Cos[e
+ f*x])^(n + 1)*((a*Sin[e + f*x])^(m - 1)/(b*f*(m + n))), x] + Simp[a^2*((m - 1)/(m + n)) Int[(b*Cos[e + f*
x])^n*(a*Sin[e + f*x])^(m - 2), x], x] /; FreeQ[{a, b, e, f, n}, x] && GtQ[m, 1] && NeQ[m + n, 0] && IntegersQ
[2*m, 2*n]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[a*(b*Sin[e +
f*x])^(n + 1)*((a*Cos[e + f*x])^(m - 1)/(b*f*(m + n))), x] + Simp[a^2*((m - 1)/(m + n)) Int[(b*Sin[e + f*x])
^n*(a*Cos[e + f*x])^(m - 2), x], x] /; FreeQ[{a, b, e, f, n}, x] && GtQ[m, 1] && NeQ[m + n, 0] && IntegersQ[2*
m, 2*n]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(b_.))^(n_)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(b*Cos[e + f*
x])^(n + 1)*((a*Sin[e + f*x])^(m + 1)/(a*b*f*(m + 1))), x] + Simp[(m + n + 2)/(a^2*(m + 1)) Int[(b*Cos[e + f
*x])^n*(a*Sin[e + f*x])^(m + 2), x], x] /; FreeQ[{a, b, e, f, n}, x] && LtQ[m, -1] && IntegersQ[2*m, 2*n]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-(b*Sin[e +
f*x])^(n + 1))*((a*Cos[e + f*x])^(m + 1)/(a*b*f*(m + 1))), x] + Simp[(m + n + 2)/(a^2*(m + 1)) Int[(b*Sin[e
+ f*x])^n*(a*Cos[e + f*x])^(m + 2), x], x] /; FreeQ[{a, b, e, f, n}, x] && LtQ[m, -1] && IntegersQ[2*m, 2*n]
-
Int[Sqrt[cos[(e_.) + (f_.)*(x_)]*(b_.)]*Sqrt[(a_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp[Sqrt[a*Sin[e +
f*x]]*(Sqrt[b*Cos[e + f*x]]/Sqrt[Sin[2*e + 2*f*x]]) Int[Sqrt[Sin[2*e + 2*f*x]], x], x] /; FreeQ[{a, b, e, f}
, x]
-
Int[1/(Sqrt[cos[(e_.) + (f_.)*(x_)]*(b_.)]*Sqrt[(a_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[Sqrt[Sin[2*
e + 2*f*x]]/(Sqrt[a*Sin[e + f*x]]*Sqrt[b*Cos[e + f*x]]) Int[1/Sqrt[Sin[2*e + 2*f*x]], x], x] /; FreeQ[{a, b,
e, f}, x]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(b_.))^(n_)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> With[{k = Denomina
tor[m]}, Simp[k*a*(b/f) Subst[Int[x^(k*(m + 1) - 1)/(a^2 + b^2*x^(2*k)), x], x, (a*Sin[e + f*x])^(1/k)/(b*Co
s[e + f*x])^(1/k)], x]] /; FreeQ[{a, b, e, f}, x] && EqQ[m + n, 0] && GtQ[m, 0] && LtQ[m, 1]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> With[{k = Denomina
tor[m]}, Simp[(-k)*a*(b/f) Subst[Int[x^(k*(m + 1) - 1)/(a^2 + b^2*x^(2*k)), x], x, (a*Cos[e + f*x])^(1/k)/(b
*Sin[e + f*x])^(1/k)], x]] /; FreeQ[{a, b, e, f}, x] && EqQ[m + n, 0] && GtQ[m, 0] && LtQ[m, 1]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b^(2*IntPar
t[(n - 1)/2] + 1))*(b*Sin[e + f*x])^(2*FracPart[(n - 1)/2])*((a*Cos[e + f*x])^(m + 1)/(a*f*(m + 1)*(Sin[e + f*
x]^2)^FracPart[(n - 1)/2]))*Hypergeometric2F1[(1 + m)/2, (1 - n)/2, (3 + m)/2, Cos[e + f*x]^2], x] /; FreeQ[{a
, b, e, f, m, n}, x] && SimplerQ[n, m]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(b_.))^(n_)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[b^(2*IntPart[
(n - 1)/2] + 1)*(b*Cos[e + f*x])^(2*FracPart[(n - 1)/2])*((a*Sin[e + f*x])^(m + 1)/(a*f*(m + 1)*(Cos[e + f*x]^
2)^FracPart[(n - 1)/2]))*Hypergeometric2F1[(1 + m)/2, (1 - n)/2, (3 + m)/2, Sin[e + f*x]^2], x] /; FreeQ[{a, b
, e, f, m, n}, x]
-
Int[((b_.)*sec[(e_.) + (f_.)*(x_)])^(n_.)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Simp[b*(a*Sin[e
+ f*x])^(m + 1)*((b*Sec[e + f*x])^(n - 1)/(a*f*(m + 1))), x] /; FreeQ[{a, b, e, f, m, n}, x] && EqQ[m - n + 2,
0] && NeQ[m, -1]
-
Int[((b_.)*sec[(e_.) + (f_.)*(x_)])^(n_)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[a*b*(a*Sin[e
+ f*x])^(m - 1)*((b*Sec[e + f*x])^(n - 1)/(f*(n - 1))), x] - Simp[a^2*b^2*((m - 1)/(n - 1)) Int[(a*Sin[e + f
*x])^(m - 2)*(b*Sec[e + f*x])^(n - 2), x], x] /; FreeQ[{a, b, e, f}, x] && GtQ[n, 1] && GtQ[m, 1] && IntegersQ
[2*m, 2*n]
-
Int[((b_.)*sec[(e_.) + (f_.)*(x_)])^(n_)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(a*Sin[e + f*
x])^(m + 1)*((b*Sec[e + f*x])^(n + 1)/(a*b*f*(m - n))), x] - Simp[(n + 1)/(b^2*(m - n)) Int[(a*Sin[e + f*x])
^m*(b*Sec[e + f*x])^(n + 2), x], x] /; FreeQ[{a, b, e, f, m}, x] && GtQ[n, 1] && IntegersQ[2*m, 2*n]
-
Int[((b_.)*sec[(e_.) + (f_.)*(x_)])^(n_)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(a*Sin[e + f*
x])^(m + 1)*((b*Sec[e + f*x])^(n + 1)/(a*b*f*(m + 1))), x] - Simp[(n + 1)/(a^2*b^2*(m + 1)) Int[(a*Sin[e + f
*x])^(m + 2)*(b*Sec[e + f*x])^(n + 2), x], x] /; FreeQ[{a, b, e, f}, x] && LtQ[n, -1] && LtQ[m, -1] && Integer
sQ[2*m, 2*n]
-
Int[((b_.)*sec[(e_.) + (f_.)*(x_)])^(n_)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(a*Sin[e + f*
x])^(m + 1)*((b*Sec[e + f*x])^(n + 1)/(a*b*f*(m - n))), x] - Simp[(n + 1)/(b^2*(m - n)) Int[(a*Sin[e + f*x])
^m*(b*Sec[e + f*x])^(n + 2), x], x] /; FreeQ[{a, b, e, f, m}, x] && LtQ[n, -1] && NeQ[m - n, 0] && IntegersQ[2
*m, 2*n]
-
Int[((b_.)*sec[(e_.) + (f_.)*(x_)])^(n_)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(-a)*b*(a*Sin
[e + f*x])^(m - 1)*((b*Sec[e + f*x])^(n - 1)/(f*(m - n))), x] + Simp[a^2*((m - 1)/(m - n)) Int[(a*Sin[e + f*
x])^(m - 2)*(b*Sec[e + f*x])^n, x], x] /; FreeQ[{a, b, e, f, n}, x] && GtQ[m, 1] && NeQ[m - n, 0] && IntegersQ
[2*m, 2*n]
-
Int[((b_.)*sec[(e_.) + (f_.)*(x_)])^(n_)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[b*(a*Sin[e +
f*x])^(m + 1)*((b*Sec[e + f*x])^(n - 1)/(a*f*(m + 1))), x] + Simp[(m - n + 2)/(a^2*(m + 1)) Int[(a*Sin[e + f
*x])^(m + 2)*(b*Sec[e + f*x])^n, x], x] /; FreeQ[{a, b, e, f, n}, x] && LtQ[m, -1] && IntegersQ[2*m, 2*n]
-
Int[((b_.)*sec[(e_.) + (f_.)*(x_)])^(n_)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(b*Cos[e + f*
x])^n*(b*Sec[e + f*x])^n Int[(a*Sin[e + f*x])^m/(b*Cos[e + f*x])^n, x], x] /; FreeQ[{a, b, e, f, m, n}, x] &
& IntegerQ[m - 1/2] && IntegerQ[n - 1/2]
-
Int[((b_.)*sec[(e_.) + (f_.)*(x_)])^(n_)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(1/b^2)*(b*Co
s[e + f*x])^(n + 1)*(b*Sec[e + f*x])^(n + 1) Int[(a*Sin[e + f*x])^m/(b*Cos[e + f*x])^n, x], x] /; FreeQ[{a,
b, e, f, m, n}, x] && !IntegerQ[m] && !IntegerQ[n] && LtQ[n, 1]
-
Int[((b_.)*sec[(e_.) + (f_.)*(x_)])^(n_)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[b^2*(b*Cos[e
+ f*x])^(n - 1)*(b*Sec[e + f*x])^(n - 1) Int[(a*Sin[e + f*x])^m/(b*Cos[e + f*x])^n, x], x] /; FreeQ[{a, b, e
, f, m, n}, x] && !IntegerQ[m] && !IntegerQ[n]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(n_)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Simp[(a*b)^IntPar
t[n]*(a*Sin[e + f*x])^FracPart[n]*(b*Csc[e + f*x])^FracPart[n] Int[(a*Sin[e + f*x])^(m - n), x], x] /; FreeQ
[{a, b, e, f, m, n}, x] && !IntegerQ[m] && !IntegerQ[n]
-
Int[((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*(a*Sin[e
+ f*x])^m*((b*Tan[e + f*x])^(n - 1)/(f*m)), x] /; FreeQ[{a, b, e, f, m, n}, x] && EqQ[m + n - 1, 0]
-
Int[sin[(e_.) + (f_.)*(x_)]^(m_.)*tan[(e_.) + (f_.)*(x_)]^(n_.), x_Symbol] :> Simp[-f^(-1) Subst[Int[(1 - x^
2)^((m + n - 1)/2)/x^n, x], x, Cos[e + f*x]], x] /; FreeQ[{e, f}, x] && IntegersQ[m, n, (m + n - 1)/2]
-
Int[sin[(e_.) + (f_.)*(x_)]^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> With[{ff = FreeFactors[Ta
n[e + f*x], x]}, Simp[b*(ff/f) Subst[Int[(ff*x)^(m + n)/(b^2 + ff^2*x^2)^(m/2 + 1), x], x, b*(Tan[e + f*x]/f
f)], x]] /; FreeQ[{b, e, f, n}, x] && IntegerQ[m/2]
-
Int[((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*tan[(e_.) + (f_.)*(x_)]^(n_.), x_Symbol] :> With[{ff = FreeFactors[S
in[e + f*x], x]}, Simp[ff/f Subst[Int[(ff*x)^(m + n)/(a^2 - ff^2*x^2)^((n + 1)/2), x], x, a*(Sin[e + f*x]/ff
)], x]] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n + 1)/2]
-
Int[((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(a*Sin[e +
f*x])^(m + 2)*((b*Tan[e + f*x])^(n - 1)/(a^2*f*(n - 1))), x] - Simp[b^2*((m + 2)/(a^2*(n - 1))) Int[(a*Sin[e
+ f*x])^(m + 2)*(b*Tan[e + f*x])^(n - 2), x], x] /; FreeQ[{a, b, e, f}, x] && GtQ[n, 1] && (LtQ[m, -1] || (Eq
Q[m, -1] && EqQ[n, 3/2])) && IntegersQ[2*m, 2*n]
-
Int[((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(a*Sin[e +
f*x])^m*((b*Tan[e + f*x])^(n - 1)/(f*(n - 1))), x] - Simp[b^2*((m + n - 1)/(n - 1)) Int[(a*Sin[e + f*x])^m*
(b*Tan[e + f*x])^(n - 2), x], x] /; FreeQ[{a, b, e, f, m}, x] && GtQ[n, 1] && IntegersQ[2*m, 2*n] && !(GtQ[m,
1] && !IntegerQ[(m - 1)/2])
-
Int[Sqrt[(a_.)*sin[(e_.) + (f_.)*(x_)]]/((b_.)*tan[(e_.) + (f_.)*(x_)])^(3/2), x_Symbol] :> Simp[2*(Sqrt[a*Sin
[e + f*x]]/(b*f*Sqrt[b*Tan[e + f*x]])), x] + Simp[a^2/b^2 Int[Sqrt[b*Tan[e + f*x]]/(a*Sin[e + f*x])^(3/2), x
], x] /; FreeQ[{a, b, e, f}, x]
-
Int[((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(a*Sin[e + f*
x])^m*((b*Tan[e + f*x])^(n + 1)/(b*f*m)), x] - Simp[a^2*((n + 1)/(b^2*m)) Int[(a*Sin[e + f*x])^(m - 2)*(b*Ta
n[e + f*x])^(n + 2), x], x] /; FreeQ[{a, b, e, f}, x] && LtQ[n, -1] && GtQ[m, 1] && IntegersQ[2*m, 2*n]
-
Int[((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(a*Sin[e + f
*x])^m*((b*Tan[e + f*x])^(n + 1)/(b*f*(m + n + 1))), x] - Simp[(n + 1)/(b^2*(m + n + 1)) Int[(a*Sin[e + f*x]
)^m*(b*Tan[e + f*x])^(n + 2), x], x] /; FreeQ[{a, b, e, f, m}, x] && LtQ[n, -1] && NeQ[m + n + 1, 0] && Intege
rsQ[2*m, 2*n] && !(EqQ[n, -3/2] && EqQ[m, 1])
-
Int[((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Simp[(-b)*(a*Sin
[e + f*x])^m*((b*Tan[e + f*x])^(n - 1)/(f*m)), x] + Simp[a^2*((m + n - 1)/m) Int[(a*Sin[e + f*x])^(m - 2)*(b
*Tan[e + f*x])^n, x], x] /; FreeQ[{a, b, e, f, n}, x] && (GtQ[m, 1] || (EqQ[m, 1] && EqQ[n, 1/2])) && Integers
Q[2*m, 2*n]
-
Int[((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Simp[b*(a*Sin[e +
f*x])^(m + 2)*((b*Tan[e + f*x])^(n - 1)/(a^2*f*(m + n + 1))), x] + Simp[(m + 2)/(a^2*(m + n + 1)) Int[(a*Si
n[e + f*x])^(m + 2)*(b*Tan[e + f*x])^n, x], x] /; FreeQ[{a, b, e, f, n}, x] && LtQ[m, -1] && NeQ[m + n + 1, 0]
&& IntegersQ[2*m, 2*n]
-
Int[((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*tan[(e_.) + (f_.)*(x_)]^(n_), x_Symbol] :> Simp[1/a^n Int[(a*Sin[e
+ f*x])^(m + n)/Cos[e + f*x]^n, x], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[n] && !IntegerQ[m]
-
Int[((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[e + f*x]
^n*((b*Tan[e + f*x])^n/(a*Sin[e + f*x])^n) Int[(a*Sin[e + f*x])^(m + n)/Cos[e + f*x]^n, x], x] /; FreeQ[{a,
b, e, f, m, n}, x] && !IntegerQ[n] && (ILtQ[m, 0] || (EqQ[m, 1] && EqQ[n, -2^(-1)]) || IntegersQ[m - 1/2, n -
1/2])
-
Int[((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[a*Cos[e + f*
x]^(n + 1)*((b*Tan[e + f*x])^(n + 1)/(b*(a*Sin[e + f*x])^(n + 1))) Int[(a*Sin[e + f*x])^(m + n)/Cos[e + f*x]
^n, x], x] /; FreeQ[{a, b, e, f, m, n}, x] && !IntegerQ[n]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(a*Cos[e + f*
x])^FracPart[m]*(Sec[e + f*x]/a)^FracPart[m] Int[(b*Tan[e + f*x])^n/(Sec[e + f*x]/a)^m, x], x] /; FreeQ[{a,
b, e, f, m, n}, x] && !IntegerQ[m] && !IntegerQ[n]
-
Int[(cot[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(a*Cot[e + f*
x])^m*(b*Tan[e + f*x])^m Int[(b*Tan[e + f*x])^(n - m), x], x] /; FreeQ[{a, b, e, f, m, n}, x] && !IntegerQ[
m] && !IntegerQ[n]
-
Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Simp[(-(a*Sec[e
+ f*x])^m)*((b*Tan[e + f*x])^(n + 1)/(b*f*m)), x] /; FreeQ[{a, b, e, f, m, n}, x] && EqQ[m + n + 1, 0]
-
Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Simp[a/f Subst
[Int[(a*x)^(m - 1)*(-1 + x^2)^((n - 1)/2), x], x, Sec[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n -
1)/2] && !(IntegerQ[m/2] && LtQ[0, m, n + 1])
-
Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Simp[1/f Subst[Int[(b*x
)^n*(1 + x^2)^(m/2 - 1), x], x, Tan[e + f*x]], x] /; FreeQ[{b, e, f, n}, x] && IntegerQ[m/2] && !(IntegerQ[(n
- 1)/2] && LtQ[0, n, m - 1])
-
Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[a^2*(a*Sec[e
+ f*x])^(m - 2)*((b*Tan[e + f*x])^(n + 1)/(b*f*(n + 1))), x] - Simp[a^2*((m - 2)/(b^2*(n + 1))) Int[(a*Sec[
e + f*x])^(m - 2)*(b*Tan[e + f*x])^(n + 2), x], x] /; FreeQ[{a, b, e, f}, x] && LtQ[n, -1] && (GtQ[m, 1] || (E
qQ[m, 1] && EqQ[n, -3/2])) && IntegersQ[2*m, 2*n]
-
Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(a*Sec[e + f
*x])^m*((b*Tan[e + f*x])^(n + 1)/(b*f*(n + 1))), x] - Simp[(m + n + 1)/(b^2*(n + 1)) Int[(a*Sec[e + f*x])^m*
(b*Tan[e + f*x])^(n + 2), x], x] /; FreeQ[{a, b, e, f, m}, x] && LtQ[n, -1] && IntegersQ[2*m, 2*n]
-
Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(a*Sec[e +
f*x])^m*((b*Tan[e + f*x])^(n - 1)/(f*m)), x] - Simp[b^2*((n - 1)/(a^2*m)) Int[(a*Sec[e + f*x])^(m + 2)*(b*Ta
n[e + f*x])^(n - 2), x], x] /; FreeQ[{a, b, e, f}, x] && GtQ[n, 1] && (LtQ[m, -1] || (EqQ[m, -1] && EqQ[n, 3/2
])) && IntegersQ[2*m, 2*n]
-
Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(a*Sec[e +
f*x])^m*((b*Tan[e + f*x])^(n - 1)/(f*(m + n - 1))), x] - Simp[b^2*((n - 1)/(m + n - 1)) Int[(a*Sec[e + f*x]
)^m*(b*Tan[e + f*x])^(n - 2), x], x] /; FreeQ[{a, b, e, f, m}, x] && GtQ[n, 1] && NeQ[m + n - 1, 0] && Integer
sQ[2*m, 2*n]
-
Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-(a*Sec[e +
f*x])^m)*((b*Tan[e + f*x])^(n + 1)/(b*f*m)), x] + Simp[(m + n + 1)/(a^2*m) Int[(a*Sec[e + f*x])^(m + 2)*(b*T
an[e + f*x])^n, x], x] /; FreeQ[{a, b, e, f, n}, x] && (LtQ[m, -1] || (EqQ[m, -1] && EqQ[n, -2^(-1)])) && Inte
gersQ[2*m, 2*n]
-
Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[a^2*(a*Sec[e
+ f*x])^(m - 2)*((b*Tan[e + f*x])^(n + 1)/(b*f*(m + n - 1))), x] + Simp[a^2*((m - 2)/(m + n - 1)) Int[(a*Se
c[e + f*x])^(m - 2)*(b*Tan[e + f*x])^n, x], x] /; FreeQ[{a, b, e, f, n}, x] && (GtQ[m, 1] || (EqQ[m, 1] && EqQ
[n, 1/2])) && NeQ[m + n - 1, 0] && IntegersQ[2*m, 2*n]
-
Int[sec[(e_.) + (f_.)*(x_)]/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp[Sqrt[Sin[e + f*x]]/(Sqrt[Co
s[e + f*x]]*Sqrt[b*Tan[e + f*x]]) Int[1/(Sqrt[Cos[e + f*x]]*Sqrt[Sin[e + f*x]]), x], x] /; FreeQ[{b, e, f},
x]
-
Int[Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]]/sec[(e_.) + (f_.)*(x_)], x_Symbol] :> Simp[Sqrt[Cos[e + f*x]]*(Sqrt[b*
Tan[e + f*x]]/Sqrt[Sin[e + f*x]]) Int[Sqrt[Cos[e + f*x]]*Sqrt[Sin[e + f*x]], x], x] /; FreeQ[{b, e, f}, x]
-
Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[a^(m + n)*((b
*Tan[e + f*x])^n/((a*Sec[e + f*x])^n*(b*Sin[e + f*x])^n)) Int[(b*Sin[e + f*x])^n/Cos[e + f*x]^(m + n), x], x
] /; FreeQ[{a, b, e, f, m, n}, x] && IntegerQ[n + 1/2] && IntegerQ[m + 1/2]
-
Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(a*Sec[e + f
*x])^m*(b*Tan[e + f*x])^(n + 1)*((Cos[e + f*x]^2)^((m + n + 1)/2)/(b*f*(n + 1)))*Hypergeometric2F1[(n + 1)/2,
(m + n + 1)/2, (n + 3)/2, Sin[e + f*x]^2], x] /; FreeQ[{a, b, e, f, m, n}, x] && !IntegerQ[(n - 1)/2] && !In
tegerQ[m/2]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(a*Csc[e + f*
x])^FracPart[m]*(Sin[e + f*x]/a)^FracPart[m] Int[(b*Tan[e + f*x])^n/(Sin[e + f*x]/a)^m, x], x] /; FreeQ[{a,
b, e, f, m, n}, x] && !IntegerQ[m] && !IntegerQ[n]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sec[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[a*b*(a*Csc[e
+ f*x])^(m - 1)*((b*Sec[e + f*x])^(n - 1)/(f*(n - 1))), x] /; FreeQ[{a, b, e, f, m, n}, x] && EqQ[m + n - 2, 0
] && NeQ[n, 1]
-
Int[csc[(e_.) + (f_.)*(x_)]^(m_.)*sec[(e_.) + (f_.)*(x_)]^(n_.), x_Symbol] :> Simp[1/f Subst[Int[(1 + x^2)^(
(m + n)/2 - 1)/x^m, x], x, Tan[e + f*x]], x] /; FreeQ[{e, f}, x] && IntegersQ[m, n, (m + n)/2]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*sec[(e_.) + (f_.)*(x_)]^(n_.), x_Symbol] :> Simp[-(f*a^n)^(-1) Subs
t[Int[x^(m + n - 1)/(-1 + x^2/a^2)^((n + 1)/2), x], x, a*Csc[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && Intege
rQ[(n + 1)/2] && !(IntegerQ[(m + 1)/2] && LtQ[0, m, n])
-
Int[csc[(e_.) + (f_.)*(x_)]^(n_.)*((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[1/(f*a^n) Subst[In
t[x^(m + n - 1)/(-1 + x^2/a^2)^((n + 1)/2), x], x, a*Sec[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(
n + 1)/2] && !(IntegerQ[(m + 1)/2] && LtQ[0, m, n])
-
Int[(csc[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sec[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-a)*(a*Csc[e
+ f*x])^(m - 1)*((b*Sec[e + f*x])^(n + 1)/(f*b*(m - 1))), x] + Simp[a^2*((n + 1)/(b^2*(m - 1))) Int[(a*Csc[
e + f*x])^(m - 2)*(b*Sec[e + f*x])^(n + 2), x], x] /; FreeQ[{a, b, e, f}, x] && GtQ[m, 1] && LtQ[n, -1] && Int
egersQ[2*m, 2*n]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sec[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(a*Csc[e +
f*x])^(m + 1)*((b*Sec[e + f*x])^(n - 1)/(f*a*(n - 1))), x] + Simp[b^2*((m + 1)/(a^2*(n - 1))) Int[(a*Csc[e +
f*x])^(m + 2)*(b*Sec[e + f*x])^(n - 2), x], x] /; FreeQ[{a, b, e, f}, x] && GtQ[n, 1] && LtQ[m, -1] && Intege
rsQ[2*m, 2*n]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sec[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Simp[(-a)*b*(a*Cs
c[e + f*x])^(m - 1)*((b*Sec[e + f*x])^(n - 1)/(f*(m - 1))), x] + Simp[a^2*((m + n - 2)/(m - 1)) Int[(a*Csc[e
+ f*x])^(m - 2)*(b*Sec[e + f*x])^n, x], x] /; FreeQ[{a, b, e, f, n}, x] && GtQ[m, 1] && IntegersQ[2*m, 2*n] &
& !GtQ[n, m]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(a_.))^(m_.)*((b_.)*sec[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[a*b*(a*Csc[e
+ f*x])^(m - 1)*((b*Sec[e + f*x])^(n - 1)/(f*(n - 1))), x] + Simp[b^2*((m + n - 2)/(n - 1)) Int[(a*Csc[e +
f*x])^m*(b*Sec[e + f*x])^(n - 2), x], x] /; FreeQ[{a, b, e, f, m}, x] && GtQ[n, 1] && IntegersQ[2*m, 2*n]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sec[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Simp[b*(a*Csc[e +
f*x])^(m + 1)*((b*Sec[e + f*x])^(n - 1)/(a*f*(m + n))), x] + Simp[(m + 1)/(a^2*(m + n)) Int[(a*Csc[e + f*x]
)^(m + 2)*(b*Sec[e + f*x])^n, x], x] /; FreeQ[{a, b, e, f, n}, x] && LtQ[m, -1] && NeQ[m + n, 0] && IntegersQ[
2*m, 2*n]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(a_.))^(m_.)*((b_.)*sec[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-a)*(a*Csc[
e + f*x])^(m - 1)*((b*Sec[e + f*x])^(n + 1)/(b*f*(m + n))), x] + Simp[(n + 1)/(b^2*(m + n)) Int[(a*Csc[e + f
*x])^m*(b*Sec[e + f*x])^(n + 2), x], x] /; FreeQ[{a, b, e, f, m}, x] && LtQ[n, -1] && NeQ[m + n, 0] && Integer
sQ[2*m, 2*n]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sec[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(a*Csc[e + f*
x])^m*((b*Sec[e + f*x])^n/Tan[e + f*x]^n) Int[Tan[e + f*x]^n, x], x] /; FreeQ[{a, b, e, f, m, n}, x] && !In
tegerQ[n] && EqQ[m + n, 0]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sec[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(a*Csc[e + f*
x])^m*(b*Sec[e + f*x])^n*(a*Sin[e + f*x])^m*(b*Cos[e + f*x])^n Int[1/((a*Sin[e + f*x])^m*(b*Cos[e + f*x])^n)
, x], x] /; FreeQ[{a, b, e, f, m, n}, x] && IntegerQ[m - 1/2] && IntegerQ[n - 1/2]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sec[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(a^2/b^2)*(a*
Csc[e + f*x])^(m - 1)*(b*Sec[e + f*x])^(n + 1)*(a*Sin[e + f*x])^(m - 1)*(b*Cos[e + f*x])^(n + 1) Int[1/((a*S
in[e + f*x])^m*(b*Cos[e + f*x])^n), x], x] /; FreeQ[{a, b, e, f, m, n}, x] && !SimplerQ[-m, -n]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(n_)*((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(a^2/b^2)*(a*
Sec[e + f*x])^(m - 1)*(b*Csc[e + f*x])^(n + 1)*(a*Cos[e + f*x])^(m - 1)*(b*Sin[e + f*x])^(n + 1) Int[1/((a*C
os[e + f*x])^m*(b*Sin[e + f*x])^n), x], x] /; FreeQ[{a, b, e, f, m, n}, x]
-
Int[sin[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Simp[-d^(-1) Subst[Int[Expand[(1 - x^2)^((n - 1)/2), x], x],
x, Cos[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[(n - 1)/2, 0]
-
Int[sin[(c_.) + ((d_.)*(x_))/2]^2, x_Symbol] :> Simp[x/2, x] - Simp[Sin[2*c + d*x]/(2*d), x] /; FreeQ[{c, d},
x]
-
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Sin[c + d*x])^(n - 1)/(d*n))
, x] + Simp[b^2*((n - 1)/n) Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Inte
gerQ[2*n]
-
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1
))), x] + Simp[(n + 2)/(b^2*(n + 1)) Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -
1] && IntegerQ[2*n]
-
Int[sin[Pi/2 + (c_.) + (d_.)*(x_)], x_Symbol] :> Simp[Sin[c + d*x]/d, x] /; FreeQ[{c, d}, x]
-
Int[sin[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-Cos[c + d*x]/d, x] /; FreeQ[{c, d}, x]
-
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]
-
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]
-
Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Sin[c + d*x])^n/Sin[c + d*x]^n Int[Sin[c + d*x
]^n, x], x] /; FreeQ[{b, c, d}, x] && LtQ[-1, n, 1] && IntegerQ[2*n]
-
Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1
)*Sqrt[Cos[c + d*x]^2]))*Hypergeometric2F1[1/2, (n + 1)/2, (n + 3)/2, Sin[c + d*x]^2], x] /; FreeQ[{b, c, d, n
}, x] && !IntegerQ[2*n]
-
Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^2, x_Symbol] :> Simp[(2*a^2 + b^2)*(x/2), x] + (-Simp[2*a*b*(Cos[c
+ d*x]/d), x] - Simp[b^2*Cos[c + d*x]*(Sin[c + d*x]/(2*d)), x]) /; FreeQ[{a, b, c, d}, x]
-
Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Int[ExpandTrig[(a + b*sin[c + d*x])^n, x], x] /;
FreeQ[{a, b, c, d, n}, x] && EqQ[a^2 - b^2, 0] && IGtQ[n, 0]
-
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[-2*b*(Cos[c + d*x]/(d*Sqrt[a + b*Sin[c + d*x
]])), x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]
-
Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((a + b*Sin[c + d*x])^(n
- 1)/(d*n)), x] + Simp[a*((2*n - 1)/n) Int[(a + b*Sin[c + d*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d}, x] &&
EqQ[a^2 - b^2, 0] && IGtQ[n - 1/2, 0]
-
Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> Simp[-Cos[c + d*x]/(d*(b + a*Sin[c + d*x])), x]
/; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]
-
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[-2/d Subst[Int[1/(2*a - x^2), x], x, b*(
Cos[c + d*x]/Sqrt[a + b*Sin[c + d*x]])], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]
-
Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b*Cos[c + d*x]*((a + b*Sin[c + d*x])^n/(a*d
*(2*n + 1))), x] + Simp[(n + 1)/(a*(2*n + 1)) Int[(a + b*Sin[c + d*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d}
, x] && EqQ[a^2 - b^2, 0] && LtQ[n, -1] && IntegerQ[2*n]
-
Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-2^(n + 1/2))*a^(n - 1/2)*b*(Cos[c + d*x]/
(d*Sqrt[a + b*Sin[c + d*x]]))*Hypergeometric2F1[1/2, 1/2 - n, 3/2, (1/2)*(1 - b*(Sin[c + d*x]/a))], x] /; Free
Q[{a, b, c, d, n}, x] && EqQ[a^2 - b^2, 0] && !IntegerQ[2*n] && GtQ[a, 0]
-
Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[a^IntPart[n]*((a + b*Sin[c + d*x])^FracPart
[n]/(1 + (b/a)*Sin[c + d*x])^FracPart[n]) Int[(1 + (b/a)*Sin[c + d*x])^n, x], x] /; FreeQ[{a, b, c, d, n}, x
] && EqQ[a^2 - b^2, 0] && !IntegerQ[2*n] && !GtQ[a, 0]
-
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a + b]/d)*EllipticE[(1/2)*(c - Pi/2
+ d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
-
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a - b]/d)*EllipticE[(1/2)*(c + Pi/2
+ d*x), -2*(b/(a - b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a - b, 0]
-
Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
d*x])/(a + b)] Int[Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2
- b^2, 0] && !GtQ[a + b, 0]
-
Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((a + b*Sin[c + d*x])^(n
- 1)/(d*n)), x] + Simp[1/n Int[(a + b*Sin[c + d*x])^(n - 2)*Simp[a^2*n + b^2*(n - 1) + a*b*(2*n - 1)*Sin[c +
d*x], x], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[n, 1] && IntegerQ[2*n]
-
Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{q = Rt[a^2 - b^2, 2]}, Simp[x/q, x] + Simp
[(2/(d*q))*ArcTan[b*(Cos[c + d*x]/(a + q + b*Sin[c + d*x]))], x]] /; FreeQ[{a, b, c, d}, x] && GtQ[a^2 - b^2,
0] && PosQ[a]
-
Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{q = Rt[a^2 - b^2, 2]}, Simp[-x/q, x] - Sim
p[(2/(d*q))*ArcTan[b*(Cos[c + d*x]/(a - q + b*Sin[c + d*x]))], x]] /; FreeQ[{a, b, c, d}, x] && GtQ[a^2 - b^2,
0] && NegQ[a]
-
Int[((a_) + (b_.)*sin[Pi/2 + (c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x
]}, Simp[2*(e/d) Subst[Int[1/(a + b + (a - b)*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d
}, x] && NeQ[a^2 - b^2, 0]
-
Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> With[{e = FreeFactors[Tan[(c + d*x)/2], x]}, Sim
p[2*(e/d) Subst[Int[1/(a + 2*b*e*x + a*e^2*x^2), x], x, Tan[(c + d*x)/2]/e], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[a^2 - b^2, 0]
-
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*Sqrt[a + b]))*EllipticF[(1/2)*(c - P
i/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]
-
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*Sqrt[a - b]))*EllipticF[(1/2)*(c + P
i/2 + d*x), -2*(b/(a - b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a - b, 0]
-
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]] Int[1/Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[
a^2 - b^2, 0] && !GtQ[a + b, 0]
-
Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((a + b*Sin[c + d*x])^(n
+ 1)/(d*(n + 1)*(a^2 - b^2))), x] + Simp[1/((n + 1)*(a^2 - b^2)) Int[(a + b*Sin[c + d*x])^(n + 1)*Simp[a*(n
+ 1) - b*(n + 2)*Sin[c + d*x], x], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && LtQ[n, -1] && Inte
gerQ[2*n]
-
Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]/(d*Sqrt[1 + Sin[c + d*x]]*Sqrt
[1 - Sin[c + d*x]]) Subst[Int[(a + b*x)^n/(Sqrt[1 + x]*Sqrt[1 - x]), x], x, Sin[c + d*x]], x] /; FreeQ[{a, b
, c, d, n}, x] && NeQ[a^2 - b^2, 0] && !IntegerQ[2*n]
-
Int[((a_) + cos[(c_.) + (d_.)*(x_)]*(b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Int[(a + b*(Sin[2*c + 2*
d*x]/2))^n, x] /; FreeQ[{a, b, c, d, n}, x]
-
Int[cos[(e_.) + (f_.)*(x_)]^(p_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Simp[1/(b^p*f)
Subst[Int[(a + x)^(m + (p - 1)/2)*(a - x)^((p - 1)/2), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x]
&& IntegerQ[(p - 1)/2] && EqQ[a^2 - b^2, 0] && (GeQ[p, -1] || !IntegerQ[m + 1/2])
-
Int[cos[(e_.) + (f_.)*(x_)]^(p_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Simp[1/(b^p*f)
Subst[Int[(a + x)^m*(b^2 - x^2)^((p - 1)/2), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x] && Intege
rQ[(p - 1)/2] && NeQ[a^2 - b^2, 0]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(-b)*((g*Co
s[e + f*x])^(p + 1)/(f*g*(p + 1))), x] + Simp[a Int[(g*Cos[e + f*x])^p, x], x] /; FreeQ[{a, b, e, f, g, p},
x] && (IntegerQ[2*p] || NeQ[a^2 - b^2, 0])
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(a/g)^
(2*m) Int[(g*Cos[e + f*x])^(2*m + p)/(a - b*Sin[e + f*x])^m, x], x] /; FreeQ[{a, b, e, f, g}, x] && EqQ[a^2
- b^2, 0] && IntegerQ[m] && LtQ[p, -1] && GeQ[2*m + p, 0]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[b*(g*C
os[e + f*x])^(p + 1)*((a + b*Sin[e + f*x])^m/(a*f*g*m)), x] /; FreeQ[{a, b, e, f, g, m, p}, x] && EqQ[a^2 - b^
2, 0] && EqQ[Simplify[m + p + 1], 0] && !ILtQ[p, 0]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[b*(g*C
os[e + f*x])^(p + 1)*((a + b*Sin[e + f*x])^m/(a*f*g*Simplify[2*m + p + 1])), x] + Simp[Simplify[m + p + 1]/(a*
Simplify[2*m + p + 1]) Int[(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, e, f, g,
m, p}, x] && EqQ[a^2 - b^2, 0] && ILtQ[Simplify[m + p + 1], 0] && NeQ[2*m + p + 1, 0] && !IGtQ[m, 0]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[b*(g*C
os[e + f*x])^(p + 1)*((a + b*Sin[e + f*x])^(m - 1)/(f*g*(m - 1))), x] /; FreeQ[{a, b, e, f, g, m, p}, x] && Eq
Q[a^2 - b^2, 0] && EqQ[2*m + p - 1, 0] && NeQ[m, 1]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(-b)*(
g*Cos[e + f*x])^(p + 1)*((a + b*Sin[e + f*x])^(m - 1)/(f*g*(m + p))), x] + Simp[a*((2*m + p - 1)/(m + p)) In
t[(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^(m - 1), x], x] /; FreeQ[{a, b, e, f, g, m, p}, x] && EqQ[a^2 - b^2,
0] && IGtQ[Simplify[(2*m + p - 1)/2], 0] && NeQ[m + p, 0]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(-b)*(
g*Cos[e + f*x])^(p + 1)*((a + b*Sin[e + f*x])^m/(a*f*g*(p + 1))), x] + Simp[a*((m + p + 1)/(g^2*(p + 1))) In
t[(g*Cos[e + f*x])^(p + 2)*(a + b*Sin[e + f*x])^(m - 1), x], x] /; FreeQ[{a, b, e, f, g}, x] && EqQ[a^2 - b^2,
0] && GtQ[m, 0] && LeQ[p, -2*m] && IntegersQ[m + 1/2, 2*p]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[-2*b*(
g*Cos[e + f*x])^(p + 1)*((a + b*Sin[e + f*x])^(m - 1)/(f*g*(p + 1))), x] + Simp[b^2*((2*m + p - 1)/(g^2*(p + 1
))) Int[(g*Cos[e + f*x])^(p + 2)*(a + b*Sin[e + f*x])^(m - 2), x], x] /; FreeQ[{a, b, e, f, g}, x] && EqQ[a^
2 - b^2, 0] && GtQ[m, 1] && LtQ[p, -1] && IntegersQ[2*m, 2*p]
-
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[cos[(e_.) + (f_.)*(x_)]*(g_.)], x_Symbol] :> Simp[a*Sqrt[1
+ Cos[e + f*x]]*(Sqrt[a + b*Sin[e + f*x]]/(a + a*Cos[e + f*x] + b*Sin[e + f*x])) Int[Sqrt[1 + Cos[e + f*x]]
/Sqrt[g*Cos[e + f*x]], x], x] + Simp[b*Sqrt[1 + Cos[e + f*x]]*(Sqrt[a + b*Sin[e + f*x]]/(a + a*Cos[e + f*x] +
b*Sin[e + f*x])) Int[Sin[e + f*x]/(Sqrt[g*Cos[e + f*x]]*Sqrt[1 + Cos[e + f*x]]), x], x] /; FreeQ[{a, b, e, f
, g}, x] && EqQ[a^2 - b^2, 0]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(-b)*(
g*Cos[e + f*x])^(p + 1)*((a + b*Sin[e + f*x])^(m - 1)/(f*g*(m + p))), x] + Simp[a*((2*m + p - 1)/(m + p)) In
t[(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^(m - 1), x], x] /; FreeQ[{a, b, e, f, g, m, p}, x] && EqQ[a^2 - b^2,
0] && GtQ[m, 0] && NeQ[m + p, 0] && IntegersQ[2*m, 2*p]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[g*(g*C
os[e + f*x])^(p - 1)*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + p))), x] + Simp[g^2*((p - 1)/(a*(m + p))) Int[(
g*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, e, f, g}, x] && EqQ[a^2 - b^2, 0]
&& LtQ[m, -1] && GtQ[p, 1] && (GtQ[m, -2] || EqQ[2*m + p + 1, 0] || (EqQ[m, -2] && IntegerQ[p])) && NeQ[m + p
, 0] && IntegersQ[2*m, 2*p]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[2*g*(g
*Cos[e + f*x])^(p - 1)*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(2*m + p + 1))), x] + Simp[g^2*((p - 1)/(b^2*(2*m +
p + 1))) Int[(g*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^(m + 2), x], x] /; FreeQ[{a, b, e, f, g}, x] && E
qQ[a^2 - b^2, 0] && LeQ[m, -2] && GtQ[p, 1] && NeQ[2*m + p + 1, 0] && !ILtQ[m + p + 1, 0] && IntegersQ[2*m, 2
*p]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[b*(g*C
os[e + f*x])^(p + 1)*((a + b*Sin[e + f*x])^m/(a*f*g*(2*m + p + 1))), x] + Simp[(m + p + 1)/(a*(2*m + p + 1))
Int[(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, e, f, g, m, p}, x] && EqQ[a^2 - b
^2, 0] && LtQ[m, -1] && NeQ[2*m + p + 1, 0] && IntegersQ[2*m, 2*p]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[g*((g*Cos[e
+ f*x])^(p - 1)/(b*f*(p - 1))), x] + Simp[g^2/a Int[(g*Cos[e + f*x])^(p - 2), x], x] /; FreeQ[{a, b, e, f,
g}, x] && EqQ[a^2 - b^2, 0] && GtQ[p, 1] && IntegerQ[2*p]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[b*((g*Cos[e
+ f*x])^(p + 1)/(a*f*g*(p - 1)*(a + b*Sin[e + f*x]))), x] + Simp[p/(a*(p - 1)) Int[(g*Cos[e + f*x])^p, x],
x] /; FreeQ[{a, b, e, f, g, p}, x] && EqQ[a^2 - b^2, 0] && !GeQ[p, 1] && IntegerQ[2*p]
-
Int[Sqrt[cos[(e_.) + (f_.)*(x_)]*(g_.)]/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp[g*Sqrt[1
+ Cos[e + f*x]]*(Sqrt[a + b*Sin[e + f*x]]/(a + a*Cos[e + f*x] + b*Sin[e + f*x])) Int[Sqrt[1 + Cos[e + f*x]]
/Sqrt[g*Cos[e + f*x]], x], x] - Simp[g*Sqrt[1 + Cos[e + f*x]]*(Sqrt[a + b*Sin[e + f*x]]/(b + b*Cos[e + f*x] +
a*Sin[e + f*x])) Int[Sin[e + f*x]/(Sqrt[g*Cos[e + f*x]]*Sqrt[1 + Cos[e + f*x]]), x], x] /; FreeQ[{a, b, e, f
, g}, x] && EqQ[a^2 - b^2, 0]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(3/2)/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp[g*Sqrt
[g*Cos[e + f*x]]*(Sqrt[a + b*Sin[e + f*x]]/(b*f)), x] + Simp[g^2/(2*a) Int[Sqrt[a + b*Sin[e + f*x]]/Sqrt[g*C
os[e + f*x]], x], x] /; FreeQ[{a, b, e, f, g}, x] && EqQ[a^2 - b^2, 0]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp[-2*b*((
g*Cos[e + f*x])^(p + 1)/(f*g*(2*p - 1)*(a + b*Sin[e + f*x])^(3/2))), x] + Simp[2*a*((p - 2)/(2*p - 1)) Int[(
g*Cos[e + f*x])^p/(a + b*Sin[e + f*x])^(3/2), x], x] /; FreeQ[{a, b, e, f, g}, x] && EqQ[a^2 - b^2, 0] && GtQ[
p, 2] && IntegerQ[2*p]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp[(-b)*((
g*Cos[e + f*x])^(p + 1)/(a*f*g*(p + 1)*Sqrt[a + b*Sin[e + f*x]])), x] + Simp[a*((2*p + 1)/(2*g^2*(p + 1))) I
nt[(g*Cos[e + f*x])^(p + 2)/(a + b*Sin[e + f*x])^(3/2), x], x] /; FreeQ[{a, b, e, f, g}, x] && EqQ[a^2 - b^2,
0] && LtQ[p, -1] && IntegerQ[2*p]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Simp[a^m*(
(g*Cos[e + f*x])^(p + 1)/(f*g*(1 + Sin[e + f*x])^((p + 1)/2)*(1 - Sin[e + f*x])^((p + 1)/2))) Subst[Int[(1 +
(b/a)*x)^(m + (p - 1)/2)*(1 - (b/a)*x)^((p - 1)/2), x], x, Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, g, p}, x]
&& EqQ[a^2 - b^2, 0] && IntegerQ[m]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Simp[a^2*(
(g*Cos[e + f*x])^(p + 1)/(f*g*(a + b*Sin[e + f*x])^((p + 1)/2)*(a - b*Sin[e + f*x])^((p + 1)/2))) Subst[Int[
(a + b*x)^(m + (p - 1)/2)*(a - b*x)^((p - 1)/2), x], x, Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, g, m, p}, x] &
& EqQ[a^2 - b^2, 0] && !IntegerQ[m]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(-(g*C
os[e + f*x])^(p + 1))*(a + b*Sin[e + f*x])^m*(Sin[e + f*x]/(f*g*(p + 1))), x] + Simp[1/(g^2*(p + 1)) Int[(g*
Cos[e + f*x])^(p + 2)*(a + b*Sin[e + f*x])^(m - 1)*(a*(p + 2) + b*(m + p + 2)*Sin[e + f*x]), x], x] /; FreeQ[{
a, b, e, f, g}, x] && NeQ[a^2 - b^2, 0] && LtQ[0, m, 1] && LtQ[p, -1] && (IntegersQ[2*m, 2*p] || IntegerQ[m])
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(-(g*C
os[e + f*x])^(p + 1))*(a + b*Sin[e + f*x])^(m - 1)*((b + a*Sin[e + f*x])/(f*g*(p + 1))), x] + Simp[1/(g^2*(p +
1)) Int[(g*Cos[e + f*x])^(p + 2)*(a + b*Sin[e + f*x])^(m - 2)*(b^2*(m - 1) + a^2*(p + 2) + a*b*(m + p + 1)*
Sin[e + f*x]), x], x] /; FreeQ[{a, b, e, f, g}, x] && NeQ[a^2 - b^2, 0] && GtQ[m, 1] && LtQ[p, -1] && (Integer
sQ[2*m, 2*p] || IntegerQ[m])
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(-b)*(
g*Cos[e + f*x])^(p + 1)*((a + b*Sin[e + f*x])^(m - 1)/(f*g*(m + p))), x] + Simp[1/(m + p) Int[(g*Cos[e + f*x
])^p*(a + b*Sin[e + f*x])^(m - 2)*(b^2*(m - 1) + a^2*(m + p) + a*b*(2*m + p - 1)*Sin[e + f*x]), x], x] /; Free
Q[{a, b, e, f, g, p}, x] && NeQ[a^2 - b^2, 0] && GtQ[m, 1] && NeQ[m + p, 0] && (IntegersQ[2*m, 2*p] || Integer
Q[m])
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[g*(g*C
os[e + f*x])^(p - 1)*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 1))), x] + Simp[g^2*((p - 1)/(b*(m + 1))) Int[(
g*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^(m + 1)*Sin[e + f*x], x], x] /; FreeQ[{a, b, e, f, g}, x] && NeQ[
a^2 - b^2, 0] && LtQ[m, -1] && GtQ[p, 1] && IntegersQ[2*m, 2*p]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(-b)*(
g*Cos[e + f*x])^(p + 1)*((a + b*Sin[e + f*x])^(m + 1)/(f*g*(a^2 - b^2)*(m + 1))), x] + Simp[1/((a^2 - b^2)*(m
+ 1)) Int[(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^(m + 1)*(a*(m + 1) - b*(m + p + 2)*Sin[e + f*x]), x], x] /
; FreeQ[{a, b, e, f, g, p}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && IntegersQ[2*m, 2*p]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[g*(g*C
os[e + f*x])^(p - 1)*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + p))), x] + Simp[g^2*((p - 1)/(b*(m + p))) Int[(
g*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^m*(b + a*Sin[e + f*x]), x], x] /; FreeQ[{a, b, e, f, g, m}, x] &&
NeQ[a^2 - b^2, 0] && GtQ[p, 1] && NeQ[m + p, 0] && IntegersQ[2*m, 2*p]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(g*Cos
[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m + 1)*((b - a*Sin[e + f*x])/(f*g*(a^2 - b^2)*(p + 1))), x] + Simp[1/
(g^2*(a^2 - b^2)*(p + 1)) Int[(g*Cos[e + f*x])^(p + 2)*(a + b*Sin[e + f*x])^m*(a^2*(p + 2) - b^2*(m + p + 2)
+ a*b*(m + p + 3)*Sin[e + f*x]), x], x] /; FreeQ[{a, b, e, f, g, m}, x] && NeQ[a^2 - b^2, 0] && LtQ[p, -1] &&
IntegersQ[2*m, 2*p]
-
Int[1/(Sqrt[cos[(e_.) + (f_.)*(x_)]*(g_.)]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[2*Sq
rt[2]*Sqrt[g*Cos[e + f*x]]*(Sqrt[(a + b*Sin[e + f*x])/((a - b)*(1 - Sin[e + f*x]))]/(f*g*Sqrt[a + b*Sin[e + f*
x]]*Sqrt[(1 + Cos[e + f*x] + Sin[e + f*x])/(1 + Cos[e + f*x] - Sin[e + f*x])])) Subst[Int[1/Sqrt[1 + (a + b)
*(x^4/(a - b))], x], x, Sqrt[(1 + Cos[e + f*x] + Sin[e + f*x])/(1 + Cos[e + f*x] - Sin[e + f*x])]], x] /; Free
Q[{a, b, e, f, g}, x] && NeQ[a^2 - b^2, 0]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[g*(g*C
os[e + f*x])^(p - 1)*(1 - Sin[e + f*x])*(a + b*Sin[e + f*x])^(m + 1)*(((-(a - b))*((1 - Sin[e + f*x])/((a + b)
*(1 + Sin[e + f*x]))))^(m/2)/(f*(a + b)*(m + 1)))*Hypergeometric2F1[m + 1, m/2 + 1, m + 2, 2*((a + b*Sin[e + f
*x])/((a + b)*(1 + Sin[e + f*x])))], x] /; FreeQ[{a, b, e, f, g, m, p}, x] && NeQ[a^2 - b^2, 0] && EqQ[m + p +
1, 0]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(g*Cos
[e + f*x])^(p + 1)*((a + b*Sin[e + f*x])^(m + 1)/(f*g*(a - b)*(p + 1))), x] + Simp[a/(g^2*(a - b)) Int[(g*Co
s[e + f*x])^(p + 2)*((a + b*Sin[e + f*x])^m/(1 - Sin[e + f*x])), x], x] /; FreeQ[{a, b, e, f, g, m, p}, x] &&
NeQ[a^2 - b^2, 0] && EqQ[m + p + 2, 0]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(g*Cos
[e + f*x])^(p + 1)*((a + b*Sin[e + f*x])^(m + 1)/(f*g*(a - b)*(p + 1))), x] + (-Simp[b*((m + p + 2)/(g^2*(a -
b)*(p + 1))) Int[(g*Cos[e + f*x])^(p + 2)*(a + b*Sin[e + f*x])^m, x], x] + Simp[a/(g^2*(a - b)) Int[(g*Cos
[e + f*x])^(p + 2)*((a + b*Sin[e + f*x])^m/(1 - Sin[e + f*x])), x], x]) /; FreeQ[{a, b, e, f, g, m, p}, x] &&
NeQ[a^2 - b^2, 0] && ILtQ[m + p + 2, 0]
-
Int[Sqrt[cos[(e_.) + (f_.)*(x_)]*(g_.)]/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> With[{q = Rt[-a^2
+ b^2, 2]}, Simp[a*(g/(2*b)) Int[1/(Sqrt[g*Cos[e + f*x]]*(q + b*Cos[e + f*x])), x], x] + (-Simp[a*(g/(2*b))
Int[1/(Sqrt[g*Cos[e + f*x]]*(q - b*Cos[e + f*x])), x], x] + Simp[b*(g/f) Subst[Int[Sqrt[x]/(g^2*(a^2 - b^
2) + b^2*x^2), x], x, g*Cos[e + f*x]], x])] /; FreeQ[{a, b, e, f, g}, x] && NeQ[a^2 - b^2, 0]
-
Int[1/(Sqrt[cos[(e_.) + (f_.)*(x_)]*(g_.)]*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> With[{q = Rt[
-a^2 + b^2, 2]}, Simp[-a/(2*q) Int[1/(Sqrt[g*Cos[e + f*x]]*(q + b*Cos[e + f*x])), x], x] + (Simp[b*(g/f) S
ubst[Int[1/(Sqrt[x]*(g^2*(a^2 - b^2) + b^2*x^2)), x], x, g*Cos[e + f*x]], x] - Simp[a/(2*q) Int[1/(Sqrt[g*Co
s[e + f*x]]*(q - b*Cos[e + f*x])), x], x])] /; FreeQ[{a, b, e, f, g}, x] && NeQ[a^2 - b^2, 0]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[g*(g*C
os[e + f*x])^(p - 1)*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + p)*((-b)*((1 - Sin[e + f*x])/(a + b*Sin[e + f*x])
))^((p - 1)/2)*(b*((1 + Sin[e + f*x])/(a + b*Sin[e + f*x])))^((p - 1)/2)))*AppellF1[-p - m, (1 - p)/2, (1 - p)
/2, 1 - p - m, (a + b)/(a + b*Sin[e + f*x]), (a - b)/(a + b*Sin[e + f*x])], x] /; FreeQ[{a, b, e, f, g, p}, x]
&& NeQ[a^2 - b^2, 0] && ILtQ[m, 0] && !IGtQ[m + p + 1, 0]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[g*((g*
Cos[e + f*x])^(p - 1)/(f*(1 - (a + b*Sin[e + f*x])/(a - b))^((p - 1)/2)*(1 - (a + b*Sin[e + f*x])/(a + b))^((p
- 1)/2))) Subst[Int[(-b/(a - b) - b*(x/(a - b)))^((p - 1)/2)*(b/(a + b) - b*(x/(a + b)))^((p - 1)/2)*(a + b
*x)^m, x], x, Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, g, m, p}, x] && NeQ[a^2 - b^2, 0] && !IGtQ[m, 0]
-
Int[((g_.)*sec[(e_.) + (f_.)*(x_)])^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Simp[g^(2*
IntPart[p])*(g*Cos[e + f*x])^FracPart[p]*(g*Sec[e + f*x])^FracPart[p] Int[(a + b*Sin[e + f*x])^m/(g*Cos[e +
f*x])^p, x], x] /; FreeQ[{a, b, e, f, g, m, p}, x] && !IntegerQ[p]
-
Int[((g_.)*tan[(e_.) + (f_.)*(x_)])^(p_.)/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[1/a Int[
Sec[e + f*x]^2*(g*Tan[e + f*x])^p, x], x] - Simp[1/(b*g) Int[Sec[e + f*x]*(g*Tan[e + f*x])^(p + 1), x], x] /
; FreeQ[{a, b, e, f, g, p}, x] && EqQ[a^2 - b^2, 0] && NeQ[p, -1]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*tan[(e_.) + (f_.)*(x_)]^(p_.), x_Symbol] :> Simp[1/f Subst[
Int[x^p*((a + x)^(m - (p + 1)/2)/(a - x)^((p + 1)/2)), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x]
&& EqQ[a^2 - b^2, 0] && IntegerQ[(p + 1)/2]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*tan[(e_.) + (f_.)*(x_)]^(p_), x_Symbol] :> Simp[a^p Int[Sin
[e + f*x]^p/(a - b*Sin[e + f*x])^m, x], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0] && IntegersQ[m, p] &
& EqQ[p, 2*m]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*tan[(e_.) + (f_.)*(x_)]^(p_), x_Symbol] :> Simp[a^p Int[Expa
ndIntegrand[Sin[e + f*x]^p*((a + b*Sin[e + f*x])^(m - p/2)/(a - b*Sin[e + f*x])^(p/2)), x], x], x] /; FreeQ[{a
, b, e, f}, x] && EqQ[a^2 - b^2, 0] && IntegersQ[m, p/2] && (LtQ[p, 0] || GtQ[m - p/2, 0])
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((g_.)*tan[(e_.) + (f_.)*(x_)])^(p_.), x_Symbol] :> Int[Expan
dIntegrand[(g*Tan[e + f*x])^p, (a + b*Sin[e + f*x])^m, x], x] /; FreeQ[{a, b, e, f, g, p}, x] && EqQ[a^2 - b^2
, 0] && IGtQ[m, 0]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((g_.)*tan[(e_.) + (f_.)*(x_)])^(p_.), x_Symbol] :> Simp[a^(2*
m) Int[ExpandIntegrand[(g*Tan[e + f*x])^p/Sec[e + f*x]^m, (a*Sec[e + f*x] - b*Tan[e + f*x])^(-m), x], x], x]
/; FreeQ[{a, b, e, f, g, p}, x] && EqQ[a^2 - b^2, 0] && ILtQ[m, 0]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*tan[(e_.) + (f_.)*(x_)]^2, x_Symbol] :> Simp[b*((a + b*Sin[e +
f*x])^m/(a*f*(2*m - 1)*Cos[e + f*x])), x] - Simp[1/(a^2*(2*m - 1)) Int[(a + b*Sin[e + f*x])^(m + 1)*((a*m -
b*(2*m - 1)*Sin[e + f*x])/Cos[e + f*x]^2), x], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0] && !Integer
Q[m] && LtQ[m, 0]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*tan[(e_.) + (f_.)*(x_)]^2, x_Symbol] :> Simp[-(a + b*Sin[e + f
*x])^(m + 1)/(b*f*m*Cos[e + f*x]), x] + Simp[1/(b*m) Int[(a + b*Sin[e + f*x])^m*((b*(m + 1) + a*Sin[e + f*x]
)/Cos[e + f*x]^2), x], x] /; FreeQ[{a, b, e, f, m}, x] && EqQ[a^2 - b^2, 0] && !IntegerQ[m] && !LtQ[m, 0]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*tan[(e_.) + (f_.)*(x_)]^4, x_Symbol] :> Int[(a + b*Sin[e + f*x
])^m, x] - Int[(a + b*Sin[e + f*x])^m*((1 - 2*Sin[e + f*x]^2)/Cos[e + f*x]^4), x] /; FreeQ[{a, b, e, f, m}, x]
&& EqQ[a^2 - b^2, 0] && IntegerQ[m - 1/2]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)/tan[(e_.) + (f_.)*(x_)]^2, x_Symbol] :> Simp[-(a + b*Sin[e + f
*x])^(m + 1)/(a*f*Tan[e + f*x]), x] + Simp[1/b^2 Int[(a + b*Sin[e + f*x])^(m + 1)*((b*m - a*(m + 1)*Sin[e +
f*x])/Sin[e + f*x]), x], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0] && IntegerQ[m - 1/2] && LtQ[m, -1]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)/tan[(e_.) + (f_.)*(x_)]^2, x_Symbol] :> Simp[-(a + b*Sin[e +
f*x])^m/(f*Tan[e + f*x]), x] + Simp[1/a Int[(a + b*Sin[e + f*x])^m*((b*m - a*(m + 1)*Sin[e + f*x])/Sin[e + f
*x]), x], x] /; FreeQ[{a, b, e, f, m}, x] && EqQ[a^2 - b^2, 0] && IntegerQ[m - 1/2] && !LtQ[m, -1]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)/tan[(e_.) + (f_.)*(x_)]^4, x_Symbol] :> Simp[-2/(a*b) Int[(a
+ b*Sin[e + f*x])^(m + 2)/Sin[e + f*x]^3, x], x] + Simp[1/a^2 Int[(a + b*Sin[e + f*x])^(m + 2)*((1 + Sin[e
+ f*x]^2)/Sin[e + f*x]^4), x], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0] && IntegerQ[m - 1/2] && LtQ[m
, -1]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)/tan[(e_.) + (f_.)*(x_)]^4, x_Symbol] :> Int[(a + b*Sin[e + f*x
])^m, x] + Int[(a + b*Sin[e + f*x])^m*((1 - 2*Sin[e + f*x]^2)/Sin[e + f*x]^4), x] /; FreeQ[{a, b, e, f, m}, x]
&& EqQ[a^2 - b^2, 0] && IntegerQ[m - 1/2] && !LtQ[m, -1]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*tan[(e_.) + (f_.)*(x_)]^(p_), x_Symbol] :> Simp[Sqrt[a + b*Sin
[e + f*x]]*(Sqrt[a - b*Sin[e + f*x]]/(b*f*Cos[e + f*x])) Subst[Int[x^p*((a + x)^(m - (p + 1)/2)/(a - x)^((p
+ 1)/2)), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x] && EqQ[a^2 - b^2, 0] && !IntegerQ[m] && Int
egerQ[p/2]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((g_.)*tan[(e_.) + (f_.)*(x_)])^(p_), x_Symbol] :> Simp[(g*Tan
[e + f*x])^(p + 1)*(a - b*Sin[e + f*x])^((p + 1)/2)*((a + b*Sin[e + f*x])^((p + 1)/2)/(f*g*(b*Sin[e + f*x])^(p
+ 1))) Subst[Int[x^p*((a + x)^(m - (p + 1)/2)/(a - x)^((p + 1)/2)), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a,
b, e, f, g, m, p}, x] && EqQ[a^2 - b^2, 0] && !IntegerQ[m] && !IntegerQ[p]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*tan[(e_.) + (f_.)*(x_)]^(p_.), x_Symbol] :> Simp[1/f Subst[
Int[(x^p*(a + x)^m)/(b^2 - x^2)^((p + 1)/2), x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, m}, x] && NeQ[a^
2 - b^2, 0] && IntegerQ[(p + 1)/2]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((g_.)*tan[(e_.) + (f_.)*(x_)])^(p_.), x_Symbol] :> Int[Expan
dIntegrand[(g*Tan[e + f*x])^p, (a + b*Sin[e + f*x])^m, x], x] /; FreeQ[{a, b, e, f, g, p}, x] && NeQ[a^2 - b^2
, 0] && IGtQ[m, 0]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)/tan[(e_.) + (f_.)*(x_)]^2, x_Symbol] :> Int[(a + b*Sin[e + f*x
])^m*((1 - Sin[e + f*x]^2)/Sin[e + f*x]^2), x] /; FreeQ[{a, b, e, f, m}, x] && NeQ[a^2 - b^2, 0]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)/tan[(e_.) + (f_.)*(x_)]^4, x_Symbol] :> Simp[(-Cos[e + f*x])*(
(a + b*Sin[e + f*x])^(m + 1)/(3*a*f*Sin[e + f*x]^3)), x] + (-Simp[(3*a^2 + b^2*(m - 2))*Cos[e + f*x]*((a + b*S
in[e + f*x])^(m + 1)/(3*a^2*b*f*(m + 1)*Sin[e + f*x]^2)), x] - Simp[1/(3*a^2*b*(m + 1)) Int[((a + b*Sin[e +
f*x])^(m + 1)/Sin[e + f*x]^3)*Simp[6*a^2 - b^2*(m - 1)*(m - 2) + a*b*(m + 1)*Sin[e + f*x] - (3*a^2 - b^2*m*(m
- 2))*Sin[e + f*x]^2, x], x], x]) /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && IntegerQ[2*m
]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)/tan[(e_.) + (f_.)*(x_)]^4, x_Symbol] :> Simp[(-Cos[e + f*x])*(
(a + b*Sin[e + f*x])^(m + 1)/(3*a*f*Sin[e + f*x]^3)), x] + (-Simp[b*(m - 2)*Cos[e + f*x]*((a + b*Sin[e + f*x])
^(m + 1)/(6*a^2*f*Sin[e + f*x]^2)), x] - Simp[1/(6*a^2) Int[((a + b*Sin[e + f*x])^m/Sin[e + f*x]^2)*Simp[8*a
^2 - b^2*(m - 1)*(m - 2) + a*b*m*Sin[e + f*x] - (6*a^2 - b^2*m*(m - 2))*Sin[e + f*x]^2, x], x], x]) /; FreeQ[{
a, b, e, f, m}, x] && NeQ[a^2 - b^2, 0] && !LtQ[m, -1] && IntegerQ[2*m]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)/tan[(e_.) + (f_.)*(x_)]^6, x_Symbol] :> Simp[(-Cos[e + f*x])*(
(a + b*Sin[e + f*x])^(m + 1)/(5*a*f*Sin[e + f*x]^5)), x] + (Simp[Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b
*f*m*Sin[e + f*x]^2)), x] + Simp[a*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b^2*f*m*(m - 1)*Sin[e + f*x]^3)
), x] - Simp[b*(m - 4)*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(20*a^2*f*Sin[e + f*x]^4)), x] + Simp[1/(20*
a^2*b^2*m*(m - 1)) Int[((a + b*Sin[e + f*x])^m/Sin[e + f*x]^4)*Simp[60*a^4 - 44*a^2*b^2*(m - 1)*m + b^4*m*(m
- 1)*(m - 3)*(m - 4) + a*b*m*(20*a^2 - b^2*m*(m - 1))*Sin[e + f*x] - (40*a^4 + b^4*m*(m - 1)*(m - 2)*(m - 4)
- 20*a^2*b^2*(m - 1)*(2*m + 1))*Sin[e + f*x]^2, x], x], x]) /; FreeQ[{a, b, e, f, m}, x] && NeQ[a^2 - b^2, 0]
&& NeQ[m, 1] && IntegerQ[2*m]
-
Int[((g_.)*tan[(e_.) + (f_.)*(x_)])^(p_)/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[a/(a^2 - b^
2) Int[(g*Tan[e + f*x])^p/Sin[e + f*x]^2, x], x] + (-Simp[b*(g/(a^2 - b^2)) Int[(g*Tan[e + f*x])^(p - 1)/C
os[e + f*x], x], x] - Simp[a^2*(g^2/(a^2 - b^2)) Int[(g*Tan[e + f*x])^(p - 2)/(a + b*Sin[e + f*x]), x], x])
/; FreeQ[{a, b, e, f, g}, x] && NeQ[a^2 - b^2, 0] && IntegersQ[2*p] && GtQ[p, 1]
-
Int[((g_.)*tan[(e_.) + (f_.)*(x_)])^(p_)/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[1/a Int[(
g*Tan[e + f*x])^p/Cos[e + f*x]^2, x], x] + (-Simp[b/(a^2*g) Int[(g*Tan[e + f*x])^(p + 1)/Cos[e + f*x], x], x
] - Simp[(a^2 - b^2)/(a^2*g^2) Int[(g*Tan[e + f*x])^(p + 2)/(a + b*Sin[e + f*x]), x], x]) /; FreeQ[{a, b, e,
f, g}, x] && NeQ[a^2 - b^2, 0] && IntegersQ[2*p] && LtQ[p, -1]
-
Int[Sqrt[(g_.)*tan[(e_.) + (f_.)*(x_)]]/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[Sqrt[Cos[e +
f*x]]*(Sqrt[g*Tan[e + f*x]]/Sqrt[Sin[e + f*x]]) Int[Sqrt[Sin[e + f*x]]/(Sqrt[Cos[e + f*x]]*(a + b*Sin[e + f
*x])), x], x] /; FreeQ[{a, b, e, f, g}, x] && NeQ[a^2 - b^2, 0]
-
Int[1/(((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(g_)*tan[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[Sqrt[Sin[
e + f*x]]/(Sqrt[Cos[e + f*x]]*Sqrt[g*Tan[e + f*x]]) Int[Sqrt[Cos[e + f*x]]/(Sqrt[Sin[e + f*x]]*(a + b*Sin[e
+ f*x])), x], x] /; FreeQ[{a, b, e, f, g}, x] && NeQ[a^2 - b^2, 0]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*tan[(e_.) + (f_.)*(x_)]^(p_), x_Symbol] :> Int[ExpandIntegrand
[Sin[e + f*x]^p*((a + b*Sin[e + f*x])^m/(1 - Sin[e + f*x]^2)^(p/2)), x], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a
^2 - b^2, 0] && IntegersQ[m, p/2]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((g_.)*tan[(e_.) + (f_.)*(x_)])^(p_.), x_Symbol] :> Unintegra
ble[(a + b*Sin[e + f*x])^m*(g*Tan[e + f*x])^p, x] /; FreeQ[{a, b, e, f, g, m, p}, x]
-
Int[(cot[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Simp[g^(2*
IntPart[p])*(g*Cot[e + f*x])^FracPart[p]*(g*Tan[e + f*x])^FracPart[p] Int[(a + b*Sin[e + f*x])^m/(g*Tan[e +
f*x])^p, x], x] /; FreeQ[{a, b, e, f, g, m, p}, x] && !IntegerQ[p]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(2*a*c +
b*d)*(x/2), x] + (-Simp[(b*c + a*d)*(Cos[e + f*x]/f), x] - Simp[b*d*Cos[e + f*x]*(Sin[e + f*x]/(2*f)), x]) /;
FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0]
-
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[b*(x/d)
, x] - Simp[(b*c - a*d)/d Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*
d, 0]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Si
mp[a^m*c^m Int[Cos[e + f*x]^(2*m)*(c + d*Sin[e + f*x])^(n - m), x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &&
EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[m] && !(IntegerQ[n] && ((LtQ[m, 0] && GtQ[n, 0]) || LtQ[0
, n, m] || LtQ[m, n, 0]))
-
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp[a
*c*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]])) Int[Cos[e + f*x]/(c + d*Sin[e + f*x]),
x], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0]
-
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[
-2*b*Cos[e + f*x]*((c + d*Sin[e + f*x])^n/(f*(2*n + 1)*Sqrt[a + b*Sin[e + f*x]])), x] /; FreeQ[{a, b, c, d, e,
f, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[n, -2^(-1)]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[-2*b*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[e + f*x])^n/(f*(2*n + 1))), x] - Simp[b*((2*m - 1)
/(d*(2*n + 1))) Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d,
e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IGtQ[m - 1/2, 0] && LtQ[n, -1] && !(ILtQ[m + n, 0] &&
GtQ[2*m + n + 1, 0])
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[(-b)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[e + f*x])^n/(f*(m + n))), x] + Simp[a*((2*m - 1)/(
m + n)) Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &
& EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IGtQ[m - 1/2, 0] && !LtQ[n, -1] && !(IGtQ[n - 1/2, 0] && LtQ[n,
m]) && !(ILtQ[m + n, 0] && GtQ[2*m + n + 1, 0])
-
Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Si
mp[Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]) Int[1/Cos[e + f*x], x], x] /; FreeQ[{a,
b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[b*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^n/(a*f*(2*m + 1))), x] /; FreeQ[{a, b, c, d, e, f
, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && EqQ[m + n + 1, 0] && NeQ[m, -2^(-1)]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[b*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^n/(a*f*(2*m + 1))), x] + Simp[(m + n + 1)/(a*(2*m
+ 1)) Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]
&& EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && ILtQ[Simplify[m + n + 1], 0] && NeQ[m, -2^(-1)] && (SumSimplerQ[
m, 1] || !SumSimplerQ[n, 1])
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[b*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^n/(a*f*(2*m + 1))), x] + Simp[(m + n + 1)/(a*(2*m
+ 1)) Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &&
EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -1] && !LtQ[m, n, -1] && IntegersQ[2*m, 2*n]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[a^IntPart[m]*c^IntPart[m]*(a + b*Sin[e + f*x])^FracPart[m]*((c + d*Sin[e + f*x])^FracPart[m]/Cos[e + f*x]^(2*
FracPart[m])) Int[Cos[e + f*x]^(2*m)*(c + d*Sin[e + f*x])^(n - m), x], x] /; FreeQ[{a, b, c, d, e, f, m, n},
x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && (FractionQ[m] || !FractionQ[n])
-
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^2/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(-b^2
)*(Cos[e + f*x]/(d*f)), x] + Simp[1/d Int[Simp[a^2*d - b*(b*c - 2*a*d)*Sin[e + f*x], x]/(c + d*Sin[e + f*x])
, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0]
-
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Simp[b/(
b*c - a*d) Int[1/(a + b*Sin[e + f*x]), x], x] - Simp[d/(b*c - a*d) Int[1/(c + d*Sin[e + f*x]), x], x] /; F
reeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0]
-
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[c Int[(b*
Sin[e + f*x])^m, x], x] + Simp[d/b Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(-d)
*Cos[e + f*x]*((a + b*Sin[e + f*x])^m/(f*(m + 1))), x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0]
&& EqQ[a^2 - b^2, 0] && EqQ[a*d*m + b*c*(m + 1), 0]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b*
c - a*d)*Cos[e + f*x]*((a + b*Sin[e + f*x])^m/(a*f*(2*m + 1))), x] + Simp[(a*d*m + b*c*(m + 1))/(a*b*(2*m + 1)
) Int[(a + b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 -
b^2, 0] && LtQ[m, -2^(-1)]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(-d
)*Cos[e + f*x]*((a + b*Sin[e + f*x])^m/(f*(m + 1))), x] + Simp[(a*d*m + b*c*(m + 1))/(b*(m + 1)) Int[(a + b*
Sin[e + f*x])^m, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && !LtQ[
m, -2^(-1)]
-
Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp[(b*c
- a*d)/b Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Simp[d/b Int[Sqrt[a + b*Sin[e + f*x]], x], x] /; FreeQ[
{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(-d
)*Cos[e + f*x]*((a + b*Sin[e + f*x])^m/(f*(m + 1))), x] + Simp[1/(m + 1) Int[(a + b*Sin[e + f*x])^(m - 1)*Si
mp[b*d*m + a*c*(m + 1) + (a*d*m + b*c*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ
[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && GtQ[m, 0] && IntegerQ[2*m]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(-(
b*c - a*d))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(f*(m + 1)*(a^2 - b^2))), x] + Simp[1/((m + 1)*(a^2 - b
^2)) Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[(a*c - b*d)*(m + 1) - (b*c - a*d)*(m + 2)*Sin[e + f*x], x], x], x
] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && IntegerQ[2*m]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[c*(C
os[e + f*x]/(f*Sqrt[1 + Sin[e + f*x]]*Sqrt[1 - Sin[e + f*x]])) Subst[Int[(a + b*x)^m*(Sqrt[1 + (d/c)*x]/Sqrt
[1 - (d/c)*x]), x], x, Sin[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 -
b^2, 0] && !IntegerQ[2*m] && EqQ[c^2 - d^2, 0]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b*
c - a*d)/b Int[(a + b*Sin[e + f*x])^m, x], x] + Simp[d/b Int[(a + b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ
[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]
-
Int[((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Int[Expan
dTrig[(a + b*sin[e + f*x])^m*(d*sin[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^2, 0] &
& IGtQ[m, 0] && RationalQ[n]
-
Int[sin[(e_.) + (f_.)*(x_)]^2*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[b*Cos[e + f*x]*((
a + b*Sin[e + f*x])^m/(a*f*(2*m + 1))), x] - Simp[1/(a^2*(2*m + 1)) Int[(a + b*Sin[e + f*x])^(m + 1)*(a*m -
b*(2*m + 1)*Sin[e + f*x]), x], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)]
-
Int[sin[(e_.) + (f_.)*(x_)]^2*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(-Cos[e + f*x])*(
(a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Simp[1/(b*(m + 2)) Int[(a + b*Sin[e + f*x])^m*(b*(m + 1) -
a*Sin[e + f*x]), x], x] /; FreeQ[{a, b, e, f, m}, x] && EqQ[a^2 - b^2, 0] && !LtQ[m, -2^(-1)]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^2, x_Symbol] :> Simp[(b
*c - a*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])/(a*f*(2*m + 1))), x] + Simp[1/(a*b*(2*m +
1)) Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[a*c*d*(m - 1) + b*(d^2 + c^2*(m + 1)) + d*(a*d*(m - 1) + b*c*(m +
2))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && LtQ[
m, -1]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^2, x_Symbol] :> Simp[(-
d^2)*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Simp[1/(b*(m + 2)) Int[(a + b*Sin[e + f
*x])^m*Simp[b*(d^2*(m + 1) + c^2*(m + 2)) - d*(a*d - 2*b*c*(m + 2))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c
, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && !LtQ[m, -1]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(-b^2)*(b*c - a*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 2)*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(b*c
+ a*d))), x] + Simp[b^2/(d*(n + 1)*(b*c + a*d)) Int[(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^(n +
1)*Simp[a*c*(m - 2) - b*d*(m - 2*n - 4) - (b*c*(m - 1) - a*d*(m + 2*n + 1))*Sin[e + f*x], x], x], x] /; FreeQ[
{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1] && LtQ[n, -
1] && (IntegersQ[2*m, 2*n] || IntegerQ[m + 1/2] || (IntegerQ[m] && EqQ[c, 0]))
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(-b^2)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 2)*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(m + n))), x] + Simp[1/(
d*(m + n)) Int[(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^n*Simp[a*b*c*(m - 2) + b^2*d*(n + 1) + a^2*
d*(m + n) - b*(b*c*(m - 1) - a*d*(3*m + 2*n - 2))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x]
&& NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1] && !LtQ[n, -1] && (IntegersQ[2*m,
2*n] || IntegerQ[m + 1/2] || (IntegerQ[m] && EqQ[c, 0]))
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[b*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^n/(a*f*(2*m + 1))), x] - Simp[1/(a*b*(2*m + 1))
Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n - 1)*Simp[a*d*n - b*c*(m + 1) - b*d*(m + n + 1)*Sin
[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d
^2, 0] && LtQ[m, -1] && LtQ[0, n, 1] && (IntegersQ[2*m, 2*n] || (IntegerQ[m] && EqQ[c, 0]))
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(b*c - a*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n - 1)/(a*f*(2*m + 1))), x] + Simp[1/
(a*b*(2*m + 1)) Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n - 2)*Simp[b*(c^2*(m + 1) + d^2*(n -
1)) + a*c*d*(m - n + 1) + d*(a*d*(m - n + 1) + b*c*(m + n))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e,
f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && GtQ[n, 1] && (Integers
Q[2*m, 2*n] || (IntegerQ[m] && EqQ[c, 0]))
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[b^2*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Sim
p[1/(a*(2*m + 1)*(b*c - a*d)) Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[b*c*(m + 1) - a*d
*(2*m + n + 2) + b*d*(m + n + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d,
0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && !GtQ[n, 0] && (IntegersQ[2*m, 2*n] || (Integer
Q[m] && EqQ[c, 0]))
-
Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(-(
b*c - a*d))*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n - 1)/(a*f*(a + b*Sin[e + f*x]))), x] - Simp[d/(a*b) Int[(c
+ d*Sin[e + f*x])^(n - 2)*Simp[b*d*(n - 1) - a*c*n + (b*c*(n - 1) - a*d*n)*Sin[e + f*x], x], x], x] /; FreeQ[
{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[n, 1] && (Integer
Q[2*n] || EqQ[c, 0])
-
Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(-b
^2)*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(a*f*(b*c - a*d)*(a + b*Sin[e + f*x]))), x] + Simp[d/(a*(b*c -
a*d)) Int[(c + d*Sin[e + f*x])^n*(a*n - b*(n + 1)*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && N
eQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, 0] && (IntegerQ[2*n] || EqQ[c, 0])
-
Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(-b
)*Cos[e + f*x]*((c + d*Sin[e + f*x])^n/(a*f*(a + b*Sin[e + f*x]))), x] + Simp[d*(n/(a*b)) Int[(c + d*Sin[e +
f*x])^(n - 1)*(a - b*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0] && (IntegerQ[2*n] || EqQ[c, 0])
-
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[-2*b*Cos[e + f*x]*((c + d*Sin[e + f*x])^n/(f*(2*n + 1)*Sqrt[a + b*Sin[e + f*x]])), x] + Simp[2*n*((b*c + a*d)
/(b*(2*n + 1))) Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, f
}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[n, 0] && IntegerQ[2*n]
-
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(3/2), x_Symbol] :> Sim
p[-2*b^2*(Cos[e + f*x]/(f*(b*c + a*d)*Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]])), x] /; FreeQ[{a, b,
c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
-
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[(b*c - a*d)*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(f*(n + 1)*(c^2 - d^2)*Sqrt[a + b*Sin[e + f*x]])), x]
+ Simp[(2*n + 3)*((b*c - a*d)/(2*b*(n + 1)*(c^2 - d^2))) Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(
n + 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
&& LtQ[n, -1] && NeQ[2*n + 3, 0] && IntegerQ[2*n]
-
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[-2*(
b/f) Subst[Int[1/(b*c + a*d - d*x^2), x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b,
c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
-
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp[-2/f S
ubst[Int[1/Sqrt[1 - x^2/a], x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, d, e, f}, x]
&& EqQ[a^2 - b^2, 0] && EqQ[d, a/b]
-
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp[
-2*(b/f) Subst[Int[1/(b + d*x^2), x], x, b*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]])
)], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
-
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[a^2*(Cos[e + f*x]/(f*Sqrt[a + b*Sin[e + f*x]]*Sqrt[a - b*Sin[e + f*x]])) Subst[Int[(c + d*x)^n/Sqrt[a - b*x
], x], x, Sin[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && Ne
Q[c^2 - d^2, 0] && !IntegerQ[2*n]
-
Int[Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp[
d/b Int[Sqrt[a + b*Sin[e + f*x]]/Sqrt[c + d*Sin[e + f*x]], x], x] + Simp[(b*c - a*d)/b Int[1/(Sqrt[a + b*S
in[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0]
-
Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp
[-2*d*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n - 1)/(f*(2*n - 1)*Sqrt[a + b*Sin[e + f*x]])), x] - Simp[1/(b*(2*n
- 1)) Int[((c + d*Sin[e + f*x])^(n - 2)/Sqrt[a + b*Sin[e + f*x]])*Simp[a*c*d - b*(2*d^2*(n - 1) + c^2*(2*n -
1)) + d*(a*d - b*c*(4*n - 3))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] &
& EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[n, 1] && IntegerQ[2*n]
-
Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp
[(-d)*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(f*(n + 1)*(c^2 - d^2)*Sqrt[a + b*Sin[e + f*x]])), x] - Simp[
1/(2*b*(n + 1)*(c^2 - d^2)) Int[(c + d*Sin[e + f*x])^(n + 1)*(Simp[a*d - 2*b*c*(n + 1) + b*d*(2*n + 3)*Sin[e
+ f*x], x]/Sqrt[a + b*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, -1] && IntegerQ[2*n]
-
Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Simp[
b/(b*c - a*d) Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] - Simp[d/(b*c - a*d) Int[Sqrt[a + b*Sin[e + f*x]]/(c
+ d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2
- d^2, 0]
-
Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-Sqr
t[2]/(Sqrt[a]*f) Subst[Int[1/Sqrt[1 - x^2], x], x, b*(Cos[e + f*x]/(a + b*Sin[e + f*x]))], x] /; FreeQ[{a, b
, d, e, f}, x] && EqQ[a^2 - b^2, 0] && EqQ[d, a/b] && GtQ[a, 0]
-
Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> S
imp[-2*(a/f) Subst[Int[1/(2*b^2 - (a*c - b*d)*x^2), x], x, b*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c
+ d*Sin[e + f*x]]))], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2
- d^2, 0]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(-d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n - 1)/(f*(m + n))), x] + Simp[1/(b*(m + n))
Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n - 2)*Simp[d*(a*c*m + b*d*(n - 1)) + b*c^2*(m + n) + d*(a
*d*m + b*c*(m + 2*n - 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] &&
EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[n, 1] && IntegerQ[n]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Si
mp[a^m*(Cos[e + f*x]/(f*Sqrt[1 + Sin[e + f*x]]*Sqrt[1 - Sin[e + f*x]])) Subst[Int[(1 + (b/a)*x)^(m - 1/2)*((
c + d*x)^n/Sqrt[1 - (b/a)*x]), x], x, Sin[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0
] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && IntegerQ[m]
-
Int[((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(-b)*(
d/b)^n*(Cos[e + f*x]/(f*Sqrt[a + b*Sin[e + f*x]]*Sqrt[a - b*Sin[e + f*x]])) Subst[Int[(a - x)^n*((2*a - x)^(
m - 1/2)/Sqrt[x]), x], x, a - b*Sin[e + f*x]], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] &&
!IntegerQ[m] && GtQ[a, 0] && GtQ[d/b, 0]
-
Int[((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(d/b)
^IntPart[n]*((d*Sin[e + f*x])^FracPart[n]/(b*Sin[e + f*x])^FracPart[n]) Int[(a + b*Sin[e + f*x])^m*(b*Sin[e
+ f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] && !IntegerQ[m] && GtQ[a, 0] && !G
tQ[d/b, 0]
-
Int[((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[a^Int
Part[m]*((a + b*Sin[e + f*x])^FracPart[m]/(1 + (b/a)*Sin[e + f*x])^FracPart[m]) Int[(1 + (b/a)*Sin[e + f*x])
^m*(d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] && !IntegerQ[m] && !Gt
Q[a, 0]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Sim
p[a^2*(Cos[e + f*x]/(f*Sqrt[a + b*Sin[e + f*x]]*Sqrt[a - b*Sin[e + f*x]])) Subst[Int[(a + b*x)^(m - 1/2)*((c
+ d*x)^n/Sqrt[a - b*x]), x], x, Sin[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && NeQ[b*c - a*d, 0]
&& EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && !IntegerQ[m]
-
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^2, x_Symbol] :> Simp[2*c*(d/b)
Int[(b*Sin[e + f*x])^(m + 1), x], x] + Int[(b*Sin[e + f*x])^m*(c^2 + d^2*Sin[e + f*x]^2), x] /; FreeQ[{b, c
, d, e, f, m}, x]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^2, x_Symbol] :> Simp[(
-(b^2*c^2 - 2*a*b*c*d + a^2*d^2))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 1)*(a^2 - b^2))), x] -
Simp[1/(b*(m + 1)*(a^2 - b^2)) Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(m + 1)*(2*b*c*d - a*(c^2 + d^2)) + (
a^2*d^2 - 2*a*b*c*d*(m + 2) + b^2*(d^2*(m + 1) + c^2*(m + 2)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d,
e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && LtQ[m, -1]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^2, x_Symbol] :> Simp[(
-d^2)*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Simp[1/(b*(m + 2)) Int[(a + b*Sin[e +
f*x])^m*Simp[b*(d^2*(m + 1) + c^2*(m + 2)) - d*(a*d - 2*b*c*(m + 2))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b,
c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && !LtQ[m, -1]
-
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[(-(b^2*c^2 - 2*a*b*c*d + a^2*d^2))*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 2)*((c + d*Sin[e + f*x])^(n + 1)/
(d*f*(n + 1)*(c^2 - d^2))), x] + Simp[1/(d*(n + 1)*(c^2 - d^2)) Int[(a + b*Sin[e + f*x])^(m - 3)*(c + d*Sin[
e + f*x])^(n + 1)*Simp[b*(m - 2)*(b*c - a*d)^2 + a*d*(n + 1)*(c*(a^2 + b^2) - 2*a*b*d) + (b*(n + 1)*(a*b*c^2 +
c*d*(a^2 + b^2) - 3*a*b*d^2) - a*(n + 2)*(b*c - a*d)^2)*Sin[e + f*x] + b*(b^2*(c^2 - d^2) - m*(b*c - a*d)^2 +
d*n*(2*a*b*c - d*(a^2 + b^2)))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0
] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 2] && LtQ[n, -1] && (IntegerQ[m] || IntegersQ[2*m, 2*n])
-
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[(-b^2)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 2)*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(m + n))), x] + Simp[1/
(d*(m + n)) Int[(a + b*Sin[e + f*x])^(m - 3)*(c + d*Sin[e + f*x])^n*Simp[a^3*d*(m + n) + b^2*(b*c*(m - 2) +
a*d*(n + 1)) - b*(a*b*c - b^2*d*(m + n - 1) - 3*a^2*d*(m + n))*Sin[e + f*x] - b^2*(b*c*(m - 1) - a*d*(3*m + 2*
n - 2))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0
] && NeQ[c^2 - d^2, 0] && GtQ[m, 2] && (IntegerQ[m] || IntegersQ[2*m, 2*n]) && !(IGtQ[n, 2] && ( !IntegerQ[m]
|| (EqQ[a, 0] && NeQ[c, 0])))
-
Int[Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2), x_Symbol] :> Simp[-2*a*d
*(Cos[e + f*x]/(f*(a^2 - b^2)*Sqrt[a + b*Sin[e + f*x]]*Sqrt[d*Sin[e + f*x]])), x] - Simp[d^2/(a^2 - b^2) Int
[Sqrt[a + b*Sin[e + f*x]]/(d*Sin[e + f*x])^(3/2), x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]
-
Int[Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]/((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2), x_Symbol] :> Sim
p[(c - d)/(a - b) Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), x], x] - Simp[(b*c - a*d)/(a -
b) Int[(1 + Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d
, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
-
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[(-b)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^n/(f*(m + 1)*(a^2 - b^2))), x] + Simp[
1/((m + 1)*(a^2 - b^2)) Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n - 1)*Simp[a*c*(m + 1) + b*d
*n + (a*d*(m + 1) - b*c*(m + 2))*Sin[e + f*x] - b*d*(m + n + 2)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c,
d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && LtQ[0, n, 1] && I
ntegersQ[2*m, 2*n]
-
Int[((d_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2), x_Symbol] :> Simp[d/b
Int[Sqrt[d*Sin[e + f*x]]/Sqrt[a + b*Sin[e + f*x]], x], x] - Simp[a*(d/b) Int[Sqrt[d*Sin[e + f*x]]/(a + b*S
in[e + f*x])^(3/2), x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]
-
Int[((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)/((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2), x_Symbol] :> S
imp[d^2/b^2 Int[Sqrt[a + b*Sin[e + f*x]]/Sqrt[c + d*Sin[e + f*x]], x], x] + Simp[(b*c - a*d)/b^2 Int[Simp[
b*c + a*d + 2*b*d*Sin[e + f*x], x]/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{a,
b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
-
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[(-(b*c - a*d))*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^(n - 1)/(f*(m + 1)*(a^2 - b^
2))), x] + Simp[1/((m + 1)*(a^2 - b^2)) Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n - 2)*Simp[c
*(a*c - b*d)*(m + 1) + d*(b*c - a*d)*(n - 1) + (d*(a*c - b*d)*(m + 1) - c*(b*c - a*d)*(m + 2))*Sin[e + f*x] -
d*(b*c - a*d)*(m + n + 1)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && N
eQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && LtQ[1, n, 2] && IntegersQ[2*m, 2*n]
-
Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)), x_Symbol] :> Simp[2*
b*(Cos[e + f*x]/(f*(a^2 - b^2)*Sqrt[a + b*Sin[e + f*x]]*Sqrt[d*Sin[e + f*x]])), x] + Simp[d/(a^2 - b^2) Int[
(b + a*Sin[e + f*x])/(Sqrt[a + b*Sin[e + f*x]]*(d*Sin[e + f*x])^(3/2)), x], x] /; FreeQ[{a, b, d, e, f}, x] &&
NeQ[a^2 - b^2, 0]
-
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :
> Simp[1/(a - b) Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), x], x] - Simp[b/(a - b) Int[(1
+ Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x]
&& NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
-
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[(-b^2)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2
- b^2))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)) Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x]
)^n*Simp[a*(b*c - a*d)*(m + 1) + b^2*d*(m + n + 2) - (b^2*c + b*(b*c - a*d)*(m + 1))*Sin[e + f*x] - b^2*d*(m +
n + 3)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0
] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && IntegersQ[2*m, 2*n] && ((EqQ[a, 0] && IntegerQ[m] && !IntegerQ[n]) ||
!(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] && !IntegerQ[m]) || EqQ[a, 0])))
-
Int[Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]/((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[d/b
Int[1/Sqrt[c + d*Sin[e + f*x]], x], x] + Simp[(b*c - a*d)/b Int[1/((a + b*Sin[e + f*x])*Sqrt[c + d*Sin[e
+ f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0
]
-
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[b
/d Int[Sqrt[a + b*Sin[e + f*x]], x], x] - Simp[(b*c - a*d)/d Int[Sqrt[a + b*Sin[e + f*x]]/(c + d*Sin[e + f
*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
-
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a,
b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c + d, 0]
-
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[(2/(f*(a - b)*Sqrt[c - d]))*EllipticPi[-2*(b/(a - b)), (1/2)*(e + Pi/2 + f*x), -2*(d/(c - d))], x] /; FreeQ[{
a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[c - d, 0]
-
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp
[Sqrt[(c + d*Sin[e + f*x])/(c + d)]/Sqrt[c + d*Sin[e + f*x]] Int[1/((a + b*Sin[e + f*x])*Sqrt[c/(c + d) + (d
/(c + d))*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] &&
NeQ[c^2 - d^2, 0] && !GtQ[c + d, 0]
-
Int[Sqrt[(b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp[2*c*Rt[b
*(c + d), 2]*Tan[e + f*x]*Sqrt[1 + Csc[e + f*x]]*(Sqrt[1 - Csc[e + f*x]]/(d*f*Sqrt[c^2 - d^2]))*EllipticPi[(c
+ d)/d, ArcSin[Sqrt[c + d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], x] /; FreeQ
[{b, c, d, e, f}, x] && GtQ[c^2 - d^2, 0] && PosQ[(c + d)/b] && GtQ[c^2, 0]
-
Int[Sqrt[(b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp[2*b*(Tan
[e + f*x]/(d*f))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e + f*x])/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*El
lipticPi[(c + d)/d, ArcSin[Sqrt[c + d*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)],
x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2, 0] && PosQ[(c + d)/b]
-
Int[Sqrt[(b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp[Sqrt[b*S
in[e + f*x]]/Sqrt[(-b)*Sin[e + f*x]] Int[Sqrt[(-b)*Sin[e + f*x]]/Sqrt[c + d*Sin[e + f*x]], x], x] /; FreeQ[{
b, c, d, e, f}, x] && NeQ[c^2 - d^2, 0] && NegQ[(c + d)/b]
-
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp[
2*((a + b*Sin[e + f*x])/(d*f*Rt[(a + b)/(c + d), 2]*Cos[e + f*x]))*Sqrt[(b*c - a*d)*((1 + Sin[e + f*x])/((c -
d)*(a + b*Sin[e + f*x])))]*Sqrt[(-(b*c - a*d))*((1 - Sin[e + f*x])/((c + d)*(a + b*Sin[e + f*x])))]*EllipticPi
[b*((c + d)/(d*(a + b))), ArcSin[Rt[(a + b)/(c + d), 2]*(Sqrt[c + d*Sin[e + f*x]]/Sqrt[a + b*Sin[e + f*x]])],
(a - b)*((c + d)/((a + b)*(c - d)))], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2
, 0] && NeQ[c^2 - d^2, 0] && PosQ[(a + b)/(c + d)]
-
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp[
Sqrt[-c - d*Sin[e + f*x]]/Sqrt[c + d*Sin[e + f*x]] Int[Sqrt[a + b*Sin[e + f*x]]/Sqrt[-c - d*Sin[e + f*x]], x
], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && NegQ[(
a + b)/(c + d)]
-
Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*(
d/(f*Sqrt[a + b*d]))*EllipticF[ArcSin[Cos[e + f*x]/(1 + d*Sin[e + f*x])], -(a - b*d)/(a + b*d)], x] /; FreeQ[{
a, b, d, e, f}, x] && LtQ[a^2 - b^2, 0] && EqQ[d^2, 1] && GtQ[b*d, 0]
-
Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[Sqrt
[Sign[b]*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]] Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[Sign[b]*Sin[e + f*x]]), x],
x] /; FreeQ[{a, b, d, e, f}, x] && LtQ[a^2 - b^2, 0] && GtQ[b^2, 0] && !(EqQ[d^2, 1] && GtQ[b*d, 0])
-
Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*S
qrt[a^2]*(Sqrt[-Cot[e + f*x]^2]/(a*f*Sqrt[a^2 - b^2]*Cot[e + f*x]))*Rt[(a + b)/d, 2]*EllipticF[ArcSin[Sqrt[a +
b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2]], -(a + b)/(a - b)], x] /; FreeQ[{a, b, d, e, f}, x] &&
GtQ[a^2 - b^2, 0] && PosQ[(a + b)/d] && GtQ[a^2, 0]
-
Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*(
Tan[e + f*x]/(a*f))*Rt[(a + b)/d, 2]*Sqrt[a*((1 - Csc[e + f*x])/(a + b))]*Sqrt[a*((1 + Csc[e + f*x])/(a - b))]
*EllipticF[ArcSin[Sqrt[a + b*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]]/Rt[(a + b)/d, 2]], -(a + b)/(a - b)], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && PosQ[(a + b)/d]
-
Int[1/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[Sqrt
[(-d)*Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]] Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[(-d)*Sin[e + f*x]]), x], x] /;
FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && NegQ[(a + b)/d]
-
Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Si
mp[2*((c + d*Sin[e + f*x])/(f*(b*c - a*d)*Rt[(c + d)/(a + b), 2]*Cos[e + f*x]))*Sqrt[(b*c - a*d)*((1 - Sin[e +
f*x])/((a + b)*(c + d*Sin[e + f*x])))]*Sqrt[(-(b*c - a*d))*((1 + Sin[e + f*x])/((a - b)*(c + d*Sin[e + f*x]))
)]*EllipticF[ArcSin[Rt[(c + d)/(a + b), 2]*(Sqrt[a + b*Sin[e + f*x]]/Sqrt[c + d*Sin[e + f*x]])], (a + b)*((c -
d)/((a - b)*(c + d)))], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c
^2 - d^2, 0] && PosQ[(c + d)/(a + b)]
-
Int[1/(Sqrt[(a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> S
imp[Sqrt[-a - b*Sin[e + f*x]]/Sqrt[a + b*Sin[e + f*x]] Int[1/(Sqrt[-a - b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f
*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &
& NegQ[(c + d)/(a + b)]
-
Int[((d_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)/Sqrt[(a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp[(-a)*
(d/(2*b)) Int[Sqrt[d*Sin[e + f*x]]/Sqrt[a + b*Sin[e + f*x]], x], x] + Simp[d/(2*b) Int[Sqrt[d*Sin[e + f*x]
]*((a + 2*b*Sin[e + f*x])/Sqrt[a + b*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]
-
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[(-b)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[e + f*x])^n/(f*(m + n))), x] + Simp[1/(d*(m + n)
) Int[(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^(n - 1)*Simp[a^2*c*d*(m + n) + b*d*(b*c*(m - 1) + a*
d*n) + (a*d*(2*b*c + a*d)*(m + n) - b*d*(a*c - b*d*(m + n - 1)))*Sin[e + f*x] + b*d*(b*c*n + a*d*(2*m + n - 1)
)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[
c^2 - d^2, 0] && LtQ[0, m, 2] && LtQ[-1, n, 2] && NeQ[m + n, 0] && (IntegerQ[m] || IntegersQ[2*m, 2*n])
-
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[b/d Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1), x], x] - Simp[(b*c - a*d)/d Int[(a +
b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0
] && IGtQ[m, 0]
-
Int[((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[a Int[(d
*Sin[e + f*x])^n/(a^2 - b^2*Sin[e + f*x]^2), x], x] - Simp[b/d Int[(d*Sin[e + f*x])^(n + 1)/(a^2 - b^2*Sin[e
+ f*x]^2), x], x] /; FreeQ[{a, b, d, e, f, n}, x] && NeQ[a^2 - b^2, 0]
-
Int[((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Int[Expan
dTrig[(d*sin[e + f*x])^n*(1/((a - b*sin[e + f*x])^m/(a^2 - b^2*sin[e + f*x]^2)^m)), x], x] /; FreeQ[{a, b, d,
e, f, n}, x] && NeQ[a^2 - b^2, 0] && ILtQ[m, -1]
-
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Un
integrable[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^n, x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && NeQ[b*c
- a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
-
Int[((c_.)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(p_))^(n_)*((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol]
:> Simp[c^IntPart[n]*((c*(d*Sin[e + f*x])^p)^FracPart[n]/(d*Sin[e + f*x])^(p*FracPart[n])) Int[(a + b*Sin[e
+ f*x])^m*(d*Sin[e + f*x])^(n*p), x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && !IntegerQ[n]
-
Int[((a_.) + cos[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((c_.)*(cos[(e_.) + (f_.)*(x_)]*(d_.))^(p_))^(n_), x_Symbol]
:> Simp[c^IntPart[n]*((c*(d*Cos[e + f*x])^p)^FracPart[n]/(d*Cos[e + f*x])^(p*FracPart[n])) Int[(a + b*Cos[e
+ f*x])^m*(d*Cos[e + f*x])^(n*p), x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && !IntegerQ[n]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> In
t[(a + b*Sin[e + f*x])^m*((d + c*Sin[e + f*x])^n/Sin[e + f*x]^n), x] /; FreeQ[{a, b, c, d, e, f, m}, x] && Int
egerQ[n]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Int
[(b + a*Csc[e + f*x])^m*((c + d*Csc[e + f*x])^n/Csc[e + f*x]^m), x] /; FreeQ[{a, b, c, d, e, f, n}, x] && !In
tegerQ[n] && IntegerQ[m]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.)*((c_) + (d_.)*sec[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Int
[(b + a*Sec[e + f*x])^m*((c + d*Sec[e + f*x])^n/Sec[e + f*x]^m), x] /; FreeQ[{a, b, c, d, e, f, n}, x] && !In
tegerQ[n] && IntegerQ[m]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp
[Sin[e + f*x]^n*((c + d*Csc[e + f*x])^n/(d + c*Sin[e + f*x])^n) Int[(a + b*Sin[e + f*x])^m*((d + c*Sin[e + f
*x])^n/Sin[e + f*x]^n), x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && !IntegerQ[n] && !IntegerQ[m]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*((c_) + (d_.)*sec[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[Cos[e + f*x]^n*((c + d*Sec[e + f*x])^n/(d + c*Cos[e + f*x])^n) Int[(a + b*Cos[e + f*x])^m*((d + c*Cos[e + f
*x])^n/Cos[e + f*x]^n), x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && !IntegerQ[n] && !IntegerQ[m]
-
Int[cos[(e_.) + (f_.)*(x_)]*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)
])^(n_.), x_Symbol] :> Simp[1/(b*f) Subst[Int[(a + x)^m*(c + (d/b)*x)^n, x], x, b*Sin[e + f*x]], x] /; FreeQ
[{a, b, c, d, e, f, m, n}, x]
-
Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]),
x_Symbol] :> Simp[a Int[Cos[e + f*x]^p*(d*Sin[e + f*x])^n, x], x] + Simp[b/d Int[Cos[e + f*x]^p*(d*Sin[e
+ f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n, p}, x] && IntegerQ[(p - 1)/2] && IntegerQ[n] && ((LtQ[p, 0
] && NeQ[a^2 - b^2, 0]) || LtQ[0, n, p - 1] || LtQ[p + 1, -n, 2*p + 1])
-
Int[(cos[(e_.) + (f_.)*(x_)]^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.))/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]
), x_Symbol] :> Simp[1/a Int[Cos[e + f*x]^(p - 2)*(d*Sin[e + f*x])^n, x], x] - Simp[1/(b*d) Int[Cos[e + f*
x]^(p - 2)*(d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n, p}, x] && IntegerQ[(p - 1)/2] && EqQ[a
^2 - b^2, 0] && IntegerQ[n] && (LtQ[0, n, (p + 1)/2] || (LeQ[p, -n] && LtQ[-n, 2*p - 3]) || (GtQ[n, 0] && LeQ[
n, -p]))
-
Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)
*(x_)])^(n_.), x_Symbol] :> Simp[1/(b^p*f) Subst[Int[(a + x)^(m + (p - 1)/2)*(a - x)^((p - 1)/2)*(c + (d/b)*
x)^n, x], x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, e, f, c, d, m, n}, x] && IntegerQ[(p - 1)/2] && EqQ[a^2 - b^2
, 0]
-
Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)
*(x_)])^(n_.), x_Symbol] :> Simp[1/(b^p*f) Subst[Int[(a + x)^m*(c + (d/b)*x)^n*(b^2 - x^2)^((p - 1)/2), x],
x, b*Sin[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && IntegerQ[(p - 1)/2] && NeQ[a^2 - b^2, 0]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)
*(x_)]), x_Symbol] :> Simp[a Int[(g*Cos[e + f*x])^p*(d*Sin[e + f*x])^n, x], x] + Simp[b/d Int[(g*Cos[e + f
*x])^p*(d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, g, n, p}, x]
-
Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.))/((a_) + (b_.)*sin[(e_.) + (f_
.)*(x_)]), x_Symbol] :> Simp[g^2/a Int[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^n, x], x] - Simp[g^2/(b*d)
Int[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a
^2 - b^2, 0]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.)
+ (f_.)*(x_)])^(n_.), x_Symbol] :> Simp[a^m*(c^m/g^(2*m)) Int[(g*Cos[e + f*x])^(2*m + p)*(c + d*Sin[e + f*x]
)^(n - m), x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && Intege
rQ[m] && !(IntegerQ[n] && LtQ[n^2, m^2])
-
Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*
(x_)])^(n_.), x_Symbol] :> Simp[1/(a^(p/2)*c^(p/2)) Int[(a + b*Sin[e + f*x])^(m + p/2)*(c + d*Sin[e + f*x])^
(n + p/2), x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[
p/2]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_) + (d_.)*sin[(e_
.) + (f_.)*(x_)]]), x_Symbol] :> Simp[g*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]])) I
nt[(g*Cos[e + f*x])^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^
2, 0]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) +
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[a^IntPart[m]*c^IntPart[m]*(a + b*Sin[e + f*x])^FracPart[m]*((c + d*Sin[e
+ f*x])^FracPart[m]/(g^(2*IntPart[m])*(g*Cos[e + f*x])^(2*FracPart[m]))) Int[(g*Cos[e + f*x])^(2*m + p)/(c
+ d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0
] && EqQ[2*m + p - 1, 0] && EqQ[m - n - 1, 0]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) +
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[e +
f*x])^n/(f*g*(m - n - 1))), x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b
^2, 0] && EqQ[2*m + p - 1, 0] && NeQ[m - n - 1, 0]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) +
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[-2*b*(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[e
+ f*x])^n/(f*g*(2*n + p + 1))), x] - Simp[b*((2*m + p - 1)/(d*(2*n + p + 1))) Int[(g*Cos[e + f*x])^p*(a + b
*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && EqQ[b*c +
a*d, 0] && EqQ[a^2 - b^2, 0] && IGtQ[Simplify[m + p/2 - 1/2], 0] && LtQ[n, -1] && NeQ[2*n + p + 1, 0] && !(I
LtQ[Simplify[m + n + p], 0] && GtQ[Simplify[2*m + n + 3*(p/2) + 1], 0])
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) +
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[e
+ f*x])^n/(f*g*(m + n + p))), x] + Simp[a*((2*m + p - 1)/(m + n + p)) Int[(g*Cos[e + f*x])^p*(a + b*Sin[e +
f*x])^(m - 1)*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && EqQ[b*c + a*d, 0] &&
EqQ[a^2 - b^2, 0] && IGtQ[Simplify[m + p/2 - 1/2], 0] && !LtQ[n, -1] && !(IGtQ[Simplify[n + p/2 - 1/2], 0]
&& GtQ[m - n, 0]) && !(ILtQ[Simplify[m + n + p], 0] && GtQ[Simplify[2*m + n + 3*(p/2) + 1], 0])
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) +
(f_.)*(x_)])^(m_), x_Symbol] :> Simp[a^IntPart[m]*c^IntPart[m]*(a + b*Sin[e + f*x])^FracPart[m]*((c + d*Sin[e
+ f*x])^FracPart[m]/(g^(2*IntPart[m])*(g*Cos[e + f*x])^(2*FracPart[m]))) Int[(g*Cos[e + f*x])^(2*m + p), x]
, x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && EqQ[2*m + p + 1, 0]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) +
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^
n/(a*f*g*(m - n))), x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] &
& EqQ[m + n + p + 1, 0] && NeQ[m, n]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) +
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^
n/(a*f*g*(2*m + p + 1))), x] + Simp[(m + n + p + 1)/(a*(2*m + p + 1)) Int[(g*Cos[e + f*x])^p*(a + b*Sin[e +
f*x])^(m + 1)*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && EqQ[b*c + a*d, 0]
&& EqQ[a^2 - b^2, 0] && ILtQ[Simplify[m + n + p + 1], 0] && NeQ[2*m + p + 1, 0] && (SumSimplerQ[m, 1] || !Sum
SimplerQ[n, 1])
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) +
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[-2*b*(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[e
+ f*x])^n/(f*g*(2*n + p + 1))), x] - Simp[b*((2*m + p - 1)/(d*(2*n + p + 1))) Int[(g*Cos[e + f*x])^p*(a + b
*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && EqQ[b*c +
a*d, 0] && EqQ[a^2 - b^2, 0] && GtQ[m, 0] && LtQ[n, -1] && NeQ[2*n + p + 1, 0] && IntegersQ[2*m, 2*n, 2*p]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) +
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[e
+ f*x])^n/(f*g*(m + n + p))), x] + Simp[a*((2*m + p - 1)/(m + n + p)) Int[(g*Cos[e + f*x])^p*(a + b*Sin[e +
f*x])^(m - 1)*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && EqQ[b*c + a*d, 0] &&
EqQ[a^2 - b^2, 0] && GtQ[m, 0] && NeQ[m + n + p, 0] && !LtQ[0, n, m] && IntegersQ[2*m, 2*n, 2*p]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) +
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^
n/(a*f*g*(2*m + p + 1))), x] + Simp[(m + n + p + 1)/(a*(2*m + p + 1)) Int[(g*Cos[e + f*x])^p*(a + b*Sin[e +
f*x])^(m + 1)*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && EqQ[b*c + a*d, 0] &&
EqQ[a^2 - b^2, 0] && LtQ[m, -1] && NeQ[2*m + p + 1, 0] && !LtQ[m, n, -1] && IntegersQ[2*m, 2*n, 2*p]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) +
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[a^IntPart[m]*c^IntPart[m]*(a + b*Sin[e + f*x])^FracPart[m]*((c + d*Sin[e
+ f*x])^FracPart[m]/(g^(2*IntPart[m])*(g*Cos[e + f*x])^(2*FracPart[m]))) Int[(g*Cos[e + f*x])^(2*m + p)*(c
+ d*Sin[e + f*x])^(n - m), x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2
- b^2, 0] && (FractionQ[m] || !FractionQ[n])
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]), x_Symbol] :> Simp[(-d)*(g*Cos[e + f*x])^(p + 1)*((a + b*Sin[e + f*x])^m/(f*g*(m + p + 1))), x
] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && EqQ[a^2 - b^2, 0] && EqQ[a*d*m + b*c*(m + p + 1), 0]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]), x_Symbol] :> Simp[(-(b*c + a*d))*(g*Cos[e + f*x])^(p + 1)*((a + b*Sin[e + f*x])^m/(a*f*g*(p +
1))), x] + Simp[b*((a*d*m + b*c*(m + p + 1))/(a*g^2*(p + 1))) Int[(g*Cos[e + f*x])^(p + 2)*(a + b*Sin[e + f
*x])^(m - 1), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && EqQ[a^2 - b^2, 0] && GtQ[m, -1] && LtQ[p, -1]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]), x_Symbol] :> Simp[(-d)*(g*Cos[e + f*x])^(p + 1)*((a + b*Sin[e + f*x])^m/(f*g*(m + p + 1))), x
] + Simp[(a*d*m + b*c*(m + p + 1))/(b*(m + p + 1)) Int[(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^m, x], x] /;
FreeQ[{a, b, c, d, e, f, g, m, p}, x] && EqQ[a^2 - b^2, 0] && IGtQ[Simplify[(2*m + p + 1)/2], 0] && NeQ[m + p
+ 1, 0]
-
Int[cos[(e_.) + (f_.)*(x_)]^2*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_
)]), x_Symbol] :> Simp[2*(b*c - a*d)*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b^2*f*(2*m + 3))), x] + Simp[
1/(b^3*(2*m + 3)) Int[(a + b*Sin[e + f*x])^(m + 2)*(b*c + 2*a*d*(m + 1) - b*d*(2*m + 3)*Sin[e + f*x]), x], x
] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -3/2]
-
Int[cos[(e_.) + (f_.)*(x_)]^2*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_
)]), x_Symbol] :> Simp[d*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 2)/(b^2*f*(m + 3))), x] - Simp[1/(b^2*(m + 3)
) Int[(a + b*Sin[e + f*x])^(m + 1)*(b*d*(m + 2) - a*c*(m + 3) + (b*c*(m + 3) - a*d*(m + 4))*Sin[e + f*x]), x
], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GeQ[m, -3/2] && LtQ[m, 0]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]), x_Symbol] :> Simp[(b*c - a*d)*(g*Cos[e + f*x])^(p + 1)*((a + b*Sin[e + f*x])^m/(a*f*g*(2*m + p
+ 1))), x] + Simp[(a*d*m + b*c*(m + p + 1))/(a*b*(2*m + p + 1)) Int[(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])
^(m + 1), x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && EqQ[a^2 - b^2, 0] && (LtQ[m, -1] || ILtQ[Simplify
[m + p], 0]) && NeQ[2*m + p + 1, 0]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]), x_Symbol] :> Simp[(-d)*(g*Cos[e + f*x])^(p + 1)*((a + b*Sin[e + f*x])^m/(f*g*(m + p + 1))), x
] + Simp[(a*d*m + b*c*(m + p + 1))/(b*(m + p + 1)) Int[(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^m, x], x] /;
FreeQ[{a, b, c, d, e, f, g, m, p}, x] && EqQ[a^2 - b^2, 0] && NeQ[m + p + 1, 0]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]), x_Symbol] :> Simp[(-(g*Cos[e + f*x])^(p + 1))*(a + b*Sin[e + f*x])^m*((d + c*Sin[e + f*x])/(f
*g*(p + 1))), x] + Simp[1/(g^2*(p + 1)) Int[(g*Cos[e + f*x])^(p + 2)*(a + b*Sin[e + f*x])^(m - 1)*Simp[a*c*(
p + 2) + b*d*m + b*c*(m + p + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[a^2 - b^2,
0] && GtQ[m, 0] && LtQ[p, -1] && IntegerQ[2*m] && !(EqQ[m, 1] && NeQ[c^2 - d^2, 0] && SimplerQ[c + d*x, a +
b*x])
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]), x_Symbol] :> Simp[(-d)*(g*Cos[e + f*x])^(p + 1)*((a + b*Sin[e + f*x])^m/(f*g*(m + p + 1))), x
] + Simp[1/(m + p + 1) Int[(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^(m - 1)*Simp[a*c*(m + p + 1) + b*d*m + (a
*d*m + b*c*(m + p + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[a^2 - b^2, 0] &&
GtQ[m, 0] && !LtQ[p, -1] && IntegerQ[2*m] && !(EqQ[m, 1] && NeQ[c^2 - d^2, 0] && SimplerQ[c + d*x, a + b*x]
)
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]), x_Symbol] :> Simp[g*(g*Cos[e + f*x])^(p - 1)*(a + b*Sin[e + f*x])^(m + 1)*((b*c*(m + p + 1) -
a*d*p + b*d*(m + 1)*Sin[e + f*x])/(b^2*f*(m + 1)*(m + p + 1))), x] + Simp[g^2*((p - 1)/(b^2*(m + 1)*(m + p + 1
))) Int[(g*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^(m + 1)*Simp[b*d*(m + 1) + (b*c*(m + p + 1) - a*d*p)*S
in[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && GtQ[p, 1] &&
NeQ[m + p + 1, 0] && IntegerQ[2*m]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]), x_Symbol] :> Simp[(-(b*c - a*d))*(g*Cos[e + f*x])^(p + 1)*((a + b*Sin[e + f*x])^(m + 1)/(f*g*(
a^2 - b^2)*(m + 1))), x] + Simp[1/((a^2 - b^2)*(m + 1)) Int[(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^(m + 1)*
Simp[(a*c - b*d)*(m + 1) - (b*c - a*d)*(m + p + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p},
x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && IntegerQ[2*m]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]), x_Symbol] :> Simp[g*(g*Cos[e + f*x])^(p - 1)*(a + b*Sin[e + f*x])^(m + 1)*((b*c*(m + p + 1) -
a*d*p + b*d*(m + p)*Sin[e + f*x])/(b^2*f*(m + p)*(m + p + 1))), x] + Simp[g^2*((p - 1)/(b^2*(m + p)*(m + p +
1))) Int[(g*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^m*Simp[b*(a*d*m + b*c*(m + p + 1)) + (a*b*c*(m + p +
1) - d*(a^2*p - b^2*(m + p)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && NeQ[a^2 - b^2,
0] && GtQ[p, 1] && NeQ[m + p, 0] && NeQ[m + p + 1, 0] && IntegerQ[2*m]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]), x_Symbol] :> Simp[(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m + 1)*((b*c - a*d - (a*c -
b*d)*Sin[e + f*x])/(f*g*(a^2 - b^2)*(p + 1))), x] + Simp[1/(g^2*(a^2 - b^2)*(p + 1)) Int[(g*Cos[e + f*x])^(p
+ 2)*(a + b*Sin[e + f*x])^m*Simp[c*(a^2*(p + 2) - b^2*(m + p + 2)) + a*b*d*m + b*(a*c - b*d)*(m + p + 3)*Sin[
e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, g, m}, x] && NeQ[a^2 - b^2, 0] && LtQ[p, -1] && IntegerQ[2*m]
-
Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]))/((a_) + (b_.)*sin[(e_.) + (
f_.)*(x_)]), x_Symbol] :> Simp[d/b Int[(g*Cos[e + f*x])^p, x], x] + Simp[(b*c - a*d)/b Int[(g*Cos[e + f*x]
)^p/(a + b*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[a^2 - b^2, 0]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) +
(f_.)*(x_)]), x_Symbol] :> Simp[c*g*((g*Cos[e + f*x])^(p - 1)/(f*(1 + Sin[e + f*x])^((p - 1)/2)*(1 - Sin[e +
f*x])^((p - 1)/2))) Subst[Int[(1 + (d/c)*x)^((p + 1)/2)*(1 - (d/c)*x)^((p - 1)/2)*(a + b*x)^m, x], x, Sin[e
+ f*x]], x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && NeQ[a^2 - b^2, 0] && EqQ[c^2 - d^2, 0]
-
Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(
m_), x_Symbol] :> Simp[a^(2*m) Int[(d*Sin[e + f*x])^n/(a - b*Sin[e + f*x])^m, x], x] /; FreeQ[{a, b, d, e, f
, n}, x] && EqQ[a^2 - b^2, 0] && IntegersQ[m, p] && EqQ[2*m + p, 0]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*sin[(e_.) + (f_.)*(x_)]^2*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)
, x_Symbol] :> Simp[(-(g*Cos[e + f*x])^(p + 1))*((a + b*Sin[e + f*x])^(m + 1)/(2*b*f*g*(m + 1))), x] + Simp[a/
(2*g^2) Int[(g*Cos[e + f*x])^(p + 2)*(a + b*Sin[e + f*x])^(m - 1), x], x] /; FreeQ[{a, b, e, f, g, m, p}, x]
&& EqQ[a^2 - b^2, 0] && EqQ[m - p, 0]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*sin[(e_.) + (f_.)*(x_)]^2*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)
, x_Symbol] :> Simp[b*(g*Cos[e + f*x])^(p + 1)*((a + b*Sin[e + f*x])^m/(a*f*g*m)), x] - Simp[1/g^2 Int[(g*Co
s[e + f*x])^(p + 2)*(a + b*Sin[e + f*x])^m, x], x] /; FreeQ[{a, b, e, f, g, m, p}, x] && EqQ[a^2 - b^2, 0] &&
EqQ[m + p + 1, 0]
-
Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(
m_), x_Symbol] :> Simp[1/a^p Int[ExpandTrig[(d*sin[e + f*x])^n*(a - b*sin[e + f*x])^(p/2)*(a + b*sin[e + f*x
])^(m + p/2), x], x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && IntegersQ[m, n, p/2] && ((GtQ[m,
0] && GtQ[p, 0] && LtQ[-m - p, n, -1]) || (GtQ[m, 2] && LtQ[p, 0] && GtQ[m + p/2, 0]))
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*
(x_)])^(m_), x_Symbol] :> Int[ExpandTrig[(g*cos[e + f*x])^p, (d*sin[e + f*x])^n*(a + b*sin[e + f*x])^m, x], x]
/; FreeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2 - b^2, 0] && IGtQ[m, 0]
-
Int[cos[(e_.) + (f_.)*(x_)]^2*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)
, x_Symbol] :> Simp[1/b^2 Int[(d*Sin[e + f*x])^n*(a + b*Sin[e + f*x])^(m + 1)*(a - b*Sin[e + f*x]), x], x] /
; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] && (ILtQ[m, 0] || !IGtQ[n, 0])
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*
(x_)])^(m_), x_Symbol] :> Simp[(a/g)^(2*m) Int[(g*Cos[e + f*x])^(2*m + p)*((d*Sin[e + f*x])^n/(a - b*Sin[e +
f*x])^m), x], x] /; FreeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2 - b^2, 0] && ILtQ[m, 0]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*
(x_)])^(m_), x_Symbol] :> Simp[(a/g)^(2*m) Int[(g*Cos[e + f*x])^(2*m + p)*((d*Sin[e + f*x])^n/(a - b*Sin[e +
f*x])^m), x], x] /; FreeQ[{a, b, d, e, f, g, n}, x] && EqQ[a^2 - b^2, 0] && IntegerQ[m] && RationalQ[p] && (E
qQ[2*m + p, 0] || (GtQ[2*m + p, 0] && LtQ[p, -1]))
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*sin[(e_.) + (f_.)*(x_)]^2*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)
, x_Symbol] :> Simp[b*(g*Cos[e + f*x])^(p + 1)*((a + b*Sin[e + f*x])^m/(a*f*g*(2*m + p + 1))), x] - Simp[1/(a^
2*(2*m + p + 1)) Int[(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^(m + 1)*(a*m - b*(2*m + p + 1)*Sin[e + f*x]), x
], x] /; FreeQ[{a, b, e, f, g, p}, x] && EqQ[a^2 - b^2, 0] && LeQ[m, -2^(-1)] && NeQ[2*m + p + 1, 0]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*sin[(e_.) + (f_.)*(x_)]^2*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)
, x_Symbol] :> Simp[(-(g*Cos[e + f*x])^(p + 1))*((a + b*Sin[e + f*x])^(m + 1)/(b*f*g*(m + p + 2))), x] + Simp[
1/(b*(m + p + 2)) Int[(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^m*(b*(m + 1) - a*(p + 1)*Sin[e + f*x]), x], x]
/; FreeQ[{a, b, e, f, g, m, p}, x] && EqQ[a^2 - b^2, 0] && NeQ[m + p + 2, 0]
-
Int[cos[(e_.) + (f_.)*(x_)]^2*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)
, x_Symbol] :> Simp[1/b^2 Int[(d*Sin[e + f*x])^n*(a + b*Sin[e + f*x])^(m + 1)*(a - b*Sin[e + f*x]), x], x] /
; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] && IntegersQ[2*m, 2*n]
-
Int[cos[(e_.) + (f_.)*(x_)]^4*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)
, x_Symbol] :> Simp[-2/(a*b*d) Int[(d*Sin[e + f*x])^(n + 1)*(a + b*Sin[e + f*x])^(m + 2), x], x] + Simp[1/a^
2 Int[(d*Sin[e + f*x])^n*(a + b*Sin[e + f*x])^(m + 2)*(1 + Sin[e + f*x]^2), x], x] /; FreeQ[{a, b, d, e, f,
n}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -1]
-
Int[cos[(e_.) + (f_.)*(x_)]^4*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)
, x_Symbol] :> Simp[1/d^4 Int[(d*Sin[e + f*x])^(n + 4)*(a + b*Sin[e + f*x])^m, x], x] + Int[(d*Sin[e + f*x])
^n*(a + b*Sin[e + f*x])^m*(1 - 2*Sin[e + f*x]^2), x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] &
& !IGtQ[m, 0]
-
Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(
m_), x_Symbol] :> Simp[a^m*(Cos[e + f*x]/(f*Sqrt[1 + Sin[e + f*x]]*Sqrt[1 - Sin[e + f*x]])) Subst[Int[(d*x)^
n*(1 + (b/a)*x)^(m + (p - 1)/2)*(1 - (b/a)*x)^((p - 1)/2), x], x, Sin[e + f*x]], x] /; FreeQ[{a, b, d, e, f, n
}, x] && EqQ[a^2 - b^2, 0] && IntegerQ[p/2] && IntegerQ[m]
-
Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(
m_), x_Symbol] :> Simp[Cos[e + f*x]/(a^(p - 2)*f*Sqrt[a + b*Sin[e + f*x]]*Sqrt[a - b*Sin[e + f*x]]) Subst[In
t[(d*x)^n*(a + b*x)^(m + p/2 - 1/2)*(a - b*x)^(p/2 - 1/2), x], x, Sin[e + f*x]], x] /; FreeQ[{a, b, d, e, f, m
, n}, x] && EqQ[a^2 - b^2, 0] && IntegerQ[p/2] && !IntegerQ[m]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*
(x_)])^(m_), x_Symbol] :> Int[ExpandTrig[(g*cos[e + f*x])^p, (d*sin[e + f*x])^n*(a + b*sin[e + f*x])^m, x], x]
/; FreeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2 - b^2, 0] && IGtQ[m, 0] && (IntegerQ[p] || IGtQ[n, 0])
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*
(x_)])^(m_), x_Symbol] :> Simp[a^m*g*((g*Cos[e + f*x])^(p - 1)/(f*(1 + Sin[e + f*x])^((p - 1)/2)*(1 - Sin[e +
f*x])^((p - 1)/2))) Subst[Int[(d*x)^n*(1 + (b/a)*x)^(m + (p - 1)/2)*(1 - (b/a)*x)^((p - 1)/2), x], x, Sin[e
+ f*x]], x] /; FreeQ[{a, b, d, e, f, n, p}, x] && EqQ[a^2 - b^2, 0] && IntegerQ[m]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*
(x_)])^(m_), x_Symbol] :> Simp[g*((g*Cos[e + f*x])^(p - 1)/(f*(a + b*Sin[e + f*x])^((p - 1)/2)*(a - b*Sin[e +
f*x])^((p - 1)/2))) Subst[Int[(d*x)^n*(a + b*x)^(m + (p - 1)/2)*(a - b*x)^((p - 1)/2), x], x, Sin[e + f*x]],
x] /; FreeQ[{a, b, d, e, f, m, n, p}, x] && EqQ[a^2 - b^2, 0] && !IntegerQ[m]
-
Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_))/Sqrt[(d_.)*sin[(e_.) +
(f_.)*(x_)]], x_Symbol] :> Simp[(-g)*(g*Cos[e + f*x])^(p - 1)*Sqrt[d*Sin[e + f*x]]*((a + b*Sin[e + f*x])^(m +
1)/(a*d*f*(m + 1))), x] + Simp[g^2*((2*m + 3)/(2*a*(m + 1))) Int[(g*Cos[e + f*x])^(p - 2)*((a + b*Sin[e + f*
x])^(m + 1)/Sqrt[d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, d, e, f, g}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] &
& EqQ[m + p + 1/2, 0]
-
Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_))/Sqrt[(d_.)*sin[(e_.) +
(f_.)*(x_)]], x_Symbol] :> Simp[2*(g*Cos[e + f*x])^(p + 1)*Sqrt[d*Sin[e + f*x]]*((a + b*Sin[e + f*x])^m/(d*f*g
*(2*m + 1))), x] + Simp[2*a*(m/(g^2*(2*m + 1))) Int[(g*Cos[e + f*x])^(p + 2)*((a + b*Sin[e + f*x])^(m - 1)/S
qrt[d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, e, f, g}, x] && NeQ[a^2 - b^2, 0] && GtQ[m, 0] && EqQ[m + p + 3/2
, 0]
-
Int[cos[(e_.) + (f_.)*(x_)]^2*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)
, x_Symbol] :> Int[(d*Sin[e + f*x])^n*(a + b*Sin[e + f*x])^m*(1 - Sin[e + f*x]^2), x] /; FreeQ[{a, b, d, e, f,
m, n}, x] && NeQ[a^2 - b^2, 0] && (IGtQ[m, 0] || IntegersQ[2*m, 2*n])
-
Int[cos[(e_.) + (f_.)*(x_)]^4*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)
, x_Symbol] :> Simp[Cos[e + f*x]*(d*Sin[e + f*x])^(n + 1)*((a + b*Sin[e + f*x])^(m + 1)/(a*d*f*(n + 1))), x] +
(-Simp[(a^2*(n + 1) - b^2*(m + n + 2))*Cos[e + f*x]*(d*Sin[e + f*x])^(n + 2)*((a + b*Sin[e + f*x])^(m + 1)/(a
^2*b*d^2*f*(n + 1)*(m + 1))), x] + Simp[1/(a^2*b*d*(n + 1)*(m + 1)) Int[(d*Sin[e + f*x])^(n + 1)*(a + b*Sin[
e + f*x])^(m + 1)*Simp[a^2*(n + 1)*(n + 2) - b^2*(m + n + 2)*(m + n + 3) + a*b*(m + 1)*Sin[e + f*x] - (a^2*(n
+ 1)*(n + 3) - b^2*(m + n + 2)*(m + n + 4))*Sin[e + f*x]^2, x], x], x]) /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^
2 - b^2, 0] && IntegersQ[2*m, 2*n] && LtQ[m, -1] && LtQ[n, -1]
-
Int[cos[(e_.) + (f_.)*(x_)]^4*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)
, x_Symbol] :> Simp[(a^2 - b^2)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*((d*Sin[e + f*x])^(n + 1)/(a*b^2*d*f
*(m + 1))), x] + (Simp[(a^2*(n - m + 1) - b^2*(m + n + 2))*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 2)*((d*Sin[e
+ f*x])^(n + 1)/(a^2*b^2*d*f*(m + 1)*(m + 2))), x] - Simp[1/(a^2*b^2*(m + 1)*(m + 2)) Int[(a + b*Sin[e + f*
x])^(m + 2)*(d*Sin[e + f*x])^n*Simp[a^2*(n + 1)*(n + 3) - b^2*(m + n + 2)*(m + n + 3) + a*b*(m + 2)*Sin[e + f*
x] - (a^2*(n + 2)*(n + 3) - b^2*(m + n + 2)*(m + n + 4))*Sin[e + f*x]^2, x], x], x]) /; FreeQ[{a, b, d, e, f,
n}, x] && NeQ[a^2 - b^2, 0] && IntegersQ[2*m, 2*n] && LtQ[m, -1] && !LtQ[n, -1] && (LtQ[m, -2] || EqQ[m + n +
4, 0])
-
Int[cos[(e_.) + (f_.)*(x_)]^4*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)
, x_Symbol] :> Simp[(a^2 - b^2)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*((d*Sin[e + f*x])^(n + 1)/(a*b^2*d*f
*(m + 1))), x] + (-Simp[Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 2)*((d*Sin[e + f*x])^(n + 1)/(b^2*d*f*(m + n +
4))), x] - Simp[1/(a*b^2*(m + 1)*(m + n + 4)) Int[(a + b*Sin[e + f*x])^(m + 1)*(d*Sin[e + f*x])^n*Simp[a^2*(
n + 1)*(n + 3) - b^2*(m + n + 2)*(m + n + 4) + a*b*(m + 1)*Sin[e + f*x] - (a^2*(n + 2)*(n + 3) - b^2*(m + n +
3)*(m + n + 4))*Sin[e + f*x]^2, x], x], x]) /; FreeQ[{a, b, d, e, f, n}, x] && NeQ[a^2 - b^2, 0] && IntegersQ[
2*m, 2*n] && LtQ[m, -1] && !LtQ[n, -1] && NeQ[m + n + 4, 0]
-
Int[cos[(e_.) + (f_.)*(x_)]^4*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)
, x_Symbol] :> Simp[Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*((d*Sin[e + f*x])^(n + 1)/(a*d*f*(n + 1))), x] +
(-Simp[b*(m + n + 2)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*((d*Sin[e + f*x])^(n + 2)/(a^2*d^2*f*(n + 1)*(
n + 2))), x] - Simp[1/(a^2*d^2*(n + 1)*(n + 2)) Int[(a + b*Sin[e + f*x])^m*(d*Sin[e + f*x])^(n + 2)*Simp[a^2
*n*(n + 2) - b^2*(m + n + 2)*(m + n + 3) + a*b*m*Sin[e + f*x] - (a^2*(n + 1)*(n + 2) - b^2*(m + n + 2)*(m + n
+ 4))*Sin[e + f*x]^2, x], x], x]) /; FreeQ[{a, b, d, e, f, m}, x] && NeQ[a^2 - b^2, 0] && (IGtQ[m, 0] || Integ
ersQ[2*m, 2*n]) && !m < -1 && LtQ[n, -1] && (LtQ[n, -2] || EqQ[m + n + 4, 0])
-
Int[cos[(e_.) + (f_.)*(x_)]^4*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)
, x_Symbol] :> Simp[Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*((d*Sin[e + f*x])^(n + 1)/(a*d*f*(n + 1))), x] +
(-Simp[Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*((d*Sin[e + f*x])^(n + 2)/(b*d^2*f*(m + n + 4))), x] + Simp[
1/(a*b*d*(n + 1)*(m + n + 4)) Int[(a + b*Sin[e + f*x])^m*(d*Sin[e + f*x])^(n + 1)*Simp[a^2*(n + 1)*(n + 2) -
b^2*(m + n + 2)*(m + n + 4) + a*b*(m + 3)*Sin[e + f*x] - (a^2*(n + 1)*(n + 3) - b^2*(m + n + 3)*(m + n + 4))*
Sin[e + f*x]^2, x], x], x]) /; FreeQ[{a, b, d, e, f, m}, x] && NeQ[a^2 - b^2, 0] && (IGtQ[m, 0] || IntegersQ[2
*m, 2*n]) && !m < -1 && LtQ[n, -1] && NeQ[m + n + 4, 0]
-
Int[cos[(e_.) + (f_.)*(x_)]^4*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)
, x_Symbol] :> Simp[a*(n + 3)*Cos[e + f*x]*(d*Sin[e + f*x])^(n + 1)*((a + b*Sin[e + f*x])^(m + 1)/(b^2*d*f*(m
+ n + 3)*(m + n + 4))), x] + (-Simp[Cos[e + f*x]*(d*Sin[e + f*x])^(n + 2)*((a + b*Sin[e + f*x])^(m + 1)/(b*d^2
*f*(m + n + 4))), x] - Simp[1/(b^2*(m + n + 3)*(m + n + 4)) Int[(d*Sin[e + f*x])^n*(a + b*Sin[e + f*x])^m*Si
mp[a^2*(n + 1)*(n + 3) - b^2*(m + n + 3)*(m + n + 4) + a*b*m*Sin[e + f*x] - (a^2*(n + 2)*(n + 3) - b^2*(m + n
+ 3)*(m + n + 5))*Sin[e + f*x]^2, x], x], x]) /; FreeQ[{a, b, d, e, f, m, n}, x] && NeQ[a^2 - b^2, 0] && (IGtQ
[m, 0] || IntegersQ[2*m, 2*n]) && !m < -1 && !LtQ[n, -1] && NeQ[m + n + 3, 0] && NeQ[m + n + 4, 0]
-
Int[cos[(e_.) + (f_.)*(x_)]^6*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)
, x_Symbol] :> Simp[Cos[e + f*x]*(d*Sin[e + f*x])^(n + 1)*((a + b*Sin[e + f*x])^(m + 1)/(a*d*f*(n + 1))), x] +
(-Simp[b*(m + n + 2)*Cos[e + f*x]*(d*Sin[e + f*x])^(n + 2)*((a + b*Sin[e + f*x])^(m + 1)/(a^2*d^2*f*(n + 1)*(
n + 2))), x] - Simp[a*(n + 5)*Cos[e + f*x]*(d*Sin[e + f*x])^(n + 3)*((a + b*Sin[e + f*x])^(m + 1)/(b^2*d^3*f*(
m + n + 5)*(m + n + 6))), x] + Simp[Cos[e + f*x]*(d*Sin[e + f*x])^(n + 4)*((a + b*Sin[e + f*x])^(m + 1)/(b*d^4
*f*(m + n + 6))), x] + Simp[1/(a^2*b^2*d^2*(n + 1)*(n + 2)*(m + n + 5)*(m + n + 6)) Int[(d*Sin[e + f*x])^(n
+ 2)*(a + b*Sin[e + f*x])^m*Simp[a^4*(n + 1)*(n + 2)*(n + 3)*(n + 5) - a^2*b^2*(n + 2)*(2*n + 1)*(m + n + 5)*(
m + n + 6) + b^4*(m + n + 2)*(m + n + 3)*(m + n + 5)*(m + n + 6) + a*b*m*(a^2*(n + 1)*(n + 2) - b^2*(m + n + 5
)*(m + n + 6))*Sin[e + f*x] - (a^4*(n + 1)*(n + 2)*(4 + n)*(n + 5) + b^4*(m + n + 2)*(m + n + 4)*(m + n + 5)*(
m + n + 6) - a^2*b^2*(n + 1)*(n + 2)*(m + n + 5)*(2*n + 2*m + 13))*Sin[e + f*x]^2, x], x], x]) /; FreeQ[{a, b,
d, e, f, m, n}, x] && NeQ[a^2 - b^2, 0] && IntegersQ[2*m, 2*n] && NeQ[n, -1] && NeQ[n, -2] && NeQ[m + n + 5,
0] && NeQ[m + n + 6, 0] && !IGtQ[m, 0]
-
Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(
m_), x_Symbol] :> Int[ExpandTrig[(d*sin[e + f*x])^n*(a + b*sin[e + f*x])^m*(1 - sin[e + f*x]^2)^(p/2), x], x]
/; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && IntegersQ[m, 2*n, p/2] && (LtQ[m, -1] || (EqQ[m, -1] && G
tQ[p, 0]))
-
Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*sin[(e_.) + (f_.)*(x_)]^(n_))/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])
, x_Symbol] :> Int[ExpandTrig[(g*cos[e + f*x])^p, sin[e + f*x]^n/(a + b*sin[e + f*x]), x], x] /; FreeQ[{a, b,
e, f, g, p}, x] && NeQ[a^2 - b^2, 0] && IntegerQ[n] && (LtQ[n, 0] || IGtQ[p + 1/2, 0])
-
Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_))/((a_) + (b_.)*sin[(e_.) + (f_.
)*(x_)]), x_Symbol] :> Simp[g^2/a Int[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^n, x], x] + (-Simp[b*(g^2/(a
^2*d)) Int[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^(n + 1), x], x] - Simp[g^2*((a^2 - b^2)/(a^2*d^2)) In
t[(g*Cos[e + f*x])^(p - 2)*((d*Sin[e + f*x])^(n + 2)/(a + b*Sin[e + f*x])), x], x]) /; FreeQ[{a, b, d, e, f, g
}, x] && NeQ[a^2 - b^2, 0] && IntegersQ[2*n, 2*p] && GtQ[p, 1] && (LeQ[n, -2] || (EqQ[n, -3/2] && EqQ[p, 3/2])
)
-
Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_))/((a_) + (b_.)*sin[(e_.) + (f_.
)*(x_)]), x_Symbol] :> Simp[g^2/(a*b) Int[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^n*(b - a*Sin[e + f*x]),
x], x] + Simp[g^2*((a^2 - b^2)/(a*b*d)) Int[(g*Cos[e + f*x])^(p - 2)*((d*Sin[e + f*x])^(n + 1)/(a + b*Sin[e
+ f*x])), x], x] /; FreeQ[{a, b, d, e, f, g}, x] && NeQ[a^2 - b^2, 0] && IntegersQ[2*n, 2*p] && GtQ[p, 1] && (
LtQ[n, -1] || (EqQ[p, 3/2] && EqQ[n, -2^(-1)]))
-
Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_))/((a_) + (b_.)*sin[(e_.) + (f_.
)*(x_)]), x_Symbol] :> Simp[g^2/b^2 Int[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^n*(a - b*Sin[e + f*x]), x]
, x] - Simp[g^2*((a^2 - b^2)/b^2) Int[(g*Cos[e + f*x])^(p - 2)*((d*Sin[e + f*x])^n/(a + b*Sin[e + f*x])), x]
, x] /; FreeQ[{a, b, d, e, f, g}, x] && NeQ[a^2 - b^2, 0] && IntegersQ[2*n, 2*p] && GtQ[p, 1]
-
Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_))/((a_) + (b_.)*sin[(e_.) + (f_.
)*(x_)]), x_Symbol] :> Simp[a*(d^2/(a^2 - b^2)) Int[(g*Cos[e + f*x])^p*(d*Sin[e + f*x])^(n - 2), x], x] + (-
Simp[b*(d/(a^2 - b^2)) Int[(g*Cos[e + f*x])^p*(d*Sin[e + f*x])^(n - 1), x], x] - Simp[a^2*(d^2/(g^2*(a^2 - b
^2))) Int[(g*Cos[e + f*x])^(p + 2)*((d*Sin[e + f*x])^(n - 2)/(a + b*Sin[e + f*x])), x], x]) /; FreeQ[{a, b,
d, e, f, g}, x] && NeQ[a^2 - b^2, 0] && IntegersQ[2*n, 2*p] && LtQ[p, -1] && GtQ[n, 1]
-
Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_))/((a_) + (b_.)*sin[(e_.) + (f_.
)*(x_)]), x_Symbol] :> Simp[-d/(a^2 - b^2) Int[(g*Cos[e + f*x])^p*(d*Sin[e + f*x])^(n - 1)*(b - a*Sin[e + f*
x]), x], x] + Simp[a*b*(d/(g^2*(a^2 - b^2))) Int[(g*Cos[e + f*x])^(p + 2)*((d*Sin[e + f*x])^(n - 1)/(a + b*S
in[e + f*x])), x], x] /; FreeQ[{a, b, d, e, f, g}, x] && NeQ[a^2 - b^2, 0] && IntegersQ[2*n, 2*p] && LtQ[p, -1
] && GtQ[n, 0]
-
Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_))/((a_) + (b_.)*sin[(e_.) + (f_.
)*(x_)]), x_Symbol] :> Simp[1/(a^2 - b^2) Int[(g*Cos[e + f*x])^p*(d*Sin[e + f*x])^n*(a - b*Sin[e + f*x]), x]
, x] - Simp[b^2/(g^2*(a^2 - b^2)) Int[(g*Cos[e + f*x])^(p + 2)*((d*Sin[e + f*x])^n/(a + b*Sin[e + f*x])), x]
, x] /; FreeQ[{a, b, d, e, f, g}, x] && NeQ[a^2 - b^2, 0] && IntegersQ[2*n, 2*p] && LtQ[p, -1]
-
Int[Sqrt[cos[(e_.) + (f_.)*(x_)]*(g_.)]/(Sqrt[sin[(e_.) + (f_.)*(x_)]]*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]))
, x_Symbol] :> Simp[-4*Sqrt[2]*(g/f) Subst[Int[x^2/(((a + b)*g^2 + (a - b)*x^4)*Sqrt[1 - x^4/g^2]), x], x, S
qrt[g*Cos[e + f*x]]/Sqrt[1 + Sin[e + f*x]]], x] /; FreeQ[{a, b, e, f, g}, x] && NeQ[a^2 - b^2, 0]
-
Int[Sqrt[cos[(e_.) + (f_.)*(x_)]*(g_.)]/(Sqrt[(d_)*sin[(e_.) + (f_.)*(x_)]]*((a_) + (b_.)*sin[(e_.) + (f_.)*(x
_)])), x_Symbol] :> Simp[Sqrt[Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]] Int[Sqrt[g*Cos[e + f*x]]/(Sqrt[Sin[e + f*x]
]*(a + b*Sin[e + f*x])), x], x] /; FreeQ[{a, b, d, e, f, g}, x] && NeQ[a^2 - b^2, 0]
-
Int[Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]/(Sqrt[cos[(e_.) + (f_.)*(x_)]]*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]))
, x_Symbol] :> With[{q = Rt[-a^2 + b^2, 2]}, Simp[2*Sqrt[2]*d*((b + q)/(f*q)) Subst[Int[1/((d*(b + q) + a*x^
2)*Sqrt[1 - x^4/d^2]), x], x, Sqrt[d*Sin[e + f*x]]/Sqrt[1 + Cos[e + f*x]]], x] - Simp[2*Sqrt[2]*d*((b - q)/(f*
q)) Subst[Int[1/((d*(b - q) + a*x^2)*Sqrt[1 - x^4/d^2]), x], x, Sqrt[d*Sin[e + f*x]]/Sqrt[1 + Cos[e + f*x]]]
, x]] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]
-
Int[Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]/(Sqrt[cos[(e_.) + (f_.)*(x_)]*(g_.)]*((a_) + (b_.)*sin[(e_.) + (f_.)*(
x_)])), x_Symbol] :> Simp[Sqrt[Cos[e + f*x]]/Sqrt[g*Cos[e + f*x]] Int[Sqrt[d*Sin[e + f*x]]/(Sqrt[Cos[e + f*x
]]*(a + b*Sin[e + f*x])), x], x] /; FreeQ[{a, b, d, e, f, g}, x] && NeQ[a^2 - b^2, 0]
-
Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_))/((a_) + (b_.)*sin[(e_.) + (f_.
)*(x_)]), x_Symbol] :> Simp[d/b Int[(g*Cos[e + f*x])^p*(d*Sin[e + f*x])^(n - 1), x], x] - Simp[a*(d/b) Int
[(g*Cos[e + f*x])^p*((d*Sin[e + f*x])^(n - 1)/(a + b*Sin[e + f*x])), x], x] /; FreeQ[{a, b, d, e, f, g}, x] &&
NeQ[a^2 - b^2, 0] && IntegersQ[2*n, 2*p] && LtQ[-1, p, 1] && GtQ[n, 0]
-
Int[((cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_))/((a_) + (b_.)*sin[(e_.) + (f_.
)*(x_)]), x_Symbol] :> Simp[1/a Int[(g*Cos[e + f*x])^p*(d*Sin[e + f*x])^n, x], x] - Simp[b/(a*d) Int[(g*Co
s[e + f*x])^p*((d*Sin[e + f*x])^(n + 1)/(a + b*Sin[e + f*x])), x], x] /; FreeQ[{a, b, d, e, f, g}, x] && NeQ[a
^2 - b^2, 0] && IntegersQ[2*n, 2*p] && LtQ[-1, p, 1] && LtQ[n, 0]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*
(x_)])^2, x_Symbol] :> Simp[2*a*(b/d) Int[(g*Cos[e + f*x])^p*(d*Sin[e + f*x])^(n + 1), x], x] + Int[(g*Cos[e
+ f*x])^p*(d*Sin[e + f*x])^n*(a^2 + b^2*Sin[e + f*x]^2), x] /; FreeQ[{a, b, d, e, f, g, n, p}, x] && NeQ[a^2
- b^2, 0]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*
(x_)])^(m_), x_Symbol] :> Int[ExpandTrig[(g*cos[e + f*x])^p, (d*sin[e + f*x])^n*(a + b*sin[e + f*x])^m, x], x]
/; FreeQ[{a, b, d, e, f, g, n, p}, x] && NeQ[a^2 - b^2, 0] && IntegerQ[m] && (GtQ[m, 0] || IntegerQ[n])
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*
(x_)])^(m_), x_Symbol] :> Simp[g^2/a Int[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^n*(a + b*Sin[e + f*x])^(m
+ 1), x], x] + (-Simp[b*(g^2/(a^2*d)) Int[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^(n + 1)*(a + b*Sin[e +
f*x])^(m + 1), x], x] - Simp[g^2*((a^2 - b^2)/(a^2*d^2)) Int[(g*Cos[e + f*x])^(p - 2)*(d*Sin[e + f*x])^(n +
2)*(a + b*Sin[e + f*x])^m, x], x]) /; FreeQ[{a, b, d, e, f, g}, x] && NeQ[a^2 - b^2, 0] && IntegersQ[m, 2*n, 2
*p] && LtQ[m, 0] && GtQ[p, 1] && (LeQ[n, -2] || (EqQ[m, -1] && EqQ[n, -3/2] && EqQ[p, 3/2]))
-
Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(
x_)])^(n_), x_Symbol] :> Simp[a^(2*m) Int[(c + d*Sin[e + f*x])^n/(a - b*Sin[e + f*x])^m, x], x] /; FreeQ[{a,
b, c, d, e, f, n}, x] && EqQ[a^2 - b^2, 0] && IntegersQ[m, p] && EqQ[2*m + p, 0]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) +
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[(a/g)^(2*m) Int[(g*Cos[e + f*x])^(2*m + p)*((c + d*Sin[e + f*x])^n/(a
- b*Sin[e + f*x])^m), x], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && EqQ[a^2 - b^2, 0] && IntegerQ[m] && (EqQ
[2*m + p, 0] || (GtQ[2*m + p, 0] && LtQ[p, -1]))
-
Int[cos[(e_.) + (f_.)*(x_)]^2*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)
])^(n_), x_Symbol] :> Simp[1/b^2 Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*(a - b*Sin[e + f*x]
), x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] && IntegersQ[2*m, 2*n]
-
Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(
x_)])^(n_), x_Symbol] :> Simp[a^m*(Cos[e + f*x]/(f*Sqrt[1 + Sin[e + f*x]]*Sqrt[1 - Sin[e + f*x]])) Subst[Int
[(1 + (b/a)*x)^(m + (p - 1)/2)*(1 - (b/a)*x)^((p - 1)/2)*(c + d*x)^n, x], x, Sin[e + f*x]], x] /; FreeQ[{a, b,
c, d, e, f, n}, x] && EqQ[a^2 - b^2, 0] && IntegerQ[p/2] && IntegerQ[m]
-
Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(
x_)])^(n_), x_Symbol] :> Simp[Cos[e + f*x]/(a^(p - 2)*f*Sqrt[a + b*Sin[e + f*x]]*Sqrt[a - b*Sin[e + f*x]]) S
ubst[Int[(a + b*x)^(m + p/2 - 1/2)*(a - b*x)^(p/2 - 1/2)*(c + d*x)^n, x], x, Sin[e + f*x]], x] /; FreeQ[{a, b,
c, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] && IntegerQ[p/2] && !IntegerQ[m]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) +
(f_.)*(x_)])^(n_), x_Symbol] :> Int[ExpandTrig[(g*cos[e + f*x])^p, (a + b*sin[e + f*x])^m*(c + d*sin[e + f*x]
)^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && EqQ[a^2 - b^2, 0] && IGtQ[m, 0] && (IntegerQ[p] || IGt
Q[n, 0])
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) +
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[a^m*g*((g*Cos[e + f*x])^(p - 1)/(f*(1 + Sin[e + f*x])^((p - 1)/2)*(1 - S
in[e + f*x])^((p - 1)/2))) Subst[Int[(1 + (b/a)*x)^(m + (p - 1)/2)*(1 - (b/a)*x)^((p - 1)/2)*(c + d*x)^n, x]
, x, Sin[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && EqQ[a^2 - b^2, 0] && IntegerQ[m]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) +
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[g*((g*Cos[e + f*x])^(p - 1)/(f*(a + b*Sin[e + f*x])^((p - 1)/2)*(a - b*S
in[e + f*x])^((p - 1)/2))) Subst[Int[(a + b*x)^(m + (p - 1)/2)*(a - b*x)^((p - 1)/2)*(c + d*x)^n, x], x, Sin
[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[a^2 - b^2, 0] && !IntegerQ[m]
-
Int[cos[(e_.) + (f_.)*(x_)]^2*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_
)])^(n_), x_Symbol] :> Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^n*(1 - Sin[e + f*x]^2), x] /; FreeQ[{a,
b, c, d, e, f, m, n}, x] && NeQ[a^2 - b^2, 0] && (IGtQ[m, 0] || IntegersQ[2*m, 2*n])
-
Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*
(x_)])^(n_), x_Symbol] :> Int[ExpandTrig[(a + b*sin[e + f*x])^m*(c + d*sin[e + f*x])^n*(1 - sin[e + f*x]^2)^(p
/2), x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && NeQ[a^2 - b^2, 0] && IGtQ[p/2, 0] && (IGtQ[m, 0] || Integ
ersQ[2*m, 2*n])
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) +
(f_.)*(x_)])^(n_), x_Symbol] :> Int[ExpandTrig[(g*cos[e + f*x])^p*(a + b*sin[e + f*x])^m*(c + d*sin[e + f*x])
^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[a^2 - b^2, 0] && IntegersQ[2*m, 2*n]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.)
+ (f_.)*(x_)])^(n_.), x_Symbol] :> Unintegrable[(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x]
)^n, x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && NeQ[a^2 - b^2, 0]
-
Int[((g_.)*sec[(e_.) + (f_.)*(x_)])^(p_)*((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_.), x_Symbol] :> Simp[g^(2*IntPart[p])*(g*Cos[e + f*x])^FracPart[p]*(g*Sec[e + f*x])^FracP
art[p] Int[(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^n/(g*Cos[e + f*x])^p), x], x] /; FreeQ[{a, b, c, d,
e, f, g, m, n, p}, x] && !IntegerQ[p]
-
Int[((a_.) + cos[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((c_.) + cos[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (
f_.)*(x_)]*(g_.))^(p_), x_Symbol] :> Simp[g^(2*IntPart[p])*(g*Sin[e + f*x])^FracPart[p]*(g*Csc[e + f*x])^FracP
art[p] Int[(a + b*Cos[e + f*x])^m*((c + d*Cos[e + f*x])^n/(g*Sin[e + f*x])^p), x], x] /; FreeQ[{a, b, c, d,
e, f, g, m, n, p}, x] && !IntegerQ[p]
-
Int[(Sqrt[(g_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]])/((c_) + (d_.)*sin[(e_.) +
(f_.)*(x_)]), x_Symbol] :> Simp[g/d Int[Sqrt[a + b*Sin[e + f*x]]/Sqrt[g*Sin[e + f*x]], x], x] - Simp[c*(g/d
) Int[Sqrt[a + b*Sin[e + f*x]]/(Sqrt[g*Sin[e + f*x]]*(c + d*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e,
f, g}, x] && NeQ[b*c - a*d, 0] && (EqQ[a^2 - b^2, 0] || EqQ[c^2 - d^2, 0])
-
Int[(Sqrt[(g_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]])/((c_) + (d_.)*sin[(e_.) +
(f_.)*(x_)]), x_Symbol] :> Simp[b/d Int[Sqrt[g*Sin[e + f*x]]/Sqrt[a + b*Sin[e + f*x]], x], x] - Simp[(b*c -
a*d)/d Int[Sqrt[g*Sin[e + f*x]]/(Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c,
d, e, f, g}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
-
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/(Sqrt[(g_.)*sin[(e_.) + (f_.)*(x_)]]*((c_) + (d_.)*sin[(e_.) +
(f_.)*(x_)])), x_Symbol] :> Simp[-2*(b/f) Subst[Int[1/(b*c + a*d + c*g*x^2), x], x, b*(Cos[e + f*x]/(Sqrt[g*
Sin[e + f*x]]*Sqrt[a + b*Sin[e + f*x]]))], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b*c - a*d, 0] && EqQ[a
^2 - b^2, 0]
-
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/(Sqrt[sin[(e_.) + (f_.)*(x_)]]*((c_) + (d_.)*sin[(e_.) + (f_.)*
(x_)])), x_Symbol] :> Simp[(-Sqrt[a + b]/(c*f))*EllipticE[ArcSin[Cos[e + f*x]/(1 + Sin[e + f*x])], -(a - b)/(a
+ b)], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[d, c] && GtQ[b^2 - a^2, 0] && GtQ[b, 0]
-
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/(Sqrt[(g_.)*sin[(e_.) + (f_.)*(x_)]]*((c_) + (d_.)*sin[(e_.) +
(f_.)*(x_)])), x_Symbol] :> Simp[(-Sqrt[a + b*Sin[e + f*x]])*(Sqrt[d*(Sin[e + f*x]/(c + d*Sin[e + f*x]))]/(d*f
*Sqrt[g*Sin[e + f*x]]*Sqrt[c^2*((a + b*Sin[e + f*x])/((a*c + b*d)*(c + d*Sin[e + f*x])))]))*EllipticE[ArcSin[c
*(Cos[e + f*x]/(c + d*Sin[e + f*x]))], (b*c - a*d)/(b*c + a*d)], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[
b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && EqQ[c^2 - d^2, 0]
-
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/(Sqrt[(g_.)*sin[(e_.) + (f_.)*(x_)]]*((c_) + (d_.)*sin[(e_.) +
(f_.)*(x_)])), x_Symbol] :> Simp[a/c Int[1/(Sqrt[g*Sin[e + f*x]]*Sqrt[a + b*Sin[e + f*x]]), x], x] + Simp[(b
*c - a*d)/(c*g) Int[Sqrt[g*Sin[e + f*x]]/(Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])), x], x] /; FreeQ[{a
, b, c, d, e, f, g}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
-
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/(sin[(e_.) + (f_.)*(x_)]*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])
), x_Symbol] :> Simp[1/c Int[Sqrt[a + b*Sin[e + f*x]]/Sin[e + f*x], x], x] - Simp[d/c Int[Sqrt[a + b*Sin[e
+ f*x]]/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0
]
-
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/(sin[(e_.) + (f_.)*(x_)]*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])
), x_Symbol] :> Simp[a/c Int[1/(Sin[e + f*x]*Sqrt[a + b*Sin[e + f*x]]), x], x] + Simp[(b*c - a*d)/c Int[1/
(Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] &
& NeQ[a^2 - b^2, 0]
-
Int[Sqrt[(g_.)*sin[(e_.) + (f_.)*(x_)]]/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_) + (d_.)*sin[(e_.) +
(f_.)*(x_)])), x_Symbol] :> Simp[(-a)*(g/(b*c - a*d)) Int[1/(Sqrt[g*Sin[e + f*x]]*Sqrt[a + b*Sin[e + f*x]]),
x], x] + Simp[c*(g/(b*c - a*d)) Int[Sqrt[a + b*Sin[e + f*x]]/(Sqrt[g*Sin[e + f*x]]*(c + d*Sin[e + f*x])), x
], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b*c - a*d, 0] && (EqQ[a^2 - b^2, 0] || EqQ[c^2 - d^2, 0])
-
Int[Sqrt[(g_.)*sin[(e_.) + (f_.)*(x_)]]/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_) + (d_.)*sin[(e_.) +
(f_.)*(x_)])), x_Symbol] :> Simp[2*Sqrt[-Cot[e + f*x]^2]*(Sqrt[g*Sin[e + f*x]]/(f*(c + d)*Cot[e + f*x]*Sqrt[a
+ b*Sin[e + f*x]]))*Sqrt[(b + a*Csc[e + f*x])/(a + b)]*EllipticPi[2*(c/(c + d)), ArcSin[Sqrt[1 - Csc[e + f*x]]
/Sqrt[2]], 2*(a/(a + b))], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] &&
NeQ[c^2 - d^2, 0]
-
Int[1/(Sqrt[(g_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_) + (d_.)*sin[(e_.)
+ (f_.)*(x_)])), x_Symbol] :> Simp[b/(b*c - a*d) Int[1/(Sqrt[g*Sin[e + f*x]]*Sqrt[a + b*Sin[e + f*x]]), x],
x] - Simp[d/(b*c - a*d) Int[Sqrt[a + b*Sin[e + f*x]]/(Sqrt[g*Sin[e + f*x]]*(c + d*Sin[e + f*x])), x], x] /;
FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b*c - a*d, 0] && (EqQ[a^2 - b^2, 0] || EqQ[c^2 - d^2, 0])
-
Int[1/(Sqrt[(g_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_) + (d_.)*sin[(e_.)
+ (f_.)*(x_)])), x_Symbol] :> Simp[1/c Int[1/(Sqrt[g*Sin[e + f*x]]*Sqrt[a + b*Sin[e + f*x]]), x], x] - Simp[
d/(c*g) Int[Sqrt[g*Sin[e + f*x]]/(Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c,
d, e, f, g}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
-
Int[1/(sin[(e_.) + (f_.)*(x_)]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)
])), x_Symbol] :> Simp[d^2/(c*(b*c - a*d)) Int[Sqrt[a + b*Sin[e + f*x]]/(c + d*Sin[e + f*x]), x], x] + Simp[
1/(c*(b*c - a*d)) Int[(b*c - a*d - b*d*Sin[e + f*x])/(Sin[e + f*x]*Sqrt[a + b*Sin[e + f*x]]), x], x] /; Free
Q[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0]
-
Int[1/(sin[(e_.) + (f_.)*(x_)]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)
])), x_Symbol] :> Simp[1/c Int[1/(Sin[e + f*x]*Sqrt[a + b*Sin[e + f*x]]), x], x] - Simp[d/c Int[1/(Sqrt[a
+ b*Sin[e + f*x]]*(c + d*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^
2 - b^2, 0]
-
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/(sin[(e_.) + (f_.)*(x_)]*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x
_)]]), x_Symbol] :> Simp[-d/c Int[Sqrt[a + b*Sin[e + f*x]]/Sqrt[c + d*Sin[e + f*x]], x], x] + Simp[1/c Int
[Sqrt[a + b*Sin[e + f*x]]*(Sqrt[c + d*Sin[e + f*x]]/Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && N
eQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && EqQ[b*c + a*d, 0]
-
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/(sin[(e_.) + (f_.)*(x_)]*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x
_)]]), x_Symbol] :> Simp[-2*(a/f) Subst[Int[1/(1 - a*c*x^2), x], x, Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*S
qrt[c + d*Sin[e + f*x]])], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ
[b*c + a*d, 0]
-
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/(sin[(e_.) + (f_.)*(x_)]*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x
_)]]), x_Symbol] :> Simp[(b*c - a*d)/c Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), x], x] + S
imp[a/c Int[Sqrt[c + d*Sin[e + f*x]]/(Sin[e + f*x]*Sqrt[a + b*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e
, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && EqQ[c^2 - d^2, 0]
-
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/(sin[(e_.) + (f_.)*(x_)]*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x
_)]]), x_Symbol] :> Simp[-2*((a + b*Sin[e + f*x])/(c*f*Rt[(a + b)/(c + d), 2]*Cos[e + f*x]))*Sqrt[(-(b*c - a*d
))*((1 - Sin[e + f*x])/((c + d)*(a + b*Sin[e + f*x])))]*Sqrt[(b*c - a*d)*((1 + Sin[e + f*x])/((c - d)*(a + b*S
in[e + f*x])))]*EllipticPi[a*((c + d)/(c*(a + b))), ArcSin[Rt[(a + b)/(c + d), 2]*(Sqrt[c + d*Sin[e + f*x]]/Sq
rt[a + b*Sin[e + f*x]])], (a - b)*((c + d)/((a + b)*(c - d)))], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c
- a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
-
Int[1/(sin[(e_.) + (f_.)*(x_)]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*
(x_)]]), x_Symbol] :> Simp[Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]) Int[1/(Cos[e + f
*x]*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && EqQ[c^2
- d^2, 0]
-
Int[1/(sin[(e_.) + (f_.)*(x_)]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*
(x_)]]), x_Symbol] :> Simp[-b/a Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), x], x] + Simp[1/a
Int[Sqrt[a + b*Sin[e + f*x]]/(Sin[e + f*x]*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x
] && NeQ[b*c - a*d, 0] && (NeQ[a^2 - b^2, 0] || NeQ[c^2 - d^2, 0])
-
Int[(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]])/sin[(e_.) + (f_.)*
(x_)], x_Symbol] :> Simp[Sqrt[a + b*Sin[e + f*x]]*(Sqrt[c + d*Sin[e + f*x]]/Cos[e + f*x]) Int[Cot[e + f*x],
x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && EqQ[c^2 - d^2, 0]
-
Int[(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]])/sin[(e_.) + (f_.)*
(x_)], x_Symbol] :> Simp[d Int[Sqrt[a + b*Sin[e + f*x]]/Sqrt[c + d*Sin[e + f*x]], x], x] + Simp[c Int[Sqrt
[a + b*Sin[e + f*x]]/(Sin[e + f*x]*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*
c - a*d, 0] && (NeQ[a^2 - b^2, 0] || NeQ[c^2 - d^2, 0])
-
Int[sin[(e_.) + (f_.)*(x_)]^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*
(x_)])^(n_.), x_Symbol] :> Simp[a^n*c^n Int[Tan[e + f*x]^p*(a + b*Sin[e + f*x])^(m - n), x], x] /; FreeQ[{a,
b, c, d, e, f, m}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && EqQ[p + 2*n, 0] && IntegerQ[n]
-
Int[((g_.)*sin[(e_.) + (f_.)*(x_)])^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) +
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[Sqrt[a - b*Sin[e + f*x]]*(Sqrt[a + b*Sin[e + f*x]]/(f*Cos[e + f*x])) S
ubst[Int[(g*x)^p*(a + b*x)^(m - 1/2)*((c + d*x)^n/Sqrt[a - b*x]), x], x, Sin[e + f*x]], x] /; FreeQ[{a, b, c,
d, e, f, g, m, n, p}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && IntegerQ[m - 1/2]
-
Int[((g_.)*sin[(e_.) + (f_.)*(x_)])^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) +
(f_.)*(x_)])^(n_), x_Symbol] :> Int[ExpandTrig[(g*sin[e + f*x])^p*(a + b*sin[e + f*x])^m*(c + d*sin[e + f*x])
^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && NeQ[b*c - a*d, 0] && (IntegersQ[m, n] || IntegersQ[m, p
] || IntegersQ[n, p]) && NeQ[p, 2]
-
Int[((g_.)*sin[(e_.) + (f_.)*(x_)])^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) +
(f_.)*(x_)])^(n_), x_Symbol] :> Unintegrable[(g*Sin[e + f*x])^p*(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^n
, x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && NeQ[p, 2]
-
Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.)*((g_.)*sin[(e_.
) + (f_.)*(x_)])^(p_.), x_Symbol] :> Simp[g^(m + n) Int[(g*Sin[e + f*x])^(p - m - n)*(b + a*Sin[e + f*x])^m*
(d + c*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b*c - a*d, 0] && !IntegerQ[p] &&
IntegerQ[m] && IntegerQ[n]
-
Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.)*((g_.)*sin[(e_.
) + (f_.)*(x_)])^(p_.), x_Symbol] :> Simp[(g*Csc[e + f*x])^p*(g*Sin[e + f*x])^p Int[(a + b*Csc[e + f*x])^m*(
(c + d*Csc[e + f*x])^n/(g*Csc[e + f*x])^p), x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && NeQ[b*c - a*
d, 0] && !IntegerQ[p] && !(IntegerQ[m] && IntegerQ[n])
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.)*((g_.)*sin[(e_.) + (f_.)*(x_)])^(p_.)*((a_) + (b_.)*sin[(e_.)
+ (f_.)*(x_)])^(m_.), x_Symbol] :> Simp[g^n Int[(g*Sin[e + f*x])^(p - n)*(a + b*Sin[e + f*x])^m*(d + c*Sin[
e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && IntegerQ[n]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_)*sin[(e_.) + (f_.)*(x_)]^(p_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*
(x_)])^(m_.), x_Symbol] :> Int[(b + a*Csc[e + f*x])^m*((c + d*Csc[e + f*x])^n/Csc[e + f*x]^(m + p)), x] /; Fre
eQ[{a, b, c, d, e, f, n}, x] && !IntegerQ[n] && IntegerQ[m] && IntegerQ[p]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_)*((g_.)*sin[(e_.) + (f_.)*(x_)])^(p_)*((a_) + (b_.)*sin[(e_.) +
(f_.)*(x_)])^(m_.), x_Symbol] :> Simp[Csc[e + f*x]^p*(g*Sin[e + f*x])^p Int[(b + a*Csc[e + f*x])^m*((c + d*
Csc[e + f*x])^n/Csc[e + f*x]^(m + p)), x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && !IntegerQ[n] && Int
egerQ[m] && !IntegerQ[p]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_)*((g_.)*sin[(e_.) + (f_.)*(x_)])^(p_.)*((a_) + (b_.)*sin[(e_.)
+ (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(g*Sin[e + f*x])^n*((c + d*Csc[e + f*x])^n/(d + c*Sin[e + f*x])^n) In
t[(g*Sin[e + f*x])^(p - n)*(a + b*Sin[e + f*x])^m*(d + c*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g
, m, n, p}, x] && !IntegerQ[n] && !IntegerQ[m]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_.), x_Symbol] :> Simp[g^(m + n) Int[(g*Csc[e + f*x])^(p - m - n)*(b + a*Csc[e + f*x])^m*
(d + c*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b*c - a*d, 0] && !IntegerQ[p] &&
IntegerQ[m] && IntegerQ[n]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_.), x_Symbol] :> Simp[(g*Csc[e + f*x])^p*(g*Sin[e + f*x])^p Int[(a + b*Sin[e + f*x])^m*(
(c + d*Sin[e + f*x])^n/(g*Sin[e + f*x])^p), x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && NeQ[b*c - a*
d, 0] && !IntegerQ[p] && !(IntegerQ[m] && IntegerQ[n])
-
Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.)*((a_) + (b_.)*sin[(e_.)
+ (f_.)*(x_)])^(m_.), x_Symbol] :> Simp[g^m Int[(g*Csc[e + f*x])^(p - m)*(b + a*Csc[e + f*x])^m*(c + d*Csc[
e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && IntegerQ[m]
-
Int[csc[(e_.) + (f_.)*(x_)]^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)
*(x_)])^(m_), x_Symbol] :> Int[(a + b*Sin[e + f*x])^m*((d + c*Sin[e + f*x])^n/Sin[e + f*x]^(n + p)), x] /; Fre
eQ[{a, b, c, d, e, f, m}, x] && !IntegerQ[m] && IntegerQ[n] && IntegerQ[p]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.)*((a_) + (b_.)*sin[(e_.)
+ (f_.)*(x_)])^(m_), x_Symbol] :> Simp[Sin[e + f*x]^p*(g*Csc[e + f*x])^p Int[(a + b*Sin[e + f*x])^m*((d + c*
Sin[e + f*x])^n/Sin[e + f*x]^(n + p)), x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && !IntegerQ[m] && Int
egerQ[n] && !IntegerQ[p]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_)*((a_) + (b_.)*sin[(e_.)
+ (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(a + b*Sin[e + f*x])^m*((g*Csc[e + f*x])^m/(b + a*Csc[e + f*x])^m) In
t[(g*Csc[e + f*x])^(p - m)*(b + a*Csc[e + f*x])^m*(c + d*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g
, m, n, p}, x] && !IntegerQ[m] && !IntegerQ[n]
-
Int[sin[(e_.) + (f_.)*(x_)]^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.
)*(x_)]), x_Symbol] :> Int[ExpandTrig[sin[e + f*x]^n*(a + b*sin[e + f*x])^m*(A + B*sin[e + f*x]), x], x] /; Fr
eeQ[{a, b, e, f, A, B}, x] && EqQ[A*b + a*B, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[m] && IntegerQ[n]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Simp[a^m*c^m Int[Cos[e + f*x]^(2*m)*(c + d*Sin[e + f*x])^(n - m)*(A +
B*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] &&
IntegerQ[m] && !(IntegerQ[n] && ((LtQ[m, 0] && GtQ[n, 0]) || LtQ[0, n, m] || LtQ[m, n, 0]))
-
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x
]^2), x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
-
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_) + (d_.)*sin[
(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[(A*b + a*B)/(2*a*b) Int[Sqrt[a + b*Sin[e + f*x]]/Sqrt[c + d*Sin[e +
f*x]], x], x] + Simp[(B*c + A*d)/(2*c*d) Int[Sqrt[c + d*Sin[e + f*x]]/Sqrt[a + b*Sin[e + f*x]], x], x] /; F
reeQ[{a, b, c, d, e, f, A, B}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_.), x_Symbol] :> Simp[(-B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^n/(f*
(m + n + 1))), x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && EqQ
[A*b*(m + n + 1) + a*B*(m - n), 0] && NeQ[m, -2^(-1)]
-
Int[Sqrt[(a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[B/d Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n + 1), x],
x] - Simp[(B*c - A*d)/d Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e,
f, A, B, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_.), x_Symbol] :> Simp[(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x]
)^n/(a*f*(2*m + 1))), x] + Simp[(a*B*(m - n) + A*b*(m + n + 1))/(a*b*(2*m + 1)) Int[(a + b*Sin[e + f*x])^(m
+ 1)*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^
2 - b^2, 0] && (LtQ[m, -2^(-1)] || (ILtQ[m + n, 0] && !SumSimplerQ[n, 1])) && NeQ[2*m + 1, 0]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^n/(f*
(m + n + 1))), x] - Simp[(B*c*(m - n) - A*d*(m + n + 1))/(d*(m + n + 1)) Int[(a + b*Sin[e + f*x])^m*(c + d*S
in[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] &
& !LtQ[m, -2^(-1)] && NeQ[m + n + 1, 0]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x]
)^(n + 1)/(f*(n + 1)*(c^2 - d^2))), x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ
[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && EqQ[m + n + 2, 0] && EqQ[A*(a*d*m + b*c*(n + 1)) - B*(a*c*m + b*d*(n +
1)), 0]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b^2)*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d
*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(b*c + a*d))), x] - Simp[b/(d*(n + 1)*(b*c + a*d)) Int[(a + b*Sin[e + f*
x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[a*A*d*(m - n - 2) - B*(a*c*(m - 1) + b*d*(n + 1)) - (A*b*d*(m +
n + 1) - B*(b*c*m - a*d*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c -
a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1/2] && LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2
*n] || EqQ[c, 0])
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*B*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[e + f*x
])^(n + 1)/(d*f*(m + n + 1))), x] + Simp[1/(d*(m + n + 1)) Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f
*x])^n*Simp[a*A*d*(m + n + 1) + B*(a*c*(m - 1) + b*d*(n + 1)) + (A*b*d*(m + n + 1) - B*(b*c*m - a*d*(2*m + n))
)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0]
&& NeQ[c^2 - d^2, 0] && GtQ[m, 1/2] && !LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x]
)^n/(a*f*(2*m + 1))), x] - Simp[1/(a*b*(2*m + 1)) Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^(n -
1)*Simp[A*(a*d*n - b*c*(m + 1)) - B*(a*c*m + b*d*n) - d*(a*B*(m - n) + A*b*(m + n + 1))*Sin[e + f*x], x], x],
x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && Lt
Q[m, -2^(-1)] && GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c, 0])
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*
x])^(n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Simp[1/(a*(2*m + 1)*(b*c - a*d)) Int[(a + b*Sin[e + f*x])^(m
+ 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)
*(m + n + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] && !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c,
0])
-
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[-2*b*B*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(2*n + 3)*Sqrt
[a + b*Sin[e + f*x]])), x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0]
&& NeQ[c^2 - d^2, 0] && EqQ[A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)), 0]
-
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b^2)*(B*c - A*d)*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n
+ 1)*(b*c + a*d)*Sqrt[a + b*Sin[e + f*x]])), x] + Simp[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(2*d*(n +
1)*(b*c + a*d)) Int[Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f
, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, -1]
-
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[-2*b*B*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(2*n + 3)*Sqrt
[a + b*Sin[e + f*x]])), x] + Simp[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(b*d*(2*n + 3)) Int[Sqrt[a + b
*Sin[e + f*x]]*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] &&
EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && !LtQ[n, -1]
-
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin
[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[(A*b - a*B)/b Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f
*x]]), x], x] + Simp[B/b Int[Sqrt[a + b*Sin[e + f*x]]/Sqrt[c + d*Sin[e + f*x]], x], x] /; FreeQ[{a, b, c, d,
e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^n/(f*
(m + n + 1))), x] + Simp[1/(b*(m + n + 1)) Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n - 1)*Simp[A*b*
c*(m + n + 1) + B*(a*c*m + b*d*n) + (A*b*d*(m + n + 1) + B*(a*d*m + b*c*n))*Sin[e + f*x], x], x], x] /; FreeQ[
{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[n, 0] &&
(IntegerQ[n] || EqQ[m + 1/2, 0])
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x]
)^(n + 1)/(f*(n + 1)*(c^2 - d^2))), x] + Simp[1/(b*(n + 1)*(c^2 - d^2)) Int[(a + b*Sin[e + f*x])^m*(c + d*Si
n[e + f*x])^(n + 1)*Simp[A*(a*d*m + b*c*(n + 1)) - B*(a*c*m + b*d*(n + 1)) + b*(B*c - A*d)*(m + n + 2)*Sin[e +
f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^
2 - d^2, 0] && LtQ[n, -1] && (IntegerQ[n] || EqQ[m + 1/2, 0])
-
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])), x_Symbol] :> Simp[(A*b - a*B)/(b*c - a*d) Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Simp[
(B*c - A*d)/(b*c - a*d) Int[Sqrt[a + b*Sin[e + f*x]]/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f
, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
-
Int[(((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]))/((c_.) + (d_.)*sin[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[B/d Int[(a + b*Sin[e + f*x])^m, x], x] - Simp[(B*c - A*d)/d Int[(a
+ b*Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]
&& EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && NeQ[m + 1/2, 0]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(A*b - a*B)/b Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^n,
x], x] + Simp[B/b Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f
, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && NeQ[A*b + a*B, 0]
-
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^2*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.)
+ (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(B*c - A*d)*(b*c - a*d)^2*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(
f*d^2*(n + 1)*(c^2 - d^2))), x] - Simp[1/(d^2*(n + 1)*(c^2 - d^2)) Int[(c + d*Sin[e + f*x])^(n + 1)*Simp[d*(
n + 1)*(B*(b*c - a*d)^2 - A*d*(a^2*c + b^2*c - 2*a*b*d)) - ((B*c - A*d)*(a^2*d^2*(n + 2) + b^2*(c^2 + d^2*(n +
1))) + 2*a*b*d*(A*c*d*(n + 2) - B*(c^2 + d^2*(n + 1))))*Sin[e + f*x] - b^2*B*d*(n + 1)*(c^2 - d^2)*Sin[e + f*
x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 -
d^2, 0] && LtQ[n, -1]
-
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-(b*c - a*d))*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1
)*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2))), x] + Simp[1/(d*(n + 1)*(c^2 - d^2)) Int[(a + b*S
in[e + f*x])^(m - 2)*(c + d*Sin[e + f*x])^(n + 1)*Simp[b*(b*c - a*d)*(B*c - A*d)*(m - 1) + a*d*(a*A*c + b*B*c
- (A*b + a*B)*d)*(n + 1) + (b*(b*d*(B*c - A*d) + a*(A*c*d + B*(c^2 - 2*d^2)))*(n + 1) - a*(b*c - a*d)*(B*c - A
*d)*(n + 2))*Sin[e + f*x] + b*(d*(A*b*c + a*B*c - a*A*d)*(m + n + 1) - b*B*(c^2*m + d^2*(n + 1)))*Sin[e + f*x]
^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^
2, 0] && GtQ[m, 1] && LtQ[n, -1]
-
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*B*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[e + f*
x])^(n + 1)/(d*f*(m + n + 1))), x] + Simp[1/(d*(m + n + 1)) Int[(a + b*Sin[e + f*x])^(m - 2)*(c + d*Sin[e +
f*x])^n*Simp[a^2*A*d*(m + n + 1) + b*B*(b*c*(m - 1) + a*d*(n + 1)) + (a*d*(2*A*b + a*B)*(m + n + 1) - b*B*(a*c
- b*d*(m + n)))*Sin[e + f*x] + b*(A*b*d*(m + n + 1) - B*(b*c*m - a*d*(2*m + n)))*Sin[e + f*x]^2, x], x], x] /
; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[
m, 1] && !(IGtQ[n, 1] && ( !IntegerQ[m] || (EqQ[a, 0] && NeQ[c, 0])))
-
Int[(((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]])/((b_.)*sin[(e_.) + (f
_.)*(x_)])^(3/2), x_Symbol] :> Simp[B*(d/b^2) Int[Sqrt[b*Sin[e + f*x]]/Sqrt[c + d*Sin[e + f*x]], x], x] + In
t[(A*c + (B*c + A*d)*Sin[e + f*x])/((b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]), x] /; FreeQ[{b, c, d, e,
f, A, B}, x] && NeQ[c^2 - d^2, 0]
-
Int[(((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]])/((a_) + (b_.)*sin[(e
_.) + (f_.)*(x_)])^(3/2), x_Symbol] :> Simp[B/b Int[Sqrt[c + d*Sin[e + f*x]]/Sqrt[a + b*Sin[e + f*x]], x], x
] + Simp[(A*b - a*B)/b Int[Sqrt[c + d*Sin[e + f*x]]/(a + b*Sin[e + f*x])^(3/2), x], x] /; FreeQ[{a, b, c, d,
e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
-
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*((a_) + (b_.)*sin[(e_.) + (f_
.)*(x_)])^(3/2)), x_Symbol] :> Simp[2*(A*b - a*B)*(Cos[e + f*x]/(f*(a^2 - b^2)*Sqrt[a + b*Sin[e + f*x]]*Sqrt[d
*Sin[e + f*x]])), x] + Simp[d/(a^2 - b^2) Int[(A*b - a*B + (a*A - b*B)*Sin[e + f*x])/(Sqrt[a + b*Sin[e + f*x
]]*(d*Sin[e + f*x])^(3/2)), x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[a^2 - b^2, 0]
-
Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A*(c - d)*(Tan[e + f*x]/(f*b*c^2))*Rt[(c + d)/b, 2]*Sqrt[c*((1 + Csc[e +
f*x])/(c - d))]*Sqrt[c*((1 - Csc[e + f*x])/(c + d))]*EllipticE[ArcSin[Sqrt[c + d*Sin[e + f*x]]/Sqrt[b*Sin[e +
f*x]]/Rt[(c + d)/b, 2]], -(c + d)/(c - d)], x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2, 0] && EqQ
[A, B] && PosQ[(c + d)/b]
-
Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin[(e_.)
+ (f_.)*(x_)]]), x_Symbol] :> Simp[-Sqrt[(-b)*Sin[e + f*x]]/Sqrt[b*Sin[e + f*x]] Int[(A + B*Sin[e + f*x])/((
(-b)*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{b, c, d, e, f, A, B}, x] && NeQ[c^2 - d^2
, 0] && EqQ[A, B] && NegQ[(c + d)/b]
-
Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin
[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[-2*A*(c - d)*((a + b*Sin[e + f*x])/(f*(b*c - a*d)^2*Rt[(a + b)/(c +
d), 2]*Cos[e + f*x]))*Sqrt[(b*c - a*d)*((1 + Sin[e + f*x])/((c - d)*(a + b*Sin[e + f*x])))]*Sqrt[(-(b*c - a*d)
)*((1 - Sin[e + f*x])/((c + d)*(a + b*Sin[e + f*x])))]*EllipticE[ArcSin[Rt[(a + b)/(c + d), 2]*(Sqrt[c + d*Sin
[e + f*x]]/Sqrt[a + b*Sin[e + f*x]])], (a - b)*((c + d)/((a + b)*(c - d)))], x] /; FreeQ[{a, b, c, d, e, f, A,
B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && EqQ[A, B] && PosQ[(a + b)/(c + d)]
-
Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*sin
[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[Sqrt[-c - d*Sin[e + f*x]]/Sqrt[c + d*Sin[e + f*x]] Int[(A + B*Sin[
e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[-c - d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x]
&& NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && EqQ[A, B] && NegQ[(a + b)/(c + d)]
-
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_) + (d_.)*s
in[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[(A - B)/(a - b) Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e
+ f*x]]), x], x] - Simp[(A*b - a*B)/(a - b) Int[(1 + Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*S
in[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c
^2 - d^2, 0] && NeQ[A, B]
-
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(B*a - A*b)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e
+ f*x])^n/(f*(m + 1)*(a^2 - b^2))), x] + Simp[1/((m + 1)*(a^2 - b^2)) Int[(a + b*Sin[e + f*x])^(m + 1)*(c +
d*Sin[e + f*x])^(n - 1)*Simp[c*(a*A - b*B)*(m + 1) + d*n*(A*b - a*B) + (d*(a*A - b*B)*(m + 1) - c*(A*b - a*B)
*(m + 2))*Sin[e + f*x] - d*(A*b - a*B)*(m + n + 2)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B
}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && GtQ[n, 0]
-
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-(A*b^2 - a*b*B))*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c +
d*Sin[e + f*x])^(1 + n)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^2 - b^2))
Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(a*A - b*B)*(b*c - a*d)*(m + 1) + b*d*(A*b - a*B)
*(m + n + 2) + (A*b - a*B)*(a*d*(m + 1) - b*c*(m + 2))*Sin[e + f*x] - b*d*(A*b - a*B)*(m + n + 3)*Sin[e + f*x]
^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 -
d^2, 0] && RationalQ[m] && m < -1 && ((EqQ[a, 0] && IntegerQ[m] && !IntegerQ[n]) || !(IntegerQ[2*n] && LtQ[
n, -1] && ((IntegerQ[n] && !IntegerQ[m]) || EqQ[a, 0])))
-
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.)
+ (f_.)*(x_)])), x_Symbol] :> Simp[(A*b - a*B)/(b*c - a*d) Int[1/(a + b*Sin[e + f*x]), x], x] + Simp[(B*c -
A*d)/(b*c - a*d) Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d,
0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
-
Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]))/((c_.) + (d_.)*sin[
(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[B/d Int[(a + b*Sin[e + f*x])^m, x], x] - Simp[(B*c - A*d)/d Int[(a
+ b*Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0
] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
-
Int[Sqrt[(a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[-2*B*Cos[e + f*x]*Sqrt[a + b*Sin[e + f*x]]*((c + d*Sin[e + f*x])^n/(
f*(2*n + 3))), x] + Simp[1/(2*n + 3) Int[((c + d*Sin[e + f*x])^(n - 1)/Sqrt[a + b*Sin[e + f*x]])*Simp[a*A*c*
(2*n + 3) + B*(b*c + 2*a*d*n) + (B*(a*c + b*d)*(2*n + 1) + A*(b*c + a*d)*(2*n + 3))*Sin[e + f*x] + (A*b*d*(2*n
+ 3) + B*(a*d + 2*b*c*n))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d,
0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && EqQ[n^2, 1/4]
-
Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*
(x_)]]), x_Symbol] :> Simp[4*(A/(f*Sqrt[a + b]))*EllipticPi[-1, -ArcSin[Cos[e + f*x]/(1 + Sin[e + f*x])], -(a
- b)/(a + b)], x] /; FreeQ[{a, b, e, f, A, B}, x] && GtQ[b, 0] && GtQ[b^2 - a^2, 0] && EqQ[A, B]
-
Int[((A_) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(d_)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*sin[(e_.) + (
f_.)*(x_)]]), x_Symbol] :> Simp[Sqrt[Sin[e + f*x]]/Sqrt[d*Sin[e + f*x]] Int[(A + B*Sin[e + f*x])/(Sqrt[Sin[e
+ f*x]]*Sqrt[a + b*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, e, f, d, A, B}, x] && GtQ[b, 0] && GtQ[b^2 - a^2, 0
] && EqQ[A, B]
-
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin
[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[B/d Int[Sqrt[c + d*Sin[e + f*x]]/Sqrt[a + b*Sin[e + f*x]], x], x]
- Simp[(B*c - A*d)/d Int[1/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d,
e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
-
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e
_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Unintegrable[(a + b*Sin[e + f*x])^m*(A + B*Sin[e + f*x])*(c + d*Sin[e +
f*x])^n, x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2
- d^2, 0]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])^(p_)*((c_) + (d_.)*si
n[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Simp[Sqrt[a + b*Sin[e + f*x]]*(Sqrt[c + d*Sin[e + f*x]]/(f*Cos[e +
f*x])) Subst[Int[(a + b*x)^(m - 1/2)*(c + d*x)^(n - 1/2)*(A + B*x)^p, x], x, Sin[e + f*x]], x] /; FreeQ[{a,
b, c, d, e, f, A, B, m, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0]
-
Int[((A_.) + cos[(e_.) + (f_.)*(x_)]*(B_.))^(p_)*(cos[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.)*(cos[(e_.) + (f_
.)*(x_)]*(d_.) + (c_))^(n_.), x_Symbol] :> Simp[(-Sqrt[a + b*Cos[e + f*x]])*(Sqrt[c + d*Cos[e + f*x]]/(f*Sin[e
+ f*x])) Subst[Int[(a + b*x)^(m - 1/2)*(c + d*x)^(n - 1/2)*(A + B*x)^p, x], x, Cos[e + f*x]], x] /; FreeQ[{
a, b, c, d, e, f, A, B, m, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0]
-
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x
_Symbol] :> Simp[1/b Int[(b*Sin[e + f*x])^(m + 1)*(B + C*Sin[e + f*x]), x], x] /; FreeQ[{b, e, f, B, C, m},
x]
-
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[A*Cos[e
+ f*x]*((b*Sin[e + f*x])^(m + 1)/(b*f*(m + 1))), x] /; FreeQ[{b, e, f, A, C, m}, x] && EqQ[A*(m + 2) + C*(m +
1), 0]
-
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[A*Cos[e +
f*x]*((b*Sin[e + f*x])^(m + 1)/(b*f*(m + 1))), x] + Simp[(A*(m + 2) + C*(m + 1))/(b^2*(m + 1)) Int[(b*Sin[e
+ f*x])^(m + 2), x], x] /; FreeQ[{b, e, f, A, C}, x] && LtQ[m, -1]
-
Int[sin[(e_.) + (f_.)*(x_)]^(m_.)*((A_) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[-f^(-1) Subst[
Int[(1 - x^2)^((m - 1)/2)*(A + C - C*x^2), x], x, Cos[e + f*x]], x] /; FreeQ[{e, f, A, C}, x] && IGtQ[(m + 1)/
2, 0]
-
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Cos
[e + f*x]*((b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Simp[(A*(m + 2) + C*(m + 1))/(m + 2) Int[(b*Sin[e +
f*x])^m, x], x] /; FreeQ[{b, e, f, A, C, m}, x] && !LtQ[m, -1]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> Simp[1/b^2 Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*B - a*C + b*C*Sin[e + f*x], x]
, x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] && EqQ[A*b^2 - a*b*B + a^2*C, 0]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[
C/b^2 Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[-a + b*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, C, m},
x] && EqQ[A*b^2 + a^2*C, 0]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> Simp[(A - C) Int[(a + b*Sin[e + f*x])^m*(1 + Sin[e + f*x]), x], x] + Simp[C Int
[(a + b*Sin[e + f*x])^m*(1 + Sin[e + f*x])^2, x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] && EqQ[A - B + C, 0
] && !IntegerQ[2*m]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[
(A - C) Int[(a + b*Sin[e + f*x])^m*(1 + Sin[e + f*x]), x], x] + Simp[C Int[(a + b*Sin[e + f*x])^m*(1 + Sin
[e + f*x])^2, x], x] /; FreeQ[{a, b, e, f, A, C, m}, x] && EqQ[A + C, 0] && !IntegerQ[2*m]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_
.)*(x_)]^2), x_Symbol] :> Simp[(A*b - a*B + b*C)*Cos[e + f*x]*((a + b*Sin[e + f*x])^m/(a*f*(2*m + 1))), x] + S
imp[1/(a^2*(2*m + 1)) Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[a*A*(m + 1) + m*(b*B - a*C) + b*C*(2*m + 1)*Sin[
e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && LtQ[m, -1] && EqQ[a^2 - b^2, 0]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[b
*(A + C)*Cos[e + f*x]*((a + b*Sin[e + f*x])^m/(a*f*(2*m + 1))), x] + Simp[1/(a^2*(2*m + 1)) Int[(a + b*Sin[e
+ f*x])^(m + 1)*Simp[a*A*(m + 1) - a*C*m + b*C*(2*m + 1)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, C}
, x] && LtQ[m, -1] && EqQ[a^2 - b^2, 0]
-
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m
+ 1)*(a^2 - b^2))), x] + Simp[1/(b*(m + 1)*(a^2 - b^2)) Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(a*A - b*B +
a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b,
e, f, A, B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(
-(A*b^2 + a^2*C))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 1)*(a^2 - b^2))), x] + Simp[1/(b*(m + 1
)*(a^2 - b^2)) Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[a*b*(A + C)*(m + 1) - (A*b^2 + a^2*C + b^2*(A + C)*(m +
1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]
-
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Simp[1/(
b*(m + 2)) Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m + 2) - a*C)*Sin[e + f*x], x],
x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] && !LtQ[m, -1]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[
(-C)*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Simp[1/(b*(m + 2)) Int[(a + b*Sin[e + f
*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) - a*C*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, C, m}, x] && !L
tQ[m, -1]
-
Int[((b_.)*sin[(e_.) + (f_.)*(x_)]^(p_))^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)
*(x_)]^2), x_Symbol] :> Simp[(b*Sin[e + f*x]^p)^m/(b*Sin[e + f*x])^(m*p) Int[(b*Sin[e + f*x])^(m*p)*(A + B*S
in[e + f*x] + C*Sin[e + f*x]^2), x], x] /; FreeQ[{b, e, f, A, B, C, m, p}, x] && !IntegerQ[m]
-
Int[(cos[(e_.) + (f_.)*(x_)]^(p_)*(b_.))^(m_)*((A_.) + cos[(e_.) + (f_.)*(x_)]*(B_.) + cos[(e_.) + (f_.)*(x_)]
^2*(C_.)), x_Symbol] :> Simp[(b*Cos[e + f*x]^p)^m/(b*Cos[e + f*x])^(m*p) Int[(b*Cos[e + f*x])^(m*p)*(A + B*C
os[e + f*x] + C*Cos[e + f*x]^2), x], x] /; FreeQ[{b, e, f, A, B, C, m, p}, x] && !IntegerQ[m]
-
Int[((b_.)*sin[(e_.) + (f_.)*(x_)]^(p_))^(m_)*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(b*
Sin[e + f*x]^p)^m/(b*Sin[e + f*x])^(m*p) Int[(b*Sin[e + f*x])^(m*p)*(A + C*Sin[e + f*x]^2), x], x] /; FreeQ[
{b, e, f, A, C, m, p}, x] && !IntegerQ[m]
-
Int[(cos[(e_.) + (f_.)*(x_)]^(p_)*(b_.))^(m_)*((A_.) + cos[(e_.) + (f_.)*(x_)]^2*(C_.)), x_Symbol] :> Simp[(b*
Cos[e + f*x]^p)^m/(b*Cos[e + f*x])^(m*p) Int[(b*Cos[e + f*x])^(m*p)*(A + C*Cos[e + f*x]^2), x], x] /; FreeQ[
{b, e, f, A, C, m, p}, x] && !IntegerQ[m]
-
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)
*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[1/b^2 Int[(a + b*Sin[e + f*x]
)^(m + 1)*(c + d*Sin[e + f*x])^n*(b*B - a*C + b*C*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m
, n}, x] && NeQ[b*c - a*d, 0] && EqQ[A*b^2 - a*b*B + a^2*C, 0]
-
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (C_.)
*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[-C/b^2 Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^
n*(a - b*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[A*b^2 +
a^2*C, 0]
-
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])*((A_.) + (B_.)*sin[(e
_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(b*c - a*d))*(A*b^2 - a*b*B + a^2*C)
*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b^2*f*(m + 1)*(a^2 - b^2))), x] - Simp[1/(b^2*(m + 1)*(a^2 - b^2)
) Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(m + 1)*((b*B - a*C)*(b*c - a*d) - A*b*(a*c - b*d)) + (b*B*(a^2*d
+ b^2*d*(m + 1) - a*b*c*(m + 2)) + (b*c - a*d)*(A*b^2*(m + 2) + C*(a^2 + b^2*(m + 1))))*Sin[e + f*x] - b*C*d*(
m + 1)*(a^2 - b^2)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] &&
NeQ[a^2 - b^2, 0] && LtQ[m, -1]
-
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])*((A_.) + (C_.)*sin[(e
_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(b*c - a*d))*(A*b^2 + a^2*C)*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m +
1)/(b^2*f*(m + 1)*(a^2 - b^2))), x] + Simp[1/(b^2*(m + 1)*(a^2 - b^2)) Int[(a + b*Sin[e + f*x])^(m + 1)*Sim
p[b*(m + 1)*(a*C*(b*c - a*d) + A*b*(a*c - b*d)) - ((b*c - a*d)*(A*b^2*(m + 2) + C*(a^2 + b^2*(m + 1))))*Sin[e
+ f*x] + b*C*d*(m + 1)*(a^2 - b^2)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C}, x] && NeQ[b*c
- a*d, 0] && NeQ[a^2 - b^2, 0] && LtQ[m, -1]
-
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])*((A_.) + (B_.)*sin[(e
_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*d*Cos[e + f*x]*Sin[e + f*x]*((a +
b*Sin[e + f*x])^(m + 1)/(b*f*(m + 3))), x] + Simp[1/(b*(m + 3)) Int[(a + b*Sin[e + f*x])^m*Simp[a*C*d + A*b
*c*(m + 3) + b*(B*c*(m + 3) + d*(C*(m + 2) + A*(m + 3)))*Sin[e + f*x] - (2*a*C*d - b*(c*C + B*d)*(m + 3))*Sin[
e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] &
& !LtQ[m, -1]
-
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)])*((A_.) + (C_.)*sin[(e
_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*d*Cos[e + f*x]*Sin[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m
+ 3))), x] + Simp[1/(b*(m + 3)) Int[(a + b*Sin[e + f*x])^m*Simp[a*C*d + A*b*c*(m + 3) + b*d*(C*(m + 2) + A*
(m + 3))*Sin[e + f*x] - (2*a*C*d - b*c*C*(m + 3))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C,
m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && !LtQ[m, -1]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(a*A - b*B + a*C)*Cos[e + f*x]*(a
+ b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n + 1)/(2*b*c*f*(2*m + 1))), x] - Simp[1/(2*b*c*d*(2*m + 1)) Int
[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[A*(c^2*(m + 1) + d^2*(2*m + n + 2)) - B*c*d*(m - n -
1) - C*(c^2*m - d^2*(n + 1)) + d*((A*c + B*d)*(m + n + 2) - c*C*(3*m - n))*Sin[e + f*x], x], x], x] /; FreeQ[
{a, b, c, d, e, f, A, B, C, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && (LtQ[m, -2^(-1)] || (EqQ[m
+ n + 2, 0] && NeQ[2*m + 1, 0]))
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(a*A + a*C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f
*x])^(n + 1)/(2*b*c*f*(2*m + 1))), x] - Simp[1/(2*b*c*d*(2*m + 1)) Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*S
in[e + f*x])^n*Simp[A*(c^2*(m + 1) + d^2*(2*m + n + 2)) - C*(c^2*m - d^2*(n + 1)) + d*(A*c*(m + n + 2) - c*C*(
3*m - n))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2
- b^2, 0] && (LtQ[m, -2^(-1)] || (EqQ[m + n + 2, 0] && NeQ[2*m + 1, 0]))
-
Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) +
(f_.)*(x_)]^2))/Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp[-2*C*Cos[e + f*x]*((a + b*Sin[e
+ f*x])^(m + 1)/(b*f*(2*m + 3)*Sqrt[c + d*Sin[e + f*x]])), x] + Int[(a + b*Sin[e + f*x])^m*(Simp[A + C + B*Si
n[e + f*x], x]/Sqrt[c + d*Sin[e + f*x]]), x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m}, x] && EqQ[b*c + a*d, 0]
&& EqQ[a^2 - b^2, 0] && !LtQ[m, -2^(-1)]
-
Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2))/Sqrt[(c_.) + (d_
.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp[-2*C*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(2*m + 3)*
Sqrt[c + d*Sin[e + f*x]])), x] + Simp[(A + C) Int[(a + b*Sin[e + f*x])^m/Sqrt[c + d*Sin[e + f*x]], x], x] /;
FreeQ[{a, b, c, d, e, f, A, C, m}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && !LtQ[m, -2^(-1)]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)*
sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*(a + b*Sin[e +
f*x])^m*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(m + n + 2))), x] + Simp[1/(b*d*(m + n + 2)) Int[(a + b*Sin[e +
f*x])^m*(c + d*Sin[e + f*x])^n*Simp[A*b*d*(m + n + 2) + C*(a*c*m + b*d*(n + 1)) + (b*B*d*(m + n + 2) - b*c*C*(
2*m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[
a^2 - b^2, 0] && !LtQ[m, -2^(-1)] && NeQ[m + n + 2, 0]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (C_.)*
sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(
n + 1)/(d*f*(m + n + 2))), x] + Simp[1/(b*d*(m + n + 2)) Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^n*S
imp[A*b*d*(m + n + 2) + C*(a*c*m + b*d*(n + 1)) - b*c*C*(2*m + 1)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c,
d, e, f, A, C, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && !LtQ[m, -2^(-1)] && NeQ[m + n + 2, 0]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(a*A - b*B + a*C)*Cos[e + f*x]*(a
+ b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n + 1)/(f*(b*c - a*d)*(2*m + 1))), x] + Simp[1/(b*(b*c - a*d)*(2*m
+ 1)) Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[A*(a*c*(m + 1) - b*d*(2*m + n + 2)) + B*
(b*c*m + a*d*(n + 1)) - C*(a*c*m + b*d*(n + 1)) + (d*(a*A - b*B)*(m + n + 2) + C*(b*c*(2*m + 1) - a*d*(m - n -
1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b
^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[a*(A + C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x
])^(n + 1)/(f*(b*c - a*d)*(2*m + 1))), x] + Simp[1/(b*(b*c - a*d)*(2*m + 1)) Int[(a + b*Sin[e + f*x])^(m + 1
)*(c + d*Sin[e + f*x])^n*Simp[A*(a*c*(m + 1) - b*d*(2*m + n + 2)) - C*(a*c*m + b*d*(n + 1)) + (a*A*d*(m + n +
2) + C*(b*c*(2*m + 1) - a*d*(m - n - 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, n}, x] &&
NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(c^2*C - B*c*d + A*d^2))*Cos[e
+ f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2))), x] + Simp[1/(b*d*(n +
1)*(c^2 - d^2)) Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(a*d*m + b*c*(n + 1)) + (c*
C - B*d)*(a*c*m + b*d*(n + 1)) + b*(d*(B*c - A*d)*(m + n + 2) - C*(c^2*(m + 1) + d^2*(n + 1)))*Sin[e + f*x], x
], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d
^2, 0] && !LtQ[m, -2^(-1)] && (LtQ[n, -1] || EqQ[m + n + 2, 0])
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(c^2*C + A*d^2))*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Si
n[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2))), x] + Simp[1/(b*d*(n + 1)*(c^2 - d^2)) Int[(a + b*Sin[e + f*x
])^m*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(a*d*m + b*c*(n + 1)) + c*C*(a*c*m + b*d*(n + 1)) - b*(A*d^2*(m + n
+ 2) + C*(c^2*(m + 1) + d^2*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, m}, x] && Ne
Q[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && !LtQ[m, -2^(-1)] && (LtQ[n, -1] || EqQ[m + n + 2
, 0])
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)*
sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*(a + b*Sin[e +
f*x])^m*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(m + n + 2))), x] + Simp[1/(b*d*(m + n + 2)) Int[(a + b*Sin[e +
f*x])^m*(c + d*Sin[e + f*x])^n*Simp[A*b*d*(m + n + 2) + C*(a*c*m + b*d*(n + 1)) + (C*(a*d*m - b*c*(m + 1)) + b
*B*d*(m + n + 2))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m, n}, x] && NeQ[b*c - a*d, 0]
&& EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && !LtQ[m, -2^(-1)] && NeQ[m + n + 2, 0]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (C_.)*
sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(
n + 1)/(d*f*(m + n + 2))), x] + Simp[1/(b*d*(m + n + 2)) Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^n*S
imp[A*b*d*(m + n + 2) + C*(a*c*m + b*d*(n + 1)) + C*(a*d*m - b*c*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a
, b, c, d, e, f, A, C, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && !LtQ[m, -2
^(-1)] && NeQ[m + n + 2, 0]
-
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(c^2*C - B*c*d + A*d^2))*Cos[e
+ f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2))), x] + Simp[1/(d*(n + 1)
*(c^2 - d^2)) Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(b*d*m + a*c*(n + 1)) +
(c*C - B*d)*(b*c*m + a*d*(n + 1)) - (d*(A*(a*d*(n + 2) - b*c*(n + 1)) + B*(b*d*(n + 1) - a*c*(n + 2))) - C*(b
*c*d*(n + 1) - a*(c^2 + d^2*(n + 1))))*Sin[e + f*x] + b*(d*(B*c - A*d)*(m + n + 2) - C*(c^2*(m + 1) + d^2*(n +
1)))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^
2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 0] && LtQ[n, -1]
-
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(c^2*C + A*d^2))*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Si
n[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2))), x] + Simp[1/(d*(n + 1)*(c^2 - d^2)) Int[(a + b*Sin[e + f*x])
^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(b*d*m + a*c*(n + 1)) + c*C*(b*c*m + a*d*(n + 1)) - (A*d*(a*d*(
n + 2) - b*c*(n + 1)) - C*(b*c*d*(n + 1) - a*(c^2 + d^2*(n + 1))))*Sin[e + f*x] - b*(A*d^2*(m + n + 2) + C*(c^
2*(m + 1) + d^2*(n + 1)))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C}, x] && NeQ[b*c - a*d, 0
] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 0] && LtQ[n, -1]
-
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)
*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*(a + b*Sin[e
+ f*x])^m*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(m + n + 2))), x] + Simp[1/(d*(m + n + 2)) Int[(a + b*Sin[e + f
*x])^(m - 1)*(c + d*Sin[e + f*x])^n*Simp[a*A*d*(m + n + 2) + C*(b*c*m + a*d*(n + 1)) + (d*(A*b + a*B)*(m + n +
2) - C*(a*c - b*d*(m + n + 1)))*Sin[e + f*x] + (C*(a*d*m - b*c*(m + 1)) + b*B*d*(m + n + 2))*Sin[e + f*x]^2,
x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 -
d^2, 0] && GtQ[m, 0] && !(IGtQ[n, 0] && ( !IntegerQ[m] || (EqQ[a, 0] && NeQ[c, 0])))
-
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (C_.)
*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^
(n + 1)/(d*f*(m + n + 2))), x] + Simp[1/(d*(m + n + 2)) Int[(a + b*Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x]
)^n*Simp[a*A*d*(m + n + 2) + C*(b*c*m + a*d*(n + 1)) + (A*b*d*(m + n + 2) - C*(a*c - b*d*(m + n + 1)))*Sin[e +
f*x] + C*(a*d*m - b*c*(m + 1))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, n}, x] && NeQ[b*c
- a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 0] && !(IGtQ[n, 0] && ( !IntegerQ[m] || (EqQ[a
, 0] && NeQ[c, 0])))
-
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x
_)]]*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)), x_Symbol] :> Simp[C/(b*d) Int[Sqrt[d*Sin[e + f*x]]/Sqrt[
a + b*Sin[e + f*x]], x], x] + Simp[1/b Int[(A*b + (b*B - a*C)*Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt
[d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, d, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0]
-
Int[((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(d_.)*sin[(e_.) + (f_.)*(x_)]]*((a_) + (b_.)*sin[(e_.) + (
f_.)*(x_)])^(3/2)), x_Symbol] :> Simp[C/(b*d) Int[Sqrt[d*Sin[e + f*x]]/Sqrt[a + b*Sin[e + f*x]], x], x] + Si
mp[1/b Int[(A*b - a*C*Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b
, d, e, f, A, C}, x] && NeQ[a^2 - b^2, 0]
-
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(((a_.) + (b_.)*sin[(e_.) + (f_.
)*(x_)])^(3/2)*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[C/b^2 Int[Sqrt[a + b*Sin[e +
f*x]]/Sqrt[c + d*Sin[e + f*x]], x], x] + Simp[1/b^2 Int[(A*b^2 - a^2*C + b*(b*B - 2*a*C)*Sin[e + f*x])/((a +
b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c -
a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
-
Int[((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(3/2)*Sqrt[(c_.) + (d_.
)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[C/b^2 Int[Sqrt[a + b*Sin[e + f*x]]/Sqrt[c + d*Sin[e + f*x]],
x], x] + Simp[1/b^2 Int[(A*b^2 - a^2*C - 2*a*b*C*Sin[e + f*x])/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin[e
+ f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 -
d^2, 0]
-
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e
+ f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2))), x] + S
imp[1/((m + 1)*(b*c - a*d)*(a^2 - b^2)) Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)
*(b*c - a*d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - a*b*B + a^2*C) + (m + 1)*
(b*c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x]
/; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&
LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] && !IntegerQ[n]) || !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n]
&& !IntegerQ[m]) || EqQ[a, 0])))
-
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 + a^2*C))*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1)*((c
+ d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^2 - b^2))
Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[a*(m + 1)*(b*c - a*d)*(A + C) + d*(A*b^2 + a^2*
C)*(m + n + 2) - (c*(A*b^2 + a^2*C) + b*(m + 1)*(b*c - a*d)*(A + C))*Sin[e + f*x] - d*(A*b^2 + a^2*C)*(m + n +
3)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2,
0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] && !IntegerQ[n]) || !(IntegerQ[2*n] &&
LtQ[n, -1] && ((IntegerQ[n] && !IntegerQ[m]) || EqQ[a, 0])))
-
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(((a_) + (b_.)*sin[(e_.) + (f_.)
*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Simp[C*(x/(b*d)), x] + (Simp[(A*b^2 - a*b*B + a
^2*C)/(b*(b*c - a*d)) Int[1/(a + b*Sin[e + f*x]), x], x] - Simp[(c^2*C - B*c*d + A*d^2)/(d*(b*c - a*d)) In
t[1/(c + d*Sin[e + f*x]), x], x]) /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b
^2, 0] && NeQ[c^2 - d^2, 0]
-
Int[((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.)
+ (f_.)*(x_)])), x_Symbol] :> Simp[C*(x/(b*d)), x] + (Simp[(A*b^2 + a^2*C)/(b*(b*c - a*d)) Int[1/(a + b*Sin
[e + f*x]), x], x] - Simp[(c^2*C + A*d^2)/(d*(b*c - a*d)) Int[1/(c + d*Sin[e + f*x]), x], x]) /; FreeQ[{a, b
, c, d, e, f, A, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
-
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) +
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Simp[C/(b*d) Int[Sqrt[a + b*Sin[e + f*x]
], x], x] - Simp[1/(b*d) Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[e + f*x], x]/(Sqrt[a + b*Sin[e
+ f*x]]*(c + d*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^
2 - b^2, 0] && NeQ[c^2 - d^2, 0]
-
Int[((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[
(e_.) + (f_.)*(x_)])), x_Symbol] :> Simp[C/(b*d) Int[Sqrt[a + b*Sin[e + f*x]], x], x] - Simp[1/(b*d) Int[S
imp[a*c*C - A*b*d + (b*c*C + a*C*d)*Sin[e + f*x], x]/(Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])), x], x] /
; FreeQ[{a, b, c, d, e, f, A, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
-
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) +
(f_.)*(x_)]]*Sqrt[(c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*(Sqrt[c + d*Sin[
e + f*x]]/(d*f*Sqrt[a + b*Sin[e + f*x]])), x] + Simp[1/(2*d) Int[(1/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*S
in[e + f*x]]))*Simp[2*a*A*d - C*(b*c - a*d) - 2*(a*c*C - d*(A*b + a*B))*Sin[e + f*x] + (2*b*B*d - C*(b*c + a*d
))*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2,
0] && NeQ[c^2 - d^2, 0]
-
Int[((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_) + (d_.)*s
in[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[(-C)*Cos[e + f*x]*(Sqrt[c + d*Sin[e + f*x]]/(d*f*Sqrt[a + b*Sin[e
+ f*x]])), x] + Simp[1/(2*d) Int[(1/((a + b*Sin[e + f*x])^(3/2)*Sqrt[c + d*Sin[e + f*x]]))*Simp[2*a*A*d - C*
(b*c - a*d) - 2*(a*c*C - A*b*d)*Sin[e + f*x] - C*(b*c + a*d)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d,
e, f, A, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
-
Int[(((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x
_)]^2))/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b*B - a*C)/b^2 Int[(d*Sin[e + f*x])^n, x]
, x] + (Simp[(A*b^2 - a*b*B + a^2*C)/b^2 Int[(d*Sin[e + f*x])^n/(a + b*Sin[e + f*x]), x], x] + Simp[C/(b*d)
Int[(d*Sin[e + f*x])^(n + 1), x], x]) /; FreeQ[{a, b, d, e, f, A, B, C, n}, x] && NeQ[a^2 - b^2, 0]
-
Int[(((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2))/((a_) + (b_.)*sin[(e_.)
+ (f_.)*(x_)]), x_Symbol] :> Simp[(-a)*(C/b^2) Int[(d*Sin[e + f*x])^n, x], x] + (Simp[(A*b^2 + a^2*C)/b^2
Int[(d*Sin[e + f*x])^n/(a + b*Sin[e + f*x]), x], x] + Simp[C/(b*d) Int[(d*Sin[e + f*x])^(n + 1), x], x]) /;
FreeQ[{a, b, d, e, f, A, C, n}, x] && NeQ[a^2 - b^2, 0]
-
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Unintegrable[(a + b*Sin[e + f*x])^m*(c
+ d*Sin[e + f*x])^n*(A + B*Sin[e + f*x] + C*Sin[e + f*x]^2), x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m, n}, x
] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
-
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*s
in[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Unintegrable[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^n*(A + C*Sin[
e + f*x]^2), x] /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c
^2 - d^2, 0]
-
Int[((b_.)*sin[(e_.) + (f_.)*(x_)]^(p_))^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)*sin
[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(b*Sin[e + f*x]^p)^m/(b*Sin[e + f*x
])^(m*p) Int[(b*Sin[e + f*x])^(m*p)*(c + d*Sin[e + f*x])^n*(A + B*Sin[e + f*x] + C*Sin[e + f*x]^2), x], x] /
; FreeQ[{b, c, d, e, f, A, B, C, m, n, p}, x] && !IntegerQ[m]
-
Int[(cos[(e_.) + (f_.)*(x_)]^(p_)*(b_.))^(m_)*((A_.) + cos[(e_.) + (f_.)*(x_)]*(B_.) + cos[(e_.) + (f_.)*(x_)]
^2*(C_.))*((c_.) + cos[(e_.) + (f_.)*(x_)]*(d_.))^(n_.), x_Symbol] :> Simp[(b*Cos[e + f*x]^p)^m/(b*Cos[e + f*x
])^(m*p) Int[(b*Cos[e + f*x])^(m*p)*(c + d*Cos[e + f*x])^n*(A + B*Cos[e + f*x] + C*Cos[e + f*x]^2), x], x] /
; FreeQ[{b, c, d, e, f, A, B, C, m, n, p}, x] && !IntegerQ[m]
-
Int[((b_.)*sin[(e_.) + (f_.)*(x_)]^(p_))^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (C_.)*sin
[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(b*Sin[e + f*x]^p)^m/(b*Sin[e + f*x])^(m*p) Int[(b*Sin[e + f*x])^
(m*p)*(c + d*Sin[e + f*x])^n*(A + C*Sin[e + f*x]^2), x], x] /; FreeQ[{b, c, d, e, f, A, C, m, n, p}, x] && !I
ntegerQ[m]
-
Int[(cos[(e_.) + (f_.)*(x_)]^(p_)*(b_.))^(m_)*((A_.) + cos[(e_.) + (f_.)*(x_)]^2*(C_.))*((c_.) + cos[(e_.) + (
f_.)*(x_)]*(d_.))^(n_.), x_Symbol] :> Simp[(b*Cos[e + f*x]^p)^m/(b*Cos[e + f*x])^(m*p) Int[(b*Cos[e + f*x])^
(m*p)*(c + d*Cos[e + f*x])^n*(A + C*Cos[e + f*x]^2), x], x] /; FreeQ[{b, c, d, e, f, A, C, m, n, p}, x] && !I
ntegerQ[m]
-
Int[(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[a*((a*Cos[c + d*x]
+ b*Sin[c + d*x])^n/(b*d*n)), x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[a^2 + b^2, 0]
-
Int[(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[-d^(-1) Subst[In
t[(a^2 + b^2 - x^2)^((n - 1)/2), x], x, b*Cos[c + d*x] - a*Sin[c + d*x]], x] /; FreeQ[{a, b, c, d}, x] && NeQ[
a^2 + b^2, 0] && IGtQ[(n - 1)/2, 0]
-
Int[(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-(b*Cos[c + d*x]
- a*Sin[c + d*x]))*((a*Cos[c + d*x] + b*Sin[c + d*x])^(n - 1)/(d*n)), x] + Simp[(n - 1)*((a^2 + b^2)/n) Int[
(a*Cos[c + d*x] + b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b^2, 0] && !IntegerQ
[(n - 1)/2] && GtQ[n, 1]
-
Int[(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> Simp[-d^(-1) Subst[In
t[1/(a^2 + b^2 - x^2), x], x, b*Cos[c + d*x] - a*Sin[c + d*x]], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b^2,
0]
-
Int[(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-2), x_Symbol] :> Simp[Sin[c + d*x]/(a*d*
(a*Cos[c + d*x] + b*Sin[c + d*x])), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b^2, 0]
-
Int[(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Cos[c + d*x] -
a*Sin[c + d*x])*((a*Cos[c + d*x] + b*Sin[c + d*x])^(n + 1)/(d*(n + 1)*(a^2 + b^2))), x] + Simp[(n + 2)/((n + 1
)*(a^2 + b^2)) Int[(a*Cos[c + d*x] + b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 +
b^2, 0] && LtQ[n, -1] && NeQ[n, -2]
-
Int[(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(a^2 + b^2)^(n/2)
Int[Cos[c + d*x - ArcTan[a, b]]^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && !(GeQ[n, 1] || LeQ[n, -1]) && GtQ
[a^2 + b^2, 0]
-
Int[(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(a*Cos[c + d*x] +
b*Sin[c + d*x])^n/((a*Cos[c + d*x] + b*Sin[c + d*x])/Sqrt[a^2 + b^2])^n Int[Cos[c + d*x - ArcTan[a, b]]^n, x
], x] /; FreeQ[{a, b, c, d, n}, x] && !(GeQ[n, 1] || LeQ[n, -1]) && !(GtQ[a^2 + b^2, 0] || EqQ[a^2 + b^2, 0]
)
-
Int[sin[(c_.) + (d_.)*(x_)]^(m_)*(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbo
l] :> Simp[(-a)*((a*Cos[c + d*x] + b*Sin[c + d*x])^(n - 1)/(d*(n - 1)*Sin[c + d*x]^(n - 1))), x] + Simp[2*b
Int[(a*Cos[c + d*x] + b*Sin[c + d*x])^(n - 1)/Sin[c + d*x]^(n - 1), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[m
+ n, 0] && EqQ[a^2 + b^2, 0] && GtQ[n, 1]
-
Int[cos[(c_.) + (d_.)*(x_)]^(m_)*(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbo
l] :> Simp[b*((a*Cos[c + d*x] + b*Sin[c + d*x])^(n - 1)/(d*(n - 1)*Cos[c + d*x]^(n - 1))), x] + Simp[2*a Int
[(a*Cos[c + d*x] + b*Sin[c + d*x])^(n - 1)/Cos[c + d*x]^(n - 1), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[m + n
, 0] && EqQ[a^2 + b^2, 0] && GtQ[n, 1]
-
Int[sin[(c_.) + (d_.)*(x_)]^(m_.)*(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symb
ol] :> Simp[a*((a*Cos[c + d*x] + b*Sin[c + d*x])^n/(2*b*d*n*Sin[c + d*x]^n)), x] + Simp[1/(2*b) Int[(a*Cos[c
+ d*x] + b*Sin[c + d*x])^(n + 1)/Sin[c + d*x]^(n + 1), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[m + n, 0] && E
qQ[a^2 + b^2, 0] && LtQ[n, 0]
-
Int[cos[(c_.) + (d_.)*(x_)]^(m_.)*(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symb
ol] :> Simp[(-b)*((a*Cos[c + d*x] + b*Sin[c + d*x])^n/(2*a*d*n*Cos[c + d*x]^n)), x] + Simp[1/(2*a) Int[(a*Co
s[c + d*x] + b*Sin[c + d*x])^(n + 1)/Cos[c + d*x]^(n + 1), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[m + n, 0] &
& EqQ[a^2 + b^2, 0] && LtQ[n, 0]
-
Int[sin[(c_.) + (d_.)*(x_)]^(m_.)*(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symb
ol] :> Simp[a*((a*Cos[c + d*x] + b*Sin[c + d*x])^n/(2*b*d*n*Sin[c + d*x]^n))*Hypergeometric2F1[1, n, n + 1, (b
+ a*Cot[c + d*x])/(2*b)], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[m + n, 0] && EqQ[a^2 + b^2, 0] && !IntegerQ
[n]
-
Int[cos[(c_.) + (d_.)*(x_)]^(m_.)*(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symb
ol] :> Simp[(-b)*((a*Cos[c + d*x] + b*Sin[c + d*x])^n/(2*a*d*n*Cos[c + d*x]^n))*Hypergeometric2F1[1, n, n + 1,
(a + b*Tan[c + d*x])/(2*a)], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[m + n, 0] && EqQ[a^2 + b^2, 0] && !Integ
erQ[n]
-
Int[sin[(c_.) + (d_.)*(x_)]^(m_)*(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_.), x_Symb
ol] :> Int[(b + a*Cot[c + d*x])^n, x] /; FreeQ[{a, b, c, d}, x] && EqQ[m + n, 0] && IntegerQ[n] && NeQ[a^2 + b
^2, 0]
-
Int[cos[(c_.) + (d_.)*(x_)]^(m_)*(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_.), x_Symb
ol] :> Int[(a + b*Tan[c + d*x])^n, x] /; FreeQ[{a, b, c, d}, x] && EqQ[m + n, 0] && IntegerQ[n] && NeQ[a^2 + b
^2, 0]
-
Int[sin[(c_.) + (d_.)*(x_)]^(m_.)*(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symb
ol] :> Simp[1/d Subst[Int[x^m*((a + b*x)^n/(1 + x^2)^((m + n + 2)/2)), x], x, Tan[c + d*x]], x] /; FreeQ[{a,
b, c, d}, x] && IntegerQ[n] && IntegerQ[(m + n)/2] && NeQ[n, -1] && !(GtQ[n, 0] && GtQ[m, 1])
-
Int[cos[(c_.) + (d_.)*(x_)]^(m_.)*(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symb
ol] :> Simp[-d^(-1) Subst[Int[x^m*((b + a*x)^n/(1 + x^2)^((m + n + 2)/2)), x], x, Cot[c + d*x]], x] /; FreeQ
[{a, b, c, d}, x] && IntegerQ[n] && IntegerQ[(m + n)/2] && NeQ[n, -1] && !(GtQ[n, 0] && GtQ[m, 1])
-
Int[sin[(c_.) + (d_.)*(x_)]^(m_.)*(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_.), x_Sym
bol] :> Int[ExpandTrig[sin[c + d*x]^m*(a*cos[c + d*x] + b*sin[c + d*x])^n, x], x] /; FreeQ[{a, b, c, d}, x] &&
IntegerQ[m] && IGtQ[n, 0]
-
Int[cos[(c_.) + (d_.)*(x_)]^(m_.)*(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_.), x_Sym
bol] :> Int[ExpandTrig[cos[c + d*x]^m*(a*cos[c + d*x] + b*sin[c + d*x])^n, x], x] /; FreeQ[{a, b, c, d}, x] &&
IntegerQ[m] && IGtQ[n, 0]
-
Int[sin[(c_.) + (d_.)*(x_)]^(m_.)*(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symb
ol] :> Simp[a^n*b^n Int[Sin[c + d*x]^m/(b*Cos[c + d*x] + a*Sin[c + d*x])^n, x], x] /; FreeQ[{a, b, c, d, m},
x] && EqQ[a^2 + b^2, 0] && ILtQ[n, 0]
-
Int[cos[(c_.) + (d_.)*(x_)]^(m_.)*(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symb
ol] :> Simp[a^n*b^n Int[Cos[c + d*x]^m/(b*Cos[c + d*x] + a*Sin[c + d*x])^n, x], x] /; FreeQ[{a, b, c, d, m},
x] && EqQ[a^2 + b^2, 0] && ILtQ[n, 0]
-
Int[(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_)/sin[(c_.) + (d_.)*(x_)], x_Symbol] :>
Simp[-(a*Cos[c + d*x] + b*Sin[c + d*x])^(n + 1)/(a*d*(n + 1)), x] + (Simp[1/a^2 Int[(a*Cos[c + d*x] + b*Sin
[c + d*x])^(n + 2)/Sin[c + d*x], x], x] - Simp[b/a^2 Int[(a*Cos[c + d*x] + b*Sin[c + d*x])^(n + 1), x], x])
/; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b^2, 0] && LtQ[n, -1]
-
Int[(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_)/cos[(c_.) + (d_.)*(x_)], x_Symbol] :>
Simp[(a*Cos[c + d*x] + b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1)), x] + (Simp[1/b^2 Int[(a*Cos[c + d*x] + b*Sin[
c + d*x])^(n + 2)/Cos[c + d*x], x], x] - Simp[a/b^2 Int[(a*Cos[c + d*x] + b*Sin[c + d*x])^(n + 1), x], x]) /
; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b^2, 0] && LtQ[n, -1]
-
Int[sin[(c_.) + (d_.)*(x_)]^(m_)*(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbo
l] :> Simp[-(a^2 + b^2) Int[Sin[c + d*x]^(m + 2)*(a*Cos[c + d*x] + b*Sin[c + d*x])^(n - 2), x], x] + (Simp[a
^2 Int[Sin[c + d*x]^m*(a*Cos[c + d*x] + b*Sin[c + d*x])^(n - 2), x], x] + Simp[2*b Int[Sin[c + d*x]^(m + 1
)*(a*Cos[c + d*x] + b*Sin[c + d*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b^2, 0] && GtQ[n,
1] && LtQ[m, -1]
-
Int[cos[(c_.) + (d_.)*(x_)]^(m_)*(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbo
l] :> Simp[-(a^2 + b^2) Int[Cos[c + d*x]^(m + 2)*(a*Cos[c + d*x] + b*Sin[c + d*x])^(n - 2), x], x] + (Simp[2
*a Int[Cos[c + d*x]^(m + 1)*(a*Cos[c + d*x] + b*Sin[c + d*x])^(n - 1), x], x] + Simp[b^2 Int[Cos[c + d*x]^
m*(a*Cos[c + d*x] + b*Sin[c + d*x])^(n - 2), x], x]) /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b^2, 0] && GtQ[n,
1] && LtQ[m, -1]
-
Int[sin[(c_.) + (d_.)*(x_)]/(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)]), x_Symbol] :> Simp
[b*(x/(a^2 + b^2)), x] - Simp[a/(a^2 + b^2) Int[(b*Cos[c + d*x] - a*Sin[c + d*x])/(a*Cos[c + d*x] + b*Sin[c
+ d*x]), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b^2, 0]
-
Int[cos[(c_.) + (d_.)*(x_)]/(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)]), x_Symbol] :> Simp
[a*(x/(a^2 + b^2)), x] + Simp[b/(a^2 + b^2) Int[(b*Cos[c + d*x] - a*Sin[c + d*x])/(a*Cos[c + d*x] + b*Sin[c
+ d*x]), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b^2, 0]
-
Int[sin[(c_.) + (d_.)*(x_)]^(m_)/(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)]), x_Symbol] :>
Simp[(-a)*(Sin[c + d*x]^(m - 1)/(d*(a^2 + b^2)*(m - 1))), x] + (Simp[a^2/(a^2 + b^2) Int[Sin[c + d*x]^(m -
2)/(a*Cos[c + d*x] + b*Sin[c + d*x]), x], x] + Simp[b/(a^2 + b^2) Int[Sin[c + d*x]^(m - 1), x], x]) /; FreeQ
[{a, b, c, d}, x] && NeQ[a^2 + b^2, 0] && GtQ[m, 1]
-
Int[cos[(c_.) + (d_.)*(x_)]^(m_)/(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)]), x_Symbol] :>
Simp[b*(Cos[c + d*x]^(m - 1)/(d*(a^2 + b^2)*(m - 1))), x] + (Simp[a/(a^2 + b^2) Int[Cos[c + d*x]^(m - 1), x
], x] + Simp[b^2/(a^2 + b^2) Int[Cos[c + d*x]^(m - 2)/(a*Cos[c + d*x] + b*Sin[c + d*x]), x], x]) /; FreeQ[{a
, b, c, d}, x] && NeQ[a^2 + b^2, 0] && GtQ[m, 1]
-
Int[1/(sin[(c_.) + (d_.)*(x_)]*(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)])), x_Symbol] :>
Simp[1/a Int[Cot[c + d*x], x], x] - Simp[1/a Int[(b*Cos[c + d*x] - a*Sin[c + d*x])/(a*Cos[c + d*x] + b*Sin
[c + d*x]), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b^2, 0]
-
Int[1/(cos[(c_.) + (d_.)*(x_)]*(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)])), x_Symbol] :>
Simp[1/b Int[Tan[c + d*x], x], x] + Simp[1/b Int[(b*Cos[c + d*x] - a*Sin[c + d*x])/(a*Cos[c + d*x] + b*Sin
[c + d*x]), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b^2, 0]
-
Int[sin[(c_.) + (d_.)*(x_)]^(m_)/(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)]), x_Symbol] :>
Simp[Sin[c + d*x]^(m + 1)/(a*d*(m + 1)), x] + (-Simp[b/a^2 Int[Sin[c + d*x]^(m + 1), x], x] + Simp[(a^2 + b
^2)/a^2 Int[Sin[c + d*x]^(m + 2)/(a*Cos[c + d*x] + b*Sin[c + d*x]), x], x]) /; FreeQ[{a, b, c, d}, x] && NeQ
[a^2 + b^2, 0] && LtQ[m, -1]
-
Int[cos[(c_.) + (d_.)*(x_)]^(m_)/(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)]), x_Symbol] :>
Simp[-Cos[c + d*x]^(m + 1)/(b*d*(m + 1)), x] + (-Simp[a/b^2 Int[Cos[c + d*x]^(m + 1), x], x] + Simp[(a^2 +
b^2)/b^2 Int[Cos[c + d*x]^(m + 2)/(a*Cos[c + d*x] + b*Sin[c + d*x]), x], x]) /; FreeQ[{a, b, c, d}, x] && Ne
Q[a^2 + b^2, 0] && LtQ[m, -1]
-
Int[sin[(c_.) + (d_.)*(x_)]^(m_)*(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbo
l] :> Simp[(a^2 + b^2)/a^2 Int[Sin[c + d*x]^(m + 2)*(a*Cos[c + d*x] + b*Sin[c + d*x])^n, x], x] + (Simp[1/a^
2 Int[Sin[c + d*x]^m*(a*Cos[c + d*x] + b*Sin[c + d*x])^(n + 2), x], x] - Simp[2*(b/a^2) Int[Sin[c + d*x]^(
m + 1)*(a*Cos[c + d*x] + b*Sin[c + d*x])^(n + 1), x], x]) /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b^2, 0] && Lt
Q[n, -1] && LtQ[m, -1]
-
Int[cos[(c_.) + (d_.)*(x_)]^(m_)*(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbo
l] :> Simp[(a^2 + b^2)/b^2 Int[Cos[c + d*x]^(m + 2)*(a*Cos[c + d*x] + b*Sin[c + d*x])^n, x], x] + (Simp[1/b^
2 Int[Cos[c + d*x]^m*(a*Cos[c + d*x] + b*Sin[c + d*x])^(n + 2), x], x] - Simp[2*(a/b^2) Int[Cos[c + d*x]^(
m + 1)*(a*Cos[c + d*x] + b*Sin[c + d*x])^(n + 1), x], x]) /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b^2, 0] && Lt
Q[n, -1] && LtQ[m, -1]
-
Int[cos[(c_.) + (d_.)*(x_)]^(m_.)*sin[(c_.) + (d_.)*(x_)]^(n_.)*(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_
.) + (d_.)*(x_)])^(p_.), x_Symbol] :> Int[ExpandTrig[cos[c + d*x]^m*sin[c + d*x]^n*(a*cos[c + d*x] + b*sin[c +
d*x])^p, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && IGtQ[p, 0]
-
Int[cos[(c_.) + (d_.)*(x_)]^(m_.)*sin[(c_.) + (d_.)*(x_)]^(n_.)*(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_
.) + (d_.)*(x_)])^(p_), x_Symbol] :> Simp[a^p*b^p Int[(Cos[c + d*x]^m*Sin[c + d*x]^n)/(b*Cos[c + d*x] + a*Si
n[c + d*x])^p, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && EqQ[a^2 + b^2, 0] && ILtQ[p, 0]
-
Int[(cos[(c_.) + (d_.)*(x_)]^(m_.)*sin[(c_.) + (d_.)*(x_)]^(n_.))/(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(
c_.) + (d_.)*(x_)]), x_Symbol] :> Simp[b/(a^2 + b^2) Int[Cos[c + d*x]^m*Sin[c + d*x]^(n - 1), x], x] + (Simp
[a/(a^2 + b^2) Int[Cos[c + d*x]^(m - 1)*Sin[c + d*x]^n, x], x] - Simp[a*(b/(a^2 + b^2)) Int[Cos[c + d*x]^(
m - 1)*(Sin[c + d*x]^(n - 1)/(a*Cos[c + d*x] + b*Sin[c + d*x])), x], x]) /; FreeQ[{a, b, c, d}, x] && NeQ[a^2
+ b^2, 0] && IGtQ[m, 0] && IGtQ[n, 0]
-
Int[(cos[(c_.) + (d_.)*(x_)]^(m_.)*sin[(c_.) + (d_.)*(x_)]^(n_.))/(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(
c_.) + (d_.)*(x_)]), x_Symbol] :> Int[ExpandTrig[cos[c + d*x]^m*(sin[c + d*x]^n/(a*cos[c + d*x] + b*sin[c + d*
x])), x], x] /; FreeQ[{a, b, c, d, m, n}, x] && IntegersQ[m, n]
-
Int[cos[(c_.) + (d_.)*(x_)]^(m_.)*sin[(c_.) + (d_.)*(x_)]^(n_.)*(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_
.) + (d_.)*(x_)])^(p_), x_Symbol] :> Simp[b/(a^2 + b^2) Int[Cos[c + d*x]^m*Sin[c + d*x]^(n - 1)*(a*Cos[c + d
*x] + b*Sin[c + d*x])^(p + 1), x], x] + (Simp[a/(a^2 + b^2) Int[Cos[c + d*x]^(m - 1)*Sin[c + d*x]^n*(a*Cos[c
+ d*x] + b*Sin[c + d*x])^(p + 1), x], x] - Simp[a*(b/(a^2 + b^2)) Int[Cos[c + d*x]^(m - 1)*Sin[c + d*x]^(n
- 1)*(a*Cos[c + d*x] + b*Sin[c + d*x])^p, x], x]) /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b^2, 0] && IGtQ[m, 0]
&& IGtQ[n, 0] && ILtQ[p, 0]
-
Int[Sqrt[cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)]], x_Symbol] :> Simp[-2*((c*Cos[d
+ e*x] - b*Sin[d + e*x])/(e*Sqrt[a + b*Cos[d + e*x] + c*Sin[d + e*x]])), x] /; FreeQ[{a, b, c, d, e}, x] && E
qQ[a^2 - b^2 - c^2, 0]
-
Int[(cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)])^(n_), x_Symbol] :> Simp[(-(c*Cos[d
+ e*x] - b*Sin[d + e*x]))*((a + b*Cos[d + e*x] + c*Sin[d + e*x])^(n - 1)/(e*n)), x] + Simp[a*((2*n - 1)/n) I
nt[(a + b*Cos[d + e*x] + c*Sin[d + e*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[a^2 - b^2 - c^2,
0] && GtQ[n, 0]
-
Int[(cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)])^(-1), x_Symbol] :> Simp[-(c - a*Sin
[d + e*x])/(c*e*(c*Cos[d + e*x] - b*Sin[d + e*x])), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[a^2 - b^2 - c^2, 0]
-
Int[1/Sqrt[cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)]], x_Symbol] :> Int[1/Sqrt[a +
Sqrt[b^2 + c^2]*Cos[d + e*x - ArcTan[b, c]]], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[a^2 - b^2 - c^2, 0]
-
Int[(cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)])^(n_), x_Symbol] :> Simp[(c*Cos[d +
e*x] - b*Sin[d + e*x])*((a + b*Cos[d + e*x] + c*Sin[d + e*x])^n/(a*e*(2*n + 1))), x] + Simp[(n + 1)/(a*(2*n +
1)) Int[(a + b*Cos[d + e*x] + c*Sin[d + e*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[a^2 - b^2
- c^2, 0] && LtQ[n, -1]
-
Int[Sqrt[cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)]], x_Symbol] :> Simp[b/(c*e) Su
bst[Int[Sqrt[a + x]/x, x], x, b*Cos[d + e*x] + c*Sin[d + e*x]], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[b^2 + c
^2, 0]
-
Int[Sqrt[cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)]], x_Symbol] :> Int[Sqrt[a + Sqrt
[b^2 + c^2]*Cos[d + e*x - ArcTan[b, c]]], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 + c^2, 0] && GtQ[a + Sqrt
[b^2 + c^2], 0]
-
Int[Sqrt[cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)]], x_Symbol] :> Simp[Sqrt[a + b*C
os[d + e*x] + c*Sin[d + e*x]]/Sqrt[(a + b*Cos[d + e*x] + c*Sin[d + e*x])/(a + Sqrt[b^2 + c^2])] Int[Sqrt[a/(
a + Sqrt[b^2 + c^2]) + (Sqrt[b^2 + c^2]/(a + Sqrt[b^2 + c^2]))*Cos[d + e*x - ArcTan[b, c]]], x], x] /; FreeQ[{
a, b, c, d, e}, x] && NeQ[a^2 - b^2 - c^2, 0] && NeQ[b^2 + c^2, 0] && !GtQ[a + Sqrt[b^2 + c^2], 0]
-
Int[(cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)])^(n_), x_Symbol] :> Simp[(-(c*Cos[d
+ e*x] - b*Sin[d + e*x]))*((a + b*Cos[d + e*x] + c*Sin[d + e*x])^(n - 1)/(e*n)), x] + Simp[1/n Int[Simp[n*a^
2 + (n - 1)*(b^2 + c^2) + a*b*(2*n - 1)*Cos[d + e*x] + a*c*(2*n - 1)*Sin[d + e*x], x]*(a + b*Cos[d + e*x] + c*
Sin[d + e*x])^(n - 2), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[a^2 - b^2 - c^2, 0] && GtQ[n, 1]
-
Int[(cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)])^(-1), x_Symbol] :> Module[{f = Free
Factors[Cot[(d + e*x)/2], x]}, Simp[-f/e Subst[Int[1/(a + c*f*x), x], x, Cot[(d + e*x)/2]/f], x]] /; FreeQ[{
a, b, c, d, e}, x] && EqQ[a + b, 0]
-
Int[(cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)])^(-1), x_Symbol] :> Module[{f = Free
Factors[Tan[(d + e*x)/2 + Pi/4], x]}, Simp[f/e Subst[Int[1/(a + b*f*x), x], x, Tan[(d + e*x)/2 + Pi/4]/f], x
]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[a + c, 0]
-
Int[(cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)])^(-1), x_Symbol] :> Module[{f = Free
Factors[Cot[(d + e*x)/2 + Pi/4], x]}, Simp[-f/e Subst[Int[1/(a + b*f*x), x], x, Cot[(d + e*x)/2 + Pi/4]/f],
x]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[a - c, 0] && NeQ[a - b, 0]
-
Int[(cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)])^(-1), x_Symbol] :> Module[{f = Free
Factors[Tan[(d + e*x)/2], x]}, Simp[2*(f/e) Subst[Int[1/(a + b + 2*c*f*x + (a - b)*f^2*x^2), x], x, Tan[(d +
e*x)/2]/f], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[a^2 - b^2 - c^2, 0]
-
Int[1/Sqrt[cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)]], x_Symbol] :> Simp[b/(c*e)
Subst[Int[1/(x*Sqrt[a + x]), x], x, b*Cos[d + e*x] + c*Sin[d + e*x]], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[b
^2 + c^2, 0]
-
Int[1/Sqrt[cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)]], x_Symbol] :> Int[1/Sqrt[a +
Sqrt[b^2 + c^2]*Cos[d + e*x - ArcTan[b, c]]], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 + c^2, 0] && GtQ[a +
Sqrt[b^2 + c^2], 0]
-
Int[1/Sqrt[cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)]], x_Symbol] :> Simp[Sqrt[(a +
b*Cos[d + e*x] + c*Sin[d + e*x])/(a + Sqrt[b^2 + c^2])]/Sqrt[a + b*Cos[d + e*x] + c*Sin[d + e*x]] Int[1/Sqrt
[a/(a + Sqrt[b^2 + c^2]) + (Sqrt[b^2 + c^2]/(a + Sqrt[b^2 + c^2]))*Cos[d + e*x - ArcTan[b, c]]], x], x] /; Fre
eQ[{a, b, c, d, e}, x] && NeQ[a^2 - b^2 - c^2, 0] && NeQ[b^2 + c^2, 0] && !GtQ[a + Sqrt[b^2 + c^2], 0]
-
Int[(cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)])^(-3/2), x_Symbol] :> Simp[2*((c*Cos
[d + e*x] - b*Sin[d + e*x])/(e*(a^2 - b^2 - c^2)*Sqrt[a + b*Cos[d + e*x] + c*Sin[d + e*x]])), x] + Simp[1/(a^2
- b^2 - c^2) Int[Sqrt[a + b*Cos[d + e*x] + c*Sin[d + e*x]], x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[a^2
- b^2 - c^2, 0]
-
Int[(cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)])^(n_), x_Symbol] :> Simp[((-c)*Cos[d
+ e*x] + b*Sin[d + e*x])*((a + b*Cos[d + e*x] + c*Sin[d + e*x])^(n + 1)/(e*(n + 1)*(a^2 - b^2 - c^2))), x] +
Simp[1/((n + 1)*(a^2 - b^2 - c^2)) Int[(a*(n + 1) - b*(n + 2)*Cos[d + e*x] - c*(n + 2)*Sin[d + e*x])*(a + b*
Cos[d + e*x] + c*Sin[d + e*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[a^2 - b^2 - c^2, 0] && LtQ[
n, -1] && NeQ[n, -3/2]
-
Int[((A_.) + cos[(d_.) + (e_.)*(x_)]*(B_.) + (C_.)*sin[(d_.) + (e_.)*(x_)])/(cos[(d_.) + (e_.)*(x_)]*(b_.) + (
a_) + (c_.)*sin[(d_.) + (e_.)*(x_)]), x_Symbol] :> Simp[(2*a*A - b*B - c*C)*(x/(2*a^2)), x] + (-Simp[(b*B + c*
C)*((b*Cos[d + e*x] - c*Sin[d + e*x])/(2*a*b*c*e)), x] + Simp[(a^2*(b*B - c*C) - 2*a*A*b^2 + b^2*(b*B + c*C))*
(Log[RemoveContent[a + b*Cos[d + e*x] + c*Sin[d + e*x], x]]/(2*a^2*b*c*e)), x]) /; FreeQ[{a, b, c, d, e, A, B,
C}, x] && EqQ[b^2 + c^2, 0]
-
Int[((A_.) + (C_.)*sin[(d_.) + (e_.)*(x_)])/(cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x
_)]), x_Symbol] :> Simp[(2*a*A - c*C)*(x/(2*a^2)), x] + (-Simp[C*(Cos[d + e*x]/(2*a*e)), x] + Simp[c*C*(Sin[d
+ e*x]/(2*a*b*e)), x] + Simp[((-a^2)*C + 2*a*c*A + b^2*C)*(Log[RemoveContent[a + b*Cos[d + e*x] + c*Sin[d + e*
x], x]]/(2*a^2*b*e)), x]) /; FreeQ[{a, b, c, d, e, A, C}, x] && EqQ[b^2 + c^2, 0]
-
Int[((A_.) + cos[(d_.) + (e_.)*(x_)]*(B_.))/(cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x
_)]), x_Symbol] :> Simp[(2*a*A - b*B)*(x/(2*a^2)), x] + (Simp[B*(Sin[d + e*x]/(2*a*e)), x] - Simp[b*B*(Cos[d +
e*x]/(2*a*c*e)), x] + Simp[(a^2*B - 2*a*b*A + b^2*B)*(Log[RemoveContent[a + b*Cos[d + e*x] + c*Sin[d + e*x],
x]]/(2*a^2*c*e)), x]) /; FreeQ[{a, b, c, d, e, A, B}, x] && EqQ[b^2 + c^2, 0]
-
Int[((A_.) + cos[(d_.) + (e_.)*(x_)]*(B_.) + (C_.)*sin[(d_.) + (e_.)*(x_)])/((a_.) + cos[(d_.) + (e_.)*(x_)]*(
b_.) + (c_.)*sin[(d_.) + (e_.)*(x_)]), x_Symbol] :> Simp[(b*B + c*C)*(x/(b^2 + c^2)), x] + Simp[(c*B - b*C)*(L
og[a + b*Cos[d + e*x] + c*Sin[d + e*x]]/(e*(b^2 + c^2))), x] /; FreeQ[{a, b, c, d, e, A, B, C}, x] && NeQ[b^2
+ c^2, 0] && EqQ[A*(b^2 + c^2) - a*(b*B + c*C), 0]
-
Int[((A_.) + (C_.)*sin[(d_.) + (e_.)*(x_)])/((a_.) + cos[(d_.) + (e_.)*(x_)]*(b_.) + (c_.)*sin[(d_.) + (e_.)*(
x_)]), x_Symbol] :> Simp[c*C*(x/(b^2 + c^2)), x] - Simp[b*C*(Log[a + b*Cos[d + e*x] + c*Sin[d + e*x]]/(e*(b^2
+ c^2))), x] /; FreeQ[{a, b, c, d, e, A, C}, x] && NeQ[b^2 + c^2, 0] && EqQ[A*(b^2 + c^2) - a*c*C, 0]
-
Int[((A_.) + cos[(d_.) + (e_.)*(x_)]*(B_.))/((a_.) + cos[(d_.) + (e_.)*(x_)]*(b_.) + (c_.)*sin[(d_.) + (e_.)*(
x_)]), x_Symbol] :> Simp[b*B*(x/(b^2 + c^2)), x] + Simp[c*B*(Log[a + b*Cos[d + e*x] + c*Sin[d + e*x]]/(e*(b^2
+ c^2))), x] /; FreeQ[{a, b, c, d, e, A, B}, x] && NeQ[b^2 + c^2, 0] && EqQ[A*(b^2 + c^2) - a*b*B, 0]
-
Int[((A_.) + cos[(d_.) + (e_.)*(x_)]*(B_.) + (C_.)*sin[(d_.) + (e_.)*(x_)])/((a_.) + cos[(d_.) + (e_.)*(x_)]*(
b_.) + (c_.)*sin[(d_.) + (e_.)*(x_)]), x_Symbol] :> Simp[(b*B + c*C)*(x/(b^2 + c^2)), x] + (Simp[(c*B - b*C)*(
Log[a + b*Cos[d + e*x] + c*Sin[d + e*x]]/(e*(b^2 + c^2))), x] + Simp[(A*(b^2 + c^2) - a*(b*B + c*C))/(b^2 + c^
2) Int[1/(a + b*Cos[d + e*x] + c*Sin[d + e*x]), x], x]) /; FreeQ[{a, b, c, d, e, A, B, C}, x] && NeQ[b^2 + c
^2, 0] && NeQ[A*(b^2 + c^2) - a*(b*B + c*C), 0]
-
Int[((A_.) + (C_.)*sin[(d_.) + (e_.)*(x_)])/((a_.) + cos[(d_.) + (e_.)*(x_)]*(b_.) + (c_.)*sin[(d_.) + (e_.)*(
x_)]), x_Symbol] :> Simp[c*C*((d + e*x)/(e*(b^2 + c^2))), x] + (-Simp[b*C*(Log[a + b*Cos[d + e*x] + c*Sin[d +
e*x]]/(e*(b^2 + c^2))), x] + Simp[(A*(b^2 + c^2) - a*c*C)/(b^2 + c^2) Int[1/(a + b*Cos[d + e*x] + c*Sin[d +
e*x]), x], x]) /; FreeQ[{a, b, c, d, e, A, C}, x] && NeQ[b^2 + c^2, 0] && NeQ[A*(b^2 + c^2) - a*c*C, 0]
-
Int[((A_.) + cos[(d_.) + (e_.)*(x_)]*(B_.))/((a_.) + cos[(d_.) + (e_.)*(x_)]*(b_.) + (c_.)*sin[(d_.) + (e_.)*(
x_)]), x_Symbol] :> Simp[b*B*((d + e*x)/(e*(b^2 + c^2))), x] + (Simp[c*B*(Log[a + b*Cos[d + e*x] + c*Sin[d + e
*x]]/(e*(b^2 + c^2))), x] + Simp[(A*(b^2 + c^2) - a*b*B)/(b^2 + c^2) Int[1/(a + b*Cos[d + e*x] + c*Sin[d + e
*x]), x], x]) /; FreeQ[{a, b, c, d, e, A, B}, x] && NeQ[b^2 + c^2, 0] && NeQ[A*(b^2 + c^2) - a*b*B, 0]
-
Int[(cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)])^(n_.)*((A_.) + cos[(d_.) + (e_.)*(x
_)]*(B_.) + (C_.)*sin[(d_.) + (e_.)*(x_)]), x_Symbol] :> Simp[(B*c - b*C - a*C*Cos[d + e*x] + a*B*Sin[d + e*x]
)*((a + b*Cos[d + e*x] + c*Sin[d + e*x])^n/(a*e*(n + 1))), x] /; FreeQ[{a, b, c, d, e, A, B, C, n}, x] && NeQ[
n, -1] && EqQ[a^2 - b^2 - c^2, 0] && EqQ[(b*B + c*C)*n + a*A*(n + 1), 0]
-
Int[(cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)])^(n_.)*((A_.) + (C_.)*sin[(d_.) + (e
_.)*(x_)]), x_Symbol] :> Simp[(-(b*C + a*C*Cos[d + e*x]))*((a + b*Cos[d + e*x] + c*Sin[d + e*x])^n/(a*e*(n + 1
))), x] /; FreeQ[{a, b, c, d, e, A, C, n}, x] && NeQ[n, -1] && EqQ[a^2 - b^2 - c^2, 0] && EqQ[c*C*n + a*A*(n +
1), 0]
-
Int[((A_.) + cos[(d_.) + (e_.)*(x_)]*(B_.))*(cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x
_)])^(n_.), x_Symbol] :> Simp[(B*c + a*B*Sin[d + e*x])*((a + b*Cos[d + e*x] + c*Sin[d + e*x])^n/(a*e*(n + 1)))
, x] /; FreeQ[{a, b, c, d, e, A, B, n}, x] && NeQ[n, -1] && EqQ[a^2 - b^2 - c^2, 0] && EqQ[b*B*n + a*A*(n + 1)
, 0]
-
Int[(cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)])^(n_.)*((A_.) + cos[(d_.) + (e_.)*(x
_)]*(B_.) + (C_.)*sin[(d_.) + (e_.)*(x_)]), x_Symbol] :> Simp[(B*c - b*C - a*C*Cos[d + e*x] + a*B*Sin[d + e*x]
)*((a + b*Cos[d + e*x] + c*Sin[d + e*x])^n/(a*e*(n + 1))), x] + Simp[((b*B + c*C)*n + a*A*(n + 1))/(a*(n + 1))
Int[(a + b*Cos[d + e*x] + c*Sin[d + e*x])^n, x], x] /; FreeQ[{a, b, c, d, e, A, B, C, n}, x] && NeQ[n, -1]
&& EqQ[a^2 - b^2 - c^2, 0] && NeQ[(b*B + c*C)*n + a*A*(n + 1), 0]
-
Int[(cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)])^(n_.)*((A_.) + (C_.)*sin[(d_.) + (e
_.)*(x_)]), x_Symbol] :> Simp[(-(b*C + a*C*Cos[d + e*x]))*((a + b*Cos[d + e*x] + c*Sin[d + e*x])^n/(a*e*(n + 1
))), x] + Simp[(c*C*n + a*A*(n + 1))/(a*(n + 1)) Int[(a + b*Cos[d + e*x] + c*Sin[d + e*x])^n, x], x] /; Free
Q[{a, b, c, d, e, A, C, n}, x] && NeQ[n, -1] && EqQ[a^2 - b^2 - c^2, 0] && NeQ[c*C*n + a*A*(n + 1), 0]
-
Int[((A_.) + cos[(d_.) + (e_.)*(x_)]*(B_.))*(cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x
_)])^(n_.), x_Symbol] :> Simp[(B*c + a*B*Sin[d + e*x])*((a + b*Cos[d + e*x] + c*Sin[d + e*x])^n/(a*e*(n + 1)))
, x] + Simp[(b*B*n + a*A*(n + 1))/(a*(n + 1)) Int[(a + b*Cos[d + e*x] + c*Sin[d + e*x])^n, x], x] /; FreeQ[{
a, b, c, d, e, A, B, n}, x] && NeQ[n, -1] && EqQ[a^2 - b^2 - c^2, 0] && NeQ[b*B*n + a*A*(n + 1), 0]
-
Int[(cos[(d_.) + (e_.)*(x_)]*(b_.) + (c_.)*sin[(d_.) + (e_.)*(x_)])^(n_.)*(cos[(d_.) + (e_.)*(x_)]*(B_.) + (C_
.)*sin[(d_.) + (e_.)*(x_)]), x_Symbol] :> Simp[(c*B - b*C)*((b*Cos[d + e*x] + c*Sin[d + e*x])^(n + 1)/(e*(n +
1)*(b^2 + c^2))), x] /; FreeQ[{b, c, d, e, B, C}, x] && NeQ[n, -1] && NeQ[b^2 + c^2, 0] && EqQ[b*B + c*C, 0]
-
Int[(cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)])^(n_.)*((A_.) + cos[(d_.) + (e_.)*(x
_)]*(B_.) + (C_.)*sin[(d_.) + (e_.)*(x_)]), x_Symbol] :> Simp[(B*c - b*C - a*C*Cos[d + e*x] + a*B*Sin[d + e*x]
)*((a + b*Cos[d + e*x] + c*Sin[d + e*x])^n/(a*e*(n + 1))), x] + Simp[1/(a*(n + 1)) Int[(a + b*Cos[d + e*x] +
c*Sin[d + e*x])^(n - 1)*Simp[a*(b*B + c*C)*n + a^2*A*(n + 1) + (n*(a^2*B - B*c^2 + b*c*C) + a*b*A*(n + 1))*Co
s[d + e*x] + (n*(b*B*c + a^2*C - b^2*C) + a*c*A*(n + 1))*Sin[d + e*x], x], x], x] /; FreeQ[{a, b, c, d, e, A,
B, C}, x] && GtQ[n, 0] && NeQ[a^2 - b^2 - c^2, 0]
-
Int[(cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)])^(n_.)*((A_.) + (C_.)*sin[(d_.) + (e
_.)*(x_)]), x_Symbol] :> Simp[(-(b*C + a*C*Cos[d + e*x]))*((a + b*Cos[d + e*x] + c*Sin[d + e*x])^n/(a*e*(n + 1
))), x] + Simp[1/(a*(n + 1)) Int[(a + b*Cos[d + e*x] + c*Sin[d + e*x])^(n - 1)*Simp[a*c*C*n + a^2*A*(n + 1)
+ (c*b*C*n + a*b*A*(n + 1))*Cos[d + e*x] + (a^2*C*n - b^2*C*n + a*c*A*(n + 1))*Sin[d + e*x], x], x], x] /; Fre
eQ[{a, b, c, d, e, A, C}, x] && GtQ[n, 0] && NeQ[a^2 - b^2 - c^2, 0]
-
Int[((A_.) + cos[(d_.) + (e_.)*(x_)]*(B_.))*(cos[(d_.) + (e_.)*(x_)]*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x
_)])^(n_.), x_Symbol] :> Simp[(B*c + a*B*Sin[d + e*x])*((a + b*Cos[d + e*x] + c*Sin[d + e*x])^n/(a*e*(n + 1)))
, x] + Simp[1/(a*(n + 1)) Int[(a + b*Cos[d + e*x] + c*Sin[d + e*x])^(n - 1)*Simp[a*b*B*n + a^2*A*(n + 1) + (
a^2*B*n - c^2*B*n + a*b*A*(n + 1))*Cos[d + e*x] + (b*c*B*n + a*c*A*(n + 1))*Sin[d + e*x], x], x], x] /; FreeQ[
{a, b, c, d, e, A, B}, x] && GtQ[n, 0] && NeQ[a^2 - b^2 - c^2, 0]
-
Int[((A_.) + cos[(d_.) + (e_.)*(x_)]*(B_.) + (C_.)*sin[(d_.) + (e_.)*(x_)])/Sqrt[cos[(d_.) + (e_.)*(x_)]*(b_.)
+ (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)]], x_Symbol] :> Simp[B/b Int[Sqrt[a + b*Cos[d + e*x] + c*Sin[d + e*x]
], x], x] + Simp[(A*b - a*B)/b Int[1/Sqrt[a + b*Cos[d + e*x] + c*Sin[d + e*x]], x], x] /; FreeQ[{a, b, c, d,
e, A, B, C}, x] && EqQ[B*c - b*C, 0] && NeQ[A*b - a*B, 0]
-
Int[((A_.) + cos[(d_.) + (e_.)*(x_)]*(B_.) + (C_.)*sin[(d_.) + (e_.)*(x_)])/((a_.) + cos[(d_.) + (e_.)*(x_)]*(
b_.) + (c_.)*sin[(d_.) + (e_.)*(x_)])^2, x_Symbol] :> Simp[(c*B - b*C - (a*C - c*A)*Cos[d + e*x] + (a*B - b*A)
*Sin[d + e*x])/(e*(a^2 - b^2 - c^2)*(a + b*Cos[d + e*x] + c*Sin[d + e*x])), x] /; FreeQ[{a, b, c, d, e, A, B,
C}, x] && NeQ[a^2 - b^2 - c^2, 0] && EqQ[a*A - b*B - c*C, 0]
-
Int[((A_.) + (C_.)*sin[(d_.) + (e_.)*(x_)])/((a_.) + cos[(d_.) + (e_.)*(x_)]*(b_.) + (c_.)*sin[(d_.) + (e_.)*(
x_)])^2, x_Symbol] :> Simp[-(b*C + (a*C - c*A)*Cos[d + e*x] + b*A*Sin[d + e*x])/(e*(a^2 - b^2 - c^2)*(a + b*Co
s[d + e*x] + c*Sin[d + e*x])), x] /; FreeQ[{a, b, c, d, e, A, C}, x] && NeQ[a^2 - b^2 - c^2, 0] && EqQ[a*A - c
*C, 0]
-
Int[((A_.) + cos[(d_.) + (e_.)*(x_)]*(B_.))/((a_.) + cos[(d_.) + (e_.)*(x_)]*(b_.) + (c_.)*sin[(d_.) + (e_.)*(
x_)])^2, x_Symbol] :> Simp[(c*B + c*A*Cos[d + e*x] + (a*B - b*A)*Sin[d + e*x])/(e*(a^2 - b^2 - c^2)*(a + b*Cos
[d + e*x] + c*Sin[d + e*x])), x] /; FreeQ[{a, b, c, d, e, A, B}, x] && NeQ[a^2 - b^2 - c^2, 0] && EqQ[a*A - b*
B, 0]
-
Int[((A_.) + cos[(d_.) + (e_.)*(x_)]*(B_.) + (C_.)*sin[(d_.) + (e_.)*(x_)])/((a_.) + cos[(d_.) + (e_.)*(x_)]*(
b_.) + (c_.)*sin[(d_.) + (e_.)*(x_)])^2, x_Symbol] :> Simp[(c*B - b*C - (a*C - c*A)*Cos[d + e*x] + (a*B - b*A)
*Sin[d + e*x])/(e*(a^2 - b^2 - c^2)*(a + b*Cos[d + e*x] + c*Sin[d + e*x])), x] + Simp[(a*A - b*B - c*C)/(a^2 -
b^2 - c^2) Int[1/(a + b*Cos[d + e*x] + c*Sin[d + e*x]), x], x] /; FreeQ[{a, b, c, d, e, A, B, C}, x] && NeQ
[a^2 - b^2 - c^2, 0] && NeQ[a*A - b*B - c*C, 0]
-
Int[((A_.) + (C_.)*sin[(d_.) + (e_.)*(x_)])/((a_.) + cos[(d_.) + (e_.)*(x_)]*(b_.) + (c_.)*sin[(d_.) + (e_.)*(
x_)])^2, x_Symbol] :> Simp[-(b*C + (a*C - c*A)*Cos[d + e*x] + b*A*Sin[d + e*x])/(e*(a^2 - b^2 - c^2)*(a + b*Co
s[d + e*x] + c*Sin[d + e*x])), x] + Simp[(a*A - c*C)/(a^2 - b^2 - c^2) Int[1/(a + b*Cos[d + e*x] + c*Sin[d +
e*x]), x], x] /; FreeQ[{a, b, c, d, e, A, C}, x] && NeQ[a^2 - b^2 - c^2, 0] && NeQ[a*A - c*C, 0]
-
Int[((A_.) + cos[(d_.) + (e_.)*(x_)]*(B_.))/((a_.) + cos[(d_.) + (e_.)*(x_)]*(b_.) + (c_.)*sin[(d_.) + (e_.)*(
x_)])^2, x_Symbol] :> Simp[(c*B + c*A*Cos[d + e*x] + (a*B - b*A)*Sin[d + e*x])/(e*(a^2 - b^2 - c^2)*(a + b*Cos
[d + e*x] + c*Sin[d + e*x])), x] + Simp[(a*A - b*B)/(a^2 - b^2 - c^2) Int[1/(a + b*Cos[d + e*x] + c*Sin[d +
e*x]), x], x] /; FreeQ[{a, b, c, d, e, A, B}, x] && NeQ[a^2 - b^2 - c^2, 0] && NeQ[a*A - b*B, 0]
-
Int[((a_.) + cos[(d_.) + (e_.)*(x_)]*(b_.) + (c_.)*sin[(d_.) + (e_.)*(x_)])^(n_)*((A_.) + cos[(d_.) + (e_.)*(x
_)]*(B_.) + (C_.)*sin[(d_.) + (e_.)*(x_)]), x_Symbol] :> Simp[(-(c*B - b*C - (a*C - c*A)*Cos[d + e*x] + (a*B -
b*A)*Sin[d + e*x]))*((a + b*Cos[d + e*x] + c*Sin[d + e*x])^(n + 1)/(e*(n + 1)*(a^2 - b^2 - c^2))), x] + Simp[
1/((n + 1)*(a^2 - b^2 - c^2)) Int[(a + b*Cos[d + e*x] + c*Sin[d + e*x])^(n + 1)*Simp[(n + 1)*(a*A - b*B - c*
C) + (n + 2)*(a*B - b*A)*Cos[d + e*x] + (n + 2)*(a*C - c*A)*Sin[d + e*x], x], x], x] /; FreeQ[{a, b, c, d, e,
A, B, C}, x] && LtQ[n, -1] && NeQ[a^2 - b^2 - c^2, 0] && NeQ[n, -2]
-
Int[((a_.) + cos[(d_.) + (e_.)*(x_)]*(b_.) + (c_.)*sin[(d_.) + (e_.)*(x_)])^(n_)*((A_.) + (C_.)*sin[(d_.) + (e
_.)*(x_)]), x_Symbol] :> Simp[(b*C + (a*C - c*A)*Cos[d + e*x] + b*A*Sin[d + e*x])*((a + b*Cos[d + e*x] + c*Sin
[d + e*x])^(n + 1)/(e*(n + 1)*(a^2 - b^2 - c^2))), x] + Simp[1/((n + 1)*(a^2 - b^2 - c^2)) Int[(a + b*Cos[d
+ e*x] + c*Sin[d + e*x])^(n + 1)*Simp[(n + 1)*(a*A - c*C) - (n + 2)*b*A*Cos[d + e*x] + (n + 2)*(a*C - c*A)*Sin
[d + e*x], x], x], x] /; FreeQ[{a, b, c, d, e, A, C}, x] && LtQ[n, -1] && NeQ[a^2 - b^2 - c^2, 0] && NeQ[n, -2
]
-
Int[((A_.) + cos[(d_.) + (e_.)*(x_)]*(B_.))*((a_.) + cos[(d_.) + (e_.)*(x_)]*(b_.) + (c_.)*sin[(d_.) + (e_.)*(
x_)])^(n_), x_Symbol] :> Simp[(-(c*B + c*A*Cos[d + e*x] + (a*B - b*A)*Sin[d + e*x]))*((a + b*Cos[d + e*x] + c*
Sin[d + e*x])^(n + 1)/(e*(n + 1)*(a^2 - b^2 - c^2))), x] + Simp[1/((n + 1)*(a^2 - b^2 - c^2)) Int[(a + b*Cos
[d + e*x] + c*Sin[d + e*x])^(n + 1)*Simp[(n + 1)*(a*A - b*B) + (n + 2)*(a*B - b*A)*Cos[d + e*x] - (n + 2)*c*A*
Sin[d + e*x], x], x], x] /; FreeQ[{a, b, c, d, e, A, B}, x] && LtQ[n, -1] && NeQ[a^2 - b^2 - c^2, 0] && NeQ[n,
-2]
-
Int[((a_.) + (b_.)*sec[(d_.) + (e_.)*(x_)] + (c_.)*tan[(d_.) + (e_.)*(x_)])^(-1), x_Symbol] :> Int[Cos[d + e*x
]/(b + a*Cos[d + e*x] + c*Sin[d + e*x]), x] /; FreeQ[{a, b, c, d, e}, x]
-
Int[((a_.) + csc[(d_.) + (e_.)*(x_)]*(b_.) + cot[(d_.) + (e_.)*(x_)]*(c_.))^(-1), x_Symbol] :> Int[Sin[d + e*x
]/(b + a*Sin[d + e*x] + c*Cos[d + e*x]), x] /; FreeQ[{a, b, c, d, e}, x]
-
Int[cos[(d_.) + (e_.)*(x_)]^(n_.)*((a_.) + (b_.)*sec[(d_.) + (e_.)*(x_)] + (c_.)*tan[(d_.) + (e_.)*(x_)])^(n_.
), x_Symbol] :> Int[(b + a*Cos[d + e*x] + c*Sin[d + e*x])^n, x] /; FreeQ[{a, b, c, d, e}, x] && IntegerQ[n]
-
Int[((a_.) + csc[(d_.) + (e_.)*(x_)]*(b_.) + cot[(d_.) + (e_.)*(x_)]*(c_.))^(n_.)*sin[(d_.) + (e_.)*(x_)]^(n_.
), x_Symbol] :> Int[(b + a*Sin[d + e*x] + c*Cos[d + e*x])^n, x] /; FreeQ[{a, b, c, d, e}, x] && IntegerQ[n]
-
Int[cos[(d_.) + (e_.)*(x_)]^(n_)*((a_.) + (b_.)*sec[(d_.) + (e_.)*(x_)] + (c_.)*tan[(d_.) + (e_.)*(x_)])^(n_),
x_Symbol] :> Simp[Cos[d + e*x]^n*((a + b*Sec[d + e*x] + c*Tan[d + e*x])^n/(b + a*Cos[d + e*x] + c*Sin[d + e*x
])^n) Int[(b + a*Cos[d + e*x] + c*Sin[d + e*x])^n, x], x] /; FreeQ[{a, b, c, d, e}, x] && !IntegerQ[n]
-
Int[((a_.) + csc[(d_.) + (e_.)*(x_)]*(b_.) + cot[(d_.) + (e_.)*(x_)]*(c_.))^(n_)*sin[(d_.) + (e_.)*(x_)]^(n_),
x_Symbol] :> Simp[Sin[d + e*x]^n*((a + b*Csc[d + e*x] + c*Cot[d + e*x])^n/(b + a*Sin[d + e*x] + c*Cos[d + e*x
])^n) Int[(b + a*Sin[d + e*x] + c*Cos[d + e*x])^n, x], x] /; FreeQ[{a, b, c, d, e}, x] && !IntegerQ[n]
-
Int[sec[(d_.) + (e_.)*(x_)]^(n_.)*((a_.) + (b_.)*sec[(d_.) + (e_.)*(x_)] + (c_.)*tan[(d_.) + (e_.)*(x_)])^(m_)
, x_Symbol] :> Int[1/(b + a*Cos[d + e*x] + c*Sin[d + e*x])^n, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[m + n, 0]
&& IntegerQ[n]
-
Int[csc[(d_.) + (e_.)*(x_)]^(n_.)*((a_.) + csc[(d_.) + (e_.)*(x_)]*(b_.) + cot[(d_.) + (e_.)*(x_)]*(c_.))^(m_)
, x_Symbol] :> Int[1/(b + a*Sin[d + e*x] + c*Cos[d + e*x])^n, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[m + n, 0]
&& IntegerQ[n]
-
Int[sec[(d_.) + (e_.)*(x_)]^(n_.)*((a_.) + (b_.)*sec[(d_.) + (e_.)*(x_)] + (c_.)*tan[(d_.) + (e_.)*(x_)])^(m_)
, x_Symbol] :> Simp[Sec[d + e*x]^n*((b + a*Cos[d + e*x] + c*Sin[d + e*x])^n/(a + b*Sec[d + e*x] + c*Tan[d + e*
x])^n) Int[1/(b + a*Cos[d + e*x] + c*Sin[d + e*x])^n, x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[m + n, 0] &
& !IntegerQ[n]
-
Int[csc[(d_.) + (e_.)*(x_)]^(n_.)*((a_.) + csc[(d_.) + (e_.)*(x_)]*(b_.) + cot[(d_.) + (e_.)*(x_)]*(c_.))^(m_)
, x_Symbol] :> Simp[Csc[d + e*x]^n*((b + a*Sin[d + e*x] + c*Cos[d + e*x])^n/(a + b*Csc[d + e*x] + c*Cot[d + e*
x])^n) Int[1/(b + a*Sin[d + e*x] + c*Cos[d + e*x])^n, x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[m + n, 0] &
& !IntegerQ[n]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(4*A
*(2*a + b) + B*(4*a + 3*b))*(x/8), x] + (-Simp[b*B*Cos[e + f*x]*(Sin[e + f*x]^3/(4*f)), x] - Simp[(4*A*b + B*(
4*a + 3*b))*Cos[e + f*x]*(Sin[e + f*x]/(8*f)), x]) /; FreeQ[{a, b, e, f, A, B}, x]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp
[(-B)*Cos[e + f*x]*Sin[e + f*x]*((a + b*Sin[e + f*x]^2)^p/(2*f*(p + 1))), x] + Simp[1/(2*(p + 1)) Int[(a + b
*Sin[e + f*x]^2)^(p - 1)*Simp[a*B + 2*a*A*(p + 1) + (2*A*b*(p + 1) + B*(b + 2*a*p + 2*b*p))*Sin[e + f*x]^2, x]
, x], x] /; FreeQ[{a, b, e, f, A, B}, x] && GtQ[p, 0]
-
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]^2)/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[B*(x
/b), x] + Simp[(A*b - a*B)/b Int[1/(a + b*Sin[e + f*x]^2), x], x] /; FreeQ[{a, b, e, f, A, B}, x]
-
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]^2)/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2], x_Symbol] :> Simp[
B/b Int[Sqrt[a + b*Sin[e + f*x]^2], x], x] + Simp[(A*b - a*B)/b Int[1/Sqrt[a + b*Sin[e + f*x]^2], x], x] /
; FreeQ[{a, b, e, f, A, B}, x]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp
[(-(A*b - a*B))*Cos[e + f*x]*Sin[e + f*x]*((a + b*Sin[e + f*x]^2)^(p + 1)/(2*a*f*(a + b)*(p + 1))), x] - Simp[
1/(2*a*(a + b)*(p + 1)) Int[(a + b*Sin[e + f*x]^2)^(p + 1)*Simp[a*B - A*(2*a*(p + 1) + b*(2*p + 3)) + 2*(A*b
- a*B)*(p + 2)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, e, f, A, B}, x] && LtQ[p, -1] && NeQ[a + b, 0]
-
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Wit
h[{ff = FreeFactors[Tan[e + f*x], x]}, Simp[ff*(a + b*Sin[e + f*x]^2)^p*((Sec[e + f*x]^2)^p/(f*(a + (a + b)*Ta
n[e + f*x]^2)^p)) Subst[Int[(a + (a + b)*ff^2*x^2)^p*((A + (A + B)*ff^2*x^2)/(1 + ff^2*x^2)^(p + 2)), x], x,
Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, A, B}, x] && !IntegerQ[p]
-
Int[(u_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_), x_Symbol] :> Simp[a^p Int[ActivateTrig[u*cos[e + f*
x]^(2*p)], x], x] /; FreeQ[{a, b, e, f, p}, x] && EqQ[a + b, 0] && IntegerQ[p]
-
Int[(u_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_), x_Symbol] :> Int[ActivateTrig[u*(a*cos[e + f*x]^2)^p]
, x] /; FreeQ[{a, b, e, f, p}, x] && EqQ[a + b, 0]
-
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2], x_Symbol] :> Simp[(Sqrt[a]/f)*EllipticE[e + f*x, -b/a], x] /
; FreeQ[{a, b, e, f}, x] && GtQ[a, 0]
-
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2], x_Symbol] :> Simp[Sqrt[a + b*Sin[e + f*x]^2]/Sqrt[1 + b*(Sin
[e + f*x]^2/a)] Int[Sqrt[1 + (b*Sin[e + f*x]^2)/a], x], x] /; FreeQ[{a, b, e, f}, x] && !GtQ[a, 0]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^2, x_Symbol] :> Simp[(8*a^2 + 8*a*b + 3*b^2)*(x/8), x] + (-Simp[b
^2*Cos[e + f*x]*(Sin[e + f*x]^3/(4*f)), x] - Simp[b*(8*a + 3*b)*Cos[e + f*x]*(Sin[e + f*x]/(8*f)), x]) /; Free
Q[{a, b, e, f}, x]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_), x_Symbol] :> Simp[(-b)*Cos[e + f*x]*Sin[e + f*x]*((a + b*Si
n[e + f*x]^2)^(p - 1)/(2*f*p)), x] + Simp[1/(2*p) Int[(a + b*Sin[e + f*x]^2)^(p - 2)*Simp[a*(b + 2*a*p) + b*
(2*a + b)*(2*p - 1)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a + b, 0] && GtQ[p, 1]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(-1), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Simp
[ff/f Subst[Int[1/(a + (a + b)*ff^2*x^2), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f}, x]
-
Int[1/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2], x_Symbol] :> Simp[(1/(Sqrt[a]*f))*EllipticF[e + f*x, -b/a]
, x] /; FreeQ[{a, b, e, f}, x] && GtQ[a, 0]
-
Int[1/Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2], x_Symbol] :> Simp[Sqrt[1 + b*(Sin[e + f*x]^2/a)]/Sqrt[a +
b*Sin[e + f*x]^2] Int[1/Sqrt[1 + (b*Sin[e + f*x]^2)/a], x], x] /; FreeQ[{a, b, e, f}, x] && !GtQ[a, 0]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_), x_Symbol] :> Simp[(-b)*Cos[e + f*x]*Sin[e + f*x]*((a + b*Si
n[e + f*x]^2)^(p + 1)/(2*a*f*(p + 1)*(a + b))), x] + Simp[1/(2*a*(p + 1)*(a + b)) Int[(a + b*Sin[e + f*x]^2)
^(p + 1)*Simp[2*a*(p + 1) + b*(2*p + 3) - 2*b*(p + 2)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b, e, f}, x] &&
NeQ[a + b, 0] && LtQ[p, -1]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = FreeFactors[Sin[e + f*x], x]}, Sim
p[ff*(Sqrt[Cos[e + f*x]^2]/(f*Cos[e + f*x])) Subst[Int[(a + b*ff^2*x^2)^p/Sqrt[1 - ff^2*x^2], x], x, Sin[e +
f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && !IntegerQ[p]
-
Int[sin[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = Free
Factors[Cos[e + f*x], x]}, Simp[-ff/f Subst[Int[(1 - ff^2*x^2)^((m - 1)/2)*(a + b - b*ff^2*x^2)^p, x], x, Co
s[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2]
-
Int[sin[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = FreeF
actors[Tan[e + f*x], x]}, Simp[ff^(m + 1)/f Subst[Int[x^m*((a + (a + b)*ff^2*x^2)^p/(1 + ff^2*x^2)^(m/2 + p
+ 1)), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f}, x] && IntegerQ[m/2] && IntegerQ[p]
-
Int[sin[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = FreeF
actors[Sin[e + f*x], x]}, Simp[ff^(m + 1)*(Sqrt[Cos[e + f*x]^2]/(f*Cos[e + f*x])) Subst[Int[x^m*((a + b*ff^2
*x^2)^p/Sqrt[1 - ff^2*x^2]), x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] && !I
ntegerQ[p]
-
Int[((d_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff
= FreeFactors[Cos[e + f*x], x]}, Simp[(-ff)*d^(2*IntPart[(m - 1)/2] + 1)*((d*Sin[e + f*x])^(2*FracPart[(m - 1
)/2])/(f*(Sin[e + f*x]^2)^FracPart[(m - 1)/2])) Subst[Int[(1 - ff^2*x^2)^((m - 1)/2)*(a + b - b*ff^2*x^2)^p,
x], x, Cos[e + f*x]/ff], x]] /; FreeQ[{a, b, d, e, f, m, p}, x] && !IntegerQ[m]
-
Int[cos[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = Free
Factors[Sin[e + f*x], x]}, Simp[ff/f Subst[Int[(1 - ff^2*x^2)^((m - 1)/2)*(a + b*ff^2*x^2)^p, x], x, Sin[e +
f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2]
-
Int[cos[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = FreeF
actors[Tan[e + f*x], x]}, Simp[ff/f Subst[Int[(a + (a + b)*ff^2*x^2)^p/(1 + ff^2*x^2)^(m/2 + p + 1), x], x,
Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f}, x] && IntegerQ[m/2] && IntegerQ[p]
-
Int[cos[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = FreeF
actors[Sin[e + f*x], x]}, Simp[ff*(Sqrt[Cos[e + f*x]^2]/(f*Cos[e + f*x])) Subst[Int[(1 - ff^2*x^2)^((m - 1)/
2)*(a + b*ff^2*x^2)^p, x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] && !Integer
Q[p]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff
= FreeFactors[Sin[e + f*x], x]}, Simp[ff*d^(2*IntPart[(m - 1)/2] + 1)*((d*Cos[e + f*x])^(2*FracPart[(m - 1)/2
])/(f*(Cos[e + f*x]^2)^FracPart[(m - 1)/2])) Subst[Int[(1 - ff^2*x^2)^((m - 1)/2)*(a + b*ff^2*x^2)^p, x], x,
Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, d, e, f, m, p}, x] && !IntegerQ[m]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.)*tan[(e_.) + (f_.)*(x_)]^(m_.), x_Symbol] :> With[{ff = Free
Factors[Sin[e + f*x]^2, x]}, Simp[ff^((m + 1)/2)/(2*f) Subst[Int[x^((m - 1)/2)*((a + b*ff*x)^p/(1 - ff*x)^((
m + 1)/2)), x], x, Sin[e + f*x]^2/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.)*((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> With[{ff
= FreeFactors[Tan[e + f*x], x]}, Simp[ff/f Subst[Int[(d*ff*x)^m*((a + (a + b)*ff^2*x^2)^p/(1 + ff^2*x^2)^(p
+ 1)), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, d, e, f, m}, x] && IntegerQ[p]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.)*tan[(e_.) + (f_.)*(x_)]^(m_), x_Symbol] :> With[{ff = FreeF
actors[Sin[e + f*x], x]}, Simp[ff^(m + 1)*(Sqrt[Cos[e + f*x]^2]/(f*Cos[e + f*x])) Subst[Int[x^m*((a + b*ff^2
*x^2)^p/(1 - ff^2*x^2)^((m + 1)/2)), x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2
] && !IntegerQ[p]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.)*((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> With[{ff
= FreeFactors[Sin[e + f*x], x]}, Simp[ff*(d*Tan[e + f*x])^(m + 1)*((Cos[e + f*x]^2)^((m + 1)/2)/(d*f*Sin[e +
f*x]^(m + 1))) Subst[Int[(ff*x)^m*((a + b*ff^2*x^2)^p/(1 - ff^2*x^2)^((m + 1)/2)), x], x, Sin[e + f*x]/ff],
x]] /; FreeQ[{a, b, d, e, f, m, p}, x] && !IntegerQ[m]
-
Int[cos[(e_.) + (f_.)*(x_)]^(m_.)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^
2)^(p_.), x_Symbol] :> With[{ff = FreeFactors[Sin[e + f*x], x]}, Simp[ff/f Subst[Int[(d*ff*x)^n*(1 - ff^2*x^
2)^((m - 1)/2)*(a + b*ff^2*x^2)^p, x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, d, e, f, n, p}, x] && IntegerQ
[(m - 1)/2]
-
Int[sin[(e_.) + (f_.)*(x_)]^(n_.)*((c_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2
)^(p_.), x_Symbol] :> With[{ff = FreeFactors[Cos[e + f*x], x]}, Simp[-ff/f Subst[Int[(c*ff*x)^m*(1 - ff^2*x^
2)^((n - 1)/2)*(a + b - b*ff^2*x^2)^p, x], x, Cos[e + f*x]/ff], x]] /; FreeQ[{a, b, c, e, f, m, p}, x] && Inte
gerQ[(n - 1)/2]
-
Int[cos[(e_.) + (f_.)*(x_)]^(m_)*sin[(e_.) + (f_.)*(x_)]^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.),
x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Simp[ff^(n + 1)/f Subst[Int[x^n*((a + (a + b)*ff^2*x^
2)^p/(1 + ff^2*x^2)^((m + n)/2 + p + 1)), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f}, x] && IntegerQ[m
/2] && IntegerQ[n/2] && IntegerQ[p]
-
Int[cos[(e_.) + (f_.)*(x_)]^(m_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2
)^(p_.), x_Symbol] :> With[{ff = FreeFactors[Sin[e + f*x], x]}, Simp[ff*(Sqrt[Cos[e + f*x]^2]/(f*Cos[e + f*x])
) Subst[Int[(d*ff*x)^n*(1 - ff^2*x^2)^((m - 1)/2)*(a + b*ff^2*x^2)^p, x], x, Sin[e + f*x]/ff], x]] /; FreeQ[
{a, b, d, e, f, n, p}, x] && IntegerQ[m/2]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(c_.))^(m_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)
*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = FreeFactors[Sin[e + f*x], x]}, Simp[ff*c^(2*IntPart[(m - 1)/2] + 1)*(
(c*Cos[e + f*x])^(2*FracPart[(m - 1)/2])/(f*(Cos[e + f*x]^2)^FracPart[(m - 1)/2])) Subst[Int[(d*ff*x)^n*(1 -
ff^2*x^2)^((m - 1)/2)*(a + b*ff^2*x^2)^p, x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, c, d, e, f, m, n, p},
x] && !IntegerQ[m]
-
Int[((b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_), x_Symbol] :> Simp[(-Cot[e + f*x])*((b*Sin[e + f*x]^2)^p/(2*f*p)),
x] + Simp[b*((2*p - 1)/(2*p)) Int[(b*Sin[e + f*x]^2)^(p - 1), x], x] /; FreeQ[{b, e, f}, x] && !IntegerQ[p]
&& GtQ[p, 1]
-
Int[((b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_), x_Symbol] :> Simp[Cot[e + f*x]*((b*Sin[e + f*x]^2)^(p + 1)/(b*f*(2
*p + 1))), x] + Simp[2*((p + 1)/(b*(2*p + 1))) Int[(b*Sin[e + f*x]^2)^(p + 1), x], x] /; FreeQ[{b, e, f}, x]
&& !IntegerQ[p] && LtQ[p, -1]
-
Int[((b_.)*sin[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*tan[(e_.) + (f_.)*(x_)]^(m_.), x_Symbol] :> With[{ff = FreeFact
ors[Sin[e + f*x]^2, x]}, Simp[ff^((m + 1)/2)/(2*f) Subst[Int[x^((m - 1)/2)*((b*ff^(n/2)*x^(n/2))^p/(1 - ff*x
)^((m + 1)/2)), x], x, Sin[e + f*x]^2/ff], x]] /; FreeQ[{b, e, f, p}, x] && IntegerQ[(m - 1)/2] && IntegerQ[n/
2]
-
Int[((b_.)*((c_.)*sin[(e_.) + (f_.)*(x_)])^(n_))^(p_.)*tan[(e_.) + (f_.)*(x_)]^(m_.), x_Symbol] :> With[{ff =
FreeFactors[Sin[e + f*x], x]}, Simp[ff^(m + 1)/f Subst[Int[x^m*((b*(c*ff*x)^n)^p/(1 - ff^2*x^2)^((m + 1)/2))
, x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{b, c, e, f, n, p}, x] && ILtQ[(m - 1)/2, 0]
-
Int[(u_.)*((b_.)*sin[(e_.) + (f_.)*(x_)]^(n_))^(p_), x_Symbol] :> With[{ff = FreeFactors[Sin[e + f*x], x]}, Si
mp[(b*ff^n)^IntPart[p]*((b*Sin[e + f*x]^n)^FracPart[p]/(Sin[e + f*x]/ff)^(n*FracPart[p])) Int[ActivateTrig[u
]*(Sin[e + f*x]/ff)^(n*p), x], x]] /; FreeQ[{b, e, f, n, p}, x] && !IntegerQ[p] && IntegerQ[n] && (EqQ[u, 1]
|| MatchQ[u, ((d_.)*(trig_)[e + f*x])^(m_.) /; FreeQ[{d, m}, x] && MemberQ[{sin, cos, tan, cot, sec, csc}, tri
g]])
-
Int[(u_.)*((b_.)*((c_.)*sin[(e_.) + (f_.)*(x_)])^(n_))^(p_), x_Symbol] :> Simp[b^IntPart[p]*((b*(c*Sin[e + f*x
])^n)^FracPart[p]/(c*Sin[e + f*x])^(n*FracPart[p])) Int[ActivateTrig[u]*(c*Sin[e + f*x])^(n*p), x], x] /; Fr
eeQ[{b, c, e, f, n, p}, x] && !IntegerQ[p] && !IntegerQ[n] && (EqQ[u, 1] || MatchQ[u, ((d_.)*(trig_)[e + f*x
])^(m_.) /; FreeQ[{d, m}, x] && MemberQ[{sin, cos, tan, cot, sec, csc}, trig]])
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^4)^(p_.), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Sim
p[ff/f Subst[Int[(a + 2*a*ff^2*x^2 + (a + b)*ff^4*x^4)^p/(1 + ff^2*x^2)^(2*p + 1), x], x, Tan[e + f*x]/ff],
x]] /; FreeQ[{a, b, e, f}, x] && IntegerQ[p]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^4)^(p_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Simp
[ff*(a + b*Sin[e + f*x]^4)^p*((Sec[e + f*x]^2)^(2*p)/(f*(a + 2*a*Tan[e + f*x]^2 + (a + b)*Tan[e + f*x]^4)^p))
Subst[Int[(a + 2*a*ff^2*x^2 + (a + b)*ff^4*x^4)^p/(1 + ff^2*x^2)^(2*p + 1), x], x, Tan[e + f*x]/ff], x]] /;
FreeQ[{a, b, e, f, p}, x] && IntegerQ[p - 1/2]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^(n_))^(-1), x_Symbol] :> Module[{k}, Simp[2/(a*n) Sum[Int[1/(1 - S
in[e + f*x]^2/((-1)^(4*(k/n))*Rt[-a/b, n/2])), x], {k, 1, n/2}], x]] /; FreeQ[{a, b, e, f}, x] && IntegerQ[n/2
]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^(n_))^(p_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, S
imp[ff/f Subst[Int[(b*ff^n*x^n + a*(1 + ff^2*x^2)^(n/2))^p/(1 + ff^2*x^2)^(n*(p/2) + 1), x], x, Tan[e + f*x]
/ff], x]] /; FreeQ[{a, b, e, f}, x] && IntegerQ[n/2] && IGtQ[p, 0]
-
Int[((a_) + (b_.)*((c_.)*sin[(e_.) + (f_.)*(x_)])^(n_))^(p_), x_Symbol] :> Int[ExpandTrig[(a + b*(c*sin[e + f*
x])^n)^p, x], x] /; FreeQ[{a, b, c, e, f, n}, x] && (IGtQ[p, 0] || (EqQ[p, -1] && IntegerQ[n]))
-
Int[((a_) + (b_.)*((c_.)*sin[(e_.) + (f_.)*(x_)])^(n_))^(p_), x_Symbol] :> Unintegrable[(a + b*(c*Sin[e + f*x]
)^n)^p, x] /; FreeQ[{a, b, c, e, f, n, p}, x]
-
Int[sin[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^4)^(p_.), x_Symbol] :> With[{ff = Free
Factors[Cos[e + f*x], x]}, Simp[-ff/f Subst[Int[(1 - ff^2*x^2)^((m - 1)/2)*(a + b - 2*b*ff^2*x^2 + b*ff^4*x^
4)^p, x], x, Cos[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2]
-
Int[sin[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^(n_))^(p_.), x_Symbol] :> With[{ff = F
reeFactors[Cos[e + f*x], x]}, Simp[-ff/f Subst[Int[(1 - ff^2*x^2)^((m - 1)/2)*(a + b*(1 - ff^2*x^2)^(n/2))^p
, x], x, Cos[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2] && IntegerQ[n/2]
-
Int[sin[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^4)^(p_.), x_Symbol] :> With[{ff = FreeF
actors[Tan[e + f*x], x]}, Simp[ff^(m + 1)/f Subst[Int[x^m*((a + 2*a*ff^2*x^2 + (a + b)*ff^4*x^4)^p/(1 + ff^2
*x^2)^(m/2 + 2*p + 1)), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f}, x] && IntegerQ[m/2] && IntegerQ[p]
-
Int[sin[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^(n_))^(p_.), x_Symbol] :> With[{ff = Fr
eeFactors[Tan[e + f*x], x]}, Simp[ff^(m + 1)/f Subst[Int[x^m*((a*(1 + ff^2*x^2)^(n/2) + b*ff^n*x^n)^p/(1 + f
f^2*x^2)^(m/2 + n*(p/2) + 1)), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f}, x] && IntegerQ[m/2] && Inte
gerQ[n/2] && IntegerQ[p]
-
Int[sin[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^4)^(p_), x_Symbol] :> With[{ff = FreeFa
ctors[Tan[e + f*x], x]}, Simp[ff^(m + 1)*(a + b*Sin[e + f*x]^4)^p*((Sec[e + f*x]^2)^(2*p)/(f*Apart[a*(1 + Tan[
e + f*x]^2)^2 + b*Tan[e + f*x]^4]^p)) Subst[Int[x^m*(ExpandToSum[a*(1 + ff^2*x^2)^2 + b*ff^4*x^4, x]^p/(1 +
ff^2*x^2)^(m/2 + 2*p + 1)), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] && Inte
gerQ[p - 1/2]
-
Int[sin[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^(n_))^(p_.), x_Symbol] :> Int[ExpandTr
ig[sin[e + f*x]^m*(a + b*sin[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, e, f}, x] && IntegersQ[m, p] && (EqQ[n, 4]
|| GtQ[p, 0] || (EqQ[p, -1] && IntegerQ[n]))
-
Int[((d_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*sin[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol]
:> Int[ExpandTrig[(d*sin[e + f*x])^m*(a + b*(c*sin[e + f*x])^n)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n},
x] && IGtQ[p, 0]
-
Int[((d_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*sin[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol]
:> Unintegrable[(d*Sin[e + f*x])^m*(a + b*(c*Sin[e + f*x])^n)^p, x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x]
-
Int[cos[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*((c_.)*sin[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol] :> With
[{ff = FreeFactors[Sin[e + f*x], x]}, Simp[ff/f Subst[Int[(1 - ff^2*x^2)^((m - 1)/2)*(a + b*(c*ff*x)^n)^p, x
], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, c, e, f, n, p}, x] && IntegerQ[(m - 1)/2] && (EqQ[n, 4] || GtQ[m,
0] || IGtQ[p, 0] || IntegersQ[m, p])
-
Int[cos[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^4)^(p_.), x_Symbol] :> With[{ff = FreeF
actors[Tan[e + f*x], x]}, Simp[ff/f Subst[Int[(a + 2*a*ff^2*x^2 + (a + b)*ff^4*x^4)^p/(1 + ff^2*x^2)^(m/2 +
2*p + 1), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f}, x] && IntegerQ[m/2] && IntegerQ[p]
-
Int[cos[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^(n_))^(p_.), x_Symbol] :> With[{ff = Fr
eeFactors[Tan[e + f*x], x]}, Simp[ff/f Subst[Int[(b*ff^n*x^n + a*(1 + ff^2*x^2)^(n/2))^p/(1 + ff^2*x^2)^(m/2
+ n*(p/2) + 1), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f}, x] && IntegerQ[m/2] && IntegerQ[n/2] && I
ntegerQ[p]
-
Int[cos[(e_.) + (f_.)*(x_)]^(m_)/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^(n_)), x_Symbol] :> Int[Expand[(1 - Sin
[e + f*x]^2)^(m/2)/(a + b*Sin[e + f*x]^n), x], x] /; FreeQ[{a, b, e, f}, x] && IGtQ[m/2, 0] && IntegerQ[(n - 1
)/2]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(d_.))^(m_.)*((a_) + (b_.)*((c_.)*sin[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol]
:> Int[ExpandTrig[(d*cos[e + f*x])^m*(a + b*(c*sin[e + f*x])^n)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n},
x] && IGtQ[p, 0]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(d_.))^(m_.)*((a_) + (b_.)*((c_.)*sin[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol]
:> Unintegrable[(d*Cos[e + f*x])^m*(a + b*(c*Sin[e + f*x])^n)^p, x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*tan[(e_.) + (f_.)*(x_)]^(m_.), x_Symbol] :> With[{ff = F
reeFactors[Sin[e + f*x]^2, x]}, Simp[ff^((m + 1)/2)/(2*f) Subst[Int[x^((m - 1)/2)*((a + b*ff^(n/2)*x^(n/2))^
p/(1 - ff*x)^((m + 1)/2)), x], x, Sin[e + f*x]^2/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2]
&& IntegerQ[n/2]
-
Int[((a_) + (b_.)*((c_.)*sin[(e_.) + (f_.)*(x_)])^(n_))^(p_.)*tan[(e_.) + (f_.)*(x_)]^(m_.), x_Symbol] :> With
[{ff = FreeFactors[Sin[e + f*x], x]}, Simp[ff^(m + 1)/f Subst[Int[x^m*((a + b*(c*ff*x)^n)^p/(1 - ff^2*x^2)^(
(m + 1)/2)), x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, c, e, f, n, p}, x] && ILtQ[(m - 1)/2, 0]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^4)^(p_.)*((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> With[{ff
= FreeFactors[Tan[e + f*x], x]}, Simp[ff/f Subst[Int[(d*ff*x)^m*(ExpandToSum[a*(1 + ff^2*x^2)^2 + b*ff^4*x^
4, x]^p/(1 + ff^2*x^2)^(2*p + 1)), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, d, e, f, m}, x] && IntegerQ[p]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^4)^(p_)*((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> With[{ff
= FreeFactors[Tan[e + f*x], x]}, Simp[ff*(a + b*Sin[e + f*x]^4)^p*((Sec[e + f*x]^2)^(2*p)/(f*Apart[a*(1 + Tan[
e + f*x]^2)^2 + b*Tan[e + f*x]^4]^p)) Subst[Int[(d*ff*x)^m*(ExpandToSum[a*(1 + ff^2*x^2)^2 + b*ff^4*x^4, x]^
p/(1 + ff^2*x^2)^(2*p + 1)), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, d, e, f, m}, x] && IntegerQ[p - 1/2]
-
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> With[
{ff = FreeFactors[Tan[e + f*x], x]}, Simp[ff^(m + 1)/f Subst[Int[(d*x)^m*((b*ff^n*x^n + a*(1 + ff^2*x^2)^(n/
2))^p/(1 + ff^2*x^2)^(n*(p/2) + 1)), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, d, e, f, m}, x] && IntegerQ[
n/2] && IGtQ[p, 0]
-
Int[((a_) + (b_.)*((c_.)*sin[(e_.) + (f_.)*(x_)])^(n_))^(p_.)*((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol]
:> Int[ExpandTrig[(d*tan[e + f*x])^m*(a + b*(c*sin[e + f*x])^n)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n},
x] && IGtQ[p, 0]
-
Int[((a_) + (b_.)*((c_.)*sin[(e_.) + (f_.)*(x_)])^(n_))^(p_.)*((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol]
:> Unintegrable[(a + b*(c*Sin[e + f*x])^n)^p*(d*Tan[e + f*x])^m, x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x]
-
Int[(cot[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*((c_.)*sin[(e_.) + (f_.)*(x_)])^(n_))^(p_), x_Symbol] :
> Simp[(d*Cot[e + f*x])^FracPart[m]*(Tan[e + f*x]/d)^FracPart[m] Int[(a + b*(c*Sin[e + f*x])^n)^p/(Tan[e + f
*x]/d)^m, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && !IntegerQ[m]
-
Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_)*((a_) + (b_.)*((c_.)*sin[(e_.) + (f_.)*(x_)])^(n_))^(p_), x_Symbol] :
> Simp[(d*Sec[e + f*x])^FracPart[m]*(Cos[e + f*x]/d)^FracPart[m] Int[(a + b*(c*Sin[e + f*x])^n)^p/(Cos[e + f
*x]/d)^m, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && !IntegerQ[m]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^(n_.))^(p_.), x_Symbol] :> Simp
[d^(n*p) Int[(d*Csc[e + f*x])^(m - n*p)*(b + a*Csc[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p},
x] && !IntegerQ[m] && IntegersQ[n, p]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*((c_.)*sin[(e_.) + (f_.)*(x_)])^(n_))^(p_), x_Symbol] :
> Simp[(d*Csc[e + f*x])^FracPart[m]*(Sin[e + f*x]/d)^FracPart[m] Int[(a + b*(c*Sin[e + f*x])^n)^p/(Sin[e + f
*x]/d)^m, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && !IntegerQ[m]
-
Int[((a_) + (b_.)*(cos[(e_.) + (f_.)*(x_)]*(d_.) + (c_.)*sin[(e_.) + (f_.)*(x_)])^2)^(p_), x_Symbol] :> Int[(a
+ b*(Sqrt[c^2 + d^2]*Sin[ArcTan[c, d] + e + f*x])^2)^p, x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[p^2, 1/4] &
& GtQ[a, 0]
-
Int[((a_) + (b_.)*(cos[(e_.) + (f_.)*(x_)]*(d_.) + (c_.)*sin[(e_.) + (f_.)*(x_)])^2)^(p_), x_Symbol] :> Simp[(
a + b*(c*Sin[e + f*x] + d*Cos[e + f*x])^2)^p/(1 + (b*(c*Sin[e + f*x] + d*Cos[e + f*x])^2)/a)^p Int[(1 + (b*(
c*Sin[e + f*x] + d*Cos[e + f*x])^2)/a)^p, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[p^2, 1/4] && !GtQ[a,
0]
-
Int[sin[(d_.) + (e_.)*(x_)]^(m_)*(cos[(d_.) + (e_.)*(x_)]^(p_)*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)]^(q
_))^(n_), x_Symbol] :> Module[{f = FreeFactors[Cot[d + e*x], x]}, Simp[-f/e Subst[Int[ExpandToSum[c + b*(1 +
f^2*x^2)^(q/2 - p/2) + a*(1 + f^2*x^2)^(q/2), x]^n/(1 + f^2*x^2)^(m/2 + n*(q/2) + 1), x], x, Cot[d + e*x]/f],
x]] /; FreeQ[{a, b, c, d, e}, x] && IntegerQ[m/2] && IntegerQ[p/2] && IntegerQ[q/2] && IntegerQ[n] && GtQ[p,
0] && LeQ[p, q]
-
Int[cos[(d_.) + (e_.)*(x_)]^(m_)*(cos[(d_.) + (e_.)*(x_)]^(q_)*(c_.) + (a_) + (b_.)*sin[(d_.) + (e_.)*(x_)]^(p
_))^(n_), x_Symbol] :> Module[{f = FreeFactors[Tan[d + e*x], x]}, Simp[f/e Subst[Int[ExpandToSum[c + b*(1 +
f^2*x^2)^(q/2 - p/2) + a*(1 + f^2*x^2)^(q/2), x]^n/(1 + f^2*x^2)^(m/2 + n*(q/2) + 1), x], x, Tan[d + e*x]/f],
x]] /; FreeQ[{a, b, c, d, e}, x] && IntegerQ[m/2] && IntegerQ[p/2] && IntegerQ[q/2] && IntegerQ[n] && GtQ[p, 0
] && LeQ[p, q]
-
Int[sin[(d_.) + (e_.)*(x_)]^(m_)*(cos[(d_.) + (e_.)*(x_)]^(p_)*(b_.) + (a_) + (c_.)*sin[(d_.) + (e_.)*(x_)]^(q
_))^(n_), x_Symbol] :> Module[{f = FreeFactors[Cot[d + e*x], x]}, Simp[-f/e Subst[Int[ExpandToSum[a*(1 + f^2
*x^2)^(p/2) + b*f^p*x^p + c*(1 + f^2*x^2)^(p/2 - q/2), x]^n/(1 + f^2*x^2)^(m/2 + n*(p/2) + 1), x], x, Cot[d +
e*x]/f], x]] /; FreeQ[{a, b, c, d, e}, x] && IntegerQ[m/2] && IntegerQ[p/2] && IntegerQ[q/2] && IntegerQ[n] &&
LtQ[0, q, p]
-
Int[cos[(d_.) + (e_.)*(x_)]^(m_)*(cos[(d_.) + (e_.)*(x_)]^(q_)*(c_.) + (a_) + (b_.)*sin[(d_.) + (e_.)*(x_)]^(p
_))^(n_), x_Symbol] :> Module[{f = FreeFactors[Tan[d + e*x], x]}, Simp[f/e Subst[Int[ExpandToSum[a*(1 + f^2*
x^2)^(p/2) + b*f^p*x^p + c*(1 + f^2*x^2)^(p/2 - q/2), x]^n/(1 + f^2*x^2)^(m/2 + n*(p/2) + 1), x], x, Tan[d + e
*x]/f], x]] /; FreeQ[{a, b, c, d, e}, x] && IntegerQ[m/2] && IntegerQ[p/2] && IntegerQ[q/2] && IntegerQ[n] &&
LtQ[0, q, p]
-
Int[((a_.) + (b_.)*sin[(d_.) + (e_.)*(x_)]^(n_.) + (c_.)*sin[(d_.) + (e_.)*(x_)]^(n2_.))^(p_.), x_Symbol] :> S
imp[1/(4^p*c^p) Int[(b + 2*c*Sin[d + e*x]^n)^(2*p), x], x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[n2, 2*n] &
& EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]
-
Int[((a_.) + cos[(d_.) + (e_.)*(x_)]^(n_.)*(b_.) + cos[(d_.) + (e_.)*(x_)]^(n2_.)*(c_.))^(p_.), x_Symbol] :> S
imp[1/(4^p*c^p) Int[(b + 2*c*Cos[d + e*x]^n)^(2*p), x], x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[n2, 2*n] &
& EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]
-
Int[((a_.) + (b_.)*sin[(d_.) + (e_.)*(x_)]^(n_.) + (c_.)*sin[(d_.) + (e_.)*(x_)]^(n2_.))^(p_), x_Symbol] :> Si
mp[(a + b*Sin[d + e*x]^n + c*Sin[d + e*x]^(2*n))^p/(b + 2*c*Sin[d + e*x]^n)^(2*p) Int[u*(b + 2*c*Sin[d + e*x
]^n)^(2*p), x], x] /; FreeQ[{a, b, c, d, e, n, p}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && !IntegerQ[p]
-
Int[((a_.) + cos[(d_.) + (e_.)*(x_)]^(n_.)*(b_.) + cos[(d_.) + (e_.)*(x_)]^(n2_.)*(c_.))^(p_), x_Symbol] :> Si
mp[(a + b*Cos[d + e*x]^n + c*Cos[d + e*x]^(2*n))^p/(b + 2*c*Cos[d + e*x]^n)^(2*p) Int[u*(b + 2*c*Cos[d + e*x
]^n)^(2*p), x], x] /; FreeQ[{a, b, c, d, e, n, p}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && !IntegerQ[p]
-
Int[((a_.) + (b_.)*sin[(d_.) + (e_.)*(x_)]^(n_.) + (c_.)*sin[(d_.) + (e_.)*(x_)]^(n2_.))^(-1), x_Symbol] :> Mo
dule[{q = Rt[b^2 - 4*a*c, 2]}, Simp[2*(c/q) Int[1/(b - q + 2*c*Sin[d + e*x]^n), x], x] - Simp[2*(c/q) Int[
1/(b + q + 2*c*Sin[d + e*x]^n), x], x]] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0]
-
Int[((a_.) + cos[(d_.) + (e_.)*(x_)]^(n_.)*(b_.) + cos[(d_.) + (e_.)*(x_)]^(n2_.)*(c_.))^(-1), x_Symbol] :> Mo
dule[{q = Rt[b^2 - 4*a*c, 2]}, Simp[2*(c/q) Int[1/(b - q + 2*c*Cos[d + e*x]^n), x], x] - Simp[2*(c/q) Int[
1/(b + q + 2*c*Cos[d + e*x]^n), x], x]] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0]
-
Int[sin[(d_.) + (e_.)*(x_)]^(m_.)*((a_.) + (b_.)*sin[(d_.) + (e_.)*(x_)]^(n_.) + (c_.)*sin[(d_.) + (e_.)*(x_)]
^(n2_.))^(p_), x_Symbol] :> Simp[1/(4^p*c^p) Int[Sin[d + e*x]^m*(b + 2*c*Sin[d + e*x]^n)^(2*p), x], x] /; Fr
eeQ[{a, b, c, d, e, m, n}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]
-
Int[cos[(d_.) + (e_.)*(x_)]^(m_.)*((a_.) + cos[(d_.) + (e_.)*(x_)]^(n_.)*(b_.) + cos[(d_.) + (e_.)*(x_)]^(n2_.
)*(c_.))^(p_), x_Symbol] :> Simp[1/(4^p*c^p) Int[Cos[d + e*x]^m*(b + 2*c*Cos[d + e*x]^n)^(2*p), x], x] /; Fr
eeQ[{a, b, c, d, e, m, n}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]
-
Int[sin[(d_.) + (e_.)*(x_)]^(m_.)*((a_.) + (b_.)*sin[(d_.) + (e_.)*(x_)]^(n_.) + (c_.)*sin[(d_.) + (e_.)*(x_)]
^(n2_.))^(p_), x_Symbol] :> Simp[(a + b*Sin[d + e*x]^n + c*Sin[d + e*x]^(2*n))^p/(b + 2*c*Sin[d + e*x]^n)^(2*p
) Int[Sin[d + e*x]^m*(b + 2*c*Sin[d + e*x]^n)^(2*p), x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && EqQ[n2,
2*n] && EqQ[b^2 - 4*a*c, 0] && !IntegerQ[p]
-
Int[cos[(d_.) + (e_.)*(x_)]^(m_.)*((a_.) + cos[(d_.) + (e_.)*(x_)]^(n_.)*(b_.) + cos[(d_.) + (e_.)*(x_)]^(n2_.
)*(c_.))^(p_), x_Symbol] :> Simp[(a + b*Cos[d + e*x]^n + c*Cos[d + e*x]^(2*n))^p/(b + 2*c*Cos[d + e*x]^n)^(2*p
) Int[Cos[d + e*x]^m*(b + 2*c*Cos[d + e*x]^n)^(2*p), x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && EqQ[n2,
2*n] && EqQ[b^2 - 4*a*c, 0] && !IntegerQ[p]
-
Int[sin[(d_.) + (e_.)*(x_)]^(m_)*((a_.) + (b_.)*sin[(d_.) + (e_.)*(x_)]^(n_) + (c_.)*sin[(d_.) + (e_.)*(x_)]^(
n2_))^(p_), x_Symbol] :> Module[{f = FreeFactors[Cot[d + e*x], x]}, Simp[-f/e Subst[Int[ExpandToSum[c + b*(1
+ x^2)^(n/2) + a*(1 + x^2)^n, x]^p/(1 + f^2*x^2)^(m/2 + n*p + 1), x], x, Cot[d + e*x]/f], x]] /; FreeQ[{a, b,
c, d, e}, x] && EqQ[n2, 2*n] && IntegerQ[m/2] && NeQ[b^2 - 4*a*c, 0] && IntegerQ[n/2] && IntegerQ[p]
-
Int[cos[(d_.) + (e_.)*(x_)]^(m_.)*((a_.) + cos[(d_.) + (e_.)*(x_)]^(n_)*(b_.) + cos[(d_.) + (e_.)*(x_)]^(n2_)*
(c_.))^(p_), x_Symbol] :> Module[{f = FreeFactors[Tan[d + e*x], x]}, Simp[f/e Subst[Int[ExpandToSum[c + b*(1
+ x^2)^(n/2) + a*(1 + x^2)^n, x]^p/(1 + f^2*x^2)^(m/2 + n*p + 1), x], x, Tan[d + e*x]/f], x]] /; FreeQ[{a, b,
c, d, e}, x] && EqQ[n2, 2*n] && IntegerQ[m/2] && NeQ[b^2 - 4*a*c, 0] && IntegerQ[n/2] && IntegerQ[p]
-
Int[sin[(d_.) + (e_.)*(x_)]^(m_.)*((a_.) + (b_.)*sin[(d_.) + (e_.)*(x_)]^(n_.) + (c_.)*sin[(d_.) + (e_.)*(x_)]
^(n2_.))^(p_), x_Symbol] :> Int[ExpandTrig[sin[d + e*x]^m*(a + b*sin[d + e*x]^n + c*sin[d + e*x]^(2*n))^p, x],
x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IntegersQ[m, n, p]
-
Int[cos[(d_.) + (e_.)*(x_)]^(m_.)*((a_.) + cos[(d_.) + (e_.)*(x_)]^(n_.)*(b_.) + cos[(d_.) + (e_.)*(x_)]^(n2_.
)*(c_.))^(p_), x_Symbol] :> Int[ExpandTrig[cos[d + e*x]^m*(a + b*cos[d + e*x]^n + c*cos[d + e*x]^(2*n))^p, x],
x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IntegersQ[m, n, p]
-
Int[cos[(d_.) + (e_.)*(x_)]^(m_.)*((a_.) + (b_.)*((f_.)*sin[(d_.) + (e_.)*(x_)])^(n_.) + (c_.)*((f_.)*sin[(d_.
) + (e_.)*(x_)])^(n2_.))^(p_.), x_Symbol] :> Module[{g = FreeFactors[Sin[d + e*x], x]}, Simp[g/e Subst[Int[(
1 - g^2*x^2)^((m - 1)/2)*(a + b*(f*g*x)^n + c*(f*g*x)^(2*n))^p, x], x, Sin[d + e*x]/g], x]] /; FreeQ[{a, b, c,
d, e, f, n, p}, x] && EqQ[n2, 2*n] && IntegerQ[(m - 1)/2]
-
Int[((a_.) + (b_.)*(cos[(d_.) + (e_.)*(x_)]*(f_.))^(n_.) + (c_.)*(cos[(d_.) + (e_.)*(x_)]*(f_.))^(n2_.))^(p_.)
*sin[(d_.) + (e_.)*(x_)]^(m_.), x_Symbol] :> Module[{g = FreeFactors[Cos[d + e*x], x]}, Simp[-g/e Subst[Int[
(1 - g^2*x^2)^((m - 1)/2)*(a + b*(f*g*x)^n + c*(f*g*x)^(2*n))^p, x], x, Cos[d + e*x]/g], x]] /; FreeQ[{a, b, c
, d, e, f, n, p}, x] && EqQ[n2, 2*n] && IntegerQ[(m - 1)/2]
-
Int[cos[(d_.) + (e_.)*(x_)]^(m_)*((a_.) + (b_.)*sin[(d_.) + (e_.)*(x_)]^(n_.) + (c_.)*sin[(d_.) + (e_.)*(x_)]^
(n2_.))^(p_.), x_Symbol] :> Simp[1/(4^p*c^p) Int[Cos[d + e*x]^m*(b + 2*c*Sin[d + e*x]^n)^(2*p), x], x] /; Fr
eeQ[{a, b, c, d, e, m, n}, x] && EqQ[n2, 2*n] && !IntegerQ[(m - 1)/2] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]
-
Int[((a_.) + cos[(d_.) + (e_.)*(x_)]^(n_.)*(b_.) + cos[(d_.) + (e_.)*(x_)]^(n2_.)*(c_.))^(p_.)*sin[(d_.) + (e_
.)*(x_)]^(m_), x_Symbol] :> Simp[1/(4^p*c^p) Int[Sin[d + e*x]^m*(b + 2*c*Cos[d + e*x]^n)^(2*p), x], x] /; Fr
eeQ[{a, b, c, d, e, m, n}, x] && EqQ[n2, 2*n] && !IntegerQ[(m - 1)/2] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]
-
Int[cos[(d_.) + (e_.)*(x_)]^(m_)*((a_.) + (b_.)*sin[(d_.) + (e_.)*(x_)]^(n_.) + (c_.)*sin[(d_.) + (e_.)*(x_)]^
(n2_.))^(p_), x_Symbol] :> Simp[(a + b*Sin[d + e*x]^n + c*Sin[d + e*x]^(2*n))^p/(b + 2*c*Sin[d + e*x]^n)^(2*p)
Int[Cos[d + e*x]^m*(b + 2*c*Sin[d + e*x]^n)^(2*p), x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && EqQ[n2,
2*n] && !IntegerQ[(m - 1)/2] && EqQ[b^2 - 4*a*c, 0] && !IntegerQ[p]
-
Int[((a_.) + cos[(d_.) + (e_.)*(x_)]^(n_.)*(b_.) + cos[(d_.) + (e_.)*(x_)]^(n2_.)*(c_.))^(p_)*sin[(d_.) + (e_.
)*(x_)]^(m_), x_Symbol] :> Simp[(a + b*Cos[d + e*x]^n + c*Cos[d + e*x]^(2*n))^p/(b + 2*c*Cos[d + e*x]^n)^(2*p)
Int[Sin[d + e*x]^m*(b + 2*c*Cos[d + e*x]^n)^(2*p), x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && EqQ[n2,
2*n] && !IntegerQ[(m - 1)/2] && EqQ[b^2 - 4*a*c, 0] && !IntegerQ[p]
-
Int[cos[(d_.) + (e_.)*(x_)]^(m_)*((a_.) + (b_.)*sin[(d_.) + (e_.)*(x_)]^(n_) + (c_.)*sin[(d_.) + (e_.)*(x_)]^(
n2_))^(p_.), x_Symbol] :> Module[{f = FreeFactors[Cot[d + e*x], x]}, Simp[-f^(m + 1)/e Subst[Int[x^m*(Expand
ToSum[c + b*(1 + x^2)^(n/2) + a*(1 + x^2)^n, x]^p/(1 + f^2*x^2)^(m/2 + n*p + 1)), x], x, Cot[d + e*x]/f], x]]
/; FreeQ[{a, b, c, d, e}, x] && EqQ[n2, 2*n] && IntegerQ[m/2] && NeQ[b^2 - 4*a*c, 0] && IntegerQ[n/2] && Integ
erQ[p]
-
Int[((a_.) + cos[(d_.) + (e_.)*(x_)]^(n_)*(b_.) + cos[(d_.) + (e_.)*(x_)]^(n2_)*(c_.))^(p_.)*sin[(d_.) + (e_.)
*(x_)]^(m_.), x_Symbol] :> Module[{f = FreeFactors[Tan[d + e*x], x]}, Simp[f^(m + 1)/e Subst[Int[x^m*(Expand
ToSum[c + b*(1 + x^2)^(n/2) + a*(1 + x^2)^n, x]^p/(1 + f^2*x^2)^(m/2 + n*p + 1)), x], x, Tan[d + e*x]/f], x]]
/; FreeQ[{a, b, c, d, e}, x] && EqQ[n2, 2*n] && IntegerQ[m/2] && NeQ[b^2 - 4*a*c, 0] && IntegerQ[n/2] && Integ
erQ[p]
-
Int[cos[(d_.) + (e_.)*(x_)]^(m_.)*((a_.) + (b_.)*sin[(d_.) + (e_.)*(x_)]^(n_.) + (c_.)*sin[(d_.) + (e_.)*(x_)]
^(n2_.))^(p_.), x_Symbol] :> Int[ExpandTrig[(1 - sin[d + e*x]^2)^(m/2)*(a + b*sin[d + e*x]^n + c*sin[d + e*x]^
(2*n))^p, x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[n2, 2*n] && IntegerQ[m/2] && NeQ[b^2 - 4*a*c, 0] && Integ
ersQ[n, p]
-
Int[((a_.) + cos[(d_.) + (e_.)*(x_)]^(n_.)*(b_.) + cos[(d_.) + (e_.)*(x_)]^(n2_.)*(c_.))^(p_.)*sin[(d_.) + (e_
.)*(x_)]^(m_.), x_Symbol] :> Int[ExpandTrig[(1 - cos[d + e*x]^2)^(m/2)*(a + b*cos[d + e*x]^n + c*cos[d + e*x]^
(2*n))^p, x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[n2, 2*n] && IntegerQ[m/2] && NeQ[b^2 - 4*a*c, 0] && Integ
ersQ[n, p]
-
Int[((a_) + (c_.)*((f_.)*sin[(d_.) + (e_.)*(x_)])^(n2_.) + (b_.)*((f_.)*sin[(d_.) + (e_.)*(x_)])^(n_))^(p_.)*t
an[(d_.) + (e_.)*(x_)]^(m_.), x_Symbol] :> Module[{g = FreeFactors[Sin[d + e*x], x]}, Simp[g^(m + 1)/e Subst
[Int[x^m*((a + b*(f*g*x)^n + c*(f*g*x)^(2*n))^p/(1 - g^2*x^2)^((m + 1)/2)), x], x, Sin[d + e*x]/g], x]] /; Fre
eQ[{a, b, c, d, e, f, n}, x] && IntegerQ[(m - 1)/2] && IntegerQ[2*p]
-
Int[cot[(d_.) + (e_.)*(x_)]^(m_.)*((c_.)*(cos[(d_.) + (e_.)*(x_)]*(f_.))^(n2_.) + (b_.)*(cos[(d_.) + (e_.)*(x_
)]*(f_.))^(n_) + (a_))^(p_.), x_Symbol] :> Module[{g = FreeFactors[Cos[d + e*x], x]}, Simp[-g^(m + 1)/e Subs
t[Int[x^m*((a + b*(f*g*x)^n + c*(f*g*x)^(2*n))^p/(1 - g^2*x^2)^((m + 1)/2)), x], x, Cos[d + e*x]/g], x]] /; Fr
eeQ[{a, b, c, d, e, f, n}, x] && IntegerQ[(m - 1)/2] && IntegerQ[2*p]
-
Int[((a_.) + (b_.)*sin[(d_.) + (e_.)*(x_)]^(n_.) + (c_.)*sin[(d_.) + (e_.)*(x_)]^(n2_.))^(p_.)*tan[(d_.) + (e_
.)*(x_)]^(m_), x_Symbol] :> Simp[1/(4^p*c^p) Int[Tan[d + e*x]^m*(b + 2*c*Sin[d + e*x]^n)^(2*p), x], x] /; Fr
eeQ[{a, b, c, d, e, m, n}, x] && EqQ[n2, 2*n] && !IntegerQ[(m - 1)/2] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]
-
Int[cot[(d_.) + (e_.)*(x_)]^(m_)*((a_.) + cos[(d_.) + (e_.)*(x_)]^(n_.)*(b_.) + cos[(d_.) + (e_.)*(x_)]^(n2_.)
*(c_.))^(p_.), x_Symbol] :> Simp[1/(4^p*c^p) Int[Cot[d + e*x]^m*(b + 2*c*Cos[d + e*x]^n)^(2*p), x], x] /; Fr
eeQ[{a, b, c, d, e, m, n}, x] && EqQ[n2, 2*n] && !IntegerQ[(m - 1)/2] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]
-
Int[((a_.) + (b_.)*sin[(d_.) + (e_.)*(x_)]^(n_.) + (c_.)*sin[(d_.) + (e_.)*(x_)]^(n2_.))^(p_)*tan[(d_.) + (e_.
)*(x_)]^(m_), x_Symbol] :> Simp[(a + b*Sin[d + e*x]^n + c*Sin[d + e*x]^(2*n))^p/(b + 2*c*Sin[d + e*x]^n)^(2*p)
Int[Tan[d + e*x]^m*(b + 2*c*Sin[d + e*x]^n)^(2*p), x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && EqQ[n2,
2*n] && !IntegerQ[(m - 1)/2] && EqQ[b^2 - 4*a*c, 0] && !IntegerQ[p]
-
Int[cot[(d_.) + (e_.)*(x_)]^(m_)*((a_.) + cos[(d_.) + (e_.)*(x_)]^(n_.)*(b_.) + cos[(d_.) + (e_.)*(x_)]^(n2_.)
*(c_.))^(p_), x_Symbol] :> Simp[(a + b*Cos[d + e*x]^n + c*Cos[d + e*x]^(2*n))^p/(b + 2*c*Cos[d + e*x]^n)^(2*p)
Int[Cot[d + e*x]^m*(b + 2*c*Cos[d + e*x]^n)^(2*p), x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && EqQ[n2,
2*n] && !IntegerQ[(m - 1)/2] && EqQ[b^2 - 4*a*c, 0] && !IntegerQ[p]
-
Int[((a_.) + (b_.)*sin[(d_.) + (e_.)*(x_)]^(n_) + (c_.)*sin[(d_.) + (e_.)*(x_)]^(n2_))^(p_.)*tan[(d_.) + (e_.)
*(x_)]^(m_.), x_Symbol] :> Module[{f = FreeFactors[Tan[d + e*x], x]}, Simp[f^(m + 1)/e Subst[Int[x^m*(Expand
ToSum[c*x^(2*n) + b*x^n*(1 + x^2)^(n/2) + a*(1 + x^2)^n, x]^p/(1 + f^2*x^2)^(n*p + 1)), x], x, Tan[d + e*x]/f]
, x]] /; FreeQ[{a, b, c, d, e, m}, x] && EqQ[n2, 2*n] && !IntegerQ[(m - 1)/2] && NeQ[b^2 - 4*a*c, 0] && Integ
erQ[n/2] && IntegerQ[p]
-
Int[cot[(d_.) + (e_.)*(x_)]^(m_.)*((a_.) + cos[(d_.) + (e_.)*(x_)]^(n_)*(b_.) + cos[(d_.) + (e_.)*(x_)]^(n2_)*
(c_.))^(p_.), x_Symbol] :> Module[{f = FreeFactors[Cot[d + e*x], x]}, Simp[-f^(m + 1)/e Subst[Int[x^m*(Expan
dToSum[c*x^(2*n) + b*x^n*(1 + x^2)^(n/2) + a*(1 + x^2)^n, x]^p/(1 + f^2*x^2)^(n*p + 1)), x], x, Cot[d + e*x]/f
], x]] /; FreeQ[{a, b, c, d, e, m}, x] && EqQ[n2, 2*n] && !IntegerQ[(m - 1)/2] && NeQ[b^2 - 4*a*c, 0] && Inte
gerQ[n/2] && IntegerQ[p]
-
Int[((a_.) + (b_.)*sin[(d_.) + (e_.)*(x_)]^(n_.) + (c_.)*sin[(d_.) + (e_.)*(x_)]^(n2_.))^(p_.)*tan[(d_.) + (e_
.)*(x_)]^(m_.), x_Symbol] :> Int[ExpandTrig[sin[d + e*x]^m*((a + b*sin[d + e*x]^n + c*sin[d + e*x]^(2*n))^p/(1
- sin[d + e*x]^2)^(m/2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[n2, 2*n] && IntegerQ[m/2] && NeQ[b^2 - 4
*a*c, 0] && IntegersQ[n, p]
-
Int[cot[(d_.) + (e_.)*(x_)]^(m_.)*((a_.) + cos[(d_.) + (e_.)*(x_)]^(n_.)*(b_.) + cos[(d_.) + (e_.)*(x_)]^(n2_.
)*(c_.))^(p_.), x_Symbol] :> Int[ExpandTrig[cos[d + e*x]^m*((a + b*cos[d + e*x]^n + c*cos[d + e*x]^(2*n))^p/(1
- cos[d + e*x]^2)^(m/2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[n2, 2*n] && IntegerQ[m/2] && NeQ[b^2 - 4
*a*c, 0] && IntegersQ[n, p]
-
Int[cot[(d_.) + (e_.)*(x_)]^(m_.)*((a_) + (c_.)*((f_.)*sin[(d_.) + (e_.)*(x_)])^(n2_.) + (b_.)*((f_.)*sin[(d_.
) + (e_.)*(x_)])^(n_))^(p_.), x_Symbol] :> Module[{g = FreeFactors[Sin[d + e*x], x]}, Simp[g^(m + 1)/e Subst
[Int[(1 - g^2*x^2)^((m - 1)/2)*((a + b*(f*g*x)^n + c*(f*g*x)^(2*n))^p/x^m), x], x, Sin[d + e*x]/g], x]] /; Fre
eQ[{a, b, c, d, e, f, n}, x] && IntegerQ[(m - 1)/2] && IntegerQ[2*p]
-
Int[((c_.)*(cos[(d_.) + (e_.)*(x_)]*(f_.))^(n2_.) + (b_.)*(cos[(d_.) + (e_.)*(x_)]*(f_.))^(n_) + (a_))^(p_.)*t
an[(d_.) + (e_.)*(x_)]^(m_.), x_Symbol] :> Module[{g = FreeFactors[Cos[d + e*x], x]}, Simp[-g^(m + 1)/e Subs
t[Int[(1 - g^2*x^2)^((m - 1)/2)*((a + b*(f*g*x)^n + c*(f*g*x)^(2*n))^p/x^m), x], x, Cos[d + e*x]/g], x]] /; Fr
eeQ[{a, b, c, d, e, f, n}, x] && IntegerQ[(m - 1)/2] && IntegerQ[2*p]
-
Int[cot[(d_.) + (e_.)*(x_)]^(m_)*((a_.) + (b_.)*sin[(d_.) + (e_.)*(x_)]^(n_.) + (c_.)*sin[(d_.) + (e_.)*(x_)]^
(n2_.))^(p_.), x_Symbol] :> Simp[1/(4^p*c^p) Int[Cot[d + e*x]^m*(b + 2*c*Sin[d + e*x]^n)^(2*p), x], x] /; Fr
eeQ[{a, b, c, d, e, m, n}, x] && EqQ[n2, 2*n] && !IntegerQ[(m - 1)/2] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]
-
Int[((a_.) + cos[(d_.) + (e_.)*(x_)]^(n_.)*(b_.) + cos[(d_.) + (e_.)*(x_)]^(n2_.)*(c_.))^(p_.)*tan[(d_.) + (e_
.)*(x_)]^(m_), x_Symbol] :> Simp[1/(4^p*c^p) Int[Tan[d + e*x]^m*(b + 2*c*Cos[d + e*x]^n)^(2*p), x], x] /; Fr
eeQ[{a, b, c, d, e, m, n}, x] && EqQ[n2, 2*n] && !IntegerQ[(m - 1)/2] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]
-
Int[cot[(d_.) + (e_.)*(x_)]^(m_)*((a_.) + (b_.)*sin[(d_.) + (e_.)*(x_)]^(n_.) + (c_.)*sin[(d_.) + (e_.)*(x_)]^
(n2_.))^(p_), x_Symbol] :> Simp[(a + b*Sin[d + e*x]^n + c*Sin[d + e*x]^(2*n))^p/(b + 2*c*Sin[d + e*x]^n)^(2*p)
Int[Cot[d + e*x]^m*(b + 2*c*Sin[d + e*x]^n)^(2*p), x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && EqQ[n2,
2*n] && !IntegerQ[(m - 1)/2] && EqQ[b^2 - 4*a*c, 0] && !IntegerQ[p]
-
Int[((a_.) + cos[(d_.) + (e_.)*(x_)]^(n_.)*(b_.) + cos[(d_.) + (e_.)*(x_)]^(n2_.)*(c_.))^(p_)*tan[(d_.) + (e_.
)*(x_)]^(m_), x_Symbol] :> Simp[(a + b*Cos[d + e*x]^n + c*Cos[d + e*x]^(2*n))^p/(b + 2*c*Cos[d + e*x]^n)^(2*p)
Int[Tan[d + e*x]^m*(b + 2*c*Cos[d + e*x]^n)^(2*p), x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && EqQ[n2,
2*n] && !IntegerQ[(m - 1)/2] && EqQ[b^2 - 4*a*c, 0] && !IntegerQ[p]
-
Int[cot[(d_.) + (e_.)*(x_)]^(m_.)*((a_) + (b_.)*sin[(d_.) + (e_.)*(x_)]^(n_) + (c_.)*sin[(d_.) + (e_.)*(x_)]^(
n2_))^(p_.), x_Symbol] :> Module[{f = FreeFactors[Cot[d + e*x], x]}, Simp[-f^(m + 1)/e Subst[Int[x^m*(Expand
ToSum[c + b*(1 + f^2*x^2)^(n/2) + a*(1 + f^2*x^2)^n, x]^p/(1 + f^2*x^2)^(n*p + 1)), x], x, Cot[d + e*x]/f], x]
] /; FreeQ[{a, b, c, d, e, m}, x] && EqQ[n2, 2*n] && IntegerQ[n/2] && IntegerQ[p]
-
Int[(cos[(d_.) + (e_.)*(x_)]^(n_)*(b_.) + cos[(d_.) + (e_.)*(x_)]^(n2_)*(c_.) + (a_))^(p_.)*tan[(d_.) + (e_.)*
(x_)]^(m_.), x_Symbol] :> Module[{f = FreeFactors[Tan[d + e*x], x]}, Simp[f^(m + 1)/e Subst[Int[x^m*(ExpandT
oSum[c + b*(1 + f^2*x^2)^(n/2) + a*(1 + f^2*x^2)^n, x]^p/(1 + f^2*x^2)^(n*p + 1)), x], x, Tan[d + e*x]/f], x]]
/; FreeQ[{a, b, c, d, e, m}, x] && EqQ[n2, 2*n] && IntegerQ[n/2] && IntegerQ[p]
-
Int[cot[(d_.) + (e_.)*(x_)]^(m_.)*((a_.) + (b_.)*sin[(d_.) + (e_.)*(x_)]^(n_.) + (c_.)*sin[(d_.) + (e_.)*(x_)]
^(n2_.))^(p_.), x_Symbol] :> Int[ExpandTrig[(1 - sin[d + e*x]^2)^(m/2)*((a + b*sin[d + e*x]^n + c*sin[d + e*x]
^(2*n))^p/sin[d + e*x]^m), x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[n2, 2*n] && IntegerQ[m/2] && NeQ[b^2 - 4
*a*c, 0] && IntegersQ[n, p]
-
Int[((a_.) + cos[(d_.) + (e_.)*(x_)]^(n_.)*(b_.) + cos[(d_.) + (e_.)*(x_)]^(n2_.)*(c_.))^(p_.)*tan[(d_.) + (e_
.)*(x_)]^(m_.), x_Symbol] :> Int[ExpandTrig[(1 - cos[d + e*x]^2)^(m/2)*((a + b*cos[d + e*x]^n + c*cos[d + e*x]
^(2*n))^p/cos[d + e*x]^m), x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[n2, 2*n] && IntegerQ[m/2] && NeQ[b^2 - 4
*a*c, 0] && IntegersQ[n, p]
-
Int[((A_) + (B_.)*sin[(d_.) + (e_.)*(x_)])*((a_) + (b_.)*sin[(d_.) + (e_.)*(x_)] + (c_.)*sin[(d_.) + (e_.)*(x_
)]^2)^(n_), x_Symbol] :> Simp[1/(4^n*c^n) Int[(A + B*Sin[d + e*x])*(b + 2*c*Sin[d + e*x])^(2*n), x], x] /; F
reeQ[{a, b, c, d, e, A, B}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[n]
-
Int[(cos[(d_.) + (e_.)*(x_)]*(b_.) + cos[(d_.) + (e_.)*(x_)]^2*(c_.) + (a_))^(n_)*(cos[(d_.) + (e_.)*(x_)]*(B_
.) + (A_)), x_Symbol] :> Simp[1/(4^n*c^n) Int[(A + B*Cos[d + e*x])*(b + 2*c*Cos[d + e*x])^(2*n), x], x] /; F
reeQ[{a, b, c, d, e, A, B}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[n]
-
Int[((A_) + (B_.)*sin[(d_.) + (e_.)*(x_)])*((a_) + (b_.)*sin[(d_.) + (e_.)*(x_)] + (c_.)*sin[(d_.) + (e_.)*(x_
)]^2)^(n_), x_Symbol] :> Simp[(a + b*Sin[d + e*x] + c*Sin[d + e*x]^2)^n/(b + 2*c*Sin[d + e*x])^(2*n) Int[(A
+ B*Sin[d + e*x])*(b + 2*c*Sin[d + e*x])^(2*n), x], x] /; FreeQ[{a, b, c, d, e, A, B}, x] && EqQ[b^2 - 4*a*c,
0] && !IntegerQ[n]
-
Int[(cos[(d_.) + (e_.)*(x_)]*(b_.) + cos[(d_.) + (e_.)*(x_)]^2*(c_.) + (a_))^(n_)*(cos[(d_.) + (e_.)*(x_)]*(B_
.) + (A_)), x_Symbol] :> Simp[(a + b*Cos[d + e*x] + c*Cos[d + e*x]^2)^n/(b + 2*c*Cos[d + e*x])^(2*n) Int[(A
+ B*Cos[d + e*x])*(b + 2*c*Cos[d + e*x])^(2*n), x], x] /; FreeQ[{a, b, c, d, e, A, B}, x] && EqQ[b^2 - 4*a*c,
0] && !IntegerQ[n]
-
Int[((A_) + (B_.)*sin[(d_.) + (e_.)*(x_)])/((a_.) + (b_.)*sin[(d_.) + (e_.)*(x_)] + (c_.)*sin[(d_.) + (e_.)*(x
_)]^2), x_Symbol] :> Module[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(B + (b*B - 2*A*c)/q) Int[1/(b + q + 2*c*Sin[d +
e*x]), x], x] + Simp[(B - (b*B - 2*A*c)/q) Int[1/(b - q + 2*c*Sin[d + e*x]), x], x]] /; FreeQ[{a, b, c, d, e
, A, B}, x] && NeQ[b^2 - 4*a*c, 0]
-
Int[(cos[(d_.) + (e_.)*(x_)]*(B_.) + (A_))/((a_.) + cos[(d_.) + (e_.)*(x_)]*(b_.) + cos[(d_.) + (e_.)*(x_)]^2*
(c_.)), x_Symbol] :> Module[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(B + (b*B - 2*A*c)/q) Int[1/(b + q + 2*c*Cos[d +
e*x]), x], x] + Simp[(B - (b*B - 2*A*c)/q) Int[1/(b - q + 2*c*Cos[d + e*x]), x], x]] /; FreeQ[{a, b, c, d, e
, A, B}, x] && NeQ[b^2 - 4*a*c, 0]
-
Int[((A_) + (B_.)*sin[(d_.) + (e_.)*(x_)])*((a_.) + (b_.)*sin[(d_.) + (e_.)*(x_)] + (c_.)*sin[(d_.) + (e_.)*(x
_)]^2)^(n_), x_Symbol] :> Int[ExpandTrig[(A + B*sin[d + e*x])*(a + b*sin[d + e*x] + c*sin[d + e*x]^2)^n, x], x
] /; FreeQ[{a, b, c, d, e, A, B}, x] && NeQ[b^2 - 4*a*c, 0] && IntegerQ[n]
-
Int[((a_.) + cos[(d_.) + (e_.)*(x_)]*(b_.) + cos[(d_.) + (e_.)*(x_)]^2*(c_.))^(n_)*(cos[(d_.) + (e_.)*(x_)]*(B
_.) + (A_)), x_Symbol] :> Int[ExpandTrig[(A + B*cos[d + e*x])*(a + b*cos[d + e*x] + c*cos[d + e*x]^2)^n, x], x
] /; FreeQ[{a, b, c, d, e, A, B}, x] && NeQ[b^2 - 4*a*c, 0] && IntegerQ[n]
-
Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> Simp[(-(c + d*x)^m)*(Cos[e + f*x]/f), x]
+ Simp[d*(m/f) Int[(c + d*x)^(m - 1)*Cos[e + f*x], x], x] /; FreeQ[{c, d, e, f}, x] && GtQ[m, 0]
-
Int[((c_.) + (d_.)*(x_))^(m_)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> Simp[(c + d*x)^(m + 1)*(Sin[e + f*x]/(d*(m
+ 1))), x] - Simp[f/(d*(m + 1)) Int[(c + d*x)^(m + 1)*Cos[e + f*x], x], x] /; FreeQ[{c, d, e, f}, x] && LtQ
[m, -1]
-
Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[I*(SinhIntegral[c*f*(fz/
d) + f*fz*x]/d), x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*e - c*f*fz*I, 0]
-
Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[SinIntegral[e + f*x]/d, x] /; FreeQ[{c, d,
e, f}, x] && EqQ[d*e - c*f, 0]
-
Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CoshIntegral[(-c)*f*(fz/
d) - f*fz*x]/d, x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*(e - Pi/2) - c*f*fz*I, 0] && NegQ[c*f*(fz/d), 0]
-
Int[sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CoshIntegral[c*f*(fz/d)
+ f*fz*x]/d, x] /; FreeQ[{c, d, e, f, fz}, x] && EqQ[d*(e - Pi/2) - c*f*fz*I, 0]
-
Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[CosIntegral[e - Pi/2 + f*x]/d, x] /; FreeQ
[{c, d, e, f}, x] && EqQ[d*(e - Pi/2) - c*f, 0]
-
Int[sin[(e_.) + (f_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[Cos[(d*e - c*f)/d] Int[Sin[c*(f/d) + f*x
]/(c + d*x), x], x] + Simp[Sin[(d*e - c*f)/d] Int[Cos[c*(f/d) + f*x]/(c + d*x), x], x] /; FreeQ[{c, d, e, f}
, x] && NeQ[d*e - c*f, 0]
-
Int[sin[Pi/2 + (e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[2/d Subst[Int[Cos[f*(x^2/d)],
x], x, Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]
-
Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[2/d Subst[Int[Sin[f*(x^2/d)], x], x,
Sqrt[c + d*x]], x] /; FreeQ[{c, d, e, f}, x] && ComplexFreeQ[f] && EqQ[d*e - c*f, 0]
-
Int[sin[(e_.) + (f_.)*(x_)]/Sqrt[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[Cos[(d*e - c*f)/d] Int[Sin[c*(f/d) +
f*x]/Sqrt[c + d*x], x], x] + Simp[Sin[(d*e - c*f)/d] Int[Cos[c*(f/d) + f*x]/Sqrt[c + d*x], x], x] /; FreeQ[
{c, d, e, f}, x] && ComplexFreeQ[f] && NeQ[d*e - c*f, 0]
-
Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + Pi*(k_.) + (f_.)*(x_)], x_Symbol] :> Simp[I/2 Int[(c + d*x)^m/(E^
(I*k*Pi)*E^(I*(e + f*x))), x], x] - Simp[I/2 Int[(c + d*x)^m*E^(I*k*Pi)*E^(I*(e + f*x)), x], x] /; FreeQ[{c,
d, e, f, m}, x] && IntegerQ[2*k]
-
Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + (f_.)*(x_)], x_Symbol] :> Simp[I/2 Int[(c + d*x)^m/E^(I*(e + f*x)
), x], x] - Simp[I/2 Int[(c + d*x)^m*E^(I*(e + f*x)), x], x] /; FreeQ[{c, d, e, f, m}, x]
-
Int[((c_.) + (d_.)*(x_))^(m_.)*sin[(e_.) + ((f_.)*(x_))/2]^2, x_Symbol] :> Simp[1/2 Int[(c + d*x)^m, x], x]
- Simp[1/2 Int[(c + d*x)^m*Cos[2*e + f*x], x], x] /; FreeQ[{c, d, e, f, m}, x]
-
Int[((c_.) + (d_.)*(x_))*((b_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[d*((b*Sin[e + f*x])^n/(f^2*n^
2)), x] + (-Simp[b*(c + d*x)*Cos[e + f*x]*((b*Sin[e + f*x])^(n - 1)/(f*n)), x] + Simp[b^2*((n - 1)/n) Int[(c
+ d*x)*(b*Sin[e + f*x])^(n - 2), x], x]) /; FreeQ[{b, c, d, e, f}, x] && GtQ[n, 1]
-
Int[((c_.) + (d_.)*(x_))^(m_)*((b_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[d*m*(c + d*x)^(m - 1)*((
b*Sin[e + f*x])^n/(f^2*n^2)), x] + (-Simp[b*(c + d*x)^m*Cos[e + f*x]*((b*Sin[e + f*x])^(n - 1)/(f*n)), x] + Si
mp[b^2*((n - 1)/n) Int[(c + d*x)^m*(b*Sin[e + f*x])^(n - 2), x], x] - Simp[d^2*m*((m - 1)/(f^2*n^2)) Int[(
c + d*x)^(m - 2)*(b*Sin[e + f*x])^n, x], x]) /; FreeQ[{b, c, d, e, f}, x] && GtQ[n, 1] && GtQ[m, 1]
-
Int[((c_.) + (d_.)*(x_))^(m_)*sin[(e_.) + (f_.)*(x_)]^(n_), x_Symbol] :> Int[ExpandTrigReduce[(c + d*x)^m, Sin
[e + f*x]^n, x], x] /; FreeQ[{c, d, e, f, m}, x] && IGtQ[n, 1] && ( !RationalQ[m] || (GeQ[m, -1] && LtQ[m, 1])
)
-
Int[((c_.) + (d_.)*(x_))^(m_)*sin[(e_.) + (f_.)*(x_)]^(n_), x_Symbol] :> Simp[(c + d*x)^(m + 1)*(Sin[e + f*x]^
n/(d*(m + 1))), x] - Simp[f*(n/(d*(m + 1))) Int[ExpandTrigReduce[(c + d*x)^(m + 1), Cos[e + f*x]*Sin[e + f*x
]^(n - 1), x], x], x] /; FreeQ[{c, d, e, f, m}, x] && IGtQ[n, 1] && GeQ[m, -2] && LtQ[m, -1]
-
Int[((c_.) + (d_.)*(x_))^(m_)*((b_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(c + d*x)^(m + 1)*((b*Si
n[e + f*x])^n/(d*(m + 1))), x] + (-Simp[b*f*n*(c + d*x)^(m + 2)*Cos[e + f*x]*((b*Sin[e + f*x])^(n - 1)/(d^2*(m
+ 1)*(m + 2))), x] + Simp[b^2*f^2*n*((n - 1)/(d^2*(m + 1)*(m + 2))) Int[(c + d*x)^(m + 2)*(b*Sin[e + f*x])^
(n - 2), x], x] - Simp[f^2*(n^2/(d^2*(m + 1)*(m + 2))) Int[(c + d*x)^(m + 2)*(b*Sin[e + f*x])^n, x], x]) /;
FreeQ[{b, c, d, e, f}, x] && GtQ[n, 1] && LtQ[m, -2]
-
Int[((c_.) + (d_.)*(x_))*((b_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(c + d*x)*Cos[e + f*x]*((b*Si
n[e + f*x])^(n + 1)/(b*f*(n + 1))), x] + (-Simp[d*((b*Sin[e + f*x])^(n + 2)/(b^2*f^2*(n + 1)*(n + 2))), x] + S
imp[(n + 2)/(b^2*(n + 1)) Int[(c + d*x)*(b*Sin[e + f*x])^(n + 2), x], x]) /; FreeQ[{b, c, d, e, f}, x] && Lt
Q[n, -1] && NeQ[n, -2]
-
Int[((c_.) + (d_.)*(x_))^(m_.)*((b_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(c + d*x)^m*Cos[e + f*x
]*((b*Sin[e + f*x])^(n + 1)/(b*f*(n + 1))), x] + (-Simp[d*m*(c + d*x)^(m - 1)*((b*Sin[e + f*x])^(n + 2)/(b^2*f
^2*(n + 1)*(n + 2))), x] + Simp[(n + 2)/(b^2*(n + 1)) Int[(c + d*x)^m*(b*Sin[e + f*x])^(n + 2), x], x] + Sim
p[d^2*m*((m - 1)/(b^2*f^2*(n + 1)*(n + 2))) Int[(c + d*x)^(m - 2)*(b*Sin[e + f*x])^(n + 2), x], x]) /; FreeQ
[{b, c, d, e, f}, x] && LtQ[n, -1] && NeQ[n, -2] && GtQ[m, 1]
-
Int[((c_.) + (d_.)*(x_))^(m_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Int[ExpandIntegrand[
(c + d*x)^m, (a + b*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && IGtQ[n, 0] && (EqQ[n, 1] ||
IGtQ[m, 0] || NeQ[a^2 - b^2, 0])
-
Int[((c_.) + (d_.)*(x_))^(m_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Simp[(2*a)^n Int[(
c + d*x)^m*Sin[(1/2)*(e + Pi*(a/(2*b))) + f*(x/2)]^(2*n), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[a^2
- b^2, 0] && IntegerQ[n] && (GtQ[n, 0] || IGtQ[m, 0])
-
Int[((c_.) + (d_.)*(x_))^(m_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(2*a)^IntPart[n]
*((a + b*Sin[e + f*x])^FracPart[n]/Sin[e/2 + a*(Pi/(4*b)) + f*(x/2)]^(2*FracPart[n])) Int[(c + d*x)^m*Sin[e/
2 + a*(Pi/(4*b)) + f*(x/2)]^(2*n), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[a^2 - b^2, 0] && IntegerQ[
n + 1/2] && (GtQ[n, 0] || IGtQ[m, 0])
-
Int[((c_.) + (d_.)*(x_))^(m_.)/((a_) + (b_.)*sin[(e_.) + Pi*(k_.) + (Complex[0, fz_])*(f_.)*(x_)]), x_Symbol]
:> Simp[2 Int[((c + d*x)^m*(E^((-I)*e + f*fz*x)/(b + (2*a*E^((-I)*e + f*fz*x))/E^(I*Pi*(k - 1/2)) - (b*E^(2*
((-I)*e + f*fz*x)))/E^(2*I*k*Pi))))/E^(I*Pi*(k - 1/2)), x], x] /; FreeQ[{a, b, c, d, e, f, fz}, x] && IntegerQ
[2*k] && NeQ[a^2 - b^2, 0] && IGtQ[m, 0]
-
Int[((c_.) + (d_.)*(x_))^(m_.)/((a_) + (b_.)*sin[(e_.) + Pi*(k_.) + (f_.)*(x_)]), x_Symbol] :> Simp[2 Int[(c
+ d*x)^m*E^(I*Pi*(k - 1/2))*(E^(I*(e + f*x))/(b + 2*a*E^(I*Pi*(k - 1/2))*E^(I*(e + f*x)) - b*E^(2*I*k*Pi)*E^(
2*I*(e + f*x)))), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IntegerQ[2*k] && NeQ[a^2 - b^2, 0] && IGtQ[m, 0]
-
Int[((c_.) + (d_.)*(x_))^(m_.)/((a_) + (b_.)*sin[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]), x_Symbol] :> Simp[2
Int[(c + d*x)^m*(E^((-I)*e + f*fz*x)/((-I)*b + 2*a*E^((-I)*e + f*fz*x) + I*b*E^(2*((-I)*e + f*fz*x)))), x], x
] /; FreeQ[{a, b, c, d, e, f, fz}, x] && NeQ[a^2 - b^2, 0] && IGtQ[m, 0]
-
Int[((c_.) + (d_.)*(x_))^(m_.)/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[2 Int[(c + d*x)^m*(
E^(I*(e + f*x))/(I*b + 2*a*E^(I*(e + f*x)) - I*b*E^(2*I*(e + f*x)))), x], x] /; FreeQ[{a, b, c, d, e, f}, x] &
& NeQ[a^2 - b^2, 0] && IGtQ[m, 0]
-
Int[((c_.) + (d_.)*(x_))^(m_.)/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^2, x_Symbol] :> Simp[b*(c + d*x)^m*(Cos[
e + f*x]/(f*(a^2 - b^2)*(a + b*Sin[e + f*x]))), x] + (Simp[a/(a^2 - b^2) Int[(c + d*x)^m/(a + b*Sin[e + f*x]
), x], x] - Simp[b*d*(m/(f*(a^2 - b^2))) Int[(c + d*x)^(m - 1)*(Cos[e + f*x]/(a + b*Sin[e + f*x])), x], x])
/; FreeQ[{a, b, c, d, e, f}, x] && NeQ[a^2 - b^2, 0] && IGtQ[m, 0]
-
Int[((c_.) + (d_.)*(x_))^(m_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*(c + d*x)^m
*Cos[e + f*x]*((a + b*Sin[e + f*x])^(n + 1)/(f*(n + 1)*(a^2 - b^2))), x] + (Simp[a/(a^2 - b^2) Int[(c + d*x)
^m*(a + b*Sin[e + f*x])^(n + 1), x], x] - Simp[b*((n + 2)/((n + 1)*(a^2 - b^2))) Int[(c + d*x)^m*Sin[e + f*x
]*(a + b*Sin[e + f*x])^(n + 1), x], x] + Simp[b*d*(m/(f*(n + 1)*(a^2 - b^2))) Int[(c + d*x)^(m - 1)*Cos[e +
f*x]*(a + b*Sin[e + f*x])^(n + 1), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[a^2 - b^2, 0] && ILtQ[n, -2]
&& IGtQ[m, 0]
-
Int[((c_.) + (d_.)*(x_))^(m_.)*((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Unintegrable[(c + d
*x)^m*(a + b*Sin[e + f*x])^n, x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]
-
Int[(u_)^(m_.)*((a_.) + (b_.)*Sin[v_])^(n_.), x_Symbol] :> Int[ExpandToSum[u, x]^m*(a + b*Sin[ExpandToSum[v, x
]])^n, x] /; FreeQ[{a, b, m, n}, x] && LinearQ[{u, v}, x] && !LinearMatchQ[{u, v}, x]
-
Int[((a_.) + Cos[v_]*(b_.))^(n_.)*(u_)^(m_.), x_Symbol] :> Int[ExpandToSum[u, x]^m*(a + b*Cos[ExpandToSum[v, x
]])^n, x] /; FreeQ[{a, b, m, n}, x] && LinearQ[{u, v}, x] && !LinearMatchQ[{u, v}, x]
-
Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*Sin[(c_.) + (d_.)*(x_)], x_Symbol] :> Int[ExpandIntegrand[Sin[c + d*x], (a
+ b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, n}, x] && IGtQ[p, 0]
-
Int[Cos[(c_.) + (d_.)*(x_)]*((a_) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Int[ExpandIntegrand[Cos[c + d*x], (a
+ b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, n}, x] && IGtQ[p, 0]
-
Int[((a_) + (b_.)*(x_)^(n_))^(p_)*Sin[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[x^(-n + 1)*(a + b*x^n)^(p + 1)*(S
in[c + d*x]/(b*n*(p + 1))), x] + (-Simp[(-n + 1)/(b*n*(p + 1)) Int[((a + b*x^n)^(p + 1)*Sin[c + d*x])/x^n, x
], x] - Simp[d/(b*n*(p + 1)) Int[x^(-n + 1)*(a + b*x^n)^(p + 1)*Cos[c + d*x], x], x]) /; FreeQ[{a, b, c, d},
x] && ILtQ[p, -1] && IGtQ[n, 2]
-
Int[Cos[(c_.) + (d_.)*(x_)]*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[x^(-n + 1)*(a + b*x^n)^(p + 1)*(C
os[c + d*x]/(b*n*(p + 1))), x] + (-Simp[(-n + 1)/(b*n*(p + 1)) Int[((a + b*x^n)^(p + 1)*Cos[c + d*x])/x^n, x
], x] + Simp[d/(b*n*(p + 1)) Int[x^(-n + 1)*(a + b*x^n)^(p + 1)*Sin[c + d*x], x], x]) /; FreeQ[{a, b, c, d},
x] && ILtQ[p, -1] && IGtQ[n, 2]
-
Int[((a_) + (b_.)*(x_)^(n_))^(p_)*Sin[(c_.) + (d_.)*(x_)], x_Symbol] :> Int[ExpandIntegrand[Sin[c + d*x], (a +
b*x^n)^p, x], x] /; FreeQ[{a, b, c, d}, x] && ILtQ[p, 0] && IGtQ[n, 0] && (EqQ[n, 2] || EqQ[p, -1])
-
Int[Cos[(c_.) + (d_.)*(x_)]*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Int[ExpandIntegrand[Cos[c + d*x], (a +
b*x^n)^p, x], x] /; FreeQ[{a, b, c, d}, x] && ILtQ[p, 0] && IGtQ[n, 0] && (EqQ[n, 2] || EqQ[p, -1])
-
Int[((a_) + (b_.)*(x_)^(n_))^(p_)*Sin[(c_.) + (d_.)*(x_)], x_Symbol] :> Int[x^(n*p)*(b + a/x^n)^p*Sin[c + d*x]
, x] /; FreeQ[{a, b, c, d}, x] && ILtQ[p, 0] && ILtQ[n, 0]
-
Int[Cos[(c_.) + (d_.)*(x_)]*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Int[x^(n*p)*(b + a/x^n)^p*Cos[c + d*x]
, x] /; FreeQ[{a, b, c, d}, x] && ILtQ[p, 0] && ILtQ[n, 0]
-
Int[((a_) + (b_.)*(x_)^(n_))^(p_)*Sin[(c_.) + (d_.)*(x_)], x_Symbol] :> Unintegrable[(a + b*x^n)^p*Sin[c + d*x
], x] /; FreeQ[{a, b, c, d, n, p}, x]
-
Int[Cos[(c_.) + (d_.)*(x_)]*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Unintegrable[(a + b*x^n)^p*Cos[c + d*x
], x] /; FreeQ[{a, b, c, d, n, p}, x]
-
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*Sin[(c_.) + (d_.)*(x_)], x_Symbol] :> Int[ExpandIntegran
d[Sin[c + d*x], (e*x)^m*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && IGtQ[p, 0]
-
Int[Cos[(c_.) + (d_.)*(x_)]*((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Int[ExpandIntegran
d[Cos[c + d*x], (e*x)^m*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && IGtQ[p, 0]
-
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*Sin[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[e^m*(a + b*x^n
)^(p + 1)*(Sin[c + d*x]/(b*n*(p + 1))), x] - Simp[d*(e^m/(b*n*(p + 1))) Int[(a + b*x^n)^(p + 1)*Cos[c + d*x]
, x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && ILtQ[p, -1] && EqQ[m, n - 1] && (IntegerQ[n] || GtQ[e, 0])
-
Int[Cos[(c_.) + (d_.)*(x_)]*((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[e^m*(a + b*x^n
)^(p + 1)*(Cos[c + d*x]/(b*n*(p + 1))), x] + Simp[d*(e^m/(b*n*(p + 1))) Int[(a + b*x^n)^(p + 1)*Sin[c + d*x]
, x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && ILtQ[p, -1] && EqQ[m, n - 1] && (IntegerQ[n] || GtQ[e, 0])
-
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*Sin[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[x^(m - n + 1)*(a + b*x
^n)^(p + 1)*(Sin[c + d*x]/(b*n*(p + 1))), x] + (-Simp[(m - n + 1)/(b*n*(p + 1)) Int[x^(m - n)*(a + b*x^n)^(p
+ 1)*Sin[c + d*x], x], x] - Simp[d/(b*n*(p + 1)) Int[x^(m - n + 1)*(a + b*x^n)^(p + 1)*Cos[c + d*x], x], x]
) /; FreeQ[{a, b, c, d, m}, x] && ILtQ[p, -1] && IGtQ[n, 0] && (GtQ[m - n + 1, 0] || GtQ[n, 2]) && RationalQ[m
]
-
Int[Cos[(c_.) + (d_.)*(x_)]*(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[x^(m - n + 1)*(a + b*x
^n)^(p + 1)*(Cos[c + d*x]/(b*n*(p + 1))), x] + (-Simp[(m - n + 1)/(b*n*(p + 1)) Int[x^(m - n)*(a + b*x^n)^(p
+ 1)*Cos[c + d*x], x], x] + Simp[d/(b*n*(p + 1)) Int[x^(m - n + 1)*(a + b*x^n)^(p + 1)*Sin[c + d*x], x], x]
) /; FreeQ[{a, b, c, d, m}, x] && ILtQ[p, -1] && IGtQ[n, 0] && (GtQ[m - n + 1, 0] || GtQ[n, 2]) && RationalQ[m
]
-
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*Sin[(c_.) + (d_.)*(x_)], x_Symbol] :> Int[ExpandIntegrand[Sin[c +
d*x], x^m*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && ILtQ[p, 0] && IGtQ[n, 0] && (EqQ[n, 2] || EqQ
[p, -1]) && IntegerQ[m]
-
Int[Cos[(c_.) + (d_.)*(x_)]*(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Int[ExpandIntegrand[Cos[c +
d*x], x^m*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && ILtQ[p, 0] && IGtQ[n, 0] && (EqQ[n, 2] || EqQ
[p, -1]) && IntegerQ[m]
-
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*Sin[(c_.) + (d_.)*(x_)], x_Symbol] :> Int[x^(m + n*p)*(b + a/x^n)
^p*Sin[c + d*x], x] /; FreeQ[{a, b, c, d, m}, x] && ILtQ[p, 0] && ILtQ[n, 0]
-
Int[Cos[(c_.) + (d_.)*(x_)]*(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Int[x^(m + n*p)*(b + a/x^n)
^p*Cos[c + d*x], x] /; FreeQ[{a, b, c, d, m}, x] && ILtQ[p, 0] && ILtQ[n, 0]
-
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*Sin[(c_.) + (d_.)*(x_)], x_Symbol] :> Unintegrable[(e*x)
^m*(a + b*x^n)^p*Sin[c + d*x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x]
-
Int[Cos[(c_.) + (d_.)*(x_)]*((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Unintegrable[(e*x)
^m*(a + b*x^n)^p*Cos[c + d*x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x]
-
Int[Sin[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]/(f*Rt[d, 2]))*FresnelS[Sqrt[2/Pi]*Rt[d, 2
]*(e + f*x)], x] /; FreeQ[{d, e, f}, x]
-
Int[Cos[(d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[(Sqrt[Pi/2]/(f*Rt[d, 2]))*FresnelC[Sqrt[2/Pi]*Rt[d, 2
]*(e + f*x)], x] /; FreeQ[{d, e, f}, x]
-
Int[Sin[(c_) + (d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[Sin[c] Int[Cos[d*(e + f*x)^2], x], x] + Simp
[Cos[c] Int[Sin[d*(e + f*x)^2], x], x] /; FreeQ[{c, d, e, f}, x]
-
Int[Cos[(c_) + (d_.)*((e_.) + (f_.)*(x_))^2], x_Symbol] :> Simp[Cos[c] Int[Cos[d*(e + f*x)^2], x], x] - Simp
[Sin[c] Int[Sin[d*(e + f*x)^2], x], x] /; FreeQ[{c, d, e, f}, x]
-
Int[Sin[(c_.) + (d_.)*((e_.) + (f_.)*(x_))^(n_)], x_Symbol] :> Simp[I/2 Int[E^((-c)*I - d*I*(e + f*x)^n), x]
, x] - Simp[I/2 Int[E^(c*I + d*I*(e + f*x)^n), x], x] /; FreeQ[{c, d, e, f}, x] && IGtQ[n, 2]
-
Int[Cos[(c_.) + (d_.)*((e_.) + (f_.)*(x_))^(n_)], x_Symbol] :> Simp[1/2 Int[E^((-c)*I - d*I*(e + f*x)^n), x]
, x] + Simp[1/2 Int[E^(c*I + d*I*(e + f*x)^n), x], x] /; FreeQ[{c, d, e, f}, x] && IGtQ[n, 2]
-
Int[((a_.) + (b_.)*Sin[(c_.) + (d_.)*((e_.) + (f_.)*(x_))^(n_)])^(p_), x_Symbol] :> Int[ExpandTrigReduce[(a +
b*Sin[c + d*(e + f*x)^n])^p, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[p, 1] && IGtQ[n, 1]
-
Int[((a_.) + Cos[(c_.) + (d_.)*((e_.) + (f_.)*(x_))^(n_)]*(b_.))^(p_), x_Symbol] :> Int[ExpandTrigReduce[(a +
b*Cos[c + d*(e + f*x)^n])^p, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[p, 1] && IGtQ[n, 1]
-
Int[((a_.) + (b_.)*Sin[(c_.) + (d_.)*((e_.) + (f_.)*(x_))^(n_)])^(p_.), x_Symbol] :> Simp[-f^(-1) Subst[Int[
(a + b*Sin[c + d/x^n])^p/x^2, x], x, 1/(e + f*x)], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[p, 0] && ILtQ[n,
0] && EqQ[n, -2]
-
Int[((a_.) + Cos[(c_.) + (d_.)*((e_.) + (f_.)*(x_))^(n_)]*(b_.))^(p_.), x_Symbol] :> Simp[-f^(-1) Subst[Int[
(a + b*Cos[c + d/x^n])^p/x^2, x], x, 1/(e + f*x)], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[p, 0] && ILtQ[n,
0] && EqQ[n, -2]
-
Int[((a_.) + (b_.)*Sin[(c_.) + (d_.)*((e_.) + (f_.)*(x_))^(n_)])^(p_.), x_Symbol] :> Simp[1/(n*f) Subst[Int[
x^(1/n - 1)*(a + b*Sin[c + d*x])^p, x], x, (e + f*x)^n], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[p, 0] && I
ntegerQ[1/n]
-
Int[((a_.) + Cos[(c_.) + (d_.)*((e_.) + (f_.)*(x_))^(n_)]*(b_.))^(p_.), x_Symbol] :> Simp[1/(n*f) Subst[Int[
x^(1/n - 1)*(a + b*Cos[c + d*x])^p, x], x, (e + f*x)^n], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[p, 0] && I
ntegerQ[1/n]
-
Int[((a_.) + (b_.)*Sin[(c_.) + (d_.)*((e_.) + (f_.)*(x_))^(n_)])^(p_.), x_Symbol] :> Module[{k = Denominator[n
]}, Simp[k/f Subst[Int[x^(k - 1)*(a + b*Sin[c + d*x^(k*n)])^p, x], x, (e + f*x)^(1/k)], x]] /; FreeQ[{a, b,
c, d, e, f}, x] && IGtQ[p, 0] && FractionQ[n]
-
Int[((a_.) + Cos[(c_.) + (d_.)*((e_.) + (f_.)*(x_))^(n_)]*(b_.))^(p_.), x_Symbol] :> Module[{k = Denominator[n
]}, Simp[k/f Subst[Int[x^(k - 1)*(a + b*Cos[c + d*x^(k*n)])^p, x], x, (e + f*x)^(1/k)], x]] /; FreeQ[{a, b,
c, d, e, f}, x] && IGtQ[p, 0] && FractionQ[n]
-
Int[Sin[(c_.) + (d_.)*((e_.) + (f_.)*(x_))^(n_)], x_Symbol] :> Simp[I/2 Int[E^((-c)*I - d*I*(e + f*x)^n), x]
, x] - Simp[I/2 Int[E^(c*I + d*I*(e + f*x)^n), x], x] /; FreeQ[{c, d, e, f, n}, x]
-
Int[Cos[(c_.) + (d_.)*((e_.) + (f_.)*(x_))^(n_)], x_Symbol] :> Simp[1/2 Int[E^((-c)*I - d*I*(e + f*x)^n), x]
, x] + Simp[1/2 Int[E^(c*I + d*I*(e + f*x)^n), x], x] /; FreeQ[{c, d, e, f, n}, x]
-
Int[((a_.) + (b_.)*Sin[(c_.) + (d_.)*((e_.) + (f_.)*(x_))^(n_)])^(p_), x_Symbol] :> Int[ExpandTrigReduce[(a +
b*Sin[c + d*(e + f*x)^n])^p, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && IGtQ[p, 1]
-
Int[((a_.) + Cos[(c_.) + (d_.)*((e_.) + (f_.)*(x_))^(n_)]*(b_.))^(p_), x_Symbol] :> Int[ExpandTrigReduce[(a +
b*Cos[c + d*(e + f*x)^n])^p, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && IGtQ[p, 1]
-
Int[((a_.) + (b_.)*Sin[(c_.) + (d_.)*((e_.) + (f_.)*(x_))^(n_)])^(p_), x_Symbol] :> Unintegrable[(a + b*Sin[c
+ d*(e + f*x)^n])^p, x] /; FreeQ[{a, b, c, d, e, f, n, p}, x]
-
Int[((a_.) + Cos[(c_.) + (d_.)*((e_.) + (f_.)*(x_))^(n_)]*(b_.))^(p_), x_Symbol] :> Unintegrable[(a + b*Cos[c
+ d*(e + f*x)^n])^p, x] /; FreeQ[{a, b, c, d, e, f, n, p}, x]
-
Int[((a_.) + (b_.)*Sin[(c_.) + (d_.)*(u_)^(n_)])^(p_.), x_Symbol] :> Int[(a + b*Sin[c + d*ExpandToSum[u, x]^n]
)^p, x] /; FreeQ[{a, b, c, d, n, p}, x] && LinearQ[u, x] && !LinearMatchQ[u, x]
-
Int[((a_.) + Cos[(c_.) + (d_.)*(u_)^(n_)]*(b_.))^(p_.), x_Symbol] :> Int[(a + b*Cos[c + d*ExpandToSum[u, x]^n]
)^p, x] /; FreeQ[{a, b, c, d, n, p}, x] && LinearQ[u, x] && !LinearMatchQ[u, x]
-
Int[((a_.) + (b_.)*Sin[u_])^(p_.), x_Symbol] :> Int[(a + b*Sin[ExpandToSum[u, x]])^p, x] /; FreeQ[{a, b, p}, x
] && BinomialQ[u, x] && !BinomialMatchQ[u, x]
-
Int[((a_.) + Cos[u_]*(b_.))^(p_.), x_Symbol] :> Int[(a + b*Cos[ExpandToSum[u, x]])^p, x] /; FreeQ[{a, b, p}, x
] && BinomialQ[u, x] && !BinomialMatchQ[u, x]
-
Int[Sin[(d_.)*(x_)^(n_)]/(x_), x_Symbol] :> Simp[SinIntegral[d*x^n]/n, x] /; FreeQ[{d, n}, x]
-
Int[Cos[(d_.)*(x_)^(n_)]/(x_), x_Symbol] :> Simp[CosIntegral[d*x^n]/n, x] /; FreeQ[{d, n}, x]
-
Int[Sin[(c_) + (d_.)*(x_)^(n_)]/(x_), x_Symbol] :> Simp[Sin[c] Int[Cos[d*x^n]/x, x], x] + Simp[Cos[c] Int[
Sin[d*x^n]/x, x], x] /; FreeQ[{c, d, n}, x]
-
Int[Cos[(c_) + (d_.)*(x_)^(n_)]/(x_), x_Symbol] :> Simp[Cos[c] Int[Cos[d*x^n]/x, x], x] - Simp[Sin[c] Int[
Sin[d*x^n]/x, x], x] /; FreeQ[{c, d, n}, x]
-
Int[(x_)^(m_.)*((a_.) + (b_.)*Sin[(c_.) + (d_.)*(x_)^(n_)])^(p_.), x_Symbol] :> Simp[1/n Subst[Int[x^(Simpli
fy[(m + 1)/n] - 1)*(a + b*Sin[c + d*x])^p, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p}, x] && IntegerQ[Simp
lify[(m + 1)/n]] && (EqQ[p, 1] || EqQ[m, n - 1] || (IntegerQ[p] && GtQ[Simplify[(m + 1)/n], 0]))
-
Int[((a_.) + Cos[(c_.) + (d_.)*(x_)^(n_)]*(b_.))^(p_.)*(x_)^(m_.), x_Symbol] :> Simp[1/n Subst[Int[x^(Simpli
fy[(m + 1)/n] - 1)*(a + b*Cos[c + d*x])^p, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p}, x] && IntegerQ[Simp
lify[(m + 1)/n]] && (EqQ[p, 1] || EqQ[m, n - 1] || (IntegerQ[p] && GtQ[Simplify[(m + 1)/n], 0]))
-
Int[((e_)*(x_))^(m_)*((a_.) + (b_.)*Sin[(c_.) + (d_.)*(x_)^(n_)])^(p_.), x_Symbol] :> Simp[e^IntPart[m]*((e*x)
^FracPart[m]/x^FracPart[m]) Int[x^m*(a + b*Sin[c + d*x^n])^p, x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] &
& IntegerQ[Simplify[(m + 1)/n]]
-
Int[((a_.) + Cos[(c_.) + (d_.)*(x_)^(n_)]*(b_.))^(p_.)*((e_)*(x_))^(m_), x_Symbol] :> Simp[e^IntPart[m]*((e*x)
^FracPart[m]/x^FracPart[m]) Int[x^m*(a + b*Cos[c + d*x^n])^p, x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] &
& IntegerQ[Simplify[(m + 1)/n]]
-
Int[(x_)^(m_.)*Sin[(a_.) + (b_.)*(x_)^(n_)], x_Symbol] :> Simp[2/n Subst[Int[Sin[a + b*x^2], x], x, x^(n/2)]
, x] /; FreeQ[{a, b, m, n}, x] && EqQ[m, n/2 - 1]
-
Int[Cos[(a_.) + (b_.)*(x_)^(n_)]*(x_)^(m_.), x_Symbol] :> Simp[2/n Subst[Int[Cos[a + b*x^2], x], x, x^(n/2)]
, x] /; FreeQ[{a, b, m, n}, x] && EqQ[m, n/2 - 1]
-
Int[((e_.)*(x_))^(m_.)*Sin[(c_.) + (d_.)*(x_)^(n_)], x_Symbol] :> Simp[(-e^(n - 1))*(e*x)^(m - n + 1)*(Cos[c +
d*x^n]/(d*n)), x] + Simp[e^n*((m - n + 1)/(d*n)) Int[(e*x)^(m - n)*Cos[c + d*x^n], x], x] /; FreeQ[{c, d, e
}, x] && IGtQ[n, 0] && LtQ[n, m + 1]
-
Int[Cos[(c_.) + (d_.)*(x_)^(n_)]*((e_.)*(x_))^(m_.), x_Symbol] :> Simp[e^(n - 1)*(e*x)^(m - n + 1)*(Sin[c + d*
x^n]/(d*n)), x] - Simp[e^n*((m - n + 1)/(d*n)) Int[(e*x)^(m - n)*Sin[c + d*x^n], x], x] /; FreeQ[{c, d, e},
x] && IGtQ[n, 0] && LtQ[n, m + 1]
-
Int[((e_.)*(x_))^(m_)*Sin[(c_.) + (d_.)*(x_)^(n_)], x_Symbol] :> Simp[(e*x)^(m + 1)*(Sin[c + d*x^n]/(e*(m + 1)
)), x] - Simp[d*(n/(e^n*(m + 1))) Int[(e*x)^(m + n)*Cos[c + d*x^n], x], x] /; FreeQ[{c, d, e}, x] && IGtQ[n,
0] && LtQ[m, -1]
-
Int[Cos[(c_.) + (d_.)*(x_)^(n_)]*((e_.)*(x_))^(m_), x_Symbol] :> Simp[(e*x)^(m + 1)*(Cos[c + d*x^n]/(e*(m + 1)
)), x] + Simp[d*(n/(e^n*(m + 1))) Int[(e*x)^(m + n)*Sin[c + d*x^n], x], x] /; FreeQ[{c, d, e}, x] && IGtQ[n,
0] && LtQ[m, -1]
-
Int[((e_.)*(x_))^(m_.)*Sin[(c_.) + (d_.)*(x_)^(n_)], x_Symbol] :> Simp[I/2 Int[(e*x)^m*E^((-c)*I - d*I*x^n),
x], x] - Simp[I/2 Int[(e*x)^m*E^(c*I + d*I*x^n), x], x] /; FreeQ[{c, d, e, m}, x] && IGtQ[n, 0]
-
Int[Cos[(c_.) + (d_.)*(x_)^(n_)]*((e_.)*(x_))^(m_.), x_Symbol] :> Simp[1/2 Int[(e*x)^m*E^((-c)*I - d*I*x^n),
x], x] + Simp[1/2 Int[(e*x)^m*E^(c*I + d*I*x^n), x], x] /; FreeQ[{c, d, e, m}, x] && IGtQ[n, 0]
-
Int[(x_)^(m_.)*Sin[(a_.) + ((b_.)*(x_)^(n_))/2]^2, x_Symbol] :> Simp[1/2 Int[x^m, x], x] - Simp[1/2 Int[x^
m*Cos[2*a + b*x^n], x], x] /; FreeQ[{a, b, m, n}, x]
-
Int[Cos[(a_.) + ((b_.)*(x_)^(n_))/2]^2*(x_)^(m_.), x_Symbol] :> Simp[1/2 Int[x^m, x], x] + Simp[1/2 Int[x^
m*Cos[2*a + b*x^n], x], x] /; FreeQ[{a, b, m, n}, x]
-
Int[(x_)^(m_.)*Sin[(a_.) + (b_.)*(x_)^(n_)]^(p_), x_Symbol] :> Simp[x^(m + 1)*(Sin[a + b*x^n]^p/(m + 1)), x] -
Simp[b*n*(p/(m + 1)) Int[Sin[a + b*x^n]^(p - 1)*Cos[a + b*x^n], x], x] /; FreeQ[{a, b}, x] && IGtQ[p, 1] &&
EqQ[m + n, 0] && NeQ[n, 1] && IntegerQ[n]
-
Int[Cos[(a_.) + (b_.)*(x_)^(n_)]^(p_)*(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)*(Cos[a + b*x^n]^p/(m + 1)), x] +
Simp[b*n*(p/(m + 1)) Int[Cos[a + b*x^n]^(p - 1)*Sin[a + b*x^n], x], x] /; FreeQ[{a, b}, x] && IGtQ[p, 1] &&
EqQ[m + n, 0] && NeQ[n, 1] && IntegerQ[n]
-
Int[(x_)^(m_.)*Sin[(a_.) + (b_.)*(x_)^(n_)]^(p_), x_Symbol] :> Simp[n*(Sin[a + b*x^n]^p/(b^2*n^2*p^2)), x] + (
-Simp[x^n*Cos[a + b*x^n]*(Sin[a + b*x^n]^(p - 1)/(b*n*p)), x] + Simp[(p - 1)/p Int[x^m*Sin[a + b*x^n]^(p - 2
), x], x]) /; FreeQ[{a, b, m, n}, x] && EqQ[m - 2*n + 1, 0] && GtQ[p, 1]
-
Int[Cos[(a_.) + (b_.)*(x_)^(n_)]^(p_)*(x_)^(m_.), x_Symbol] :> Simp[n*(Cos[a + b*x^n]^p/(b^2*n^2*p^2)), x] + (
Simp[x^n*Sin[a + b*x^n]*(Cos[a + b*x^n]^(p - 1)/(b*n*p)), x] + Simp[(p - 1)/p Int[x^m*Cos[a + b*x^n]^(p - 2)
, x], x]) /; FreeQ[{a, b, m, n}, x] && EqQ[m - 2*n + 1, 0] && GtQ[p, 1]
-
Int[(x_)^(m_.)*Sin[(a_.) + (b_.)*(x_)^(n_)]^(p_), x_Symbol] :> Simp[(m - n + 1)*x^(m - 2*n + 1)*(Sin[a + b*x^n
]^p/(b^2*n^2*p^2)), x] + (-Simp[x^(m - n + 1)*Cos[a + b*x^n]*(Sin[a + b*x^n]^(p - 1)/(b*n*p)), x] + Simp[(p -
1)/p Int[x^m*Sin[a + b*x^n]^(p - 2), x], x] - Simp[(m - n + 1)*((m - 2*n + 1)/(b^2*n^2*p^2)) Int[x^(m - 2*
n)*Sin[a + b*x^n]^p, x], x]) /; FreeQ[{a, b}, x] && GtQ[p, 1] && IGtQ[n, 0] && IGtQ[m, 2*n - 1]
-
Int[Cos[(a_.) + (b_.)*(x_)^(n_)]^(p_)*(x_)^(m_.), x_Symbol] :> Simp[(m - n + 1)*x^(m - 2*n + 1)*(Cos[a + b*x^n
]^p/(b^2*n^2*p^2)), x] + (Simp[x^(m - n + 1)*Sin[a + b*x^n]*(Cos[a + b*x^n]^(p - 1)/(b*n*p)), x] + Simp[(p - 1
)/p Int[x^m*Cos[a + b*x^n]^(p - 2), x], x] - Simp[(m - n + 1)*((m - 2*n + 1)/(b^2*n^2*p^2)) Int[x^(m - 2*n
)*Cos[a + b*x^n]^p, x], x]) /; FreeQ[{a, b}, x] && GtQ[p, 1] && IGtQ[n, 0] && IGtQ[m, 2*n - 1]
-
Int[(x_)^(m_.)*Sin[(a_.) + (b_.)*(x_)^(n_)]^(p_), x_Symbol] :> Simp[x^(m + 1)*(Sin[a + b*x^n]^p/(m + 1)), x] +
(-Simp[b*n*p*x^(m + n + 1)*Cos[a + b*x^n]*(Sin[a + b*x^n]^(p - 1)/((m + 1)*(m + n + 1))), x] + Simp[b^2*n^2*p
*((p - 1)/((m + 1)*(m + n + 1))) Int[x^(m + 2*n)*Sin[a + b*x^n]^(p - 2), x], x] - Simp[b^2*n^2*(p^2/((m + 1)
*(m + n + 1))) Int[x^(m + 2*n)*Sin[a + b*x^n]^p, x], x]) /; FreeQ[{a, b}, x] && GtQ[p, 1] && IGtQ[n, 0] && I
LtQ[m, -2*n + 1] && NeQ[m + n + 1, 0]
-
Int[Cos[(a_.) + (b_.)*(x_)^(n_)]^(p_)*(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)*(Cos[a + b*x^n]^p/(m + 1)), x] +
(Simp[b*n*p*x^(m + n + 1)*Sin[a + b*x^n]*(Cos[a + b*x^n]^(p - 1)/((m + 1)*(m + n + 1))), x] + Simp[b^2*n^2*p*
((p - 1)/((m + 1)*(m + n + 1))) Int[x^(m + 2*n)*Cos[a + b*x^n]^(p - 2), x], x] - Simp[b^2*n^2*(p^2/((m + 1)*
(m + n + 1))) Int[x^(m + 2*n)*Cos[a + b*x^n]^p, x], x]) /; FreeQ[{a, b}, x] && GtQ[p, 1] && IGtQ[n, 0] && IL
tQ[m, -2*n + 1] && NeQ[m + n + 1, 0]
-
Int[((e_.)*(x_))^(m_)*((a_.) + (b_.)*Sin[(c_.) + (d_.)*(x_)^(n_)])^(p_.), x_Symbol] :> With[{k = Denominator[m
]}, Simp[k/e Subst[Int[x^(k*(m + 1) - 1)*(a + b*Sin[c + d*(x^(k*n)/e^n)])^p, x], x, (e*x)^(1/k)], x]] /; Fre
eQ[{a, b, c, d, e}, x] && IntegerQ[p] && IGtQ[n, 0] && FractionQ[m]
-
Int[((a_.) + Cos[(c_.) + (d_.)*(x_)^(n_)]*(b_.))^(p_.)*((e_.)*(x_))^(m_), x_Symbol] :> With[{k = Denominator[m
]}, Simp[k/e Subst[Int[x^(k*(m + 1) - 1)*(a + b*Cos[c + d*(x^(k*n)/e^n)])^p, x], x, (e*x)^(1/k)], x]] /; Fre
eQ[{a, b, c, d, e}, x] && IntegerQ[p] && IGtQ[n, 0] && FractionQ[m]
-
Int[((e_.)*(x_))^(m_.)*((a_.) + (b_.)*Sin[(c_.) + (d_.)*(x_)^(n_)])^(p_), x_Symbol] :> Int[ExpandTrigReduce[(e
*x)^m, (a + b*Sin[c + d*x^n])^p, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && IGtQ[p, 1] && IGtQ[n, 0]
-
Int[((a_.) + Cos[(c_.) + (d_.)*(x_)^(n_)]*(b_.))^(p_)*((e_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandTrigReduce[(e
*x)^m, (a + b*Cos[c + d*x^n])^p, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && IGtQ[p, 1] && IGtQ[n, 0]
-
Int[(x_)^(m_.)*Sin[(a_.) + (b_.)*(x_)^(n_)]^(p_), x_Symbol] :> Simp[x^n*Cos[a + b*x^n]*(Sin[a + b*x^n]^(p + 1)
/(b*n*(p + 1))), x] + (-Simp[n*(Sin[a + b*x^n]^(p + 2)/(b^2*n^2*(p + 1)*(p + 2))), x] + Simp[(p + 2)/(p + 1)
Int[x^m*Sin[a + b*x^n]^(p + 2), x], x]) /; FreeQ[{a, b, m, n}, x] && EqQ[m - 2*n + 1, 0] && LtQ[p, -1] && NeQ
[p, -2]
-
Int[Cos[(a_.) + (b_.)*(x_)^(n_)]^(p_)*(x_)^(m_.), x_Symbol] :> Simp[(-x^n)*Sin[a + b*x^n]*(Cos[a + b*x^n]^(p +
1)/(b*n*(p + 1))), x] + (-Simp[n*(Cos[a + b*x^n]^(p + 2)/(b^2*n^2*(p + 1)*(p + 2))), x] + Simp[(p + 2)/(p + 1
) Int[x^m*Cos[a + b*x^n]^(p + 2), x], x]) /; FreeQ[{a, b, m, n}, x] && EqQ[m - 2*n + 1, 0] && LtQ[p, -1] &&
NeQ[p, -2]
-
Int[(x_)^(m_.)*Sin[(a_.) + (b_.)*(x_)^(n_)]^(p_), x_Symbol] :> Simp[x^(m - n + 1)*Cos[a + b*x^n]*(Sin[a + b*x^
n]^(p + 1)/(b*n*(p + 1))), x] + (-Simp[(m - n + 1)*x^(m - 2*n + 1)*(Sin[a + b*x^n]^(p + 2)/(b^2*n^2*(p + 1)*(p
+ 2))), x] + Simp[(p + 2)/(p + 1) Int[x^m*Sin[a + b*x^n]^(p + 2), x], x] + Simp[(m - n + 1)*((m - 2*n + 1)/
(b^2*n^2*(p + 1)*(p + 2))) Int[x^(m - 2*n)*Sin[a + b*x^n]^(p + 2), x], x]) /; FreeQ[{a, b}, x] && LtQ[p, -1]
&& NeQ[p, -2] && IGtQ[n, 0] && IGtQ[m, 2*n - 1]
-
Int[Cos[(a_.) + (b_.)*(x_)^(n_)]^(p_)*(x_)^(m_.), x_Symbol] :> Simp[(-x^(m - n + 1))*Sin[a + b*x^n]*(Cos[a + b
*x^n]^(p + 1)/(b*n*(p + 1))), x] + (-Simp[(m - n + 1)*x^(m - 2*n + 1)*(Cos[a + b*x^n]^(p + 2)/(b^2*n^2*(p + 1)
*(p + 2))), x] + Simp[(p + 2)/(p + 1) Int[x^m*Cos[a + b*x^n]^(p + 2), x], x] + Simp[(m - n + 1)*((m - 2*n +
1)/(b^2*n^2*(p + 1)*(p + 2))) Int[x^(m - 2*n)*Cos[a + b*x^n]^(p + 2), x], x]) /; FreeQ[{a, b}, x] && LtQ[p,
-1] && NeQ[p, -2] && IGtQ[n, 0] && IGtQ[m, 2*n - 1]
-
Int[(x_)^(m_.)*((a_.) + (b_.)*Sin[(c_.) + (d_.)*(x_)^(n_)])^(p_.), x_Symbol] :> -Subst[Int[(a + b*Sin[c + d/x^
n])^p/x^(m + 2), x], x, 1/x] /; FreeQ[{a, b, c, d}, x] && IGtQ[p, 0] && ILtQ[n, 0] && IntegerQ[m] && EqQ[n, -2
]
-
Int[((a_.) + Cos[(c_.) + (d_.)*(x_)^(n_)]*(b_.))^(p_.)*(x_)^(m_.), x_Symbol] :> -Subst[Int[(a + b*Cos[c + d/x^
n])^p/x^(m + 2), x], x, 1/x] /; FreeQ[{a, b, c, d}, x] && IGtQ[p, 0] && ILtQ[n, 0] && IntegerQ[m] && EqQ[n, -2
]
-
Int[((e_.)*(x_))^(m_)*((a_.) + (b_.)*Sin[(c_.) + (d_.)*(x_)^(n_)])^(p_.), x_Symbol] :> With[{k = Denominator[m
]}, Simp[-k/e Subst[Int[(a + b*Sin[c + d/(e^n*x^(k*n))])^p/x^(k*(m + 1) + 1), x], x, 1/(e*x)^(1/k)], x]] /;
FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && ILtQ[n, 0] && FractionQ[m]
-
Int[((a_.) + Cos[(c_.) + (d_.)*(x_)^(n_)]*(b_.))^(p_.)*((e_.)*(x_))^(m_), x_Symbol] :> With[{k = Denominator[m
]}, Simp[-k/e Subst[Int[(a + b*Cos[c + d/(e^n*x^(k*n))])^p/x^(k*(m + 1) + 1), x], x, 1/(e*x)^(1/k)], x]] /;
FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && ILtQ[n, 0] && FractionQ[m]
-
Int[((e_.)*(x_))^(m_)*((a_.) + (b_.)*Sin[(c_.) + (d_.)*(x_)^(n_)])^(p_.), x_Symbol] :> Simp[(-(e*x)^m)*(x^(-1)
)^m Subst[Int[(a + b*Sin[c + d/x^n])^p/x^(m + 2), x], x, 1/x], x] /; FreeQ[{a, b, c, d, e, m}, x] && IGtQ[p,
0] && ILtQ[n, 0] && !RationalQ[m]
-
Int[((a_.) + Cos[(c_.) + (d_.)*(x_)^(n_)]*(b_.))^(p_.)*((e_.)*(x_))^(m_), x_Symbol] :> Simp[(-(e*x)^m)*(x^(-1)
)^m Subst[Int[(a + b*Cos[c + d/x^n])^p/x^(m + 2), x], x, 1/x], x] /; FreeQ[{a, b, c, d, e, m}, x] && IGtQ[p,
0] && ILtQ[n, 0] && !RationalQ[m]
-
Int[(x_)^(m_.)*((a_.) + (b_.)*Sin[(c_.) + (d_.)*(x_)^(n_)])^(p_.), x_Symbol] :> Module[{k = Denominator[n]}, S
imp[k Subst[Int[x^(k*(m + 1) - 1)*(a + b*Sin[c + d*x^(k*n)])^p, x], x, x^(1/k)], x]] /; FreeQ[{a, b, c, d, m
}, x] && IntegerQ[p] && FractionQ[n]
-
Int[((a_.) + Cos[(c_.) + (d_.)*(x_)^(n_)]*(b_.))^(p_.)*(x_)^(m_.), x_Symbol] :> Module[{k = Denominator[n]}, S
imp[k Subst[Int[x^(k*(m + 1) - 1)*(a + b*Cos[c + d*x^(k*n)])^p, x], x, x^(1/k)], x]] /; FreeQ[{a, b, c, d, m
}, x] && IntegerQ[p] && FractionQ[n]
-
Int[((e_)*(x_))^(m_)*((a_.) + (b_.)*Sin[(c_.) + (d_.)*(x_)^(n_)])^(p_.), x_Symbol] :> Simp[e^IntPart[m]*((e*x)
^FracPart[m]/x^FracPart[m]) Int[x^m*(a + b*Sin[c + d*x^n])^p, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && Inte
gerQ[p] && FractionQ[n]
-
Int[((a_.) + Cos[(c_.) + (d_.)*(x_)^(n_)]*(b_.))^(p_.)*((e_)*(x_))^(m_), x_Symbol] :> Simp[e^IntPart[m]*((e*x)
^FracPart[m]/x^FracPart[m]) Int[x^m*(a + b*Cos[c + d*x^n])^p, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && Inte
gerQ[p] && FractionQ[n]
-
Int[(x_)^(m_.)*((a_.) + (b_.)*Sin[(c_.) + (d_.)*(x_)^(n_)])^(p_.), x_Symbol] :> Simp[1/(m + 1) Subst[Int[(a
+ b*Sin[c + d*x^Simplify[n/(m + 1)]])^p, x], x, x^(m + 1)], x] /; FreeQ[{a, b, c, d, m, n}, x] && IntegerQ[p]
&& NeQ[m, -1] && IGtQ[Simplify[n/(m + 1)], 0] && !IntegerQ[n]
-
Int[((a_.) + Cos[(c_.) + (d_.)*(x_)^(n_)]*(b_.))^(p_.)*(x_)^(m_.), x_Symbol] :> Simp[1/(m + 1) Subst[Int[(a
+ b*Cos[c + d*x^Simplify[n/(m + 1)]])^p, x], x, x^(m + 1)], x] /; FreeQ[{a, b, c, d, m, n}, x] && IntegerQ[p]
&& NeQ[m, -1] && IGtQ[Simplify[n/(m + 1)], 0] && !IntegerQ[n]
-
Int[((e_)*(x_))^(m_)*((a_.) + (b_.)*Sin[(c_.) + (d_.)*(x_)^(n_)])^(p_.), x_Symbol] :> Simp[e^IntPart[m]*((e*x)
^FracPart[m]/x^FracPart[m]) Int[x^m*(a + b*Sin[c + d*x^n])^p, x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && I
ntegerQ[p] && NeQ[m, -1] && IGtQ[Simplify[n/(m + 1)], 0] && !IntegerQ[n]
-
Int[((a_.) + Cos[(c_.) + (d_.)*(x_)^(n_)]*(b_.))^(p_.)*((e_)*(x_))^(m_), x_Symbol] :> Simp[e^IntPart[m]*((e*x)
^FracPart[m]/x^FracPart[m]) Int[x^m*(a + b*Cos[c + d*x^n])^p, x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && I
ntegerQ[p] && NeQ[m, -1] && IGtQ[Simplify[n/(m + 1)], 0] && !IntegerQ[n]
-
Int[((e_.)*(x_))^(m_.)*Sin[(c_.) + (d_.)*(x_)^(n_)], x_Symbol] :> Simp[I/2 Int[(e*x)^m*E^((-c)*I - d*I*x^n),
x], x] - Simp[I/2 Int[(e*x)^m*E^(c*I + d*I*x^n), x], x] /; FreeQ[{c, d, e, m, n}, x]
-
Int[Cos[(c_.) + (d_.)*(x_)^(n_)]*((e_.)*(x_))^(m_.), x_Symbol] :> Simp[1/2 Int[(e*x)^m*E^((-c)*I - d*I*x^n),
x], x] + Simp[1/2 Int[(e*x)^m*E^(c*I + d*I*x^n), x], x] /; FreeQ[{c, d, e, m, n}, x]
-
Int[((e_.)*(x_))^(m_.)*((a_.) + (b_.)*Sin[(c_.) + (d_.)*(x_)^(n_)])^(p_), x_Symbol] :> Int[ExpandTrigReduce[(e
*x)^m, (a + b*Sin[c + d*x^n])^p, x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && IGtQ[p, 0]
-
Int[((a_.) + Cos[(c_.) + (d_.)*(x_)^(n_)]*(b_.))^(p_)*((e_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandTrigReduce[(e
*x)^m, (a + b*Cos[c + d*x^n])^p, x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && IGtQ[p, 0]
-
Int[((e_.)*(x_))^(m_.)*((a_.) + (b_.)*Sin[(c_.) + (d_.)*(x_)^(n_)])^(p_.), x_Symbol] :> Unintegrable[(e*x)^m*(
a + b*Sin[c + d*x^n])^p, x] /; FreeQ[{a, b, c, d, e, m, n, p}, x]
-
Int[((a_.) + Cos[(c_.) + (d_.)*(x_)^(n_)]*(b_.))^(p_.)*((e_.)*(x_))^(m_.), x_Symbol] :> Unintegrable[(e*x)^m*(
a + b*Cos[c + d*x^n])^p, x] /; FreeQ[{a, b, c, d, e, m, n, p}, x]
-
Int[((e_)*(x_))^(m_.)*((a_.) + (b_.)*Sin[u_])^(p_.), x_Symbol] :> Int[(e*x)^m*(a + b*Sin[ExpandToSum[u, x]])^p
, x] /; FreeQ[{a, b, e, m, p}, x] && BinomialQ[u, x] && !BinomialMatchQ[u, x]
-
Int[((a_.) + Cos[u_]*(b_.))^(p_.)*((e_)*(x_))^(m_.), x_Symbol] :> Int[(e*x)^m*(a + b*Cos[ExpandToSum[u, x]])^p
, x] /; FreeQ[{a, b, e, m, p}, x] && BinomialQ[u, x] && !BinomialMatchQ[u, x]
-
Int[((g_.) + (h_.)*(x_))^(m_.)*((a_.) + (b_.)*Sin[(c_.) + (d_.)*((e_.) + (f_.)*(x_))^(n_)])^(p_.), x_Symbol] :
> Simp[1/(n*f) Subst[Int[ExpandIntegrand[(a + b*Sin[c + d*x])^p, x^(1/n - 1)*(g - e*(h/f) + h*(x^(1/n)/f))^m
, x], x], x, (e + f*x)^n], x] /; FreeQ[{a, b, c, d, e, f, g, h, m}, x] && IGtQ[p, 0] && IntegerQ[1/n]
-
Int[((a_.) + Cos[(c_.) + (d_.)*((e_.) + (f_.)*(x_))^(n_)]*(b_.))^(p_.)*((g_.) + (h_.)*(x_))^(m_.), x_Symbol] :
> Simp[1/(n*f) Subst[Int[ExpandIntegrand[(a + b*Cos[c + d*x])^p, x^(1/n - 1)*(g - e*(h/f) + h*(x^(1/n)/f))^m
, x], x], x, (e + f*x)^n], x] /; FreeQ[{a, b, c, d, e, f, g, h, m}, x] && IGtQ[p, 0] && IntegerQ[1/n]
-
Int[((g_.) + (h_.)*(x_))^(m_.)*((a_.) + (b_.)*Sin[(c_.) + (d_.)*((e_.) + (f_.)*(x_))^(n_)])^(p_.), x_Symbol] :
> Module[{k = If[FractionQ[n], Denominator[n], 1]}, Simp[k/f^(m + 1) Subst[Int[ExpandIntegrand[(a + b*Sin[c
+ d*x^(k*n)])^p, x^(k - 1)*(f*g - e*h + h*x^k)^m, x], x], x, (e + f*x)^(1/k)], x]] /; FreeQ[{a, b, c, d, e, f,
g, h}, x] && IGtQ[p, 0] && IGtQ[m, 0]
-
Int[((a_.) + Cos[(c_.) + (d_.)*((e_.) + (f_.)*(x_))^(n_)]*(b_.))^(p_.)*((g_.) + (h_.)*(x_))^(m_.), x_Symbol] :
> Module[{k = If[FractionQ[n], Denominator[n], 1]}, Simp[k/f^(m + 1) Subst[Int[ExpandIntegrand[(a + b*Cos[c
+ d*x^(k*n)])^p, x^(k - 1)*(f*g - e*h + h*x^k)^m, x], x], x, (e + f*x)^(1/k)], x]] /; FreeQ[{a, b, c, d, e, f,
g, h}, x] && IGtQ[p, 0] && IGtQ[m, 0]
-
Int[((g_.) + (h_.)*(x_))^(m_.)*((a_.) + (b_.)*Sin[(c_.) + (d_.)*((e_.) + (f_.)*(x_))^(n_)])^(p_.), x_Symbol] :
> Simp[1/f Subst[Int[(h*(x/f))^m*(a + b*Sin[c + d*x^n])^p, x], x, e + f*x], x] /; FreeQ[{a, b, c, d, e, f, g
, h, m}, x] && IGtQ[p, 0] && EqQ[f*g - e*h, 0]
-
Int[((a_.) + Cos[(c_.) + (d_.)*((e_.) + (f_.)*(x_))^(n_)]*(b_.))^(p_.)*((g_.) + (h_.)*(x_))^(m_.), x_Symbol] :
> Simp[1/f Subst[Int[(h*(x/f))^m*(a + b*Cos[c + d*x^n])^p, x], x, e + f*x], x] /; FreeQ[{a, b, c, d, e, f, g
, h, m}, x] && IGtQ[p, 0] && EqQ[f*g - e*h, 0]
-
Int[((g_.) + (h_.)*(x_))^(m_.)*((a_.) + (b_.)*Sin[(c_.) + (d_.)*((e_.) + (f_.)*(x_))^(n_)])^(p_.), x_Symbol] :
> Unintegrable[(g + h*x)^m*(a + b*Sin[c + d*(e + f*x)^n])^p, x] /; FreeQ[{a, b, c, d, e, f, g, h, m, n, p}, x]
-
Int[((a_.) + Cos[(c_.) + (d_.)*((e_.) + (f_.)*(x_))^(n_)]*(b_.))^(p_.)*((g_.) + (h_.)*(x_))^(m_.), x_Symbol] :
> Unintegrable[(g + h*x)^m*(a + b*Cos[c + d*(e + f*x)^n])^p, x] /; FreeQ[{a, b, c, d, e, f, g, h, m, n, p}, x]
-
Int[(v_)^(m_.)*((a_.) + (b_.)*Sin[(c_.) + (d_.)*(u_)^(n_)])^(p_.), x_Symbol] :> Int[ExpandToSum[v, x]^m*(a + b
*Sin[c + d*ExpandToSum[u, x]^n])^p, x] /; FreeQ[{a, b, c, d, m, n, p}, x] && LinearQ[u, x] && LinearQ[v, x] &&
!(LinearMatchQ[u, x] && LinearMatchQ[v, x])
-
Int[((a_.) + Cos[(c_.) + (d_.)*(u_)^(n_)]*(b_.))^(p_.)*(v_)^(m_.), x_Symbol] :> Int[ExpandToSum[v, x]^m*(a + b
*Cos[c + d*ExpandToSum[u, x]^n])^p, x] /; FreeQ[{a, b, c, d, m, n, p}, x] && LinearQ[u, x] && LinearQ[v, x] &&
!(LinearMatchQ[u, x] && LinearMatchQ[v, x])
-
Int[Cos[(a_.) + (b_.)*(x_)^(n_.)]*(x_)^(m_.)*Sin[(a_.) + (b_.)*(x_)^(n_.)]^(p_.), x_Symbol] :> Simp[Sin[a + b*
x^n]^(p + 1)/(b*n*(p + 1)), x] /; FreeQ[{a, b, m, n, p}, x] && EqQ[m, n - 1] && NeQ[p, -1]
-
Int[Cos[(a_.) + (b_.)*(x_)^(n_.)]^(p_.)*(x_)^(m_.)*Sin[(a_.) + (b_.)*(x_)^(n_.)], x_Symbol] :> Simp[-Cos[a + b
*x^n]^(p + 1)/(b*n*(p + 1)), x] /; FreeQ[{a, b, m, n, p}, x] && EqQ[m, n - 1] && NeQ[p, -1]
-
Int[Cos[(a_.) + (b_.)*(x_)^(n_.)]*(x_)^(m_.)*Sin[(a_.) + (b_.)*(x_)^(n_.)]^(p_.), x_Symbol] :> Simp[x^(m - n +
1)*(Sin[a + b*x^n]^(p + 1)/(b*n*(p + 1))), x] - Simp[(m - n + 1)/(b*n*(p + 1)) Int[x^(m - n)*Sin[a + b*x^n]
^(p + 1), x], x] /; FreeQ[{a, b, p}, x] && LtQ[0, n, m + 1] && NeQ[p, -1]
-
Int[Cos[(a_.) + (b_.)*(x_)^(n_.)]^(p_.)*(x_)^(m_.)*Sin[(a_.) + (b_.)*(x_)^(n_.)], x_Symbol] :> Simp[(-x^(m - n
+ 1))*(Cos[a + b*x^n]^(p + 1)/(b*n*(p + 1))), x] + Simp[(m - n + 1)/(b*n*(p + 1)) Int[x^(m - n)*Cos[a + b*x
^n]^(p + 1), x], x] /; FreeQ[{a, b, p}, x] && LtQ[0, n, m + 1] && NeQ[p, -1]
-
Int[Sin[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Int[Sin[(b + 2*c*x)^2/(4*c)], x] /; FreeQ[{a, b, c},
x] && EqQ[b^2 - 4*a*c, 0]
-
Int[Cos[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Int[Cos[(b + 2*c*x)^2/(4*c)], x] /; FreeQ[{a, b, c},
x] && EqQ[b^2 - 4*a*c, 0]
-
Int[Sin[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Simp[Cos[(b^2 - 4*a*c)/(4*c)] Int[Sin[(b + 2*c*x)^2
/(4*c)], x], x] - Simp[Sin[(b^2 - 4*a*c)/(4*c)] Int[Cos[(b + 2*c*x)^2/(4*c)], x], x] /; FreeQ[{a, b, c}, x]
&& NeQ[b^2 - 4*a*c, 0]
-
Int[Cos[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Simp[Cos[(b^2 - 4*a*c)/(4*c)] Int[Cos[(b + 2*c*x)^2
/(4*c)], x], x] + Simp[Sin[(b^2 - 4*a*c)/(4*c)] Int[Sin[(b + 2*c*x)^2/(4*c)], x], x] /; FreeQ[{a, b, c}, x]
&& NeQ[b^2 - 4*a*c, 0]
-
Int[Sin[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]^(n_), x_Symbol] :> Int[ExpandTrigReduce[Sin[a + b*x + c*x^2]^n, x],
x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 1]
-
Int[Cos[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]^(n_), x_Symbol] :> Int[ExpandTrigReduce[Cos[a + b*x + c*x^2]^n, x],
x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 1]
-
Int[Sin[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]^(n_.), x_Symbol] :> Unintegrable[Sin[a + b*x + c*x^2]^n, x] /; Free
Q[{a, b, c, n}, x]
-
Int[Cos[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]^(n_.), x_Symbol] :> Unintegrable[Cos[a + b*x + c*x^2]^n, x] /; Free
Q[{a, b, c, n}, x]
-
Int[Sin[v_]^(n_.), x_Symbol] :> Int[Sin[ExpandToSum[v, x]]^n, x] /; IGtQ[n, 0] && QuadraticQ[v, x] && !Quadra
ticMatchQ[v, x]
-
Int[Cos[v_]^(n_.), x_Symbol] :> Int[Cos[ExpandToSum[v, x]]^n, x] /; IGtQ[n, 0] && QuadraticQ[v, x] && !Quadra
ticMatchQ[v, x]
-
Int[((d_) + (e_.)*(x_))*Sin[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Simp[(-e)*(Cos[a + b*x + c*x^2]/(
2*c)), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]
-
Int[Cos[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]*((d_) + (e_.)*(x_)), x_Symbol] :> Simp[e*(Sin[a + b*x + c*x^2]/(2*c
)), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]
-
Int[((d_.) + (e_.)*(x_))^(m_)*Sin[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Simp[(-e)*(d + e*x)^(m - 1)
*(Cos[a + b*x + c*x^2]/(2*c)), x] + Simp[e^2*((m - 1)/(2*c)) Int[(d + e*x)^(m - 2)*Cos[a + b*x + c*x^2], x],
x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0] && GtQ[m, 1]
-
Int[Cos[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]*((d_.) + (e_.)*(x_))^(m_), x_Symbol] :> Simp[e*(d + e*x)^(m - 1)*(S
in[a + b*x + c*x^2]/(2*c)), x] - Simp[e^2*((m - 1)/(2*c)) Int[(d + e*x)^(m - 2)*Sin[a + b*x + c*x^2], x], x]
/; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0] && GtQ[m, 1]
-
Int[((d_.) + (e_.)*(x_))^(m_)*Sin[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Simp[(d + e*x)^(m + 1)*(Sin
[a + b*x + c*x^2]/(e*(m + 1))), x] - Simp[2*(c/(e^2*(m + 1))) Int[(d + e*x)^(m + 2)*Cos[a + b*x + c*x^2], x]
, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0] && LtQ[m, -1]
-
Int[Cos[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]*((d_.) + (e_.)*(x_))^(m_), x_Symbol] :> Simp[(d + e*x)^(m + 1)*(Cos
[a + b*x + c*x^2]/(e*(m + 1))), x] + Simp[2*(c/(e^2*(m + 1))) Int[(d + e*x)^(m + 2)*Sin[a + b*x + c*x^2], x]
, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0] && LtQ[m, -1]
-
Int[((d_.) + (e_.)*(x_))*Sin[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Simp[(-e)*(Cos[a + b*x + c*x^2]/
(2*c)), x] + Simp[(2*c*d - b*e)/(2*c) Int[Sin[a + b*x + c*x^2], x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[2
*c*d - b*e, 0]
-
Int[Cos[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]*((d_.) + (e_.)*(x_)), x_Symbol] :> Simp[e*(Sin[a + b*x + c*x^2]/(2*
c)), x] + Simp[(2*c*d - b*e)/(2*c) Int[Cos[a + b*x + c*x^2], x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[2*c*
d - b*e, 0]
-
Int[((d_.) + (e_.)*(x_))^(m_)*Sin[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Simp[(-e)*(d + e*x)^(m - 1)
*(Cos[a + b*x + c*x^2]/(2*c)), x] + (-Simp[(b*e - 2*c*d)/(2*c) Int[(d + e*x)^(m - 1)*Sin[a + b*x + c*x^2], x
], x] + Simp[e^2*((m - 1)/(2*c)) Int[(d + e*x)^(m - 2)*Cos[a + b*x + c*x^2], x], x]) /; FreeQ[{a, b, c, d, e
}, x] && NeQ[b*e - 2*c*d, 0] && GtQ[m, 1]
-
Int[Cos[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]*((d_.) + (e_.)*(x_))^(m_), x_Symbol] :> Simp[e*(d + e*x)^(m - 1)*(S
in[a + b*x + c*x^2]/(2*c)), x] + (-Simp[(b*e - 2*c*d)/(2*c) Int[(d + e*x)^(m - 1)*Cos[a + b*x + c*x^2], x],
x] - Simp[e^2*((m - 1)/(2*c)) Int[(d + e*x)^(m - 2)*Sin[a + b*x + c*x^2], x], x]) /; FreeQ[{a, b, c, d, e},
x] && NeQ[b*e - 2*c*d, 0] && GtQ[m, 1]
-
Int[((d_.) + (e_.)*(x_))^(m_)*Sin[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Simp[(d + e*x)^(m + 1)*(Sin
[a + b*x + c*x^2]/(e*(m + 1))), x] + (-Simp[(b*e - 2*c*d)/(e^2*(m + 1)) Int[(d + e*x)^(m + 1)*Cos[a + b*x +
c*x^2], x], x] - Simp[2*(c/(e^2*(m + 1))) Int[(d + e*x)^(m + 2)*Cos[a + b*x + c*x^2], x], x]) /; FreeQ[{a, b
, c, d, e}, x] && NeQ[b*e - 2*c*d, 0] && LtQ[m, -1]
-
Int[Cos[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]*((d_.) + (e_.)*(x_))^(m_), x_Symbol] :> Simp[(d + e*x)^(m + 1)*(Cos
[a + b*x + c*x^2]/(e*(m + 1))), x] + (Simp[(b*e - 2*c*d)/(e^2*(m + 1)) Int[(d + e*x)^(m + 1)*Sin[a + b*x + c
*x^2], x], x] + Simp[2*(c/(e^2*(m + 1))) Int[(d + e*x)^(m + 2)*Sin[a + b*x + c*x^2], x], x]) /; FreeQ[{a, b,
c, d, e}, x] && NeQ[b*e - 2*c*d, 0] && LtQ[m, -1]
-
Int[((d_.) + (e_.)*(x_))^(m_.)*Sin[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]^(n_), x_Symbol] :> Int[ExpandTrigReduce[
(d + e*x)^m, Sin[a + b*x + c*x^2]^n, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && IGtQ[n, 1]
-
Int[Cos[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]^(n_)*((d_.) + (e_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandTrigReduce[
(d + e*x)^m, Cos[a + b*x + c*x^2]^n, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && IGtQ[n, 1]
-
Int[((d_.) + (e_.)*(x_))^(m_.)*Sin[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]^(n_.), x_Symbol] :> Unintegrable[(d + e*
x)^m*Sin[a + b*x + c*x^2]^n, x] /; FreeQ[{a, b, c, d, e, m, n}, x]
-
Int[Cos[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]^(n_.)*((d_.) + (e_.)*(x_))^(m_.), x_Symbol] :> Unintegrable[(d + e*
x)^m*Cos[a + b*x + c*x^2]^n, x] /; FreeQ[{a, b, c, d, e, m, n}, x]
-
Int[(u_)^(m_.)*Sin[v_]^(n_.), x_Symbol] :> Int[ExpandToSum[u, x]^m*Sin[ExpandToSum[v, x]]^n, x] /; FreeQ[m, x]
&& IGtQ[n, 0] && LinearQ[u, x] && QuadraticQ[v, x] && !(LinearMatchQ[u, x] && QuadraticMatchQ[v, x])
-
Int[Cos[v_]^(n_.)*(u_)^(m_.), x_Symbol] :> Int[ExpandToSum[u, x]^m*Cos[ExpandToSum[v, x]]^n, x] /; FreeQ[m, x]
&& IGtQ[n, 0] && LinearQ[u, x] && QuadraticQ[v, x] && !(LinearMatchQ[u, x] && QuadraticMatchQ[v, x])
-
Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b*((b*Tan[c + d*x])^(n - 1)/(d*(n - 1))), x] - Sim
p[b^2 Int[(b*Tan[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1]
-
Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Tan[c + d*x])^(n + 1)/(b*d*(n + 1)), x] - Simp[
1/b^2 Int[(b*Tan[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1]
-
Int[tan[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-Log[RemoveContent[Cos[c + d*x], x]]/d, x] /; FreeQ[{c, d}, x]
-
Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b/d Subst[Int[x^n/(b^2 + x^2), x], x, b*Tan[c +
d*x]], x] /; FreeQ[{b, c, d, n}, x] && !IntegerQ[n]
-
Int[((a_) + (b_.)*tan[(c_.) + (d_.)*(x_)])^2, x_Symbol] :> Simp[(a^2 - b^2)*x, x] + (Simp[b^2*(Tan[c + d*x]/d)
, x] + Simp[2*a*b Int[Tan[c + d*x], x], x]) /; FreeQ[{a, b, c, d}, x]
-
Int[((a_) + (b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b*((a + b*Tan[c + d*x])^(n - 1)/(d*(n - 1))
), x] + Simp[2*a Int[(a + b*Tan[c + d*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 + b^2, 0] &&
GtQ[n, 1]
-
Int[((a_) + (b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[a*((a + b*Tan[c + d*x])^n/(2*b*d*n)), x] +
Simp[1/(2*a) Int[(a + b*Tan[c + d*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 + b^2, 0] && LtQ[
n, 0]
-
Int[Sqrt[(a_) + (b_.)*tan[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[-2*(b/d) Subst[Int[1/(2*a - x^2), x], x, S
qrt[a + b*Tan[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 + b^2, 0]
-
Int[((a_) + (b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[-b/d Subst[Int[(a + x)^(n - 1)/(a - x), x
], x, b*Tan[c + d*x]], x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[a^2 + b^2, 0]
-
Int[((a_) + (b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b*((a + b*Tan[c + d*x])^(n - 1)/(d*(n - 1))
), x] + Int[(a^2 - b^2 + 2*a*b*Tan[c + d*x])*(a + b*Tan[c + d*x])^(n - 2), x] /; FreeQ[{a, b, c, d}, x] && NeQ
[a^2 + b^2, 0] && GtQ[n, 1]
-
Int[((a_) + (b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b*((a + b*Tan[c + d*x])^(n + 1)/(d*(n + 1)*
(a^2 + b^2))), x] + Simp[1/(a^2 + b^2) Int[(a - b*Tan[c + d*x])*(a + b*Tan[c + d*x])^(n + 1), x], x] /; Free
Q[{a, b, c, d}, x] && NeQ[a^2 + b^2, 0] && LtQ[n, -1]
-
Int[((a_) + (b_.)*tan[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> Simp[a*(x/(a^2 + b^2)), x] + Simp[b/(a^2 + b^2)
Int[(b - a*Tan[c + d*x])/(a + b*Tan[c + d*x]), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 + b^2, 0]
-
Int[((a_) + (b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b/d Subst[Int[(a + x)^n/(b^2 + x^2), x],
x, b*Tan[c + d*x]], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[a^2 + b^2, 0]
-
Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[b*((d*Sec[
e + f*x])^m/(f*m)), x] + Simp[a Int[(d*Sec[e + f*x])^m, x], x] /; FreeQ[{a, b, d, e, f, m}, x] && (IntegerQ[
2*m] || NeQ[a^2 + b^2, 0])
-
Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[1/(a^(m - 2)*b
*f) Subst[Int[(a - x)^(m/2 - 1)*(a + x)^(n + m/2 - 1), x], x, b*Tan[e + f*x]], x] /; FreeQ[{a, b, e, f, n},
x] && EqQ[a^2 + b^2, 0] && IntegerQ[m/2]
-
Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(d*
Sec[e + f*x])^m*((a + b*Tan[e + f*x])^n/(a*f*m)), x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 + b^2, 0] &
& EqQ[Simplify[m + n], 0]
-
Int[sec[(e_.) + (f_.)*(x_)]/Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp[-2*(a/(b*f)) Subst
[Int[1/(2 - a*x^2), x], x, Sec[e + f*x]/Sqrt[a + b*Tan[e + f*x]]], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 + b
^2, 0]
-
Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(d*
Sec[e + f*x])^m*((a + b*Tan[e + f*x])^n/(a*f*m)), x] + Simp[a/(2*d^2) Int[(d*Sec[e + f*x])^(m + 2)*(a + b*Ta
n[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 + b^2, 0] && EqQ[m/2 + n, 0] && GtQ[n, 0]
-
Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[2*d^2
*(d*Sec[e + f*x])^(m - 2)*((a + b*Tan[e + f*x])^(n + 1)/(b*f*(m - 2))), x] + Simp[2*(d^2/a) Int[(d*Sec[e + f
*x])^(m - 2)*(a + b*Tan[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 + b^2, 0] && EqQ[m/2
+ n, 0] && LtQ[n, -1]
-
Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(a/d)^
(2*IntPart[n])*(a + b*Tan[e + f*x])^FracPart[n]*((a - b*Tan[e + f*x])^FracPart[n]/(d*Sec[e + f*x])^(2*FracPart
[n])) Int[1/(a - b*Tan[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 + b^2, 0] && EqQ[Si
mplify[m/2 + n], 0]
-
Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[2*b*(
d*Sec[e + f*x])^m*((a + b*Tan[e + f*x])^(n - 1)/(f*m)), x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 + b^2
, 0] && EqQ[Simplify[m/2 + n - 1], 0]
-
Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(d*
Sec[e + f*x])^m*((a + b*Tan[e + f*x])^(n - 1)/(f*(m + n - 1))), x] + Simp[a*((m + 2*n - 2)/(m + n - 1)) Int[
(d*Sec[e + f*x])^m*(a + b*Tan[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 + b^2, 0
] && IGtQ[Simplify[m/2 + n - 1], 0] && !IntegerQ[n]
-
Int[Sqrt[(d_.)*sec[(e_.) + (f_.)*(x_)]]*Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp[-4*b*(d^
2/f) Subst[Int[x^2/(a^2 + d^2*x^4), x], x, Sqrt[a + b*Tan[e + f*x]]/Sqrt[d*Sec[e + f*x]]], x] /; FreeQ[{a, b
, d, e, f}, x] && EqQ[a^2 + b^2, 0]
-
Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[2*b*(d
*Sec[e + f*x])^m*((a + b*Tan[e + f*x])^(n - 1)/(f*m)), x] - Simp[b^2*((m + 2*n - 2)/(d^2*m)) Int[(d*Sec[e +
f*x])^(m + 2)*(a + b*Tan[e + f*x])^(n - 2), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 + b^2, 0] && GtQ[n,
1] && ((IGtQ[n/2, 0] && ILtQ[m - 1/2, 0]) || (EqQ[n, 2] && LtQ[m, 0]) || (LeQ[m, -1] && GtQ[m + n, 0]) || (IL
tQ[m, 0] && LtQ[m/2 + n - 1, 0] && IntegerQ[n]) || (EqQ[n, 3/2] && EqQ[m, -2^(-1)])) && IntegerQ[2*m]
-
Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(d*S
ec[e + f*x])^m*((a + b*Tan[e + f*x])^n/(a*f*m)), x] + Simp[a*((m + n)/(m*d^2)) Int[(d*Sec[e + f*x])^(m + 2)*
(a + b*Tan[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 + b^2, 0] && GtQ[n, 0] && LtQ[m,
-1] && IntegersQ[2*m, 2*n]
-
Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(d*
Sec[e + f*x])^m*((a + b*Tan[e + f*x])^(n - 1)/(f*(m + n - 1))), x] + Simp[a*((m + 2*n - 2)/(m + n - 1)) Int[
(d*Sec[e + f*x])^m*(a + b*Tan[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, d, e, f, m}, x] && EqQ[a^2 + b^2, 0] &
& GtQ[n, 0] && NeQ[m + n - 1, 0] && IntegersQ[2*m, 2*n]
-
Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(3/2)/Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp[d*(Sec
[e + f*x]/(Sqrt[a - b*Tan[e + f*x]]*Sqrt[a + b*Tan[e + f*x]])) Int[Sqrt[d*Sec[e + f*x]]*Sqrt[a - b*Tan[e + f
*x]], x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 + b^2, 0]
-
Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[2*d^2*
(d*Sec[e + f*x])^(m - 2)*((a + b*Tan[e + f*x])^(n + 1)/(b*f*(m + 2*n))), x] - Simp[d^2*((m - 2)/(b^2*(m + 2*n)
)) Int[(d*Sec[e + f*x])^(m - 2)*(a + b*Tan[e + f*x])^(n + 2), x], x] /; FreeQ[{a, b, d, e, f, m}, x] && EqQ[
a^2 + b^2, 0] && LtQ[n, -1] && ((ILtQ[n/2, 0] && IGtQ[m - 1/2, 0]) || EqQ[n, -2] || IGtQ[m + n, 0] || (Integer
sQ[n, m + 1/2] && GtQ[2*m + n + 1, 0])) && IntegerQ[2*m]
-
Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[d^2*(
d*Sec[e + f*x])^(m - 2)*((a + b*Tan[e + f*x])^(n + 1)/(b*f*(m + n - 1))), x] + Simp[d^2*((m - 2)/(a*(m + n - 1
))) Int[(d*Sec[e + f*x])^(m - 2)*(a + b*Tan[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^
2 + b^2, 0] && LtQ[n, 0] && GtQ[m, 1] && !ILtQ[m + n, 0] && NeQ[m + n - 1, 0] && IntegersQ[2*m, 2*n]
-
Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[a*(d*
Sec[e + f*x])^m*((a + b*Tan[e + f*x])^n/(b*f*(m + 2*n))), x] + Simp[Simplify[m + n]/(a*(m + 2*n)) Int[(d*Sec
[e + f*x])^m*(a + b*Tan[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, m}, x] && EqQ[a^2 + b^2, 0] && LtQ[
n, 0] && NeQ[m + 2*n, 0] && IntegersQ[2*m, 2*n]
-
Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(d*
Sec[e + f*x])^m*((a + b*Tan[e + f*x])^(n - 1)/(f*Simplify[m + n - 1])), x] + Simp[a*((m + 2*n - 2)/Simplify[m
+ n - 1]) Int[(d*Sec[e + f*x])^m*(a + b*Tan[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] &&
EqQ[a^2 + b^2, 0] && IGtQ[Simplify[m + n - 1], 0] && RationalQ[n]
-
Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[a*(d*
Sec[e + f*x])^m*((a + b*Tan[e + f*x])^n/(b*f*(m + 2*n))), x] + Simp[Simplify[m + n]/(a*(m + 2*n)) Int[(d*Sec
[e + f*x])^m*(a + b*Tan[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 + b^2, 0] && I
LtQ[Simplify[m + n], 0] && NeQ[m + 2*n, 0]
-
Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Simp[(d*S
ec[e + f*x])^m/((a + b*Tan[e + f*x])^(m/2)*(a - b*Tan[e + f*x])^(m/2)) Int[(a + b*Tan[e + f*x])^(m/2 + n)*(a
- b*Tan[e + f*x])^(m/2), x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 + b^2, 0]
-
Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[1/(b*f) Subs
t[Int[(a + x)^n*(1 + x^2/b^2)^(m/2 - 1), x], x, b*Tan[e + f*x]], x] /; FreeQ[{a, b, e, f, n}, x] && NeQ[a^2 +
b^2, 0] && IntegerQ[m/2]
-
Int[sec[(e_.) + (f_.)*(x_)]/((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[-f^(-1) Subst[Int[1/(a
^2 + b^2 - x^2), x], x, (b - a*Tan[e + f*x])/Sec[e + f*x]], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 + b^2, 0]
-
Int[sec[(e_.) + (f_.)*(x_)]^(m_)/((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[-(b^2)^(-1) Int[S
ec[e + f*x]^(m - 2)*(a - b*Tan[e + f*x]), x], x] + Simp[(a^2 + b^2)/b^2 Int[Sec[e + f*x]^(m - 2)/(a + b*Tan[
e + f*x]), x], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 + b^2, 0] && IGtQ[(m - 1)/2, 0]
-
Int[sec[(e_.) + (f_.)*(x_)]^(m_)/((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[1/(a^2 + b^2) Int
[Sec[e + f*x]^m*(a - b*Tan[e + f*x]), x], x] + Simp[b^2/(a^2 + b^2) Int[Sec[e + f*x]^(m + 2)/(a + b*Tan[e +
f*x]), x], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 + b^2, 0] && ILtQ[(m - 1)/2, 0]
-
Int[sec[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Module[{k}, Int[Se
c[e + f*x]^m*Sum[Binomial[n, 2*k]*a^(n - 2*k)*b^(2*k)*Tan[e + f*x]^(2*k), {k, 0, n/2}], x] + Int[Sec[e + f*x]^
m*Tan[e + f*x]*Sum[Binomial[n, 2*k + 1]*a^(n - 2*k - 1)*b^(2*k + 1)*Tan[e + f*x]^(2*k), {k, 0, (n - 1)/2}], x]
] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 + b^2, 0] && IntegerQ[(m - 1)/2] && IGtQ[n, 0]
-
Int[sec[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[Sec[e + f*x]/
(b*f*Sqrt[Sec[e + f*x]^2]) Subst[Int[(a + x)^n*(1 + x^2/b^2)^(m/2 - 1), x], x, b*Tan[e + f*x]], x] /; FreeQ[
{a, b, e, f, n}, x] && NeQ[a^2 + b^2, 0] && IntegerQ[(m - 1)/2]
-
Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^2, x_Symbol] :> Simp[b*(d*Sec
[e + f*x])^m*((a + b*Tan[e + f*x])/(f*(m + 1))), x] + Simp[1/(m + 1) Int[(d*Sec[e + f*x])^m*(a^2*(m + 1) - b
^2 + a*b*(m + 2)*Tan[e + f*x]), x], x] /; FreeQ[{a, b, d, e, f, m}, x] && NeQ[a^2 + b^2, 0] && !IntegerQ[m]
-
Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[d^(2*
IntPart[m/2])*((d*Sec[e + f*x])^(2*FracPart[m/2])/(b*f*(Sec[e + f*x]^2)^FracPart[m/2])) Subst[Int[(a + x)^n*
(1 + x^2/b^2)^(m/2 - 1), x], x, b*Tan[e + f*x]], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && NeQ[a^2 + b^2, 0] &&
!IntegerQ[m] && IntegerQ[n]
-
Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[d^(2*
IntPart[m/2])*(a^2 + b^2)^(IntPart[m/2] - 1)*((d*Sec[e + f*x])^(2*FracPart[m/2])/(f*b^(2*IntPart[m/2] - 1)*(1
- (a + b*Tan[e + f*x])/(a - Rt[-b^2, 2]))^FracPart[m/2]*(1 - (a + b*Tan[e + f*x])/(a + Rt[-b^2, 2]))^FracPart[
m/2])) Subst[Int[x^n*(1 - x/(a - Rt[-b^2, 2]))^(m/2 - 1)*(1 - x/(a + Rt[-b^2, 2]))^(m/2 - 1), x], x, a + b*T
an[e + f*x]], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && NeQ[a^2 + b^2, 0] && !IntegerQ[m] && !IntegerQ[n]
-
Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[cos[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Simp[-4*(b/f)
Subst[Int[x^2/(a^2*d^2 + x^4), x], x, Sqrt[d*Cos[e + f*x]]*Sqrt[a + b*Tan[e + f*x]]], x] /; FreeQ[{a, b, d,
e, f}, x] && EqQ[a^2 + b^2, 0]
-
Int[1/((cos[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)*Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]), x_Symbol] :> Simp[1/
(d*Cos[e + f*x]*Sqrt[a - b*Tan[e + f*x]]*Sqrt[a + b*Tan[e + f*x]]) Int[Sqrt[a - b*Tan[e + f*x]]/Sqrt[d*Cos[e
+ f*x]], x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 + b^2, 0]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Simp[(d*Co
s[e + f*x])^m*(d*Sec[e + f*x])^m Int[(a + b*Tan[e + f*x])^n/(d*Sec[e + f*x])^m, x], x] /; FreeQ[{a, b, d, e,
f, m, n}, x] && !IntegerQ[m]
-
Int[sin[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b/f Subst[In
t[x^m*((a + x)^n/(b^2 + x^2)^(m/2 + 1)), x], x, b*Tan[e + f*x]], x] /; FreeQ[{a, b, e, f, n}, x] && IntegerQ[m
/2]
-
Int[sin[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Int[Expand[Sin[e
+ f*x]^m*(a + b*Tan[e + f*x])^n, x], x] /; FreeQ[{a, b, e, f}, x] && IntegerQ[(m - 1)/2] && IGtQ[n, 0]
-
Int[sin[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Int[Sin[e + f*x]^
m*((a*Cos[e + f*x] + b*Sin[e + f*x])^n/Cos[e + f*x]^n), x] /; FreeQ[{a, b, e, f}, x] && IntegerQ[(m - 1)/2] &&
ILtQ[n, 0] && ((LtQ[m, 5] && GtQ[n, -4]) || (EqQ[m, 5] && EqQ[n, -1]))
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Simp[(d*C
sc[e + f*x])^FracPart[m]*(Sin[e + f*x]/d)^FracPart[m] Int[(a + b*Tan[e + f*x])^n/(Sin[e + f*x]/d)^m, x], x]
/; FreeQ[{a, b, d, e, f, m, n}, x] && !IntegerQ[m]
-
Int[cos[(e_.) + (f_.)*(x_)]^(m_.)*sin[(e_.) + (f_.)*(x_)]^(p_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.),
x_Symbol] :> Int[Cos[e + f*x]^(m - n)*Sin[e + f*x]^p*(a*Cos[e + f*x] + b*Sin[e + f*x])^n, x] /; FreeQ[{a, b, e
, f, m, p}, x] && IntegerQ[n]
-
Int[cos[(e_.) + (f_.)*(x_)]^(p_.)*(cot[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(n_.)*sin[(e_.) + (f_.)*(x_)]^(m_.),
x_Symbol] :> Int[Sin[e + f*x]^(m - n)*Cos[e + f*x]^p*(a*Sin[e + f*x] + b*Cos[e + f*x])^n, x] /; FreeQ[{a, b, e
, f, m, p}, x] && IntegerQ[n]
-
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Si
mp[a^m*c^m Int[Sec[e + f*x]^(2*m)*(c + d*Tan[e + f*x])^(n - m), x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &&
EqQ[b*c + a*d, 0] && EqQ[a^2 + b^2, 0] && IntegerQ[m] && !(IGtQ[n, 0] && (LtQ[m, 0] || GtQ[m, n]))
-
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp
[a*(c/f) Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^(n - 1), x], x, Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f,
m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 + b^2, 0]
-
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(a*c - b*
d)*x, x] + Simp[b*d*(Tan[e + f*x]/f), x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[b*c + a*d
, 0]
-
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(a*c - b
*d)*x, x] + (Simp[b*d*(Tan[e + f*x]/f), x] + Simp[(b*c + a*d) Int[Tan[e + f*x], x], x]) /; FreeQ[{a, b, c, d
, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[b*c + a*d, 0]
-
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(-(
b*c - a*d))*((a + b*Tan[e + f*x])^m/(2*a*f*m)), x] + Simp[(b*c + a*d)/(2*a*b) Int[(a + b*Tan[e + f*x])^(m +
1), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[m, 0]
-
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[d*(
(a + b*Tan[e + f*x])^m/(f*m)), x] + Simp[(b*c + a*d)/b Int[(a + b*Tan[e + f*x])^m, x], x] /; FreeQ[{a, b, c,
d, e, f, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && !LtQ[m, 0]
-
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[d*
((a + b*Tan[e + f*x])^m/(f*m)), x] + Int[(a + b*Tan[e + f*x])^(m - 1)*Simp[a*c - b*d + (b*c + a*d)*Tan[e + f*x
], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && GtQ[m, 0]
-
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b
*c - a*d)*((a + b*Tan[e + f*x])^(m + 1)/(f*(m + 1)*(a^2 + b^2))), x] + Simp[1/(a^2 + b^2) Int[(a + b*Tan[e +
f*x])^(m + 1)*Simp[a*c + b*d - (b*c - a*d)*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*
c - a*d, 0] && NeQ[a^2 + b^2, 0] && LtQ[m, -1]
-
Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(c/(b*f))
*Log[RemoveContent[a*Cos[e + f*x] + b*Sin[e + f*x], x]], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d,
0] && NeQ[a^2 + b^2, 0] && EqQ[a*c + b*d, 0]
-
Int[((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])/((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(a*c +
b*d)*(x/(a^2 + b^2)), x] + Simp[(b*c - a*d)/(a^2 + b^2) Int[(b - a*Tan[e + f*x])/(a + b*Tan[e + f*x]), x], x
] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[a*c + b*d, 0]
-
Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp[-2*(d^2/f)
Subst[Int[1/(2*c*d + b*x^2), x], x, (c - d*Tan[e + f*x])/Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f},
x] && EqQ[c^2 - d^2, 0]
-
Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp[2*(c^2/f)
Subst[Int[1/(b*c - d*x^2), x], x, Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && EqQ[c^2 + d^2, 0]
-
Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp[2/f Subst[
Int[(b*c + d*x^2)/(b^2 + x^4), x], x, Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2,
0] && NeQ[c^2 + d^2, 0]
-
Int[((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp[-2*(
d^2/f) Subst[Int[1/(2*b*c*d - 4*a*d^2 + x^2), x], x, (b*c - 2*a*d - b*d*Tan[e + f*x])/Sqrt[a + b*Tan[e + f*x
]]], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && EqQ[
2*a*c*d - b*(c^2 - d^2), 0]
-
Int[((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> With[{q =
Rt[a^2 + b^2, 2]}, Simp[1/(2*q) Int[(a*c + b*d + c*q + (b*c - a*d + d*q)*Tan[e + f*x])/Sqrt[a + b*Tan[e + f
*x]], x], x] - Simp[1/(2*q) Int[(a*c + b*d - c*q + (b*c - a*d - d*q)*Tan[e + f*x])/Sqrt[a + b*Tan[e + f*x]],
x], x]] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && NeQ
[2*a*c*d - b*(c^2 - d^2), 0] && NiceSqrtQ[a^2 + b^2]
-
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[c*(
d/f) Subst[Int[(a + (b/d)*x)^m/(d^2 + c*x), x], x, d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] &&
NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[c^2 + d^2, 0]
-
Int[((b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[c Int[(b*
Tan[e + f*x])^m, x], x] + Simp[d/b Int[(b*Tan[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x] && N
eQ[c^2 + d^2, 0] && !IntegerQ[2*m]
-
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(c
+ I*d)/2 Int[(a + b*Tan[e + f*x])^m*(1 - I*Tan[e + f*x]), x], x] + Simp[(c - I*d)/2 Int[(a + b*Tan[e + f*
x])^m*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0
] && NeQ[c^2 + d^2, 0] && !IntegerQ[m]
-
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^2, x_Symbol] :> Simp[(
-b)*(a*c + b*d)^2*((a + b*Tan[e + f*x])^m/(2*a^3*f*m)), x] + Simp[1/(2*a^2) Int[(a + b*Tan[e + f*x])^(m + 1)
*Simp[a*c^2 - 2*b*c*d + a*d^2 - 2*b*d^2*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c -
a*d, 0] && LeQ[m, -1] && EqQ[a^2 + b^2, 0]
-
Int[((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^2/((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[d*(2*
b*c - a*d)*(x/b^2), x] + (Simp[d^2/b Int[Tan[e + f*x], x], x] + Simp[(b*c - a*d)^2/b^2 Int[1/(a + b*Tan[e
+ f*x]), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0]
-
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^2, x_Symbol] :> Simp[
(b*c - a*d)^2*((a + b*Tan[e + f*x])^(m + 1)/(b*f*(m + 1)*(a^2 + b^2))), x] + Simp[1/(a^2 + b^2) Int[(a + b*T
an[e + f*x])^(m + 1)*Simp[a*c^2 + 2*b*c*d - a*d^2 - (b*c^2 - 2*a*c*d - b*d^2)*Tan[e + f*x], x], x], x] /; Free
Q[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] && NeQ[a^2 + b^2, 0]
-
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^2, x_Symbol] :> Simp[
d^2*((a + b*Tan[e + f*x])^(m + 1)/(b*f*(m + 1))), x] + Int[(a + b*Tan[e + f*x])^m*Simp[c^2 - d^2 + 2*c*d*Tan[e
+ f*x], x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && !LeQ[m, -1] && !(EqQ[m, 2] && EqQ
[a, 0])
-
Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp[
-2*a*(b/f) Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x
] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]
-
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[a*b*(a + b*Tan[e + f*x])^(m - 1)*((c + d*Tan[e + f*x])^(n + 1)/(f*(m - 1)*(a*c - b*d))), x] + Simp[2*(a^2/(a
*c - b*d)) Int[(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f}
, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && EqQ[m + n, 0] && GtQ[m, 1/2]
-
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[a*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^n/(2*b*f*m)), x] - Simp[(a*c - b*d)/(2*b^2) Int[(a + b*Tan[
e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] &&
EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && EqQ[m + n, 0] && LeQ[m, -2^(-1)]
-
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[a*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^(n + 1)/(2*f*m*(b*c - a*d))), x] + Simp[1/(2*a) Int[(a + b*
Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && E
qQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && EqQ[m + n + 1, 0] && LtQ[m, -1]
-
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(-d)*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^(n + 1)/(f*m*(c^2 + d^2))), x] + Simp[a/(a*c - b*d) Int[
(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && NeQ[b*c -
a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && EqQ[m + n + 1, 0] && !LtQ[m, -1]
-
Int[((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)/((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(-(
a*c + b*d))*((c + d*Tan[e + f*x])^n/(2*(b*c - a*d)*f*(a + b*Tan[e + f*x]))), x] + Simp[1/(2*a*(b*c - a*d)) I
nt[(c + d*Tan[e + f*x])^(n - 1)*Simp[a*c*d*(n - 1) + b*c^2 + b*d^2*n - d*(b*c - a*d)*(n - 1)*Tan[e + f*x], x],
x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[
0, n, 1]
-
Int[((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)/((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b*
c - a*d)*((c + d*Tan[e + f*x])^(n - 1)/(2*a*f*(a + b*Tan[e + f*x]))), x] + Simp[1/(2*a^2) Int[(c + d*Tan[e +
f*x])^(n - 2)*Simp[a*c^2 + a*d^2*(n - 1) - b*c*d*n - d*(a*c*(n - 2) + b*d*n)*Tan[e + f*x], x], x], x] /; Free
Q[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[n, 1]
-
Int[1/(((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])), x_Symbol] :> Simp[b/(
b*c - a*d) Int[1/(a + b*Tan[e + f*x]), x], x] - Simp[d/(b*c - a*d) Int[1/(c + d*Tan[e + f*x]), x], x] /; F
reeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]
-
Int[((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)/((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(-a
)*((c + d*Tan[e + f*x])^(n + 1)/(2*f*(b*c - a*d)*(a + b*Tan[e + f*x]))), x] + Simp[1/(2*a*(b*c - a*d)) Int[(
c + d*Tan[e + f*x])^n*Simp[b*c + a*d*(n - 1) - b*d*n*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, n},
x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && !GtQ[n, 0]
-
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(-a^2)*(b*c - a*d)*(a + b*Tan[e + f*x])^(m - 2)*((c + d*Tan[e + f*x])^(n + 1)/(d*f*(b*c + a*d)*(n + 1))), x]
+ Simp[a/(d*(b*c + a*d)*(n + 1)) Int[(a + b*Tan[e + f*x])^(m - 2)*(c + d*Tan[e + f*x])^(n + 1)*Simp[b*(b*c*
(m - 2) - a*d*(m - 2*n - 4)) + (a*b*c*(m - 2) + b^2*d*(n + 1) - a^2*d*(m + n - 1))*Tan[e + f*x], x], x], x] /;
FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[m, 1] && L
tQ[n, -1] && (IntegerQ[m] || IntegersQ[2*m, 2*n])
-
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(3/2)/((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[2*
(a^2/(a*c - b*d)) Int[Sqrt[a + b*Tan[e + f*x]], x], x] - Simp[(2*b*c*d + a*(c^2 - d^2))/(a*(c^2 + d^2)) In
t[(a - b*Tan[e + f*x])*(Sqrt[a + b*Tan[e + f*x]]/(c + d*Tan[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f}, x]
&& NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]
-
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(3/2)/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Sim
p[2*a Int[Sqrt[a + b*Tan[e + f*x]]/Sqrt[c + d*Tan[e + f*x]], x], x] + Simp[b/a Int[(b + a*Tan[e + f*x])*(S
qrt[a + b*Tan[e + f*x]]/Sqrt[c + d*Tan[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0]
&& EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]
-
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[b^2*(a + b*Tan[e + f*x])^(m - 2)*((c + d*Tan[e + f*x])^(n + 1)/(d*f*(m + n - 1))), x] + Simp[a/(d*(m + n - 1
)) Int[(a + b*Tan[e + f*x])^(m - 2)*(c + d*Tan[e + f*x])^n*Simp[b*c*(m - 2) + a*d*(m + 2*n) + (a*c*(m - 2) +
b*d*(3*m + 2*n - 4))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && EqQ[
a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && IntegerQ[2*m] && GtQ[m, 1] && NeQ[m + n - 1, 0] && (IntegerQ[m] || Integ
ersQ[2*m, 2*n])
-
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp
[(-b)*(a + b*Tan[e + f*x])^m*(Sqrt[c + d*Tan[e + f*x]]/(2*a*f*m)), x] + Simp[1/(4*a^2*m) Int[(a + b*Tan[e +
f*x])^(m + 1)*(Simp[2*a*c*m + b*d + a*d*(2*m + 1)*Tan[e + f*x], x]/Sqrt[c + d*Tan[e + f*x]]), x], x] /; FreeQ[
{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, 0] && Integers
Q[2*m]
-
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(-(b*c - a*d))*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^(n - 1)/(2*a*f*m)), x] + Simp[1/(2*a^2*m) Int[
(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 2)*Simp[c*(a*c*m + b*d*(n - 1)) - d*(b*c*m + a*d*(n - 1
)) - d*(b*d*(m - n + 1) - a*c*(m + n - 1))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c
- a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, 0] && GtQ[n, 1] && (IntegerQ[m] || IntegersQ[2*
m, 2*n])
-
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[a*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^(n + 1)/(2*f*m*(b*c - a*d))), x] + Simp[1/(2*a*m*(b*c - a*d))
Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[b*c*m - a*d*(2*m + n + 1) + b*d*(m + n + 1)*Ta
n[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2
+ d^2, 0] && LtQ[m, 0] && (IntegerQ[m] || IntegersQ[2*m, 2*n])
-
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[d*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^(n - 1)/(f*(m + n - 1))), x] - Simp[1/(a*(m + n - 1)) Int[(
a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n - 2)*Simp[d*(b*c*m + a*d*(-1 + n)) - a*c^2*(m + n - 1) + d*(b*d*
m - a*c*(m + 2*n - 2))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && EqQ
[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[n, 1] && NeQ[m + n - 1, 0] && (IntegerQ[n] || IntegersQ[2*m, 2*n])
-
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[d*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^(n + 1)/(f*(n + 1)*(c^2 + d^2))), x] - Simp[1/(a*(c^2 + d^2)*
(n + 1)) Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n + 1)*Simp[b*d*m - a*c*(n + 1) + a*d*(m + n + 1)*
Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c
^2 + d^2, 0] && LtQ[n, -1] && (IntegerQ[n] || IntegersQ[2*m, 2*n])
-
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)/((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[a/(
a*c - b*d) Int[(a + b*Tan[e + f*x])^m, x], x] - Simp[d/(a*c - b*d) Int[(a + b*Tan[e + f*x])^m*((b + a*Tan[
e + f*x])/(c + d*Tan[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b
^2, 0] && NeQ[c^2 + d^2, 0]
-
Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp[
(a*c - b*d)/a Int[Sqrt[a + b*Tan[e + f*x]]/Sqrt[c + d*Tan[e + f*x]], x], x] + Simp[d/a Int[Sqrt[a + b*Tan[
e + f*x]]*((b + a*Tan[e + f*x])/Sqrt[c + d*Tan[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c -
a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]
-
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[a*(b/f) Subst[Int[(a + x)^(m - 1)*((c + (d/b)*x)^n/(b^2 + a*x)), x], x, b*Tan[e + f*x]], x] /; FreeQ[{a, b
, c, d, e, f, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]
-
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[(b*c - a*d)^2*(a + b*Tan[e + f*x])^(m - 2)*((c + d*Tan[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 + d^2))), x] - S
imp[1/(d*(n + 1)*(c^2 + d^2)) Int[(a + b*Tan[e + f*x])^(m - 3)*(c + d*Tan[e + f*x])^(n + 1)*Simp[a^2*d*(b*d*
(m - 2) - a*c*(n + 1)) + b*(b*c - 2*a*d)*(b*c*(m - 2) + a*d*(n + 1)) - d*(n + 1)*(3*a^2*b*c - b^3*c - a^3*d +
3*a*b^2*d)*Tan[e + f*x] - b*(a*d*(2*b*c - a*d)*(m + n - 1) - b^2*(c^2*(m - 2) - d^2*(n + 1)))*Tan[e + f*x]^2,
x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && G
tQ[m, 2] && LtQ[n, -1] && IntegerQ[2*m]
-
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[b^2*(a + b*Tan[e + f*x])^(m - 2)*((c + d*Tan[e + f*x])^(n + 1)/(d*f*(m + n - 1))), x] + Simp[1/(d*(m + n -
1)) Int[(a + b*Tan[e + f*x])^(m - 3)*(c + d*Tan[e + f*x])^n*Simp[a^3*d*(m + n - 1) - b^2*(b*c*(m - 2) + a*d*
(1 + n)) + b*d*(m + n - 1)*(3*a^2 - b^2)*Tan[e + f*x] - b^2*(b*c*(m - 2) - a*d*(3*m + 2*n - 4))*Tan[e + f*x]^2
, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]
&& IntegerQ[2*m] && GtQ[m, 2] && (GeQ[n, -1] || IntegerQ[m]) && !(IGtQ[n, 2] && ( !IntegerQ[m] || (EqQ[c, 0]
&& NeQ[a, 0])))
-
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[(b*c - a*d)*(a + b*Tan[e + f*x])^(m + 1)*((c + d*Tan[e + f*x])^(n - 1)/(f*(m + 1)*(a^2 + b^2))), x] + Simp[
1/((m + 1)*(a^2 + b^2)) Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 2)*Simp[a*c^2*(m + 1) + a
*d^2*(n - 1) + b*c*d*(m - n + 2) - (b*c^2 - 2*a*c*d - b*d^2)*(m + 1)*Tan[e + f*x] - d*(b*c - a*d)*(m + n)*Tan[
e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 +
d^2, 0] && LtQ[m, -1] && LtQ[1, n, 2] && IntegerQ[2*m]
-
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[b*(a + b*Tan[e + f*x])^(m + 1)*((c + d*Tan[e + f*x])^n/(f*(m + 1)*(a^2 + b^2))), x] + Simp[1/((m + 1)*(a^2
+ b^2)) Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 1)*Simp[a*c*(m + 1) - b*d*n - (b*c - a*d)
*(m + 1)*Tan[e + f*x] - b*d*(m + n + 1)*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c
- a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] && GtQ[n, 0] && IntegerQ[2*m]
-
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[b^2*(a + b*Tan[e + f*x])^(m + 1)*((c + d*Tan[e + f*x])^(n + 1)/(f*(m + 1)*(a^2 + b^2)*(b*c - a*d))), x] + S
imp[1/((m + 1)*(a^2 + b^2)*(b*c - a*d)) Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[a*(b*c
- a*d)*(m + 1) - b^2*d*(m + n + 2) - b*(b*c - a*d)*(m + 1)*Tan[e + f*x] - b^2*d*(m + n + 2)*Tan[e + f*x]^2, x]
, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] &&
IntegerQ[2*m] && LtQ[m, -1] && (LtQ[n, 0] || IntegerQ[m]) && !(ILtQ[n, -1] && ( !IntegerQ[m] || (EqQ[c, 0] &&
NeQ[a, 0])))
-
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Si
mp[b*(a + b*Tan[e + f*x])^(m - 1)*((c + d*Tan[e + f*x])^n/(f*(m + n - 1))), x] + Simp[1/(m + n - 1) Int[(a +
b*Tan[e + f*x])^(m - 2)*(c + d*Tan[e + f*x])^(n - 1)*Simp[a^2*c*(m + n - 1) - b*(b*c*(m - 1) + a*d*n) + (2*a*
b*c + a^2*d - b^2*d)*(m + n - 1)*Tan[e + f*x] + b*(b*c*n + a*d*(2*m + n - 2))*Tan[e + f*x]^2, x], x], x] /; Fr
eeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[m, 1] && GtQ[
n, 0] && IntegerQ[2*n]
-
Int[1/(((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])), x_Symbol] :> Simp[(a*c
- b*d)*(x/((a^2 + b^2)*(c^2 + d^2))), x] + (Simp[b^2/((b*c - a*d)*(a^2 + b^2)) Int[(b - a*Tan[e + f*x])/(a
+ b*Tan[e + f*x]), x], x] - Simp[d^2/((b*c - a*d)*(c^2 + d^2)) Int[(d - c*Tan[e + f*x])/(c + d*Tan[e + f*x])
, x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]
-
Int[Sqrt[(a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[1/(
c^2 + d^2) Int[Simp[a*c + b*d + (b*c - a*d)*Tan[e + f*x], x]/Sqrt[a + b*Tan[e + f*x]], x], x] - Simp[d*((b*c
- a*d)/(c^2 + d^2)) Int[(1 + Tan[e + f*x]^2)/(Sqrt[a + b*Tan[e + f*x]]*(c + d*Tan[e + f*x])), x], x] /; Fre
eQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]
-
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(3/2)/((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[1
/(c^2 + d^2) Int[Simp[a^2*c - b^2*c + 2*a*b*d + (2*a*b*c - a^2*d + b^2*d)*Tan[e + f*x], x]/Sqrt[a + b*Tan[e
+ f*x]], x], x] + Simp[(b*c - a*d)^2/(c^2 + d^2) Int[(1 + Tan[e + f*x]^2)/(Sqrt[a + b*Tan[e + f*x]]*(c + d*T
an[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d
^2, 0]
-
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)/((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[1/
(c^2 + d^2) Int[(a + b*Tan[e + f*x])^m*(c - d*Tan[e + f*x]), x], x] + Simp[d^2/(c^2 + d^2) Int[(a + b*Tan[
e + f*x])^m*((1 + Tan[e + f*x]^2)/(c + d*Tan[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c
- a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && !IntegerQ[m]
-
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Wit
h[{ff = FreeFactors[Tan[e + f*x], x]}, Simp[ff/f Subst[Int[(a + b*ff*x)^m*((c + d*ff*x)^n/(1 + ff^2*x^2)), x
], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] &&
NeQ[c^2 + d^2, 0]
-
Int[((d_.)/tan[(e_.) + (f_.)*(x_)])^(n_)*((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Simp[d^m
Int[(b + a*Cot[e + f*x])^m*(d*Cot[e + f*x])^(n - m), x], x] /; FreeQ[{a, b, d, e, f, n}, x] && !IntegerQ[n]
&& IntegerQ[m]
-
Int[((a_.) + cot[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((d_.)/cot[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[d^m
Int[(b + a*Tan[e + f*x])^m*(d*Tan[e + f*x])^(n - m), x], x] /; FreeQ[{a, b, d, e, f, n}, x] && !IntegerQ[n]
&& IntegerQ[m]
-
Int[((c_.)*((d_.)*tan[(e_.) + (f_.)*(x_)])^(p_))^(n_)*((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol]
:> Simp[c^IntPart[n]*((c*(d*Tan[e + f*x])^p)^FracPart[n]/(d*Tan[e + f*x])^(p*FracPart[n])) Int[(a + b*Tan[e
+ f*x])^m*(d*Tan[e + f*x])^(n*p), x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && !IntegerQ[n] && !Integ
erQ[m]
-
Int[((a_.) + cot[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((c_.)*(cot[(e_.) + (f_.)*(x_)]*(d_.))^(p_))^(n_), x_Symbol]
:> Simp[c^IntPart[n]*((c*(d*Cot[e + f*x])^p)^FracPart[n]/(d*Cot[e + f*x])^(p*FracPart[n])) Int[(a + b*Cot[e
+ f*x])^m*(d*Cot[e + f*x])^(n*p), x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && !IntegerQ[n] && !Integ
erQ[m]
-
Int[((g_.)*tan[(e_.) + (f_.)*(x_)])^(p_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.)
+ (f_.)*(x_)])^(n_), x_Symbol] :> Unintegrable[(g*Tan[e + f*x])^p*(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^
n, x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x]
-
Int[(cot[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*tan[(e_.)
+ (f_.)*(x_)])^(n_.), x_Symbol] :> Simp[g^(m + n) Int[(g*Cot[e + f*x])^(p - m - n)*(b + a*Cot[e + f*x])^m*(
d + c*Cot[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && !IntegerQ[p] && IntegerQ[m] && Integer
Q[n]
-
Int[((a_.) + cot[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(cot[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.)*((g_.)*tan[(e_.
) + (f_.)*(x_)])^(p_), x_Symbol] :> Simp[g^(m + n) Int[(g*Tan[e + f*x])^(p - m - n)*(b + a*Tan[e + f*x])^m*(
d + c*Tan[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && !IntegerQ[p] && IntegerQ[m] && Integer
Q[n]
-
Int[((g_.)*tan[(e_.) + (f_.)*(x_)]^(q_))^(p_)*((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*tan[
(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Simp[(g*Tan[e + f*x]^q)^p/(g*Tan[e + f*x])^(p*q) Int[(g*Tan[e + f*x
])^(p*q)*(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p, q}, x]
&& !IntegerQ[p] && !(IntegerQ[m] && IntegerQ[n])
-
Int[(cot[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.)*((g_.)*tan[(e_.) + (f_.)*(x_)])^(p_.)*((a_) + (b_.)*tan[(e_.)
+ (f_.)*(x_)])^(m_.), x_Symbol] :> Simp[g^n Int[(g*Tan[e + f*x])^(p - n)*(a + b*Tan[e + f*x])^m*(d + c*Tan[
e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, x] && IntegerQ[n]
-
Int[(cot[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_)*tan[(e_.) + (f_.)*(x_)]^(p_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*
(x_)])^(m_.), x_Symbol] :> Int[(b + a*Cot[e + f*x])^m*((c + d*Cot[e + f*x])^n/Cot[e + f*x]^(m + p)), x] /; Fre
eQ[{a, b, c, d, e, f, n}, x] && !IntegerQ[n] && IntegerQ[m] && IntegerQ[p]
-
Int[(cot[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_)*((g_.)*tan[(e_.) + (f_.)*(x_)])^(p_)*((a_) + (b_.)*tan[(e_.) +
(f_.)*(x_)])^(m_.), x_Symbol] :> Simp[Cot[e + f*x]^p*(g*Tan[e + f*x])^p Int[(b + a*Cot[e + f*x])^m*((c + d*
Cot[e + f*x])^n/Cot[e + f*x]^(m + p)), x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && !IntegerQ[n] && Int
egerQ[m] && !IntegerQ[p]
-
Int[(cot[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_)*((g_.)*tan[(e_.) + (f_.)*(x_)])^(p_.)*((a_) + (b_.)*tan[(e_.)
+ (f_.)*(x_)])^(m_), x_Symbol] :> Simp[(g*Tan[e + f*x])^n*((c + d*Cot[e + f*x])^n/(d + c*Tan[e + f*x])^n) In
t[(g*Tan[e + f*x])^(p - n)*(a + b*Tan[e + f*x])^m*(d + c*Tan[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g
, m, n, p}, x] && !IntegerQ[n] && !IntegerQ[m]
-
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Simp[a*(c/f) Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^(n - 1)*(A + B*x),
x], x, Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 + b^2, 0]
-
Int[(((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]))/((a_.) + (b_.)*tan[(e_.)
+ (f_.)*(x_)]), x_Symbol] :> Simp[B*(d/b) Int[Tan[e + f*x], x], x] + Simp[1/b Int[Simp[A*b*c + (A*b*d + B
*(b*c - a*d))*Tan[e + f*x], x]/(a + b*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c -
a*d, 0]
-
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)]), x_Symbol] :> Simp[(-(A*b - a*B))*(a*c + b*d)*((a + b*Tan[e + f*x])^m/(2*a^2*f*m)), x] + Sim
p[1/(2*a*b) Int[(a + b*Tan[e + f*x])^(m + 1)*Simp[A*b*c + a*B*c + a*A*d + b*B*d + 2*a*B*d*Tan[e + f*x], x],
x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] && EqQ[a^2 + b^2, 0]
-
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b*c - a*d)*(A*b - a*B)*((a + b*Tan[e + f*x])^(m + 1)/(b*f*(m + 1)*(a^2
+ b^2))), x] + Simp[1/(a^2 + b^2) Int[(a + b*Tan[e + f*x])^(m + 1)*Simp[a*A*c + b*B*c + A*b*d - a*B*d - (A*b
*c - a*B*c - a*A*d - b*B*d)*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0
] && LtQ[m, -1] && NeQ[a^2 + b^2, 0]
-
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[B*d*((a + b*Tan[e + f*x])^(m + 1)/(b*f*(m + 1))), x] + Int[(a + b*Tan[e
+ f*x])^m*Simp[A*c - B*d + (B*c + A*d)*Tan[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b
*c - a*d, 0] && !LeQ[m, -1]
-
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-a^2)*(B*c - A*d)*(a + b*Tan[e + f*x])^(m - 1)*((c + d*Tan[e + f*x]
)^(n + 1)/(d*f*(b*c + a*d)*(n + 1))), x] - Simp[a/(d*(b*c + a*d)*(n + 1)) Int[(a + b*Tan[e + f*x])^(m - 1)*(
c + d*Tan[e + f*x])^(n + 1)*Simp[A*b*d*(m - n - 2) - B*(b*c*(m - 1) + a*d*(n + 1)) + (a*A*d*(m + n) - B*(a*c*(
m - 1) + b*d*(n + 1)))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] &&
EqQ[a^2 + b^2, 0] && GtQ[m, 1] && LtQ[n, -1]
-
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*B*(a + b*Tan[e + f*x])^(m - 1)*((c + d*Tan[e + f*x])^(n + 1)/(d*f*
(m + n))), x] + Simp[1/(d*(m + n)) Int[(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^n*Simp[a*A*d*(m + n
) + B*(a*c*(m - 1) - b*d*(n + 1)) - (B*(b*c - a*d)*(m - 1) - d*(A*b + a*B)*(m + n))*Tan[e + f*x], x], x], x] /
; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && GtQ[m, 1] && !LtQ[n, -1]
-
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-(A*b - a*B))*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^n/(2*a*f
*m)), x] + Simp[1/(2*a^2*m) Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 1)*Simp[A*(a*c*m + b*
d*n) - B*(b*c*m + a*d*n) - d*(b*B*(m - n) - a*A*(m + n))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f,
A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[m, 0] && GtQ[n, 0]
-
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(a*A + b*B)*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^(n + 1)/(2*
f*m*(b*c - a*d))), x] + Simp[1/(2*a*m*(b*c - a*d)) Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*S
imp[A*(b*c*m - a*d*(2*m + n + 1)) + B*(a*c*m - b*d*(n + 1)) + d*(A*b - a*B)*(m + n + 1)*Tan[e + f*x], x], x],
x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[m, 0] && !GtQ[n,
0]
-
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[B*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^n/(f*(m + n))), x] +
Simp[1/(a*(m + n)) Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n - 1)*Simp[a*A*c*(m + n) - B*(b*c*m + a
*d*n) + (a*A*d*(m + n) - B*(b*d*m - a*c*n))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x]
&& NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && GtQ[n, 0]
-
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(A*d - B*c)*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^(n + 1)/(f*
(n + 1)*(c^2 + d^2))), x] - Simp[1/(a*(n + 1)*(c^2 + d^2)) Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(
n + 1)*Simp[A*(b*d*m - a*c*(n + 1)) - B*(b*c*m + a*d*(n + 1)) - a*(B*c - A*d)*(m + n + 1)*Tan[e + f*x], x], x]
, x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[n, -1]
-
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(B/f) Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^n, x], x, Tan[e + f*
x]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && EqQ[A*b + a*B
, 0]
-
Int[(((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)]))/((c_.) + (d_.)*tan[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(A*b + a*B)/(b*c + a*d) Int[(a + b*Tan[e + f*x])^m, x], x] - Simp[(B*
c - A*d)/(b*c + a*d) Int[(a + b*Tan[e + f*x])^m*((a - b*Tan[e + f*x])/(c + d*Tan[e + f*x])), x], x] /; FreeQ
[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[A*b + a*B, 0]
-
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(A*b + a*B)/b Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n, x
], x] - Simp[B/b Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(a - b*Tan[e + f*x]), x], x] /; FreeQ[{a,
b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[A*b + a*B, 0]
-
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[A^2/f Subst[Int[(a + b*x)^m*((c + d*x)^n/(A - B*x)), x], x, Tan[e
+ f*x]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && !Integer
Q[m] && !IntegerQ[n] && !IntegersQ[2*m, 2*n] && EqQ[A^2 + B^2, 0]
-
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(A + I*B)/2 Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(1
- I*Tan[e + f*x]), x], x] + Simp[(A - I*B)/2 Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(1 + I*Tan[e
+ f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && !Int
egerQ[m] && !IntegerQ[n] && !IntegersQ[2*m, 2*n] && NeQ[A^2 + B^2, 0]
-
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^2*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.)
+ (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-(B*c - A*d))*(b*c - a*d)^2*((c + d*Tan[e + f*x])^(n + 1)/(f*d^2*(n +
1)*(c^2 + d^2))), x] + Simp[1/(d*(c^2 + d^2)) Int[(c + d*Tan[e + f*x])^(n + 1)*Simp[B*(b*c - a*d)^2 + A*d*(
a^2*c - b^2*c + 2*a*b*d) + d*(B*(a^2*c - b^2*c + 2*a*b*d) + A*(2*a*b*c - a^2*d + b^2*d))*Tan[e + f*x] + b^2*B*
(c^2 + d^2)*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 +
b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[n, -1]
-
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*c - a*d)*(B*c - A*d)*(a + b*Tan[e + f*x])^(m - 1)*((c + d*Tan[e
+ f*x])^(n + 1)/(d*f*(n + 1)*(c^2 + d^2))), x] - Simp[1/(d*(n + 1)*(c^2 + d^2)) Int[(a + b*Tan[e + f*x])^(m
- 2)*(c + d*Tan[e + f*x])^(n + 1)*Simp[a*A*d*(b*d*(m - 1) - a*c*(n + 1)) + (b*B*c - (A*b + a*B)*d)*(b*c*(m - 1
) + a*d*(n + 1)) - d*((a*A - b*B)*(b*c - a*d) + (A*b + a*B)*(a*c + b*d))*(n + 1)*Tan[e + f*x] - b*(d*(A*b*c +
a*B*c - a*A*d)*(m + n) - b*B*(c^2*(m - 1) - d^2*(n + 1)))*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e,
f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[m, 1] && LtQ[n, -1] && (Int
egerQ[m] || IntegersQ[2*m, 2*n])
-
Int[(((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^2*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)]))/((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)]), x_Symbol] :> Simp[b^2*B*(Tan[e + f*x]/(d*f)), x] + Simp[1/d Int[(a^2*A*d - b^2*B*c + (2*a
*A*b + B*(a^2 - b^2))*d*Tan[e + f*x] + (A*b^2*d - b*B*(b*c - 2*a*d))*Tan[e + f*x]^2)/(c + d*Tan[e + f*x]), x],
x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]
-
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*B*(a + b*Tan[e + f*x])^(m - 1)*((c + d*Tan[e + f*x])^(n + 1)/(d*f
*(m + n))), x] + Simp[1/(d*(m + n)) Int[(a + b*Tan[e + f*x])^(m - 2)*(c + d*Tan[e + f*x])^n*Simp[a^2*A*d*(m
+ n) - b*B*(b*c*(m - 1) + a*d*(n + 1)) + d*(m + n)*(2*a*A*b + B*(a^2 - b^2))*Tan[e + f*x] - (b*B*(b*c - a*d)*(
m - 1) - b*(A*b + a*B)*d*(m + n))*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b
*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[m, 1] && (IntegerQ[m] || IntegersQ[2*m, 2*n]) &&
!(IGtQ[n, 1] && ( !IntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))
-
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(A*b - a*B)*(a + b*Tan[e + f*x])^(m + 1)*((c + d*Tan[e + f*x])^n/(f
*(m + 1)*(a^2 + b^2))), x] + Simp[1/(b*(m + 1)*(a^2 + b^2)) Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e +
f*x])^(n - 1)*Simp[b*B*(b*c*(m + 1) + a*d*n) + A*b*(a*c*(m + 1) - b*d*n) - b*(A*(b*c - a*d) - B*(a*c + b*d))*(
m + 1)*Tan[e + f*x] - b*d*(A*b - a*B)*(m + n + 1)*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}
, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] && LtQ[0, n, 1] && (IntegerQ
[m] || IntegersQ[2*m, 2*n])
-
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(A*b - a*B)*(a + b*Tan[e + f*x])^(m + 1)*((c + d*Tan[e + f*x])^(n
+ 1)/(f*(m + 1)*(b*c - a*d)*(a^2 + b^2))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^2 + b^2)) Int[(a + b*Tan[e +
f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[b*B*(b*c*(m + 1) + a*d*(n + 1)) + A*(a*(b*c - a*d)*(m + 1) - b^2*d*
(m + n + 2)) - (A*b - a*B)*(b*c - a*d)*(m + 1)*Tan[e + f*x] - b*d*(A*b - a*B)*(m + n + 2)*Tan[e + f*x]^2, x],
x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]
&& LtQ[m, -1] && (IntegerQ[m] || IntegersQ[2*m, 2*n]) && !(ILtQ[n, -1] && ( !IntegerQ[m] || (EqQ[c, 0] && Ne
Q[a, 0])))
-
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[B*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^n/(f*(m + n))), x] +
Simp[1/(m + n) Int[(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^(n - 1)*Simp[a*A*c*(m + n) - B*(b*c*m
+ a*d*n) + (A*b*c + a*B*c + a*A*d - b*B*d)*(m + n)*Tan[e + f*x] + (A*b*d*(m + n) + B*(a*d*m + b*c*n))*Tan[e +
f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2
+ d^2, 0] && LtQ[0, m, 1] && LtQ[0, n, 1]
-
Int[((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])/(((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) +
(f_.)*(x_)])), x_Symbol] :> Simp[(B*(b*c + a*d) + A*(a*c - b*d))*(x/((a^2 + b^2)*(c^2 + d^2))), x] + (Simp[b*
((A*b - a*B)/((b*c - a*d)*(a^2 + b^2))) Int[(b - a*Tan[e + f*x])/(a + b*Tan[e + f*x]), x], x] + Simp[d*((B*c
- A*d)/((b*c - a*d)*(c^2 + d^2))) Int[(d - c*Tan[e + f*x])/(c + d*Tan[e + f*x]), x], x]) /; FreeQ[{a, b, c,
d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]
-
Int[(((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]])/((a_.) + (b_.)*tan[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[1/(a^2 + b^2) Int[Simp[A*(a*c + b*d) + B*(b*c - a*d) - (A*(b*c - a*d)
- B*(a*c + b*d))*Tan[e + f*x], x]/Sqrt[c + d*Tan[e + f*x]], x], x] - Simp[(b*c - a*d)*((B*a - A*b)/(a^2 + b^2
)) Int[(1 + Tan[e + f*x]^2)/((a + b*Tan[e + f*x])*Sqrt[c + d*Tan[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e,
f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]
-
Int[(((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_))/((a_.) + (b_.)*tan[
(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[1/(a^2 + b^2) Int[(c + d*Tan[e + f*x])^n*Simp[a*A + b*B - (A*b - a*B
)*Tan[e + f*x], x], x], x] + Simp[b*((A*b - a*B)/(a^2 + b^2)) Int[(c + d*Tan[e + f*x])^n*((1 + Tan[e + f*x]^
2)/(a + b*Tan[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^
2, 0] && NeQ[c^2 + d^2, 0]
-
Int[(Sqrt[(a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)]))/Sqrt[(c_.) + (d_.)*t
an[(e_.) + (f_.)*(x_)]], x_Symbol] :> Int[Simp[a*A - b*B + (A*b + a*B)*Tan[e + f*x], x]/(Sqrt[a + b*Tan[e + f*
x]]*Sqrt[c + d*Tan[e + f*x]]), x] + Simp[b*B Int[(1 + Tan[e + f*x]^2)/(Sqrt[a + b*Tan[e + f*x]]*Sqrt[c + d*T
an[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c
^2 + d^2, 0]
-
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[A^2/f Subst[Int[(a + b*x)^m*((c + d*x)^n/(A - B*x)), x], x, Tan[e
+ f*x]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[A^2
+ B^2, 0]
-
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e
_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(A + I*B)/2 Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(1
- I*Tan[e + f*x]), x], x] + Simp[(A - I*B)/2 Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*(1 + I*Tan[e
+ f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[A
^2 + B^2, 0]
-
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_) + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[
A/(b*f) Subst[Int[(a + x)^m, x], x, b*Tan[e + f*x]], x] /; FreeQ[{a, b, e, f, A, C, m}, x] && EqQ[A, C]
-
Int[((a_.) + cot[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(cot[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> Simp[
-A/(b*f) Subst[Int[(a + x)^m, x], x, b*Cot[e + f*x]], x] /; FreeQ[{a, b, e, f, A, C, m}, x] && EqQ[A, C]
-
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> Simp[1/b^2 Int[(a + b*Tan[e + f*x])^(m + 1)*Simp[b*B - a*C + b*C*Tan[e + f*x], x
], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] && EqQ[A*b^2 - a*b*B + a^2*C, 0]
-
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp
[-C/b^2 Int[(a + b*Tan[e + f*x])^(m + 1)*(a - b*Tan[e + f*x]), x], x] /; FreeQ[{a, b, e, f, A, C, m}, x] &&
EqQ[A*b^2 + a^2*C, 0]
-
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> Simp[(-(a*A + b*B - a*C))*Tan[e + f*x]*((a + b*Tan[e + f*x])^m/(2*a*f*m)), x] + Si
mp[1/(2*a^2*m) Int[(a + b*Tan[e + f*x])^(m + 1)*Simp[(b*B - a*C) + a*A*(2*m + 1) - (b*C*(m - 1) + (A*b - a*B
)*(m + 1))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && NeQ[A*b^2 - a*b*B + a^2*C, 0] && LeQ
[m, -1] && EqQ[a^2 + b^2, 0]
-
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp
[(-(a*A - a*C))*Tan[e + f*x]*((a + b*Tan[e + f*x])^m/(2*a*f*m)), x] + Simp[1/(2*a^2*m) Int[(a + b*Tan[e + f*
x])^(m + 1)*Simp[(-a)*C + a*A*(2*m + 1) - (b*C*(m - 1) + A*b*(m + 1))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b,
e, f, A, C}, x] && NeQ[A*b^2 + a^2*C, 0] && LeQ[m, -1] && EqQ[a^2 + b^2, 0]
-
Int[((A_) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2)/((a_.) + (b_.)*tan[(e_.) + (f_.)*
(x_)]), x_Symbol] :> Simp[(a*A + b*B - a*C)*(x/(a^2 + b^2)), x] + Simp[(A*b^2 - a*b*B + a^2*C)/(a^2 + b^2) I
nt[(1 + Tan[e + f*x]^2)/(a + b*Tan[e + f*x]), x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && NeQ[a^2 + b^2, 0] &
& EqQ[A*b - a*B - b*C, 0]
-
Int[((A_) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2)/tan[(e_.) + (f_.)*(x_)], x_Symbol
] :> Simp[B*x, x] + (Simp[A Int[1/Tan[e + f*x], x], x] + Simp[C Int[Tan[e + f*x], x], x]) /; FreeQ[{e, f,
A, B, C}, x] && NeQ[A, C]
-
Int[((A_) + (C_.)*tan[(e_.) + (f_.)*(x_)]^2)/tan[(e_.) + (f_.)*(x_)], x_Symbol] :> Simp[A Int[1/Tan[e + f*x]
, x], x] + Simp[C Int[Tan[e + f*x], x], x] /; FreeQ[{e, f, A, C}, x] && NeQ[A, C]
-
Int[((A_) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2)/((a_.) + (b_.)*tan[(e_.) + (f_.)*
(x_)]), x_Symbol] :> Simp[(a*A + b*B - a*C)*(x/(a^2 + b^2)), x] + (Simp[(A*b^2 - a*b*B + a^2*C)/(a^2 + b^2)
Int[(1 + Tan[e + f*x]^2)/(a + b*Tan[e + f*x]), x], x] - Simp[(A*b - a*B - b*C)/(a^2 + b^2) Int[Tan[e + f*x],
x], x]) /; FreeQ[{a, b, e, f, A, B, C}, x] && NeQ[A*b^2 - a*b*B + a^2*C, 0] && NeQ[a^2 + b^2, 0] && NeQ[A*b -
a*B - b*C, 0]
-
Int[((A_) + (C_.)*tan[(e_.) + (f_.)*(x_)]^2)/((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[a*(A -
C)*(x/(a^2 + b^2)), x] + (Simp[(a^2*C + A*b^2)/(a^2 + b^2) Int[(1 + Tan[e + f*x]^2)/(a + b*Tan[e + f*x]), x]
, x] - Simp[b*((A - C)/(a^2 + b^2)) Int[Tan[e + f*x], x], x]) /; FreeQ[{a, b, e, f, A, C}, x] && NeQ[a^2*C +
A*b^2, 0] && NeQ[a^2 + b^2, 0] && NeQ[A, C]
-
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> Simp[(A*b^2 - a*b*B + a^2*C)*((a + b*Tan[e + f*x])^(m + 1)/(b*f*(m + 1)*(a^2 + b^2)
)), x] + Simp[1/(a^2 + b^2) Int[(a + b*Tan[e + f*x])^(m + 1)*Simp[b*B + a*(A - C) - (A*b - a*B - b*C)*Tan[e
+ f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && NeQ[A*b^2 - a*b*B + a^2*C, 0] && LtQ[m, -1] && NeQ[a^
2 + b^2, 0]
-
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[
(A*b^2 + a^2*C)*((a + b*Tan[e + f*x])^(m + 1)/(b*f*(m + 1)*(a^2 + b^2))), x] + Simp[1/(a^2 + b^2) Int[(a + b
*Tan[e + f*x])^(m + 1)*Simp[a*(A - C) - (A*b - b*C)*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, C}, x] &
& NeQ[A*b^2 + a^2*C, 0] && LtQ[m, -1] && NeQ[a^2 + b^2, 0]
-
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (
f_.)*(x_)]^2), x_Symbol] :> Simp[C*((a + b*Tan[e + f*x])^(m + 1)/(b*f*(m + 1))), x] + Int[(a + b*Tan[e + f*x])
^m*Simp[A - C + B*Tan[e + f*x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] && NeQ[A*b^2 - a*b*B + a^2*C, 0]
&& !LeQ[m, -1]
-
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp
[C*((a + b*Tan[e + f*x])^(m + 1)/(b*f*(m + 1))), x] + Simp[(A - C) Int[(a + b*Tan[e + f*x])^m, x], x] /; Fre
eQ[{a, b, e, f, A, C, m}, x] && NeQ[A*b^2 + a^2*C, 0] && !LeQ[m, -1]
-
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)
*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[1/b^2 Int[(a + b*Tan[e + f*x]
)^(m + 1)*(c + d*Tan[e + f*x])^n*(b*B - a*C + b*C*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m
, n}, x] && NeQ[b*c - a*d, 0] && EqQ[A*b^2 - a*b*B + a^2*C, 0]
-
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (C_.)
*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[-C/b^2 Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^
n*(a - b*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[A*b^2 +
a^2*C, 0]
-
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_) + (C_.)*
tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[A/f Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, Tan[e + f*x]], x
] /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A, C]
-
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e
_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(b*c - a*d))*(c^2*C - B*c*d + A*d^2)
*((c + d*Tan[e + f*x])^(n + 1)/(d^2*f*(n + 1)*(c^2 + d^2))), x] + Simp[1/(d*(c^2 + d^2)) Int[(c + d*Tan[e +
f*x])^(n + 1)*Simp[a*d*(A*c - c*C + B*d) + b*(c^2*C - B*c*d + A*d^2) + d*(A*b*c + a*B*c - b*c*C - a*A*d + b*B*
d + a*C*d)*Tan[e + f*x] + b*C*(c^2 + d^2)*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x]
&& NeQ[b*c - a*d, 0] && NeQ[c^2 + d^2, 0] && LtQ[n, -1]
-
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*tan[(e
_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(b*c - a*d))*(c^2*C + A*d^2)*((c + d*Tan[e + f*x])^(n + 1)/(d^2*f*(n
+ 1)*(c^2 + d^2))), x] + Simp[1/(d*(c^2 + d^2)) Int[(c + d*Tan[e + f*x])^(n + 1)*Simp[a*d*(A*c - c*C) + b*(
c^2*C + A*d^2) + d*(A*b*c - b*c*C - a*A*d + a*C*d)*Tan[e + f*x] + b*C*(c^2 + d^2)*Tan[e + f*x]^2, x], x], x] /
; FreeQ[{a, b, c, d, e, f, A, C}, x] && NeQ[b*c - a*d, 0] && NeQ[c^2 + d^2, 0] && LtQ[n, -1]
-
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)*tan[(e
_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[b*C*Tan[e + f*x]*((c + d*Tan[e + f*x])
^(n + 1)/(d*f*(n + 2))), x] - Simp[1/(d*(n + 2)) Int[(c + d*Tan[e + f*x])^n*Simp[b*c*C - a*A*d*(n + 2) - (A*
b + a*B - b*C)*d*(n + 2)*Tan[e + f*x] - (a*C*d*(n + 2) - b*(c*C - B*d*(n + 2)))*Tan[e + f*x]^2, x], x], x] /;
FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[c^2 + d^2, 0] && !LtQ[n, -1]
-
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (C_.)*tan[(e
_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[b*C*Tan[e + f*x]*((c + d*Tan[e + f*x])^(n + 1)/(d*f*(n + 2))), x] - Si
mp[1/(d*(n + 2)) Int[(c + d*Tan[e + f*x])^n*Simp[b*c*C - a*A*d*(n + 2) - (A*b - b*C)*d*(n + 2)*Tan[e + f*x]
- (a*C*d*(n + 2) - b*c*C)*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, n}, x] && NeQ[b*c - a*d
, 0] && NeQ[c^2 + d^2, 0] && !LtQ[n, -1]
-
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)*t
an[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(a*A + b*B - a*C)*(a + b*Tan[e +
f*x])^m*((c + d*Tan[e + f*x])^(n + 1)/(2*f*m*(b*c - a*d))), x] + Simp[1/(2*a*m*(b*c - a*d)) Int[(a + b*Tan[e
+ f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[b*(c*(A + C)*m - B*d*(n + 1)) + a*(B*c*m + C*d*(n + 1) - A*d*(2*m
+ n + 1)) + (b*C*d*(m - n - 1) + A*b*d*(m + n + 1) + a*(2*c*C*m - B*d*(m + n + 1)))*Tan[e + f*x], x], x], x]
/; FreeQ[{a, b, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && (LtQ[m, 0] || EqQ[m +
n + 1, 0])
-
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (C_.)*t
an[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[a*(A - C)*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^(n + 1)/(2
*f*m*(b*c - a*d))), x] + Simp[1/(2*a*m*(b*c - a*d)) Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*
Simp[b*c*(A + C)*m + a*(C*d*(n + 1) - A*d*(2*m + n + 1)) + (b*C*d*(m - n - 1) + A*b*d*(m + n + 1) + 2*a*c*C*m)
*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] &
& (LtQ[m, 0] || EqQ[m + n + 1, 0])
-
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*t
an[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(c^2*C - B*c*d + A*d^2)*(a + b*Ta
n[e + f*x])^m*((c + d*Tan[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 + d^2))), x] - Simp[1/(a*d*(n + 1)*(c^2 + d^2))
Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n + 1)*Simp[b*(c^2*C - B*c*d + A*d^2)*m - a*d*(n + 1)*(A*c
- c*C + B*d) - a*(d*(B*c - A*d)*(m + n + 1) - C*(c^2*m - d^2*(n + 1)))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b
, c, d, e, f, A, B, C, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && !LtQ[m, 0] && LtQ[n, -1] && NeQ[c^
2 + d^2, 0]
-
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*t
an[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(c^2*C + A*d^2)*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^(n +
1)/(d*f*(n + 1)*(c^2 + d^2))), x] - Simp[1/(a*d*(n + 1)*(c^2 + d^2)) Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[
e + f*x])^(n + 1)*Simp[b*(c^2*C + A*d^2)*m - a*d*(n + 1)*(A*c - c*C) - a*((-A)*d^2*(m + n + 1) - C*(c^2*m - d^
2*(n + 1)))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2
+ b^2, 0] && !LtQ[m, 0] && LtQ[n, -1] && NeQ[c^2 + d^2, 0]
-
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (B_.)*
tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[C*(a + b*Tan[e + f*x])^m*((c + d
*Tan[e + f*x])^(n + 1)/(d*f*(m + n + 1))), x] + Simp[1/(b*d*(m + n + 1)) Int[(a + b*Tan[e + f*x])^m*(c + d*T
an[e + f*x])^n*Simp[A*b*d*(m + n + 1) + C*(a*c*m - b*d*(n + 1)) - (C*m*(b*c - a*d) - b*B*d*(m + n + 1))*Tan[e
+ f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] &&
!LtQ[m, 0] && NeQ[m + n + 1, 0]
-
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_.)*((A_.) + (C_.)*
tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[C*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^(n + 1)/(d*f*(m +
n + 1))), x] + Simp[1/(b*d*(m + n + 1)) Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^n*Simp[A*b*d*(m + n
+ 1) + C*(a*c*m - b*d*(n + 1)) - C*m*(b*c - a*d)*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, m
, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && !LtQ[m, 0] && NeQ[m + n + 1, 0]
-
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*t
an[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(A*d^2 + c*(c*C - B*d))*(a + b*Ta
n[e + f*x])^m*((c + d*Tan[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 + d^2))), x] - Simp[1/(d*(n + 1)*(c^2 + d^2))
Int[(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^(n + 1)*Simp[A*d*(b*d*m - a*c*(n + 1)) + (c*C - B*d)*(b*
c*m + a*d*(n + 1)) - d*(n + 1)*((A - C)*(b*c - a*d) + B*(a*c + b*d))*Tan[e + f*x] - b*(d*(B*c - A*d)*(m + n +
1) - C*(c^2*m - d^2*(n + 1)))*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c -
a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[m, 0] && LtQ[n, -1]
-
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*t
an[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(A*d^2 + c^2*C)*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^(n +
1)/(d*f*(n + 1)*(c^2 + d^2))), x] - Simp[1/(d*(n + 1)*(c^2 + d^2)) Int[(a + b*Tan[e + f*x])^(m - 1)*(c + d*
Tan[e + f*x])^(n + 1)*Simp[A*d*(b*d*m - a*c*(n + 1)) + c*C*(b*c*m + a*d*(n + 1)) - d*(n + 1)*((A - C)*(b*c - a
*d))*Tan[e + f*x] + b*(A*d^2*(m + n + 1) + C*(c^2*m - d^2*(n + 1)))*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b,
c, d, e, f, A, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[m, 0] && LtQ[n, -
1]
-
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*
tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[C*(a + b*Tan[e + f*x])^m*((c + d
*Tan[e + f*x])^(n + 1)/(d*f*(m + n + 1))), x] + Simp[1/(d*(m + n + 1)) Int[(a + b*Tan[e + f*x])^(m - 1)*(c +
d*Tan[e + f*x])^n*Simp[a*A*d*(m + n + 1) - C*(b*c*m + a*d*(n + 1)) + d*(A*b + a*B - b*C)*(m + n + 1)*Tan[e +
f*x] - (C*m*(b*c - a*d) - b*B*d*(m + n + 1))*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, n
}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[m, 0] && !(IGtQ[n, 0] && ( !Integ
erQ[m] || (EqQ[c, 0] && NeQ[a, 0])))
-
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*
tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[C*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^(n + 1)/(d*f*(m +
n + 1))), x] + Simp[1/(d*(m + n + 1)) Int[(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^n*Simp[a*A*d*(m
+ n + 1) - C*(b*c*m + a*d*(n + 1)) + d*(A*b - b*C)*(m + n + 1)*Tan[e + f*x] - C*m*(b*c - a*d)*Tan[e + f*x]^2,
x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^
2, 0] && GtQ[m, 0] && !(IGtQ[n, 0] && ( !IntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))
-
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*t
an[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(A*b^2 - a*(b*B - a*C))*(a + b*Ta
n[e + f*x])^(m + 1)*((c + d*Tan[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 + b^2))), x] + Simp[1/((m + 1)*(
b*c - a*d)*(a^2 + b^2)) Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[A*(a*(b*c - a*d)*(m + 1
) - b^2*d*(m + n + 2)) + (b*B - a*C)*(b*c*(m + 1) + a*d*(n + 1)) - (m + 1)*(b*c - a*d)*(A*b - a*B - b*C)*Tan[e
+ f*x] - d*(A*b^2 - a*(b*B - a*C))*(m + n + 2)*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C
, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && LtQ[m, -1] && !(ILtQ[n, -1] && ( !
IntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))
-
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*t
an[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(A*b^2 + a^2*C)*(a + b*Tan[e + f*x])^(m + 1)*((c + d*Tan[e + f*x]
)^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 + b^2))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^2 + b^2)) Int[(a + b*Tan
[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^n*Simp[A*(a*(b*c - a*d)*(m + 1) - b^2*d*(m + n + 2)) - a*C*(b*c*(m + 1
) + a*d*(n + 1)) - (m + 1)*(b*c - a*d)*(A*b - b*C)*Tan[e + f*x] - d*(A*b^2 + a^2*C)*(m + n + 2)*Tan[e + f*x]^2
, x], x], x] /; FreeQ[{a, b, c, d, e, f, A, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d
^2, 0] && LtQ[m, -1] && !(ILtQ[n, -1] && ( !IntegerQ[m] || (EqQ[c, 0] && NeQ[a, 0])))
-
Int[((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2)/(((a_) + (b_.)*tan[(e_.) + (f_.)
*(x_)])*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])), x_Symbol] :> Simp[(a*(A*c - c*C + B*d) + b*(B*c - A*d + C*d)
)*(x/((a^2 + b^2)*(c^2 + d^2))), x] + (Simp[(A*b^2 - a*b*B + a^2*C)/((b*c - a*d)*(a^2 + b^2)) Int[(b - a*Tan
[e + f*x])/(a + b*Tan[e + f*x]), x], x] - Simp[(c^2*C - B*c*d + A*d^2)/((b*c - a*d)*(c^2 + d^2)) Int[(d - c*
Tan[e + f*x])/(c + d*Tan[e + f*x]), x], x]) /; FreeQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && N
eQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]
-
Int[((A_.) + (C_.)*tan[(e_.) + (f_.)*(x_)]^2)/(((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_.)
+ (f_.)*(x_)])), x_Symbol] :> Simp[(a*(A*c - c*C) - b*(A*d - C*d))*(x/((a^2 + b^2)*(c^2 + d^2))), x] + (Simp[
(A*b^2 + a^2*C)/((b*c - a*d)*(a^2 + b^2)) Int[(b - a*Tan[e + f*x])/(a + b*Tan[e + f*x]), x], x] - Simp[(c^2*
C + A*d^2)/((b*c - a*d)*(c^2 + d^2)) Int[(d - c*Tan[e + f*x])/(c + d*Tan[e + f*x]), x], x]) /; FreeQ[{a, b,
c, d, e, f, A, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]
-
Int[(((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (
f_.)*(x_)]^2))/((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[1/(a^2 + b^2) Int[(c + d*Tan[e + f
*x])^n*Simp[b*B + a*(A - C) + (a*B - b*(A - C))*Tan[e + f*x], x], x], x] + Simp[(A*b^2 - a*b*B + a^2*C)/(a^2 +
b^2) Int[(c + d*Tan[e + f*x])^n*((1 + Tan[e + f*x]^2)/(a + b*Tan[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e
, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && !GtQ[n, 0] && !LeQ[n,
-1]
-
Int[(((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*tan[(e_.) + (f_.)*(x_)]^2))/((a_.) + (b_.)*ta
n[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[1/(a^2 + b^2) Int[(c + d*Tan[e + f*x])^n*Simp[a*(A - C) - (A*b - b
*C)*Tan[e + f*x], x], x], x] + Simp[(A*b^2 + a^2*C)/(a^2 + b^2) Int[(c + d*Tan[e + f*x])^n*((1 + Tan[e + f*x
]^2)/(a + b*Tan[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, A, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 +
b^2, 0] && NeQ[c^2 + d^2, 0] && !GtQ[n, 0] && !LeQ[n, -1]
-
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*t
an[(e_.) + (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x
]}, Simp[ff/f Subst[Int[(a + b*ff*x)^m*(c + d*ff*x)^n*((A + B*ff*x + C*ff^2*x^2)/(1 + ff^2*x^2)), x], x, Tan
[e + f*x]/ff], x]] /; FreeQ[{a, b, c, d, e, f, A, B, C, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] &&
NeQ[c^2 + d^2, 0]
-
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (C_.)*t
an[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Simp[ff/f Subst[Int[(a + b
*ff*x)^m*(c + d*ff*x)^n*((A + C*ff^2*x^2)/(1 + ff^2*x^2)), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, c, d,
e, f, A, C, m, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]
-
Int[(u_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]^2)^(p_), x_Symbol] :> Int[ActivateTrig[u*(a*sec[e + f*x]^2)^p]
, x] /; FreeQ[{a, b, e, f, p}, x] && EqQ[a, b]
-
Int[(u_.)*((b_.)*tan[(e_.) + (f_.)*(x_)]^(n_))^(p_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Si
mp[(b*ff^n)^IntPart[p]*((b*Tan[e + f*x]^n)^FracPart[p]/(Tan[e + f*x]/ff)^(n*FracPart[p])) Int[ActivateTrig[u
]*(Tan[e + f*x]/ff)^(n*p), x], x]] /; FreeQ[{b, e, f, n, p}, x] && !IntegerQ[p] && IntegerQ[n] && (EqQ[u, 1]
|| MatchQ[u, ((d_.)*(trig_)[e + f*x])^(m_.) /; FreeQ[{d, m}, x] && MemberQ[{sin, cos, tan, cot, sec, csc}, tri
g]])
-
Int[(u_.)*((b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_), x_Symbol] :> Simp[b^IntPart[p]*((b*(c*Tan[e + f*x
])^n)^FracPart[p]/(c*Tan[e + f*x])^(n*FracPart[p])) Int[ActivateTrig[u]*(c*Tan[e + f*x])^(n*p), x], x] /; Fr
eeQ[{b, c, e, f, n, p}, x] && !IntegerQ[p] && !IntegerQ[n] && (EqQ[u, 1] || MatchQ[u, ((d_.)*(trig_)[e + f*x
])^(m_.) /; FreeQ[{d, m}, x] && MemberQ[{sin, cos, tan, cot, sec, csc}, trig]])
-
Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]^2)^(-1), x_Symbol] :> Simp[x/(a - b), x] - Simp[b/(a - b) Int[Sec[
e + f*x]^2/(a + b*Tan[e + f*x]^2), x], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a, b]
-
Int[((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x]
, x]}, Simp[c*(ff/f) Subst[Int[(a + b*(ff*x)^n)^p/(c^2 + ff^2*x^2), x], x, c*(Tan[e + f*x]/ff)], x]] /; Free
Q[{a, b, c, e, f, n, p}, x] && (IntegersQ[n, p] || IGtQ[p, 0] || EqQ[n^2, 4] || EqQ[n^2, 16])
-
Int[((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol] :> Unintegrable[(a + b*(c*Tan[e + f*x
])^n)^p, x] /; FreeQ[{a, b, c, e, f, n, p}, x]
-
Int[sin[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol] :> With[
{ff = FreeFactors[Tan[e + f*x], x]}, Simp[c*(ff^(m + 1)/f) Subst[Int[x^m*((a + b*(ff*x)^n)^p/(c^2 + ff^2*x^2
)^(m/2 + 1)), x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, e, f, n, p}, x] && IntegerQ[m/2]
-
Int[sin[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]^2)^(p_.), x_Symbol] :> With[{ff = Free
Factors[Sec[e + f*x], x]}, Simp[1/(f*ff^m) Subst[Int[(-1 + ff^2*x^2)^((m - 1)/2)*((a - b + b*ff^2*x^2)^p/x^(
m + 1)), x], x, Sec[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2]
-
Int[sin[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]^(n_))^(p_.), x_Symbol] :> With[{ff = F
reeFactors[Sec[e + f*x], x]}, Simp[1/(f*ff^m) Subst[Int[(-1 + ff^2*x^2)^((m - 1)/2)*((a + b*(-1 + ff^2*x^2)^
(n/2))^p/x^(m + 1)), x], x, Sec[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2] && Integ
erQ[n/2]
-
Int[((d_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol]
:> Int[ExpandTrig[(d*sin[e + f*x])^m*(a + b*(c*tan[e + f*x])^n)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n},
x] && IGtQ[p, 0]
-
Int[((d_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]^2)^(p_), x_Symbol] :> With[{ff
= FreeFactors[Tan[e + f*x], x]}, Simp[ff*(d*Sin[e + f*x])^m*((Sec[e + f*x]^2)^(m/2)/(f*Tan[e + f*x]^m)) Subs
t[Int[(ff*x)^m*((a + b*ff^2*x^2)^p/(1 + ff^2*x^2)^(m/2 + 1)), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, d,
e, f, m, p}, x] && !IntegerQ[m]
-
Int[((d_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol]
:> Unintegrable[(d*Sin[e + f*x])^m*(a + b*(c*Tan[e + f*x])^n)^p, x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_), x_Symbol] :
> Simp[(d*Cos[e + f*x])^FracPart[m]*(Sec[e + f*x]/d)^FracPart[m] Int[(a + b*(c*Tan[e + f*x])^n)^p/(Sec[e + f
*x]/d)^m, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && !IntegerQ[m]
-
Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol]
:> With[{ff = FreeFactors[Tan[e + f*x], x]}, Simp[c*(ff/f) Subst[Int[(d*ff*(x/c))^m*((a + b*(ff*x)^n)^p/(c^
2 + ff^2*x^2)), x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && (IGtQ[p, 0] || Eq
Q[n, 2] || EqQ[n, 4] || (IntegerQ[p] && RationalQ[n]))
-
Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol]
:> Int[ExpandTrig[(d*tan[e + f*x])^m*(a + b*(c*tan[e + f*x])^n)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n},
x] && IGtQ[p, 0]
-
Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol]
:> Unintegrable[(d*Tan[e + f*x])^m*(a + b*(c*Tan[e + f*x])^n)^p, x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x]
-
Int[(cot[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]^(n_.))^(p_.), x_Symbol] :> Simp
[d^(n*p) Int[(d*Cot[e + f*x])^(m - n*p)*(b + a*Cot[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p},
x] && !IntegerQ[m] && IntegersQ[n, p]
-
Int[(cot[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_), x_Symbol] :
> Simp[(d*Cot[e + f*x])^FracPart[m]*(Tan[e + f*x]/d)^FracPart[m] Int[(a + b*(c*Tan[e + f*x])^n)^p/(Tan[e + f
*x]/d)^m, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && !IntegerQ[m]
-
Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol] :> With[
{ff = FreeFactors[Tan[e + f*x], x]}, Simp[ff/(c^(m - 1)*f) Subst[Int[(c^2 + ff^2*x^2)^(m/2 - 1)*(a + b*(ff*x
)^n)^p, x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, e, f, n, p}, x] && IntegerQ[m/2] && (IntegersQ[n,
p] || IGtQ[m, 0] || IGtQ[p, 0] || EqQ[n^2, 4] || EqQ[n^2, 16])
-
Int[sec[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]^(n_))^(p_.), x_Symbol] :> With[{ff = F
reeFactors[Sin[e + f*x], x]}, Simp[ff/f Subst[Int[ExpandToSum[b*(ff*x)^n + a*(1 - ff^2*x^2)^(n/2), x]^p/(1 -
ff^2*x^2)^((m + n*p + 1)/2), x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f}, x] && IntegerQ[(m - 1)/2] &&
IntegerQ[n/2] && IntegerQ[p]
-
Int[sec[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]^(n_))^(p_.), x_Symbol] :> With[{ff = F
reeFactors[Sin[e + f*x], x]}, Simp[ff/f Subst[Int[(1/(1 - ff^2*x^2)^((m + 1)/2))*((b*(ff*x)^n + a*(1 - ff^2*
x^2)^(n/2))/(1 - ff^2*x^2)^(n/2))^p, x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m
- 1)/2] && IntegerQ[n/2] && !IntegerQ[p]
-
Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol]
:> Int[ExpandTrig[(d*sec[e + f*x])^m*(a + b*(c*tan[e + f*x])^n)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, n},
x] && IGtQ[p, 0]
-
Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]^2)^(p_), x_Symbol] :> With[{ff
= FreeFactors[Tan[e + f*x], x]}, Simp[ff*((d*Sec[e + f*x])^m/(f*(Sec[e + f*x]^2)^(m/2))) Subst[Int[(1 + ff^2
*x^2)^(m/2 - 1)*(a + b*ff^2*x^2)^p, x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, d, e, f, m, p}, x] && !Integ
erQ[m]
-
Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol]
:> Unintegrable[(d*Sec[e + f*x])^m*(a + b*(c*Tan[e + f*x])^n)^p, x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_), x_Symbol] :
> Simp[(d*Csc[e + f*x])^FracPart[m]*(Sin[e + f*x]/d)^FracPart[m] Int[(a + b*(c*Tan[e + f*x])^n)^p/(Sin[e + f
*x]/d)^m, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && !IntegerQ[m]
-
Int[((a_) + (b_.)*tan[(d_.) + (e_.)*(x_)]^(n_.) + (c_.)*tan[(d_.) + (e_.)*(x_)]^(n2_.))^(p_.), x_Symbol] :> Si
mp[1/(4^p*c^p) Int[(b + 2*c*Tan[d + e*x]^n)^(2*p), x], x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[n2, 2*n] &&
EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]
-
Int[(cot[(d_.) + (e_.)*(x_)]^(n_.)*(b_.) + cot[(d_.) + (e_.)*(x_)]^(n2_.)*(c_.) + (a_))^(p_.), x_Symbol] :> Si
mp[1/(4^p*c^p) Int[(b + 2*c*Cot[d + e*x]^n)^(2*p), x], x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[n2, 2*n] &&
EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]
-
Int[((a_) + (b_.)*tan[(d_.) + (e_.)*(x_)]^(n_.) + (c_.)*tan[(d_.) + (e_.)*(x_)]^(n2_.))^(p_), x_Symbol] :> Sim
p[(a + b*Tan[d + e*x]^n + c*Tan[d + e*x]^(2*n))^p/(b + 2*c*Tan[d + e*x]^n)^(2*p) Int[(b + 2*c*Tan[d + e*x]^n
)^(2*p), x], x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && !IntegerQ[p]
-
Int[(cot[(d_.) + (e_.)*(x_)]^(n_.)*(b_.) + cot[(d_.) + (e_.)*(x_)]^(n2_.)*(c_.) + (a_))^(p_), x_Symbol] :> Sim
p[(a + b*Cot[d + e*x]^n + c*Cot[d + e*x]^(2*n))^p/(b + 2*c*Cot[d + e*x]^n)^(2*p) Int[(b + 2*c*Cot[d + e*x]^n
)^(2*p), x], x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && !IntegerQ[p]
-
Int[((a_.) + (b_.)*tan[(d_.) + (e_.)*(x_)]^(n_.) + (c_.)*tan[(d_.) + (e_.)*(x_)]^(n2_.))^(-1), x_Symbol] :> Mo
dule[{q = Rt[b^2 - 4*a*c, 2]}, Simp[2*(c/q) Int[1/(b - q + 2*c*Tan[d + e*x]^n), x], x] - Simp[2*(c/q) Int[
1/(b + q + 2*c*Tan[d + e*x]^n), x], x]] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0]
-
Int[((a_.) + cot[(d_.) + (e_.)*(x_)]^(n_.)*(b_.) + cot[(d_.) + (e_.)*(x_)]^(n2_.)*(c_.))^(-1), x_Symbol] :> Mo
dule[{q = Rt[b^2 - 4*a*c, 2]}, Simp[2*(c/q) Int[1/(b - q + 2*c*Cot[d + e*x]^n), x], x] - Simp[2*(c/q) Int[
1/(b + q + 2*c*Cot[d + e*x]^n), x], x]] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0]
-
Int[sin[(d_.) + (e_.)*(x_)]^(m_)*((a_.) + (b_.)*((f_.)*tan[(d_.) + (e_.)*(x_)])^(n_.) + (c_.)*((f_.)*tan[(d_.)
+ (e_.)*(x_)])^(n2_.))^(p_), x_Symbol] :> Simp[f/e Subst[Int[x^m*((a + b*x^n + c*x^(2*n))^p/(f^2 + x^2)^(m/
2 + 1)), x], x, f*Tan[d + e*x]], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && EqQ[n2, 2*n] && IntegerQ[m/2]
-
Int[cos[(d_.) + (e_.)*(x_)]^(m_)*((a_.) + (b_.)*(cot[(d_.) + (e_.)*(x_)]*(f_.))^(n_.) + (c_.)*(cot[(d_.) + (e_
.)*(x_)]*(f_.))^(n2_.))^(p_), x_Symbol] :> Simp[-f/e Subst[Int[x^m*((a + b*x^n + c*x^(2*n))^p/(f^2 + x^2)^(m
/2 + 1)), x], x, f*Cot[d + e*x]], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && EqQ[n2, 2*n] && IntegerQ[m/2]
-
Int[sin[(d_.) + (e_.)*(x_)]^(m_.)*((a_.) + (b_.)*tan[(d_.) + (e_.)*(x_)]^(n_.) + (c_.)*tan[(d_.) + (e_.)*(x_)]
^(n2_.))^(p_.), x_Symbol] :> Module[{g = FreeFactors[Cos[d + e*x], x]}, Simp[-g/e Subst[Int[(1 - g^2*x^2)^((
m - 1)/2)*(ExpandToSum[a*(g*x)^(2*n) + b*(g*x)^n*(1 - g^2*x^2)^(n/2) + c*(1 - g^2*x^2)^n, x]^p/(g*x)^(2*n*p)),
x], x, Cos[d + e*x]/g], x]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[n2, 2*n] && IntegerQ[(m - 1)/2] && IntegerQ[n
/2] && IntegerQ[p]
-
Int[cos[(d_.) + (e_.)*(x_)]^(m_.)*((a_.) + cot[(d_.) + (e_.)*(x_)]^(n_.)*(b_.) + (c_.)*tan[(d_.) + (e_.)*(x_)]
^(n2_.))^(p_.), x_Symbol] :> Module[{g = FreeFactors[Sin[d + e*x], x]}, Simp[g/e Subst[Int[(1 - g^2*x^2)^((m
- 1)/2)*(ExpandToSum[a*(g*x)^(2*n) + b*(g*x)^n*(1 - g^2*x^2)^(n/2) + c*(1 - g^2*x^2)^n, x]^p/(g*x)^(2*n*p)),
x], x, Sin[d + e*x]/g], x]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[n2, 2*n] && IntegerQ[(m - 1)/2] && IntegerQ[n/
2] && IntegerQ[p]
-
Int[cos[(d_.) + (e_.)*(x_)]^(m_)*((a_.) + (b_.)*((f_.)*tan[(d_.) + (e_.)*(x_)])^(n_.) + (c_.)*((f_.)*tan[(d_.)
+ (e_.)*(x_)])^(n2_.))^(p_.), x_Symbol] :> Simp[f^(m + 1)/e Subst[Int[(a + b*x^n + c*x^(2*n))^p/(f^2 + x^2)
^(m/2 + 1), x], x, f*Tan[d + e*x]], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && EqQ[n2, 2*n] && IntegerQ[m/2]
-
Int[((a_.) + (b_.)*(cot[(d_.) + (e_.)*(x_)]*(f_.))^(n_.) + (c_.)*(cot[(d_.) + (e_.)*(x_)]*(f_.))^(n2_.))^(p_.)
*sin[(d_.) + (e_.)*(x_)]^(m_), x_Symbol] :> Simp[-f^(m + 1)/e Subst[Int[(a + b*x^n + c*x^(2*n))^p/(f^2 + x^2
)^(m/2 + 1), x], x, f*Cot[d + e*x]], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && EqQ[n2, 2*n] && IntegerQ[m/2]
-
Int[cos[(d_.) + (e_.)*(x_)]^(m_)*((a_.) + (b_.)*tan[(d_.) + (e_.)*(x_)]^(n_.) + (c_.)*tan[(d_.) + (e_.)*(x_)]^
(n2_.))^(p_.), x_Symbol] :> Module[{g = FreeFactors[Sin[d + e*x], x]}, Simp[g/e Subst[Int[(1 - g^2*x^2)^((m
- 2*n*p - 1)/2)*ExpandToSum[c*x^(2*n) + b*x^n*(1 - x^2)^(n/2) + a*(1 - x^2)^n, x]^p, x], x, Sin[d + e*x]/g], x
]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[n2, 2*n] && IntegerQ[(m - 1)/2] && IntegerQ[n/2] && IntegerQ[p]
-
Int[((a_.) + cot[(d_.) + (e_.)*(x_)]^(n_.)*(b_.) + cot[(d_.) + (e_.)*(x_)]^(n2_.)*(c_.))^(p_.)*sin[(d_.) + (e_
.)*(x_)]^(m_), x_Symbol] :> Module[{g = FreeFactors[Cos[d + e*x], x]}, Simp[-g/e Subst[Int[(1 - g^2*x^2)^((m
- 2*n*p - 1)/2)*ExpandToSum[c*x^(2*n) + b*x^n*(1 - x^2)^(n/2) + a*(1 - x^2)^n, x]^p, x], x, Cos[d + e*x]/g],
x]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[n2, 2*n] && IntegerQ[(m - 1)/2] && IntegerQ[n/2] && IntegerQ[p]
-
Int[tan[(d_.) + (e_.)*(x_)]^(m_.)*((a_.) + (b_.)*tan[(d_.) + (e_.)*(x_)]^(n_.) + (c_.)*tan[(d_.) + (e_.)*(x_)]
^(n2_.))^(p_), x_Symbol] :> Simp[1/(4^p*c^p) Int[Tan[d + e*x]^m*(b + 2*c*Tan[d + e*x]^n)^(2*p), x], x] /; Fr
eeQ[{a, b, c, d, e, m, n}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]
-
Int[cot[(d_.) + (e_.)*(x_)]^(m_.)*((a_.) + cot[(d_.) + (e_.)*(x_)]^(n_.)*(b_.) + cot[(d_.) + (e_.)*(x_)]^(n2_.
)*(c_.))^(p_), x_Symbol] :> Simp[1/(4^p*c^p) Int[Cot[d + e*x]^m*(b + 2*c*Cot[d + e*x]^n)^(2*p), x], x] /; Fr
eeQ[{a, b, c, d, e, m, n}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]
-
Int[tan[(d_.) + (e_.)*(x_)]^(m_.)*((a_.) + (b_.)*tan[(d_.) + (e_.)*(x_)]^(n_.) + (c_.)*tan[(d_.) + (e_.)*(x_)]
^(n2_.))^(p_), x_Symbol] :> Simp[(a + b*Tan[d + e*x]^n + c*Tan[d + e*x]^(2*n))^p/(b + 2*c*Tan[d + e*x]^n)^(2*p
) Int[Tan[d + e*x]^m*(b + 2*c*Tan[d + e*x]^n)^(2*p), x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && EqQ[n2,
2*n] && EqQ[b^2 - 4*a*c, 0] && !IntegerQ[p]
-
Int[cot[(d_.) + (e_.)*(x_)]^(m_.)*((a_.) + cot[(d_.) + (e_.)*(x_)]^(n_.)*(b_.) + cot[(d_.) + (e_.)*(x_)]^(n2_.
)*(c_.))^(p_), x_Symbol] :> Simp[(a + b*Cot[d + e*x]^n + c*Cot[d + e*x]^(2*n))^p/(b + 2*c*Cot[d + e*x]^n)^(2*p
) Int[Cot[d + e*x]^m*(b + 2*c*Cot[d + e*x]^n)^(2*p), x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && EqQ[n2,
2*n] && EqQ[b^2 - 4*a*c, 0] && !IntegerQ[p]
-
Int[tan[(d_.) + (e_.)*(x_)]^(m_.)*((a_.) + (b_.)*((f_.)*tan[(d_.) + (e_.)*(x_)])^(n_.) + (c_.)*((f_.)*tan[(d_.
) + (e_.)*(x_)])^(n2_.))^(p_), x_Symbol] :> Simp[f/e Subst[Int[(x/f)^m*((a + b*x^n + c*x^(2*n))^p/(f^2 + x^2
)), x], x, f*Tan[d + e*x]], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0]
-
Int[cot[(d_.) + (e_.)*(x_)]^(m_.)*((a_.) + (b_.)*(cot[(d_.) + (e_.)*(x_)]*(f_.))^(n_.) + (c_.)*(cot[(d_.) + (e
_.)*(x_)]*(f_.))^(n2_.))^(p_), x_Symbol] :> Simp[-f/e Subst[Int[(x/f)^m*((a + b*x^n + c*x^(2*n))^p/(f^2 + x^
2)), x], x, f*Cot[d + e*x]], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0
]
-
Int[cot[(d_.) + (e_.)*(x_)]^(m_.)*((a_.) + (b_.)*tan[(d_.) + (e_.)*(x_)]^(n_.) + (c_.)*tan[(d_.) + (e_.)*(x_)]
^(n2_.))^(p_.), x_Symbol] :> Simp[1/(4^p*c^p) Int[Cot[d + e*x]^m*(b + 2*c*Tan[d + e*x]^n)^(2*p), x], x] /; F
reeQ[{a, b, c, d, e, m, n}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]
-
Int[((a_.) + cot[(d_.) + (e_.)*(x_)]^(n_.)*(b_.) + cot[(d_.) + (e_.)*(x_)]^(n2_.)*(c_.))^(p_.)*tan[(d_.) + (e_
.)*(x_)]^(m_.), x_Symbol] :> Simp[1/(4^p*c^p) Int[Tan[d + e*x]^m*(b + 2*c*Cot[d + e*x]^n)^(2*p), x], x] /; F
reeQ[{a, b, c, d, e, m, n}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]
-
Int[cot[(d_.) + (e_.)*(x_)]^(m_.)*((a_.) + (b_.)*tan[(d_.) + (e_.)*(x_)]^(n_.) + (c_.)*tan[(d_.) + (e_.)*(x_)]
^(n2_.))^(p_), x_Symbol] :> Simp[(a + b*Tan[d + e*x]^n + c*Tan[d + e*x]^(2*n))^p/(b + 2*c*Tan[d + e*x]^n)^(2*p
) Int[Cot[d + e*x]^m*(b + 2*c*Tan[d + e*x]^n)^(2*p), x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && EqQ[n2,
2*n] && EqQ[b^2 - 4*a*c, 0] && !IntegerQ[p]
-
Int[((a_.) + cot[(d_.) + (e_.)*(x_)]^(n_.)*(b_.) + cot[(d_.) + (e_.)*(x_)]^(n2_.)*(c_.))^(p_)*tan[(d_.) + (e_.
)*(x_)]^(m_.), x_Symbol] :> Simp[(a + b*Cot[d + e*x]^n + c*Cot[d + e*x]^(2*n))^p/(b + 2*c*Cot[d + e*x]^n)^(2*p
) Int[Tan[d + e*x]^m*(b + 2*c*Cot[d + e*x]^n)^(2*p), x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && EqQ[n2,
2*n] && EqQ[b^2 - 4*a*c, 0] && !IntegerQ[p]
-
Int[cot[(d_.) + (e_.)*(x_)]^(m_.)*((a_.) + (b_.)*tan[(d_.) + (e_.)*(x_)]^(n_) + (c_.)*tan[(d_.) + (e_.)*(x_)]^
(n2_))^(p_.), x_Symbol] :> Module[{g = FreeFactors[Cot[d + e*x], x]}, Simp[g/e Subst[Int[(g*x)^(m - 2*n*p)*(
(c + b*(g*x)^n + a*(g*x)^(2*n))^p/(1 + g^2*x^2)), x], x, Cot[d + e*x]/g], x]] /; FreeQ[{a, b, c, d, e, m, p},
x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IntegerQ[n/2]
-
Int[((a_.) + cot[(d_.) + (e_.)*(x_)]^(n_)*(b_.) + cot[(d_.) + (e_.)*(x_)]^(n2_)*(c_.))^(p_.)*tan[(d_.) + (e_.)
*(x_)]^(m_.), x_Symbol] :> Module[{g = FreeFactors[Tan[d + e*x], x]}, Simp[-g/e Subst[Int[(g*x)^(m - 2*n*p)*
((c + b*(g*x)^n + a*(g*x)^(2*n))^p/(1 + g^2*x^2)), x], x, Tan[d + e*x]/g], x]] /; FreeQ[{a, b, c, d, e, m, p},
x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IntegerQ[n/2]
-
Int[((A_) + (B_.)*tan[(d_.) + (e_.)*(x_)])*((a_) + (b_.)*tan[(d_.) + (e_.)*(x_)] + (c_.)*tan[(d_.) + (e_.)*(x_
)]^2)^(n_), x_Symbol] :> Simp[1/(4^n*c^n) Int[(A + B*Tan[d + e*x])*(b + 2*c*Tan[d + e*x])^(2*n), x], x] /; F
reeQ[{a, b, c, d, e, A, B}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[n]
-
Int[(cot[(d_.) + (e_.)*(x_)]*(b_.) + cot[(d_.) + (e_.)*(x_)]^2*(c_.) + (a_))^(n_)*(cot[(d_.) + (e_.)*(x_)]*(B_
.) + (A_)), x_Symbol] :> Simp[1/(4^n*c^n) Int[(A + B*Cot[d + e*x])*(b + 2*c*Cot[d + e*x])^(2*n), x], x] /; F
reeQ[{a, b, c, d, e, A, B}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[n]
-
Int[((A_) + (B_.)*tan[(d_.) + (e_.)*(x_)])*((a_) + (b_.)*tan[(d_.) + (e_.)*(x_)] + (c_.)*tan[(d_.) + (e_.)*(x_
)]^2)^(n_), x_Symbol] :> Simp[(a + b*Tan[d + e*x] + c*Tan[d + e*x]^2)^n/(b + 2*c*Tan[d + e*x])^(2*n) Int[(A
+ B*Tan[d + e*x])*(b + 2*c*Tan[d + e*x])^(2*n), x], x] /; FreeQ[{a, b, c, d, e, A, B}, x] && EqQ[b^2 - 4*a*c,
0] && !IntegerQ[n]
-
Int[(cot[(d_.) + (e_.)*(x_)]*(b_.) + cot[(d_.) + (e_.)*(x_)]^2*(c_.) + (a_))^(n_)*(cot[(d_.) + (e_.)*(x_)]*(B_
.) + (A_)), x_Symbol] :> Simp[(a + b*Cot[d + e*x] + c*Cot[d + e*x]^2)^n/(b + 2*c*Cot[d + e*x])^(2*n) Int[(A
+ B*Cot[d + e*x])*(b + 2*c*Cot[d + e*x])^(2*n), x], x] /; FreeQ[{a, b, c, d, e, A, B}, x] && EqQ[b^2 - 4*a*c,
0] && !IntegerQ[n]
-
Int[((A_) + (B_.)*tan[(d_.) + (e_.)*(x_)])/((a_.) + (b_.)*tan[(d_.) + (e_.)*(x_)] + (c_.)*tan[(d_.) + (e_.)*(x
_)]^2), x_Symbol] :> Module[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(B + (b*B - 2*A*c)/q) Int[1/Simp[b + q + 2*c*Tan[
d + e*x], x], x], x] + Simp[(B - (b*B - 2*A*c)/q) Int[1/Simp[b - q + 2*c*Tan[d + e*x], x], x], x]] /; FreeQ[
{a, b, c, d, e, A, B}, x] && NeQ[b^2 - 4*a*c, 0]
-
Int[(cot[(d_.) + (e_.)*(x_)]*(B_.) + (A_))/((a_.) + cot[(d_.) + (e_.)*(x_)]*(b_.) + cot[(d_.) + (e_.)*(x_)]^2*
(c_.)), x_Symbol] :> Module[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(B + (b*B - 2*A*c)/q) Int[1/Simp[b + q + 2*c*Cot[
d + e*x], x], x], x] + Simp[(B - (b*B - 2*A*c)/q) Int[1/Simp[b - q + 2*c*Cot[d + e*x], x], x], x]] /; FreeQ[
{a, b, c, d, e, A, B}, x] && NeQ[b^2 - 4*a*c, 0]
-
Int[((A_) + (B_.)*tan[(d_.) + (e_.)*(x_)])*((a_.) + (b_.)*tan[(d_.) + (e_.)*(x_)] + (c_.)*tan[(d_.) + (e_.)*(x
_)]^2)^(n_), x_Symbol] :> Int[ExpandTrig[(A + B*tan[d + e*x])*(a + b*tan[d + e*x] + c*tan[d + e*x]^2)^n, x], x
] /; FreeQ[{a, b, c, d, e, A, B}, x] && NeQ[b^2 - 4*a*c, 0] && IntegerQ[n]
-
Int[((a_.) + cot[(d_.) + (e_.)*(x_)]*(b_.) + cot[(d_.) + (e_.)*(x_)]^2*(c_.))^(n_)*(cot[(d_.) + (e_.)*(x_)]*(B
_.) + (A_)), x_Symbol] :> Int[ExpandTrig[(A + B*cot[d + e*x])*(a + b*cot[d + e*x] + c*cot[d + e*x]^2)^n, x], x
] /; FreeQ[{a, b, c, d, e, A, B}, x] && NeQ[b^2 - 4*a*c, 0] && IntegerQ[n]
-
Int[((c_.) + (d_.)*(x_))^(m_.)*tan[(e_.) + Pi*(k_.) + (Complex[0, fz_])*(f_.)*(x_)], x_Symbol] :> Simp[(-I)*((
c + d*x)^(m + 1)/(d*(m + 1))), x] + Simp[2*I Int[((c + d*x)^m*(E^(2*((-I)*e + f*fz*x))/(1 + E^(2*((-I)*e + f
*fz*x))/E^(2*I*k*Pi))))/E^(2*I*k*Pi), x], x] /; FreeQ[{c, d, e, f, fz}, x] && IntegerQ[4*k] && IGtQ[m, 0]
-
Int[((c_.) + (d_.)*(x_))^(m_.)*tan[(e_.) + Pi*(k_.) + (f_.)*(x_)], x_Symbol] :> Simp[I*((c + d*x)^(m + 1)/(d*(
m + 1))), x] - Simp[2*I Int[(c + d*x)^m*E^(2*I*k*Pi)*(E^(2*I*(e + f*x))/(1 + E^(2*I*k*Pi)*E^(2*I*(e + f*x)))
), x], x] /; FreeQ[{c, d, e, f}, x] && IntegerQ[4*k] && IGtQ[m, 0]
-
Int[((c_.) + (d_.)*(x_))^(m_.)*tan[(e_.) + (Complex[0, fz_])*(f_.)*(x_)], x_Symbol] :> Simp[(-I)*((c + d*x)^(m
+ 1)/(d*(m + 1))), x] + Simp[2*I Int[(c + d*x)^m*(E^(2*((-I)*e + f*fz*x))/(1 + E^(2*((-I)*e + f*fz*x)))), x
], x] /; FreeQ[{c, d, e, f, fz}, x] && IGtQ[m, 0]
-
Int[((c_.) + (d_.)*(x_))^(m_.)*tan[(e_.) + (f_.)*(x_)], x_Symbol] :> Simp[I*((c + d*x)^(m + 1)/(d*(m + 1))), x
] - Simp[2*I Int[(c + d*x)^m*(E^(2*I*(e + f*x))/(1 + E^(2*I*(e + f*x)))), x], x] /; FreeQ[{c, d, e, f}, x] &
& IGtQ[m, 0]
-
Int[((c_.) + (d_.)*(x_))^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(c + d*x)^m*((b*Tan[e
+ f*x])^(n - 1)/(f*(n - 1))), x] + (-Simp[b*d*(m/(f*(n - 1))) Int[(c + d*x)^(m - 1)*(b*Tan[e + f*x])^(n - 1
), x], x] - Simp[b^2 Int[(c + d*x)^m*(b*Tan[e + f*x])^(n - 2), x], x]) /; FreeQ[{b, c, d, e, f}, x] && GtQ[n
, 1] && GtQ[m, 0]
-
Int[((c_.) + (d_.)*(x_))^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(c + d*x)^m*((b*Tan[e +
f*x])^(n + 1)/(b*f*(n + 1))), x] + (-Simp[d*(m/(b*f*(n + 1))) Int[(c + d*x)^(m - 1)*(b*Tan[e + f*x])^(n + 1
), x], x] - Simp[1/b^2 Int[(c + d*x)^m*(b*Tan[e + f*x])^(n + 2), x], x]) /; FreeQ[{b, c, d, e, f}, x] && LtQ
[n, -1] && GtQ[m, 0]
-
Int[((c_.) + (d_.)*(x_))^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Int[ExpandIntegrand[
(c + d*x)^m, (a + b*Tan[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && IGtQ[m, 0] && IGtQ[n, 0]
-
Int[((c_.) + (d_.)*(x_))^(m_.)/((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(c + d*x)^(m + 1)/(2*
a*d*(m + 1)), x] + (Simp[a*d*(m/(2*b*f)) Int[(c + d*x)^(m - 1)/(a + b*Tan[e + f*x]), x], x] - Simp[a*((c + d
*x)^m/(2*b*f*(a + b*Tan[e + f*x]))), x]) /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[a^2 + b^2, 0] && GtQ[m, 0]
-
Int[1/(((c_.) + (d_.)*(x_))^2*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])), x_Symbol] :> -Simp[(d*(c + d*x)*(a + b*
Tan[e + f*x]))^(-1), x] + (-Simp[f/(a*d) Int[Sin[2*e + 2*f*x]/(c + d*x), x], x] + Simp[f/(b*d) Int[Cos[2*e
+ 2*f*x]/(c + d*x), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[a^2 + b^2, 0]
-
Int[((c_.) + (d_.)*(x_))^(m_)/((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[f*((c + d*x)^(m + 2)/(
b*d^2*(m + 1)*(m + 2))), x] + (Simp[2*b*(f/(a*d*(m + 1))) Int[(c + d*x)^(m + 1)/(a + b*Tan[e + f*x]), x], x]
+ Simp[(c + d*x)^(m + 1)/(d*(m + 1)*(a + b*Tan[e + f*x])), x]) /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[a^2 + b
^2, 0] && LtQ[m, -1] && NeQ[m, -2]
-
Int[1/(((c_.) + (d_.)*(x_))*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])), x_Symbol] :> Simp[Log[c + d*x]/(2*a*d), x
] + (Simp[1/(2*a) Int[Cos[2*e + 2*f*x]/(c + d*x), x], x] + Simp[1/(2*b) Int[Sin[2*e + 2*f*x]/(c + d*x), x]
, x]) /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[a^2 + b^2, 0]
-
Int[((c_.) + (d_.)*(x_))^(m_)/((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(c + d*x)^(m + 1)/(2*a
*d*(m + 1)), x] + Simp[1/(2*a) Int[(c + d*x)^m*E^(2*(a/b)*(e + f*x)), x], x] /; FreeQ[{a, b, c, d, e, f, m},
x] && EqQ[a^2 + b^2, 0] && !IntegerQ[m]
-
Int[((c_.) + (d_.)*(x_))^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Int[ExpandIntegrand[(c
+ d*x)^m, (1/(2*a) + Cos[2*e + 2*f*x]/(2*a) + Sin[2*e + 2*f*x]/(2*b))^(-n), x], x] /; FreeQ[{a, b, c, d, e, f
}, x] && EqQ[a^2 + b^2, 0] && ILtQ[m, 0] && ILtQ[n, 0]
-
Int[((c_.) + (d_.)*(x_))^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Int[ExpandIntegrand[(c
+ d*x)^m, (1/(2*a) + E^(2*(a/b)*(e + f*x))/(2*a))^(-n), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[a^2
+ b^2, 0] && ILtQ[n, 0]
-
Int[((c_.) + (d_.)*(x_))^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> With[{u = IntHide[(a
+ b*Tan[e + f*x])^n, x]}, Simp[(c + d*x)^m u, x] - Simp[d*m Int[(c + d*x)^(m - 1) u, x], x]] /; FreeQ[{a
, b, c, d, e, f}, x] && EqQ[a^2 + b^2, 0] && ILtQ[n, -1] && GtQ[m, 0]
-
Int[((c_.) + (d_.)*(x_))^(m_.)/((a_) + (b_.)*tan[(e_.) + Pi*(k_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(c + d*x)^
(m + 1)/(d*(m + 1)*(a + I*b)), x] + Simp[2*I*b Int[(c + d*x)^m*E^(2*I*k*Pi)*(E^Simp[2*I*(e + f*x), x]/((a +
I*b)^2 + (a^2 + b^2)*E^(2*I*k*Pi)*E^Simp[2*I*(e + f*x), x])), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && Intege
rQ[4*k] && NeQ[a^2 + b^2, 0] && IGtQ[m, 0]
-
Int[((c_.) + (d_.)*(x_))^(m_.)/((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(c + d*x)^(m + 1)/(d*
(m + 1)*(a + I*b)), x] + Simp[2*I*b Int[(c + d*x)^m*(E^Simp[2*I*(e + f*x), x]/((a + I*b)^2 + (a^2 + b^2)*E^S
imp[2*I*(e + f*x), x])), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[a^2 + b^2, 0] && IGtQ[m, 0]
-
Int[((c_.) + (d_.)*(x_))/((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^2, x_Symbol] :> Simp[-(c + d*x)^2/(2*d*(a^2 +
b^2)), x] + (Simp[1/(f*(a^2 + b^2)) Int[(b*d + 2*a*c*f + 2*a*d*f*x)/(a + b*Tan[e + f*x]), x], x] - Simp[b*((
c + d*x)/(f*(a^2 + b^2)*(a + b*Tan[e + f*x]))), x]) /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[a^2 + b^2, 0]
-
Int[((c_.) + (d_.)*(x_))^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Int[ExpandIntegrand[(
c + d*x)^m, (1/(a - I*b) - 2*I*(b/(a^2 + b^2 + (a - I*b)^2*E^(2*I*(e + f*x)))))^(-n), x], x] /; FreeQ[{a, b, c
, d, e, f}, x] && NeQ[a^2 + b^2, 0] && ILtQ[n, 0] && IGtQ[m, 0]
-
Int[((c_.) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp[(-Sqrt[2])*b*(c + d*x)*
(ArcTanh[Sqrt[a + b*Tan[e + f*x]]/(Sqrt[2]*Rt[a, 2])]/(Rt[a, 2]*f)), x] + Simp[Sqrt[2]*b*(d/(Rt[a, 2]*f)) In
t[ArcTanh[Sqrt[a + b*Tan[e + f*x]]/(Sqrt[2]*Rt[a, 2])], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[a^2 + b^
2, 0]
-
Int[((c_.) + (d_.)*(x_))*Sqrt[(a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp[(-I)*Rt[a - I*b, 2]*((
c + d*x)/f)*ArcTanh[Sqrt[a + b*Tan[e + f*x]]/Rt[a - I*b, 2]], x] + (Simp[I*Rt[a + I*b, 2]*((c + d*x)/f)*ArcTan
h[Sqrt[a + b*Tan[e + f*x]]/Rt[a + I*b, 2]], x] + Simp[I*d*(Rt[a - I*b, 2]/f) Int[ArcTanh[Sqrt[a + b*Tan[e +
f*x]]/Rt[a - I*b, 2]], x], x] - Simp[I*d*(Rt[a + I*b, 2]/f) Int[ArcTanh[Sqrt[a + b*Tan[e + f*x]]/Rt[a + I*b,
2]], x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[a^2 + b^2, 0]
-
Int[((c_.) + (d_.)*(x_))/Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp[1/(2*a) Int[(c + d*x)
*Sqrt[a + b*Tan[e + f*x]], x], x] + Simp[a/2 Int[(c + d*x)*(Sec[e + f*x]^2/(a + b*Tan[e + f*x])^(3/2)), x],
x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[a^2 + b^2, 0]
-
Int[((c_.) + (d_.)*(x_))/Sqrt[(a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Simp[(-I)*((c + d*x)/(f*Rt[
a - I*b, 2]))*ArcTanh[Sqrt[a + b*Tan[e + f*x]]/Rt[a - I*b, 2]], x] + (Simp[I*((c + d*x)/(f*Rt[a + I*b, 2]))*Ar
cTanh[Sqrt[a + b*Tan[e + f*x]]/Rt[a + I*b, 2]], x] + Simp[I*(d/(f*Rt[a - I*b, 2])) Int[ArcTanh[Sqrt[a + b*Ta
n[e + f*x]]/Rt[a - I*b, 2]], x], x] - Simp[I*(d/(f*Rt[a + I*b, 2])) Int[ArcTanh[Sqrt[a + b*Tan[e + f*x]]/Rt[
a + I*b, 2]], x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[a^2 + b^2, 0]
-
Int[((c_.) + (d_.)*(x_))^(m_.)*tan[(e_.) + (f_.)*(x_)]^(n_.), x_Symbol] :> Simp[If[MatchQ[f, (f1_.)*(Complex[0
, j_])], If[MatchQ[e, (e1_.) + Pi/2], I^n*Unintegrable[(c + d*x)^m*Coth[(-I)*(e - Pi/2) - I*f*x]^n, x], I^n*Un
integrable[(c + d*x)^m*Tanh[(-I)*e - I*f*x]^n, x]], If[MatchQ[e, (e1_.) + Pi/2], (-1)^n*Unintegrable[(c + d*x)
^m*Cot[e - Pi/2 + f*x]^n, x], Unintegrable[(c + d*x)^m*Tan[e + f*x]^n, x]]], x] /; FreeQ[{c, d, e, f, m, n}, x
] && IntegerQ[n]
-
Int[((c_.) + (d_.)*(x_))^(m_.)*((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Unintegrable[(c + d
*x)^m*(a + b*Tan[e + f*x])^n, x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]
-
Int[(u_)^(m_.)*((a_.) + (b_.)*Tan[v_])^(n_.), x_Symbol] :> Int[ExpandToSum[u, x]^m*(a + b*Tan[ExpandToSum[v, x
]])^n, x] /; FreeQ[{a, b, m, n}, x] && LinearQ[{u, v}, x] && !LinearMatchQ[{u, v}, x]
-
Int[((a_.) + Cot[v_]*(b_.))^(n_.)*(u_)^(m_.), x_Symbol] :> Int[ExpandToSum[u, x]^m*(a + b*Cot[ExpandToSum[v, x
]])^n, x] /; FreeQ[{a, b, m, n}, x] && LinearQ[{u, v}, x] && !LinearMatchQ[{u, v}, x]
-
Int[((a_.) + (b_.)*Tan[(c_.) + (d_.)*(x_)^(n_)])^(p_.), x_Symbol] :> Simp[1/n Subst[Int[x^(1/n - 1)*(a + b*T
an[c + d*x])^p, x], x, x^n], x] /; FreeQ[{a, b, c, d, p}, x] && IGtQ[1/n, 0] && IntegerQ[p]
-
Int[((a_.) + Cot[(c_.) + (d_.)*(x_)^(n_)]*(b_.))^(p_.), x_Symbol] :> Simp[1/n Subst[Int[x^(1/n - 1)*(a + b*C
ot[c + d*x])^p, x], x, x^n], x] /; FreeQ[{a, b, c, d, p}, x] && IGtQ[1/n, 0] && IntegerQ[p]
-
Int[((a_.) + (b_.)*Tan[(c_.) + (d_.)*(x_)^(n_)])^(p_.), x_Symbol] :> Unintegrable[(a + b*Tan[c + d*x^n])^p, x]
/; FreeQ[{a, b, c, d, n, p}, x]
-
Int[((a_.) + Cot[(c_.) + (d_.)*(x_)^(n_)]*(b_.))^(p_.), x_Symbol] :> Unintegrable[(a + b*Cot[c + d*x^n])^p, x]
/; FreeQ[{a, b, c, d, n, p}, x]
-
Int[((a_.) + (b_.)*Tan[(c_.) + (d_.)*(u_)^(n_)])^(p_.), x_Symbol] :> Simp[1/Coefficient[u, x, 1] Subst[Int[(
a + b*Tan[c + d*x^n])^p, x], x, u], x] /; FreeQ[{a, b, c, d, n, p}, x] && LinearQ[u, x] && NeQ[u, x]
-
Int[((a_.) + Cot[(c_.) + (d_.)*(u_)^(n_)]*(b_.))^(p_.), x_Symbol] :> Simp[1/Coefficient[u, x, 1] Subst[Int[(
a + b*Cot[c + d*x^n])^p, x], x, u], x] /; FreeQ[{a, b, c, d, n, p}, x] && LinearQ[u, x] && NeQ[u, x]
-
Int[((a_.) + (b_.)*Tan[u_])^(p_.), x_Symbol] :> Int[(a + b*Tan[ExpandToSum[u, x]])^p, x] /; FreeQ[{a, b, p}, x
] && BinomialQ[u, x] && !BinomialMatchQ[u, x]
-
Int[((a_.) + Cot[u_]*(b_.))^(p_.), x_Symbol] :> Int[(a + b*Cot[ExpandToSum[u, x]])^p, x] /; FreeQ[{a, b, p}, x
] && BinomialQ[u, x] && !BinomialMatchQ[u, x]
-
Int[(x_)^(m_.)*((a_.) + (b_.)*Tan[(c_.) + (d_.)*(x_)^(n_)])^(p_.), x_Symbol] :> Simp[1/n Subst[Int[x^(Simpli
fy[(m + 1)/n] - 1)*(a + b*Tan[c + d*x])^p, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p}, x] && IGtQ[Simplify
[(m + 1)/n], 0] && IntegerQ[p]
-
Int[((a_.) + Cot[(c_.) + (d_.)*(x_)^(n_)]*(b_.))^(p_.)*(x_)^(m_.), x_Symbol] :> Simp[1/n Subst[Int[x^(Simpli
fy[(m + 1)/n] - 1)*(a + b*Cot[c + d*x])^p, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p}, x] && IGtQ[Simplify
[(m + 1)/n], 0] && IntegerQ[p]
-
Int[(x_)^(m_.)*Tan[(c_.) + (d_.)*(x_)^(n_)]^2, x_Symbol] :> Simp[x^(m - n + 1)*(Tan[c + d*x^n]/(d*n)), x] + (-
Int[x^m, x] - Simp[(m - n + 1)/(d*n) Int[x^(m - n)*Tan[c + d*x^n], x], x]) /; FreeQ[{c, d, m, n}, x]
-
Int[Cot[(c_.) + (d_.)*(x_)^(n_)]^2*(x_)^(m_.), x_Symbol] :> Simp[(-x^(m - n + 1))*(Cot[c + d*x^n]/(d*n)), x] +
(-Int[x^m, x] + Simp[(m - n + 1)/(d*n) Int[x^(m - n)*Cot[c + d*x^n], x], x]) /; FreeQ[{c, d, m, n}, x]
-
Int[(x_)^(m_.)*((a_.) + (b_.)*Tan[(c_.) + (d_.)*(x_)^(n_)])^(p_.), x_Symbol] :> Unintegrable[x^m*(a + b*Tan[c
+ d*x^n])^p, x] /; FreeQ[{a, b, c, d, m, n, p}, x]
-
Int[((a_.) + Cot[(c_.) + (d_.)*(x_)^(n_)]*(b_.))^(p_.)*(x_)^(m_.), x_Symbol] :> Unintegrable[x^m*(a + b*Cot[c
+ d*x^n])^p, x] /; FreeQ[{a, b, c, d, m, n, p}, x]
-
Int[((e_)*(x_))^(m_.)*((a_.) + (b_.)*Tan[(c_.) + (d_.)*(x_)^(n_)])^(p_.), x_Symbol] :> Simp[e^IntPart[m]*((e*x
)^FracPart[m]/x^FracPart[m]) Int[x^m*(a + b*Tan[c + d*x^n])^p, x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x]
-
Int[((a_.) + Cot[(c_.) + (d_.)*(x_)^(n_)]*(b_.))^(p_.)*((e_)*(x_))^(m_.), x_Symbol] :> Simp[e^IntPart[m]*((e*x
)^FracPart[m]/x^FracPart[m]) Int[x^m*(a + b*Cot[c + d*x^n])^p, x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x]
-
Int[((e_)*(x_))^(m_.)*((a_.) + (b_.)*Tan[u_])^(p_.), x_Symbol] :> Int[(e*x)^m*(a + b*Tan[ExpandToSum[u, x]])^p
, x] /; FreeQ[{a, b, e, m, p}, x] && BinomialQ[u, x] && !BinomialMatchQ[u, x]
-
Int[((a_.) + Cot[u_]*(b_.))^(p_.)*((e_)*(x_))^(m_.), x_Symbol] :> Int[(e*x)^m*(a + b*Cot[ExpandToSum[u, x]])^p
, x] /; FreeQ[{a, b, e, m, p}, x] && BinomialQ[u, x] && !BinomialMatchQ[u, x]
-
Int[(x_)^(m_.)*Sec[(a_.) + (b_.)*(x_)^(n_.)]^(p_.)*Tan[(a_.) + (b_.)*(x_)^(n_.)]^(q_.), x_Symbol] :> Simp[x^(m
- n + 1)*(Sec[a + b*x^n]^p/(b*n*p)), x] - Simp[(m - n + 1)/(b*n*p) Int[x^(m - n)*Sec[a + b*x^n]^p, x], x] /
; FreeQ[{a, b, p}, x] && IntegerQ[n] && GeQ[m, n] && EqQ[q, 1]
-
Int[Cot[(a_.) + (b_.)*(x_)^(n_.)]^(q_.)*Csc[(a_.) + (b_.)*(x_)^(n_.)]^(p_.)*(x_)^(m_.), x_Symbol] :> Simp[(-x^
(m - n + 1))*(Csc[a + b*x^n]^p/(b*n*p)), x] + Simp[(m - n + 1)/(b*n*p) Int[x^(m - n)*Csc[a + b*x^n]^p, x], x
] /; FreeQ[{a, b, p}, x] && IntegerQ[n] && GeQ[m, n] && EqQ[q, 1]
-
Int[Tan[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]^(n_.), x_Symbol] :> Unintegrable[Tan[a + b*x + c*x^2]^n, x] /; Free
Q[{a, b, c, n}, x]
-
Int[Cot[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]^(n_.), x_Symbol] :> Unintegrable[Cot[a + b*x + c*x^2]^n, x] /; Free
Q[{a, b, c, n}, x]
-
Int[((d_) + (e_.)*(x_))*Tan[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Simp[(-e)*(Log[Cos[a + b*x + c*x^
2]]/(2*c)), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]
-
Int[Cot[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]*((d_) + (e_.)*(x_)), x_Symbol] :> Simp[e*(Log[Sin[a + b*x + c*x^2]]
/(2*c)), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]
-
Int[((d_.) + (e_.)*(x_))*Tan[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Simp[(-e)*(Log[Cos[a + b*x + c*x
^2]]/(2*c)), x] + Simp[(2*c*d - b*e)/(2*c) Int[Tan[a + b*x + c*x^2], x], x] /; FreeQ[{a, b, c, d, e}, x] &&
NeQ[2*c*d - b*e, 0]
-
Int[Cot[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]*((d_.) + (e_.)*(x_)), x_Symbol] :> Simp[e*(Log[Sin[a + b*x + c*x^2]
]/(2*c)), x] + Simp[(2*c*d - b*e)/(2*c) Int[Cot[a + b*x + c*x^2], x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ
[2*c*d - b*e, 0]
-
Int[((d_.) + (e_.)*(x_))^(m_.)*Tan[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]^(n_.), x_Symbol] :> Unintegrable[(d + e*
x)^m*Tan[a + b*x + c*x^2]^n, x] /; FreeQ[{a, b, c, d, e, m, n}, x]
-
Int[Cot[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]^(n_.)*((d_.) + (e_.)*(x_))^(m_.), x_Symbol] :> Unintegrable[(d + e*
x)^m*Cot[a + b*x + c*x^2]^n, x] /; FreeQ[{a, b, c, d, e, m, n}, x]
-
Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> Simp[-d^(-1) Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x
], x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]
-
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Csc[c + d*x])^(n - 1)/(d*(n
- 1))), x] + Simp[b^2*((n - 2)/(n - 1)) Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n
, 1] && IntegerQ[2*n]
-
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Csc[c + d*x])^(n + 1)/(b*d*n)), x
] + Simp[(n + 1)/(b^2*n) Int[(b*Csc[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1] && Intege
rQ[2*n]
-
Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]
-
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x])^n*Sin[c + d*x]^n Int[1/Sin[c +
d*x]^n, x], x] /; FreeQ[{b, c, d}, x] && EqQ[n^2, 1/4]
-
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(b*Csc[c + d*x])^(n - 1)*((Sin[c + d*x]/b)^(n - 1)
Int[1/(Sin[c + d*x]/b)^n, x]), x] /; FreeQ[{b, c, d, n}, x] && !IntegerQ[n]
-
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^2, x_Symbol] :> Simp[a^2*x, x] + (Simp[2*a*b Int[Csc[c + d*x], x]
, x] + Simp[b^2 Int[Csc[c + d*x]^2, x], x]) /; FreeQ[{a, b, c, d}, x]
-
Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(b/d) Subst[Int[1/(a + x^2), x], x, b*(
Cot[c + d*x]/Sqrt[a + b*Csc[c + d*x]])], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]
-
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Simp[(-b^2)*Cot[c + d*x]*((a + b*Csc[c + d*x])^(
n - 2)/(d*(n - 1))), x] + Simp[a/(n - 1) Int[(a + b*Csc[c + d*x])^(n - 2)*(a*(n - 1) + b*(3*n - 4)*Csc[c + d
*x]), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0] && GtQ[n, 1] && IntegerQ[2*n]
-
Int[1/Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[1/a Int[Sqrt[a + b*Csc[c + d*x]], x], x]
- Simp[b/a Int[Csc[c + d*x]/Sqrt[a + b*Csc[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]
-
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Simp[(-Cot[c + d*x])*((a + b*Csc[c + d*x])^n/(d*
(2*n + 1))), x] + Simp[1/(a^2*(2*n + 1)) Int[(a + b*Csc[c + d*x])^(n + 1)*(a*(2*n + 1) - b*(n + 1)*Csc[c + d
*x]), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0] && LeQ[n, -1] && IntegerQ[2*n]
-
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Simp[a^n*(Cot[c + d*x]/(d*Sqrt[1 + Csc[c + d*x]]
*Sqrt[1 - Csc[c + d*x]])) Subst[Int[(1 + b*(x/a))^(n - 1/2)/(x*Sqrt[1 - b*(x/a)]), x], x, Csc[c + d*x]], x]
/; FreeQ[{a, b, c, d, n}, x] && EqQ[a^2 - b^2, 0] && !IntegerQ[2*n] && GtQ[a, 0]
-
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Simp[a^IntPart[n]*((a + b*Csc[c + d*x])^FracPart
[n]/(1 + (b/a)*Csc[c + d*x])^FracPart[n]) Int[(1 + (b/a)*Csc[c + d*x])^n, x], x] /; FreeQ[{a, b, c, d, n}, x
] && EqQ[a^2 - b^2, 0] && !IntegerQ[2*n] && !GtQ[a, 0]
-
Int[Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[2*((a + b*Csc[c + d*x])/(d*Rt[a + b, 2]*Cot[
c + d*x]))*Sqrt[b*((1 + Csc[c + d*x])/(a + b*Csc[c + d*x]))]*Sqrt[(-b)*((1 - Csc[c + d*x])/(a + b*Csc[c + d*x]
))]*EllipticPi[a/(a + b), ArcSin[Rt[a + b, 2]/Sqrt[a + b*Csc[c + d*x]]], (a - b)/(a + b)], x] /; FreeQ[{a, b,
c, d}, x] && NeQ[a^2 - b^2, 0]
-
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(3/2), x_Symbol] :> Int[(a^2 + b*(2*a - b)*Csc[c + d*x])/Sqrt[a + b
*Csc[c + d*x]], x] + Simp[b^2 Int[Csc[c + d*x]*((1 + Csc[c + d*x])/Sqrt[a + b*Csc[c + d*x]]), x], x] /; Free
Q[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0]
-
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Simp[(-b^2)*Cot[c + d*x]*((a + b*Csc[c + d*x])^(
n - 2)/(d*(n - 1))), x] + Simp[1/(n - 1) Int[(a + b*Csc[c + d*x])^(n - 3)*Simp[a^3*(n - 1) + (b*(b^2*(n - 2)
+ 3*a^2*(n - 1)))*Csc[c + d*x] + (a*b^2*(3*n - 4))*Csc[c + d*x]^2, x], x], x] /; FreeQ[{a, b, c, d}, x] && Ne
Q[a^2 - b^2, 0] && GtQ[n, 2] && IntegerQ[2*n]
-
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(-1), x_Symbol] :> Simp[x/a, x] - Simp[1/a Int[1/(1 + (a/b)*Sin[c
+ d*x]), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0]
-
Int[1/Sqrt[csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[2*(Rt[a + b, 2]/(a*d*Cot[c + d*x]))*Sqrt[b
*((1 - Csc[c + d*x])/(a + b))]*Sqrt[(-b)*((1 + Csc[c + d*x])/(a - b))]*EllipticPi[(a + b)/a, ArcSin[Sqrt[a + b
*Csc[c + d*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0]
-
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Simp[b^2*Cot[c + d*x]*((a + b*Csc[c + d*x])^(n +
1)/(a*d*(n + 1)*(a^2 - b^2))), x] + Simp[1/(a*(n + 1)*(a^2 - b^2)) Int[(a + b*Csc[c + d*x])^(n + 1)*Simp[(a
^2 - b^2)*(n + 1) - a*b*(n + 1)*Csc[c + d*x] + b^2*(n + 2)*Csc[c + d*x]^2, x], x], x] /; FreeQ[{a, b, c, d}, x
] && NeQ[a^2 - b^2, 0] && LtQ[n, -1] && IntegerQ[2*n]
-
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Unintegrable[(a + b*Csc[c + d*x])^n, x] /; FreeQ
[{a, b, c, d, n}, x] && NeQ[a^2 - b^2, 0] && !IntegerQ[2*n]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[a Int[(d
*Csc[e + f*x])^n, x], x] + Simp[b/d Int[(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, n}, x]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^2, x_Symbol] :> Simp[2*a*(b/d
) Int[(d*Csc[e + f*x])^(n + 1), x], x] + Int[(d*Csc[e + f*x])^n*(a^2 + b^2*Csc[e + f*x]^2), x] /; FreeQ[{a,
b, d, e, f, n}, x]
-
Int[csc[(e_.) + (f_.)*(x_)]^2/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[1/b Int[Csc[e + f*x]
, x], x] - Simp[a/b Int[Csc[e + f*x]/(a + b*Csc[e + f*x]), x], x] /; FreeQ[{a, b, e, f}, x]
-
Int[csc[(e_.) + (f_.)*(x_)]^3/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[-Cot[e + f*x]/(b*f), x
] - Simp[a/b Int[Csc[e + f*x]^2/(a + b*Csc[e + f*x]), x], x] /; FreeQ[{a, b, e, f}, x]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Int[Expand
Trig[(a + b*csc[e + f*x])^m*(d*csc[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0]
&& IGtQ[m, 0] && RationalQ[n]
-
Int[csc[(e_.) + (f_.)*(x_)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*b*(Cot[e + f*x]/(
f*Sqrt[a + b*Csc[e + f*x]])), x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0]
-
Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-b)*Cot[e + f*x]*(
(a + b*Csc[e + f*x])^(m - 1)/(f*m)), x] + Simp[a*((2*m - 1)/m) Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)
, x], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[m, 1/2] && IntegerQ[2*m]
-
Int[csc[(e_.) + (f_.)*(x_)]/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[-Cot[e + f*x]/(f*(b + a*
Csc[e + f*x])), x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0]
-
Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2/f Subst[Int[1/(
2*a + x^2), x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2,
0]
-
Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[b*Cot[e + f*x]*((a
+ b*Csc[e + f*x])^m/(a*f*(2*m + 1))), x] + Simp[(m + 1)/(a*(2*m + 1)) Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^
(m + 1), x], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] && IntegerQ[2*m]
-
Int[csc[(e_.) + (f_.)*(x_)]^2*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-Cot[e + f*x])*(
(a + b*Csc[e + f*x])^m/(f*(2*m + 1))), x] + Simp[m/(b*(2*m + 1)) Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m +
1), x], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)]
-
Int[csc[(e_.) + (f_.)*(x_)]^2*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-Cot[e + f*x])*(
(a + b*Csc[e + f*x])^m/(f*(m + 1))), x] + Simp[a*(m/(b*(m + 1))) Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m, x]
, x] /; FreeQ[{a, b, e, f, m}, x] && EqQ[a^2 - b^2, 0] && !LtQ[m, -2^(-1)]
-
Int[csc[(e_.) + (f_.)*(x_)]^3*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[b*Cot[e + f*x]*((
a + b*Csc[e + f*x])^m/(a*f*(2*m + 1))), x] - Simp[1/(a^2*(2*m + 1)) Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m
+ 1)*(a*m - b*(2*m + 1)*Csc[e + f*x]), x], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1
)]
-
Int[csc[(e_.) + (f_.)*(x_)]^3*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-Cot[e + f*x])*(
(a + b*Csc[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Simp[1/(b*(m + 2)) Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m
*(b*(m + 1) - a*Csc[e + f*x]), x], x] /; FreeQ[{a, b, e, f, m}, x] && EqQ[a^2 - b^2, 0] && !LtQ[m, -2^(-1)]
-
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(a/(b
*f))*Sqrt[a*(d/b)] Subst[Int[1/Sqrt[1 + x^2/a], x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; Fre
eQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[a*(d/b), 0]
-
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*b*(d/
f) Subst[Int[1/(b - d*x^2), x], x, b*(Cot[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]]))], x] /;
FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && !GtQ[a*(d/b), 0]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*b*d*
Cot[e + f*x]*((d*Csc[e + f*x])^(n - 1)/(f*(2*n - 1)*Sqrt[a + b*Csc[e + f*x]])), x] + Simp[2*a*d*((n - 1)/(b*(2
*n - 1))) Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[
a^2 - b^2, 0] && GtQ[n, 1] && IntegerQ[2*n]
-
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Simp[-2*a*(Co
t[e + f*x]/(f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]])), x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^
2, 0]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[a*Cot[e
+ f*x]*((d*Csc[e + f*x])^n/(f*n*Sqrt[a + b*Csc[e + f*x]])), x] + Simp[a*((2*n + 1)/(2*b*d*n)) Int[Sqrt[a +
b*Csc[e + f*x]]*(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[n, -
2^(-1)] && IntegerQ[2*n]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[a^2*d*(
Cot[e + f*x]/(f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[a - b*Csc[e + f*x]])) Subst[Int[(d*x)^(n - 1)/Sqrt[a - b*x], x
], x, Csc[e + f*x]], x] /; FreeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^2, 0]
-
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(-Sqrt[2
])*(Sqrt[a]/(b*f)) Subst[Int[1/Sqrt[1 + x^2], x], x, b*(Cot[e + f*x]/(a + b*Csc[e + f*x]))], x] /; FreeQ[{a,
b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && EqQ[d - a/b, 0] && GtQ[a, 0]
-
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*b*(d/
(a*f)) Subst[Int[1/(2*b - d*x^2), x], x, b*(Cot[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]]))],
x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-a)*C
ot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*((d*Csc[e + f*x])^n/(f*m)), x] + Simp[b*((2*m - 1)/(d*m)) Int[(a +
b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2,
0] && EqQ[m + n, 0] && GtQ[m, 1/2] && IntegerQ[2*m]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[b*d*Co
t[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^(n - 1)/(a*f*(2*m + 1))), x] + Simp[d*((m + 1)/(b*(2*m + 1
))) Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] &&
EqQ[a^2 - b^2, 0] && EqQ[m + n, 0] && LtQ[m, -2^(-1)] && IntegerQ[2*m]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-Cot[
e + f*x])*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*(2*m + 1))), x] + Simp[m/(a*(2*m + 1)) Int[(a + b*Cs
c[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && EqQ[m + n
+ 1, 0] && LtQ[m, -2^(-1)]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-Cot[
e + f*x])*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*(m + 1))), x] + Simp[a*(m/(b*d*(m + 1))) Int[(a + b*
Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] && Eq
Q[m + n + 1, 0] && !LtQ[m, -2^(-1)]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[b^2*Co
t[e + f*x]*(a + b*Csc[e + f*x])^(m - 2)*((d*Csc[e + f*x])^n/(f*n)), x] - Simp[a/(d*n) Int[(a + b*Csc[e + f*x
])^(m - 2)*(d*Csc[e + f*x])^(n + 1)*(b*(m - 2*n - 2) - a*(m + 2*n - 1)*Csc[e + f*x]), x], x] /; FreeQ[{a, b, d
, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[m, 1] && (LtQ[n, -1] || (EqQ[m, 3/2] && EqQ[n, -2^(-1)])) && IntegerQ[
2*m]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-b^2)
*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 2)*((d*Csc[e + f*x])^n/(f*(m + n - 1))), x] + Simp[b/(m + n - 1) Int
[(a + b*Csc[e + f*x])^(m - 2)*(d*Csc[e + f*x])^n*(b*(m + 2*n - 1) + a*(3*m + 2*n - 4)*Csc[e + f*x]), x], x] /;
FreeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^2, 0] && GtQ[m, 1] && NeQ[m + n - 1, 0] && IntegerQ[2*m]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[b*d*Co
t[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^(n - 1)/(a*f*(2*m + 1))), x] - Simp[d/(a*b*(2*m + 1)) In
t[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 1)*(a*(n - 1) - b*(m + n)*Csc[e + f*x]), x], x] /; FreeQ[
{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -1] && LtQ[1, n, 2] && (IntegersQ[2*m, 2*n] || IntegerQ[m])
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-d^2)
*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^(n - 2)/(f*(2*m + 1))), x] + Simp[d^2/(a*b*(2*m + 1))
Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 2)*(b*(n - 2) + a*(m - n + 2)*Csc[e + f*x]), x], x] /;
FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -1] && GtQ[n, 2] && (IntegersQ[2*m, 2*n] || IntegerQ
[m])
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-Cot[
e + f*x])*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*(2*m + 1))), x] + Simp[1/(a^2*(2*m + 1)) Int[(a + b*
Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*(a*(2*m + n + 1) - b*(m + n + 1)*Csc[e + f*x]), x], x] /; FreeQ[{a, b
, d, e, f, n}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -1] && (IntegersQ[2*m, 2*n] || IntegerQ[m])
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[d^2*Cot[e +
f*x]*((d*Csc[e + f*x])^(n - 2)/(f*(a + b*Csc[e + f*x]))), x] - Simp[d^2/(a*b) Int[(d*Csc[e + f*x])^(n - 2)*
(b*(n - 2) - a*(n - 1)*Csc[e + f*x]), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[n, 1]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[Cot[e + f*x
]*((d*Csc[e + f*x])^n/(f*(a + b*Csc[e + f*x]))), x] - Simp[1/a^2 Int[(d*Csc[e + f*x])^n*(a*(n - 1) - b*n*Csc
[e + f*x]), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[n, 0]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[(-b)*d*Cot[
e + f*x]*((d*Csc[e + f*x])^(n - 1)/(a*f*(a + b*Csc[e + f*x]))), x] + Simp[d*((n - 1)/(a*b)) Int[(d*Csc[e + f
*x])^(n - 1)*(a - b*Csc[e + f*x]), x], x] /; FreeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^2, 0]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[d/b
Int[Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]], x], x] - Simp[a*(d/b) Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b
*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*d^2*
Cot[e + f*x]*((d*Csc[e + f*x])^(n - 2)/(f*(2*n - 3)*Sqrt[a + b*Csc[e + f*x]])), x] + Simp[d^2/(b*(2*n - 3))
Int[(d*Csc[e + f*x])^(n - 2)*((2*b*(n - 2) - a*Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[{a, b,
d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[n, 2] && IntegerQ[2*n]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[Cot[e +
f*x]*((d*Csc[e + f*x])^n/(f*n*Sqrt[a + b*Csc[e + f*x]])), x] + Simp[1/(2*b*d*n) Int[(d*Csc[e + f*x])^(n + 1
)*((a + b*(2*n + 1)*Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 -
b^2, 0] && LtQ[n, 0] && IntegerQ[2*n]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-d^2)
*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^(n - 2)/(f*(m + n - 1))), x] + Simp[d^2/(b*(m + n - 1))
Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n - 2)*(b*(n - 2) + a*m*Csc[e + f*x]), x], x] /; FreeQ[{a, b,
d, e, f, m}, x] && EqQ[a^2 - b^2, 0] && GtQ[n, 2] && NeQ[m + n - 1, 0] && IntegerQ[n]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-(a*(
d/b))^n)*(Cot[e + f*x]/(a^(n - 2)*f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[a - b*Csc[e + f*x]])) Subst[Int[(a - x)^(n
- 1)*((2*a - x)^(m - 1/2)/Sqrt[x]), x], x, a - b*Csc[e + f*x]], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[
a^2 - b^2, 0] && !IntegerQ[m] && GtQ[a, 0] && !IntegerQ[n] && GtQ[a*(d/b), 0]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-((-a
)*(d/b))^n)*(Cot[e + f*x]/(a^(n - 1)*f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[a - b*Csc[e + f*x]])) Subst[Int[x^(m -
1/2)*((a - x)^(n - 1)/Sqrt[2*a - x]), x], x, a + b*Csc[e + f*x]], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ
[a^2 - b^2, 0] && !IntegerQ[m] && GtQ[a, 0] && !IntegerQ[n] && LtQ[a*(d/b), 0]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[a^2*d
*(Cot[e + f*x]/(f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[a - b*Csc[e + f*x]])) Subst[Int[(d*x)^(n - 1)*((a + b*x)^(m
- 1/2)/Sqrt[a - b*x]), x], x, Csc[e + f*x]], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] && !I
ntegerQ[m] && GtQ[a, 0]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[a^Int
Part[m]*((a + b*Csc[e + f*x])^FracPart[m]/(1 + (b/a)*Csc[e + f*x])^FracPart[m]) Int[(1 + (b/a)*Csc[e + f*x])
^m*(d*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] && !IntegerQ[m] && !Gt
Q[a, 0]
-
Int[csc[(e_.) + (f_.)*(x_)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[(a - b) Int[Csc[e
+ f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] + Simp[b Int[Csc[e + f*x]*((1 + Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x
]]), x], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]
-
Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-b)*Cot[e + f*x]*(
(a + b*Csc[e + f*x])^(m - 1)/(f*m)), x] + Simp[1/m Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m - 2)*(b^2*(m - 1
) + a^2*m + a*b*(2*m - 1)*Csc[e + f*x]), x], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0] && GtQ[m, 1] &&
IntegerQ[2*m]
-
Int[csc[(e_.) + (f_.)*(x_)]/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[1/b Int[1/(1 + (a/b)*S
in[e + f*x]), x], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]
-
Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*(Rt[a + b, 2]/(b*
f*Cot[e + f*x]))*Sqrt[(b*(1 - Csc[e + f*x]))/(a + b)]*Sqrt[(-b)*((1 + Csc[e + f*x])/(a - b))]*EllipticF[ArcSin
[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b, 2]], (a + b)/(a - b)], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]
-
Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-b)*Cot[e + f*x]*(
(a + b*Csc[e + f*x])^(m + 1)/(f*(m + 1)*(a^2 - b^2))), x] + Simp[1/((m + 1)*(a^2 - b^2)) Int[Csc[e + f*x]*(a
+ b*Csc[e + f*x])^(m + 1)*(a*(m + 1) - b*(m + 2)*Csc[e + f*x]), x], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 -
b^2, 0] && LtQ[m, -1] && IntegerQ[2*m]
-
Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[Cot[e + f*x]/(f*Sqr
t[1 + Csc[e + f*x]]*Sqrt[1 - Csc[e + f*x]]) Subst[Int[(a + b*x)^m/(Sqrt[1 + x]*Sqrt[1 - x]), x], x, Csc[e +
f*x]], x] /; FreeQ[{a, b, e, f, m}, x] && NeQ[a^2 - b^2, 0] && !IntegerQ[2*m]
-
Int[csc[(e_.) + (f_.)*(x_)]^2*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-Cot[e + f*x])*(
(a + b*Csc[e + f*x])^m/(f*(m + 1))), x] + Simp[m/(m + 1) Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*(b +
a*Csc[e + f*x]), x], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0] && GtQ[m, 0]
-
Int[csc[(e_.) + (f_.)*(x_)]^2*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[a*Cot[e + f*x]*((
a + b*Csc[e + f*x])^(m + 1)/(f*(m + 1)*(a^2 - b^2))), x] - Simp[1/((m + 1)*(a^2 - b^2)) Int[Csc[e + f*x]*(a
+ b*Csc[e + f*x])^(m + 1)*(b*(m + 1) - a*(m + 2)*Csc[e + f*x]), x], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 -
b^2, 0] && LtQ[m, -1]
-
Int[csc[(e_.) + (f_.)*(x_)]^2/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> -Int[Csc[e + f*x]/Sqrt[
a + b*Csc[e + f*x]], x] + Int[Csc[e + f*x]*((1 + Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]]), x] /; FreeQ[{a, b, e
, f}, x] && NeQ[a^2 - b^2, 0]
-
Int[csc[(e_.) + (f_.)*(x_)]^2*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[-a/b Int[Csc[e
+ f*x]*(a + b*Csc[e + f*x])^m, x], x] + Simp[1/b Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1), x], x] /; Fr
eeQ[{a, b, e, f, m}, x] && NeQ[a^2 - b^2, 0]
-
Int[csc[(e_.) + (f_.)*(x_)]^3*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-a^2)*Cot[e + f*
x]*((a + b*Csc[e + f*x])^(m + 1)/(b*f*(m + 1)*(a^2 - b^2))), x] + Simp[1/(b*(m + 1)*(a^2 - b^2)) Int[Csc[e +
f*x]*(a + b*Csc[e + f*x])^(m + 1)*Simp[a*b*(m + 1) - (a^2 + b^2*(m + 1))*Csc[e + f*x], x], x], x] /; FreeQ[{a
, b, e, f}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1]
-
Int[csc[(e_.) + (f_.)*(x_)]^3*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-Cot[e + f*x])*(
(a + b*Csc[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Simp[1/(b*(m + 2)) Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m
*(b*(m + 1) - a*Csc[e + f*x]), x], x] /; FreeQ[{a, b, e, f, m}, x] && NeQ[a^2 - b^2, 0] && !LtQ[m, -1]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[a^2*Co
t[e + f*x]*(a + b*Csc[e + f*x])^(m - 2)*((d*Csc[e + f*x])^n/(f*n)), x] - Simp[1/(d*n) Int[(a + b*Csc[e + f*x
])^(m - 3)*(d*Csc[e + f*x])^(n + 1)*Simp[a^2*b*(m - 2*n - 2) - a*(3*b^2*n + a^2*(n + 1))*Csc[e + f*x] - b*(b^2
*n + a^2*(m + n - 1))*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && GtQ[m, 2
] && ((IntegerQ[m] && LtQ[n, -1]) || (IntegersQ[m + 1/2, 2*n] && LeQ[n, -1]))
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-b^2)
*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 2)*((d*Csc[e + f*x])^n/(f*(m + n - 1))), x] + Simp[1/(d*(m + n - 1))
Int[(a + b*Csc[e + f*x])^(m - 3)*(d*Csc[e + f*x])^n*Simp[a^3*d*(m + n - 1) + a*b^2*d*n + b*(b^2*d*(m + n - 2)
+ 3*a^2*d*(m + n - 1))*Csc[e + f*x] + a*b^2*d*(3*m + 2*n - 4)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e
, f, n}, x] && NeQ[a^2 - b^2, 0] && GtQ[m, 2] && (IntegerQ[m] || IntegersQ[2*m, 2*n]) && !(IGtQ[n, 2] && !In
tegerQ[m])
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-b)*d
*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*((d*Csc[e + f*x])^(n - 1)/(f*(m + 1)*(a^2 - b^2))), x] + Simp[1/((m
+ 1)*(a^2 - b^2)) Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 1)*Simp[b*d*(n - 1) + a*d*(m + 1)*
Csc[e + f*x] - b*d*(m + n + 1)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] &&
LtQ[m, -1] && LtQ[0, n, 1] && IntegersQ[2*m, 2*n]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[a*d^2*
Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*((d*Csc[e + f*x])^(n - 2)/(f*(m + 1)*(a^2 - b^2))), x] - Simp[d^2/((
m + 1)*(a^2 - b^2)) Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 2)*(a*(n - 2) + b*(m + 1)*Csc[e +
f*x] - a*(m + n)*Csc[e + f*x]^2), x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && L
tQ[1, n, 2] && IntegersQ[2*m, 2*n]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-a^2)
*d^3*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*((d*Csc[e + f*x])^(n - 3)/(b*f*(m + 1)*(a^2 - b^2))), x] + Simp
[d^3/(b*(m + 1)*(a^2 - b^2)) Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 3)*Simp[a^2*(n - 3) + a*
b*(m + 1)*Csc[e + f*x] - (a^2*(n - 2) + b^2*(m + 1))*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f}, x] &
& NeQ[a^2 - b^2, 0] && LtQ[m, -1] && (IGtQ[n, 3] || (IntegersQ[n + 1/2, 2*m] && GtQ[n, 2]))
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[Cot[e
+ f*x]*(a + b*Csc[e + f*x])^(m + 1)*((d*Csc[e + f*x])^n/(a*f*n)), x] - Simp[1/(a*d*n) Int[(a + b*Csc[e + f*x
])^m*(d*Csc[e + f*x])^(n + 1)*Simp[b*(m + n + 1) - a*(n + 1)*Csc[e + f*x] - b*(m + n + 2)*Csc[e + f*x]^2, x],
x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && ILtQ[m + 1/2, 0] && ILtQ[n, 0]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[b^2*Co
t[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*((d*Csc[e + f*x])^n/(a*f*(m + 1)*(a^2 - b^2))), x] + Simp[1/(a*(m + 1)
*(a^2 - b^2)) Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*(a^2*(m + 1) - b^2*(m + n + 1) - a*b*(m +
1)*Csc[e + f*x] + b^2*(m + n + 2)*Csc[e + f*x]^2), x], x] /; FreeQ[{a, b, d, e, f, n}, x] && NeQ[a^2 - b^2, 0]
&& LtQ[m, -1] && IntegersQ[2*m, 2*n]
-
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[Sqrt[d*Sin[e
+ f*x]]*(Sqrt[d*Csc[e + f*x]]/d) Int[Sqrt[d*Sin[e + f*x]]/(b + a*Sin[e + f*x]), x], x] /; FreeQ[{a, b, d, e
, f}, x] && NeQ[a^2 - b^2, 0]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[d*Sqrt[d*S
in[e + f*x]]*Sqrt[d*Csc[e + f*x]] Int[1/(Sqrt[d*Sin[e + f*x]]*(b + a*Sin[e + f*x])), x], x] /; FreeQ[{a, b,
d, e, f}, x] && NeQ[a^2 - b^2, 0]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(5/2)/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[d/b Int[
(d*Csc[e + f*x])^(3/2), x], x] - Simp[a*(d/b) Int[(d*Csc[e + f*x])^(3/2)/(a + b*Csc[e + f*x]), x], x] /; Fre
eQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[(-d^3)*Cot[
e + f*x]*((d*Csc[e + f*x])^(n - 3)/(b*f*(n - 2))), x] + Simp[d^3/(b*(n - 2)) Int[(d*Csc[e + f*x])^(n - 3)*(S
imp[a*(n - 3) + b*(n - 3)*Csc[e + f*x] - a*(n - 2)*Csc[e + f*x]^2, x]/(a + b*Csc[e + f*x])), x], x] /; FreeQ[{
a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && GtQ[n, 3]
-
Int[1/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))), x_Symbol] :> Simp[b^2/(a^2
*d^2) Int[(d*Csc[e + f*x])^(3/2)/(a + b*Csc[e + f*x]), x], x] + Simp[1/a^2 Int[(a - b*Csc[e + f*x])/Sqrt[d
*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[Cot[e + f*x
]*((d*Csc[e + f*x])^n/(a*f*n)), x] - Simp[1/(a*d*n) Int[((d*Csc[e + f*x])^(n + 1)/(a + b*Csc[e + f*x]))*Simp
[b*n - a*(n + 1)*Csc[e + f*x] - b*(n + 1)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 -
b^2, 0] && LeQ[n, -1] && IntegerQ[2*n]
-
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[a Int[
Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x], x] + Simp[b/d Int[(d*Csc[e + f*x])^(3/2)/Sqrt[a + b*Csc[e
+ f*x]], x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*d*Co
s[e + f*x]*Sqrt[a + b*Csc[e + f*x]]*((d*Csc[e + f*x])^(n - 1)/(f*(2*n - 1))), x] + Simp[d^2/(2*n - 1) Int[(d
*Csc[e + f*x])^(n - 2)*(Simp[2*a*(n - 2) + b*(2*n - 3)*Csc[e + f*x] + a*Csc[e + f*x]^2, x]/Sqrt[a + b*Csc[e +
f*x]]), x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && GtQ[n, 1] && IntegerQ[2*n]
-
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Simp[Sqrt[a +
b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]]) Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; Fre
eQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[Cot[e +
f*x]*Sqrt[a + b*Csc[e + f*x]]*((d*Csc[e + f*x])^n/(f*n)), x] - Simp[1/(2*d*n) Int[(d*Csc[e + f*x])^(n + 1)*
(Simp[b - 2*a*(n + 1)*Csc[e + f*x] - b*(2*n + 3)*Csc[e + f*x]^2, x]/Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ
[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && LeQ[n, -1] && IntegerQ[2*n]
-
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[Sqrt[d*C
sc[e + f*x]]*(Sqrt[b + a*Sin[e + f*x]]/Sqrt[a + b*Csc[e + f*x]]) Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; F
reeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(3/2)/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[d*Sqrt
[d*Csc[e + f*x]]*(Sqrt[b + a*Sin[e + f*x]]/Sqrt[a + b*Csc[e + f*x]]) Int[1/(Sin[e + f*x]*Sqrt[b + a*Sin[e +
f*x]]), x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[-2*d^2*
Cos[e + f*x]*(d*Csc[e + f*x])^(n - 2)*(Sqrt[a + b*Csc[e + f*x]]/(b*f*(2*n - 3))), x] + Simp[d^3/(b*(2*n - 3))
Int[((d*Csc[e + f*x])^(n - 3)/Sqrt[a + b*Csc[e + f*x]])*Simp[2*a*(n - 3) + b*(2*n - 5)*Csc[e + f*x] - 2*a*(n
- 2)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && GtQ[n, 2] && IntegerQ[2*
n]
-
Int[1/(csc[(e_.) + (f_.)*(x_)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]), x_Symbol] :> Simp[(-Cos[e + f*x])*
(Sqrt[a + b*Csc[e + f*x]]/(a*f)), x] - Simp[b/(2*a) Int[(1 + Csc[e + f*x]^2)/Sqrt[a + b*Csc[e + f*x]], x], x
] /; FreeQ[{a, b, e, f}, x] && NeQ[a^2 - b^2, 0]
-
Int[1/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]), x_Symbol] :> Simp[1/a
Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x], x] - Simp[b/(a*d) Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a +
b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[Cos[e +
f*x]*(d*Csc[e + f*x])^(n + 1)*(Sqrt[a + b*Csc[e + f*x]]/(a*d*f*n)), x] + Simp[1/(2*a*d*n) Int[((d*Csc[e + f
*x])^(n + 1)/Sqrt[a + b*Csc[e + f*x]])*Simp[(-b)*(2*n + 1) + 2*a*(n + 1)*Csc[e + f*x] + b*(2*n + 3)*Csc[e + f*
x]^2, x], x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && LtQ[n, -1] && IntegerQ[2*n]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(3/2), x_Symbol] :> Simp[a*Cot
[e + f*x]*Sqrt[a + b*Csc[e + f*x]]*((d*Csc[e + f*x])^n/(f*n)), x] + Simp[1/(2*d*n) Int[((d*Csc[e + f*x])^(n
+ 1)/Sqrt[a + b*Csc[e + f*x]])*Simp[a*b*(2*n - 1) + 2*(b^2*n + a^2*(n + 1))*Csc[e + f*x] + a*b*(2*n + 3)*Csc[e
+ f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && LeQ[n, -1] && IntegersQ[2*n]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-d^3)
*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*((d*Csc[e + f*x])^(n - 3)/(b*f*(m + n - 1))), x] + Simp[d^3/(b*(m +
n - 1)) Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n - 3)*Simp[a*(n - 3) + b*(m + n - 2)*Csc[e + f*x] - a
*(n - 2)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, m}, x] && NeQ[a^2 - b^2, 0] && GtQ[n, 3] && (Inte
gerQ[n] || IntegersQ[2*m, 2*n]) && !IGtQ[m, 2]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-b)*d
*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*((d*Csc[e + f*x])^(n - 1)/(f*(m + n - 1))), x] + Simp[d/(m + n - 1)
Int[(a + b*Csc[e + f*x])^(m - 2)*(d*Csc[e + f*x])^(n - 1)*Simp[a*b*(n - 1) + (b^2*(m + n - 2) + a^2*(m + n
- 1))*Csc[e + f*x] + a*b*(2*m + n - 2)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^
2, 0] && LtQ[0, m, 2] && LtQ[0, n, 3] && NeQ[m + n - 1, 0] && (IntegerQ[m] || IntegersQ[2*m, 2*n])
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-d^2)
*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^(n - 2)/(f*(m + n - 1))), x] + Simp[d^2/(b*(m + n - 1))
Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^(n - 2)*Simp[a*b*(n - 2) + b^2*(m + n - 2)*Csc[e + f*x] +
a*b*m*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0] && LtQ[-1, m, 2] && LtQ[1,
n, 3] && NeQ[m + n - 1, 0] && (IntegerQ[n] || IntegersQ[2*m, 2*n])
-
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(3/2)/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Simp[a In
t[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x], x] + Simp[b/d Int[Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e
+ f*x]], x], x] /; FreeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.), x_Symbol] :> Simp[Sin[
e + f*x]^n*(d*Csc[e + f*x])^n Int[(b + a*Sin[e + f*x])^m/Sin[e + f*x]^(m + n), x], x] /; FreeQ[{a, b, d, e,
f, n}, x] && NeQ[a^2 - b^2, 0] && IntegerQ[m]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.), x_Symbol] :> Unintegra
ble[(d*Csc[e + f*x])^n*(a + b*Csc[e + f*x])^m, x] /; FreeQ[{a, b, d, e, f, m, n}, x]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_.) + (b_.)*sec[(e_.) + (f_.)*(x_)])^(p_), x_Symbol] :> Simp[(d*Co
s[e + f*x])^FracPart[m]*(Sec[e + f*x]/d)^FracPart[m] Int[(a + b*Sec[e + f*x])^p/(Sec[e + f*x]/d)^m, x], x] /
; FreeQ[{a, b, d, e, f, m, p}, x] && !IntegerQ[m] && !IntegerQ[p]
-
Int[cos[(e_.) + (f_.)*(x_)]^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.), x_Symbol] :> Int[Cot[e + f*x]^
p*(b + a*Sin[e + f*x])^m, x] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m] && EqQ[m, p]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.), x_Symbol] :> Int[(g*Co
s[e + f*x])^p*((b + a*Sin[e + f*x])^m/Sin[e + f*x]^m), x] /; FreeQ[{a, b, e, f, g, p}, x] && IntegerQ[m]
-
Int[cos[(e_.) + (f_.)*(x_)]^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[-(f*b^(p - 1)
)^(-1) Subst[Int[(-a + b*x)^((p - 1)/2)*((a + b*x)^(m + (p - 1)/2)/x^(p + 1)), x], x, Csc[e + f*x]], x] /; F
reeQ[{a, b, e, f, m}, x] && IntegerQ[(p - 1)/2] && EqQ[a^2 - b^2, 0]
-
Int[cos[(e_.) + (f_.)*(x_)]^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[-f^(-1) Sub
st[Int[(-1 + x)^((p - 1)/2)*(1 + x)^((p - 1)/2)*((a + b*x)^m/x^(p + 1)), x], x, Csc[e + f*x]], x] /; FreeQ[{a,
b, e, f, m}, x] && IntegerQ[(p - 1)/2] && NeQ[a^2 - b^2, 0]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)/cos[(e_.) + (f_.)*(x_)]^2, x_Symbol] :> Simp[Tan[e + f*x]*((a
+ b*Csc[e + f*x])^m/f), x] + Simp[b*m Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m - 1), x], x] /; FreeQ[{a, b,
e, f, m}, x]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[Sin[e
+ f*x]^FracPart[m]*((a + b*Csc[e + f*x])^FracPart[m]/(b + a*Sin[e + f*x])^FracPart[m]) Int[(g*Cos[e + f*x])
^p*((b + a*Sin[e + f*x])^m/Sin[e + f*x]^m), x], x] /; FreeQ[{a, b, e, f, g, m, p}, x] && (EqQ[a^2 - b^2, 0] ||
IntegersQ[2*m, p])
-
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.), x_Symbol] :> Unintegra
ble[(g*Cos[e + f*x])^p*(a + b*Csc[e + f*x])^m, x] /; FreeQ[{a, b, e, f, g, m, p}, x]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.)*((g_.)*sec[(e_.) + (f_.)*(x_)])^(p_), x_Symbol] :> Simp[g^Int
Part[p]*(g*Sec[e + f*x])^FracPart[p]*Cos[e + f*x]^FracPart[p] Int[(a + b*Csc[e + f*x])^m/Cos[e + f*x]^p, x],
x] /; FreeQ[{a, b, e, f, g, m, p}, x] && !IntegerQ[p]
-
Int[cot[(c_.) + (d_.)*(x_)]^(m_.)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_.), x_Symbol] :> Simp[1/(a^(m - n
- 1)*b^n*d) Subst[Int[(a - b*x)^((m - 1)/2)*((a + b*x)^((m - 1)/2 + n)/x^(m + n)), x], x, Sin[c + d*x]], x]
/; FreeQ[{a, b, c, d}, x] && IntegerQ[(m - 1)/2] && EqQ[a^2 - b^2, 0] && IntegerQ[n]
-
Int[cot[(c_.) + (d_.)*(x_)]^(m_.)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Simp[-(d*b^(m - 1)
)^(-1) Subst[Int[(-a + b*x)^((m - 1)/2)*((a + b*x)^((m - 1)/2 + n)/x), x], x, Csc[c + d*x]], x] /; FreeQ[{a,
b, c, d, n}, x] && IntegerQ[(m - 1)/2] && EqQ[a^2 - b^2, 0] && !IntegerQ[n]
-
Int[(cot[(c_.) + (d_.)*(x_)]*(e_.))^(m_)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[(-e)*(e*Cot
[c + d*x])^(m - 1)*((a*m + b*(m - 1)*Csc[c + d*x])/(d*m*(m - 1))), x] - Simp[e^2/m Int[(e*Cot[c + d*x])^(m -
2)*(a*m + b*(m - 1)*Csc[c + d*x]), x], x] /; FreeQ[{a, b, c, d, e}, x] && GtQ[m, 1]
-
Int[(cot[(c_.) + (d_.)*(x_)]*(e_.))^(m_)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[(-(e*Cot[c
+ d*x])^(m + 1))*((a + b*Csc[c + d*x])/(d*e*(m + 1))), x] - Simp[1/(e^2*(m + 1)) Int[(e*Cot[c + d*x])^(m + 2
)*(a*(m + 1) + b*(m + 2)*Csc[c + d*x]), x], x] /; FreeQ[{a, b, c, d, e}, x] && LtQ[m, -1]
-
Int[(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))/cot[(c_.) + (d_.)*(x_)], x_Symbol] :> Int[(b + a*Sin[c + d*x])/Cos[
c + d*x], x] /; FreeQ[{a, b, c, d}, x]
-
Int[(cot[(c_.) + (d_.)*(x_)]*(e_.))^(m_.)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[a Int[(e
*Cot[c + d*x])^m, x], x] + Simp[b Int[(e*Cot[c + d*x])^m*Csc[c + d*x], x], x] /; FreeQ[{a, b, c, d, e, m}, x
]
-
Int[cot[(c_.) + (d_.)*(x_)]^(m_.)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Simp[-(-1)^((m - 1
)/2)/(d*b^(m - 1)) Subst[Int[(b^2 - x^2)^((m - 1)/2)*((a + x)^n/x), x], x, b*Csc[c + d*x]], x] /; FreeQ[{a,
b, c, d, n}, x] && IntegerQ[(m - 1)/2] && NeQ[a^2 - b^2, 0]
-
Int[(cot[(c_.) + (d_.)*(x_)]*(e_.))^(m_)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Int[ExpandI
ntegrand[(e*Cot[c + d*x])^m, (a + b*Csc[c + d*x])^n, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && IGtQ[n, 0]
-
Int[cot[(c_.) + (d_.)*(x_)]^(m_.)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_.), x_Symbol] :> Simp[-2*(a^(m/2 +
n + 1/2)/d) Subst[Int[x^m*((2 + a*x^2)^(m/2 + n - 1/2)/(1 + a*x^2)), x], x, Cot[c + d*x]/Sqrt[a + b*Csc[c +
d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0] && IntegerQ[m/2] && IntegerQ[n - 1/2]
-
Int[(cot[(c_.) + (d_.)*(x_)]*(e_.))^(m_)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Simp[a^(2*n
)/e^(2*n) Int[(e*Cot[c + d*x])^(m + 2*n)/(-a + b*Csc[c + d*x])^n, x], x] /; FreeQ[{a, b, c, d, e, m}, x] &&
EqQ[a^2 - b^2, 0] && ILtQ[n, 0]
-
Int[(cot[(c_.) + (d_.)*(x_)]*(e_.))^(m_)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Simp[(-2^(m
+ n + 1))*(e*Cot[c + d*x])^(m + 1)*((a + b*Csc[c + d*x])^n/(d*e*(m + 1)))*(a/(a + b*Csc[c + d*x]))^(m + n + 1
)*AppellF1[(m + 1)/2, m + n, 1, (m + 3)/2, -(a - b*Csc[c + d*x])/(a + b*Csc[c + d*x]), (a - b*Csc[c + d*x])/(a
+ b*Csc[c + d*x])], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && EqQ[a^2 - b^2, 0] && !IntegerQ[n]
-
Int[Sqrt[cot[(c_.) + (d_.)*(x_)]*(e_.)]/(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[1/a Int[Sq
rt[e*Cot[c + d*x]], x], x] - Simp[b/a Int[Sqrt[e*Cot[c + d*x]]/(b + a*Sin[c + d*x]), x], x] /; FreeQ[{a, b,
c, d, e}, x] && NeQ[a^2 - b^2, 0]
-
Int[(cot[(c_.) + (d_.)*(x_)]*(e_.))^(m_)/(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[-e^2/b^2
Int[(e*Cot[c + d*x])^(m - 2)*(a - b*Csc[c + d*x]), x], x] + Simp[e^2*((a^2 - b^2)/b^2) Int[(e*Cot[c + d*x])^
(m - 2)/(a + b*Csc[c + d*x]), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[a^2 - b^2, 0] && IGtQ[m - 1/2, 0]
-
Int[1/(Sqrt[cot[(c_.) + (d_.)*(x_)]*(e_.)]*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))), x_Symbol] :> Simp[1/a In
t[1/Sqrt[e*Cot[c + d*x]], x], x] - Simp[b/a Int[1/(Sqrt[e*Cot[c + d*x]]*(b + a*Sin[c + d*x])), x], x] /; Fre
eQ[{a, b, c, d, e}, x] && NeQ[a^2 - b^2, 0]
-
Int[(cot[(c_.) + (d_.)*(x_)]*(e_.))^(m_)/(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[1/(a^2 - b^
2) Int[(e*Cot[c + d*x])^m*(a - b*Csc[c + d*x]), x], x] + Simp[b^2/(e^2*(a^2 - b^2)) Int[(e*Cot[c + d*x])^(
m + 2)/(a + b*Csc[c + d*x]), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[a^2 - b^2, 0] && ILtQ[m + 1/2, 0]
-
Int[cot[(c_.) + (d_.)*(x_)]^2*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Int[(-1 + Csc[c + d*x]
^2)*(a + b*Csc[c + d*x])^n, x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[a^2 - b^2, 0]
-
Int[cot[(c_.) + (d_.)*(x_)]^(m_)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Int[ExpandIntegrand
[(a + b*Csc[c + d*x])^n, (-1 + Csc[c + d*x]^2)^(m/2), x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[a^2 - b^2, 0]
&& IGtQ[m/2, 0] && IntegerQ[n - 1/2]
-
Int[cot[(c_.) + (d_.)*(x_)]^(m_)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Int[ExpandIntegrand
[(a + b*Csc[c + d*x])^n, (-1 + Sec[c + d*x]^2)^(-m/2), x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[a^2 - b^2, 0
] && ILtQ[m/2, 0] && IntegerQ[n - 1/2] && EqQ[m, -2]
-
Int[(cot[(c_.) + (d_.)*(x_)]*(e_.))^(m_)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Int[ExpandI
ntegrand[(e*Cot[c + d*x])^m, (a + b*Csc[c + d*x])^n, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[a^2 - b^2,
0] && IGtQ[n, 0]
-
Int[cot[(c_.) + (d_.)*(x_)]^(m_.)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_), x_Symbol] :> Int[Cos[c + d*x]^m
*((b + a*Sin[c + d*x])^n/Sin[c + d*x]^(m + n)), x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && IntegerQ[
n] && IntegerQ[m] && (IntegerQ[m/2] || LeQ[m, 1])
-
Int[((a_.) + csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_.)*(cot[(c_.) + (d_.)*(x_)]*(e_.))^(m_.), x_Symbol] :> Unintegr
able[(e*Cot[c + d*x])^m*(a + b*Csc[c + d*x])^n, x] /; FreeQ[{a, b, c, d, e, m, n}, x]
-
Int[(cot[(c_.) + (d_.)*(x_)]*(e_.))^(m_)*((a_) + (b_.)*sec[(c_.) + (d_.)*(x_)])^(n_.), x_Symbol] :> Simp[(e*Co
t[c + d*x])^m*Tan[c + d*x]^m Int[(a + b*Sec[c + d*x])^n/Tan[c + d*x]^m, x], x] /; FreeQ[{a, b, c, d, e, m, n
}, x] && !IntegerQ[m]
-
Int[((a_) + (b_.)*sec[(c_.) + (d_.)*(x_)])^(n_.)*((e_.)*tan[(c_.) + (d_.)*(x_)]^(p_))^(m_), x_Symbol] :> Simp[
(e*Tan[c + d*x]^p)^m/(e*Tan[c + d*x])^(m*p) Int[(e*Tan[c + d*x])^(m*p)*(a + b*Sec[c + d*x])^n, x], x] /; Fre
eQ[{a, b, c, d, e, m, n, p}, x] && !IntegerQ[m]
-
Int[(cot[(c_.) + (d_.)*(x_)]^(p_)*(e_.))^(m_)*(csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_.), x_Symbol] :> Simp[
(e*Cot[c + d*x]^p)^m/(e*Cot[c + d*x])^(m*p) Int[(e*Cot[c + d*x])^(m*p)*(a + b*Csc[c + d*x])^n, x], x] /; Fre
eQ[{a, b, c, d, e, m, n, p}, x] && !IntegerQ[m]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_), x_Symbol] :> Sim
p[c^n Int[ExpandTrig[(1 + (d/c)*csc[e + f*x])^n, (a + b*csc[e + f*x])^m, x], x], x] /; FreeQ[{a, b, c, d, e,
f, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IGtQ[m, 0] && ILtQ[n, 0] && LtQ[m + n, 2]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.), x_Symbol] :> Si
mp[((-a)*c)^m Int[Cot[e + f*x]^(2*m)*(c + d*Csc[e + f*x])^(n - m), x], x] /; FreeQ[{a, b, c, d, e, f, n}, x]
&& EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[m] && RationalQ[n] && !(IntegerQ[n] && GtQ[m - n, 0])
-
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(m_), x_Symbol] :> Simp
[((-a)*c)^(m + 1/2)*(Cot[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[c + d*Csc[e + f*x]])) Int[Cot[e + f*x]^(2*m
), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[m + 1/2]
-
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.), x_Symbol] :> Simp
[2*a*c*Cot[e + f*x]*((c + d*Csc[e + f*x])^(n - 1)/(f*(2*n - 1)*Sqrt[a + b*Csc[e + f*x]])), x] + Simp[c Int[S
qrt[a + b*Csc[e + f*x]]*(c + d*Csc[e + f*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d,
0] && EqQ[a^2 - b^2, 0] && GtQ[n, 1/2]
-
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_), x_Symbol] :> Simp[
-2*a*Cot[e + f*x]*((c + d*Csc[e + f*x])^n/(f*(2*n + 1)*Sqrt[a + b*Csc[e + f*x]])), x] + Simp[1/c Int[Sqrt[a
+ b*Csc[e + f*x]]*(c + d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] &&
EqQ[a^2 - b^2, 0] && LtQ[n, -2^(-1)]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(3/2)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.), x_Symbol] :> Si
mp[-4*a^2*Cot[e + f*x]*((c + d*Csc[e + f*x])^n/(f*(2*n + 1)*Sqrt[a + b*Csc[e + f*x]])), x] + Simp[a/c Int[Sq
rt[a + b*Csc[e + f*x]]*(c + d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d,
0] && EqQ[a^2 - b^2, 0] && LtQ[n, -2^(-1)]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(3/2)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.), x_Symbol] :> Si
mp[-2*a^2*Cot[e + f*x]*((c + d*Csc[e + f*x])^n/(f*(2*n + 1)*Sqrt[a + b*Csc[e + f*x]])), x] + Simp[a Int[Sqrt
[a + b*Csc[e + f*x]]*(c + d*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && EqQ[b*c + a*d, 0] &&
EqQ[a^2 - b^2, 0] && !LeQ[n, -2^(-1)]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(5/2)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.), x_Symbol] :> Si
mp[-8*a^3*Cot[e + f*x]*((c + d*Csc[e + f*x])^n/(f*(2*n + 1)*Sqrt[a + b*Csc[e + f*x]])), x] + Simp[a^2/c^2 In
t[Sqrt[a + b*Csc[e + f*x]]*(c + d*Csc[e + f*x])^(n + 2), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a
*d, 0] && EqQ[a^2 - b^2, 0] && LtQ[n, -2^(-1)]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_), x_Symbol] :> Simp
[(-a)*c*(Cot[e + f*x]/(f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[c + d*Csc[e + f*x]])) Subst[Int[(b + a*x)^(m - 1/2)*(
(d + c*x)^(n - 1/2)/x^(m + n)), x], x, Sin[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0]
&& EqQ[a^2 - b^2, 0] && IntegerQ[m - 1/2] && EqQ[m + n, 0]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.), x_Symbol] :> Si
mp[a*c*(Cot[e + f*x]/(f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[c + d*Csc[e + f*x]])) Subst[Int[(a + b*x)^(m - 1/2)*((
c + d*x)^(n - 1/2)/x), x], x, Csc[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && EqQ[b*c + a*d, 0] &&
EqQ[a^2 - b^2, 0]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)), x_Symbol] :> Simp[a*c*x, x]
+ Simp[b*d Int[Csc[e + f*x]^2, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)), x_Symbol] :> Simp[a*c*x, x]
+ (Simp[b*d Int[Csc[e + f*x]^2, x], x] + Simp[(b*c + a*d) Int[Csc[e + f*x], x], x]) /; FreeQ[{a, b, c, d,
e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[b*c + a*d, 0]
-
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)), x_Symbol] :> Simp[c I
nt[Sqrt[a + b*Csc[e + f*x]], x], x] + Simp[d Int[Sqrt[a + b*Csc[e + f*x]]*Csc[e + f*x], x], x] /; FreeQ[{a,
b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0]
-
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)), x_Symbol] :> Simp[a*c
Int[1/Sqrt[a + b*Csc[e + f*x]], x], x] + Int[Csc[e + f*x]*((b*c + a*d + b*d*Csc[e + f*x])/Sqrt[a + b*Csc[e +
f*x]]), x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)), x_Symbol] :> Simp[(-b)
*d*Cot[e + f*x]*((a + b*Csc[e + f*x])^(m - 1)/(f*m)), x] + Simp[1/m Int[(a + b*Csc[e + f*x])^(m - 1)*Simp[a*
c*m + (b*c*m + a*d*(2*m - 1))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] &&
GtQ[m, 1] && EqQ[a^2 - b^2, 0] && IntegerQ[2*m]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)), x_Symbol] :> Simp[(-b)
*d*Cot[e + f*x]*((a + b*Csc[e + f*x])^(m - 1)/(f*m)), x] + Simp[1/m Int[(a + b*Csc[e + f*x])^(m - 2)*Simp[a^
2*c*m + (b^2*d*(m - 1) + 2*a*b*c*m + a^2*d*m)*Csc[e + f*x] + b*(b*c*m + a*d*(2*m - 1))*Csc[e + f*x]^2, x], x],
x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && GtQ[m, 1] && NeQ[a^2 - b^2, 0] && IntegerQ[2*m]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[c*(x/a),
x] - Simp[(b*c - a*d)/a Int[Csc[e + f*x]/(a + b*Csc[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ
[b*c - a*d, 0]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[c/a
Int[Sqrt[a + b*Csc[e + f*x]], x], x] - Simp[(b*c - a*d)/a Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x]
/; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Simp[c I
nt[1/Sqrt[a + b*Csc[e + f*x]], x], x] + Simp[d Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a
, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)), x_Symbol] :> Simp[(-(b
*c - a*d))*Cot[e + f*x]*((a + b*Csc[e + f*x])^m/(b*f*(2*m + 1))), x] + Simp[1/(a^2*(2*m + 1)) Int[(a + b*Csc
[e + f*x])^(m + 1)*Simp[a*c*(2*m + 1) - (b*c - a*d)*(m + 1)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e,
f}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] && EqQ[a^2 - b^2, 0] && IntegerQ[2*m]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)), x_Symbol] :> Simp[b*(b
*c - a*d)*Cot[e + f*x]*((a + b*Csc[e + f*x])^(m + 1)/(a*f*(m + 1)*(a^2 - b^2))), x] + Simp[1/(a*(m + 1)*(a^2 -
b^2)) Int[(a + b*Csc[e + f*x])^(m + 1)*Simp[c*(a^2 - b^2)*(m + 1) - (a*(b*c - a*d)*(m + 1))*Csc[e + f*x] +
b*(b*c - a*d)*(m + 2)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && LtQ[m
, -1] && NeQ[a^2 - b^2, 0] && IntegerQ[2*m]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)), x_Symbol] :> Simp[c
Int[(a + b*Csc[e + f*x])^m, x], x] + Simp[d Int[(a + b*Csc[e + f*x])^m*Csc[e + f*x], x], x] /; FreeQ[{a, b,
c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] && !IntegerQ[2*m]
-
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)), x_Symbol] :> Simp[1/c
Int[Sqrt[a + b*Csc[e + f*x]], x], x] - Simp[d/c Int[Csc[e + f*x]*(Sqrt[a + b*Csc[e + f*x]]/(c + d*Csc[e + f
*x])), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && (EqQ[a^2 - b^2, 0] || EqQ[c^2 - d^2, 0])
-
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)), x_Symbol] :> Simp[a/c
Int[1/Sqrt[a + b*Csc[e + f*x]], x], x] + Simp[(b*c - a*d)/c Int[Csc[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*(c +
d*Csc[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2
- d^2, 0]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(3/2)/(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)), x_Symbol] :> Simp[a/c
Int[Sqrt[a + b*Csc[e + f*x]], x], x] + Simp[(b*c - a*d)/c Int[Csc[e + f*x]*(Sqrt[a + b*Csc[e + f*x]]/(c +
d*Csc[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && (EqQ[a^2 - b^2, 0] || EqQ[c^
2 - d^2, 0])
-
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(3/2)/(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)), x_Symbol] :> Simp[1/(
c*d) Int[(a^2*d + b^2*c*Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]], x], x] - Simp[(b*c - a*d)^2/(c*d) Int[Csc[
e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*(c + d*Csc[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c -
a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
-
Int[1/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))), x_Symbol] :> Simp[1
/(c*(b*c - a*d)) Int[(b*c - a*d - b*d*Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]], x], x] + Simp[d^2/(c*(b*c - a*
d)) Int[Csc[e + f*x]*(Sqrt[a + b*Csc[e + f*x]]/(c + d*Csc[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f}, x]
&& NeQ[b*c - a*d, 0] && (EqQ[a^2 - b^2, 0] || EqQ[c^2 - d^2, 0])
-
Int[1/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))), x_Symbol] :> Simp[1
/c Int[1/Sqrt[a + b*Csc[e + f*x]], x], x] - Simp[d/c Int[Csc[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*(c + d*Csc
[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]
-
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)], x_Symbol] :> Simp[S
qrt[a + b*Csc[e + f*x]]*(Sqrt[c + d*Csc[e + f*x]]/Cot[e + f*x]) Int[Cot[e + f*x], x], x] /; FreeQ[{a, b, c,
d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && EqQ[c^2 - d^2, 0]
-
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)], x_Symbol] :> Simp[c
Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[c + d*Csc[e + f*x]], x], x] + Simp[d Int[Csc[e + f*x]*(Sqrt[a + b*Csc[e
+ f*x]]/Sqrt[c + d*Csc[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0]
-
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)], x_Symbol] :> Simp[1
/c Int[Sqrt[a + b*Csc[e + f*x]]*Sqrt[c + d*Csc[e + f*x]], x], x] - Simp[d/c Int[Csc[e + f*x]*(Sqrt[a + b*C
sc[e + f*x]]/Sqrt[c + d*Csc[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2
- b^2, 0] && EqQ[c^2 - d^2, 0]
-
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)], x_Symbol] :> Simp[-
2*(a/f) Subst[Int[1/(1 + a*c*x^2), x], x, Cot[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[c + d*Csc[e + f*x]])],
x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
-
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)], x_Symbol] :> Simp[a
/c Int[Sqrt[c + d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x], x] + Simp[(b*c - a*d)/c Int[Csc[e + f*x]/(Sq
rt[a + b*Csc[e + f*x]]*Sqrt[c + d*Csc[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0]
&& NeQ[a^2 - b^2, 0] && EqQ[c^2 - d^2, 0]
-
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)], x_Symbol] :> Simp[2
*((a + b*Csc[e + f*x])/(c*f*Rt[(a + b)/(c + d), 2]*Cot[e + f*x]))*Sqrt[(b*c - a*d)*((1 + Csc[e + f*x])/((c - d
)*(a + b*Csc[e + f*x])))]*Sqrt[(-(b*c - a*d))*((1 - Csc[e + f*x])/((c + d)*(a + b*Csc[e + f*x])))]*EllipticPi[
a*((c + d)/(c*(a + b))), ArcSin[Rt[(a + b)/(c + d), 2]*(Sqrt[c + d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]])], (
a - b)*((c + d)/((a + b)*(c - d)))], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2,
0] && NeQ[c^2 - d^2, 0]
-
Int[1/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)]), x_Symbol] :> Si
mp[Cot[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[c + d*Csc[e + f*x]]) Int[1/Cot[e + f*x], x], x] /; FreeQ[{a,
b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && EqQ[c^2 - d^2, 0]
-
Int[1/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)]), x_Symbol] :> Si
mp[1/a Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[c + d*Csc[e + f*x]], x], x] - Simp[b/a Int[Csc[e + f*x]/(Sqrt[a +
b*Csc[e + f*x]]*Sqrt[c + d*Csc[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0]
-
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(3/2), x_Symbol] :> Simp
[1/c Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[c + d*Csc[e + f*x]], x], x] - Simp[d/c Int[Csc[e + f*x]*(Sqrt[a + b
*Csc[e + f*x]]/(c + d*Csc[e + f*x])^(3/2)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ
[c^2 - d^2, 0]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.), x_Symbol] :> Si
mp[a^2*(Cot[e + f*x]/(f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[a - b*Csc[e + f*x]])) Subst[Int[(a + b*x)^(m - 1/2)*((
c + d*x)^n/(x*Sqrt[a - b*x])), x], x, Csc[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && NeQ[b*c - a*d
, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && IntegerQ[m - 1/2]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_), x_Symbol] :> Int[
(b + a*Sin[e + f*x])^m*((d + c*Sin[e + f*x])^n/Sin[e + f*x]^(m + n)), x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]
&& NeQ[b*c - a*d, 0] && IntegerQ[m] && IntegerQ[n] && LeQ[-2, m + n, 0]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_), x_Symbol] :> Simp
[Sqrt[d + c*Sin[e + f*x]]*(Sqrt[a + b*Csc[e + f*x]]/(Sqrt[b + a*Sin[e + f*x]]*Sqrt[c + d*Csc[e + f*x]])) Int
[(b + a*Sin[e + f*x])^m*((d + c*Sin[e + f*x])^n/Sin[e + f*x]^(m + n)), x], x] /; FreeQ[{a, b, c, d, e, f, m, n
}, x] && NeQ[b*c - a*d, 0] && IntegerQ[m + 1/2] && IntegerQ[n + 1/2] && LeQ[-2, m + n, 0]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_), x_Symbol] :> Simp
[Sin[e + f*x]^(m + n)*(a + b*Csc[e + f*x])^m*((c + d*Csc[e + f*x])^n/((b + a*Sin[e + f*x])^m*(d + c*Sin[e + f*
x])^n)) Int[(b + a*Sin[e + f*x])^m*((d + c*Sin[e + f*x])^n/Sin[e + f*x]^Simplify[m + n]), x], x] /; FreeQ[{a
, b, c, d, e, f, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[m + n, 0] && !IntegerQ[2*m]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_), x_Symbol] :> Int[
ExpandTrig[(a + b*csc[e + f*x])^m, (c + d*csc[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && IGt
Q[n, 0]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.), x_Symbol] :> Un
integrable[(a + b*Csc[e + f*x])^m*(c + d*Csc[e + f*x])^n, x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]
-
Int[((d_.)/sec[(e_.) + (f_.)*(x_)])^(n_)*((a_.) + (b_.)*sec[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Simp[d^m
Int[(b + a*Cos[e + f*x])^m*(d*Cos[e + f*x])^(n - m), x], x] /; FreeQ[{a, b, d, e, f, n}, x] && !IntegerQ[n]
&& IntegerQ[m]
-
Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((d_.)/csc[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[d^m
Int[(b + a*Sin[e + f*x])^m*(d*Sin[e + f*x])^(n - m), x], x] /; FreeQ[{a, b, d, e, f, n}, x] && !IntegerQ[n]
&& IntegerQ[m]
-
Int[((c_.)*((d_.)*sec[(e_.) + (f_.)*(x_)])^(p_))^(n_)*((a_.) + (b_.)*sec[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol]
:> Simp[c^IntPart[n]*((c*(d*Sec[e + f*x])^p)^FracPart[n]/(d*Sec[e + f*x])^(p*FracPart[n])) Int[(a + b*Sec[e
+ f*x])^m*(d*Sec[e + f*x])^(n*p), x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && !IntegerQ[n]
-
Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((c_.)*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(p_))^(n_), x_Symbol]
:> Simp[c^IntPart[n]*((c*(d*Csc[e + f*x])^p)^FracPart[n]/(d*Csc[e + f*x])^(p*FracPart[n])) Int[(a + b*Cos[e
+ f*x])^m*(d*Cos[e + f*x])^(n*p), x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && !IntegerQ[n]
-
Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))
^(n_.), x_Symbol] :> Simp[b*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((c + d*Csc[e + f*x])^n/(a*f*(2*m + 1))), x] /
; FreeQ[{a, b, c, d, e, f, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && EqQ[m + n + 1, 0] && NeQ[2*m
+ 1, 0]
-
Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))
^(n_.), x_Symbol] :> Simp[b*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((c + d*Csc[e + f*x])^n/(a*f*(2*m + 1))), x] +
Simp[(m + n + 1)/(a*(2*m + 1)) Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*(c + d*Csc[e + f*x])^n, x], x]
/; FreeQ[{a, b, c, d, e, f, m, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && ILtQ[m + n + 1, 0] && NeQ[
2*m + 1, 0] && !LtQ[n, 0] && !(IGtQ[n + 1/2, 0] && LtQ[n + 1/2, -(m + n)])
-
Int[(csc[(e_.) + (f_.)*(x_)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)])/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) +
(a_)], x_Symbol] :> Simp[a*c*Log[1 + (b/a)*Csc[e + f*x]]*(Cot[e + f*x]/(b*f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[c +
d*Csc[e + f*x]])), x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0]
-
Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.) +
(c_)], x_Symbol] :> Simp[2*a*c*Cot[e + f*x]*((a + b*Csc[e + f*x])^m/(b*f*(2*m + 1)*Sqrt[c + d*Csc[e + f*x]])),
x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[m, -2^(-1)]
-
Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))
^(n_.), x_Symbol] :> Simp[2*a*c*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((c + d*Csc[e + f*x])^(n - 1)/(b*f*(2*m +
1))), x] - Simp[d*((2*n - 1)/(b*(2*m + 1))) Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*(c + d*Csc[e + f*x
])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IGtQ[n - 1/2,
0] && LtQ[m, -2^(-1)]
-
Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)
)^(n_), x_Symbol] :> Simp[(-d)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((c + d*Csc[e + f*x])^(n - 1)/(f*(m + n))),
x] + Simp[c*((2*n - 1)/(m + n)) Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*(c + d*Csc[e + f*x])^(n - 1), x], x
] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IGtQ[n - 1/2, 0] && !LtQ[m,
-2^(-1)] && !(IGtQ[m - 1/2, 0] && LtQ[m, n])
-
Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.)
+ (a_)], x_Symbol] :> Simp[-2*d*Cot[e + f*x]*((c + d*Csc[e + f*x])^(n - 1)/(f*(2*n - 1)*Sqrt[a + b*Csc[e + f*x
]])), x] + Simp[2*c*((2*n - 1)/(2*n - 1)) Int[Csc[e + f*x]*((c + d*Csc[e + f*x])^(n - 1)/Sqrt[a + b*Csc[e +
f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IGtQ[n, 0]
-
Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))
^(n_.), x_Symbol] :> Simp[2*a*c*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((c + d*Csc[e + f*x])^(n - 1)/(b*f*(2*m +
1))), x] - Simp[d*((2*n - 1)/(b*(2*m + 1))) Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*(c + d*Csc[e + f*x
])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IGtQ[n, 0] &&
LtQ[m, -2^(-1)] && IntegerQ[2*m]
-
Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)
)^(n_.), x_Symbol] :> Simp[((-a)*c)^m Int[ExpandTrig[csc[e + f*x]*cot[e + f*x]^(2*m), (c + d*csc[e + f*x])^(
n - m), x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegersQ[m
, n] && GeQ[n - m, 0] && GtQ[m*n, 0]
-
Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))
^(m_), x_Symbol] :> Simp[((-a)*c)^(m + 1/2)*(Cot[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[c + d*Csc[e + f*x]]))
Int[Csc[e + f*x]*Cot[e + f*x]^(2*m), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2
- b^2, 0] && IntegerQ[m + 1/2]
-
Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))
^(n_), x_Symbol] :> Simp[b*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((c + d*Csc[e + f*x])^n/(a*f*(2*m + 1))), x] +
Simp[(m + n + 1)/(a*(2*m + 1)) Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*(c + d*Csc[e + f*x])^n, x], x]
/; FreeQ[{a, b, c, d, e, f, n}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && ((ILtQ[m, 0] && ILtQ[n - 1/2,
0]) || (ILtQ[m - 1/2, 0] && ILtQ[n - 1/2, 0] && LtQ[m, n]))
-
Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)
)^(n_), x_Symbol] :> Simp[a*c*(Cot[e + f*x]/(f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[c + d*Csc[e + f*x]])) Subst[Int
[(a + b*x)^(m - 1/2)*(c + d*x)^(n - 1/2), x], x, Csc[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && Eq
Q[b*c + a*d, 0] && EqQ[a^2 - b^2, 0]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.)*(csc[(e_.) + (f_.)*(x_)
]*(d_.) + (c_))^(n_.), x_Symbol] :> Simp[((-a)*c)^m Int[ExpandTrig[(g*csc[e + f*x])^p*cot[e + f*x]^(2*m), (c
+ d*csc[e + f*x])^(n - m), x], x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^
2 - b^2, 0] && IntegersQ[m, n] && GeQ[n - m, 0] && GtQ[m*n, 0]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]
*(d_.) + (c_))^(m_), x_Symbol] :> Simp[((-a)*c)^(m + 1/2)*(Cot[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[c + d*C
sc[e + f*x]])) Int[(g*Csc[e + f*x])^p*Cot[e + f*x]^(2*m), x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && Eq
Q[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[m + 1/2]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]
*(d_.) + (c_))^(n_), x_Symbol] :> Simp[a*c*g*(Cot[e + f*x]/(f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[c + d*Csc[e + f*x]
])) Subst[Int[(g*x)^(p - 1)*(a + b*x)^(m - 1/2)*(c + d*x)^(n - 1/2), x], x, Csc[e + f*x]], x] /; FreeQ[{a, b
, c, d, e, f, g, m, n, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0]
-
Int[(Sqrt[csc[(e_.) + (f_.)*(x_)]*(g_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)])/(csc[(e_.) + (f_.)*(x_)]*
(d_.) + (c_)), x_Symbol] :> Simp[-2*b*(g/f) Subst[Int[1/(b*c + a*d - c*g*x^2), x], x, b*(Cot[e + f*x]/(Sqrt[
g*Csc[e + f*x]]*Sqrt[a + b*Csc[e + f*x]]))], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b*c - a*d, 0] && EqQ
[a^2 - b^2, 0]
-
Int[(Sqrt[csc[(e_.) + (f_.)*(x_)]*(g_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)])/(csc[(e_.) + (f_.)*(x_)]*
(d_.) + (c_)), x_Symbol] :> Simp[a/c Int[Sqrt[g*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x], x] + Simp[(b*c -
a*d)/(c*g) Int[(g*Csc[e + f*x])^(3/2)/(Sqrt[a + b*Csc[e + f*x]]*(c + d*Csc[e + f*x])), x], x] /; FreeQ[{a,
b, c, d, e, f, g}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]
-
Int[(csc[(e_.) + (f_.)*(x_)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)])/(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)
), x_Symbol] :> Simp[-2*(b/f) Subst[Int[1/(b*c + a*d + d*x^2), x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x
]])], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0]
-
Int[(csc[(e_.) + (f_.)*(x_)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)])/(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)
), x_Symbol] :> Simp[(-Sqrt[a + b*Csc[e + f*x]])*(Sqrt[c/(c + d*Csc[e + f*x])]/(d*f*Sqrt[c*d*((a + b*Csc[e + f
*x])/((b*c + a*d)*(c + d*Csc[e + f*x])))]))*EllipticE[ArcSin[c*(Cot[e + f*x]/(c + d*Csc[e + f*x]))], -(b*c - a
*d)/(b*c + a*d)], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && EqQ[c^2 - d^
2, 0]
-
Int[(csc[(e_.) + (f_.)*(x_)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)])/(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)
), x_Symbol] :> Simp[b/d Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] - Simp[(b*c - a*d)/d Int[Csc[e
+ f*x]/(Sqrt[a + b*Csc[e + f*x]]*(c + d*Csc[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*
d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
-
Int[((csc[(e_.) + (f_.)*(x_)]*(g_.))^(3/2)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)])/(csc[(e_.) + (f_.)*(x_)
]*(d_.) + (c_)), x_Symbol] :> Simp[g/d Int[Sqrt[g*Csc[e + f*x]]*Sqrt[a + b*Csc[e + f*x]], x], x] - Simp[c*(g
/d) Int[Sqrt[g*Csc[e + f*x]]*(Sqrt[a + b*Csc[e + f*x]]/(c + d*Csc[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e
, f, g}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0]
-
Int[((csc[(e_.) + (f_.)*(x_)]*(g_.))^(3/2)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)])/(csc[(e_.) + (f_.)*(x_)
]*(d_.) + (c_)), x_Symbol] :> Simp[b/d Int[(g*Csc[e + f*x])^(3/2)/Sqrt[a + b*Csc[e + f*x]], x], x] - Simp[(b
*c - a*d)/d Int[(g*Csc[e + f*x])^(3/2)/(Sqrt[a + b*Csc[e + f*x]]*(c + d*Csc[e + f*x])), x], x] /; FreeQ[{a,
b, c, d, e, f, g}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]
-
Int[csc[(e_.) + (f_.)*(x_)]/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))
), x_Symbol] :> Simp[b/(b*c - a*d) Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] - Simp[d/(b*c - a*d)
Int[Csc[e + f*x]*(Sqrt[a + b*Csc[e + f*x]]/(c + d*Csc[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && Ne
Q[b*c - a*d, 0] && (EqQ[a^2 - b^2, 0] || EqQ[c^2 - d^2, 0])
-
Int[csc[(e_.) + (f_.)*(x_)]/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))
), x_Symbol] :> Simp[-2*(Cot[e + f*x]/(f*(c + d)*Sqrt[a + b*Csc[e + f*x]]*Sqrt[-Cot[e + f*x]^2]))*Sqrt[(a + b*
Csc[e + f*x])/(a + b)]*EllipticPi[2*(d/(c + d)), ArcSin[Sqrt[1 - Csc[e + f*x]]/Sqrt[2]], 2*(b/(a + b))], x] /;
FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(3/2)/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]
*(d_.) + (c_))), x_Symbol] :> Simp[(-a)*(g/(b*c - a*d)) Int[Sqrt[g*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x
], x] + Simp[c*(g/(b*c - a*d)) Int[Sqrt[g*Csc[e + f*x]]*(Sqrt[a + b*Csc[e + f*x]]/(c + d*Csc[e + f*x])), x],
x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(3/2)/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]
*(d_.) + (c_))), x_Symbol] :> Simp[g*Sqrt[g*Csc[e + f*x]]*(Sqrt[b + a*Sin[e + f*x]]/Sqrt[a + b*Csc[e + f*x]])
Int[1/(Sqrt[b + a*Sin[e + f*x]]*(d + c*Sin[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b*c
- a*d, 0] && NeQ[a^2 - b^2, 0]
-
Int[csc[(e_.) + (f_.)*(x_)]^2/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_
))), x_Symbol] :> Simp[-a/(b*c - a*d) Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] + Simp[c/(b*c - a*d)
Int[Csc[e + f*x]*(Sqrt[a + b*Csc[e + f*x]]/(c + d*Csc[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f}, x] &&
NeQ[b*c - a*d, 0] && (EqQ[a^2 - b^2, 0] || EqQ[c^2 - d^2, 0])
-
Int[csc[(e_.) + (f_.)*(x_)]^2/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_
))), x_Symbol] :> Simp[1/d Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] - Simp[c/d Int[Csc[e + f*x]/(
Sqrt[a + b*Csc[e + f*x]]*(c + d*Csc[e + f*x])), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] &&
NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(5/2)/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]
*(d_.) + (c_))), x_Symbol] :> Simp[(-c^2)*(g^2/(d*(b*c - a*d))) Int[Sqrt[g*Csc[e + f*x]]*(Sqrt[a + b*Csc[e +
f*x]]/(c + d*Csc[e + f*x])), x], x] + Simp[g^2/(d*(b*c - a*d)) Int[Sqrt[g*Csc[e + f*x]]*((a*c + (b*c - a*d)
*Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && NeQ[b*c - a*d, 0] && Eq
Q[a^2 - b^2, 0]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(5/2)/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]
*(d_.) + (c_))), x_Symbol] :> Simp[g/d Int[(g*Csc[e + f*x])^(3/2)/Sqrt[a + b*Csc[e + f*x]], x], x] - Simp[c*
(g/d) Int[(g*Csc[e + f*x])^(3/2)/(Sqrt[a + b*Csc[e + f*x]]*(c + d*Csc[e + f*x])), x], x] /; FreeQ[{a, b, c,
d, e, f, g}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0]
-
Int[(csc[(e_.) + (f_.)*(x_)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)])/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.) +
(c_)], x_Symbol] :> Simp[-2*(b/f) Subst[Int[1/(1 - b*d*x^2), x], x, Cot[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*S
qrt[c + d*Csc[e + f*x]])], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ
[c^2 - d^2, 0]
-
Int[(csc[(e_.) + (f_.)*(x_)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)])/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.) +
(c_)], x_Symbol] :> Simp[-(b*c - a*d)/d Int[Csc[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[c + d*Csc[e + f*x]])
, x], x] + Simp[b/d Int[Csc[e + f*x]*(Sqrt[c + d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[{a
, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && EqQ[c^2 - d^2, 0]
-
Int[(csc[(e_.) + (f_.)*(x_)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)])/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.) +
(c_)], x_Symbol] :> Simp[-2*((a + b*Csc[e + f*x])/(d*f*Sqrt[(a + b)/(c + d)]*Cot[e + f*x]))*Sqrt[(-(b*c - a*d)
)*((1 - Csc[e + f*x])/((c + d)*(a + b*Csc[e + f*x])))]*Sqrt[(b*c - a*d)*((1 + Csc[e + f*x])/((c - d)*(a + b*Cs
c[e + f*x])))]*EllipticPi[b*((c + d)/(d*(a + b))), ArcSin[Sqrt[(a + b)/(c + d)]*(Sqrt[c + d*Csc[e + f*x]]/Sqrt
[a + b*Csc[e + f*x]])], (a - b)*((c + d)/((a + b)*(c - d)))], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c -
a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
-
Int[csc[(e_.) + (f_.)*(x_)]/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.) + (
c_)]), x_Symbol] :> Simp[-2*(a/(b*f)) Subst[Int[1/(2 + (a*c - b*d)*x^2), x], x, Cot[e + f*x]/(Sqrt[a + b*Csc
[e + f*x]]*Sqrt[c + d*Csc[e + f*x]])], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^
2, 0] && NeQ[c^2 - d^2, 0]
-
Int[csc[(e_.) + (f_.)*(x_)]/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.) + (
c_)]), x_Symbol] :> Simp[-2*((c + d*Csc[e + f*x])/(f*(b*c - a*d)*Rt[(c + d)/(a + b), 2]*Cot[e + f*x]))*Sqrt[(b
*c - a*d)*((1 - Csc[e + f*x])/((a + b)*(c + d*Csc[e + f*x])))]*Sqrt[(-(b*c - a*d))*((1 + Csc[e + f*x])/((a - b
)*(c + d*Csc[e + f*x])))]*EllipticF[ArcSin[Rt[(c + d)/(a + b), 2]*(Sqrt[a + b*Csc[e + f*x]]/Sqrt[c + d*Csc[e +
f*x]])], (a + b)*((c - d)/((a - b)*(c + d)))], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ
[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
-
Int[csc[(e_.) + (f_.)*(x_)]^2/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.) +
(c_)]), x_Symbol] :> Simp[-a/b Int[Csc[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[c + d*Csc[e + f*x]]), x], x]
+ Simp[1/b Int[Csc[e + f*x]*(Sqrt[a + b*Csc[e + f*x]]/Sqrt[c + d*Csc[e + f*x]]), x], x] /; FreeQ[{a, b, c,
d, e, f}, x] && NeQ[b*c - a*d, 0]
-
Int[(csc[(e_.) + (f_.)*(x_)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)])/(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)
)^(3/2), x_Symbol] :> Simp[(a - b)/(c - d) Int[Csc[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[c + d*Csc[e + f*x
]]), x], x] + Simp[(b*c - a*d)/(c - d) Int[Csc[e + f*x]*((1 + Csc[e + f*x])/(Sqrt[a + b*Csc[e + f*x]]*(c + d
*Csc[e + f*x])^(3/2))), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && Ne
Q[c^2 - d^2, 0]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]
*(d_.) + (c_))^(n_), x_Symbol] :> Simp[a^2*g*(Cot[e + f*x]/(f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[a - b*Csc[e + f*x]
])) Subst[Int[(g*x)^(p - 1)*(a + b*x)^(m - 1/2)*((c + d*x)^n/Sqrt[a - b*x]), x], x, Csc[e + f*x]], x] /; Fre
eQ[{a, b, c, d, e, f, g, m, n, p}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && (EqQ[p
, 1] || IntegerQ[m - 1/2])
-
Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]
*(d_.) + (c_))^(n_), x_Symbol] :> Simp[1/g^(m + n) Int[(g*Csc[e + f*x])^(m + n + p)*(b + a*Sin[e + f*x])^m*(
d + c*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b*c - a*d, 0] && IntegerQ[m] && Int
egerQ[n]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]
*(d_.) + (c_))^(n_), x_Symbol] :> Simp[(g*Csc[e + f*x])^(m + p)*((c + d*Csc[e + f*x])^n/(g^m*(d + c*Sin[e + f*
x])^n)) Int[(b + a*Sin[e + f*x])^m*(d + c*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] &
& NeQ[b*c - a*d, 0] && EqQ[m + n + p, 0] && IntegerQ[m]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]
*(d_.) + (c_))^(n_), x_Symbol] :> Simp[(g*Csc[e + f*x])^p*(a + b*Csc[e + f*x])^m*((c + d*Csc[e + f*x])^n/((b +
a*Sin[e + f*x])^m*(d + c*Sin[e + f*x])^n)) Int[(b + a*Sin[e + f*x])^m*(d + c*Sin[e + f*x])^n, x], x] /; Fre
eQ[{a, b, c, d, e, f, g, m, n, p}, x] && NeQ[b*c - a*d, 0] && EqQ[m + n + p, 0] && !IntegerQ[m]
-
Int[csc[(e_.) + (f_.)*(x_)]^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(d_.) +
(c_))^(n_), x_Symbol] :> Simp[Sqrt[d + c*Sin[e + f*x]]*(Sqrt[a + b*Csc[e + f*x]]/(Sqrt[b + a*Sin[e + f*x]]*Sq
rt[c + d*Csc[e + f*x]])) Int[(b + a*Sin[e + f*x])^m*((d + c*Sin[e + f*x])^n/Sin[e + f*x]^(m + n + p)), x], x
] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && NeQ[b*c - a*d, 0] && IntegerQ[m - 1/2] && IntegerQ[n - 1/2] && Inte
gerQ[p] && LeQ[-2, m + n + p, -1]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]
*(d_.) + (c_))^(n_), x_Symbol] :> Int[ExpandTrig[(g*csc[e + f*x])^p*(a + b*csc[e + f*x])^m*(c + d*csc[e + f*x]
)^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && NeQ[b*c - a*d, 0] && (IntegersQ[m, n] || IntegersQ[
m, p] || IntegersQ[n, p])
-
Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_)*((c_.) + csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_
.)*(x_)]*(g_.))^(p_.), x_Symbol] :> Unintegrable[(g*Csc[e + f*x])^p*(a + b*Csc[e + f*x])^m*(c + d*Csc[e + f*x]
)^n, x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x]
-
Int[(sec[(e_.) + (f_.)*(x_)]*((A_) + (B_.)*sec[(e_.) + (f_.)*(x_)]))/(Sqrt[(a_) + (b_.)*sec[(e_.) + (f_.)*(x_)
]]*((c_) + (d_.)*sec[(e_.) + (f_.)*(x_)])^(3/2)), x_Symbol] :> Simp[2*A*(1 + Sec[e + f*x])*(Sqrt[(b*c - a*d)*(
(1 - Sec[e + f*x])/((a + b)*(c + d*Sec[e + f*x])))]/(f*(b*c - a*d)*Rt[(c + d)/(a + b), 2]*Tan[e + f*x]*Sqrt[(-
(b*c - a*d))*((1 + Sec[e + f*x])/((a - b)*(c + d*Sec[e + f*x])))]))*EllipticE[ArcSin[Rt[(c + d)/(a + b), 2]*(S
qrt[a + b*Sec[e + f*x]]/Sqrt[c + d*Sec[e + f*x]])], (a + b)*((c - d)/((a - b)*(c + d)))], x] /; FreeQ[{a, b, c
, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && EqQ[A, B]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_
)]*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(3/2)), x_Symbol] :> Simp[-2*A*(1 + Csc[e + f*x])*(Sqrt[(b*c - a*d)*
((1 - Csc[e + f*x])/((a + b)*(c + d*Csc[e + f*x])))]/(f*(b*c - a*d)*Rt[(c + d)/(a + b), 2]*Cot[e + f*x]*Sqrt[(
-(b*c - a*d))*((1 + Csc[e + f*x])/((a - b)*(c + d*Csc[e + f*x])))]))*EllipticE[ArcSin[Rt[(c + d)/(a + b), 2]*(
Sqrt[a + b*Csc[e + f*x]]/Sqrt[c + d*Csc[e + f*x]])], (a + b)*((c - d)/((a - b)*(c + d)))], x] /; FreeQ[{a, b,
c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && EqQ[A, B]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))*(csc[(e_.) + (f_.)*(x_)]*(B_.)
+ (A_)), x_Symbol] :> Simp[A*a*Cot[e + f*x]*((d*Csc[e + f*x])^n/(f*n)), x] + Simp[1/(d*n) Int[(d*Csc[e + f*
x])^(n + 1)*Simp[n*(B*a + A*b) + (B*b*n + A*a*(n + 1))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B}
, x] && NeQ[A*b - a*B, 0] && LeQ[n, -1]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))*(csc[(e_.) + (f_.)*(x_)]*(B_.
) + (A_)), x_Symbol] :> Simp[(-b)*B*Cot[e + f*x]*((d*Csc[e + f*x])^n/(f*(n + 1))), x] + Simp[1/(n + 1) Int[(
d*Csc[e + f*x])^n*Simp[A*a*(n + 1) + B*b*n + (A*b + B*a)*(n + 1)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e
, f, A, B}, x] && NeQ[A*b - a*B, 0] && !LeQ[n, -1]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x
_Symbol] :> Simp[B/b Int[Csc[e + f*x], x], x] + Simp[(A*b - a*B)/b Int[Csc[e + f*x]/(a + b*Csc[e + f*x]),
x], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[A*b - a*B, 0]
-
Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))
, x_Symbol] :> Simp[(-B)*Cot[e + f*x]*((a + b*Csc[e + f*x])^m/(f*(m + 1))), x] /; FreeQ[{a, b, A, B, e, f, m},
x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && EqQ[a*B*m + A*b*(m + 1), 0]
-
Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))
, x_Symbol] :> Simp[(A*b - a*B)*Cot[e + f*x]*((a + b*Csc[e + f*x])^m/(a*f*(2*m + 1))), x] + Simp[(a*B*m + A*b*
(m + 1))/(a*b*(2*m + 1)) Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, A, B, e, f},
x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[a*B*m + A*b*(m + 1), 0] && LtQ[m, -2^(-1)]
-
Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))
, x_Symbol] :> Simp[(-B)*Cot[e + f*x]*((a + b*Csc[e + f*x])^m/(f*(m + 1))), x] + Simp[(a*B*m + A*b*(m + 1))/(b
*(m + 1)) Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m, x], x] /; FreeQ[{a, b, A, B, e, f, m}, x] && NeQ[A*b - a*
B, 0] && EqQ[a^2 - b^2, 0] && NeQ[a*B*m + A*b*(m + 1), 0] && !LtQ[m, -2^(-1)]
-
Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))
, x_Symbol] :> Simp[(-B)*Cot[e + f*x]*((a + b*Csc[e + f*x])^m/(f*(m + 1))), x] + Simp[1/(m + 1) Int[Csc[e +
f*x]*(a + b*Csc[e + f*x])^(m - 1)*Simp[b*B*m + a*A*(m + 1) + (a*B*m + A*b*(m + 1))*Csc[e + f*x], x], x], x] /;
FreeQ[{a, b, A, B, e, f}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] && GtQ[m, 0]
-
Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))
, x_Symbol] :> Simp[(-(A*b - a*B))*Cot[e + f*x]*((a + b*Csc[e + f*x])^(m + 1)/(f*(m + 1)*(a^2 - b^2))), x] + S
imp[1/((m + 1)*(a^2 - b^2)) Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*Simp[(a*A - b*B)*(m + 1) - (A*b -
a*B)*(m + 2)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, A, B, e, f}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0
] && LtQ[m, -1]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Simp[-2*(A*b - a*B)*Rt[a + b*(B/A), 2]*Sqrt[b*((1 - Csc[e + f*x])/(a + b))]*(Sqrt[(-b)*((1 + C
sc[e + f*x])/(a - b))]/(b^2*f*Cot[e + f*x]))*EllipticE[ArcSin[Sqrt[a + b*Csc[e + f*x]]/Rt[a + b*(B/A), 2]], (a
*A + b*B)/(a*A - b*B)], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && EqQ[A^2 - B^2, 0]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)
], x_Symbol] :> Simp[(A - B) Int[Csc[e + f*x]/Sqrt[a + b*Csc[e + f*x]], x], x] + Simp[B Int[Csc[e + f*x]*(
(1 + Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[a^2 - b^2, 0] && N
eQ[A^2 - B^2, 0]
-
Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))
, x_Symbol] :> Simp[2*Sqrt[2]*A*(a + b*Csc[e + f*x])^m*(A - B*Csc[e + f*x])*(Sqrt[(A + B*Csc[e + f*x])/A]/(B*f
*Cot[e + f*x]*(A*((a + b*Csc[e + f*x])/(a*A + b*B)))^m))*AppellF1[1/2, -(1/2), -m, 3/2, (A - B*Csc[e + f*x])/(
2*A), (b*(A - B*Csc[e + f*x]))/(A*b + a*B)], x] /; FreeQ[{a, b, A, B, e, f}, x] && NeQ[A*b - a*B, 0] && NeQ[a^
2 - b^2, 0] && EqQ[A^2 - B^2, 0] && !IntegerQ[2*m]
-
Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))
, x_Symbol] :> Simp[(A*b - a*B)/b Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m, x], x] + Simp[B/b Int[Csc[e + f
*x]*(a + b*Csc[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, A, B, e, f, m}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 -
b^2, 0]
-
Int[csc[(e_.) + (f_.)*(x_)]^2*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_
)), x_Symbol] :> Simp[(-(A*b - a*B))*Cot[e + f*x]*((a + b*Csc[e + f*x])^m/(b*f*(2*m + 1))), x] + Simp[1/(b^2*(
2*m + 1)) Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*Simp[A*b*m - a*B*m + b*B*(2*m + 1)*Csc[e + f*x], x],
x], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)]
-
Int[csc[(e_.) + (f_.)*(x_)]^2*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_
)), x_Symbol] :> Simp[a*(A*b - a*B)*Cot[e + f*x]*((a + b*Csc[e + f*x])^(m + 1)/(b*f*(m + 1)*(a^2 - b^2))), x]
- Simp[1/(b*(m + 1)*(a^2 - b^2)) Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*Simp[b*(A*b - a*B)*(m + 1) -
(a*A*b*(m + 2) - B*(a^2 + b^2*(m + 1)))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B}, x] && NeQ[A*b -
a*B, 0] && NeQ[a^2 - b^2, 0] && LtQ[m, -1]
-
Int[csc[(e_.) + (f_.)*(x_)]^2*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_
)), x_Symbol] :> Simp[(-B)*Cot[e + f*x]*((a + b*Csc[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Simp[1/(b*(m + 2))
Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*Simp[b*B*(m + 1) + (A*b*(m + 2) - a*B)*Csc[e + f*x], x], x], x] /; F
reeQ[{a, b, e, f, A, B, m}, x] && NeQ[A*b - a*B, 0] && !LtQ[m, -1]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*n)), x] /; FreeQ
[{a, b, d, e, f, A, B, m, n}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && EqQ[m + n + 1, 0] && EqQ[a*A*m -
b*B*n, 0]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(-(A*b - a*B))*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(b*f*(
2*m + 1))), x] + Simp[(a*A*m + b*B*(m + 1))/(a^2*(2*m + 1)) Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x]
)^n, x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && EqQ[m + n + 1,
0] && LeQ[m, -1]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*n)), x] - Simp[(
a*A*m - b*B*n)/(b*d*n) Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f,
A, B, m, n}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && EqQ[m + n + 1, 0] && !LeQ[m, -1]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(
B_.) + (A_)), x_Symbol] :> Simp[-2*b*B*Cot[e + f*x]*((d*Csc[e + f*x])^n/(f*(2*n + 1)*Sqrt[a + b*Csc[e + f*x]])
), x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && EqQ[A*b*(2*n + 1) + 2
*a*B*n, 0]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(
B_.) + (A_)), x_Symbol] :> Simp[A*b^2*Cot[e + f*x]*((d*Csc[e + f*x])^n/(a*f*n*Sqrt[a + b*Csc[e + f*x]])), x] +
Simp[(A*b*(2*n + 1) + 2*a*B*n)/(2*a*d*n) Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[e + f*x])^(n + 1), x], x] /; F
reeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[A*b*(2*n + 1) + 2*a*B*n, 0] &&
LtQ[n, 0]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(
B_.) + (A_)), x_Symbol] :> Simp[-2*b*B*Cot[e + f*x]*((d*Csc[e + f*x])^n/(f*(2*n + 1)*Sqrt[a + b*Csc[e + f*x]])
), x] + Simp[(A*b*(2*n + 1) + 2*a*B*n)/(b*(2*n + 1)) Int[Sqrt[a + b*Csc[e + f*x]]*(d*Csc[e + f*x])^n, x], x]
/; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && NeQ[A*b*(2*n + 1) + 2*a*B*
n, 0] && !LtQ[n, 0]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[a*A*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*((d*Csc[e + f*x])^n/(f*n)), x]
- Simp[b/(a*d*n) Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*(m - n - 1) - b*B*n - (a
*B*n + A*b*(m + n))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^
2 - b^2, 0] && GtQ[m, 1/2] && LtQ[n, -1]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(-b)*B*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*((d*Csc[e + f*x])^n/(f*(m +
n))), x] + Simp[1/(d*(m + n)) Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^n*Simp[a*A*d*(m + n) + B*(b*
d*n) + (A*b*d*(m + n) + a*B*d*(2*m + n - 1))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] &&
NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && GtQ[m, 1/2] && !LtQ[n, -1]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[d*(A*b - a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^(n - 1)/(
a*f*(2*m + 1))), x] - Simp[1/(a*b*(2*m + 1)) Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 1)*Simp[
A*(a*d*(n - 1)) - B*(b*d*(n - 1)) - d*(a*B*(m - n + 1) + A*b*(m + n))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b,
d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] && GtQ[n, 0]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(-(A*b - a*B))*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(b*f*(
2*m + 1))), x] - Simp[1/(a^2*(2*m + 1)) Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*Simp[b*B*n - a*A
*(2*m + n + 1) + (A*b - a*B)*(m + n + 1)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ
[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] && !GtQ[n, 0]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(-B)*d*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^(n - 1)/(f*(m +
n))), x] + Simp[d/(b*(m + n)) Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n - 1)*Simp[b*B*(n - 1) + (A*b*(m
+ n) + a*B*m)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2
- b^2, 0] && GtQ[n, 1]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*n)), x] - Simp[1
/(b*d*n) Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*m - b*B*n - A*b*(m + n + 1)*Csc[e + f*
x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[n, 0]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(A*b - a*B)/b Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n, x], x] + Simp[
B/b Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, d, e, f, A, B, m}, x] && NeQ
[A*b - a*B, 0] && EqQ[a^2 - b^2, 0]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^2*(csc[(e_.) + (f_.)*(x_)]*(B_
.) + (A_)), x_Symbol] :> Simp[a^2*A*Cos[e + f*x]*((d*Csc[e + f*x])^(n + 1)/(d*f*n)), x] + Simp[1/(d*n) Int[(
d*Csc[e + f*x])^(n + 1)*(a*(2*A*b + a*B)*n + (2*a*b*B*n + A*(b^2*n + a^2*(n + 1)))*Csc[e + f*x] + b^2*B*n*Csc[
e + f*x]^2), x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] && LeQ[n, -1]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[a*A*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*((d*Csc[e + f*x])^n/(f*n)), x]
+ Simp[1/(d*n) Int[(a + b*Csc[e + f*x])^(m - 2)*(d*Csc[e + f*x])^(n + 1)*Simp[a*(a*B*n - A*b*(m - n - 1)) +
(2*a*b*B*n + A*(b^2*n + a^2*(1 + n)))*Csc[e + f*x] + b*(b*B*n + a*A*(m + n))*Csc[e + f*x]^2, x], x], x] /; Fre
eQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] && GtQ[m, 1] && LeQ[n, -1]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(-b)*B*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*((d*Csc[e + f*x])^n/(f*(m +
n))), x] + Simp[1/(m + n) Int[(a + b*Csc[e + f*x])^(m - 2)*(d*Csc[e + f*x])^n*Simp[a^2*A*(m + n) + a*b*B*n +
(a*(2*A*b + a*B)*(m + n) + b^2*B*(m + n - 1))*Csc[e + f*x] + b*(A*b*(m + n) + a*B*(2*m + n - 1))*Csc[e + f*x]
^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] && GtQ[m, 1] &&
!(IGtQ[n, 1] && !IntegerQ[m])
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(-d)*(A*b - a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*((d*Csc[e + f*x])^
(n - 1)/(f*(m + 1)*(a^2 - b^2))), x] + Simp[1/((m + 1)*(a^2 - b^2)) Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[
e + f*x])^(n - 1)*Simp[d*(n - 1)*(A*b - a*B) + d*(a*A - b*B)*(m + 1)*Csc[e + f*x] - d*(A*b - a*B)*(m + n + 1)*
Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] && LtQ
[m, -1] && LtQ[0, n, 1]
-
Int[csc[(e_.) + (f_.)*(x_)]^3*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_
)), x_Symbol] :> Simp[(-a^2)*(A*b - a*B)*Cot[e + f*x]*((a + b*Csc[e + f*x])^(m + 1)/(b^2*f*(m + 1)*(a^2 - b^2)
)), x] + Simp[1/(b^2*(m + 1)*(a^2 - b^2)) Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*Simp[a*b*(A*b - a*B)
*(m + 1) - (A*b - a*B)*(a^2 + b^2*(m + 1))*Csc[e + f*x] + b*B*(m + 1)*(a^2 - b^2)*Csc[e + f*x]^2, x], x], x] /
; FreeQ[{a, b, e, f, A, B}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] && LtQ[m, -1]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[a*d^2*(A*b - a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*((d*Csc[e + f*x])
^(n - 2)/(b*f*(m + 1)*(a^2 - b^2))), x] - Simp[d/(b*(m + 1)*(a^2 - b^2)) Int[(a + b*Csc[e + f*x])^(m + 1)*(d
*Csc[e + f*x])^(n - 2)*Simp[a*d*(A*b - a*B)*(n - 2) + b*d*(A*b - a*B)*(m + 1)*Csc[e + f*x] - (a*A*b*d*(m + n)
- d*B*(a^2*(n - 1) + b^2*(m + 1)))*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b -
a*B, 0] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && GtQ[n, 1]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[b*(A*b - a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*((d*Csc[e + f*x])^n/(
a*f*(m + 1)*(a^2 - b^2))), x] + Simp[1/(a*(m + 1)*(a^2 - b^2)) Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f
*x])^n*Simp[A*(a^2*(m + 1) - b^2*(m + n + 1)) + a*b*B*n - a*(A*b - a*B)*(m + 1)*Csc[e + f*x] + b*(A*b - a*B)*(
m + n + 2)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 -
b^2, 0] && LtQ[m, -1] && !(ILtQ[m + 1/2, 0] && ILtQ[n, 0])
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(-B)*d*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^(n - 1)/(f*(m +
n))), x] + Simp[d/(m + n) Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^(n - 1)*Simp[a*B*(n - 1) + (b*B*
(m + n - 1) + a*A*(m + n))*Csc[e + f*x] + (a*B*m + A*b*(m + n))*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d,
e, f, A, B}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] && LtQ[0, m, 1] && GtQ[n, 0]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*n)), x] - Simp[1
/(d*n) Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^(n + 1)*Simp[A*b*m - a*B*n - (b*B*n + a*A*(n + 1))*
Csc[e + f*x] - A*b*(m + n + 1)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B,
0] && NeQ[a^2 - b^2, 0] && LtQ[0, m, 1] && LeQ[n, -1]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[(-B)*d^2*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*((d*Csc[e + f*x])^(n - 2)/
(b*f*(m + n))), x] + Simp[d^2/(b*(m + n)) Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n - 2)*Simp[a*B*(n -
2) + B*b*(m + n - 1)*Csc[e + f*x] + (A*b*(m + n) - a*B*(n - 1))*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d,
e, f, A, B, m}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0] && GtQ[n, 1] && NeQ[m + n, 0] && !IGtQ[m, 1]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*((d*Csc[e + f*x])^n/(a*f*n)), x]
+ Simp[1/(a*d*n) Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[a*B*n - A*b*(m + n + 1) + A*a*(n +
1)*Csc[e + f*x] + A*b*(m + n + 2)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, B, m}, x] && NeQ[A*b
- a*B, 0] && NeQ[a^2 - b^2, 0] && LeQ[n, -1]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(
b_.) + (a_)]), x_Symbol] :> Simp[A/a Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x], x] - Simp[(A*b -
a*B)/(a*d) Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] &&
NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0]
-
Int[(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)*(x_)]*
(b_.) + (a_)], x_Symbol] :> Simp[A Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x], x] + Simp[B/d In
t[(d*Csc[e + f*x])^(3/2)/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B,
0] && NeQ[a^2 - b^2, 0]
-
Int[(Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/Sqrt[csc[(e_.) + (f_.)
*(x_)]*(d_.)], x_Symbol] :> Simp[B/d Int[Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]], x], x] + Simp[A In
t[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B, 0
] && NeQ[a^2 - b^2, 0]
-
Int[((csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)))/(csc[(e_.) + (f_.)*(x_)]*(b_
.) + (a_)), x_Symbol] :> Simp[A/a Int[(d*Csc[e + f*x])^n, x], x] - Simp[(A*b - a*B)/(a*d) Int[(d*Csc[e + f
*x])^(n + 1)/(a + b*Csc[e + f*x]), x], x] /; FreeQ[{a, b, d, e, f, A, B, n}, x] && NeQ[A*b - a*B, 0] && NeQ[a^
2 - b^2, 0]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]
*(B_.) + (A_)), x_Symbol] :> Unintegrable[(d*Csc[e + f*x])^n*(a + b*Csc[e + f*x])^m*(A + B*Csc[e + f*x]), x] /
; FreeQ[{a, b, d, e, f, A, B, m, n}, x] && NeQ[A*b - a*B, 0] && NeQ[a^2 - b^2, 0]
-
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.))^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.)*(csc[(e_.) + (f
_.)*(x_)]*(d_.) + (c_))^(n_.), x_Symbol] :> Simp[((-a)*c)^m Int[Cos[e + f*x]^(2*m)*(d + c*Sin[e + f*x])^(n -
m)*((B + A*Sin[e + f*x])^p/Sin[e + f*x]^(m + n + p)), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n, p}, x] && E
qQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegersQ[m, n, p]
-
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) +
(a_))^(m_.), x_Symbol] :> Simp[1/b^2 Int[(a + b*Csc[e + f*x])^(m + 1)*Simp[b*B - a*C + b*C*Csc[e + f*x], x]
, x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] && EqQ[A*b^2 - a*b*B + a^2*C, 0]
-
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.), x_Symbol] :> Simp[
C/b^2 Int[(a + b*Csc[e + f*x])^(m + 1)*Simp[-a + b*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, C, m},
x] && EqQ[A*b^2 + a^2*C, 0]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> Simp[A*Cot[e
+ f*x]*((b*Csc[e + f*x])^m/(f*m)), x] /; FreeQ[{b, e, f, A, C, m}, x] && EqQ[C*m + A*(m + 1), 0]
-
Int[csc[(e_.) + (f_.)*(x_)]^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> Int[(C + A*Sin[e + f*
x]^2)/Sin[e + f*x]^(m + 2), x] /; FreeQ[{e, f, A, C}, x] && NeQ[C*m + A*(m + 1), 0] && ILtQ[(m + 1)/2, 0]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> Simp[A*Cot[e
+ f*x]*((b*Csc[e + f*x])^m/(f*m)), x] + Simp[(C*m + A*(m + 1))/(b^2*m) Int[(b*Csc[e + f*x])^(m + 2), x], x]
/; FreeQ[{b, e, f, A, C}, x] && NeQ[C*m + A*(m + 1), 0] && LeQ[m, -1]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*(csc[(e_.) + (f_.)*(x_)]^2*(C_.) + (A_)), x_Symbol] :> Simp[(-C)*Cot
[e + f*x]*((b*Csc[e + f*x])^m/(f*(m + 1))), x] + Simp[(C*m + A*(m + 1))/(m + 1) Int[(b*Csc[e + f*x])^m, x],
x] /; FreeQ[{b, e, f, A, C, m}, x] && NeQ[C*m + A*(m + 1), 0] && !LeQ[m, -1]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(
C_.)), x_Symbol] :> Simp[B/b Int[(b*Csc[e + f*x])^(m + 1), x], x] + Int[(b*Csc[e + f*x])^m*(A + C*Csc[e + f*
x]^2), x] /; FreeQ[{b, e, f, A, B, C, m}, x]
-
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) +
(a_)), x_Symbol] :> Simp[(-b)*C*Csc[e + f*x]*(Cot[e + f*x]/(2*f)), x] + Simp[1/2 Int[Simp[2*A*a + (2*B*a +
b*(2*A + C))*Csc[e + f*x] + 2*(a*C + B*b)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, e, f, A, B, C}, x]
-
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[(-b)*C
*Csc[e + f*x]*(Cot[e + f*x]/(2*f)), x] + Simp[1/2 Int[Simp[2*A*a + b*(2*A + C)*Csc[e + f*x] + 2*a*C*Csc[e +
f*x]^2, x], x], x] /; FreeQ[{a, b, e, f, A, C}, x]
-
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/(csc[(e_.) + (f_.)*(x_)]*(b_.) +
(a_)), x_Symbol] :> Simp[C/b Int[Csc[e + f*x], x], x] + Simp[1/b Int[(A*b + (b*B - a*C)*Csc[e + f*x])/(a
+ b*Csc[e + f*x]), x], x] /; FreeQ[{a, b, e, f, A, B, C}, x]
-
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[C/b
Int[Csc[e + f*x], x], x] + Simp[1/b Int[(A*b - a*C*Csc[e + f*x])/(a + b*Csc[e + f*x]), x], x] /; FreeQ[{a, b
, e, f, A, C}, x]
-
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) +
(a_))^(m_), x_Symbol] :> Simp[(-(a*A - b*B + a*C))*Cot[e + f*x]*((a + b*Csc[e + f*x])^m/(a*f*(2*m + 1))), x]
+ Simp[1/(a*b*(2*m + 1)) Int[(a + b*Csc[e + f*x])^(m + 1)*Simp[A*b*(2*m + 1) + (b*B*(m + 1) - a*(A*(m + 1) -
C*m))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)]
-
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(
-a)*(A + C)*Cot[e + f*x]*((a + b*Csc[e + f*x])^m/(a*f*(2*m + 1))), x] + Simp[1/(a*b*(2*m + 1)) Int[(a + b*Cs
c[e + f*x])^(m + 1)*Simp[A*b*(2*m + 1) - a*(A*(m + 1) - C*m)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A,
C}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)]
-
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) +
(a_))^(m_.), x_Symbol] :> Simp[(-C)*Cot[e + f*x]*((a + b*Csc[e + f*x])^m/(f*(m + 1))), x] + Simp[1/(b*(m + 1)
) Int[(a + b*Csc[e + f*x])^m*Simp[A*b*(m + 1) + (a*C*m + b*B*(m + 1))*Csc[e + f*x], x], x], x] /; FreeQ[{a,
b, e, f, A, B, C, m}, x] && EqQ[a^2 - b^2, 0] && !LtQ[m, -2^(-1)]
-
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.), x_Symbol] :> Simp[
(-C)*Cot[e + f*x]*((a + b*Csc[e + f*x])^m/(f*(m + 1))), x] + Simp[1/(b*(m + 1)) Int[(a + b*Csc[e + f*x])^m*S
imp[A*b*(m + 1) + a*C*m*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, C, m}, x] && EqQ[a^2 - b^2, 0] && !
LtQ[m, -2^(-1)]
-
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) +
(a_))^(m_.), x_Symbol] :> Simp[(-C)*Cot[e + f*x]*((a + b*Csc[e + f*x])^m/(f*(m + 1))), x] + Simp[1/(m + 1)
Int[(a + b*Csc[e + f*x])^(m - 1)*Simp[a*A*(m + 1) + ((A*b + a*B)*(m + 1) + b*C*m)*Csc[e + f*x] + (b*B*(m + 1)
+ a*C*m)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0] && IGtQ[2*m, 0]
-
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.), x_Symbol] :> Simp[
(-C)*Cot[e + f*x]*((a + b*Csc[e + f*x])^m/(f*(m + 1))), x] + Simp[1/(m + 1) Int[(a + b*Csc[e + f*x])^(m - 1)
*Simp[a*A*(m + 1) + (A*b*(m + 1) + b*C*m)*Csc[e + f*x] + a*C*m*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, e, f
, A, C}, x] && NeQ[a^2 - b^2, 0] && IGtQ[2*m, 0]
-
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_
.) + (a_)], x_Symbol] :> Int[(A + (B - C)*Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]], x] + Simp[C Int[Csc[e + f*
x]*((1 + Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && NeQ[a^2 - b^2,
0]
-
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Int[(A
- C*Csc[e + f*x])/Sqrt[a + b*Csc[e + f*x]], x] + Simp[C Int[Csc[e + f*x]*((1 + Csc[e + f*x])/Sqrt[a + b*Csc[
e + f*x]]), x], x] /; FreeQ[{a, b, e, f, A, C}, x] && NeQ[a^2 - b^2, 0]
-
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) +
(a_))^(m_), x_Symbol] :> Simp[(A*b^2 - a*b*B + a^2*C)*Cot[e + f*x]*((a + b*Csc[e + f*x])^(m + 1)/(a*f*(m + 1)
*(a^2 - b^2))), x] + Simp[1/(a*(m + 1)*(a^2 - b^2)) Int[(a + b*Csc[e + f*x])^(m + 1)*Simp[A*(a^2 - b^2)*(m +
1) - a*(A*b - a*B + b*C)*(m + 1)*Csc[e + f*x] + (A*b^2 - a*b*B + a^2*C)*(m + 2)*Csc[e + f*x]^2, x], x], x] /;
FreeQ[{a, b, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1]
-
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(
A*b^2 + a^2*C)*Cot[e + f*x]*((a + b*Csc[e + f*x])^(m + 1)/(a*f*(m + 1)*(a^2 - b^2))), x] + Simp[1/(a*(m + 1)*(
a^2 - b^2)) Int[(a + b*Csc[e + f*x])^(m + 1)*Simp[A*(a^2 - b^2)*(m + 1) - a*b*(A + C)*(m + 1)*Csc[e + f*x] +
(A*b^2 + a^2*C)*(m + 2)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, e, f, A, C}, x] && NeQ[a^2 - b^2, 0] && In
tegerQ[2*m] && LtQ[m, -1]
-
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) +
(a_))^(m_), x_Symbol] :> Simp[1/b Int[(a + b*Csc[e + f*x])^m*(A*b + (b*B - a*C)*Csc[e + f*x]), x], x] + Sim
p[C/b Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] && NeQ[a^2
- b^2, 0] && !IntegerQ[2*m]
-
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[1
/b Int[(a + b*Csc[e + f*x])^m*(A*b - a*C*Csc[e + f*x]), x], x] + Simp[C/b Int[Csc[e + f*x]*(a + b*Csc[e +
f*x])^(m + 1), x], x] /; FreeQ[{a, b, e, f, A, C, m}, x] && NeQ[a^2 - b^2, 0] && !IntegerQ[2*m]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(b_.))^(m_)*((A_.) + (B_.)*sec[(e_.) + (f_.)*(x_)] + (C_.)*sec[(e_.) + (f_.)*(x_)
]^2), x_Symbol] :> Simp[b^2 Int[(b*Cos[e + f*x])^(m - 2)*(C + B*Cos[e + f*x] + A*Cos[e + f*x]^2), x], x] /;
FreeQ[{b, e, f, A, B, C, m}, x] && !IntegerQ[m]
-
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*((b_.)*sin[(e_.) + (f_.)*(x_)])^
(m_), x_Symbol] :> Simp[b^2 Int[(b*Sin[e + f*x])^(m - 2)*(C + B*Sin[e + f*x] + A*Sin[e + f*x]^2), x], x] /;
FreeQ[{b, e, f, A, B, C, m}, x] && !IntegerQ[m]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(b_.))^(m_)*((A_.) + (C_.)*sec[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[b^2 In
t[(b*Cos[e + f*x])^(m - 2)*(C + A*Cos[e + f*x]^2), x], x] /; FreeQ[{b, e, f, A, C, m}, x] && !IntegerQ[m]
-
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[b^2 In
t[(b*Sin[e + f*x])^(m - 2)*(C + A*Sin[e + f*x]^2), x], x] /; FreeQ[{b, e, f, A, C, m}, x] && !IntegerQ[m]
-
Int[((a_.)*((b_.)*sec[(e_.) + (f_.)*(x_)])^(p_))^(m_)*((A_.) + (B_.)*sec[(e_.) + (f_.)*(x_)] + (C_.)*sec[(e_.)
+ (f_.)*(x_)]^2), x_Symbol] :> Simp[a^IntPart[m]*((a*(b*Sec[e + f*x])^p)^FracPart[m]/(b*Sec[e + f*x])^(p*Frac
Part[m])) Int[(b*Sec[e + f*x])^(m*p)*(A + B*Sec[e + f*x] + C*Sec[e + f*x]^2), x], x] /; FreeQ[{a, b, e, f, A
, B, C, m, p}, x] && !IntegerQ[m]
-
Int[((a_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.))^(p_))^(m_)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_
.)*(x_)]^2*(C_.)), x_Symbol] :> Simp[a^IntPart[m]*((a*(b*Csc[e + f*x])^p)^FracPart[m]/(b*Csc[e + f*x])^(p*Frac
Part[m])) Int[(b*Csc[e + f*x])^(m*p)*(A + B*Csc[e + f*x] + C*Csc[e + f*x]^2), x], x] /; FreeQ[{a, b, e, f, A
, B, C, m, p}, x] && !IntegerQ[m]
-
Int[((a_.)*((b_.)*sec[(e_.) + (f_.)*(x_)])^(p_))^(m_)*((A_.) + (C_.)*sec[(e_.) + (f_.)*(x_)]^2), x_Symbol] :>
Simp[a^IntPart[m]*((a*(b*Sec[e + f*x])^p)^FracPart[m]/(b*Sec[e + f*x])^(p*FracPart[m])) Int[(b*Sec[e + f*x])
^(m*p)*(A + C*Sec[e + f*x]^2), x], x] /; FreeQ[{a, b, e, f, A, C, m, p}, x] && !IntegerQ[m]
-
Int[((a_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.))^(p_))^(m_)*((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.)), x_Symbol] :>
Simp[a^IntPart[m]*((a*(b*Csc[e + f*x])^p)^FracPart[m]/(b*Csc[e + f*x])^(p*FracPart[m])) Int[(b*Csc[e + f*x])
^(m*p)*(A + C*Csc[e + f*x]^2), x], x] /; FreeQ[{a, b, e, f, A, C, m, p}, x] && !IntegerQ[m]
-
Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(
x_)]^2*(C_.))*((c_.) + csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.), x_Symbol] :> Simp[1/b^2 Int[(a + b*Csc[e + f*x]
)^(m + 1)*(c + d*Csc[e + f*x])^n*(b*B - a*C + b*C*Csc[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m
, n}, x] && EqQ[A*b^2 - a*b*B + a^2*C, 0]
-
Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*((c_.) + csc[(e_.)
+ (f_.)*(x_)]*(d_.))^(n_.), x_Symbol] :> Simp[-C/b^2 Int[(a + b*Csc[e + f*x])^(m + 1)*(c + d*Csc[e + f*x])^
n*(a - b*Csc[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, C, m, n}, x] && EqQ[A*b^2 + a^2*C, 0]
-
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[A*a*Cot[e + f*x]*((d*Csc[e + f*x])^n/(f*n)), x]
+ Simp[1/(d*n) Int[(d*Csc[e + f*x])^(n + 1)*Simp[n*(B*a + A*b) + (n*(a*C + B*b) + A*a*(n + 1))*Csc[e + f*x]
+ b*C*n*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C}, x] && LtQ[n, -1]
-
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b
_.) + (a_)), x_Symbol] :> Simp[A*a*Cot[e + f*x]*((d*Csc[e + f*x])^n/(f*n)), x] + Simp[1/(d*n) Int[(d*Csc[e +
f*x])^(n + 1)*Simp[A*b*n + a*(C*n + A*(n + 1))*Csc[e + f*x] + b*C*n*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b
, d, e, f, A, C}, x] && LtQ[n, -1]
-
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[(-b)*C*Csc[e + f*x]*Cot[e + f*x]*((d*Csc[e + f
*x])^n/(f*(n + 2))), x] + Simp[1/(n + 2) Int[(d*Csc[e + f*x])^n*Simp[A*a*(n + 2) + (B*a*(n + 2) + b*(C*(n +
1) + A*(n + 2)))*Csc[e + f*x] + (a*C + B*b)*(n + 2)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, B,
C, n}, x] && !LtQ[n, -1]
-
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(
b_.) + (a_)), x_Symbol] :> Simp[(-b)*C*Csc[e + f*x]*Cot[e + f*x]*((d*Csc[e + f*x])^n/(f*(n + 2))), x] + Simp[1
/(n + 2) Int[(d*Csc[e + f*x])^n*Simp[A*a*(n + 2) + b*(C*(n + 1) + A*(n + 2))*Csc[e + f*x] + a*C*(n + 2)*Csc[
e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, C, n}, x] && !LtQ[n, -1]
-
Int[csc[(e_.) + (f_.)*(x_)]*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_
.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-(a*A - b*B + a*C))*Cot[e + f*x]*Csc[e + f*x]*((a + b*
Csc[e + f*x])^m/(a*f*(2*m + 1))), x] - Simp[1/(a*b*(2*m + 1)) Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*
Simp[a*B - b*C - 2*A*b*(m + 1) - (b*B*(m + 2) - a*(A*(m + 2) - C*(m - 1)))*Csc[e + f*x], x], x], x] /; FreeQ[{
a, b, e, f, A, B, C}, x] && LtQ[m, -1] && EqQ[a^2 - b^2, 0]
-
Int[csc[(e_.) + (f_.)*(x_)]*((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(
m_), x_Symbol] :> Simp[(-(A + C))*Cot[e + f*x]*Csc[e + f*x]*((a + b*Csc[e + f*x])^m/(f*(2*m + 1))), x] - Simp[
1/(a*b*(2*m + 1)) Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*Simp[(-b)*C - 2*A*b*(m + 1) + a*(A*(m + 2) -
C*(m - 1))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, C}, x] && LtQ[m, -1] && EqQ[a^2 - b^2, 0]
-
Int[csc[(e_.) + (f_.)*(x_)]*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_
.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cot[e + f*x]*((a + b*Csc[e +
f*x])^(m + 1)/(b*f*(m + 1)*(a^2 - b^2))), x] + Simp[1/(b*(m + 1)*(a^2 - b^2)) Int[Csc[e + f*x]*(a + b*Csc[e
+ f*x])^(m + 1)*Simp[b*(a*A - b*B + a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A*b - a*B + b*C)*(m + 1))*Csc[
e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]
-
Int[csc[(e_.) + (f_.)*(x_)]*((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(
m_), x_Symbol] :> Simp[(-(A*b^2 + a^2*C))*Cot[e + f*x]*((a + b*Csc[e + f*x])^(m + 1)/(b*f*(m + 1)*(a^2 - b^2))
), x] + Simp[1/(b*(m + 1)*(a^2 - b^2)) Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*Simp[a*b*(A + C)*(m + 1
) - (A*b^2 + a^2*C + b*(A*b + b*C)*(m + 1))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, C}, x] && LtQ[m,
-1] && NeQ[a^2 - b^2, 0]
-
Int[csc[(e_.) + (f_.)*(x_)]*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_
.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-C)*Cot[e + f*x]*((a + b*Csc[e + f*x])^(m + 1)/(b*f*(m
+ 2))), x] + Simp[1/(b*(m + 2)) Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*Simp[b*A*(m + 2) + b*C*(m + 1) + (b
*B*(m + 2) - a*C)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] && !LtQ[m, -1]
-
Int[csc[(e_.) + (f_.)*(x_)]*((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(
m_), x_Symbol] :> Simp[(-C)*Cot[e + f*x]*((a + b*Csc[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Simp[1/(b*(m + 2))
Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*Simp[b*A*(m + 2) + b*C*(m + 1) - a*C*Csc[e + f*x], x], x], x] /; Fr
eeQ[{a, b, e, f, A, C, m}, x] && !LtQ[m, -1]
-
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-(a*A - b*B + a*C))*Cot[e + f*x]*(a + b*C
sc[e + f*x])^m*((d*Csc[e + f*x])^n/(a*f*(2*m + 1))), x] - Simp[1/(a*b*(2*m + 1)) Int[(a + b*Csc[e + f*x])^(m
+ 1)*(d*Csc[e + f*x])^n*Simp[a*B*n - b*C*n - A*b*(2*m + n + 1) - (b*B*(m + n + 1) - a*(A*(m + n + 1) - C*(m -
n)))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, n}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)
]
-
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b
_.) + (a_))^(m_), x_Symbol] :> Simp[(-a)*(A + C)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(a*f*
(2*m + 1))), x] + Simp[1/(a*b*(2*m + 1)) Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*Simp[b*C*n + A*
b*(2*m + n + 1) - (a*(A*(m + n + 1) - C*(m - n)))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, C, n},
x] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)]
-
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*
Csc[e + f*x])^n/(f*n)), x] - Simp[1/(b*d*n) Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*m -
b*B*n - b*(A*(m + n + 1) + C*n)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, m}, x] && EqQ[a^2
- b^2, 0] && !LtQ[m, -2^(-1)] && (LtQ[n, -2^(-1)] || EqQ[m + n + 1, 0])
-
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b
_.) + (a_))^(m_), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*n)), x] - Sim
p[1/(b*d*n) Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[a*A*m - b*(A*(m + n + 1) + C*n)*Csc[e +
f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, C, m}, x] && EqQ[a^2 - b^2, 0] && !LtQ[m, -2^(-1)] && (LtQ[n, -
2^(-1)] || EqQ[m + n + 1, 0])
-
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-C)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(
(d*Csc[e + f*x])^n/(f*(m + n + 1))), x] + Simp[1/(b*(m + n + 1)) Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])
^n*Simp[A*b*(m + n + 1) + b*C*n + (a*C*m + b*B*(m + n + 1))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f,
A, B, C, m, n}, x] && EqQ[a^2 - b^2, 0] && !LtQ[m, -2^(-1)] && !LtQ[n, -2^(-1)] && NeQ[m + n + 1, 0]
-
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b
_.) + (a_))^(m_), x_Symbol] :> Simp[(-C)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*(m + n + 1
))), x] + Simp[1/(b*(m + n + 1)) Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n*Simp[A*b*(m + n + 1) + b*C*n
+ a*C*m*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, C, m, n}, x] && EqQ[a^2 - b^2, 0] && !LtQ[m, -2^
(-1)] && !LtQ[n, -2^(-1)] && NeQ[m + n + 1, 0]
-
Int[csc[(e_.) + (f_.)*(x_)]^2*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(
e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[a*(A*b^2 - a*b*B + a^2*C)*Cot[e + f*x]*((a + b*Csc[e
+ f*x])^(m + 1)/(b^2*f*(m + 1)*(a^2 - b^2))), x] - Simp[1/(b^2*(m + 1)*(a^2 - b^2)) Int[Csc[e + f*x]*(a + b*
Csc[e + f*x])^(m + 1)*Simp[b*(m + 1)*((-a)*(b*B - a*C) + A*b^2) + (b*B*(a^2 + b^2*(m + 1)) - a*(A*b^2*(m + 2)
+ C*(a^2 + b^2*(m + 1))))*Csc[e + f*x] - b*C*(m + 1)*(a^2 - b^2)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, e,
f, A, B, C}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1]
-
Int[csc[(e_.) + (f_.)*(x_)]^2*((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))
^(m_), x_Symbol] :> Simp[a*(A*b^2 + a^2*C)*Cot[e + f*x]*((a + b*Csc[e + f*x])^(m + 1)/(b^2*f*(m + 1)*(a^2 - b^
2))), x] - Simp[1/(b^2*(m + 1)*(a^2 - b^2)) Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*Simp[b*(m + 1)*(a^
2*C + A*b^2) - a*(A*b^2*(m + 2) + C*(a^2 + b^2*(m + 1)))*Csc[e + f*x] - b*C*(m + 1)*(a^2 - b^2)*Csc[e + f*x]^2
, x], x], x] /; FreeQ[{a, b, e, f, A, C}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1]
-
Int[csc[(e_.) + (f_.)*(x_)]^2*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(
e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-C)*Csc[e + f*x]*Cot[e + f*x]*((a + b*Csc[e + f*x])^
(m + 1)/(b*f*(m + 3))), x] + Simp[1/(b*(m + 3)) Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*Simp[a*C + b*(C*(m +
2) + A*(m + 3))*Csc[e + f*x] - (2*a*C - b*B*(m + 3))*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, e, f, A, B, C
, m}, x] && NeQ[a^2 - b^2, 0] && !LtQ[m, -1]
-
Int[csc[(e_.) + (f_.)*(x_)]^2*((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))
^(m_), x_Symbol] :> Simp[(-C)*Csc[e + f*x]*Cot[e + f*x]*((a + b*Csc[e + f*x])^(m + 1)/(b*f*(m + 3))), x] + Sim
p[1/(b*(m + 3)) Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*Simp[a*C + b*(C*(m + 2) + A*(m + 3))*Csc[e + f*x] -
2*a*C*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, e, f, A, C, m}, x] && NeQ[a^2 - b^2, 0] && !LtQ[m, -1]
-
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*
Csc[e + f*x])^n/(f*n)), x] - Simp[1/(d*n) Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^(n + 1)*Simp[A*b
*m - a*B*n - (b*B*n + a*(C*n + A*(n + 1)))*Csc[e + f*x] - b*(C*n + A*(m + n + 1))*Csc[e + f*x]^2, x], x], x] /
; FreeQ[{a, b, d, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0] && GtQ[m, 0] && LeQ[n, -1]
-
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b
_.) + (a_))^(m_), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*n)), x] - Sim
p[1/(d*n) Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^(n + 1)*Simp[A*b*m - a*(C*n + A*(n + 1))*Csc[e +
f*x] - b*(C*n + A*(m + n + 1))*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, C}, x] && NeQ[a^2 - b^2
, 0] && GtQ[m, 0] && LeQ[n, -1]
-
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-C)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(
(d*Csc[e + f*x])^n/(f*(m + n + 1))), x] + Simp[1/(m + n + 1) Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x
])^n*Simp[a*A*(m + n + 1) + a*C*n + ((A*b + a*B)*(m + n + 1) + b*C*(m + n))*Csc[e + f*x] + (b*B*(m + n + 1) +
a*C*m)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, n}, x] && NeQ[a^2 - b^2, 0] && GtQ[m, 0] &
& !LeQ[n, -1]
-
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b
_.) + (a_))^(m_), x_Symbol] :> Simp[(-C)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*(m + n + 1
))), x] + Simp[1/(m + n + 1) Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^n*Simp[a*A*(m + n + 1) + a*C*
n + b*(A*(m + n + 1) + C*(m + n))*Csc[e + f*x] + a*C*m*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, A,
C, n}, x] && NeQ[a^2 - b^2, 0] && GtQ[m, 0] && !LeQ[n, -1]
-
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-d)*(A*b^2 - a*b*B + a^2*C)*Cot[e + f*x]*
(a + b*Csc[e + f*x])^(m + 1)*((d*Csc[e + f*x])^(n - 1)/(b*f*(a^2 - b^2)*(m + 1))), x] + Simp[d/(b*(a^2 - b^2)*
(m + 1)) Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 1)*Simp[A*b^2*(n - 1) - a*(b*B - a*C)*(n - 1
) + b*(a*A - b*B + a*C)*(m + 1)*Csc[e + f*x] - (b*(A*b - a*B)*(m + n + 1) + C*(a^2*n + b^2*(m + 1)))*Csc[e + f
*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && GtQ[n, 0]
-
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b
_.) + (a_))^(m_), x_Symbol] :> Simp[(-d)*(A*b^2 + a^2*C)*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*((d*Csc[e +
f*x])^(n - 1)/(b*f*(a^2 - b^2)*(m + 1))), x] + Simp[d/(b*(a^2 - b^2)*(m + 1)) Int[(a + b*Csc[e + f*x])^(m +
1)*(d*Csc[e + f*x])^(n - 1)*Simp[A*b^2*(n - 1) + a^2*C*(n - 1) + a*b*(A + C)*(m + 1)*Csc[e + f*x] - (A*b^2*(m
+ n + 1) + C*(a^2*n + b^2*(m + 1)))*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, C}, x] && NeQ[a^2
- b^2, 0] && LtQ[m, -1] && GtQ[n, 0]
-
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(A*b^2 - a*b*B + a^2*C)*Cot[e + f*x]*(a +
b*Csc[e + f*x])^(m + 1)*((d*Csc[e + f*x])^n/(a*f*(m + 1)*(a^2 - b^2))), x] + Simp[1/(a*(m + 1)*(a^2 - b^2))
Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n*Simp[a*(a*A - b*B + a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C)
*(m + n + 1) - a*(A*b - a*B + b*C)*(m + 1)*Csc[e + f*x] + (A*b^2 - a*b*B + a^2*C)*(m + n + 2)*Csc[e + f*x]^2,
x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, n}, x] && NeQ[a^2 - b^2, 0] && LtQ[m, -1] && !(ILtQ[m + 1/2, 0]
&& ILtQ[n, 0])
-
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b
_.) + (a_))^(m_), x_Symbol] :> Simp[(A*b^2 + a^2*C)*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*((d*Csc[e + f*x]
)^n/(a*f*(m + 1)*(a^2 - b^2))), x] + Simp[1/(a*(m + 1)*(a^2 - b^2)) Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[
e + f*x])^n*Simp[a^2*(A + C)*(m + 1) - (A*b^2 + a^2*C)*(m + n + 1) - a*b*(A + C)*(m + 1)*Csc[e + f*x] + (A*b^2
+ a^2*C)*(m + n + 2)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, C, n}, x] && NeQ[a^2 - b^2, 0] &&
LtQ[m, -1] && !(ILtQ[m + 1/2, 0] && ILtQ[n, 0])
-
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-C)*d*Cot[e + f*x]*(a + b*Csc[e + f*x])^(
m + 1)*((d*Csc[e + f*x])^(n - 1)/(b*f*(m + n + 1))), x] + Simp[d/(b*(m + n + 1)) Int[(a + b*Csc[e + f*x])^m*
(d*Csc[e + f*x])^(n - 1)*Simp[a*C*(n - 1) + (A*b*(m + n + 1) + b*C*(m + n))*Csc[e + f*x] + (b*B*(m + n + 1) -
a*C*n)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, B, C, m}, x] && NeQ[a^2 - b^2, 0] && GtQ[n, 0]
-
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b
_.) + (a_))^(m_), x_Symbol] :> Simp[(-C)*d*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*((d*Csc[e + f*x])^(n - 1)
/(b*f*(m + n + 1))), x] + Simp[d/(b*(m + n + 1)) Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n - 1)*Simp[a*
C*(n - 1) + (A*b*(m + n + 1) + b*C*(m + n))*Csc[e + f*x] - a*C*n*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d,
e, f, A, C, m}, x] && NeQ[a^2 - b^2, 0] && GtQ[n, 0]
-
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1
)*((d*Csc[e + f*x])^n/(a*f*n)), x] + Simp[1/(a*d*n) Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp
[a*B*n - A*b*(m + n + 1) + a*(A + A*n + C*n)*Csc[e + f*x] + A*b*(m + n + 2)*Csc[e + f*x]^2, x], x], x] /; Free
Q[{a, b, d, e, f, A, B, C, m}, x] && NeQ[a^2 - b^2, 0] && LeQ[n, -1]
-
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b
_.) + (a_))^(m_), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1)*((d*Csc[e + f*x])^n/(a*f*n)),
x] + Simp[1/(a*d*n) Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[(-A)*b*(m + n + 1) + a*(A + A*n
+ C*n)*Csc[e + f*x] + A*b*(m + n + 2)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, C, m}, x] && NeQ
[a^2 - b^2, 0] && LeQ[n, -1]
-
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d
_.)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))), x_Symbol] :> Simp[(A*b^2 - a*b*B + a^2*C)/(a^2*d^2) Int[(d*Csc
[e + f*x])^(3/2)/(a + b*Csc[e + f*x]), x], x] + Simp[1/a^2 Int[(a*A - (A*b - a*B)*Csc[e + f*x])/Sqrt[d*Csc[e
+ f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0]
-
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*(csc[(e_.) + (f_.)*(x_)]*(b
_.) + (a_))), x_Symbol] :> Simp[(A*b^2 + a^2*C)/(a^2*d^2) Int[(d*Csc[e + f*x])^(3/2)/(a + b*Csc[e + f*x]), x
], x] + Simp[1/a^2 Int[(a*A - A*b*Csc[e + f*x])/Sqrt[d*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, C},
x] && NeQ[a^2 - b^2, 0]
-
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d
_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]), x_Symbol] :> Simp[C/d^2 Int[(d*Csc[e + f*x])^(3/2)/Sqrt[a
+ b*Csc[e + f*x]], x], x] + Int[(A + B*Csc[e + f*x])/(Sqrt[d*Csc[e + f*x]]*Sqrt[a + b*Csc[e + f*x]]), x] /; Fr
eeQ[{a, b, d, e, f, A, B, C}, x] && NeQ[a^2 - b^2, 0]
-
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)
]*(b_.) + (a_)]), x_Symbol] :> Simp[C/d^2 Int[(d*Csc[e + f*x])^(3/2)/Sqrt[a + b*Csc[e + f*x]], x], x] + Simp
[A Int[1/(Sqrt[d*Csc[e + f*x]]*Sqrt[a + b*Csc[e + f*x]]), x], x] /; FreeQ[{a, b, d, e, f, A, C}, x] && NeQ[a
^2 - b^2, 0]
-
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.), x_Symbol] :> Unintegrable[(d*Csc[e + f*x])^n*(a + b*Csc[e
+ f*x])^m*(A + B*Csc[e + f*x] + C*Csc[e + f*x]^2), x] /; FreeQ[{a, b, d, e, f, A, B, C, m, n}, x]
-
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.)*(csc[(e_.) + (f_.)*(x_)]*(
b_.) + (a_))^(m_.), x_Symbol] :> Unintegrable[(d*Csc[e + f*x])^n*(a + b*Csc[e + f*x])^m*(A + C*Csc[e + f*x]^2)
, x] /; FreeQ[{a, b, d, e, f, A, C, m, n}, x]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sec[(e_.)
+ (f_.)*(x_)] + (C_.)*sec[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[d^(m + 2) Int[(b + a*Cos[e + f*x])^m*(d
*Cos[e + f*x])^(n - m - 2)*(C + B*Cos[e + f*x] + A*Cos[e + f*x]^2), x], x] /; FreeQ[{a, b, d, e, f, A, B, C, n
}, x] && !IntegerQ[n] && IntegerQ[m]
-
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) +
(a_))^(m_.)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[d^(m + 2) Int[(b + a*Sin[e + f*x])^m*(d
*Sin[e + f*x])^(n - m - 2)*(C + B*Sin[e + f*x] + A*Sin[e + f*x]^2), x], x] /; FreeQ[{a, b, d, e, f, A, B, C, n
}, x] && !IntegerQ[n] && IntegerQ[m]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (C_.)*sec[(e_.)
+ (f_.)*(x_)]^2), x_Symbol] :> Simp[d^(m + 2) Int[(b + a*Cos[e + f*x])^m*(d*Cos[e + f*x])^(n - m - 2)*(C +
A*Cos[e + f*x]^2), x], x] /; FreeQ[{a, b, d, e, f, A, C, n}, x] && !IntegerQ[n] && IntegerQ[m]
-
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.)*((d_.)*sin[(e_.) +
(f_.)*(x_)])^(n_), x_Symbol] :> Simp[d^(m + 2) Int[(b + a*Sin[e + f*x])^m*(d*Sin[e + f*x])^(n - m - 2)*(C +
A*Sin[e + f*x]^2), x], x] /; FreeQ[{a, b, d, e, f, A, C, n}, x] && !IntegerQ[n] && IntegerQ[m]
-
Int[((c_.)*((d_.)*sec[(e_.) + (f_.)*(x_)])^(p_))^(n_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B
_.)*sec[(e_.) + (f_.)*(x_)] + (C_.)*sec[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[c^IntPart[n]*((c*(d*Sec[e +
f*x])^p)^FracPart[n]/(d*Sec[e + f*x])^(p*FracPart[n])) Int[(a + b*Sec[e + f*x])^m*(d*Sec[e + f*x])^(n*p)*(A
+ B*Sec[e + f*x] + C*Sec[e + f*x]^2), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m, n, p}, x] && !IntegerQ[n
]
-
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*((c_.)*(csc[(e_.) + (f_.)*(x_)]*
(d_.))^(p_))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.), x_Symbol] :> Simp[c^IntPart[n]*((c*(d*Csc[e +
f*x])^p)^FracPart[n]/(d*Csc[e + f*x])^(p*FracPart[n])) Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n*p)*(A
+ B*Csc[e + f*x] + C*Csc[e + f*x]^2), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m, n, p}, x] && !IntegerQ[n
]
-
Int[((c_.)*((d_.)*sec[(e_.) + (f_.)*(x_)])^(p_))^(n_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (C
_.)*sec[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[c^IntPart[n]*((c*(d*Sec[e + f*x])^p)^FracPart[n]/(d*Sec[e +
f*x])^(p*FracPart[n])) Int[(a + b*Sec[e + f*x])^m*(d*Sec[e + f*x])^(n*p)*(A + C*Sec[e + f*x]^2), x], x] /; F
reeQ[{a, b, c, d, e, f, A, C, m, n, p}, x] && !IntegerQ[n]
-
Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*((c_.)*(csc[(e_.) + (f_.)*(x_)]*(d_.))^(p_))^(n_)*(csc[(e_.) + (
f_.)*(x_)]*(b_.) + (a_))^(m_.), x_Symbol] :> Simp[c^IntPart[n]*((c*(d*Csc[e + f*x])^p)^FracPart[n]/(d*Csc[e +
f*x])^(p*FracPart[n])) Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n*p)*(A + C*Csc[e + f*x]^2), x], x] /; F
reeQ[{a, b, c, d, e, f, A, C, m, n, p}, x] && !IntegerQ[n]
-
Int[(u_.)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^2)^(p_), x_Symbol] :> Simp[b^p Int[ActivateTrig[u*tan[e + f*
x]^(2*p)], x], x] /; FreeQ[{a, b, e, f, p}, x] && EqQ[a + b, 0] && IntegerQ[p]
-
Int[(u_.)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^2)^(p_), x_Symbol] :> Int[ActivateTrig[u*(b*tan[e + f*x]^2)^p]
, x] /; FreeQ[{a, b, e, f, p}, x] && EqQ[a + b, 0]
-
Int[((b_.)*sec[(e_.) + (f_.)*(x_)]^2)^(p_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Simp[b*(ff/
f) Subst[Int[(b + b*ff^2*x^2)^(p - 1), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{b, e, f, p}, x] && !IntegerQ[
p]
-
Int[((b_.)*((c_.)*sec[(e_.) + (f_.)*(x_)])^(n_))^(p_), x_Symbol] :> Simp[b^IntPart[p]*((b*(c*Sec[e + f*x])^n)^
FracPart[p]/(c*Sec[e + f*x])^(n*FracPart[p])) Int[(c*Sec[e + f*x])^(n*p), x], x] /; FreeQ[{b, c, e, f, n, p}
, x] && !IntegerQ[p]
-
Int[((b_.)*sec[(e_.) + (f_.)*(x_)]^2)^(p_.)*tan[(e_.) + (f_.)*(x_)]^(m_.), x_Symbol] :> Simp[b/(2*f) Subst[I
nt[(-1 + x)^((m - 1)/2)*(b*x)^(p - 1), x], x, Sec[e + f*x]^2], x] /; FreeQ[{b, e, f, p}, x] && !IntegerQ[p] &
& IntegerQ[(m - 1)/2]
-
Int[(u_.)*((b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_), x_Symbol] :> With[{ff = FreeFactors[Sec[e + f*x], x]}, Si
mp[(b*ff^n)^IntPart[p]*((b*Sec[e + f*x]^n)^FracPart[p]/(Sec[e + f*x]/ff)^(n*FracPart[p])) Int[ActivateTrig[u
]*(Sec[e + f*x]/ff)^(n*p), x], x]] /; FreeQ[{b, e, f, n, p}, x] && !IntegerQ[p] && IntegerQ[n] && (EqQ[u, 1]
|| MatchQ[u, ((d_.)*(trig_)[e + f*x])^(m_.) /; FreeQ[{d, m}, x] && MemberQ[{sin, cos, tan, cot, sec, csc}, tri
g]])
-
Int[(u_.)*((b_.)*((c_.)*sec[(e_.) + (f_.)*(x_)])^(n_))^(p_), x_Symbol] :> Simp[b^IntPart[p]*((b*(c*Sec[e + f*x
])^n)^FracPart[p]/(c*Sec[e + f*x])^(n*FracPart[p])) Int[ActivateTrig[u]*(c*Sec[e + f*x])^(n*p), x], x] /; Fr
eeQ[{b, c, e, f, n, p}, x] && !IntegerQ[p] && !IntegerQ[n] && (EqQ[u, 1] || MatchQ[u, ((d_.)*(trig_)[e + f*x
])^(m_.) /; FreeQ[{d, m}, x] && MemberQ[{sin, cos, tan, cot, sec, csc}, trig]])
-
Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^2)^(-1), x_Symbol] :> Simp[x/a, x] - Simp[b/a Int[1/(b + a*Cos[e +
f*x]^2), x], x] /; FreeQ[{a, b, e, f}, x] && NeQ[a + b, 0]
-
Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^2)^(p_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Simp
[ff/f Subst[Int[(a + b + b*ff^2*x^2)^p/(1 + ff^2*x^2), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}
, x] && NeQ[a + b, 0] && NeQ[p, -1]
-
Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^4)^(p_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Simp
[ff/f Subst[Int[(a + b + 2*b*ff^2*x^2 + b*ff^4*x^4)^p/(1 + ff^2*x^2), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[
{a, b, e, f, p}, x] && IntegerQ[2*p]
-
Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_), x_Symbol] :> With[{ff = FreeFactors[Tan[e + f*x], x]}, S
imp[ff/f Subst[Int[(a + b*(1 + ff^2*x^2)^(n/2))^p/(1 + ff^2*x^2), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a,
b, e, f, p}, x] && IntegerQ[n/2] && IGtQ[p, -2]
-
Int[((a_) + (b_.)*((c_.)*sec[(e_.) + (f_.)*(x_)])^(n_))^(p_), x_Symbol] :> Unintegrable[(a + b*(c*Sec[e + f*x]
)^n)^p, x] /; FreeQ[{a, b, c, e, f, n, p}, x]
-
Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*sin[(e_.) + (f_.)*(x_)]^(m_), x_Symbol] :> With[{ff = Fr
eeFactors[Tan[e + f*x], x]}, Simp[ff^(m + 1)/f Subst[Int[x^m*(ExpandToSum[a + b*(1 + ff^2*x^2)^(n/2), x]^p/(
1 + ff^2*x^2)^(m/2 + 1)), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] && Intege
rQ[n/2]
-
Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*sin[(e_.) + (f_.)*(x_)]^(m_.), x_Symbol] :> With[{ff = F
reeFactors[Cos[e + f*x], x]}, Simp[-ff/f Subst[Int[(1 - ff^2*x^2)^((m - 1)/2)*((b + a*(ff*x)^n)^p/(ff*x)^(n*
p)), x], x, Cos[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f}, x] && IntegerQ[(m - 1)/2] && IntegerQ[n] && IntegerQ[
p]
-
Int[((a_) + (b_.)*((c_.)*sec[(e_.) + (f_.)*(x_)])^(n_))^(p_.)*sin[(e_.) + (f_.)*(x_)]^(m_.), x_Symbol] :> With
[{ff = FreeFactors[Cos[e + f*x], x]}, Simp[1/(f*ff^m) Subst[Int[(-1 + ff^2*x^2)^((m - 1)/2)*((a + b*(c*ff*x)
^n)^p/x^(m + 1)), x], x, Sec[e + f*x]/ff], x]] /; FreeQ[{a, b, c, e, f, n, p}, x] && IntegerQ[(m - 1)/2] && (G
tQ[m, 0] || EqQ[n, 2] || EqQ[n, 4])
-
Int[((a_) + (b_.)*((c_.)*sec[(e_.) + (f_.)*(x_)])^(n_))^(p_.)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol]
:> Unintegrable[(a + b*(c*Sec[e + f*x])^n)^p*(d*Sin[e + f*x])^m, x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_.))^(p_.), x_Symbol] :> Simp
[d^(n*p) Int[(d*Cos[e + f*x])^(m - n*p)*(b + a*Cos[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, d, e, f, m, n, p},
x] && !IntegerQ[m] && IntegersQ[n, p]
-
Int[(cos[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*((c_.)*sec[(e_.) + (f_.)*(x_)])^(n_))^(p_), x_Symbol] :
> Simp[(d*Cos[e + f*x])^FracPart[m]*(Sec[e + f*x]/d)^FracPart[m] Int[(a + b*(c*Sec[e + f*x])^n)^p/(Sec[e + f
*x]/d)^m, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && !IntegerQ[m]
-
Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*tan[(e_.) + (f_.)*(x_)]^(m_.), x_Symbol] :> Module[{ff =
FreeFactors[Cos[e + f*x], x]}, Simp[-(f*ff^(m + n*p - 1))^(-1) Subst[Int[(1 - ff^2*x^2)^((m - 1)/2)*((b + a
*(ff*x)^n)^p/x^(m + n*p)), x], x, Cos[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, n}, x] && IntegerQ[(m - 1)/2] &&
IntegerQ[n] && IntegerQ[p]
-
Int[((a_) + (b_.)*((c_.)*sec[(e_.) + (f_.)*(x_)])^(n_))^(p_.)*tan[(e_.) + (f_.)*(x_)]^(m_.), x_Symbol] :> With
[{ff = FreeFactors[Sec[e + f*x], x]}, Simp[1/f Subst[Int[(-1 + ff^2*x^2)^((m - 1)/2)*((a + b*(c*ff*x)^n)^p/x
), x], x, Sec[e + f*x]/ff], x]] /; FreeQ[{a, b, c, e, f, n, p}, x] && IntegerQ[(m - 1)/2] && (GtQ[m, 0] || EqQ
[n, 2] || EqQ[n, 4] || IGtQ[p, 0] || IntegersQ[2*n, p])
-
Int[((b_.)*sec[(e_.) + (f_.)*(x_)]^2)^(p_.)*((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> With[{ff = Free
Factors[Tan[e + f*x], x]}, Simp[b*(ff/f) Subst[Int[(d*ff*x)^m*(b + b*ff^2*x^2)^(p - 1), x], x, Tan[e + f*x]/
ff], x]] /; FreeQ[{b, d, e, f, m, p}, x]
-
Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> With[
{ff = FreeFactors[Tan[e + f*x], x]}, Simp[ff/f Subst[Int[(d*ff*x)^m*((a + b*(1 + ff^2*x^2)^(n/2))^p/(1 + ff^
2*x^2)), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, d, e, f, m, p}, x] && IntegerQ[n/2] && (IntegerQ[m/2] ||
EqQ[n, 2])
-
Int[((b_.)*((c_.)*sec[(e_.) + (f_.)*(x_)])^(n_))^(p_.)*((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp
[d*(d*Tan[e + f*x])^(m - 1)*((b*(c*Sec[e + f*x])^n)^p/(f*(p*n + m - 1))), x] - Simp[d^2*((m - 1)/(p*n + m - 1)
) Int[(d*Tan[e + f*x])^(m - 2)*(b*(c*Sec[e + f*x])^n)^p, x], x] /; FreeQ[{b, c, d, e, f, p, n}, x] && GtQ[m,
1] && NeQ[p*n + m - 1, 0] && IntegersQ[2*p*n, 2*m]
-
Int[((b_.)*((c_.)*sec[(e_.) + (f_.)*(x_)])^(n_))^(p_.)*((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp
[(d*Tan[e + f*x])^(m + 1)*((b*(c*Sec[e + f*x])^n)^p/(d*f*(m + 1))), x] - Simp[(p*n + m + 1)/(d^2*(m + 1)) In
t[(d*Tan[e + f*x])^(m + 2)*(b*(c*Sec[e + f*x])^n)^p, x], x] /; FreeQ[{b, c, d, e, f, p, n}, x] && LtQ[m, -1] &
& NeQ[p*n + m + 1, 0] && IntegersQ[2*p*n, 2*m]
-
Int[((a_) + (b_.)*((c_.)*sec[(e_.) + (f_.)*(x_)])^(n_))^(p_.)*((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol]
:> Unintegrable[(a + b*(c*Sec[e + f*x])^n)^p*(d*Tan[e + f*x])^m, x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x]
-
Int[(cot[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*((c_.)*sec[(e_.) + (f_.)*(x_)])^(n_))^(p_), x_Symbol] :
> Simp[(d*Cot[e + f*x])^FracPart[m]*(Tan[e + f*x]/d)^FracPart[m] Int[(a + b*(c*Sec[e + f*x])^n)^p/(Tan[e + f
*x]/d)^m, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && !IntegerQ[m]
-
Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_), x_Symbol] :> With[{ff = Fre
eFactors[Tan[e + f*x], x]}, Simp[ff/f Subst[Int[(1 + ff^2*x^2)^(m/2 - 1)*ExpandToSum[a + b*(1 + ff^2*x^2)^(n
/2), x]^p, x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2] && IntegerQ[n/2]
-
Int[sec[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_), x_Symbol] :> With[{ff = Fr
eeFactors[Sin[e + f*x], x]}, Simp[ff/f Subst[Int[ExpandToSum[b + a*(1 - ff^2*x^2)^(n/2), x]^p/(1 - ff^2*x^2)
^((m + n*p + 1)/2), x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f}, x] && IntegerQ[(m - 1)/2] && IntegerQ[
n/2] && IntegerQ[p]
-
Int[sec[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_), x_Symbol] :> With[{ff = Fr
eeFactors[Sin[e + f*x], x]}, Simp[ff/f Subst[Int[(a + b/(1 - ff^2*x^2)^(n/2))^p/(1 - ff^2*x^2)^((m + 1)/2),
x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[(m - 1)/2] && IntegerQ[n/2] && !Integer
Q[p]
-
Int[sec[(e_.) + (f_.)*(x_)]^(m_.)*((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_), x_Symbol] :> Int[ExpandTri
g[sec[e + f*x]^m*(a + b*sec[e + f*x]^n)^p, x], x] /; FreeQ[{a, b, e, f}, x] && IntegersQ[m, n, p]
-
Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*sec[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol]
:> Unintegrable[(d*Sec[e + f*x])^m*(a + b*(c*Sec[e + f*x])^n)^p, x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*((c_.)*sec[(e_.) + (f_.)*(x_)])^(n_))^(p_), x_Symbol] :
> Simp[(d*Csc[e + f*x])^FracPart[m]*(Sin[e + f*x]/d)^FracPart[m] Int[(a + b*(c*Sec[e + f*x])^n)^p/(Sin[e + f
*x]/d)^m, x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && !IntegerQ[m]
-
Int[((a_.) + (b_.)*sec[(d_.) + (e_.)*(x_)]^(n_.) + (c_.)*sec[(d_.) + (e_.)*(x_)]^(n2_.))^(p_.), x_Symbol] :> S
imp[1/(4^p*c^p) Int[(b + 2*c*Sec[d + e*x]^n)^(2*p), x], x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[n2, 2*n] &
& EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]
-
Int[((a_.) + csc[(d_.) + (e_.)*(x_)]^(n_.)*(b_.) + csc[(d_.) + (e_.)*(x_)]^(n2_.)*(c_.))^(p_.), x_Symbol] :> S
imp[1/(4^p*c^p) Int[(b + 2*c*Csc[d + e*x]^n)^(2*p), x], x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[n2, 2*n] &
& EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]
-
Int[((a_.) + (b_.)*sec[(d_.) + (e_.)*(x_)]^(n_.) + (c_.)*sec[(d_.) + (e_.)*(x_)]^(n2_.))^(p_), x_Symbol] :> Si
mp[(a + b*Sec[d + e*x]^n + c*Sec[d + e*x]^(2*n))^p/(b + 2*c*Sec[d + e*x]^n)^(2*p) Int[u*(b + 2*c*Sec[d + e*x
]^n)^(2*p), x], x] /; FreeQ[{a, b, c, d, e, n, p}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && !IntegerQ[p]
-
Int[((a_.) + csc[(d_.) + (e_.)*(x_)]^(n_.)*(b_.) + csc[(d_.) + (e_.)*(x_)]^(n2_.)*(c_.))^(p_), x_Symbol] :> Si
mp[(a + b*Csc[d + e*x]^n + c*Csc[d + e*x]^(2*n))^p/(b + 2*c*Csc[d + e*x]^n)^(2*p) Int[u*(b + 2*c*Csc[d + e*x
]^n)^(2*p), x], x] /; FreeQ[{a, b, c, d, e, n, p}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && !IntegerQ[p]
-
Int[((a_.) + (b_.)*sec[(d_.) + (e_.)*(x_)]^(n_.) + (c_.)*sec[(d_.) + (e_.)*(x_)]^(n2_.))^(-1), x_Symbol] :> Mo
dule[{q = Rt[b^2 - 4*a*c, 2]}, Simp[2*(c/q) Int[1/(b - q + 2*c*Sec[d + e*x]^n), x], x] - Simp[2*(c/q) Int[
1/(b + q + 2*c*Sec[d + e*x]^n), x], x]] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0]
-
Int[((a_.) + csc[(d_.) + (e_.)*(x_)]^(n_.)*(b_.) + csc[(d_.) + (e_.)*(x_)]^(n2_.)*(c_.))^(-1), x_Symbol] :> Mo
dule[{q = Rt[b^2 - 4*a*c, 2]}, Simp[2*(c/q) Int[1/(b - q + 2*c*Csc[d + e*x]^n), x], x] - Simp[2*(c/q) Int[
1/(b + q + 2*c*Csc[d + e*x]^n), x], x]] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0]
-
Int[((a_.) + (b_.)*sec[(d_.) + (e_.)*(x_)]^(n_.) + (c_.)*sec[(d_.) + (e_.)*(x_)]^(n2_))^(p_.)*sin[(d_.) + (e_.
)*(x_)]^(m_.), x_Symbol] :> Module[{f = FreeFactors[Cos[d + e*x], x]}, Simp[-f/e Subst[Int[(1 - f^2*x^2)^((m
- 1)/2)*((b + a*(f*x)^n)^p/(f*x)^(n*p)), x], x, Cos[d + e*x]/f], x]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[n2,
2*n] && IntegerQ[(m - 1)/2] && IntegersQ[n, p]
-
Int[cos[(d_.) + (e_.)*(x_)]^(m_.)*((a_.) + csc[(d_.) + (e_.)*(x_)]^(n_.)*(b_.) + csc[(d_.) + (e_.)*(x_)]^(n2_)
*(c_.))^(p_.), x_Symbol] :> Module[{f = FreeFactors[Sin[d + e*x], x]}, Simp[f/e Subst[Int[(1 - f^2*x^2)^((m
- 1)/2)*((b + a*(f*x)^n)^p/(f*x)^(n*p)), x], x, Sin[d + e*x]/f], x]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[n2, 2
*n] && IntegerQ[(m - 1)/2] && IntegersQ[n, p]
-
Int[((a_.) + (b_.)*sec[(d_.) + (e_.)*(x_)]^(n_) + (c_.)*sec[(d_.) + (e_.)*(x_)]^(n2_))^(p_.)*sin[(d_.) + (e_.)
*(x_)]^(m_), x_Symbol] :> Module[{f = FreeFactors[Tan[d + e*x], x]}, Simp[f^(m + 1)/e Subst[Int[x^m*(ExpandT
oSum[a + b*(1 + f^2*x^2)^(n/2) + c*(1 + f^2*x^2)^n, x]^p/(1 + f^2*x^2)^(m/2 + 1)), x], x, Tan[d + e*x]/f], x]]
/; FreeQ[{a, b, c, d, e, p}, x] && EqQ[n2, 2*n] && IntegerQ[m/2] && IntegerQ[n/2]
-
Int[cos[(d_.) + (e_.)*(x_)]^(m_)*((a_.) + csc[(d_.) + (e_.)*(x_)]^(n_)*(b_.) + csc[(d_.) + (e_.)*(x_)]^(n2_)*(
c_.))^(p_.), x_Symbol] :> Module[{f = FreeFactors[Cot[d + e*x], x]}, Simp[-f^(m + 1)/e Subst[Int[x^m*(Expand
ToSum[a + b*(1 + f^2*x^2)^(n/2) + c*(1 + f^2*x^2)^n, x]^p/(1 + f^2*x^2)^(m/2 + 1)), x], x, Cot[d + e*x]/f], x]
] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[n2, 2*n] && IntegerQ[m/2] && IntegerQ[n/2]
-
Int[sec[(d_.) + (e_.)*(x_)]^(m_.)*((a_.) + (b_.)*sec[(d_.) + (e_.)*(x_)]^(n_.) + (c_.)*sec[(d_.) + (e_.)*(x_)]
^(n2_.))^(p_), x_Symbol] :> Simp[1/(4^p*c^p) Int[Sec[d + e*x]^m*(b + 2*c*Sec[d + e*x]^n)^(2*p), x], x] /; Fr
eeQ[{a, b, c, d, e, m, n}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]
-
Int[csc[(d_.) + (e_.)*(x_)]^(m_.)*((a_.) + csc[(d_.) + (e_.)*(x_)]^(n_.)*(b_.) + csc[(d_.) + (e_.)*(x_)]^(n2_.
)*(c_.))^(p_), x_Symbol] :> Simp[1/(4^p*c^p) Int[Csc[d + e*x]^m*(b + 2*c*Csc[d + e*x]^n)^(2*p), x], x] /; Fr
eeQ[{a, b, c, d, e, m, n}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]
-
Int[sec[(d_.) + (e_.)*(x_)]^(m_.)*((a_.) + (b_.)*sec[(d_.) + (e_.)*(x_)]^(n_.) + (c_.)*sec[(d_.) + (e_.)*(x_)]
^(n2_.))^(p_), x_Symbol] :> Simp[(a + b*Sec[d + e*x]^n + c*Sec[d + e*x]^(2*n))^p/(b + 2*c*Sec[d + e*x]^n)^(2*p
) Int[Sec[d + e*x]^m*(b + 2*c*Sec[d + e*x]^n)^(2*p), x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && EqQ[n2,
2*n] && EqQ[b^2 - 4*a*c, 0] && !IntegerQ[p]
-
Int[csc[(d_.) + (e_.)*(x_)]^(m_.)*((a_.) + csc[(d_.) + (e_.)*(x_)]^(n_.)*(b_.) + csc[(d_.) + (e_.)*(x_)]^(n2_.
)*(c_.))^(p_), x_Symbol] :> Simp[(a + b*Csc[d + e*x]^n + c*Csc[d + e*x]^(2*n))^p/(b + 2*c*Csc[d + e*x]^n)^(2*p
) Int[Csc[d + e*x]^m*(b + 2*c*Csc[d + e*x]^n)^(2*p), x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && EqQ[n2,
2*n] && EqQ[b^2 - 4*a*c, 0] && !IntegerQ[p]
-
Int[sec[(d_.) + (e_.)*(x_)]^(m_.)*((a_.) + (b_.)*sec[(d_.) + (e_.)*(x_)]^(n_.) + (c_.)*sec[(d_.) + (e_.)*(x_)]
^(n2_.))^(p_), x_Symbol] :> Int[ExpandTrig[sec[d + e*x]^m*(a + b*sec[d + e*x]^n + c*sec[d + e*x]^(2*n))^p, x],
x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[n2, 2*n] && IntegersQ[m, n, p]
-
Int[csc[(d_.) + (e_.)*(x_)]^(m_.)*((a_.) + csc[(d_.) + (e_.)*(x_)]^(n_.)*(b_.) + csc[(d_.) + (e_.)*(x_)]^(n2_.
)*(c_.))^(p_), x_Symbol] :> Int[ExpandTrig[csc[d + e*x]^m*(a + b*csc[d + e*x]^n + c*csc[d + e*x]^(2*n))^p, x],
x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[n2, 2*n] && IntegersQ[m, n, p]
-
Int[((a_) + (b_.)*sec[(d_.) + (e_.)*(x_)]^(n_.) + (c_.)*sec[(d_.) + (e_.)*(x_)]^(n2_.))^(p_.)*tan[(d_.) + (e_.
)*(x_)]^(m_.), x_Symbol] :> Module[{f = FreeFactors[Cos[d + e*x], x]}, Simp[-(e*f^(m + n*p - 1))^(-1) Subst[
Int[(1 - f^2*x^2)^((m - 1)/2)*((c + b*(f*x)^n + c*(f*x)^(2*n))^p/x^(m + 2*n*p)), x], x, Cos[d + e*x]/f], x]] /
; FreeQ[{a, b, c, d, e, n}, x] && EqQ[n2, 2*n] && IntegerQ[(m - 1)/2] && IntegerQ[n] && IntegerQ[p]
-
Int[cot[(d_.) + (e_.)*(x_)]^(m_.)*(csc[(d_.) + (e_.)*(x_)]^(n_.)*(b_.) + (a_) + (c_.)*sec[(d_.) + (e_.)*(x_)]^
(n2_.))^(p_.), x_Symbol] :> Module[{f = FreeFactors[Sin[d + e*x], x]}, Simp[1/(e*f^(m + n*p - 1)) Subst[Int[
(1 - f^2*x^2)^((m - 1)/2)*((c + b*(f*x)^n + c*(f*x)^(2*n))^p/x^(m + 2*n*p)), x], x, Sin[d + e*x]/f], x]] /; Fr
eeQ[{a, b, c, d, e, n}, x] && EqQ[n2, 2*n] && IntegerQ[(m - 1)/2] && IntegerQ[n] && IntegerQ[p]
-
Int[((a_) + (c_.)*sec[(d_.) + (e_.)*(x_)]^(n2_.) + (b_.)*sec[(d_.) + (e_.)*(x_)]^(n_))^(p_.)*tan[(d_.) + (e_.)
*(x_)]^(m_.), x_Symbol] :> Module[{f = FreeFactors[Tan[d + e*x], x]}, Simp[f^(m + 1)/e Subst[Int[x^m*(Expand
ToSum[a + b*(1 + f^2*x^2)^(n/2) + c*(1 + f^2*x^2)^n, x]^p/(1 + f^2*x^2)), x], x, Tan[d + e*x]/f], x]] /; FreeQ
[{a, b, c, d, e}, x] && EqQ[n2, 2*n] && IntegerQ[m/2] && IntegerQ[n/2]
-
Int[cot[(d_.) + (e_.)*(x_)]^(m_.)*(csc[(d_.) + (e_.)*(x_)]^(n_)*(b_.) + (a_) + (c_.)*sec[(d_.) + (e_.)*(x_)]^(
n2_.))^(p_.), x_Symbol] :> Module[{f = FreeFactors[Cot[d + e*x], x]}, Simp[-f^(m + 1)/e Subst[Int[x^m*(Expan
dToSum[a + b*(1 + f^2*x^2)^(n/2) + c*(1 + f^2*x^2)^n, x]^p/(1 + f^2*x^2)), x], x, Cot[d + e*x]/f], x]] /; Free
Q[{a, b, c, d, e}, x] && EqQ[n2, 2*n] && IntegerQ[m/2] && IntegerQ[n/2]
-
Int[((A_) + (B_.)*sec[(d_.) + (e_.)*(x_)])*((a_) + (b_.)*sec[(d_.) + (e_.)*(x_)] + (c_.)*sec[(d_.) + (e_.)*(x_
)]^2)^(n_), x_Symbol] :> Simp[1/(4^n*c^n) Int[(A + B*Sec[d + e*x])*(b + 2*c*Sec[d + e*x])^(2*n), x], x] /; F
reeQ[{a, b, c, d, e, A, B}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[n]
-
Int[(csc[(d_.) + (e_.)*(x_)]*(b_.) + csc[(d_.) + (e_.)*(x_)]^2*(c_.) + (a_))^(n_)*(csc[(d_.) + (e_.)*(x_)]*(B_
.) + (A_)), x_Symbol] :> Simp[1/(4^n*c^n) Int[(A + B*Csc[d + e*x])*(b + 2*c*Csc[d + e*x])^(2*n), x], x] /; F
reeQ[{a, b, c, d, e, A, B}, x] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[n]
-
Int[((A_) + (B_.)*sec[(d_.) + (e_.)*(x_)])*((a_) + (b_.)*sec[(d_.) + (e_.)*(x_)] + (c_.)*sec[(d_.) + (e_.)*(x_
)]^2)^(n_), x_Symbol] :> Simp[(a + b*Sec[d + e*x] + c*Sec[d + e*x]^2)^n/(b + 2*c*Sec[d + e*x])^(2*n) Int[(A
+ B*Sec[d + e*x])*(b + 2*c*Sec[d + e*x])^(2*n), x], x] /; FreeQ[{a, b, c, d, e, A, B}, x] && EqQ[b^2 - 4*a*c,
0] && !IntegerQ[n]
-
Int[(csc[(d_.) + (e_.)*(x_)]*(b_.) + csc[(d_.) + (e_.)*(x_)]^2*(c_.) + (a_))^(n_)*(csc[(d_.) + (e_.)*(x_)]*(B_
.) + (A_)), x_Symbol] :> Simp[(a + b*Csc[d + e*x] + c*Csc[d + e*x]^2)^n/(b + 2*c*Csc[d + e*x])^(2*n) Int[(A
+ B*Csc[d + e*x])*(b + 2*c*Csc[d + e*x])^(2*n), x], x] /; FreeQ[{a, b, c, d, e, A, B}, x] && EqQ[b^2 - 4*a*c,
0] && !IntegerQ[n]
-
Int[((A_) + (B_.)*sec[(d_.) + (e_.)*(x_)])/((a_.) + (b_.)*sec[(d_.) + (e_.)*(x_)] + (c_.)*sec[(d_.) + (e_.)*(x
_)]^2), x_Symbol] :> Module[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(B + (b*B - 2*A*c)/q) Int[1/(b + q + 2*c*Sec[d +
e*x]), x], x] + Simp[(B - (b*B - 2*A*c)/q) Int[1/(b - q + 2*c*Sec[d + e*x]), x], x]] /; FreeQ[{a, b, c, d, e
, A, B}, x] && NeQ[b^2 - 4*a*c, 0]
-
Int[(csc[(d_.) + (e_.)*(x_)]*(B_.) + (A_))/((a_.) + csc[(d_.) + (e_.)*(x_)]*(b_.) + csc[(d_.) + (e_.)*(x_)]^2*
(c_.)), x_Symbol] :> Module[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(B + (b*B - 2*A*c)/q) Int[1/(b + q + 2*c*Csc[d +
e*x]), x], x] + Simp[(B - (b*B - 2*A*c)/q) Int[1/(b - q + 2*c*Csc[d + e*x]), x], x]] /; FreeQ[{a, b, c, d, e
, A, B}, x] && NeQ[b^2 - 4*a*c, 0]
-
Int[((A_) + (B_.)*sec[(d_.) + (e_.)*(x_)])*((a_.) + (b_.)*sec[(d_.) + (e_.)*(x_)] + (c_.)*sec[(d_.) + (e_.)*(x
_)]^2)^(n_), x_Symbol] :> Int[ExpandTrig[(A + B*sec[d + e*x])*(a + b*sec[d + e*x] + c*sec[d + e*x]^2)^n, x], x
] /; FreeQ[{a, b, c, d, e, A, B}, x] && NeQ[b^2 - 4*a*c, 0] && IntegerQ[n]
-
Int[((a_.) + csc[(d_.) + (e_.)*(x_)]*(b_.) + csc[(d_.) + (e_.)*(x_)]^2*(c_.))^(n_)*(csc[(d_.) + (e_.)*(x_)]*(B
_.) + (A_)), x_Symbol] :> Int[ExpandTrig[(A + B*csc[d + e*x])*(a + b*csc[d + e*x] + c*csc[d + e*x]^2)^n, x], x
] /; FreeQ[{a, b, c, d, e, A, B}, x] && NeQ[b^2 - 4*a*c, 0] && IntegerQ[n]
-
Int[csc[(e_.) + Pi*(k_.) + (Complex[0, fz_])*(f_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[-2*(c +
d*x)^m*(ArcTanh[E^((-I)*e + f*fz*x)/E^(I*k*Pi)]/(f*fz*I)), x] + (-Simp[d*(m/(f*fz*I)) Int[(c + d*x)^(m - 1)
*Log[1 - E^((-I)*e + f*fz*x)/E^(I*k*Pi)], x], x] + Simp[d*(m/(f*fz*I)) Int[(c + d*x)^(m - 1)*Log[1 + E^((-I)
*e + f*fz*x)/E^(I*k*Pi)], x], x]) /; FreeQ[{c, d, e, f, fz}, x] && IntegerQ[2*k] && IGtQ[m, 0]
-
Int[csc[(e_.) + Pi*(k_.) + (f_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[-2*(c + d*x)^m*(ArcTanh[E
^(I*k*Pi)*E^(I*(e + f*x))]/f), x] + (-Simp[d*(m/f) Int[(c + d*x)^(m - 1)*Log[1 - E^(I*k*Pi)*E^(I*(e + f*x))]
, x], x] + Simp[d*(m/f) Int[(c + d*x)^(m - 1)*Log[1 + E^(I*k*Pi)*E^(I*(e + f*x))], x], x]) /; FreeQ[{c, d, e
, f}, x] && IntegerQ[2*k] && IGtQ[m, 0]
-
Int[csc[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[-2*(c + d*x)^m*(Ar
cTanh[E^((-I)*e + f*fz*x)]/(f*fz*I)), x] + (-Simp[d*(m/(f*fz*I)) Int[(c + d*x)^(m - 1)*Log[1 - E^((-I)*e + f
*fz*x)], x], x] + Simp[d*(m/(f*fz*I)) Int[(c + d*x)^(m - 1)*Log[1 + E^((-I)*e + f*fz*x)], x], x]) /; FreeQ[{
c, d, e, f, fz}, x] && IGtQ[m, 0]
-
Int[csc[(e_.) + (f_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[-2*(c + d*x)^m*(ArcTanh[E^(I*(e + f*
x))]/f), x] + (-Simp[d*(m/f) Int[(c + d*x)^(m - 1)*Log[1 - E^(I*(e + f*x))], x], x] + Simp[d*(m/f) Int[(c
+ d*x)^(m - 1)*Log[1 + E^(I*(e + f*x))], x], x]) /; FreeQ[{c, d, e, f}, x] && IGtQ[m, 0]
-
Int[csc[(e_.) + (f_.)*(x_)]^2*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(-(c + d*x)^m)*(Cot[e + f*x]/f), x
] + Simp[d*(m/f) Int[(c + d*x)^(m - 1)*Cot[e + f*x], x], x] /; FreeQ[{c, d, e, f}, x] && GtQ[m, 0]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(n_)*((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(-b^2)*(c + d*x)*Cot[e + f*x]
*((b*Csc[e + f*x])^(n - 2)/(f*(n - 1))), x] + (-Simp[b^2*d*((b*Csc[e + f*x])^(n - 2)/(f^2*(n - 1)*(n - 2))), x
] + Simp[b^2*((n - 2)/(n - 1)) Int[(c + d*x)*(b*Csc[e + f*x])^(n - 2), x], x]) /; FreeQ[{b, c, d, e, f}, x]
&& GtQ[n, 1] && NeQ[n, 2]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(n_)*((c_.) + (d_.)*(x_))^(m_), x_Symbol] :> Simp[(-b^2)*(c + d*x)^m*Cot[e
+ f*x]*((b*Csc[e + f*x])^(n - 2)/(f*(n - 1))), x] + (-Simp[b^2*d*m*(c + d*x)^(m - 1)*((b*Csc[e + f*x])^(n - 2
)/(f^2*(n - 1)*(n - 2))), x] + Simp[b^2*d^2*m*((m - 1)/(f^2*(n - 1)*(n - 2))) Int[(c + d*x)^(m - 2)*(b*Csc[e
+ f*x])^(n - 2), x], x] + Simp[b^2*((n - 2)/(n - 1)) Int[(c + d*x)^m*(b*Csc[e + f*x])^(n - 2), x], x]) /; F
reeQ[{b, c, d, e, f}, x] && GtQ[n, 1] && NeQ[n, 2] && GtQ[m, 1]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(n_)*((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[d*((b*Csc[e + f*x])^n/(f^2*n^
2)), x] + (Simp[(c + d*x)*Cos[e + f*x]*((b*Csc[e + f*x])^(n + 1)/(b*f*n)), x] + Simp[(n + 1)/(b^2*n) Int[(c
+ d*x)*(b*Csc[e + f*x])^(n + 2), x], x]) /; FreeQ[{b, c, d, e, f}, x] && LtQ[n, -1]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(n_)*((c_.) + (d_.)*(x_))^(m_), x_Symbol] :> Simp[d*m*(c + d*x)^(m - 1)*((
b*Csc[e + f*x])^n/(f^2*n^2)), x] + (Simp[(c + d*x)^m*Cos[e + f*x]*((b*Csc[e + f*x])^(n + 1)/(b*f*n)), x] + Sim
p[(n + 1)/(b^2*n) Int[(c + d*x)^m*(b*Csc[e + f*x])^(n + 2), x], x] - Simp[d^2*m*((m - 1)/(f^2*n^2)) Int[(c
+ d*x)^(m - 2)*(b*Csc[e + f*x])^n, x], x]) /; FreeQ[{b, c, d, e, f}, x] && LtQ[n, -1] && GtQ[m, 1]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.))^(n_)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(b*Sin[e + f*x])^n*(b*C
sc[e + f*x])^n Int[(c + d*x)^m/(b*Sin[e + f*x])^n, x], x] /; FreeQ[{b, c, d, e, f, m, n}, x] && !IntegerQ[n
]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[
(c + d*x)^m, (a + b*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && IGtQ[m, 0] && IGtQ[n, 0]
-
Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[
(c + d*x)^m, 1/(Sin[e + f*x]^n/(b + a*Sin[e + f*x])^n), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && ILtQ[n, 0] &
& IGtQ[m, 0]
-
Int[csc[(e_.) + (f_.)*(x_)]^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[If[MatchQ[f, (f1_.)*(Complex[0
, j_])], If[MatchQ[e, (e1_.) + Pi/2], Unintegrable[(c + d*x)^m*Sech[I*(e - Pi/2) + I*f*x]^n, x], (-I)^n*Uninte
grable[(c + d*x)^m*Csch[(-I)*e - I*f*x]^n, x]], If[MatchQ[e, (e1_.) + Pi/2], Unintegrable[(c + d*x)^m*Sec[e -
Pi/2 + f*x]^n, x], Unintegrable[(c + d*x)^m*Csc[e + f*x]^n, x]]], x] /; FreeQ[{c, d, e, f, m, n}, x] && Intege
rQ[n]
-
Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Unintegrable[(c + d
*x)^m*(a + b*Csc[e + f*x])^n, x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]
-
Int[(u_)^(m_.)*((a_.) + (b_.)*Sec[v_])^(n_.), x_Symbol] :> Int[ExpandToSum[u, x]^m*(a + b*Sec[ExpandToSum[v, x
]])^n, x] /; FreeQ[{a, b, m, n}, x] && LinearQ[{u, v}, x] && !LinearMatchQ[{u, v}, x]
-
Int[((a_.) + Csc[v_]*(b_.))^(n_.)*(u_)^(m_.), x_Symbol] :> Int[ExpandToSum[u, x]^m*(a + b*Csc[ExpandToSum[v, x
]])^n, x] /; FreeQ[{a, b, m, n}, x] && LinearQ[{u, v}, x] && !LinearMatchQ[{u, v}, x]
-
Int[((a_.) + (b_.)*Sec[(c_.) + (d_.)*(x_)^(n_)])^(p_.), x_Symbol] :> Simp[1/n Subst[Int[x^(1/n - 1)*(a + b*S
ec[c + d*x])^p, x], x, x^n], x] /; FreeQ[{a, b, c, d, p}, x] && IGtQ[1/n, 0] && IntegerQ[p]
-
Int[((a_.) + Csc[(c_.) + (d_.)*(x_)^(n_)]*(b_.))^(p_.), x_Symbol] :> Simp[1/n Subst[Int[x^(1/n - 1)*(a + b*C
sc[c + d*x])^p, x], x, x^n], x] /; FreeQ[{a, b, c, d, p}, x] && IGtQ[1/n, 0] && IntegerQ[p]
-
Int[((a_.) + (b_.)*Sec[(c_.) + (d_.)*(x_)^(n_)])^(p_.), x_Symbol] :> Unintegrable[(a + b*Sec[c + d*x^n])^p, x]
/; FreeQ[{a, b, c, d, n, p}, x]
-
Int[((a_.) + Csc[(c_.) + (d_.)*(x_)^(n_)]*(b_.))^(p_.), x_Symbol] :> Unintegrable[(a + b*Csc[c + d*x^n])^p, x]
/; FreeQ[{a, b, c, d, n, p}, x]
-
Int[((a_.) + (b_.)*Sec[(c_.) + (d_.)*(u_)^(n_)])^(p_.), x_Symbol] :> Simp[1/Coefficient[u, x, 1] Subst[Int[(
a + b*Sec[c + d*x^n])^p, x], x, u], x] /; FreeQ[{a, b, c, d, n, p}, x] && LinearQ[u, x] && NeQ[u, x]
-
Int[((a_.) + Csc[(c_.) + (d_.)*(u_)^(n_)]*(b_.))^(p_.), x_Symbol] :> Simp[1/Coefficient[u, x, 1] Subst[Int[(
a + b*Csc[c + d*x^n])^p, x], x, u], x] /; FreeQ[{a, b, c, d, n, p}, x] && LinearQ[u, x] && NeQ[u, x]
-
Int[((a_.) + (b_.)*Sec[u_])^(p_.), x_Symbol] :> Int[(a + b*Sec[ExpandToSum[u, x]])^p, x] /; FreeQ[{a, b, p}, x
] && BinomialQ[u, x] && !BinomialMatchQ[u, x]
-
Int[((a_.) + Csc[u_]*(b_.))^(p_.), x_Symbol] :> Int[(a + b*Csc[ExpandToSum[u, x]])^p, x] /; FreeQ[{a, b, p}, x
] && BinomialQ[u, x] && !BinomialMatchQ[u, x]
-
Int[(x_)^(m_.)*((a_.) + (b_.)*Sec[(c_.) + (d_.)*(x_)^(n_)])^(p_.), x_Symbol] :> Simp[1/n Subst[Int[x^(Simpli
fy[(m + 1)/n] - 1)*(a + b*Sec[c + d*x])^p, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p}, x] && IGtQ[Simplify
[(m + 1)/n], 0] && IntegerQ[p]
-
Int[((a_.) + Csc[(c_.) + (d_.)*(x_)^(n_)]*(b_.))^(p_.)*(x_)^(m_.), x_Symbol] :> Simp[1/n Subst[Int[x^(Simpli
fy[(m + 1)/n] - 1)*(a + b*Csc[c + d*x])^p, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p}, x] && IGtQ[Simplify
[(m + 1)/n], 0] && IntegerQ[p]
-
Int[(x_)^(m_.)*((a_.) + (b_.)*Sec[(c_.) + (d_.)*(x_)^(n_)])^(p_.), x_Symbol] :> Unintegrable[x^m*(a + b*Sec[c
+ d*x^n])^p, x] /; FreeQ[{a, b, c, d, m, n, p}, x]
-
Int[((a_.) + Csc[(c_.) + (d_.)*(x_)^(n_)]*(b_.))^(p_.)*(x_)^(m_.), x_Symbol] :> Unintegrable[x^m*(a + b*Csc[c
+ d*x^n])^p, x] /; FreeQ[{a, b, c, d, m, n, p}, x]
-
Int[((e_)*(x_))^(m_.)*((a_.) + (b_.)*Sec[(c_.) + (d_.)*(x_)^(n_)])^(p_.), x_Symbol] :> Simp[e^IntPart[m]*((e*x
)^FracPart[m]/x^FracPart[m]) Int[x^m*(a + b*Sec[c + d*x^n])^p, x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x]
-
Int[((a_.) + Csc[(c_.) + (d_.)*(x_)^(n_)]*(b_.))^(p_.)*((e_)*(x_))^(m_.), x_Symbol] :> Simp[e^IntPart[m]*((e*x
)^FracPart[m]/x^FracPart[m]) Int[x^m*(a + b*Csc[c + d*x^n])^p, x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x]
-
Int[((e_)*(x_))^(m_.)*((a_.) + (b_.)*Sec[u_])^(p_.), x_Symbol] :> Int[(e*x)^m*(a + b*Sec[ExpandToSum[u, x]])^p
, x] /; FreeQ[{a, b, e, m, p}, x] && BinomialQ[u, x] && !BinomialMatchQ[u, x]
-
Int[((a_.) + Csc[u_]*(b_.))^(p_.)*((e_)*(x_))^(m_.), x_Symbol] :> Int[(e*x)^m*(a + b*Csc[ExpandToSum[u, x]])^p
, x] /; FreeQ[{a, b, e, m, p}, x] && BinomialQ[u, x] && !BinomialMatchQ[u, x]
-
Int[(x_)^(m_.)*Sec[(a_.) + (b_.)*(x_)^(n_.)]^(p_)*Sin[(a_.) + (b_.)*(x_)^(n_.)], x_Symbol] :> Simp[x^(m - n +
1)*(Sec[a + b*x^n]^(p - 1)/(b*n*(p - 1))), x] - Simp[(m - n + 1)/(b*n*(p - 1)) Int[x^(m - n)*Sec[a + b*x^n]^
(p - 1), x], x] /; FreeQ[{a, b, p}, x] && IntegerQ[n] && GeQ[m - n, 0] && NeQ[p, 1]
-
Int[Cos[(a_.) + (b_.)*(x_)^(n_.)]*Csc[(a_.) + (b_.)*(x_)^(n_.)]^(p_)*(x_)^(m_.), x_Symbol] :> Simp[(-x^(m - n
+ 1))*(Csc[a + b*x^n]^(p - 1)/(b*n*(p - 1))), x] + Simp[(m - n + 1)/(b*n*(p - 1)) Int[x^(m - n)*Csc[a + b*x^
n]^(p - 1), x], x] /; FreeQ[{a, b, p}, x] && IntegerQ[n] && GeQ[m - n, 0] && NeQ[p, 1]
-
Int[(u_)*((d_.)*sin[(a_.) + (b_.)*(x_)])^(n_.)*((c_.)*tan[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Simp[(c*Tan
[a + b*x])^m*((d*Cos[a + b*x])^m/(d*Sin[a + b*x])^m) Int[ActivateTrig[u]*((d*Sin[a + b*x])^(m + n)/(d*Cos[a
+ b*x])^m), x], x] /; FreeQ[{a, b, c, d, m, n}, x] && KnownSineIntegrandQ[u, x] && !IntegerQ[m]
-
Int[(cos[(a_.) + (b_.)*(x_)]*(d_.))^(n_.)*(u_)*((c_.)*tan[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Simp[(c*Tan
[a + b*x])^m*((d*Cos[a + b*x])^m/(d*Sin[a + b*x])^m) Int[ActivateTrig[u]*((d*Sin[a + b*x])^m/(d*Cos[a + b*x]
)^(m - n)), x], x] /; FreeQ[{a, b, c, d, m, n}, x] && KnownSineIntegrandQ[u, x] && !IntegerQ[m]
-
Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_)*((d_.)*sin[(a_.) + (b_.)*(x_)])^(n_.), x_Symbol] :> Simp[(c*Cot
[a + b*x])^m*((d*Sin[a + b*x])^m/(d*Cos[a + b*x])^m) Int[ActivateTrig[u]*((d*Cos[a + b*x])^m/(d*Sin[a + b*x]
)^(m - n)), x], x] /; FreeQ[{a, b, c, d, m, n}, x] && KnownSineIntegrandQ[u, x] && !IntegerQ[m]
-
Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(cos[(a_.) + (b_.)*(x_)]*(d_.))^(n_.)*(u_), x_Symbol] :> Simp[(c*Cot
[a + b*x])^m*((d*Sin[a + b*x])^m/(d*Cos[a + b*x])^m) Int[ActivateTrig[u]*((d*Cos[a + b*x])^(m + n)/(d*Sin[a
+ b*x])^m), x], x] /; FreeQ[{a, b, c, d, m, n}, x] && KnownSineIntegrandQ[u, x] && !IntegerQ[m]
-
Int[(cos[(a_.) + (b_.)*(x_)]*(d_.))^(n_.)*(u_)*((c_.)*sec[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Simp[(c*Csc
[a + b*x])^m*(d*Sin[a + b*x])^m Int[ActivateTrig[u]*(d*Sin[a + b*x])^(n - m), x], x] /; FreeQ[{a, b, c, d, m
, n}, x] && KnownSineIntegrandQ[u, x]
-
Int[(u_)*((c_.)*tan[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Simp[(c*Tan[a + b*x])^m*((c*Cos[a + b*x])^m/(c*Si
n[a + b*x])^m) Int[ActivateTrig[u]*((c*Sin[a + b*x])^m/(c*Cos[a + b*x])^m), x], x] /; FreeQ[{a, b, c, m}, x]
&& !IntegerQ[m] && KnownSineIntegrandQ[u, x]
-
Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Simp[(c*Cot[a + b*x])^m*((c*Sin[a + b*x])^m/(c*Co
s[a + b*x])^m) Int[ActivateTrig[u]*((c*Cos[a + b*x])^m/(c*Sin[a + b*x])^m), x], x] /; FreeQ[{a, b, c, m}, x]
&& !IntegerQ[m] && KnownSineIntegrandQ[u, x]
-
Int[(u_)*((c_.)*sec[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Simp[(c*Sec[a + b*x])^m*(c*Cos[a + b*x])^m Int[
ActivateTrig[u]/(c*Cos[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] && !IntegerQ[m] && KnownSineIntegrandQ[u
, x]
-
Int[(csc[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Simp[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m Int[
ActivateTrig[u]/(c*Sin[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] && !IntegerQ[m] && KnownSineIntegrandQ[u
, x]
-
Int[(csc[(a_.) + (b_.)*(x_)]*(B_.) + (A_))*(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(n_.), x_Symbol] :> Simp[c I
nt[ActivateTrig[u]*(c*Sin[a + b*x])^(n - 1)*(B + A*Sin[a + b*x]), x], x] /; FreeQ[{a, b, c, A, B, n}, x] && Kn
ownSineIntegrandQ[u, x]
-
Int[(cos[(a_.) + (b_.)*(x_)]*(c_.))^(n_.)*(u_)*((A_) + (B_.)*sec[(a_.) + (b_.)*(x_)]), x_Symbol] :> Simp[c I
nt[ActivateTrig[u]*(c*Cos[a + b*x])^(n - 1)*(B + A*Cos[a + b*x]), x], x] /; FreeQ[{a, b, c, A, B, n}, x] && Kn
ownSineIntegrandQ[u, x]
-
Int[(csc[(a_.) + (b_.)*(x_)]*(B_.) + (A_))*(u_), x_Symbol] :> Int[ActivateTrig[u]*((B + A*Sin[a + b*x])/Sin[a
+ b*x]), x] /; FreeQ[{a, b, A, B}, x] && KnownSineIntegrandQ[u, x]
-
Int[(u_)*((A_) + (B_.)*sec[(a_.) + (b_.)*(x_)]), x_Symbol] :> Int[ActivateTrig[u]*((B + A*Cos[a + b*x])/Cos[a
+ b*x]), x] /; FreeQ[{a, b, A, B}, x] && KnownSineIntegrandQ[u, x]
-
Int[((A_.) + csc[(a_.) + (b_.)*(x_)]*(B_.) + csc[(a_.) + (b_.)*(x_)]^2*(C_.))*(u_.)*((c_.)*sin[(a_.) + (b_.)*(
x_)])^(n_.), x_Symbol] :> Simp[c^2 Int[ActivateTrig[u]*(c*Sin[a + b*x])^(n - 2)*(C + B*Sin[a + b*x] + A*Sin[
a + b*x]^2), x], x] /; FreeQ[{a, b, c, A, B, C, n}, x] && KnownSineIntegrandQ[u, x]
-
Int[(cos[(a_.) + (b_.)*(x_)]*(c_.))^(n_.)*(u_.)*((A_.) + (B_.)*sec[(a_.) + (b_.)*(x_)] + (C_.)*sec[(a_.) + (b_
.)*(x_)]^2), x_Symbol] :> Simp[c^2 Int[ActivateTrig[u]*(c*Cos[a + b*x])^(n - 2)*(C + B*Cos[a + b*x] + A*Cos[
a + b*x]^2), x], x] /; FreeQ[{a, b, c, A, B, C, n}, x] && KnownSineIntegrandQ[u, x]
-
Int[(u_.)*(csc[(a_.) + (b_.)*(x_)]^2*(C_.) + (A_))*((c_.)*sin[(a_.) + (b_.)*(x_)])^(n_.), x_Symbol] :> Simp[c^
2 Int[ActivateTrig[u]*(c*Sin[a + b*x])^(n - 2)*(C + A*Sin[a + b*x]^2), x], x] /; FreeQ[{a, b, c, A, C, n}, x
] && KnownSineIntegrandQ[u, x]
-
Int[(cos[(a_.) + (b_.)*(x_)]*(c_.))^(n_.)*(u_.)*((A_) + (C_.)*sec[(a_.) + (b_.)*(x_)]^2), x_Symbol] :> Simp[c^
2 Int[ActivateTrig[u]*(c*Cos[a + b*x])^(n - 2)*(C + A*Cos[a + b*x]^2), x], x] /; FreeQ[{a, b, c, A, C, n}, x
] && KnownSineIntegrandQ[u, x]
-
Int[((A_.) + csc[(a_.) + (b_.)*(x_)]*(B_.) + csc[(a_.) + (b_.)*(x_)]^2*(C_.))*(u_), x_Symbol] :> Int[ActivateT
rig[u]*((C + B*Sin[a + b*x] + A*Sin[a + b*x]^2)/Sin[a + b*x]^2), x] /; FreeQ[{a, b, A, B, C}, x] && KnownSineI
ntegrandQ[u, x]
-
Int[(u_)*((A_.) + (B_.)*sec[(a_.) + (b_.)*(x_)] + (C_.)*sec[(a_.) + (b_.)*(x_)]^2), x_Symbol] :> Int[ActivateT
rig[u]*((C + B*Cos[a + b*x] + A*Cos[a + b*x]^2)/Cos[a + b*x]^2), x] /; FreeQ[{a, b, A, B, C}, x] && KnownSineI
ntegrandQ[u, x]
-
Int[(csc[(a_.) + (b_.)*(x_)]^2*(C_.) + (A_))*(u_), x_Symbol] :> Int[ActivateTrig[u]*((C + A*Sin[a + b*x]^2)/Si
n[a + b*x]^2), x] /; FreeQ[{a, b, A, C}, x] && KnownSineIntegrandQ[u, x]
-
Int[(u_)*((A_) + (C_.)*sec[(a_.) + (b_.)*(x_)]^2), x_Symbol] :> Int[ActivateTrig[u]*((C + A*Cos[a + b*x]^2)/Co
s[a + b*x]^2), x] /; FreeQ[{a, b, A, C}, x] && KnownSineIntegrandQ[u, x]
-
Int[(u_)*((A_.) + csc[(a_.) + (b_.)*(x_)]*(C_.) + (B_.)*sin[(a_.) + (b_.)*(x_)]), x_Symbol] :> Int[ActivateTri
g[u]*((C + A*Sin[a + b*x] + B*Sin[a + b*x]^2)/Sin[a + b*x]), x] /; FreeQ[{a, b, A, B, C}, x]
-
Int[(u_)*((A_.) + cos[(a_.) + (b_.)*(x_)]*(B_.) + (C_.)*sec[(a_.) + (b_.)*(x_)]), x_Symbol] :> Int[ActivateTri
g[u]*((C + A*Cos[a + b*x] + B*Cos[a + b*x]^2)/Cos[a + b*x]), x] /; FreeQ[{a, b, A, B, C}, x]
-
Int[(u_)*((A_.)*sin[(a_.) + (b_.)*(x_)]^(n_.) + (B_.)*sin[(a_.) + (b_.)*(x_)]^(n1_) + (C_.)*sin[(a_.) + (b_.)*
(x_)]^(n2_)), x_Symbol] :> Int[ActivateTrig[u]*Sin[a + b*x]^n*(A + B*Sin[a + b*x] + C*Sin[a + b*x]^2), x] /; F
reeQ[{a, b, A, B, C, n}, x] && EqQ[n1, n + 1] && EqQ[n2, n + 2]
-
Int[(cos[(a_.) + (b_.)*(x_)]^(n_.)*(A_.) + cos[(a_.) + (b_.)*(x_)]^(n1_)*(B_.) + cos[(a_.) + (b_.)*(x_)]^(n2_)
*(C_.))*(u_), x_Symbol] :> Int[ActivateTrig[u]*Cos[a + b*x]^n*(A + B*Cos[a + b*x] + C*Cos[a + b*x]^2), x] /; F
reeQ[{a, b, A, B, C, n}, x] && EqQ[n1, n + 1] && EqQ[n2, n + 2]
-
Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_)*((d_.)*tan[(a_.) + (b_.)*(x_)])^(n_.), x_Symbol] :> Simp[(c*Cot
[a + b*x])^m*(d*Tan[a + b*x])^m Int[ActivateTrig[u]*(d*Tan[a + b*x])^(n - m), x], x] /; FreeQ[{a, b, c, d, m
, n}, x] && KnownTangentIntegrandQ[u, x]
-
Int[(cos[(a_.) + (b_.)*(x_)]*(d_.))^(n_.)*(u_)*((c_.)*tan[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Simp[(c*Tan
[a + b*x])^m*((d*Cos[a + b*x])^m/(d*Sin[a + b*x])^m) Int[ActivateTrig[u]*((d*Sin[a + b*x])^m/(d*Cos[a + b*x]
)^(m - n)), x], x] /; FreeQ[{a, b, c, d, m, n}, x] && KnownCotangentIntegrandQ[u, x]
-
Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Simp[(c*Cot[a + b*x])^m*(c*Tan[a + b*x])^m Int[
ActivateTrig[u]/(c*Tan[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] && !IntegerQ[m] && KnownTangentIntegrand
Q[u, x]
-
Int[(u_)*((c_.)*tan[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Simp[(c*Cot[a + b*x])^m*(c*Tan[a + b*x])^m Int[
ActivateTrig[u]/(c*Cot[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] && !IntegerQ[m] && KnownCotangentIntegra
ndQ[u, x]
-
Int[(cot[(a_.) + (b_.)*(x_)]*(B_.) + (A_))*(u_)*((c_.)*tan[(a_.) + (b_.)*(x_)])^(n_.), x_Symbol] :> Simp[c I
nt[ActivateTrig[u]*(c*Tan[a + b*x])^(n - 1)*(B + A*Tan[a + b*x]), x], x] /; FreeQ[{a, b, c, A, B, n}, x] && Kn
ownTangentIntegrandQ[u, x]
-
Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(n_.)*(u_)*((A_) + (B_.)*tan[(a_.) + (b_.)*(x_)]), x_Symbol] :> Simp[c I
nt[ActivateTrig[u]*(c*Cot[a + b*x])^(n - 1)*(B + A*Cot[a + b*x]), x], x] /; FreeQ[{a, b, c, A, B, n}, x] && Kn
ownCotangentIntegrandQ[u, x]
-
Int[(cot[(a_.) + (b_.)*(x_)]*(B_.) + (A_))*(u_), x_Symbol] :> Int[ActivateTrig[u]*((B + A*Tan[a + b*x])/Tan[a
+ b*x]), x] /; FreeQ[{a, b, A, B}, x] && KnownTangentIntegrandQ[u, x]
-
Int[(u_)*((A_) + (B_.)*tan[(a_.) + (b_.)*(x_)]), x_Symbol] :> Int[ActivateTrig[u]*((B + A*Cot[a + b*x])/Cot[a
+ b*x]), x] /; FreeQ[{a, b, A, B}, x] && KnownCotangentIntegrandQ[u, x]
-
Int[((A_.) + cot[(a_.) + (b_.)*(x_)]*(B_.) + cot[(a_.) + (b_.)*(x_)]^2*(C_.))*(u_.)*((c_.)*tan[(a_.) + (b_.)*(
x_)])^(n_.), x_Symbol] :> Simp[c^2 Int[ActivateTrig[u]*(c*Tan[a + b*x])^(n - 2)*(C + B*Tan[a + b*x] + A*Tan[
a + b*x]^2), x], x] /; FreeQ[{a, b, c, A, B, C, n}, x] && KnownTangentIntegrandQ[u, x]
-
Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(n_.)*(u_.)*((A_.) + (B_.)*tan[(a_.) + (b_.)*(x_)] + (C_.)*tan[(a_.) + (b_
.)*(x_)]^2), x_Symbol] :> Simp[c^2 Int[ActivateTrig[u]*(c*Cot[a + b*x])^(n - 2)*(C + B*Cot[a + b*x] + A*Cot[
a + b*x]^2), x], x] /; FreeQ[{a, b, c, A, B, C, n}, x] && KnownCotangentIntegrandQ[u, x]
-
Int[(u_.)*(cot[(a_.) + (b_.)*(x_)]^2*(C_.) + (A_))*((c_.)*tan[(a_.) + (b_.)*(x_)])^(n_.), x_Symbol] :> Simp[c^
2 Int[ActivateTrig[u]*(c*Tan[a + b*x])^(n - 2)*(C + A*Tan[a + b*x]^2), x], x] /; FreeQ[{a, b, c, A, C, n}, x
] && KnownTangentIntegrandQ[u, x]
-
Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(n_.)*(u_.)*((A_) + (C_.)*tan[(a_.) + (b_.)*(x_)]^2), x_Symbol] :> Simp[c^
2 Int[ActivateTrig[u]*(c*Cot[a + b*x])^(n - 2)*(C + A*Cot[a + b*x]^2), x], x] /; FreeQ[{a, b, c, A, C, n}, x
] && KnownCotangentIntegrandQ[u, x]
-
Int[((A_.) + cot[(a_.) + (b_.)*(x_)]*(B_.) + cot[(a_.) + (b_.)*(x_)]^2*(C_.))*(u_), x_Symbol] :> Int[ActivateT
rig[u]*((C + B*Tan[a + b*x] + A*Tan[a + b*x]^2)/Tan[a + b*x]^2), x] /; FreeQ[{a, b, A, B, C}, x] && KnownTange
ntIntegrandQ[u, x]
-
Int[(u_)*((A_.) + (B_.)*tan[(a_.) + (b_.)*(x_)] + (C_.)*tan[(a_.) + (b_.)*(x_)]^2), x_Symbol] :> Int[ActivateT
rig[u]*((C + B*Cot[a + b*x] + A*Cot[a + b*x]^2)/Cot[a + b*x]^2), x] /; FreeQ[{a, b, A, B, C}, x] && KnownCotan
gentIntegrandQ[u, x]
-
Int[(cot[(a_.) + (b_.)*(x_)]^2*(C_.) + (A_))*(u_), x_Symbol] :> Int[ActivateTrig[u]*((C + A*Tan[a + b*x]^2)/Ta
n[a + b*x]^2), x] /; FreeQ[{a, b, A, C}, x] && KnownTangentIntegrandQ[u, x]
-
Int[(u_)*((A_) + (C_.)*tan[(a_.) + (b_.)*(x_)]^2), x_Symbol] :> Int[ActivateTrig[u]*((C + A*Cot[a + b*x]^2)/Co
t[a + b*x]^2), x] /; FreeQ[{a, b, A, C}, x] && KnownCotangentIntegrandQ[u, x]
-
Int[(u_)*((A_.) + cot[(a_.) + (b_.)*(x_)]*(C_.) + (B_.)*tan[(a_.) + (b_.)*(x_)]), x_Symbol] :> Int[ActivateTri
g[u]*((C + A*Tan[a + b*x] + B*Tan[a + b*x]^2)/Tan[a + b*x]), x] /; FreeQ[{a, b, A, B, C}, x]
-
Int[(u_)*((A_.)*tan[(a_.) + (b_.)*(x_)]^(n_.) + (B_.)*tan[(a_.) + (b_.)*(x_)]^(n1_) + (C_.)*tan[(a_.) + (b_.)*
(x_)]^(n2_)), x_Symbol] :> Int[ActivateTrig[u]*Tan[a + b*x]^n*(A + B*Tan[a + b*x] + C*Tan[a + b*x]^2), x] /; F
reeQ[{a, b, A, B, C, n}, x] && EqQ[n1, n + 1] && EqQ[n2, n + 2]
-
Int[(cot[(a_.) + (b_.)*(x_)]^(n_.)*(A_.) + cot[(a_.) + (b_.)*(x_)]^(n1_)*(B_.) + cot[(a_.) + (b_.)*(x_)]^(n2_)
*(C_.))*(u_), x_Symbol] :> Int[ActivateTrig[u]*Cot[a + b*x]^n*(A + B*Cot[a + b*x] + C*Cot[a + b*x]^2), x] /; F
reeQ[{a, b, A, B, C, n}, x] && EqQ[n1, n + 1] && EqQ[n2, n + 2]
-
Int[(csc[(a_.) + (b_.)*(x_)]*(d_.))^(n_.)*(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Simp[(c*Sin
[a + b*x])^m*(d*Csc[a + b*x])^m Int[ActivateTrig[u]*(d*Csc[a + b*x])^(n - m), x], x] /; FreeQ[{a, b, c, d, m
, n}, x] && KnownSecantIntegrandQ[u, x]
-
Int[(cos[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_)*((d_.)*sec[(a_.) + (b_.)*(x_)])^(n_.), x_Symbol] :> Simp[(c*Cos
[a + b*x])^m*(d*Sec[a + b*x])^m Int[ActivateTrig[u]*(d*Sec[a + b*x])^(n - m), x], x] /; FreeQ[{a, b, c, d, m
, n}, x] && KnownSecantIntegrandQ[u, x]
-
Int[(u_)*((d_.)*sec[(a_.) + (b_.)*(x_)])^(n_.)*((c_.)*tan[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Simp[(c*Tan
[a + b*x])^m*((d*Csc[a + b*x])^m/(d*Sec[a + b*x])^m) Int[ActivateTrig[u]*((d*Sec[a + b*x])^(m + n)/(d*Csc[a
+ b*x])^m), x], x] /; FreeQ[{a, b, c, d, m, n}, x] && KnownSecantIntegrandQ[u, x] && !IntegerQ[m]
-
Int[(csc[(a_.) + (b_.)*(x_)]*(d_.))^(n_.)*(u_)*((c_.)*tan[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Simp[(c*Tan
[a + b*x])^m*((d*Csc[a + b*x])^m/(d*Sec[a + b*x])^m) Int[ActivateTrig[u]*((d*Sec[a + b*x])^m/(d*Csc[a + b*x]
)^(m - n)), x], x] /; FreeQ[{a, b, c, d, m, n}, x] && KnownSecantIntegrandQ[u, x] && !IntegerQ[m]
-
Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_)*((d_.)*sec[(a_.) + (b_.)*(x_)])^(n_.), x_Symbol] :> Simp[(c*Cot
[a + b*x])^m*((d*Sec[a + b*x])^m/(d*Csc[a + b*x])^m) Int[ActivateTrig[u]*((d*Csc[a + b*x])^m/(d*Sec[a + b*x]
)^(m - n)), x], x] /; FreeQ[{a, b, c, d, m, n}, x] && KnownSecantIntegrandQ[u, x] && !IntegerQ[m]
-
Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(csc[(a_.) + (b_.)*(x_)]*(d_.))^(n_.)*(u_), x_Symbol] :> Simp[(c*Cot
[a + b*x])^m*((d*Sec[a + b*x])^m/(d*Csc[a + b*x])^m) Int[ActivateTrig[u]*((d*Csc[a + b*x])^(m + n)/(d*Sec[a
+ b*x])^m), x], x] /; FreeQ[{a, b, c, d, m, n}, x] && KnownSecantIntegrandQ[u, x] && !IntegerQ[m]
-
Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Simp[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m Int[
ActivateTrig[u]/(c*Csc[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] && !IntegerQ[m] && KnownSecantIntegrandQ
[u, x]
-
Int[(cos[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Simp[(c*Cos[a + b*x])^m*(c*Sec[a + b*x])^m Int[
ActivateTrig[u]/(c*Sec[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] && !IntegerQ[m] && KnownSecantIntegrandQ
[u, x]
-
Int[(u_)*((c_.)*tan[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Simp[(c*Tan[a + b*x])^m*((c*Csc[a + b*x])^m/(c*Se
c[a + b*x])^m) Int[ActivateTrig[u]*((c*Sec[a + b*x])^m/(c*Csc[a + b*x])^m), x], x] /; FreeQ[{a, b, c, m}, x]
&& !IntegerQ[m] && KnownSecantIntegrandQ[u, x]
-
Int[(cot[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Simp[(c*Cot[a + b*x])^m*((c*Sec[a + b*x])^m/(c*Cs
c[a + b*x])^m) Int[ActivateTrig[u]*((c*Csc[a + b*x])^m/(c*Sec[a + b*x])^m), x], x] /; FreeQ[{a, b, c, m}, x]
&& !IntegerQ[m] && KnownSecantIntegrandQ[u, x]
-
Int[(cos[(a_.) + (b_.)*(x_)]*(B_.) + (A_))*(u_)*((c_.)*sec[(a_.) + (b_.)*(x_)])^(n_.), x_Symbol] :> Simp[c I
nt[ActivateTrig[u]*(c*Sec[a + b*x])^(n - 1)*(B + A*Sec[a + b*x]), x], x] /; FreeQ[{a, b, c, A, B, n}, x] && Kn
ownSecantIntegrandQ[u, x]
-
Int[(csc[(a_.) + (b_.)*(x_)]*(c_.))^(n_.)*(u_)*((A_) + (B_.)*sin[(a_.) + (b_.)*(x_)]), x_Symbol] :> Simp[c I
nt[ActivateTrig[u]*(c*Csc[a + b*x])^(n - 1)*(B + A*Csc[a + b*x]), x], x] /; FreeQ[{a, b, c, A, B, n}, x] && Kn
ownSecantIntegrandQ[u, x]
-
Int[(cos[(a_.) + (b_.)*(x_)]*(B_.) + (A_))*(u_), x_Symbol] :> Int[ActivateTrig[u]*((B + A*Sec[a + b*x])/Sec[a
+ b*x]), x] /; FreeQ[{a, b, A, B}, x] && KnownSecantIntegrandQ[u, x]
-
Int[(u_)*((A_) + (B_.)*sin[(a_.) + (b_.)*(x_)]), x_Symbol] :> Int[ActivateTrig[u]*((B + A*Csc[a + b*x])/Csc[a
+ b*x]), x] /; FreeQ[{a, b, A, B}, x] && KnownSecantIntegrandQ[u, x]
-
Int[((A_.) + cos[(a_.) + (b_.)*(x_)]*(B_.) + cos[(a_.) + (b_.)*(x_)]^2*(C_.))*(u_.)*((c_.)*sec[(a_.) + (b_.)*(
x_)])^(n_.), x_Symbol] :> Simp[c^2 Int[ActivateTrig[u]*(c*Sec[a + b*x])^(n - 2)*(C + B*Sec[a + b*x] + A*Sec[
a + b*x]^2), x], x] /; FreeQ[{a, b, c, A, B, C, n}, x] && KnownSecantIntegrandQ[u, x]
-
Int[(csc[(a_.) + (b_.)*(x_)]*(c_.))^(n_.)*(u_.)*((A_.) + (B_.)*sin[(a_.) + (b_.)*(x_)] + (C_.)*sin[(a_.) + (b_
.)*(x_)]^2), x_Symbol] :> Simp[c^2 Int[ActivateTrig[u]*(c*Csc[a + b*x])^(n - 2)*(C + B*Csc[a + b*x] + A*Csc[
a + b*x]^2), x], x] /; FreeQ[{a, b, c, A, B, C, n}, x] && KnownSecantIntegrandQ[u, x]
-
Int[(u_.)*(cos[(a_.) + (b_.)*(x_)]^2*(C_.) + (A_))*((c_.)*sec[(a_.) + (b_.)*(x_)])^(n_.), x_Symbol] :> Simp[c^
2 Int[ActivateTrig[u]*(c*Sec[a + b*x])^(n - 2)*(C + A*Sec[a + b*x]^2), x], x] /; FreeQ[{a, b, c, A, C, n}, x
] && KnownSecantIntegrandQ[u, x]
-
Int[(csc[(a_.) + (b_.)*(x_)]*(c_.))^(n_.)*(u_.)*((A_) + (C_.)*sin[(a_.) + (b_.)*(x_)]^2), x_Symbol] :> Simp[c^
2 Int[ActivateTrig[u]*(c*Csc[a + b*x])^(n - 2)*(C + A*Csc[a + b*x]^2), x], x] /; FreeQ[{a, b, c, A, C, n}, x
] && KnownSecantIntegrandQ[u, x]
-
Int[((A_.) + cos[(a_.) + (b_.)*(x_)]*(B_.) + cos[(a_.) + (b_.)*(x_)]^2*(C_.))*(u_), x_Symbol] :> Int[ActivateT
rig[u]*((C + B*Sec[a + b*x] + A*Sec[a + b*x]^2)/Sec[a + b*x]^2), x] /; FreeQ[{a, b, A, B, C}, x] && KnownSecan
tIntegrandQ[u, x]
-
Int[(u_)*((A_.) + (B_.)*sin[(a_.) + (b_.)*(x_)] + (C_.)*sin[(a_.) + (b_.)*(x_)]^2), x_Symbol] :> Int[ActivateT
rig[u]*((C + B*Csc[a + b*x] + A*Csc[a + b*x]^2)/Csc[a + b*x]^2), x] /; FreeQ[{a, b, A, B, C}, x] && KnownSecan
tIntegrandQ[u, x]
-
Int[(cos[(a_.) + (b_.)*(x_)]^2*(C_.) + (A_))*(u_), x_Symbol] :> Int[ActivateTrig[u]*((C + A*Sec[a + b*x]^2)/Se
c[a + b*x]^2), x] /; FreeQ[{a, b, A, C}, x] && KnownSecantIntegrandQ[u, x]
-
Int[(u_)*((A_) + (C_.)*sin[(a_.) + (b_.)*(x_)]^2), x_Symbol] :> Int[ActivateTrig[u]*((C + A*Csc[a + b*x]^2)/Cs
c[a + b*x]^2), x] /; FreeQ[{a, b, A, C}, x] && KnownSecantIntegrandQ[u, x]
-
Int[(u_)*((A_.)*sec[(a_.) + (b_.)*(x_)]^(n_.) + (B_.)*sec[(a_.) + (b_.)*(x_)]^(n1_) + (C_.)*sec[(a_.) + (b_.)*
(x_)]^(n2_)), x_Symbol] :> Int[ActivateTrig[u]*Sec[a + b*x]^n*(A + B*Sec[a + b*x] + C*Sec[a + b*x]^2), x] /; F
reeQ[{a, b, A, B, C, n}, x] && EqQ[n1, n + 1] && EqQ[n2, n + 2]
-
Int[(csc[(a_.) + (b_.)*(x_)]^(n_.)*(A_.) + csc[(a_.) + (b_.)*(x_)]^(n1_)*(B_.) + csc[(a_.) + (b_.)*(x_)]^(n2_)
*(C_.))*(u_), x_Symbol] :> Int[ActivateTrig[u]*Csc[a + b*x]^n*(A + B*Csc[a + b*x] + C*Csc[a + b*x]^2), x] /; F
reeQ[{a, b, A, B, C, n}, x] && EqQ[n1, n + 1] && EqQ[n2, n + 2]
-
Int[sin[(a_.) + (b_.)*(x_)]*sin[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[Sin[a - c + (b - d)*x]/(2*(b - d)), x]
- Simp[Sin[a + c + (b + d)*x]/(2*(b + d)), x] /; FreeQ[{a, b, c, d}, x] && NeQ[b^2 - d^2, 0]
-
Int[cos[(a_.) + (b_.)*(x_)]*cos[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[Sin[a - c + (b - d)*x]/(2*(b - d)), x]
+ Simp[Sin[a + c + (b + d)*x]/(2*(b + d)), x] /; FreeQ[{a, b, c, d}, x] && NeQ[b^2 - d^2, 0]
-
Int[cos[(c_.) + (d_.)*(x_)]*sin[(a_.) + (b_.)*(x_)], x_Symbol] :> Simp[-Cos[a - c + (b - d)*x]/(2*(b - d)), x]
- Simp[Cos[a + c + (b + d)*x]/(2*(b + d)), x] /; FreeQ[{a, b, c, d}, x] && NeQ[b^2 - d^2, 0]
-
Int[cos[(a_.) + (b_.)*(x_)]^2*((g_.)*sin[(c_.) + (d_.)*(x_)])^(p_), x_Symbol] :> Simp[1/2 Int[(g*Sin[c + d*x
])^p, x], x] + Simp[1/2 Int[Cos[c + d*x]*(g*Sin[c + d*x])^p, x], x] /; FreeQ[{a, b, c, d, g}, x] && EqQ[b*c
- a*d, 0] && EqQ[d/b, 2] && IGtQ[p/2, 0]
-
Int[sin[(a_.) + (b_.)*(x_)]^2*((g_.)*sin[(c_.) + (d_.)*(x_)])^(p_), x_Symbol] :> Simp[1/2 Int[(g*Sin[c + d*x
])^p, x], x] - Simp[1/2 Int[Cos[c + d*x]*(g*Sin[c + d*x])^p, x], x] /; FreeQ[{a, b, c, d, g}, x] && EqQ[b*c
- a*d, 0] && EqQ[d/b, 2] && IGtQ[p/2, 0]
-
Int[(cos[(a_.) + (b_.)*(x_)]*(e_.))^(m_.)*sin[(c_.) + (d_.)*(x_)]^(p_.), x_Symbol] :> Simp[2^p/e^p Int[(e*Co
s[a + b*x])^(m + p)*Sin[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && EqQ[b*c - a*d, 0] && EqQ[d/b, 2]
&& IntegerQ[p]
-
Int[((f_.)*sin[(a_.) + (b_.)*(x_)])^(n_.)*sin[(c_.) + (d_.)*(x_)]^(p_.), x_Symbol] :> Simp[2^p/f^p Int[Cos[a
+ b*x]^p*(f*Sin[a + b*x])^(n + p), x], x] /; FreeQ[{a, b, c, d, f, n}, x] && EqQ[b*c - a*d, 0] && EqQ[d/b, 2]
&& IntegerQ[p]
-
Int[(cos[(a_.) + (b_.)*(x_)]*(e_.))^(m_)*((g_.)*sin[(c_.) + (d_.)*(x_)])^(p_), x_Symbol] :> Simp[e^2*(e*Cos[a
+ b*x])^(m - 2)*((g*Sin[c + d*x])^(p + 1)/(2*b*g*(p + 1))), x] /; FreeQ[{a, b, c, d, e, g, m, p}, x] && EqQ[b*
c - a*d, 0] && EqQ[d/b, 2] && !IntegerQ[p] && EqQ[m + p - 1, 0]
-
Int[((e_.)*sin[(a_.) + (b_.)*(x_)])^(m_)*((g_.)*sin[(c_.) + (d_.)*(x_)])^(p_), x_Symbol] :> Simp[(-e^2)*(e*Sin
[a + b*x])^(m - 2)*((g*Sin[c + d*x])^(p + 1)/(2*b*g*(p + 1))), x] /; FreeQ[{a, b, c, d, e, g, m, p}, x] && EqQ
[b*c - a*d, 0] && EqQ[d/b, 2] && !IntegerQ[p] && EqQ[m + p - 1, 0]
-
Int[(cos[(a_.) + (b_.)*(x_)]*(e_.))^(m_.)*((g_.)*sin[(c_.) + (d_.)*(x_)])^(p_), x_Symbol] :> Simp[(-(e*Cos[a +
b*x])^m)*((g*Sin[c + d*x])^(p + 1)/(b*g*m)), x] /; FreeQ[{a, b, c, d, e, g, m, p}, x] && EqQ[b*c - a*d, 0] &&
EqQ[d/b, 2] && !IntegerQ[p] && EqQ[m + 2*p + 2, 0]
-
Int[((e_.)*sin[(a_.) + (b_.)*(x_)])^(m_.)*((g_.)*sin[(c_.) + (d_.)*(x_)])^(p_), x_Symbol] :> Simp[(e*Sin[a + b
*x])^m*((g*Sin[c + d*x])^(p + 1)/(b*g*m)), x] /; FreeQ[{a, b, c, d, e, g, m, p}, x] && EqQ[b*c - a*d, 0] && Eq
Q[d/b, 2] && !IntegerQ[p] && EqQ[m + 2*p + 2, 0]
-
Int[(cos[(a_.) + (b_.)*(x_)]*(e_.))^(m_)*((g_.)*sin[(c_.) + (d_.)*(x_)])^(p_), x_Symbol] :> Simp[e^2*(e*Cos[a
+ b*x])^(m - 2)*((g*Sin[c + d*x])^(p + 1)/(2*b*g*(p + 1))), x] + Simp[e^4*((m + p - 1)/(4*g^2*(p + 1))) Int[
(e*Cos[a + b*x])^(m - 4)*(g*Sin[c + d*x])^(p + 2), x], x] /; FreeQ[{a, b, c, d, e, g}, x] && EqQ[b*c - a*d, 0]
&& EqQ[d/b, 2] && !IntegerQ[p] && GtQ[m, 2] && LtQ[p, -1] && (GtQ[m, 3] || EqQ[p, -3/2]) && IntegersQ[2*m, 2
*p]
-
Int[((e_.)*sin[(a_.) + (b_.)*(x_)])^(m_)*((g_.)*sin[(c_.) + (d_.)*(x_)])^(p_), x_Symbol] :> Simp[(-e^2)*(e*Sin
[a + b*x])^(m - 2)*((g*Sin[c + d*x])^(p + 1)/(2*b*g*(p + 1))), x] + Simp[e^4*((m + p - 1)/(4*g^2*(p + 1))) I
nt[(e*Sin[a + b*x])^(m - 4)*(g*Sin[c + d*x])^(p + 2), x], x] /; FreeQ[{a, b, c, d, e, g}, x] && EqQ[b*c - a*d,
0] && EqQ[d/b, 2] && !IntegerQ[p] && GtQ[m, 2] && LtQ[p, -1] && (GtQ[m, 3] || EqQ[p, -3/2]) && IntegersQ[2*m
, 2*p]
-
Int[(cos[(a_.) + (b_.)*(x_)]*(e_.))^(m_)*((g_.)*sin[(c_.) + (d_.)*(x_)])^(p_), x_Symbol] :> Simp[(e*Cos[a + b*
x])^m*((g*Sin[c + d*x])^(p + 1)/(2*b*g*(p + 1))), x] + Simp[e^2*((m + 2*p + 2)/(4*g^2*(p + 1))) Int[(e*Cos[a
+ b*x])^(m - 2)*(g*Sin[c + d*x])^(p + 2), x], x] /; FreeQ[{a, b, c, d, e, g}, x] && EqQ[b*c - a*d, 0] && EqQ[
d/b, 2] && !IntegerQ[p] && GtQ[m, 1] && LtQ[p, -1] && NeQ[m + 2*p + 2, 0] && (LtQ[p, -2] || EqQ[m, 2]) && Int
egersQ[2*m, 2*p]
-
Int[((e_.)*sin[(a_.) + (b_.)*(x_)])^(m_)*((g_.)*sin[(c_.) + (d_.)*(x_)])^(p_), x_Symbol] :> Simp[(-(e*Sin[a +
b*x])^m)*((g*Sin[c + d*x])^(p + 1)/(2*b*g*(p + 1))), x] + Simp[e^2*((m + 2*p + 2)/(4*g^2*(p + 1))) Int[(e*Si
n[a + b*x])^(m - 2)*(g*Sin[c + d*x])^(p + 2), x], x] /; FreeQ[{a, b, c, d, e, g}, x] && EqQ[b*c - a*d, 0] && E
qQ[d/b, 2] && !IntegerQ[p] && GtQ[m, 1] && LtQ[p, -1] && NeQ[m + 2*p + 2, 0] && (LtQ[p, -2] || EqQ[m, 2]) &&
IntegersQ[2*m, 2*p]
-
Int[(cos[(a_.) + (b_.)*(x_)]*(e_.))^(m_)*((g_.)*sin[(c_.) + (d_.)*(x_)])^(p_), x_Symbol] :> Simp[e^2*(e*Cos[a
+ b*x])^(m - 2)*((g*Sin[c + d*x])^(p + 1)/(2*b*g*(m + 2*p))), x] + Simp[e^2*((m + p - 1)/(m + 2*p)) Int[(e*C
os[a + b*x])^(m - 2)*(g*Sin[c + d*x])^p, x], x] /; FreeQ[{a, b, c, d, e, g, p}, x] && EqQ[b*c - a*d, 0] && EqQ
[d/b, 2] && !IntegerQ[p] && GtQ[m, 1] && NeQ[m + 2*p, 0] && IntegersQ[2*m, 2*p]
-
Int[((e_.)*sin[(a_.) + (b_.)*(x_)])^(m_)*((g_.)*sin[(c_.) + (d_.)*(x_)])^(p_), x_Symbol] :> Simp[(-e^2)*(e*Sin
[a + b*x])^(m - 2)*((g*Sin[c + d*x])^(p + 1)/(2*b*g*(m + 2*p))), x] + Simp[e^2*((m + p - 1)/(m + 2*p)) Int[(
e*Sin[a + b*x])^(m - 2)*(g*Sin[c + d*x])^p, x], x] /; FreeQ[{a, b, c, d, e, g, p}, x] && EqQ[b*c - a*d, 0] &&
EqQ[d/b, 2] && !IntegerQ[p] && GtQ[m, 1] && NeQ[m + 2*p, 0] && IntegersQ[2*m, 2*p]
-
Int[(cos[(a_.) + (b_.)*(x_)]*(e_.))^(m_)*((g_.)*sin[(c_.) + (d_.)*(x_)])^(p_), x_Symbol] :> Simp[(-(e*Cos[a +
b*x])^m)*((g*Sin[c + d*x])^(p + 1)/(2*b*g*(m + p + 1))), x] + Simp[(m + 2*p + 2)/(e^2*(m + p + 1)) Int[(e*Co
s[a + b*x])^(m + 2)*(g*Sin[c + d*x])^p, x], x] /; FreeQ[{a, b, c, d, e, g, p}, x] && EqQ[b*c - a*d, 0] && EqQ[
d/b, 2] && !IntegerQ[p] && LtQ[m, -1] && NeQ[m + 2*p + 2, 0] && NeQ[m + p + 1, 0] && IntegersQ[2*m, 2*p]
-
Int[((e_.)*sin[(a_.) + (b_.)*(x_)])^(m_)*((g_.)*sin[(c_.) + (d_.)*(x_)])^(p_), x_Symbol] :> Simp[(e*Sin[a + b*
x])^m*((g*Sin[c + d*x])^(p + 1)/(2*b*g*(m + p + 1))), x] + Simp[(m + 2*p + 2)/(e^2*(m + p + 1)) Int[(e*Sin[a
+ b*x])^(m + 2)*(g*Sin[c + d*x])^p, x], x] /; FreeQ[{a, b, c, d, e, g, p}, x] && EqQ[b*c - a*d, 0] && EqQ[d/b
, 2] && !IntegerQ[p] && LtQ[m, -1] && NeQ[m + 2*p + 2, 0] && NeQ[m + p + 1, 0] && IntegersQ[2*m, 2*p]
-
Int[cos[(a_.) + (b_.)*(x_)]*((g_.)*sin[(c_.) + (d_.)*(x_)])^(p_), x_Symbol] :> Simp[2*Sin[a + b*x]*((g*Sin[c +
d*x])^p/(d*(2*p + 1))), x] + Simp[2*p*(g/(2*p + 1)) Int[Sin[a + b*x]*(g*Sin[c + d*x])^(p - 1), x], x] /; Fr
eeQ[{a, b, c, d, g}, x] && EqQ[b*c - a*d, 0] && EqQ[d/b, 2] && !IntegerQ[p] && GtQ[p, 0] && IntegerQ[2*p]
-
Int[sin[(a_.) + (b_.)*(x_)]*((g_.)*sin[(c_.) + (d_.)*(x_)])^(p_), x_Symbol] :> Simp[-2*Cos[a + b*x]*((g*Sin[c
+ d*x])^p/(d*(2*p + 1))), x] + Simp[2*p*(g/(2*p + 1)) Int[Cos[a + b*x]*(g*Sin[c + d*x])^(p - 1), x], x] /; F
reeQ[{a, b, c, d, g}, x] && EqQ[b*c - a*d, 0] && EqQ[d/b, 2] && !IntegerQ[p] && GtQ[p, 0] && IntegerQ[2*p]
-
Int[cos[(a_.) + (b_.)*(x_)]*((g_.)*sin[(c_.) + (d_.)*(x_)])^(p_), x_Symbol] :> Simp[Cos[a + b*x]*((g*Sin[c + d
*x])^(p + 1)/(2*b*g*(p + 1))), x] + Simp[(2*p + 3)/(2*g*(p + 1)) Int[Sin[a + b*x]*(g*Sin[c + d*x])^(p + 1),
x], x] /; FreeQ[{a, b, c, d, g}, x] && EqQ[b*c - a*d, 0] && EqQ[d/b, 2] && !IntegerQ[p] && LtQ[p, -1] && Inte
gerQ[2*p]
-
Int[sin[(a_.) + (b_.)*(x_)]*((g_.)*sin[(c_.) + (d_.)*(x_)])^(p_), x_Symbol] :> Simp[(-Sin[a + b*x])*((g*Sin[c
+ d*x])^(p + 1)/(2*b*g*(p + 1))), x] + Simp[(2*p + 3)/(2*g*(p + 1)) Int[Cos[a + b*x]*(g*Sin[c + d*x])^(p + 1
), x], x] /; FreeQ[{a, b, c, d, g}, x] && EqQ[b*c - a*d, 0] && EqQ[d/b, 2] && !IntegerQ[p] && LtQ[p, -1] && I
ntegerQ[2*p]
-
Int[cos[(a_.) + (b_.)*(x_)]/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[-ArcSin[Cos[a + b*x] - Sin[a + b*
x]]/d, x] + Simp[Log[Cos[a + b*x] + Sin[a + b*x] + Sqrt[Sin[c + d*x]]]/d, x] /; FreeQ[{a, b, c, d}, x] && EqQ[
b*c - a*d, 0] && EqQ[d/b, 2]
-
Int[sin[(a_.) + (b_.)*(x_)]/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[-ArcSin[Cos[a + b*x] - Sin[a + b*
x]]/d, x] - Simp[Log[Cos[a + b*x] + Sin[a + b*x] + Sqrt[Sin[c + d*x]]]/d, x] /; FreeQ[{a, b, c, d}, x] && EqQ[
b*c - a*d, 0] && EqQ[d/b, 2]
-
Int[((g_.)*sin[(c_.) + (d_.)*(x_)])^(p_)/cos[(a_.) + (b_.)*(x_)], x_Symbol] :> Simp[2*g Int[Sin[a + b*x]*(g*
Sin[c + d*x])^(p - 1), x], x] /; FreeQ[{a, b, c, d, g, p}, x] && EqQ[b*c - a*d, 0] && EqQ[d/b, 2] && !Integer
Q[p] && IntegerQ[2*p]
-
Int[((g_.)*sin[(c_.) + (d_.)*(x_)])^(p_)/sin[(a_.) + (b_.)*(x_)], x_Symbol] :> Simp[2*g Int[Cos[a + b*x]*(g*
Sin[c + d*x])^(p - 1), x], x] /; FreeQ[{a, b, c, d, g, p}, x] && EqQ[b*c - a*d, 0] && EqQ[d/b, 2] && !Integer
Q[p] && IntegerQ[2*p]
-
Int[(cos[(a_.) + (b_.)*(x_)]*(e_.))^(m_.)*((g_.)*sin[(c_.) + (d_.)*(x_)])^(p_), x_Symbol] :> Simp[(g*Sin[c + d
*x])^p/((e*Cos[a + b*x])^p*Sin[a + b*x]^p) Int[(e*Cos[a + b*x])^(m + p)*Sin[a + b*x]^p, x], x] /; FreeQ[{a,
b, c, d, e, g, m, p}, x] && EqQ[b*c - a*d, 0] && EqQ[d/b, 2] && !IntegerQ[p]
-
Int[((f_.)*sin[(a_.) + (b_.)*(x_)])^(n_.)*((g_.)*sin[(c_.) + (d_.)*(x_)])^(p_), x_Symbol] :> Simp[(g*Sin[c + d
*x])^p/(Cos[a + b*x]^p*(f*Sin[a + b*x])^p) Int[Cos[a + b*x]^p*(f*Sin[a + b*x])^(n + p), x], x] /; FreeQ[{a,
b, c, d, f, g, n, p}, x] && EqQ[b*c - a*d, 0] && EqQ[d/b, 2] && !IntegerQ[p]
-
Int[cos[(a_.) + (b_.)*(x_)]^2*sin[(a_.) + (b_.)*(x_)]^2*((g_.)*sin[(c_.) + (d_.)*(x_)])^(p_), x_Symbol] :> Sim
p[1/4 Int[(g*Sin[c + d*x])^p, x], x] - Simp[1/4 Int[Cos[c + d*x]^2*(g*Sin[c + d*x])^p, x], x] /; FreeQ[{a,
b, c, d, g}, x] && EqQ[b*c - a*d, 0] && EqQ[d/b, 2] && IGtQ[p/2, 0]
-
Int[(cos[(a_.) + (b_.)*(x_)]*(e_.))^(m_.)*((f_.)*sin[(a_.) + (b_.)*(x_)])^(n_.)*sin[(c_.) + (d_.)*(x_)]^(p_.),
x_Symbol] :> Simp[2^p/(e^p*f^p) Int[(e*Cos[a + b*x])^(m + p)*(f*Sin[a + b*x])^(n + p), x], x] /; FreeQ[{a,
b, c, d, e, f, m, n}, x] && EqQ[b*c - a*d, 0] && EqQ[d/b, 2] && IntegerQ[p]
-
Int[(cos[(a_.) + (b_.)*(x_)]*(e_.))^(m_.)*((f_.)*sin[(a_.) + (b_.)*(x_)])^(n_.)*((g_.)*sin[(c_.) + (d_.)*(x_)]
)^(p_), x_Symbol] :> Simp[e*(e*Cos[a + b*x])^(m - 1)*(f*Sin[a + b*x])^(n + 1)*((g*Sin[c + d*x])^p/(b*f*(n + p
+ 1))), x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && EqQ[b*c - a*d, 0] && EqQ[d/b, 2] && !IntegerQ[p] &&
EqQ[m + p + 1, 0]
-
Int[(cos[(a_.) + (b_.)*(x_)]*(f_.))^(n_)*((e_.)*sin[(a_.) + (b_.)*(x_)])^(m_)*((g_.)*sin[(c_.) + (d_.)*(x_)])^
(p_), x_Symbol] :> Simp[(-e)*(e*Sin[a + b*x])^(m - 1)*(f*Cos[a + b*x])^(n + 1)*((g*Sin[c + d*x])^p/(b*f*(n + p
+ 1))), x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && EqQ[b*c - a*d, 0] && EqQ[d/b, 2] && !IntegerQ[p] &
& EqQ[m + p + 1, 0]
-
Int[(cos[(a_.) + (b_.)*(x_)]*(e_.))^(m_.)*((f_.)*sin[(a_.) + (b_.)*(x_)])^(n_.)*((g_.)*sin[(c_.) + (d_.)*(x_)]
)^(p_), x_Symbol] :> Simp[(-(e*Cos[a + b*x])^(m + 1))*(f*Sin[a + b*x])^(n + 1)*((g*Sin[c + d*x])^p/(b*e*f*(m +
p + 1))), x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && EqQ[b*c - a*d, 0] && EqQ[d/b, 2] && !IntegerQ[p]
&& EqQ[m + n + 2*p + 2, 0] && NeQ[m + p + 1, 0]
-
Int[(cos[(a_.) + (b_.)*(x_)]*(e_.))^(m_)*((f_.)*sin[(a_.) + (b_.)*(x_)])^(n_)*((g_.)*sin[(c_.) + (d_.)*(x_)])^
(p_), x_Symbol] :> Simp[e^2*(e*Cos[a + b*x])^(m - 2)*(f*Sin[a + b*x])^n*((g*Sin[c + d*x])^(p + 1)/(2*b*g*(n +
p + 1))), x] + Simp[e^4*((m + p - 1)/(4*g^2*(n + p + 1))) Int[(e*Cos[a + b*x])^(m - 4)*(f*Sin[a + b*x])^n*(g
*Sin[c + d*x])^(p + 2), x], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && EqQ[b*c - a*d, 0] && EqQ[d/b, 2] && !
IntegerQ[p] && GtQ[m, 3] && LtQ[p, -1] && NeQ[n + p + 1, 0] && IntegersQ[2*m, 2*n, 2*p]
-
Int[(cos[(a_.) + (b_.)*(x_)]*(f_.))^(n_)*((e_.)*sin[(a_.) + (b_.)*(x_)])^(m_)*((g_.)*sin[(c_.) + (d_.)*(x_)])^
(p_), x_Symbol] :> Simp[(-e^2)*(e*Sin[a + b*x])^(m - 2)*(f*Cos[a + b*x])^n*((g*Sin[c + d*x])^(p + 1)/(2*b*g*(n
+ p + 1))), x] + Simp[e^4*((m + p - 1)/(4*g^2*(n + p + 1))) Int[(e*Sin[a + b*x])^(m - 4)*(f*Cos[a + b*x])^n
*(g*Sin[c + d*x])^(p + 2), x], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && EqQ[b*c - a*d, 0] && EqQ[d/b, 2] &&
!IntegerQ[p] && GtQ[m, 3] && LtQ[p, -1] && NeQ[n + p + 1, 0] && IntegersQ[2*m, 2*n, 2*p]
-
Int[(cos[(a_.) + (b_.)*(x_)]*(e_.))^(m_)*((f_.)*sin[(a_.) + (b_.)*(x_)])^(n_.)*((g_.)*sin[(c_.) + (d_.)*(x_)])
^(p_), x_Symbol] :> Simp[(e*Cos[a + b*x])^m*(f*Sin[a + b*x])^n*((g*Sin[c + d*x])^(p + 1)/(2*b*g*(n + p + 1))),
x] + Simp[e^2*((m + n + 2*p + 2)/(4*g^2*(n + p + 1))) Int[(e*Cos[a + b*x])^(m - 2)*(f*Sin[a + b*x])^n*(g*Si
n[c + d*x])^(p + 2), x], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && EqQ[b*c - a*d, 0] && EqQ[d/b, 2] && !Int
egerQ[p] && GtQ[m, 1] && LtQ[p, -1] && NeQ[m + n + 2*p + 2, 0] && NeQ[n + p + 1, 0] && IntegersQ[2*m, 2*n, 2*p
] && (LtQ[p, -2] || EqQ[m, 2] || EqQ[m, 3])
-
Int[(cos[(a_.) + (b_.)*(x_)]*(f_.))^(n_.)*((e_.)*sin[(a_.) + (b_.)*(x_)])^(m_)*((g_.)*sin[(c_.) + (d_.)*(x_)])
^(p_), x_Symbol] :> Simp[(-(e*Sin[a + b*x])^m)*(f*Cos[a + b*x])^n*((g*Sin[c + d*x])^(p + 1)/(2*b*g*(n + p + 1)
)), x] + Simp[e^2*((m + n + 2*p + 2)/(4*g^2*(n + p + 1))) Int[(e*Sin[a + b*x])^(m - 2)*(f*Cos[a + b*x])^n*(g
*Sin[c + d*x])^(p + 2), x], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && EqQ[b*c - a*d, 0] && EqQ[d/b, 2] && !
IntegerQ[p] && GtQ[m, 1] && LtQ[p, -1] && NeQ[m + n + 2*p + 2, 0] && NeQ[n + p + 1, 0] && IntegersQ[2*m, 2*n,
2*p] && (LtQ[p, -2] || EqQ[m, 2] || EqQ[m, 3])
-
Int[(cos[(a_.) + (b_.)*(x_)]*(e_.))^(m_)*((f_.)*sin[(a_.) + (b_.)*(x_)])^(n_)*((g_.)*sin[(c_.) + (d_.)*(x_)])^
(p_), x_Symbol] :> Simp[e*(e*Cos[a + b*x])^(m - 1)*(f*Sin[a + b*x])^(n + 1)*((g*Sin[c + d*x])^p/(b*f*(n + p +
1))), x] + Simp[e^2*((m + p - 1)/(f^2*(n + p + 1))) Int[(e*Cos[a + b*x])^(m - 2)*(f*Sin[a + b*x])^(n + 2)*(g
*Sin[c + d*x])^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && EqQ[b*c - a*d, 0] && EqQ[d/b, 2] && !Intege
rQ[p] && GtQ[m, 1] && LtQ[n, -1] && NeQ[n + p + 1, 0] && IntegersQ[2*m, 2*n, 2*p]
-
Int[(cos[(a_.) + (b_.)*(x_)]*(f_.))^(n_)*((e_.)*sin[(a_.) + (b_.)*(x_)])^(m_)*((g_.)*sin[(c_.) + (d_.)*(x_)])^
(p_), x_Symbol] :> Simp[(-e)*(e*Sin[a + b*x])^(m - 1)*(f*Cos[a + b*x])^(n + 1)*((g*Sin[c + d*x])^p/(b*f*(n + p
+ 1))), x] + Simp[e^2*((m + p - 1)/(f^2*(n + p + 1))) Int[(e*Sin[a + b*x])^(m - 2)*(f*Cos[a + b*x])^(n + 2)
*(g*Sin[c + d*x])^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && EqQ[b*c - a*d, 0] && EqQ[d/b, 2] && !Int
egerQ[p] && GtQ[m, 1] && LtQ[n, -1] && NeQ[n + p + 1, 0] && IntegersQ[2*m, 2*n, 2*p]
-
Int[(cos[(a_.) + (b_.)*(x_)]*(e_.))^(m_)*((f_.)*sin[(a_.) + (b_.)*(x_)])^(n_.)*((g_.)*sin[(c_.) + (d_.)*(x_)])
^(p_), x_Symbol] :> Simp[e*(e*Cos[a + b*x])^(m - 1)*(f*Sin[a + b*x])^(n + 1)*((g*Sin[c + d*x])^p/(b*f*(m + n +
2*p))), x] + Simp[e^2*((m + p - 1)/(m + n + 2*p)) Int[(e*Cos[a + b*x])^(m - 2)*(f*Sin[a + b*x])^n*(g*Sin[c
+ d*x])^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && EqQ[b*c - a*d, 0] && EqQ[d/b, 2] && !IntegerQ[p
] && GtQ[m, 1] && NeQ[m + n + 2*p, 0] && IntegersQ[2*m, 2*n, 2*p]
-
Int[(cos[(a_.) + (b_.)*(x_)]*(f_.))^(n_.)*((e_.)*sin[(a_.) + (b_.)*(x_)])^(m_)*((g_.)*sin[(c_.) + (d_.)*(x_)])
^(p_), x_Symbol] :> Simp[(-e)*(e*Sin[a + b*x])^(m - 1)*(f*Cos[a + b*x])^(n + 1)*((g*Sin[c + d*x])^p/(b*f*(m +
n + 2*p))), x] + Simp[e^2*((m + p - 1)/(m + n + 2*p)) Int[(e*Sin[a + b*x])^(m - 2)*(f*Cos[a + b*x])^n*(g*Sin
[c + d*x])^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && EqQ[b*c - a*d, 0] && EqQ[d/b, 2] && !Integer
Q[p] && GtQ[m, 1] && NeQ[m + n + 2*p, 0] && IntegersQ[2*m, 2*n, 2*p]
-
Int[(cos[(a_.) + (b_.)*(x_)]*(e_.))^(m_)*((f_.)*sin[(a_.) + (b_.)*(x_)])^(n_.)*((g_.)*sin[(c_.) + (d_.)*(x_)])
^(p_), x_Symbol] :> Simp[(-f)*(e*Cos[a + b*x])^(m + 1)*(f*Sin[a + b*x])^(n - 1)*((g*Sin[c + d*x])^p/(b*e*(m +
n + 2*p))), x] + Simp[2*f*g*((n + p - 1)/(e*(m + n + 2*p))) Int[(e*Cos[a + b*x])^(m + 1)*(f*Sin[a + b*x])^(n
- 1)*(g*Sin[c + d*x])^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && EqQ[b*c - a*d, 0] && EqQ[d/b, 2]
&& !IntegerQ[p] && LtQ[m, -1] && GtQ[n, 0] && GtQ[p, 0] && NeQ[m + n + 2*p, 0] && IntegersQ[2*m, 2*n, 2*p]
-
Int[(cos[(a_.) + (b_.)*(x_)]*(f_.))^(n_.)*((e_.)*sin[(a_.) + (b_.)*(x_)])^(m_)*((g_.)*sin[(c_.) + (d_.)*(x_)])
^(p_), x_Symbol] :> Simp[f*(e*Sin[a + b*x])^(m + 1)*(f*Cos[a + b*x])^(n - 1)*((g*Sin[c + d*x])^p/(b*e*(m + n +
2*p))), x] + Simp[2*f*g*((n + p - 1)/(e*(m + n + 2*p))) Int[(e*Sin[a + b*x])^(m + 1)*(f*Cos[a + b*x])^(n -
1)*(g*Sin[c + d*x])^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && EqQ[b*c - a*d, 0] && EqQ[d/b, 2] &&
!IntegerQ[p] && LtQ[m, -1] && GtQ[n, 0] && GtQ[p, 0] && NeQ[m + n + 2*p, 0] && IntegersQ[2*m, 2*n, 2*p]
-
Int[(cos[(a_.) + (b_.)*(x_)]*(e_.))^(m_)*((f_.)*sin[(a_.) + (b_.)*(x_)])^(n_.)*((g_.)*sin[(c_.) + (d_.)*(x_)])
^(p_), x_Symbol] :> Simp[(-(e*Cos[a + b*x])^(m + 1))*(f*Sin[a + b*x])^(n + 1)*((g*Sin[c + d*x])^p/(b*e*f*(m +
p + 1))), x] + Simp[f*((m + n + 2*p + 2)/(2*e*g*(m + p + 1))) Int[(e*Cos[a + b*x])^(m + 1)*(f*Sin[a + b*x])^
(n - 1)*(g*Sin[c + d*x])^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && EqQ[b*c - a*d, 0] && EqQ[d/b, 2
] && !IntegerQ[p] && LtQ[m, -1] && GtQ[n, 0] && LtQ[p, -1] && NeQ[m + n + 2*p + 2, 0] && NeQ[m + p + 1, 0] &&
IntegersQ[2*m, 2*n, 2*p]
-
Int[(cos[(a_.) + (b_.)*(x_)]*(f_.))^(n_.)*((e_.)*sin[(a_.) + (b_.)*(x_)])^(m_)*((g_.)*sin[(c_.) + (d_.)*(x_)])
^(p_), x_Symbol] :> Simp[(e*Sin[a + b*x])^(m + 1)*(f*Cos[a + b*x])^(n + 1)*((g*Sin[c + d*x])^p/(b*e*f*(m + p +
1))), x] + Simp[f*((m + n + 2*p + 2)/(2*e*g*(m + p + 1))) Int[(e*Sin[a + b*x])^(m + 1)*(f*Cos[a + b*x])^(n
- 1)*(g*Sin[c + d*x])^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && EqQ[b*c - a*d, 0] && EqQ[d/b, 2] &
& !IntegerQ[p] && LtQ[m, -1] && GtQ[n, 0] && LtQ[p, -1] && NeQ[m + n + 2*p + 2, 0] && NeQ[m + p + 1, 0] && In
tegersQ[2*m, 2*n, 2*p]
-
Int[(cos[(a_.) + (b_.)*(x_)]*(e_.))^(m_)*((f_.)*sin[(a_.) + (b_.)*(x_)])^(n_.)*((g_.)*sin[(c_.) + (d_.)*(x_)])
^(p_), x_Symbol] :> Simp[(-(e*Cos[a + b*x])^(m + 1))*(f*Sin[a + b*x])^(n + 1)*((g*Sin[c + d*x])^p/(b*e*f*(m +
p + 1))), x] + Simp[(m + n + 2*p + 2)/(e^2*(m + p + 1)) Int[(e*Cos[a + b*x])^(m + 2)*(f*Sin[a + b*x])^n*(g*S
in[c + d*x])^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && EqQ[b*c - a*d, 0] && EqQ[d/b, 2] && !Integ
erQ[p] && LtQ[m, -1] && NeQ[m + n + 2*p + 2, 0] && NeQ[m + p + 1, 0] && IntegersQ[2*m, 2*n, 2*p]
-
Int[(cos[(a_.) + (b_.)*(x_)]*(f_.))^(n_.)*((e_.)*sin[(a_.) + (b_.)*(x_)])^(m_)*((g_.)*sin[(c_.) + (d_.)*(x_)])
^(p_), x_Symbol] :> Simp[(e*Sin[a + b*x])^(m + 1)*(f*Cos[a + b*x])^(n + 1)*((g*Sin[c + d*x])^p/(b*e*f*(m + p +
1))), x] + Simp[(m + n + 2*p + 2)/(e^2*(m + p + 1)) Int[(e*Sin[a + b*x])^(m + 2)*(f*Cos[a + b*x])^n*(g*Sin[
c + d*x])^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && EqQ[b*c - a*d, 0] && EqQ[d/b, 2] && !IntegerQ
[p] && LtQ[m, -1] && NeQ[m + n + 2*p + 2, 0] && NeQ[m + p + 1, 0] && IntegersQ[2*m, 2*n, 2*p]
-
Int[(cos[(a_.) + (b_.)*(x_)]*(e_.))^(m_.)*((f_.)*sin[(a_.) + (b_.)*(x_)])^(n_.)*((g_.)*sin[(c_.) + (d_.)*(x_)]
)^(p_), x_Symbol] :> Simp[(g*Sin[c + d*x])^p/((e*Cos[a + b*x])^p*(f*Sin[a + b*x])^p) Int[(e*Cos[a + b*x])^(m
+ p)*(f*Sin[a + b*x])^(n + p), x], x] /; FreeQ[{a, b, c, d, e, f, g, m, n, p}, x] && EqQ[b*c - a*d, 0] && EqQ
[d/b, 2] && !IntegerQ[p]
-
Int[(cos[(a_.) + (b_.)*(x_)]*(e_.))^(m_.)*sin[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[(-(m + 2))*(e*Cos[a + b*x
])^(m + 1)*(Cos[(m + 1)*(a + b*x)]/(d*e*(m + 1))), x] /; FreeQ[{a, b, c, d, e, m}, x] && EqQ[b*c - a*d, 0] &&
EqQ[d/b, Abs[m + 2]]
-
Int[((a_.)*sin[(m_.)*((c_.) + (d_.)*(x_))] + (b_.)*sin[(n_.)*((c_.) + (d_.)*(x_))])^(p_), x_Symbol] :> Simp[1/
d Subst[Int[Simplify[TrigExpand[a*Sin[m*ArcTan[x]] + b*Sin[n*ArcTan[x]]]]^p/(1 + x^2), x], x, Tan[c + d*x]],
x] /; FreeQ[{a, b, c, d}, x] && ILtQ[p, 0] && IntegerQ[m/2] && IntegerQ[n/2]
-
Int[(cos[(m_.)*((c_.) + (d_.)*(x_))]*(a_.) + cos[(n_.)*((c_.) + (d_.)*(x_))]*(b_.))^(p_), x_Symbol] :> Simp[-d
^(-1) Subst[Int[Simplify[TrigExpand[a*Cos[m*ArcCot[x]] + b*Cos[n*ArcCot[x]]]]^p/(1 + x^2), x], x, Cot[c + d*
x]], x] /; FreeQ[{a, b, c, d}, x] && ILtQ[p, 0] && IntegerQ[m/2] && IntegerQ[n/2]
-
Int[((a_.)*sin[(m_.)*((c_.) + (d_.)*(x_))] + (b_.)*sin[(n_.)*((c_.) + (d_.)*(x_))])^(p_), x_Symbol] :> Simp[1/
d Subst[Int[Simplify[TrigExpand[a*Sin[m*ArcTan[x]] + b*Sin[n*ArcTan[x]]]]^p/(1 + x^2), x], x, Tan[c + d*x]],
x] /; FreeQ[{a, b, c, d}, x] && ILtQ[p/2, 0] && IntegerQ[(m - 1)/2] && IntegerQ[(n - 1)/2]
-
Int[(cos[(m_.)*((c_.) + (d_.)*(x_))]*(a_.) + cos[(n_.)*((c_.) + (d_.)*(x_))]*(b_.))^(p_), x_Symbol] :> Simp[1/
d Subst[Int[Simplify[TrigExpand[a*Cos[m*ArcTan[x]] + b*Cos[n*ArcTan[x]]]]^p/(1 + x^2), x], x, Tan[c + d*x]],
x] /; FreeQ[{a, b, c, d}, x] && ILtQ[p/2, 0] && IntegerQ[(m - 1)/2] && IntegerQ[(n - 1)/2]
-
Int[((a_.)*sin[(m_.)*((c_.) + (d_.)*(x_))] + (b_.)*sin[(n_.)*((c_.) + (d_.)*(x_))])^(p_), x_Symbol] :> Simp[-d
^(-1) Subst[Int[Simplify[TrigExpand[a*Sin[m*ArcCos[x]] + b*Sin[n*ArcCos[x]]]]^p/Sqrt[1 - x^2], x], x, Cos[c
+ d*x]], x] /; FreeQ[{a, b, c, d}, x] && ILtQ[(p - 1)/2, 0] && IntegerQ[(m - 1)/2] && IntegerQ[(n - 1)/2]
-
Int[(cos[(m_.)*((c_.) + (d_.)*(x_))]*(a_.) + cos[(n_.)*((c_.) + (d_.)*(x_))]*(b_.))^(p_), x_Symbol] :> Simp[1/
d Subst[Int[Simplify[TrigExpand[a*Cos[m*ArcSin[x]] + b*Cos[n*ArcSin[x]]]]^p/Sqrt[1 - x^2], x], x, Sin[c + d*
x]], x] /; FreeQ[{a, b, c, d}, x] && ILtQ[(p - 1)/2, 0] && IntegerQ[(m - 1)/2] && IntegerQ[(n - 1)/2]
-
Int[((a_.)*sin[(m_.)*((c_.) + (d_.)*(x_))] + (b_.)*sin[(n_.)*((c_.) + (d_.)*(x_))])^(p_), x_Symbol] :> Simp[2/
d Subst[Int[Simplify[TrigExpand[a*Sin[2*m*ArcTan[x]] + b*Sin[2*n*ArcTan[x]]]]^p/(1 + x^2), x], x, Tan[(1/2)*
(c + d*x)]], x] /; FreeQ[{a, b, c, d}, x] && ILtQ[p, 0] && IntegerQ[m/2] && IntegerQ[(n - 1)/2]
-
Int[(cos[(m_.)*((c_.) + (d_.)*(x_))]*(a_.) + cos[(n_.)*((c_.) + (d_.)*(x_))]*(b_.))^(p_), x_Symbol] :> Simp[-2
/d Subst[Int[Simplify[TrigExpand[a*Cos[2*m*ArcCot[x]] + b*Cos[2*n*ArcCot[x]]]]^p/(1 + x^2), x], x, Cot[(1/2)
*(c + d*x)]], x] /; FreeQ[{a, b, c, d}, x] && ILtQ[p, 0] && IntegerQ[m/2] && IntegerQ[(n - 1)/2]
-
Int[(cos[(n_.)*((c_.) + (d_.)*(x_))]*(b_.) + (a_.)*sin[(m_.)*((c_.) + (d_.)*(x_))])^(p_), x_Symbol] :> Simp[1/
d Subst[Int[Simplify[TrigExpand[a*Sin[m*ArcTan[x]] + b*Cos[n*ArcTan[x]]]]^p/(1 + x^2), x], x, Tan[c + d*x]],
x] /; FreeQ[{a, b, c, d}, x] && ILtQ[p, 0] && IntegerQ[m/2] && IntegerQ[n/2]
-
Int[(cos[(n_.)*((c_.) + (d_.)*(x_))]*(b_.) + (a_.)*sin[(m_.)*((c_.) + (d_.)*(x_))])^(p_), x_Symbol] :> Simp[1/
d Subst[Int[Simplify[TrigExpand[a*Sin[m*ArcSin[x]] + b*Cos[n*ArcSin[x]]]]^p/Sqrt[1 - x^2], x], x, Sin[c + d*
x]], x] /; FreeQ[{a, b, c, d}, x] && ILtQ[(p - 1)/2, 0] && IntegerQ[m/2] && IntegerQ[(n - 1)/2]
-
Int[(cos[(n_.)*((c_.) + (d_.)*(x_))]*(b_.) + (a_.)*sin[(m_.)*((c_.) + (d_.)*(x_))])^(p_), x_Symbol] :> Simp[2/
d Subst[Int[Simplify[TrigExpand[a*Sin[2*m*ArcTan[x]] + b*Cos[2*n*ArcTan[x]]]]^p/(1 + x^2), x], x, Tan[(1/2)*
(c + d*x)]], x] /; FreeQ[{a, b, c, d}, x] && ILtQ[p, 0] && IntegerQ[m] && IntegerQ[n]
-
Int[((a_.)*sin[u_] + (b_.)*sin[v_])^(p_), x_Symbol] :> With[{m = Denominator[f/d]}, Int[(a*Sin[m*(c/m + d*(x/m
))] + b*Sin[m*(f/d)*(c/m + d*(x/m))])^p, x]] /; FreeQ[{a, b}, x] && LinearQ[{u, v}, x] && ILtQ[p, 0] && EqQ[d*
e - c*f, 0] && RationalQ[f/d]
-
Int[((a_.)*(F_)[(c_.) + (d_.)*(x_)]^(p_))^(n_), x_Symbol] :> With[{v = ActivateTrig[F[c + d*x]]}, Simp[a^IntPa
rt[n]*(v/NonfreeFactors[v, x])^(p*IntPart[n])*((a*v^p)^FracPart[n]/NonfreeFactors[v, x]^(p*FracPart[n])) Int
[NonfreeFactors[v, x]^(n*p), x], x]] /; FreeQ[{a, c, d, n, p}, x] && InertTrigQ[F] && !IntegerQ[n] && Integer
Q[p]
-
Int[((a_.)*((b_.)*(F_)[(c_.) + (d_.)*(x_)])^(p_))^(n_.), x_Symbol] :> With[{v = ActivateTrig[F[c + d*x]]}, Sim
p[a^IntPart[n]*((a*(b*v)^p)^FracPart[n]/(b*v)^(p*FracPart[n])) Int[(b*v)^(n*p), x], x]] /; FreeQ[{a, b, c, d
, n, p}, x] && InertTrigQ[F] && !IntegerQ[n] && !IntegerQ[p]
-
Int[(u_)*(F_)[(c_.)*((a_.) + (b_.)*(x_))], x_Symbol] :> With[{d = FreeFactors[Sin[c*(a + b*x)], x]}, Simp[d/(b
*c) Subst[Int[SubstFor[1, Sin[c*(a + b*x)]/d, u, x], x], x, Sin[c*(a + b*x)]/d], x] /; FunctionOfQ[Sin[c*(a
+ b*x)]/d, u, x, True]] /; FreeQ[{a, b, c}, x] && (EqQ[F, Cos] || EqQ[F, cos])
-
Int[(u_)*(F_)[(c_.)*((a_.) + (b_.)*(x_))], x_Symbol] :> With[{d = FreeFactors[Cos[c*(a + b*x)], x]}, Simp[-d/(
b*c) Subst[Int[SubstFor[1, Cos[c*(a + b*x)]/d, u, x], x], x, Cos[c*(a + b*x)]/d], x] /; FunctionOfQ[Cos[c*(a
+ b*x)]/d, u, x, True]] /; FreeQ[{a, b, c}, x] && (EqQ[F, Sin] || EqQ[F, sin])
-
Int[Cosh[(c_.)*((a_.) + (b_.)*(x_))]*(u_), x_Symbol] :> With[{d = FreeFactors[Sinh[c*(a + b*x)], x]}, Simp[d/(
b*c) Subst[Int[SubstFor[1, Sinh[c*(a + b*x)]/d, u, x], x], x, Sinh[c*(a + b*x)]/d], x] /; FunctionOfQ[Sinh[c
*(a + b*x)]/d, u, x, True]] /; FreeQ[{a, b, c}, x]
-
Int[(u_)*Sinh[(c_.)*((a_.) + (b_.)*(x_))], x_Symbol] :> With[{d = FreeFactors[Cosh[c*(a + b*x)], x]}, Simp[d/(
b*c) Subst[Int[SubstFor[1, Cosh[c*(a + b*x)]/d, u, x], x], x, Cosh[c*(a + b*x)]/d], x] /; FunctionOfQ[Cosh[c
*(a + b*x)]/d, u, x, True]] /; FreeQ[{a, b, c}, x]
-
Int[(u_)*(F_)[(c_.)*((a_.) + (b_.)*(x_))], x_Symbol] :> With[{d = FreeFactors[Sin[c*(a + b*x)], x]}, Simp[1/(b
*c) Subst[Int[SubstFor[1/x, Sin[c*(a + b*x)]/d, u, x], x], x, Sin[c*(a + b*x)]/d], x] /; FunctionOfQ[Sin[c*(
a + b*x)]/d, u, x, True]] /; FreeQ[{a, b, c}, x] && (EqQ[F, Cot] || EqQ[F, cot])
-
Int[(u_)*(F_)[(c_.)*((a_.) + (b_.)*(x_))], x_Symbol] :> With[{d = FreeFactors[Cos[c*(a + b*x)], x]}, Simp[-(b*
c)^(-1) Subst[Int[SubstFor[1/x, Cos[c*(a + b*x)]/d, u, x], x], x, Cos[c*(a + b*x)]/d], x] /; FunctionOfQ[Cos
[c*(a + b*x)]/d, u, x, True]] /; FreeQ[{a, b, c}, x] && (EqQ[F, Tan] || EqQ[F, tan])
-
Int[Coth[(c_.)*((a_.) + (b_.)*(x_))]*(u_), x_Symbol] :> With[{d = FreeFactors[Sinh[c*(a + b*x)], x]}, Simp[1/(
b*c) Subst[Int[SubstFor[1/x, Sinh[c*(a + b*x)]/d, u, x], x], x, Sinh[c*(a + b*x)]/d], x] /; FunctionOfQ[Sinh
[c*(a + b*x)]/d, u, x, True]] /; FreeQ[{a, b, c}, x]
-
Int[(u_)*Tanh[(c_.)*((a_.) + (b_.)*(x_))], x_Symbol] :> With[{d = FreeFactors[Cosh[c*(a + b*x)], x]}, Simp[1/(
b*c) Subst[Int[SubstFor[1/x, Cosh[c*(a + b*x)]/d, u, x], x], x, Cosh[c*(a + b*x)]/d], x] /; FunctionOfQ[Cosh
[c*(a + b*x)]/d, u, x, True]] /; FreeQ[{a, b, c}, x]
-
Int[(u_)*(F_)[(c_.)*((a_.) + (b_.)*(x_))]^2, x_Symbol] :> With[{d = FreeFactors[Tan[c*(a + b*x)], x]}, Simp[d/
(b*c) Subst[Int[SubstFor[1, Tan[c*(a + b*x)]/d, u, x], x], x, Tan[c*(a + b*x)]/d], x] /; FunctionOfQ[Tan[c*(
a + b*x)]/d, u, x, True]] /; FreeQ[{a, b, c}, x] && NonsumQ[u] && (EqQ[F, Sec] || EqQ[F, sec])
-
Int[(u_)/cos[(c_.)*((a_.) + (b_.)*(x_))]^2, x_Symbol] :> With[{d = FreeFactors[Tan[c*(a + b*x)], x]}, Simp[d/(
b*c) Subst[Int[SubstFor[1, Tan[c*(a + b*x)]/d, u, x], x], x, Tan[c*(a + b*x)]/d], x] /; FunctionOfQ[Tan[c*(a
+ b*x)]/d, u, x, True]] /; FreeQ[{a, b, c}, x] && NonsumQ[u]
-
Int[(u_)*(F_)[(c_.)*((a_.) + (b_.)*(x_))]^2, x_Symbol] :> With[{d = FreeFactors[Cot[c*(a + b*x)], x]}, Simp[-d
/(b*c) Subst[Int[SubstFor[1, Cot[c*(a + b*x)]/d, u, x], x], x, Cot[c*(a + b*x)]/d], x] /; FunctionOfQ[Cot[c*
(a + b*x)]/d, u, x, True]] /; FreeQ[{a, b, c}, x] && NonsumQ[u] && (EqQ[F, Csc] || EqQ[F, csc])
-
Int[(u_)/sin[(c_.)*((a_.) + (b_.)*(x_))]^2, x_Symbol] :> With[{d = FreeFactors[Cot[c*(a + b*x)], x]}, Simp[-d/
(b*c) Subst[Int[SubstFor[1, Cot[c*(a + b*x)]/d, u, x], x], x, Cot[c*(a + b*x)]/d], x] /; FunctionOfQ[Cot[c*(
a + b*x)]/d, u, x, True]] /; FreeQ[{a, b, c}, x] && NonsumQ[u]
-
Int[(u_)*Sech[(c_.)*((a_.) + (b_.)*(x_))]^2, x_Symbol] :> With[{d = FreeFactors[Tanh[c*(a + b*x)], x]}, Simp[d
/(b*c) Subst[Int[SubstFor[1, Tanh[c*(a + b*x)]/d, u, x], x], x, Tanh[c*(a + b*x)]/d], x] /; FunctionOfQ[Tanh
[c*(a + b*x)]/d, u, x, True]] /; FreeQ[{a, b, c}, x] && NonsumQ[u]
-
Int[Csch[(c_.)*((a_.) + (b_.)*(x_))]^2*(u_), x_Symbol] :> With[{d = FreeFactors[Coth[c*(a + b*x)], x]}, Simp[-
d/(b*c) Subst[Int[SubstFor[1, Coth[c*(a + b*x)]/d, u, x], x], x, Coth[c*(a + b*x)]/d], x] /; FunctionOfQ[Cot
h[c*(a + b*x)]/d, u, x, True]] /; FreeQ[{a, b, c}, x] && NonsumQ[u]
-
Int[(u_)*(F_)[(c_.)*((a_.) + (b_.)*(x_))]^(n_.), x_Symbol] :> With[{d = FreeFactors[Tan[c*(a + b*x)], x]}, Sim
p[1/(b*c*d^(n - 1)) Subst[Int[SubstFor[1/(x^n*(1 + d^2*x^2)), Tan[c*(a + b*x)]/d, u, x], x], x, Tan[c*(a + b
*x)]/d], x] /; FunctionOfQ[Tan[c*(a + b*x)]/d, u, x, True] && TryPureTanSubst[ActivateTrig[u]*Cot[c*(a + b*x)]
^n, x]] /; FreeQ[{a, b, c}, x] && IntegerQ[n] && (EqQ[F, Cot] || EqQ[F, cot])
-
Int[(u_)*(F_)[(c_.)*((a_.) + (b_.)*(x_))]^(n_.), x_Symbol] :> With[{d = FreeFactors[Cot[c*(a + b*x)], x]}, Sim
p[-(b*c*d^(n - 1))^(-1) Subst[Int[SubstFor[1/(x^n*(1 + d^2*x^2)), Cot[c*(a + b*x)]/d, u, x], x], x, Cot[c*(a
+ b*x)]/d], x] /; FunctionOfQ[Cot[c*(a + b*x)]/d, u, x, True] && TryPureTanSubst[ActivateTrig[u]*Tan[c*(a + b
*x)]^n, x]] /; FreeQ[{a, b, c}, x] && IntegerQ[n] && (EqQ[F, Tan] || EqQ[F, tan])
-
Int[Coth[(c_.)*((a_.) + (b_.)*(x_))]^(n_.)*(u_), x_Symbol] :> With[{d = FreeFactors[Tanh[c*(a + b*x)], x]}, Si
mp[1/(b*c*d^(n - 1)) Subst[Int[SubstFor[1/(x^n*(1 - d^2*x^2)), Tanh[c*(a + b*x)]/d, u, x], x], x, Tanh[c*(a
+ b*x)]/d], x] /; FunctionOfQ[Tanh[c*(a + b*x)]/d, u, x, True] && TryPureTanSubst[ActivateTrig[u]*Coth[c*(a +
b*x)]^n, x]] /; FreeQ[{a, b, c}, x] && IntegerQ[n]
-
Int[(u_)*Tanh[(c_.)*((a_.) + (b_.)*(x_))]^(n_.), x_Symbol] :> With[{d = FreeFactors[Coth[c*(a + b*x)], x]}, Si
mp[1/(b*c*d^(n - 1)) Subst[Int[SubstFor[1/(x^n*(1 - d^2*x^2)), Coth[c*(a + b*x)]/d, u, x], x], x, Coth[c*(a
+ b*x)]/d], x] /; FunctionOfQ[Coth[c*(a + b*x)]/d, u, x, True] && TryPureTanSubst[ActivateTrig[u]*Tanh[c*(a +
b*x)]^n, x]] /; FreeQ[{a, b, c}, x] && IntegerQ[n]
-
Int[u_, x_Symbol] :> With[{v = FunctionOfTrig[u, x]}, Simp[With[{d = FreeFactors[Cot[v], x]}, -d/Coefficient[v
, x, 1] Subst[Int[SubstFor[1/(1 + d^2*x^2), Cot[v]/d, u, x], x], x, Cot[v]/d]], x] /; !FalseQ[v] && Functio
nOfQ[NonfreeFactors[Cot[v], x], u, x, True] && TryPureTanSubst[ActivateTrig[u], x]]
-
Int[u_, x_Symbol] :> With[{v = FunctionOfTrig[u, x]}, Simp[With[{d = FreeFactors[Tan[v], x]}, d/Coefficient[v,
x, 1] Subst[Int[SubstFor[1/(1 + d^2*x^2), Tan[v]/d, u, x], x], x, Tan[v]/d]], x] /; !FalseQ[v] && Function
OfQ[NonfreeFactors[Tan[v], x], u, x, True] && TryPureTanSubst[ActivateTrig[u], x]]
-
Int[(F_)[(a_.) + (b_.)*(x_)]^(p_.)*(G_)[(c_.) + (d_.)*(x_)]^(q_.), x_Symbol] :> Int[ExpandTrigReduce[ActivateT
rig[F[a + b*x]^p*G[c + d*x]^q], x], x] /; FreeQ[{a, b, c, d}, x] && (EqQ[F, sin] || EqQ[F, cos]) && (EqQ[G, si
n] || EqQ[G, cos]) && IGtQ[p, 0] && IGtQ[q, 0]
-
Int[(F_)[(a_.) + (b_.)*(x_)]^(p_.)*(G_)[(c_.) + (d_.)*(x_)]^(q_.)*(H_)[(e_.) + (f_.)*(x_)]^(r_.), x_Symbol] :>
Int[ExpandTrigReduce[ActivateTrig[F[a + b*x]^p*G[c + d*x]^q*H[e + f*x]^r], x], x] /; FreeQ[{a, b, c, d, e, f}
, x] && (EqQ[F, sin] || EqQ[F, cos]) && (EqQ[G, sin] || EqQ[G, cos]) && (EqQ[H, sin] || EqQ[H, cos]) && IGtQ[p
, 0] && IGtQ[q, 0] && IGtQ[r, 0]
-
Int[(u_)*(F_)[(c_.)*((a_.) + (b_.)*(x_))], x_Symbol] :> With[{d = FreeFactors[Sin[c*(a + b*x)], x]}, Simp[d/(b
*c) Subst[Int[SubstFor[1, Sin[c*(a + b*x)]/d, u, x], x], x, Sin[c*(a + b*x)]/d], x] /; FunctionOfQ[Sin[c*(a
+ b*x)]/d, u, x]] /; FreeQ[{a, b, c}, x] && (EqQ[F, Cos] || EqQ[F, cos])
-
Int[(u_)*(F_)[(c_.)*((a_.) + (b_.)*(x_))], x_Symbol] :> With[{d = FreeFactors[Cos[c*(a + b*x)], x]}, Simp[-d/(
b*c) Subst[Int[SubstFor[1, Cos[c*(a + b*x)]/d, u, x], x], x, Cos[c*(a + b*x)]/d], x] /; FunctionOfQ[Cos[c*(a
+ b*x)]/d, u, x]] /; FreeQ[{a, b, c}, x] && (EqQ[F, Sin] || EqQ[F, sin])
-
Int[Cosh[(c_.)*((a_.) + (b_.)*(x_))]*(u_), x_Symbol] :> With[{d = FreeFactors[Sinh[c*(a + b*x)], x]}, Simp[d/(
b*c) Subst[Int[SubstFor[1, Sinh[c*(a + b*x)]/d, u, x], x], x, Sinh[c*(a + b*x)]/d], x] /; FunctionOfQ[Sinh[c
*(a + b*x)]/d, u, x]] /; FreeQ[{a, b, c}, x]
-
Int[(u_)*Sinh[(c_.)*((a_.) + (b_.)*(x_))], x_Symbol] :> With[{d = FreeFactors[Cosh[c*(a + b*x)], x]}, Simp[d/(
b*c) Subst[Int[SubstFor[1, Cosh[c*(a + b*x)]/d, u, x], x], x, Cosh[c*(a + b*x)]/d], x] /; FunctionOfQ[Cosh[c
*(a + b*x)]/d, u, x]] /; FreeQ[{a, b, c}, x]
-
Int[(u_)*(F_)[(c_.)*((a_.) + (b_.)*(x_))], x_Symbol] :> With[{d = FreeFactors[Sin[c*(a + b*x)], x]}, Simp[1/(b
*c) Subst[Int[SubstFor[1/x, Sin[c*(a + b*x)]/d, u, x], x], x, Sin[c*(a + b*x)]/d], x] /; FunctionOfQ[Sin[c*(
a + b*x)]/d, u, x]] /; FreeQ[{a, b, c}, x] && (EqQ[F, Cot] || EqQ[F, cot])
-
Int[(u_)*(F_)[(c_.)*((a_.) + (b_.)*(x_))], x_Symbol] :> With[{d = FreeFactors[Cos[c*(a + b*x)], x]}, Simp[-(b*
c)^(-1) Subst[Int[SubstFor[1/x, Cos[c*(a + b*x)]/d, u, x], x], x, Cos[c*(a + b*x)]/d], x] /; FunctionOfQ[Cos
[c*(a + b*x)]/d, u, x]] /; FreeQ[{a, b, c}, x] && (EqQ[F, Tan] || EqQ[F, tan])
-
Int[Coth[(c_.)*((a_.) + (b_.)*(x_))]*(u_), x_Symbol] :> With[{d = FreeFactors[Sinh[c*(a + b*x)], x]}, Simp[1/(
b*c) Subst[Int[SubstFor[1/x, Sinh[c*(a + b*x)]/d, u, x], x], x, Sinh[c*(a + b*x)]/d], x] /; FunctionOfQ[Sinh
[c*(a + b*x)]/d, u, x]] /; FreeQ[{a, b, c}, x]
-
Int[(u_)*Tanh[(c_.)*((a_.) + (b_.)*(x_))], x_Symbol] :> With[{d = FreeFactors[Cosh[c*(a + b*x)], x]}, Simp[1/(
b*c) Subst[Int[SubstFor[1/x, Cosh[c*(a + b*x)]/d, u, x], x], x, Cosh[c*(a + b*x)]/d], x] /; FunctionOfQ[Cosh
[c*(a + b*x)]/d, u, x]] /; FreeQ[{a, b, c}, x]
-
Int[(u_)*(F_)[(c_.)*((a_.) + (b_.)*(x_))]^(n_), x_Symbol] :> With[{d = FreeFactors[Sin[c*(a + b*x)], x]}, Simp
[d/(b*c) Subst[Int[SubstFor[(1 - d^2*x^2)^((n - 1)/2), Sin[c*(a + b*x)]/d, u, x], x], x, Sin[c*(a + b*x)]/d]
, x] /; FunctionOfQ[Sin[c*(a + b*x)]/d, u, x]] /; FreeQ[{a, b, c}, x] && IntegerQ[(n - 1)/2] && NonsumQ[u] &&
(EqQ[F, Cos] || EqQ[F, cos])
-
Int[(u_)*(F_)[(c_.)*((a_.) + (b_.)*(x_))]^(n_), x_Symbol] :> With[{d = FreeFactors[Sin[c*(a + b*x)], x]}, Simp
[d/(b*c) Subst[Int[SubstFor[(1 - d^2*x^2)^((-n - 1)/2), Sin[c*(a + b*x)]/d, u, x], x], x, Sin[c*(a + b*x)]/d
], x] /; FunctionOfQ[Sin[c*(a + b*x)]/d, u, x]] /; FreeQ[{a, b, c}, x] && IntegerQ[(n - 1)/2] && NonsumQ[u] &&
(EqQ[F, Sec] || EqQ[F, sec])
-
Int[(u_)*(F_)[(c_.)*((a_.) + (b_.)*(x_))]^(n_), x_Symbol] :> With[{d = FreeFactors[Cos[c*(a + b*x)], x]}, Simp
[-d/(b*c) Subst[Int[SubstFor[(1 - d^2*x^2)^((n - 1)/2), Cos[c*(a + b*x)]/d, u, x], x], x, Cos[c*(a + b*x)]/d
], x] /; FunctionOfQ[Cos[c*(a + b*x)]/d, u, x]] /; FreeQ[{a, b, c}, x] && IntegerQ[(n - 1)/2] && NonsumQ[u] &&
(EqQ[F, Sin] || EqQ[F, sin])
-
Int[(u_)*(F_)[(c_.)*((a_.) + (b_.)*(x_))]^(n_), x_Symbol] :> With[{d = FreeFactors[Cos[c*(a + b*x)], x]}, Simp
[-d/(b*c) Subst[Int[SubstFor[(1 - d^2*x^2)^((-n - 1)/2), Cos[c*(a + b*x)]/d, u, x], x], x, Cos[c*(a + b*x)]/
d], x] /; FunctionOfQ[Cos[c*(a + b*x)]/d, u, x]] /; FreeQ[{a, b, c}, x] && IntegerQ[(n - 1)/2] && NonsumQ[u] &
& (EqQ[F, Csc] || EqQ[F, csc])
-
Int[Cosh[(c_.)*((a_.) + (b_.)*(x_))]^(n_)*(u_), x_Symbol] :> With[{d = FreeFactors[Sinh[c*(a + b*x)], x]}, Sim
p[d/(b*c) Subst[Int[SubstFor[(1 + d^2*x^2)^((n - 1)/2), Sinh[c*(a + b*x)]/d, u, x], x], x, Sinh[c*(a + b*x)]
/d], x] /; FunctionOfQ[Sinh[c*(a + b*x)]/d, u, x]] /; FreeQ[{a, b, c}, x] && IntegerQ[(n - 1)/2] && NonsumQ[u]
-
Int[(u_)*Sech[(c_.)*((a_.) + (b_.)*(x_))]^(n_), x_Symbol] :> With[{d = FreeFactors[Sinh[c*(a + b*x)], x]}, Sim
p[d/(b*c) Subst[Int[SubstFor[(1 + d^2*x^2)^((-n - 1)/2), Sinh[c*(a + b*x)]/d, u, x], x], x, Sinh[c*(a + b*x)
]/d], x] /; FunctionOfQ[Sinh[c*(a + b*x)]/d, u, x]] /; FreeQ[{a, b, c}, x] && IntegerQ[(n - 1)/2] && NonsumQ[u
]
-
Int[(u_)*Sinh[(c_.)*((a_.) + (b_.)*(x_))]^(n_), x_Symbol] :> With[{d = FreeFactors[Cosh[c*(a + b*x)], x]}, Sim
p[d/(b*c) Subst[Int[SubstFor[(-1 + d^2*x^2)^((n - 1)/2), Cosh[c*(a + b*x)]/d, u, x], x], x, Cosh[c*(a + b*x)
]/d], x] /; FunctionOfQ[Cosh[c*(a + b*x)]/d, u, x]] /; FreeQ[{a, b, c}, x] && IntegerQ[(n - 1)/2] && NonsumQ[u
]
-
Int[Csch[(c_.)*((a_.) + (b_.)*(x_))]^(n_)*(u_), x_Symbol] :> With[{d = FreeFactors[Cosh[c*(a + b*x)], x]}, Sim
p[d/(b*c) Subst[Int[SubstFor[(-1 + d^2*x^2)^((-n - 1)/2), Cosh[c*(a + b*x)]/d, u, x], x], x, Cosh[c*(a + b*x
)]/d], x] /; FunctionOfQ[Cosh[c*(a + b*x)]/d, u, x]] /; FreeQ[{a, b, c}, x] && IntegerQ[(n - 1)/2] && NonsumQ[
u]
-
Int[(u_)*(F_)[(c_.)*((a_.) + (b_.)*(x_))]^(n_), x_Symbol] :> With[{d = FreeFactors[Sin[c*(a + b*x)], x]}, Simp
[1/(b*c*d^(n - 1)) Subst[Int[SubstFor[(1 - d^2*x^2)^((n - 1)/2)/x^n, Sin[c*(a + b*x)]/d, u, x], x], x, Sin[c
*(a + b*x)]/d], x] /; FunctionOfQ[Sin[c*(a + b*x)]/d, u, x]] /; FreeQ[{a, b, c}, x] && IntegerQ[(n - 1)/2] &&
NonsumQ[u] && (EqQ[F, Cot] || EqQ[F, cot])
-
Int[(u_)*(F_)[(c_.)*((a_.) + (b_.)*(x_))]^(n_), x_Symbol] :> With[{d = FreeFactors[Cos[c*(a + b*x)], x]}, Simp
[-(b*c*d^(n - 1))^(-1) Subst[Int[SubstFor[(1 - d^2*x^2)^((n - 1)/2)/x^n, Cos[c*(a + b*x)]/d, u, x], x], x, C
os[c*(a + b*x)]/d], x] /; FunctionOfQ[Cos[c*(a + b*x)]/d, u, x]] /; FreeQ[{a, b, c}, x] && IntegerQ[(n - 1)/2]
&& NonsumQ[u] && (EqQ[F, Tan] || EqQ[F, tan])
-
Int[Coth[(c_.)*((a_.) + (b_.)*(x_))]^(n_)*(u_), x_Symbol] :> With[{d = FreeFactors[Sinh[c*(a + b*x)], x]}, Sim
p[1/(b*c*d^(n - 1)) Subst[Int[SubstFor[(1 + d^2*x^2)^((n - 1)/2)/x^n, Sinh[c*(a + b*x)]/d, u, x], x], x, Sin
h[c*(a + b*x)]/d], x] /; FunctionOfQ[Sinh[c*(a + b*x)]/d, u, x]] /; FreeQ[{a, b, c}, x] && IntegerQ[(n - 1)/2]
&& NonsumQ[u]
-
Int[(u_)*Tanh[(c_.)*((a_.) + (b_.)*(x_))]^(n_), x_Symbol] :> With[{d = FreeFactors[Cosh[c*(a + b*x)], x]}, Sim
p[1/(b*c*d^(n - 1)) Subst[Int[SubstFor[(-1 + d^2*x^2)^((n - 1)/2)/x^n, Cosh[c*(a + b*x)]/d, u, x], x], x, Co
sh[c*(a + b*x)]/d], x] /; FunctionOfQ[Cosh[c*(a + b*x)]/d, u, x]] /; FreeQ[{a, b, c}, x] && IntegerQ[(n - 1)/2
] && NonsumQ[u]
-
Int[(u_)*((v_) + (d_.)*(F_)[(c_.)*((a_.) + (b_.)*(x_))]^(n_.)), x_Symbol] :> With[{e = FreeFactors[Sin[c*(a +
b*x)], x]}, Int[ActivateTrig[u*v], x] + Simp[d Int[ActivateTrig[u]*Cos[c*(a + b*x)]^n, x], x] /; FunctionOfQ
[Sin[c*(a + b*x)]/e, u, x]] /; FreeQ[{a, b, c, d}, x] && !FreeQ[v, x] && IntegerQ[(n - 1)/2] && NonsumQ[u] &&
(EqQ[F, Cos] || EqQ[F, cos])
-
Int[(u_)*((v_) + (d_.)*(F_)[(c_.)*((a_.) + (b_.)*(x_))]^(n_.)), x_Symbol] :> With[{e = FreeFactors[Cos[c*(a +
b*x)], x]}, Int[ActivateTrig[u*v], x] + Simp[d Int[ActivateTrig[u]*Sin[c*(a + b*x)]^n, x], x] /; FunctionOfQ
[Cos[c*(a + b*x)]/e, u, x]] /; FreeQ[{a, b, c, d}, x] && !FreeQ[v, x] && IntegerQ[(n - 1)/2] && NonsumQ[u] &&
(EqQ[F, Sin] || EqQ[F, sin])
-
Int[u_, x_Symbol] :> With[{v = FunctionOfTrig[u, x]}, Simp[With[{d = FreeFactors[Sin[v], x]}, d/Coefficient[v,
x, 1] Subst[Int[SubstFor[1, Sin[v]/d, u/Cos[v], x], x], x, Sin[v]/d]], x] /; !FalseQ[v] && FunctionOfQ[Non
freeFactors[Sin[v], x], u/Cos[v], x]]
-
Int[u_, x_Symbol] :> With[{v = FunctionOfTrig[u, x]}, Simp[With[{d = FreeFactors[Cos[v], x]}, -d/Coefficient[v
, x, 1] Subst[Int[SubstFor[1, Cos[v]/d, u/Sin[v], x], x], x, Cos[v]/d]], x] /; !FalseQ[v] && FunctionOfQ[No
nfreeFactors[Cos[v], x], u/Sin[v], x]]
-
Int[(u_.)*((a_.) + cos[(d_.) + (e_.)*(x_)]^2*(b_.) + (c_.)*sin[(d_.) + (e_.)*(x_)]^2)^(p_.), x_Symbol] :> Simp
[(a + c)^p Int[ActivateTrig[u], x], x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[b - c, 0]
-
Int[(u_.)*((a_.) + (c_.)*sec[(d_.) + (e_.)*(x_)]^2 + (b_.)*tan[(d_.) + (e_.)*(x_)]^2)^(p_.), x_Symbol] :> Simp
[(a + c)^p Int[ActivateTrig[u], x], x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[b + c, 0]
-
Int[((a_.) + cot[(d_.) + (e_.)*(x_)]^2*(b_.) + csc[(d_.) + (e_.)*(x_)]^2*(c_.))^(p_.)*(u_.), x_Symbol] :> Simp
[(a + c)^p Int[ActivateTrig[u], x], x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[b + c, 0]
-
Int[(u_)/(y_), x_Symbol] :> With[{q = DerivativeDivides[ActivateTrig[y], ActivateTrig[u], x]}, Simp[q*Log[Remo
veContent[ActivateTrig[y], x]], x] /; !FalseQ[q]] /; !InertTrigFreeQ[u]
-
Int[(u_)/((w_)*(y_)), x_Symbol] :> With[{q = DerivativeDivides[ActivateTrig[y*w], ActivateTrig[u], x]}, Simp[q
*Log[RemoveContent[ActivateTrig[y*w], x]], x] /; !FalseQ[q]] /; !InertTrigFreeQ[u]
-
Int[(u_)*(y_)^(m_.), x_Symbol] :> With[{q = DerivativeDivides[ActivateTrig[y], ActivateTrig[u], x]}, Simp[q*(A
ctivateTrig[y^(m + 1)]/(m + 1)), x] /; !FalseQ[q]] /; FreeQ[m, x] && NeQ[m, -1] && !InertTrigFreeQ[u]
-
Int[(u_)*(y_)^(m_.)*(z_)^(n_.), x_Symbol] :> With[{q = DerivativeDivides[ActivateTrig[y*z], ActivateTrig[u*z^(
n - m)], x]}, Simp[q*(ActivateTrig[y^(m + 1)*z^(m + 1)]/(m + 1)), x] /; !FalseQ[q]] /; FreeQ[{m, n}, x] && Ne
Q[m, -1] && !InertTrigFreeQ[u]
-
Int[(u_.)*((a_.)*(F_)[(c_.) + (d_.)*(x_)]^(p_))^(n_), x_Symbol] :> With[{v = ActivateTrig[F[c + d*x]]}, Simp[a
^IntPart[n]*(v/NonfreeFactors[v, x])^(p*IntPart[n])*((a*v^p)^FracPart[n]/NonfreeFactors[v, x]^(p*FracPart[n]))
Int[ActivateTrig[u]*NonfreeFactors[v, x]^(n*p), x], x]] /; FreeQ[{a, c, d, n, p}, x] && InertTrigQ[F] && !
IntegerQ[n] && IntegerQ[p]
-
Int[(u_.)*((a_.)*((b_.)*(F_)[(c_.) + (d_.)*(x_)])^(p_))^(n_.), x_Symbol] :> With[{v = ActivateTrig[F[c + d*x]]
}, Simp[a^IntPart[n]*((a*(b*v)^p)^FracPart[n]/(b*v)^(p*FracPart[n])) Int[ActivateTrig[u]*(b*v)^(n*p), x], x]
] /; FreeQ[{a, b, c, d, n, p}, x] && InertTrigQ[F] && !IntegerQ[n] && !IntegerQ[p]
-
Int[u_, x_Symbol] :> With[{v = FunctionOfTrig[u, x]}, With[{d = FreeFactors[Tan[v], x]}, Simp[d/Coefficient[v,
x, 1] Subst[Int[SubstFor[1/(1 + d^2*x^2), Tan[v]/d, u, x], x], x, Tan[v]/d], x]] /; !FalseQ[v] && Function
OfQ[NonfreeFactors[Tan[v], x], u, x]] /; InverseFunctionFreeQ[u, x] && !MatchQ[u, (v_.)*((c_.)*tan[w_]^(n_.)*
tan[z_]^(n_.))^(p_.) /; FreeQ[{c, p}, x] && IntegerQ[n] && LinearQ[w, x] && EqQ[z, 2*w]]
-
Int[(u_)*((c_.)*sin[v_])^(m_), x_Symbol] :> With[{w = FunctionOfTrig[u*(Sin[v/2]^(2*m)/(c*Tan[v/2])^m), x]}, S
imp[(c*Sin[v])^m*((c*Tan[v/2])^m/Sin[v/2]^(2*m)) Int[u*(Sin[v/2]^(2*m)/(c*Tan[v/2])^m), x], x] /; !FalseQ[w
] && FunctionOfQ[NonfreeFactors[Tan[w], x], u*(Sin[v/2]^(2*m)/(c*Tan[v/2])^m), x]] /; FreeQ[c, x] && LinearQ[v
, x] && IntegerQ[m + 1/2] && !SumQ[u] && InverseFunctionFreeQ[u, x]
-
Int[(u_.)*((b_.)*sec[(c_.) + (d_.)*(x_)]^(n_.) + (a_.)*tan[(c_.) + (d_.)*(x_)]^(n_.))^(p_), x_Symbol] :> Int[A
ctivateTrig[u]*Sec[c + d*x]^(n*p)*(b + a*Sin[c + d*x]^n)^p, x] /; FreeQ[{a, b, c, d}, x] && IntegersQ[n, p]
-
Int[(cot[(c_.) + (d_.)*(x_)]^(n_.)*(a_.) + csc[(c_.) + (d_.)*(x_)]^(n_.)*(b_.))^(p_)*(u_.), x_Symbol] :> Int[A
ctivateTrig[u]*Csc[c + d*x]^(n*p)*(b + a*Cos[c + d*x]^n)^p, x] /; FreeQ[{a, b, c, d}, x] && IntegersQ[n, p]
-
Int[(u_)*((a_)*(F_)[(c_.) + (d_.)*(x_)]^(p_.) + (b_.)*(F_)[(c_.) + (d_.)*(x_)]^(q_.))^(n_.), x_Symbol] :> Int[
ActivateTrig[u*F[c + d*x]^(n*p)*(a + b*F[c + d*x]^(q - p))^n], x] /; FreeQ[{a, b, c, d, p, q}, x] && InertTrig
Q[F] && IntegerQ[n] && PosQ[q - p]
-
Int[(u_)*((a_)*(F_)[(d_.) + (e_.)*(x_)]^(p_.) + (b_.)*(F_)[(d_.) + (e_.)*(x_)]^(q_.) + (c_.)*(F_)[(d_.) + (e_.
)*(x_)]^(r_.))^(n_.), x_Symbol] :> Int[ActivateTrig[u*F[d + e*x]^(n*p)*(a + b*F[d + e*x]^(q - p) + c*F[d + e*x
]^(r - p))^n], x] /; FreeQ[{a, b, c, d, e, p, q, r}, x] && InertTrigQ[F] && IntegerQ[n] && PosQ[q - p] && PosQ
[r - p]
-
Int[(u_)*((a_) + (b_.)*(F_)[(d_.) + (e_.)*(x_)]^(p_.) + (c_.)*(F_)[(d_.) + (e_.)*(x_)]^(q_.))^(n_.), x_Symbol]
:> Int[ActivateTrig[u*F[d + e*x]^(n*p)*(b + a/F[d + e*x]^p + c*F[d + e*x]^(q - p))^n], x] /; FreeQ[{a, b, c,
d, e, p, q}, x] && InertTrigQ[F] && IntegerQ[n] && NegQ[p]
-
Int[(u_.)*(cos[(c_.) + (d_.)*(x_)]*(a_.) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_.), x_Symbol] :> Int[ActivateTrig
[u]*(a/E^((a/b)*(c + d*x)))^n, x] /; FreeQ[{a, b, c, d, n}, x] && EqQ[a^2 + b^2, 0]
-
Int[u_, x_Symbol] :> Int[TrigSimplify[u], x] /; TrigSimplifyQ[u]
-
Int[(u_.)*((a_)*(v_))^(p_), x_Symbol] :> With[{uu = ActivateTrig[u], vv = ActivateTrig[v]}, Simp[a^IntPart[p]*
((a*vv)^FracPart[p]/vv^FracPart[p]) Int[uu*vv^p, x], x]] /; FreeQ[{a, p}, x] && !IntegerQ[p] && !InertTrig
FreeQ[v]
-
Int[(u_.)*((v_)^(m_))^(p_), x_Symbol] :> With[{uu = ActivateTrig[u], vv = ActivateTrig[v]}, Simp[(vv^m)^FracPa
rt[p]/vv^(m*FracPart[p]) Int[uu*vv^(m*p), x], x]] /; FreeQ[{m, p}, x] && !IntegerQ[p] && !InertTrigFreeQ[v
]
-
Int[(u_.)*((v_)^(m_.)*(w_)^(n_.))^(p_), x_Symbol] :> With[{uu = ActivateTrig[u], vv = ActivateTrig[v], ww = Ac
tivateTrig[w]}, Simp[(vv^m*ww^n)^FracPart[p]/(vv^(m*FracPart[p])*ww^(n*FracPart[p])) Int[uu*vv^(m*p)*ww^(n*p
), x], x]] /; FreeQ[{m, n, p}, x] && !IntegerQ[p] && ( !InertTrigFreeQ[v] || !InertTrigFreeQ[w])
-
Int[u_, x_Symbol] :> With[{v = ExpandTrig[u, x]}, Int[v, x] /; SumQ[v]] /; !InertTrigFreeQ[u]
-
Int[u_, x_Symbol] :> With[{w = Block[{$ShowSteps = False, $StepCounter = Null}, Int[SubstFor[1/(1 + FreeFactor
s[Tan[FunctionOfTrig[u, x]/2], x]^2*x^2), Tan[FunctionOfTrig[u, x]/2]/FreeFactors[Tan[FunctionOfTrig[u, x]/2],
x], u, x], x]]}, Module[{v = FunctionOfTrig[u, x], d}, Simp[d = FreeFactors[Tan[v/2], x]; 2*(d/Coefficient[v,
x, 1]) Subst[Int[SubstFor[1/(1 + d^2*x^2), Tan[v/2]/d, u, x], x], x, Tan[v/2]/d], x]] /; CalculusFreeQ[w, x
]] /; InverseFunctionFreeQ[u, x] && !FalseQ[FunctionOfTrig[u, x]]
-
Int[u_, x_Symbol] :> With[{v = ActivateTrig[u]}, CannotIntegrate[v, x]] /; !InertTrigFreeQ[u]
-
Int[Cos[(a_.) + (b_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.)*Sin[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Simp[(c + d
*x)^m*(Sin[a + b*x]^(n + 1)/(b*(n + 1))), x] - Simp[d*(m/(b*(n + 1))) Int[(c + d*x)^(m - 1)*Sin[a + b*x]^(n
+ 1), x], x] /; FreeQ[{a, b, c, d, n}, x] && IGtQ[m, 0] && NeQ[n, -1]
-
Int[Cos[(a_.) + (b_.)*(x_)]^(n_.)*((c_.) + (d_.)*(x_))^(m_.)*Sin[(a_.) + (b_.)*(x_)], x_Symbol] :> Simp[(-(c +
d*x)^m)*(Cos[a + b*x]^(n + 1)/(b*(n + 1))), x] + Simp[d*(m/(b*(n + 1))) Int[(c + d*x)^(m - 1)*Cos[a + b*x]^
(n + 1), x], x] /; FreeQ[{a, b, c, d, n}, x] && IGtQ[m, 0] && NeQ[n, -1]
-
Int[Cos[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sin[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Int[E
xpandTrigReduce[(c + d*x)^m, Sin[a + b*x]^n*Cos[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0]
&& IGtQ[p, 0]
-
Int[((c_.) + (d_.)*(x_))^(m_.)*Sin[(a_.) + (b_.)*(x_)]^(n_.)*Tan[(a_.) + (b_.)*(x_)]^(p_.), x_Symbol] :> -Int[
(c + d*x)^m*Sin[a + b*x]^n*Tan[a + b*x]^(p - 2), x] + Int[(c + d*x)^m*Sin[a + b*x]^(n - 2)*Tan[a + b*x]^p, x]
/; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && IGtQ[p, 0]
-
Int[Cos[(a_.) + (b_.)*(x_)]^(n_.)*Cot[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> -Int[
(c + d*x)^m*Cos[a + b*x]^n*Cot[a + b*x]^(p - 2), x] + Int[(c + d*x)^m*Cos[a + b*x]^(n - 2)*Cot[a + b*x]^p, x]
/; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && IGtQ[p, 0]
-
Int[((c_.) + (d_.)*(x_))^(m_.)*Sec[(a_.) + (b_.)*(x_)]^(n_.)*Tan[(a_.) + (b_.)*(x_)]^(p_.), x_Symbol] :> Simp[
(c + d*x)^m*(Sec[a + b*x]^n/(b*n)), x] - Simp[d*(m/(b*n)) Int[(c + d*x)^(m - 1)*Sec[a + b*x]^n, x], x] /; Fr
eeQ[{a, b, c, d, n}, x] && EqQ[p, 1] && GtQ[m, 0]
-
Int[Cot[(a_.) + (b_.)*(x_)]^(p_.)*Csc[(a_.) + (b_.)*(x_)]^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[
(-(c + d*x)^m)*(Csc[a + b*x]^n/(b*n)), x] + Simp[d*(m/(b*n)) Int[(c + d*x)^(m - 1)*Csc[a + b*x]^n, x], x] /;
FreeQ[{a, b, c, d, n}, x] && EqQ[p, 1] && GtQ[m, 0]
-
Int[((c_.) + (d_.)*(x_))^(m_.)*Sec[(a_.) + (b_.)*(x_)]^2*Tan[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Simp[(c +
d*x)^m*(Tan[a + b*x]^(n + 1)/(b*(n + 1))), x] - Simp[d*(m/(b*(n + 1))) Int[(c + d*x)^(m - 1)*Tan[a + b*x]^(
n + 1), x], x] /; FreeQ[{a, b, c, d, n}, x] && IGtQ[m, 0] && NeQ[n, -1]
-
Int[Cot[(a_.) + (b_.)*(x_)]^(n_.)*Csc[(a_.) + (b_.)*(x_)]^2*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(-(c
+ d*x)^m)*(Cot[a + b*x]^(n + 1)/(b*(n + 1))), x] + Simp[d*(m/(b*(n + 1))) Int[(c + d*x)^(m - 1)*Cot[a + b*x
]^(n + 1), x], x] /; FreeQ[{a, b, c, d, n}, x] && IGtQ[m, 0] && NeQ[n, -1]
-
Int[((c_.) + (d_.)*(x_))^(m_.)*Sec[(a_.) + (b_.)*(x_)]*Tan[(a_.) + (b_.)*(x_)]^(p_), x_Symbol] :> -Int[(c + d*
x)^m*Sec[a + b*x]*Tan[a + b*x]^(p - 2), x] + Int[(c + d*x)^m*Sec[a + b*x]^3*Tan[a + b*x]^(p - 2), x] /; FreeQ[
{a, b, c, d, m}, x] && IGtQ[p/2, 0]
-
Int[((c_.) + (d_.)*(x_))^(m_.)*Sec[(a_.) + (b_.)*(x_)]^(n_.)*Tan[(a_.) + (b_.)*(x_)]^(p_), x_Symbol] :> -Int[(
c + d*x)^m*Sec[a + b*x]^n*Tan[a + b*x]^(p - 2), x] + Int[(c + d*x)^m*Sec[a + b*x]^(n + 2)*Tan[a + b*x]^(p - 2)
, x] /; FreeQ[{a, b, c, d, m, n}, x] && IGtQ[p/2, 0]
-
Int[Cot[(a_.) + (b_.)*(x_)]^(p_)*Csc[(a_.) + (b_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> -Int[(c + d*
x)^m*Csc[a + b*x]*Cot[a + b*x]^(p - 2), x] + Int[(c + d*x)^m*Csc[a + b*x]^3*Cot[a + b*x]^(p - 2), x] /; FreeQ[
{a, b, c, d, m}, x] && IGtQ[p/2, 0]
-
Int[Cot[(a_.) + (b_.)*(x_)]^(p_)*Csc[(a_.) + (b_.)*(x_)]^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> -Int[(
c + d*x)^m*Csc[a + b*x]^n*Cot[a + b*x]^(p - 2), x] + Int[(c + d*x)^m*Csc[a + b*x]^(n + 2)*Cot[a + b*x]^(p - 2)
, x] /; FreeQ[{a, b, c, d, m, n}, x] && IGtQ[p/2, 0]
-
Int[((c_.) + (d_.)*(x_))^(m_.)*Sec[(a_.) + (b_.)*(x_)]^(n_.)*Tan[(a_.) + (b_.)*(x_)]^(p_.), x_Symbol] :> Modul
e[{u = IntHide[Sec[a + b*x]^n*Tan[a + b*x]^p, x]}, Simp[(c + d*x)^m u, x] - Simp[d*m Int[(c + d*x)^(m - 1)
*u, x], x]] /; FreeQ[{a, b, c, d, n, p}, x] && IGtQ[m, 0] && (IntegerQ[n/2] || IntegerQ[(p - 1)/2])
-
Int[Cot[(a_.) + (b_.)*(x_)]^(p_.)*Csc[(a_.) + (b_.)*(x_)]^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Modul
e[{u = IntHide[Csc[a + b*x]^n*Cot[a + b*x]^p, x]}, Simp[(c + d*x)^m u, x] - Simp[d*m Int[(c + d*x)^(m - 1)
*u, x], x]] /; FreeQ[{a, b, c, d, n, p}, x] && IGtQ[m, 0] && (IntegerQ[n/2] || IntegerQ[(p - 1)/2])
-
Int[Csc[(a_.) + (b_.)*(x_)]^(n_.)*((c_.) + (d_.)*(x_))^(m_.)*Sec[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Simp[
2^n Int[(c + d*x)^m*Csc[2*a + 2*b*x]^n, x], x] /; FreeQ[{a, b, c, d, m}, x] && IntegerQ[n] && RationalQ[m]
-
Int[Csc[(a_.) + (b_.)*(x_)]^(n_.)*((c_.) + (d_.)*(x_))^(m_.)*Sec[(a_.) + (b_.)*(x_)]^(p_.), x_Symbol] :> Modul
e[{u = IntHide[Csc[a + b*x]^n*Sec[a + b*x]^p, x]}, Simp[(c + d*x)^m u, x] - Simp[d*m Int[(c + d*x)^(m - 1)
*u, x], x]] /; FreeQ[{a, b, c, d}, x] && IntegersQ[n, p] && GtQ[m, 0] && NeQ[n, p]
-
Int[(u_)^(m_.)*(F_)[v_]^(n_.)*(G_)[w_]^(p_.), x_Symbol] :> Int[ExpandToSum[u, x]^m*F[ExpandToSum[v, x]]^n*G[Ex
pandToSum[v, x]]^p, x] /; FreeQ[{m, n, p}, x] && TrigQ[F] && TrigQ[G] && EqQ[v, w] && LinearQ[{u, v, w}, x] &&
!LinearMatchQ[{u, v, w}, x]
-
Int[Cos[(c_.) + (d_.)*(x_)]*((e_.) + (f_.)*(x_))^(m_.)*((a_) + (b_.)*Sin[(c_.) + (d_.)*(x_)])^(n_.), x_Symbol]
:> Simp[(e + f*x)^m*((a + b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1))), x] - Simp[f*(m/(b*d*(n + 1))) Int[(e + f*
x)^(m - 1)*(a + b*Sin[c + d*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && IGtQ[m, 0] && NeQ[n, -1]
-
Int[(Cos[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_.)*((e_.) + (f_.)*(x_))^(m_.)*Sin[(c_.) + (d_.)*(x_)], x_Symbol]
:> Simp[(-(e + f*x)^m)*((a + b*Cos[c + d*x])^(n + 1)/(b*d*(n + 1))), x] + Simp[f*(m/(b*d*(n + 1))) Int[(e +
f*x)^(m - 1)*(a + b*Cos[c + d*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && IGtQ[m, 0] && NeQ[n,
-1]
-
Int[((e_.) + (f_.)*(x_))^(m_.)*Sec[(c_.) + (d_.)*(x_)]^2*((a_) + (b_.)*Tan[(c_.) + (d_.)*(x_)])^(n_.), x_Symbo
l] :> Simp[(e + f*x)^m*((a + b*Tan[c + d*x])^(n + 1)/(b*d*(n + 1))), x] - Simp[f*(m/(b*d*(n + 1))) Int[(e +
f*x)^(m - 1)*(a + b*Tan[c + d*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && IGtQ[m, 0] && NeQ[n, -
1]
-
Int[Csc[(c_.) + (d_.)*(x_)]^2*(Cot[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbo
l] :> Simp[(-(e + f*x)^m)*((a + b*Cot[c + d*x])^(n + 1)/(b*d*(n + 1))), x] + Simp[f*(m/(b*d*(n + 1))) Int[(e
+ f*x)^(m - 1)*(a + b*Cot[c + d*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && IGtQ[m, 0] && NeQ[n
, -1]
-
Int[((e_.) + (f_.)*(x_))^(m_.)*Sec[(c_.) + (d_.)*(x_)]*((a_) + (b_.)*Sec[(c_.) + (d_.)*(x_)])^(n_.)*Tan[(c_.)
+ (d_.)*(x_)], x_Symbol] :> Simp[(e + f*x)^m*((a + b*Sec[c + d*x])^(n + 1)/(b*d*(n + 1))), x] - Simp[f*(m/(b*d
*(n + 1))) Int[(e + f*x)^(m - 1)*(a + b*Sec[c + d*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &&
IGtQ[m, 0] && NeQ[n, -1]
-
Int[Cot[(c_.) + (d_.)*(x_)]*Csc[(c_.) + (d_.)*(x_)]*(Csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_.)*((e_.) + (f_.
)*(x_))^(m_.), x_Symbol] :> Simp[(-(e + f*x)^m)*((a + b*Csc[c + d*x])^(n + 1)/(b*d*(n + 1))), x] + Simp[f*(m/(
b*d*(n + 1))) Int[(e + f*x)^(m - 1)*(a + b*Csc[c + d*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, n}, x]
&& IGtQ[m, 0] && NeQ[n, -1]
-
Int[((e_.) + (f_.)*(x_))^(m_.)*Sin[(a_.) + (b_.)*(x_)]^(p_.)*Sin[(c_.) + (d_.)*(x_)]^(q_.), x_Symbol] :> Int[E
xpandTrigReduce[(e + f*x)^m, Sin[a + b*x]^p*Sin[c + d*x]^q, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[p,
0] && IGtQ[q, 0] && IntegerQ[m]
-
Int[Cos[(a_.) + (b_.)*(x_)]^(p_.)*Cos[(c_.) + (d_.)*(x_)]^(q_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Int[E
xpandTrigReduce[(e + f*x)^m, Cos[a + b*x]^p*Cos[c + d*x]^q, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[p,
0] && IGtQ[q, 0] && IntegerQ[m]
-
Int[Cos[(c_.) + (d_.)*(x_)]^(q_.)*((e_.) + (f_.)*(x_))^(m_.)*Sin[(a_.) + (b_.)*(x_)]^(p_.), x_Symbol] :> Int[E
xpandTrigReduce[(e + f*x)^m, Sin[a + b*x]^p*Cos[c + d*x]^q, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && IGtQ[
p, 0] && IGtQ[q, 0]
-
Int[((e_.) + (f_.)*(x_))^(m_.)*(F_)[(a_.) + (b_.)*(x_)]^(p_.)*(G_)[(c_.) + (d_.)*(x_)]^(q_.), x_Symbol] :> Int
[ExpandTrigExpand[(e + f*x)^m*G[c + d*x]^q, F, c + d*x, p, b/d, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && M
emberQ[{Sin, Cos}, F] && MemberQ[{Sec, Csc}, G] && IGtQ[p, 0] && IGtQ[q, 0] && EqQ[b*c - a*d, 0] && IGtQ[b/d,
1]
-
Int[(F_)^((c_.)*((a_.) + (b_.)*(x_)))*Sin[(d_.) + (e_.)*(x_)], x_Symbol] :> Simp[b*c*Log[F]*F^(c*(a + b*x))*(S
in[d + e*x]/(e^2 + b^2*c^2*Log[F]^2)), x] - Simp[e*F^(c*(a + b*x))*(Cos[d + e*x]/(e^2 + b^2*c^2*Log[F]^2)), x]
/; FreeQ[{F, a, b, c, d, e}, x] && NeQ[e^2 + b^2*c^2*Log[F]^2, 0]
-
Int[Cos[(d_.) + (e_.)*(x_)]*(F_)^((c_.)*((a_.) + (b_.)*(x_))), x_Symbol] :> Simp[b*c*Log[F]*F^(c*(a + b*x))*(C
os[d + e*x]/(e^2 + b^2*c^2*Log[F]^2)), x] + Simp[e*F^(c*(a + b*x))*(Sin[d + e*x]/(e^2 + b^2*c^2*Log[F]^2)), x]
/; FreeQ[{F, a, b, c, d, e}, x] && NeQ[e^2 + b^2*c^2*Log[F]^2, 0]
-
Int[(F_)^((c_.)*((a_.) + (b_.)*(x_)))*Sin[(d_.) + (e_.)*(x_)]^(n_), x_Symbol] :> Simp[b*c*Log[F]*F^(c*(a + b*x
))*(Sin[d + e*x]^n/(e^2*n^2 + b^2*c^2*Log[F]^2)), x] + (-Simp[e*n*F^(c*(a + b*x))*Cos[d + e*x]*(Sin[d + e*x]^(
n - 1)/(e^2*n^2 + b^2*c^2*Log[F]^2)), x] + Simp[(n*(n - 1)*e^2)/(e^2*n^2 + b^2*c^2*Log[F]^2) Int[F^(c*(a + b
*x))*Sin[d + e*x]^(n - 2), x], x]) /; FreeQ[{F, a, b, c, d, e}, x] && NeQ[e^2*n^2 + b^2*c^2*Log[F]^2, 0] && Gt
Q[n, 1]
-
Int[Cos[(d_.) + (e_.)*(x_)]^(m_)*(F_)^((c_.)*((a_.) + (b_.)*(x_))), x_Symbol] :> Simp[b*c*Log[F]*F^(c*(a + b*x
))*(Cos[d + e*x]^m/(e^2*m^2 + b^2*c^2*Log[F]^2)), x] + (Simp[e*m*F^(c*(a + b*x))*Sin[d + e*x]*(Cos[d + e*x]^(m
- 1)/(e^2*m^2 + b^2*c^2*Log[F]^2)), x] + Simp[(m*(m - 1)*e^2)/(e^2*m^2 + b^2*c^2*Log[F]^2) Int[F^(c*(a + b*
x))*Cos[d + e*x]^(m - 2), x], x]) /; FreeQ[{F, a, b, c, d, e}, x] && NeQ[e^2*m^2 + b^2*c^2*Log[F]^2, 0] && GtQ
[m, 1]
-
Int[(F_)^((c_.)*((a_.) + (b_.)*(x_)))*Sin[(d_.) + (e_.)*(x_)]^(n_), x_Symbol] :> Simp[(-b)*c*Log[F]*F^(c*(a +
b*x))*(Sin[d + e*x]^(n + 2)/(e^2*(n + 1)*(n + 2))), x] + Simp[F^(c*(a + b*x))*Cos[d + e*x]*(Sin[d + e*x]^(n +
1)/(e*(n + 1))), x] /; FreeQ[{F, a, b, c, d, e, n}, x] && EqQ[e^2*(n + 2)^2 + b^2*c^2*Log[F]^2, 0] && NeQ[n, -
1] && NeQ[n, -2]
-
Int[Cos[(d_.) + (e_.)*(x_)]^(n_)*(F_)^((c_.)*((a_.) + (b_.)*(x_))), x_Symbol] :> Simp[(-b)*c*Log[F]*F^(c*(a +
b*x))*(Cos[d + e*x]^(n + 2)/(e^2*(n + 1)*(n + 2))), x] - Simp[F^(c*(a + b*x))*Sin[d + e*x]*(Cos[d + e*x]^(n +
1)/(e*(n + 1))), x] /; FreeQ[{F, a, b, c, d, e, n}, x] && EqQ[e^2*(n + 2)^2 + b^2*c^2*Log[F]^2, 0] && NeQ[n, -
1] && NeQ[n, -2]
-
Int[(F_)^((c_.)*((a_.) + (b_.)*(x_)))*Sin[(d_.) + (e_.)*(x_)]^(n_), x_Symbol] :> Simp[(-b)*c*Log[F]*F^(c*(a +
b*x))*(Sin[d + e*x]^(n + 2)/(e^2*(n + 1)*(n + 2))), x] + (Simp[F^(c*(a + b*x))*Cos[d + e*x]*(Sin[d + e*x]^(n +
1)/(e*(n + 1))), x] + Simp[(e^2*(n + 2)^2 + b^2*c^2*Log[F]^2)/(e^2*(n + 1)*(n + 2)) Int[F^(c*(a + b*x))*Sin
[d + e*x]^(n + 2), x], x]) /; FreeQ[{F, a, b, c, d, e}, x] && NeQ[e^2*(n + 2)^2 + b^2*c^2*Log[F]^2, 0] && LtQ[
n, -1] && NeQ[n, -2]
-
Int[Cos[(d_.) + (e_.)*(x_)]^(n_)*(F_)^((c_.)*((a_.) + (b_.)*(x_))), x_Symbol] :> Simp[(-b)*c*Log[F]*F^(c*(a +
b*x))*(Cos[d + e*x]^(n + 2)/(e^2*(n + 1)*(n + 2))), x] + (-Simp[F^(c*(a + b*x))*Sin[d + e*x]*(Cos[d + e*x]^(n
+ 1)/(e*(n + 1))), x] + Simp[(e^2*(n + 2)^2 + b^2*c^2*Log[F]^2)/(e^2*(n + 1)*(n + 2)) Int[F^(c*(a + b*x))*Co
s[d + e*x]^(n + 2), x], x]) /; FreeQ[{F, a, b, c, d, e}, x] && NeQ[e^2*(n + 2)^2 + b^2*c^2*Log[F]^2, 0] && LtQ
[n, -1] && NeQ[n, -2]
-
Int[(F_)^((c_.)*((a_.) + (b_.)*(x_)))*Sin[(d_.) + (e_.)*(x_)]^(n_), x_Symbol] :> Simp[E^(I*n*(d + e*x))*(Sin[d
+ e*x]^n/(-1 + E^(2*I*(d + e*x)))^n) Int[F^(c*(a + b*x))*((-1 + E^(2*I*(d + e*x)))^n/E^(I*n*(d + e*x))), x]
, x] /; FreeQ[{F, a, b, c, d, e, n}, x] && !IntegerQ[n]
-
Int[Cos[(d_.) + (e_.)*(x_)]^(n_)*(F_)^((c_.)*((a_.) + (b_.)*(x_))), x_Symbol] :> Simp[E^(I*n*(d + e*x))*(Cos[d
+ e*x]^n/(1 + E^(2*I*(d + e*x)))^n) Int[F^(c*(a + b*x))*((1 + E^(2*I*(d + e*x)))^n/E^(I*n*(d + e*x))), x],
x] /; FreeQ[{F, a, b, c, d, e, n}, x] && !IntegerQ[n]
-
Int[(F_)^((c_.)*((a_.) + (b_.)*(x_)))*Tan[(d_.) + (e_.)*(x_)]^(n_.), x_Symbol] :> Simp[I^n Int[ExpandIntegra
nd[F^(c*(a + b*x))*((1 - E^(2*I*(d + e*x)))^n/(1 + E^(2*I*(d + e*x)))^n), x], x], x] /; FreeQ[{F, a, b, c, d,
e}, x] && IntegerQ[n]
-
Int[Cot[(d_.) + (e_.)*(x_)]^(n_.)*(F_)^((c_.)*((a_.) + (b_.)*(x_))), x_Symbol] :> Simp[(-I)^n Int[ExpandInte
grand[F^(c*(a + b*x))*((1 + E^(2*I*(d + e*x)))^n/(1 - E^(2*I*(d + e*x)))^n), x], x], x] /; FreeQ[{F, a, b, c,
d, e}, x] && IntegerQ[n]
-
Int[(F_)^((c_.)*((a_.) + (b_.)*(x_)))*Sec[(d_.) + (e_.)*(x_)]^(n_), x_Symbol] :> Simp[b*c*Log[F]*F^(c*(a + b*x
))*(Sec[d + e*x]^n/(e^2*n^2 + b^2*c^2*Log[F]^2)), x] + (-Simp[e*n*F^(c*(a + b*x))*Sec[d + e*x]^(n + 1)*(Sin[d
+ e*x]/(e^2*n^2 + b^2*c^2*Log[F]^2)), x] + Simp[e^2*n*((n + 1)/(e^2*n^2 + b^2*c^2*Log[F]^2)) Int[F^(c*(a + b
*x))*Sec[d + e*x]^(n + 2), x], x]) /; FreeQ[{F, a, b, c, d, e}, x] && NeQ[e^2*n^2 + b^2*c^2*Log[F]^2, 0] && Lt
Q[n, -1]
-
Int[Csc[(d_.) + (e_.)*(x_)]^(n_)*(F_)^((c_.)*((a_.) + (b_.)*(x_))), x_Symbol] :> Simp[b*c*Log[F]*F^(c*(a + b*x
))*(Csc[d + e*x]^n/(e^2*n^2 + b^2*c^2*Log[F]^2)), x] + (Simp[e*n*F^(c*(a + b*x))*Csc[d + e*x]^(n + 1)*(Cos[d +
e*x]/(e^2*n^2 + b^2*c^2*Log[F]^2)), x] + Simp[e^2*n*((n + 1)/(e^2*n^2 + b^2*c^2*Log[F]^2)) Int[F^(c*(a + b*
x))*Csc[d + e*x]^(n + 2), x], x]) /; FreeQ[{F, a, b, c, d, e}, x] && NeQ[e^2*n^2 + b^2*c^2*Log[F]^2, 0] && LtQ
[n, -1]
-
Int[(F_)^((c_.)*((a_.) + (b_.)*(x_)))*Sec[(d_.) + (e_.)*(x_)]^(n_), x_Symbol] :> Simp[(-b)*c*Log[F]*F^(c*(a +
b*x))*(Sec[d + e*x]^(n - 2)/(e^2*(n - 1)*(n - 2))), x] + Simp[F^(c*(a + b*x))*Sec[d + e*x]^(n - 1)*(Sin[d + e*
x]/(e*(n - 1))), x] /; FreeQ[{F, a, b, c, d, e, n}, x] && EqQ[b^2*c^2*Log[F]^2 + e^2*(n - 2)^2, 0] && NeQ[n, 1
] && NeQ[n, 2]
-
Int[Csc[(d_.) + (e_.)*(x_)]^(n_)*(F_)^((c_.)*((a_.) + (b_.)*(x_))), x_Symbol] :> Simp[(-b)*c*Log[F]*F^(c*(a +
b*x))*(Csc[d + e*x]^(n - 2)/(e^2*(n - 1)*(n - 2))), x] + Simp[F^(c*(a + b*x))*Csc[d + e*x]^(n - 1)*(Cos[d + e*
x]/(e*(n - 1))), x] /; FreeQ[{F, a, b, c, d, e, n}, x] && EqQ[b^2*c^2*Log[F]^2 + e^2*(n - 2)^2, 0] && NeQ[n, 1
] && NeQ[n, 2]
-
Int[(F_)^((c_.)*((a_.) + (b_.)*(x_)))*Sec[(d_.) + (e_.)*(x_)]^(n_), x_Symbol] :> Simp[(-b)*c*Log[F]*F^(c*(a +
b*x))*(Sec[d + e*x]^(n - 2)/(e^2*(n - 1)*(n - 2))), x] + (Simp[F^(c*(a + b*x))*Sec[d + e*x]^(n - 1)*(Sin[d + e
*x]/(e*(n - 1))), x] + Simp[(e^2*(n - 2)^2 + b^2*c^2*Log[F]^2)/(e^2*(n - 1)*(n - 2)) Int[F^(c*(a + b*x))*Sec
[d + e*x]^(n - 2), x], x]) /; FreeQ[{F, a, b, c, d, e}, x] && NeQ[b^2*c^2*Log[F]^2 + e^2*(n - 2)^2, 0] && GtQ[
n, 1] && NeQ[n, 2]
-
Int[Csc[(d_.) + (e_.)*(x_)]^(n_)*(F_)^((c_.)*((a_.) + (b_.)*(x_))), x_Symbol] :> Simp[(-b)*c*Log[F]*F^(c*(a +
b*x))*(Csc[d + e*x]^(n - 2)/(e^2*(n - 1)*(n - 2))), x] + (-Simp[F^(c*(a + b*x))*Csc[d + e*x]^(n - 1)*(Cos[d +
e*x]/(e*(n - 1))), x] + Simp[(e^2*(n - 2)^2 + b^2*c^2*Log[F]^2)/(e^2*(n - 1)*(n - 2)) Int[F^(c*(a + b*x))*Cs
c[d + e*x]^(n - 2), x], x]) /; FreeQ[{F, a, b, c, d, e}, x] && NeQ[b^2*c^2*Log[F]^2 + e^2*(n - 2)^2, 0] && GtQ
[n, 1] && NeQ[n, 2]
-
Int[(F_)^((c_.)*((a_.) + (b_.)*(x_)))*Sec[(d_.) + Pi*(k_.) + (e_.)*(x_)]^(n_.), x_Symbol] :> Simp[2^n*E^(I*k*n
*Pi)*E^(I*n*(d + e*x))*(F^(c*(a + b*x))/(I*e*n + b*c*Log[F]))*Hypergeometric2F1[n, n/2 - I*b*c*(Log[F]/(2*e)),
1 + n/2 - I*b*c*(Log[F]/(2*e)), (-E^(2*I*k*Pi))*E^(2*I*(d + e*x))], x] /; FreeQ[{F, a, b, c, d, e}, x] && Int
egerQ[4*k] && IntegerQ[n]
-
Int[(F_)^((c_.)*((a_.) + (b_.)*(x_)))*Sec[(d_.) + (e_.)*(x_)]^(n_.), x_Symbol] :> Simp[2^n*E^(I*n*(d + e*x))*(
F^(c*(a + b*x))/(I*e*n + b*c*Log[F]))*Hypergeometric2F1[n, n/2 - I*b*c*(Log[F]/(2*e)), 1 + n/2 - I*b*c*(Log[F]
/(2*e)), -E^(2*I*(d + e*x))], x] /; FreeQ[{F, a, b, c, d, e}, x] && IntegerQ[n]
-
Int[Csc[(d_.) + Pi*(k_.) + (e_.)*(x_)]^(n_.)*(F_)^((c_.)*((a_.) + (b_.)*(x_))), x_Symbol] :> Simp[(-2*I)^n*E^(
I*k*n*Pi)*E^(I*n*(d + e*x))*(F^(c*(a + b*x))/(I*e*n + b*c*Log[F]))*Hypergeometric2F1[n, n/2 - I*b*c*(Log[F]/(2
*e)), 1 + n/2 - I*b*c*(Log[F]/(2*e)), E^(2*I*k*Pi)*E^(2*I*(d + e*x))], x] /; FreeQ[{F, a, b, c, d, e}, x] && I
ntegerQ[4*k] && IntegerQ[n]
-
Int[Csc[(d_.) + (e_.)*(x_)]^(n_.)*(F_)^((c_.)*((a_.) + (b_.)*(x_))), x_Symbol] :> Simp[(-2*I)^n*E^(I*n*(d + e*
x))*(F^(c*(a + b*x))/(I*e*n + b*c*Log[F]))*Hypergeometric2F1[n, n/2 - I*b*c*(Log[F]/(2*e)), 1 + n/2 - I*b*c*(L
og[F]/(2*e)), E^(2*I*(d + e*x))], x] /; FreeQ[{F, a, b, c, d, e}, x] && IntegerQ[n]
-
Int[(F_)^((c_.)*((a_.) + (b_.)*(x_)))*Sec[(d_.) + (e_.)*(x_)]^(n_.), x_Symbol] :> Simp[(1 + E^(2*I*(d + e*x)))
^n*(Sec[d + e*x]^n/E^(I*n*(d + e*x))) Int[SimplifyIntegrand[F^(c*(a + b*x))*(E^(I*n*(d + e*x))/(1 + E^(2*I*(
d + e*x)))^n), x], x], x] /; FreeQ[{F, a, b, c, d, e}, x] && !IntegerQ[n]
-
Int[Csc[(d_.) + (e_.)*(x_)]^(n_.)*(F_)^((c_.)*((a_.) + (b_.)*(x_))), x_Symbol] :> Simp[(1 - E^(-2*I*(d + e*x))
)^n*(Csc[d + e*x]^n/E^((-I)*n*(d + e*x))) Int[SimplifyIntegrand[F^(c*(a + b*x))*(1/(E^(I*n*(d + e*x))*(1 - E
^(-2*I*(d + e*x)))^n)), x], x], x] /; FreeQ[{F, a, b, c, d, e}, x] && !IntegerQ[n]
-
Int[(F_)^((c_.)*((a_.) + (b_.)*(x_)))*((f_) + (g_.)*Sin[(d_.) + (e_.)*(x_)])^(n_.), x_Symbol] :> Simp[2^n*f^n
Int[F^(c*(a + b*x))*Cos[d/2 - f*(Pi/(4*g)) + e*(x/2)]^(2*n), x], x] /; FreeQ[{F, a, b, c, d, e, f, g}, x] &&
EqQ[f^2 - g^2, 0] && ILtQ[n, 0]
-
Int[(Cos[(d_.) + (e_.)*(x_)]*(g_.) + (f_))^(n_.)*(F_)^((c_.)*((a_.) + (b_.)*(x_))), x_Symbol] :> Simp[2^n*f^n
Int[F^(c*(a + b*x))*Cos[d/2 + e*(x/2)]^(2*n), x], x] /; FreeQ[{F, a, b, c, d, e, f, g}, x] && EqQ[f - g, 0]
&& ILtQ[n, 0]
-
Int[(Cos[(d_.) + (e_.)*(x_)]*(g_.) + (f_))^(n_.)*(F_)^((c_.)*((a_.) + (b_.)*(x_))), x_Symbol] :> Simp[2^n*f^n
Int[F^(c*(a + b*x))*Sin[d/2 + e*(x/2)]^(2*n), x], x] /; FreeQ[{F, a, b, c, d, e, f, g}, x] && EqQ[f + g, 0]
&& ILtQ[n, 0]
-
Int[(F_)^((c_.)*((a_.) + (b_.)*(x_)))*((f_) + (g_.)*Sin[(d_.) + (e_.)*(x_)])^(n_.), x_Symbol] :> Simp[(f + g*S
in[d + e*x])^n/Cos[d/2 - f*(Pi/(4*g)) + e*(x/2)]^(2*n) Int[F^(c*(a + b*x))*Cos[d/2 - f*(Pi/(4*g)) + e*(x/2)]
^(2*n), x], x] /; FreeQ[{F, a, b, c, d, e, f, g, n}, x] && EqQ[f^2 - g^2, 0] && !IntegerQ[n]
-
Int[(Cos[(d_.) + (e_.)*(x_)]*(g_.) + (f_))^(n_.)*(F_)^((c_.)*((a_.) + (b_.)*(x_))), x_Symbol] :> Simp[(f + g*C
os[d + e*x])^n/Cos[d/2 + e*(x/2)]^(2*n) Int[F^(c*(a + b*x))*Cos[d/2 + e*(x/2)]^(2*n), x], x] /; FreeQ[{F, a,
b, c, d, e, f, g, n}, x] && EqQ[f - g, 0] && !IntegerQ[n]
-
Int[(Cos[(d_.) + (e_.)*(x_)]*(g_.) + (f_))^(n_.)*(F_)^((c_.)*((a_.) + (b_.)*(x_))), x_Symbol] :> Simp[(f + g*C
os[d + e*x])^n/Sin[d/2 + e*(x/2)]^(2*n) Int[F^(c*(a + b*x))*Sin[d/2 + e*(x/2)]^(2*n), x], x] /; FreeQ[{F, a,
b, c, d, e, f, g, n}, x] && EqQ[f + g, 0] && !IntegerQ[n]
-
Int[Cos[(d_.) + (e_.)*(x_)]^(m_.)*(F_)^((c_.)*((a_.) + (b_.)*(x_)))*((f_) + (g_.)*Sin[(d_.) + (e_.)*(x_)])^(n_
.), x_Symbol] :> Simp[g^n Int[F^(c*(a + b*x))*Tan[f*(Pi/(4*g)) - d/2 - e*(x/2)]^m, x], x] /; FreeQ[{F, a, b,
c, d, e, f, g}, x] && EqQ[f^2 - g^2, 0] && IntegersQ[m, n] && EqQ[m + n, 0]
-
Int[(Cos[(d_.) + (e_.)*(x_)]*(g_.) + (f_))^(n_.)*(F_)^((c_.)*((a_.) + (b_.)*(x_)))*Sin[(d_.) + (e_.)*(x_)]^(m_
.), x_Symbol] :> Simp[f^n Int[F^(c*(a + b*x))*Tan[d/2 + e*(x/2)]^m, x], x] /; FreeQ[{F, a, b, c, d, e, f, g}
, x] && EqQ[f - g, 0] && IntegersQ[m, n] && EqQ[m + n, 0]
-
Int[(Cos[(d_.) + (e_.)*(x_)]*(g_.) + (f_))^(n_.)*(F_)^((c_.)*((a_.) + (b_.)*(x_)))*Sin[(d_.) + (e_.)*(x_)]^(m_
.), x_Symbol] :> Simp[f^n Int[F^(c*(a + b*x))*Cot[d/2 + e*(x/2)]^m, x], x] /; FreeQ[{F, a, b, c, d, e, f, g}
, x] && EqQ[f + g, 0] && IntegersQ[m, n] && EqQ[m + n, 0]
-
Int[((F_)^((c_.)*((a_.) + (b_.)*(x_)))*(Cos[(d_.) + (e_.)*(x_)]*(i_.) + (h_)))/((f_) + (g_.)*Sin[(d_.) + (e_.)
*(x_)]), x_Symbol] :> Simp[2*i Int[F^(c*(a + b*x))*(Cos[d + e*x]/(f + g*Sin[d + e*x])), x], x] + Int[F^(c*(a
+ b*x))*((h - i*Cos[d + e*x])/(f + g*Sin[d + e*x])), x] /; FreeQ[{F, a, b, c, d, e, f, g, h, i}, x] && EqQ[f^
2 - g^2, 0] && EqQ[h^2 - i^2, 0] && EqQ[g*h - f*i, 0]
-
Int[((F_)^((c_.)*((a_.) + (b_.)*(x_)))*((h_) + (i_.)*Sin[(d_.) + (e_.)*(x_)]))/(Cos[(d_.) + (e_.)*(x_)]*(g_.)
+ (f_)), x_Symbol] :> Simp[2*i Int[F^(c*(a + b*x))*(Sin[d + e*x]/(f + g*Cos[d + e*x])), x], x] + Int[F^(c*(a
+ b*x))*((h - i*Sin[d + e*x])/(f + g*Cos[d + e*x])), x] /; FreeQ[{F, a, b, c, d, e, f, g, h, i}, x] && EqQ[f^
2 - g^2, 0] && EqQ[h^2 - i^2, 0] && EqQ[g*h + f*i, 0]
-
Int[(F_)^((c_.)*(u_))*(G_)[v_]^(n_.), x_Symbol] :> Int[F^(c*ExpandToSum[u, x])*G[ExpandToSum[v, x]]^n, x] /; F
reeQ[{F, c, n}, x] && TrigQ[G] && LinearQ[{u, v}, x] && !LinearMatchQ[{u, v}, x]
-
Int[(F_)^((c_.)*((a_.) + (b_.)*(x_)))*((f_.)*(x_))^(m_.)*Sin[(d_.) + (e_.)*(x_)]^(n_.), x_Symbol] :> Module[{u
= IntHide[F^(c*(a + b*x))*Sin[d + e*x]^n, x]}, Simp[(f*x)^m u, x] - Simp[f*m Int[(f*x)^(m - 1)*u, x], x]]
/; FreeQ[{F, a, b, c, d, e, f}, x] && IGtQ[n, 0] && GtQ[m, 0]
-
Int[Cos[(d_.) + (e_.)*(x_)]^(n_.)*(F_)^((c_.)*((a_.) + (b_.)*(x_)))*((f_.)*(x_))^(m_.), x_Symbol] :> Module[{u
= IntHide[F^(c*(a + b*x))*Cos[d + e*x]^n, x]}, Simp[(f*x)^m u, x] - Simp[f*m Int[(f*x)^(m - 1)*u, x], x]]
/; FreeQ[{F, a, b, c, d, e, f}, x] && IGtQ[n, 0] && GtQ[m, 0]
-
Int[(F_)^((c_.)*((a_.) + (b_.)*(x_)))*((f_.)*(x_))^(m_)*Sin[(d_.) + (e_.)*(x_)], x_Symbol] :> Simp[((f*x)^(m +
1)/(f*(m + 1)))*F^(c*(a + b*x))*Sin[d + e*x], x] + (-Simp[e/(f*(m + 1)) Int[(f*x)^(m + 1)*F^(c*(a + b*x))*C
os[d + e*x], x], x] - Simp[b*c*(Log[F]/(f*(m + 1))) Int[(f*x)^(m + 1)*F^(c*(a + b*x))*Sin[d + e*x], x], x])
/; FreeQ[{F, a, b, c, d, e, f, m}, x] && (LtQ[m, -1] || SumSimplerQ[m, 1])
-
Int[Cos[(d_.) + (e_.)*(x_)]*(F_)^((c_.)*((a_.) + (b_.)*(x_)))*((f_.)*(x_))^(m_), x_Symbol] :> Simp[((f*x)^(m +
1)/(f*(m + 1)))*F^(c*(a + b*x))*Cos[d + e*x], x] + (Simp[e/(f*(m + 1)) Int[(f*x)^(m + 1)*F^(c*(a + b*x))*Si
n[d + e*x], x], x] - Simp[b*c*(Log[F]/(f*(m + 1))) Int[(f*x)^(m + 1)*F^(c*(a + b*x))*Cos[d + e*x], x], x]) /
; FreeQ[{F, a, b, c, d, e, f, m}, x] && (LtQ[m, -1] || SumSimplerQ[m, 1])
-
Int[Cos[(f_.) + (g_.)*(x_)]^(n_.)*(F_)^((c_.)*((a_.) + (b_.)*(x_)))*Sin[(d_.) + (e_.)*(x_)]^(m_.), x_Symbol] :
> Int[ExpandTrigReduce[F^(c*(a + b*x)), Sin[d + e*x]^m*Cos[f + g*x]^n, x], x] /; FreeQ[{F, a, b, c, d, e, f, g
}, x] && IGtQ[m, 0] && IGtQ[n, 0]
-
Int[Cos[(f_.) + (g_.)*(x_)]^(n_.)*(F_)^((c_.)*((a_.) + (b_.)*(x_)))*(x_)^(p_.)*Sin[(d_.) + (e_.)*(x_)]^(m_.),
x_Symbol] :> Int[ExpandTrigReduce[x^p*F^(c*(a + b*x)), Sin[d + e*x]^m*Cos[f + g*x]^n, x], x] /; FreeQ[{F, a, b
, c, d, e, f, g}, x] && IGtQ[m, 0] && IGtQ[n, 0] && IGtQ[p, 0]
-
Int[(F_)^((c_.)*((a_.) + (b_.)*(x_)))*(G_)[(d_.) + (e_.)*(x_)]^(m_.)*(H_)[(d_.) + (e_.)*(x_)]^(n_.), x_Symbol]
:> Int[ExpandTrigToExp[F^(c*(a + b*x)), G[d + e*x]^m*H[d + e*x]^n, x], x] /; FreeQ[{F, a, b, c, d, e}, x] &&
IGtQ[m, 0] && IGtQ[n, 0] && TrigQ[G] && TrigQ[H]
-
Int[(F_)^(u_)*Sin[v_]^(n_.), x_Symbol] :> Int[ExpandTrigToExp[F^u, Sin[v]^n, x], x] /; FreeQ[F, x] && (LinearQ
[u, x] || PolyQ[u, x, 2]) && (LinearQ[v, x] || PolyQ[v, x, 2]) && IGtQ[n, 0]
-
Int[Cos[v_]^(n_.)*(F_)^(u_), x_Symbol] :> Int[ExpandTrigToExp[F^u, Cos[v]^n, x], x] /; FreeQ[F, x] && (LinearQ
[u, x] || PolyQ[u, x, 2]) && (LinearQ[v, x] || PolyQ[v, x, 2]) && IGtQ[n, 0]
-
Int[Cos[v_]^(n_.)*(F_)^(u_)*Sin[v_]^(m_.), x_Symbol] :> Int[ExpandTrigToExp[F^u, Sin[v]^m*Cos[v]^n, x], x] /;
FreeQ[F, x] && (LinearQ[u, x] || PolyQ[u, x, 2]) && (LinearQ[v, x] || PolyQ[v, x, 2]) && IGtQ[m, 0] && IGtQ[n,
0]
-
Int[Sin[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)], x_Symbol] :> Simp[x*(Sin[d*(a + b*Log[c*x^n])]/(b^2*d^2*
n^2 + 1)), x] - Simp[b*d*n*x*(Cos[d*(a + b*Log[c*x^n])]/(b^2*d^2*n^2 + 1)), x] /; FreeQ[{a, b, c, d, n}, x] &&
NeQ[b^2*d^2*n^2 + 1, 0]
-
Int[Cos[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)], x_Symbol] :> Simp[x*(Cos[d*(a + b*Log[c*x^n])]/(b^2*d^2*
n^2 + 1)), x] + Simp[b*d*n*x*(Sin[d*(a + b*Log[c*x^n])]/(b^2*d^2*n^2 + 1)), x] /; FreeQ[{a, b, c, d, n}, x] &&
NeQ[b^2*d^2*n^2 + 1, 0]
-
Int[Sin[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]^(p_), x_Symbol] :> Simp[x*(Sin[d*(a + b*Log[c*x^n])]^p/(b
^2*d^2*n^2*p^2 + 1)), x] + (-Simp[b*d*n*p*x*Cos[d*(a + b*Log[c*x^n])]*(Sin[d*(a + b*Log[c*x^n])]^(p - 1)/(b^2*
d^2*n^2*p^2 + 1)), x] + Simp[b^2*d^2*n^2*p*((p - 1)/(b^2*d^2*n^2*p^2 + 1)) Int[Sin[d*(a + b*Log[c*x^n])]^(p
- 2), x], x]) /; FreeQ[{a, b, c, d, n}, x] && IGtQ[p, 1] && NeQ[b^2*d^2*n^2*p^2 + 1, 0]
-
Int[Cos[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]^(p_), x_Symbol] :> Simp[x*(Cos[d*(a + b*Log[c*x^n])]^p/(b
^2*d^2*n^2*p^2 + 1)), x] + (Simp[b*d*n*p*x*Cos[d*(a + b*Log[c*x^n])]^(p - 1)*(Sin[d*(a + b*Log[c*x^n])]/(b^2*d
^2*n^2*p^2 + 1)), x] + Simp[b^2*d^2*n^2*p*((p - 1)/(b^2*d^2*n^2*p^2 + 1)) Int[Cos[d*(a + b*Log[c*x^n])]^(p -
2), x], x]) /; FreeQ[{a, b, c, d, n}, x] && IGtQ[p, 1] && NeQ[b^2*d^2*n^2*p^2 + 1, 0]
-
Int[Sin[((a_.) + Log[x_]*(b_.))*(d_.)]^(p_.), x_Symbol] :> Simp[1/(2^p*b^p*d^p*p^p) Int[ExpandIntegrand[(E^(
a*b*d^2*p)/x^p^(-1) - x^(1/p)/E^(a*b*d^2*p))^p, x], x], x] /; FreeQ[{a, b, d}, x] && IGtQ[p, 0] && EqQ[b^2*d^2
*p^2 + 1, 0]
-
Int[Cos[((a_.) + Log[x_]*(b_.))*(d_.)]^(p_.), x_Symbol] :> Simp[1/2^p Int[ExpandIntegrand[(E^(a*b*d^2*p)/x^p
^(-1) + x^(1/p)/E^(a*b*d^2*p))^p, x], x], x] /; FreeQ[{a, b, d}, x] && IGtQ[p, 0] && EqQ[b^2*d^2*p^2 + 1, 0]
-
Int[Sin[((a_.) + Log[x_]*(b_.))*(d_.)]^(p_), x_Symbol] :> Simp[Sin[d*(a + b*Log[x])]^p*(x^(I*b*d*p)/(1 - E^(2*
I*a*d)*x^(2*I*b*d))^p) Int[(1 - E^(2*I*a*d)*x^(2*I*b*d))^p/x^(I*b*d*p), x], x] /; FreeQ[{a, b, d, p}, x] &&
!IntegerQ[p]
-
Int[Cos[((a_.) + Log[x_]*(b_.))*(d_.)]^(p_), x_Symbol] :> Simp[Cos[d*(a + b*Log[x])]^p*(x^(I*b*d*p)/(1 + E^(2*
I*a*d)*x^(2*I*b*d))^p) Int[(1 + E^(2*I*a*d)*x^(2*I*b*d))^p/x^(I*b*d*p), x], x] /; FreeQ[{a, b, d, p}, x] &&
!IntegerQ[p]
-
Int[Sin[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]^(p_.), x_Symbol] :> Simp[x/(n*(c*x^n)^(1/n)) Subst[Int[
x^(1/n - 1)*Sin[d*(a + b*Log[x])]^p, x], x, c*x^n], x] /; FreeQ[{a, b, c, d, n, p}, x] && (NeQ[c, 1] || NeQ[n,
1])
-
Int[Cos[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]^(p_.), x_Symbol] :> Simp[x/(n*(c*x^n)^(1/n)) Subst[Int[
x^(1/n - 1)*Cos[d*(a + b*Log[x])]^p, x], x, c*x^n], x] /; FreeQ[{a, b, c, d, n, p}, x] && (NeQ[c, 1] || NeQ[n,
1])
-
Int[((e_.)*(x_))^(m_.)*Sin[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)], x_Symbol] :> Simp[(m + 1)*(e*x)^(m +
1)*(Sin[d*(a + b*Log[c*x^n])]/(b^2*d^2*e*n^2 + e*(m + 1)^2)), x] - Simp[b*d*n*(e*x)^(m + 1)*(Cos[d*(a + b*Log[
c*x^n])]/(b^2*d^2*e*n^2 + e*(m + 1)^2)), x] /; FreeQ[{a, b, c, d, e, m, n}, x] && NeQ[b^2*d^2*n^2 + (m + 1)^2,
0]
-
Int[Cos[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]*((e_.)*(x_))^(m_.), x_Symbol] :> Simp[(m + 1)*(e*x)^(m +
1)*(Cos[d*(a + b*Log[c*x^n])]/(b^2*d^2*e*n^2 + e*(m + 1)^2)), x] + Simp[b*d*n*(e*x)^(m + 1)*(Sin[d*(a + b*Log[
c*x^n])]/(b^2*d^2*e*n^2 + e*(m + 1)^2)), x] /; FreeQ[{a, b, c, d, e, m, n}, x] && NeQ[b^2*d^2*n^2 + (m + 1)^2,
0]
-
Int[((e_.)*(x_))^(m_.)*Sin[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]^(p_), x_Symbol] :> Simp[(m + 1)*(e*x)^
(m + 1)*(Sin[d*(a + b*Log[c*x^n])]^p/(b^2*d^2*e*n^2*p^2 + e*(m + 1)^2)), x] + (-Simp[b*d*n*p*(e*x)^(m + 1)*Cos
[d*(a + b*Log[c*x^n])]*(Sin[d*(a + b*Log[c*x^n])]^(p - 1)/(b^2*d^2*e*n^2*p^2 + e*(m + 1)^2)), x] + Simp[b^2*d^
2*n^2*p*((p - 1)/(b^2*d^2*n^2*p^2 + (m + 1)^2)) Int[(e*x)^m*Sin[d*(a + b*Log[c*x^n])]^(p - 2), x], x]) /; Fr
eeQ[{a, b, c, d, e, m, n}, x] && IGtQ[p, 1] && NeQ[b^2*d^2*n^2*p^2 + (m + 1)^2, 0]
-
Int[Cos[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]^(p_)*((e_.)*(x_))^(m_.), x_Symbol] :> Simp[(m + 1)*(e*x)^
(m + 1)*(Cos[d*(a + b*Log[c*x^n])]^p/(b^2*d^2*e*n^2*p^2 + e*(m + 1)^2)), x] + (Simp[b*d*n*p*(e*x)^(m + 1)*Sin[
d*(a + b*Log[c*x^n])]*(Cos[d*(a + b*Log[c*x^n])]^(p - 1)/(b^2*d^2*e*n^2*p^2 + e*(m + 1)^2)), x] + Simp[b^2*d^2
*n^2*p*((p - 1)/(b^2*d^2*n^2*p^2 + (m + 1)^2)) Int[(e*x)^m*Cos[d*(a + b*Log[c*x^n])]^(p - 2), x], x]) /; Fre
eQ[{a, b, c, d, e, m, n}, x] && IGtQ[p, 1] && NeQ[b^2*d^2*n^2*p^2 + (m + 1)^2, 0]
-
Int[((e_.)*(x_))^(m_.)*Sin[((a_.) + Log[x_]*(b_.))*(d_.)]^(p_.), x_Symbol] :> Simp[(m + 1)^p/(2^p*b^p*d^p*p^p)
Int[ExpandIntegrand[(e*x)^m*(E^(a*b*d^2*(p/(m + 1)))/x^((m + 1)/p) - x^((m + 1)/p)/E^(a*b*d^2*(p/(m + 1))))
^p, x], x], x] /; FreeQ[{a, b, d, e, m}, x] && IGtQ[p, 0] && EqQ[b^2*d^2*p^2 + (m + 1)^2, 0]
-
Int[Cos[((a_.) + Log[x_]*(b_.))*(d_.)]^(p_.)*((e_.)*(x_))^(m_.), x_Symbol] :> Simp[1/2^p Int[ExpandIntegrand
[(e*x)^m*(E^(a*b*d^2*(p/(m + 1)))/x^((m + 1)/p) + x^((m + 1)/p)/E^(a*b*d^2*(p/(m + 1))))^p, x], x], x] /; Free
Q[{a, b, d, e, m}, x] && IGtQ[p, 0] && EqQ[b^2*d^2*p^2 + (m + 1)^2, 0]
-
Int[((e_.)*(x_))^(m_.)*Sin[((a_.) + Log[x_]*(b_.))*(d_.)]^(p_), x_Symbol] :> Simp[Sin[d*(a + b*Log[x])]^p*(x^(
I*b*d*p)/(1 - E^(2*I*a*d)*x^(2*I*b*d))^p) Int[(e*x)^m*((1 - E^(2*I*a*d)*x^(2*I*b*d))^p/x^(I*b*d*p)), x], x]
/; FreeQ[{a, b, d, e, m, p}, x] && !IntegerQ[p]
-
Int[Cos[((a_.) + Log[x_]*(b_.))*(d_.)]^(p_)*((e_.)*(x_))^(m_.), x_Symbol] :> Simp[Cos[d*(a + b*Log[x])]^p*(x^(
I*b*d*p)/(1 + E^(2*I*a*d)*x^(2*I*b*d))^p) Int[(e*x)^m*((1 + E^(2*I*a*d)*x^(2*I*b*d))^p/x^(I*b*d*p)), x], x]
/; FreeQ[{a, b, d, e, m, p}, x] && !IntegerQ[p]
-
Int[((e_.)*(x_))^(m_.)*Sin[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]^(p_.), x_Symbol] :> Simp[(e*x)^(m + 1)
/(e*n*(c*x^n)^((m + 1)/n)) Subst[Int[x^((m + 1)/n - 1)*Sin[d*(a + b*Log[x])]^p, x], x, c*x^n], x] /; FreeQ[{
a, b, c, d, e, m, n, p}, x] && (NeQ[c, 1] || NeQ[n, 1])
-
Int[Cos[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]^(p_.)*((e_.)*(x_))^(m_.), x_Symbol] :> Simp[(e*x)^(m + 1)
/(e*n*(c*x^n)^((m + 1)/n)) Subst[Int[x^((m + 1)/n - 1)*Cos[d*(a + b*Log[x])]^p, x], x, c*x^n], x] /; FreeQ[{
a, b, c, d, e, m, n, p}, x] && (NeQ[c, 1] || NeQ[n, 1])
-
Int[(((e_.) + Log[(g_.)*(x_)^(m_.)]*(f_.))*(h_.))^(q_.)*Sin[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)], x_Sy
mbol] :> Simp[(I*(1/((c*x^n)^(I*b*d)*(2/x^(I*b*d*n)))))/E^(I*a*d) Int[(h*(e + f*Log[g*x^m]))^q/x^(I*b*d*n),
x], x] - Simp[I*E^(I*a*d)*((c*x^n)^(I*b*d)/(2*x^(I*b*d*n))) Int[x^(I*b*d*n)*(h*(e + f*Log[g*x^m]))^q, x], x]
/; FreeQ[{a, b, c, d, e, f, g, h, m, n, q}, x]
-
Int[Cos[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]*(((e_.) + Log[(g_.)*(x_)^(m_.)]*(f_.))*(h_.))^(q_.), x_Sy
mbol] :> Simp[1/((c*x^n)^(I*b*d)*(2/x^(I*b*d*n)))/E^(I*a*d) Int[(h*(e + f*Log[g*x^m]))^q/x^(I*b*d*n), x], x]
+ Simp[E^(I*a*d)*((c*x^n)^(I*b*d)/(2*x^(I*b*d*n))) Int[x^(I*b*d*n)*(h*(e + f*Log[g*x^m]))^q, x], x] /; Free
Q[{a, b, c, d, e, f, g, h, m, n, q}, x]
-
Int[(((e_.) + Log[(g_.)*(x_)^(m_.)]*(f_.))*(h_.))^(q_.)*((i_.)*(x_))^(r_.)*Sin[((a_.) + Log[(c_.)*(x_)^(n_.)]*
(b_.))*(d_.)], x_Symbol] :> Simp[(I*(i*x)^r*(1/((c*x^n)^(I*b*d)*(2*x^(r - I*b*d*n)))))/E^(I*a*d) Int[x^(r -
I*b*d*n)*(h*(e + f*Log[g*x^m]))^q, x], x] - Simp[I*E^(I*a*d)*(i*x)^r*((c*x^n)^(I*b*d)/(2*x^(r + I*b*d*n))) I
nt[x^(r + I*b*d*n)*(h*(e + f*Log[g*x^m]))^q, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, i, m, n, q, r}, x]
-
Int[Cos[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]*(((e_.) + Log[(g_.)*(x_)^(m_.)]*(f_.))*(h_.))^(q_.)*((i_.
)*(x_))^(r_.), x_Symbol] :> Simp[((i*x)^r*(1/((c*x^n)^(I*b*d)*(2*x^(r - I*b*d*n)))))/E^(I*a*d) Int[x^(r - I*
b*d*n)*(h*(e + f*Log[g*x^m]))^q, x], x] + Simp[E^(I*a*d)*(i*x)^r*((c*x^n)^(I*b*d)/(2*x^(r + I*b*d*n))) Int[x
^(r + I*b*d*n)*(h*(e + f*Log[g*x^m]))^q, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, i, m, n, q, r}, x]
-
Int[Tan[((a_.) + Log[x_]*(b_.))*(d_.)]^(p_.), x_Symbol] :> Int[((I - I*E^(2*I*a*d)*x^(2*I*b*d))/(1 + E^(2*I*a*
d)*x^(2*I*b*d)))^p, x] /; FreeQ[{a, b, d, p}, x]
-
Int[Cot[((a_.) + Log[x_]*(b_.))*(d_.)]^(p_.), x_Symbol] :> Int[((-I - I*E^(2*I*a*d)*x^(2*I*b*d))/(1 - E^(2*I*a
*d)*x^(2*I*b*d)))^p, x] /; FreeQ[{a, b, d, p}, x]
-
Int[Tan[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]^(p_.), x_Symbol] :> Simp[x/(n*(c*x^n)^(1/n)) Subst[Int[
x^(1/n - 1)*Tan[d*(a + b*Log[x])]^p, x], x, c*x^n], x] /; FreeQ[{a, b, c, d, n, p}, x] && (NeQ[c, 1] || NeQ[n,
1])
-
Int[Cot[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]^(p_.), x_Symbol] :> Simp[x/(n*(c*x^n)^(1/n)) Subst[Int[
x^(1/n - 1)*Cot[d*(a + b*Log[x])]^p, x], x, c*x^n], x] /; FreeQ[{a, b, c, d, n, p}, x] && (NeQ[c, 1] || NeQ[n,
1])
-
Int[((e_.)*(x_))^(m_.)*Tan[((a_.) + Log[x_]*(b_.))*(d_.)]^(p_.), x_Symbol] :> Int[(e*x)^m*((I - I*E^(2*I*a*d)*
x^(2*I*b*d))/(1 + E^(2*I*a*d)*x^(2*I*b*d)))^p, x] /; FreeQ[{a, b, d, e, m, p}, x]
-
Int[Cot[((a_.) + Log[x_]*(b_.))*(d_.)]^(p_.)*((e_.)*(x_))^(m_.), x_Symbol] :> Int[(e*x)^m*((-I - I*E^(2*I*a*d)
*x^(2*I*b*d))/(1 - E^(2*I*a*d)*x^(2*I*b*d)))^p, x] /; FreeQ[{a, b, d, e, m, p}, x]
-
Int[((e_.)*(x_))^(m_.)*Tan[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]^(p_.), x_Symbol] :> Simp[(e*x)^(m + 1)
/(e*n*(c*x^n)^((m + 1)/n)) Subst[Int[x^((m + 1)/n - 1)*Tan[d*(a + b*Log[x])]^p, x], x, c*x^n], x] /; FreeQ[{
a, b, c, d, e, m, n, p}, x] && (NeQ[c, 1] || NeQ[n, 1])
-
Int[Cot[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]^(p_.)*((e_.)*(x_))^(m_.), x_Symbol] :> Simp[(e*x)^(m + 1)
/(e*n*(c*x^n)^((m + 1)/n)) Subst[Int[x^((m + 1)/n - 1)*Cot[d*(a + b*Log[x])]^p, x], x, c*x^n], x] /; FreeQ[{
a, b, c, d, e, m, n, p}, x] && (NeQ[c, 1] || NeQ[n, 1])
-
Int[Sec[((a_.) + Log[x_]*(b_.))*(d_.)]^(p_.), x_Symbol] :> Simp[2^p*E^(I*a*d*p) Int[x^(I*b*d*p)/(1 + E^(2*I*
a*d)*x^(2*I*b*d))^p, x], x] /; FreeQ[{a, b, d}, x] && IntegerQ[p]
-
Int[Csc[((a_.) + Log[x_]*(b_.))*(d_.)]^(p_.), x_Symbol] :> Simp[(-2*I)^p*E^(I*a*d*p) Int[x^(I*b*d*p)/(1 - E^
(2*I*a*d)*x^(2*I*b*d))^p, x], x] /; FreeQ[{a, b, d}, x] && IntegerQ[p]
-
Int[Sec[((a_.) + Log[x_]*(b_.))*(d_.)]^(p_.), x_Symbol] :> Simp[Sec[d*(a + b*Log[x])]^p*((1 + E^(2*I*a*d)*x^(2
*I*b*d))^p/x^(I*b*d*p)) Int[x^(I*b*d*p)/(1 + E^(2*I*a*d)*x^(2*I*b*d))^p, x], x] /; FreeQ[{a, b, d, p}, x] &&
!IntegerQ[p]
-
Int[Csc[((a_.) + Log[x_]*(b_.))*(d_.)]^(p_.), x_Symbol] :> Simp[Csc[d*(a + b*Log[x])]^p*((1 - E^(2*I*a*d)*x^(2
*I*b*d))^p/x^(I*b*d*p)) Int[x^(I*b*d*p)/(1 - E^(2*I*a*d)*x^(2*I*b*d))^p, x], x] /; FreeQ[{a, b, d, p}, x] &&
!IntegerQ[p]
-
Int[Sec[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]^(p_.), x_Symbol] :> Simp[x/(n*(c*x^n)^(1/n)) Subst[Int[
x^(1/n - 1)*Sec[d*(a + b*Log[x])]^p, x], x, c*x^n], x] /; FreeQ[{a, b, c, d, n, p}, x] && (NeQ[c, 1] || NeQ[n,
1])
-
Int[Csc[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]^(p_.), x_Symbol] :> Simp[x/(n*(c*x^n)^(1/n)) Subst[Int[
x^(1/n - 1)*Csc[d*(a + b*Log[x])]^p, x], x, c*x^n], x] /; FreeQ[{a, b, c, d, n, p}, x] && (NeQ[c, 1] || NeQ[n,
1])
-
Int[((e_.)*(x_))^(m_.)*Sec[((a_.) + Log[x_]*(b_.))*(d_.)]^(p_.), x_Symbol] :> Simp[2^p*E^(I*a*d*p) Int[(e*x)
^m*(x^(I*b*d*p)/(1 + E^(2*I*a*d)*x^(2*I*b*d))^p), x], x] /; FreeQ[{a, b, d, e, m}, x] && IntegerQ[p]
-
Int[Csc[((a_.) + Log[x_]*(b_.))*(d_.)]^(p_.)*((e_.)*(x_))^(m_.), x_Symbol] :> Simp[(-2*I)^p*E^(I*a*d*p) Int[
(e*x)^m*(x^(I*b*d*p)/(1 - E^(2*I*a*d)*x^(2*I*b*d))^p), x], x] /; FreeQ[{a, b, d, e, m}, x] && IntegerQ[p]
-
Int[((e_.)*(x_))^(m_.)*Sec[((a_.) + Log[x_]*(b_.))*(d_.)]^(p_.), x_Symbol] :> Simp[Sec[d*(a + b*Log[x])]^p*((1
+ E^(2*I*a*d)*x^(2*I*b*d))^p/x^(I*b*d*p)) Int[(e*x)^m*(x^(I*b*d*p)/(1 + E^(2*I*a*d)*x^(2*I*b*d))^p), x], x]
/; FreeQ[{a, b, d, e, m, p}, x] && !IntegerQ[p]
-
Int[Csc[((a_.) + Log[x_]*(b_.))*(d_.)]^(p_.)*((e_.)*(x_))^(m_.), x_Symbol] :> Simp[Csc[d*(a + b*Log[x])]^p*((1
- E^(2*I*a*d)*x^(2*I*b*d))^p/x^(I*b*d*p)) Int[(e*x)^m*(x^(I*b*d*p)/(1 - E^(2*I*a*d)*x^(2*I*b*d))^p), x], x]
/; FreeQ[{a, b, d, e, m, p}, x] && !IntegerQ[p]
-
Int[((e_.)*(x_))^(m_.)*Sec[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]^(p_.), x_Symbol] :> Simp[(e*x)^(m + 1)
/(e*n*(c*x^n)^((m + 1)/n)) Subst[Int[x^((m + 1)/n - 1)*Sec[d*(a + b*Log[x])]^p, x], x, c*x^n], x] /; FreeQ[{
a, b, c, d, e, m, n, p}, x] && (NeQ[c, 1] || NeQ[n, 1])
-
Int[Csc[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]^(p_.)*((e_.)*(x_))^(m_.), x_Symbol] :> Simp[(e*x)^(m + 1)
/(e*n*(c*x^n)^((m + 1)/n)) Subst[Int[x^((m + 1)/n - 1)*Csc[d*(a + b*Log[x])]^p, x], x, c*x^n], x] /; FreeQ[{
a, b, c, d, e, m, n, p}, x] && (NeQ[c, 1] || NeQ[n, 1])
-
Int[Log[(b_.)*(x_)]*Sin[Log[(b_.)*(x_)]*(a_.)*(x_)], x_Symbol] :> Simp[-Cos[a*x*Log[b*x]]/a, x] - Int[Sin[a*x*
Log[b*x]], x] /; FreeQ[{a, b}, x]
-
Int[Cos[Log[(b_.)*(x_)]*(a_.)*(x_)]*Log[(b_.)*(x_)], x_Symbol] :> Simp[Sin[a*x*Log[b*x]]/a, x] - Int[Cos[a*x*L
og[b*x]], x] /; FreeQ[{a, b}, x]
-
Int[Log[(b_.)*(x_)]*(x_)^(m_.)*Sin[Log[(b_.)*(x_)]*(a_.)*(x_)^(n_.)], x_Symbol] :> Simp[-Cos[a*x^n*Log[b*x]]/(
a*n), x] - Simp[1/n Int[x^m*Sin[a*x^n*Log[b*x]], x], x] /; FreeQ[{a, b, m, n}, x] && EqQ[m, n - 1]
-
Int[Cos[Log[(b_.)*(x_)]*(a_.)*(x_)^(n_.)]*Log[(b_.)*(x_)]*(x_)^(m_.), x_Symbol] :> Simp[Sin[a*x^n*Log[b*x]]/(a
*n), x] - Simp[1/n Int[x^m*Cos[a*x^n*Log[b*x]], x], x] /; FreeQ[{a, b, m, n}, x] && EqQ[m, n - 1]
-
Int[(((e_.) + (f_.)*(x_))^(m_.)*Sin[(c_.) + (d_.)*(x_)]^(n_.))/((a_) + (b_.)*Sin[(c_.) + (d_.)*(x_)]), x_Symbo
l] :> Simp[1/b Int[(e + f*x)^m*Sin[c + d*x]^(n - 1), x], x] - Simp[a/b Int[(e + f*x)^m*(Sin[c + d*x]^(n -
1)/(a + b*Sin[c + d*x])), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && IGtQ[n, 0]
-
Int[(Cos[(c_.) + (d_.)*(x_)]^(n_.)*((e_.) + (f_.)*(x_))^(m_.))/(Cos[(c_.) + (d_.)*(x_)]*(b_.) + (a_)), x_Symbo
l] :> Simp[1/b Int[(e + f*x)^m*Cos[c + d*x]^(n - 1), x], x] - Simp[a/b Int[(e + f*x)^m*(Cos[c + d*x]^(n -
1)/(a + b*Cos[c + d*x])), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && IGtQ[n, 0]
-
Int[(Cos[(c_.) + (d_.)*(x_)]*((e_.) + (f_.)*(x_))^(m_.))/((a_) + (b_.)*Sin[(c_.) + (d_.)*(x_)]), x_Symbol] :>
Simp[(-I)*((e + f*x)^(m + 1)/(b*f*(m + 1))), x] + Simp[2 Int[(e + f*x)^m*(E^(I*(c + d*x))/(a - I*b*E^(I*(c +
d*x)))), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && EqQ[a^2 - b^2, 0]
-
Int[(((e_.) + (f_.)*(x_))^(m_.)*Sin[(c_.) + (d_.)*(x_)])/(Cos[(c_.) + (d_.)*(x_)]*(b_.) + (a_)), x_Symbol] :>
Simp[I*((e + f*x)^(m + 1)/(b*f*(m + 1))), x] - Simp[2*I Int[(e + f*x)^m*(E^(I*(c + d*x))/(a + b*E^(I*(c + d*
x)))), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && EqQ[a^2 - b^2, 0]
-
Int[(Cos[(c_.) + (d_.)*(x_)]*((e_.) + (f_.)*(x_))^(m_.))/((a_) + (b_.)*Sin[(c_.) + (d_.)*(x_)]), x_Symbol] :>
Simp[(-I)*((e + f*x)^(m + 1)/(b*f*(m + 1))), x] + (Int[(e + f*x)^m*(E^(I*(c + d*x))/(a - Rt[a^2 - b^2, 2] - I*
b*E^(I*(c + d*x)))), x] + Int[(e + f*x)^m*(E^(I*(c + d*x))/(a + Rt[a^2 - b^2, 2] - I*b*E^(I*(c + d*x)))), x])
/; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && PosQ[a^2 - b^2]
-
Int[(((e_.) + (f_.)*(x_))^(m_.)*Sin[(c_.) + (d_.)*(x_)])/(Cos[(c_.) + (d_.)*(x_)]*(b_.) + (a_)), x_Symbol] :>
Simp[I*((e + f*x)^(m + 1)/(b*f*(m + 1))), x] + (-Simp[I Int[(e + f*x)^m*(E^(I*(c + d*x))/(a - Rt[a^2 - b^2,
2] + b*E^(I*(c + d*x)))), x], x] - Simp[I Int[(e + f*x)^m*(E^(I*(c + d*x))/(a + Rt[a^2 - b^2, 2] + b*E^(I*(c
+ d*x)))), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && PosQ[a^2 - b^2]
-
Int[(Cos[(c_.) + (d_.)*(x_)]*((e_.) + (f_.)*(x_))^(m_.))/((a_) + (b_.)*Sin[(c_.) + (d_.)*(x_)]), x_Symbol] :>
Simp[(-I)*((e + f*x)^(m + 1)/(b*f*(m + 1))), x] + (Simp[I Int[(e + f*x)^m*(E^(I*(c + d*x))/(I*a - Rt[-a^2 +
b^2, 2] + b*E^(I*(c + d*x)))), x], x] + Simp[I Int[(e + f*x)^m*(E^(I*(c + d*x))/(I*a + Rt[-a^2 + b^2, 2] + b
*E^(I*(c + d*x)))), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && NegQ[a^2 - b^2]
-
Int[(((e_.) + (f_.)*(x_))^(m_.)*Sin[(c_.) + (d_.)*(x_)])/(Cos[(c_.) + (d_.)*(x_)]*(b_.) + (a_)), x_Symbol] :>
Simp[I*((e + f*x)^(m + 1)/(b*f*(m + 1))), x] + (Int[(e + f*x)^m*(E^(I*(c + d*x))/(I*a - Rt[-a^2 + b^2, 2] + I*
b*E^(I*(c + d*x)))), x] + Int[(e + f*x)^m*(E^(I*(c + d*x))/(I*a + Rt[-a^2 + b^2, 2] + I*b*E^(I*(c + d*x)))), x
]) /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && NegQ[a^2 - b^2]
-
Int[(Cos[(c_.) + (d_.)*(x_)]^(n_)*((e_.) + (f_.)*(x_))^(m_.))/((a_) + (b_.)*Sin[(c_.) + (d_.)*(x_)]), x_Symbol
] :> Simp[1/a Int[(e + f*x)^m*Cos[c + d*x]^(n - 2), x], x] - Simp[1/b Int[(e + f*x)^m*Cos[c + d*x]^(n - 2)
*Sin[c + d*x], x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && IGtQ[n, 1] && EqQ[a^2 - b^2, 0]
-
Int[(((e_.) + (f_.)*(x_))^(m_.)*Sin[(c_.) + (d_.)*(x_)]^(n_))/(Cos[(c_.) + (d_.)*(x_)]*(b_.) + (a_)), x_Symbol
] :> Simp[1/a Int[(e + f*x)^m*Sin[c + d*x]^(n - 2), x], x] - Simp[1/b Int[(e + f*x)^m*Sin[c + d*x]^(n - 2)
*Cos[c + d*x], x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && IGtQ[n, 1] && EqQ[a^2 - b^2, 0]
-
Int[(Cos[(c_.) + (d_.)*(x_)]^(n_)*((e_.) + (f_.)*(x_))^(m_.))/((a_) + (b_.)*Sin[(c_.) + (d_.)*(x_)]), x_Symbol
] :> Simp[a/b^2 Int[(e + f*x)^m*Cos[c + d*x]^(n - 2), x], x] + (-Simp[1/b Int[(e + f*x)^m*Cos[c + d*x]^(n
- 2)*Sin[c + d*x], x], x] - Simp[(a^2 - b^2)/b^2 Int[(e + f*x)^m*(Cos[c + d*x]^(n - 2)/(a + b*Sin[c + d*x]))
, x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[n, 1] && NeQ[a^2 - b^2, 0] && IGtQ[m, 0]
-
Int[(((e_.) + (f_.)*(x_))^(m_.)*Sin[(c_.) + (d_.)*(x_)]^(n_))/(Cos[(c_.) + (d_.)*(x_)]*(b_.) + (a_)), x_Symbol
] :> Simp[a/b^2 Int[(e + f*x)^m*Sin[c + d*x]^(n - 2), x], x] + (-Simp[1/b Int[(e + f*x)^m*Sin[c + d*x]^(n
- 2)*Cos[c + d*x], x], x] - Simp[(a^2 - b^2)/b^2 Int[(e + f*x)^m*(Sin[c + d*x]^(n - 2)/(a + b*Cos[c + d*x]))
, x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[n, 1] && NeQ[a^2 - b^2, 0] && IGtQ[m, 0]
-
Int[(((e_.) + (f_.)*(x_))^(m_.)*Tan[(c_.) + (d_.)*(x_)]^(n_.))/((a_) + (b_.)*Sin[(c_.) + (d_.)*(x_)]), x_Symbo
l] :> Simp[1/b Int[(e + f*x)^m*Sec[c + d*x]*Tan[c + d*x]^(n - 1), x], x] - Simp[a/b Int[(e + f*x)^m*Sec[c
+ d*x]*(Tan[c + d*x]^(n - 1)/(a + b*Sin[c + d*x])), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && IG
tQ[n, 0]
-
Int[(Cot[(c_.) + (d_.)*(x_)]^(n_.)*((e_.) + (f_.)*(x_))^(m_.))/(Cos[(c_.) + (d_.)*(x_)]*(b_.) + (a_)), x_Symbo
l] :> Simp[1/b Int[(e + f*x)^m*Csc[c + d*x]*Cot[c + d*x]^(n - 1), x], x] - Simp[a/b Int[(e + f*x)^m*Csc[c
+ d*x]*(Cot[c + d*x]^(n - 1)/(a + b*Cos[c + d*x])), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && IG
tQ[n, 0]
-
Int[(Cot[(c_.) + (d_.)*(x_)]^(n_.)*((e_.) + (f_.)*(x_))^(m_.))/((a_) + (b_.)*Sin[(c_.) + (d_.)*(x_)]), x_Symbo
l] :> Simp[1/a Int[(e + f*x)^m*Cot[c + d*x]^n, x], x] - Simp[b/a Int[(e + f*x)^m*Cos[c + d*x]*(Cot[c + d*x
]^(n - 1)/(a + b*Sin[c + d*x])), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && IGtQ[n, 0]
-
Int[(((e_.) + (f_.)*(x_))^(m_.)*Tan[(c_.) + (d_.)*(x_)]^(n_.))/(Cos[(c_.) + (d_.)*(x_)]*(b_.) + (a_)), x_Symbo
l] :> Simp[1/a Int[(e + f*x)^m*Tan[c + d*x]^n, x], x] - Simp[b/a Int[(e + f*x)^m*Sin[c + d*x]*(Tan[c + d*x
]^(n - 1)/(a + b*Cos[c + d*x])), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && IGtQ[n, 0]
-
Int[(((e_.) + (f_.)*(x_))^(m_.)*Sec[(c_.) + (d_.)*(x_)]^(n_.))/((a_) + (b_.)*Sin[(c_.) + (d_.)*(x_)]), x_Symbo
l] :> Simp[1/a Int[(e + f*x)^m*Sec[c + d*x]^(n + 2), x], x] - Simp[1/b Int[(e + f*x)^m*Sec[c + d*x]^(n + 1
)*Tan[c + d*x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && IGtQ[m, 0] && EqQ[a^2 - b^2, 0]
-
Int[(Csc[(c_.) + (d_.)*(x_)]^(n_.)*((e_.) + (f_.)*(x_))^(m_.))/(Cos[(c_.) + (d_.)*(x_)]*(b_.) + (a_)), x_Symbo
l] :> Simp[1/a Int[(e + f*x)^m*Csc[c + d*x]^(n + 2), x], x] - Simp[1/b Int[(e + f*x)^m*Csc[c + d*x]^(n + 1
)*Cot[c + d*x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && IGtQ[m, 0] && EqQ[a^2 - b^2, 0]
-
Int[(((e_.) + (f_.)*(x_))^(m_.)*Sec[(c_.) + (d_.)*(x_)]^(n_.))/((a_) + (b_.)*Sin[(c_.) + (d_.)*(x_)]), x_Symbo
l] :> Simp[-b^2/(a^2 - b^2) Int[(e + f*x)^m*(Sec[c + d*x]^(n - 2)/(a + b*Sin[c + d*x])), x], x] + Simp[1/(a^
2 - b^2) Int[(e + f*x)^m*Sec[c + d*x]^n*(a - b*Sin[c + d*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ
[m, 0] && NeQ[a^2 - b^2, 0] && IGtQ[n, 0]
-
Int[(Csc[(c_.) + (d_.)*(x_)]^(n_.)*((e_.) + (f_.)*(x_))^(m_.))/(Cos[(c_.) + (d_.)*(x_)]*(b_.) + (a_)), x_Symbo
l] :> Simp[-b^2/(a^2 - b^2) Int[(e + f*x)^m*(Csc[c + d*x]^(n - 2)/(a + b*Cos[c + d*x])), x], x] + Simp[1/(a^
2 - b^2) Int[(e + f*x)^m*Csc[c + d*x]^n*(a - b*Cos[c + d*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ
[m, 0] && NeQ[a^2 - b^2, 0] && IGtQ[n, 0]
-
Int[(Csc[(c_.) + (d_.)*(x_)]^(n_.)*((e_.) + (f_.)*(x_))^(m_.))/((a_) + (b_.)*Sin[(c_.) + (d_.)*(x_)]), x_Symbo
l] :> Simp[1/a Int[(e + f*x)^m*Csc[c + d*x]^n, x], x] - Simp[b/a Int[(e + f*x)^m*(Csc[c + d*x]^(n - 1)/(a
+ b*Sin[c + d*x])), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && IGtQ[n, 0]
-
Int[(((e_.) + (f_.)*(x_))^(m_.)*Sec[(c_.) + (d_.)*(x_)]^(n_.))/(Cos[(c_.) + (d_.)*(x_)]*(b_.) + (a_)), x_Symbo
l] :> Simp[1/a Int[(e + f*x)^m*Sec[c + d*x]^n, x], x] - Simp[b/a Int[(e + f*x)^m*(Sec[c + d*x]^(n - 1)/(a
+ b*Cos[c + d*x])), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && IGtQ[n, 0]
-
Int[(((e_.) + (f_.)*(x_))^(m_.)*(F_)[(c_.) + (d_.)*(x_)]^(n_.))/((a_) + (b_.)*Sin[(c_.) + (d_.)*(x_)]), x_Symb
ol] :> Unintegrable[((e + f*x)^m*F[c + d*x]^n)/(a + b*Sin[c + d*x]), x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]
&& TrigQ[F]
-
Int[(((e_.) + (f_.)*(x_))^(m_.)*(F_)[(c_.) + (d_.)*(x_)]^(n_.))/(Cos[(c_.) + (d_.)*(x_)]*(b_.) + (a_)), x_Symb
ol] :> Unintegrable[((e + f*x)^m*F[c + d*x]^n)/(a + b*Cos[c + d*x]), x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]
&& TrigQ[F]
-
Int[(Cos[(c_.) + (d_.)*(x_)]^(p_.)*((e_.) + (f_.)*(x_))^(m_.)*Sin[(c_.) + (d_.)*(x_)]^(n_.))/((a_) + (b_.)*Sin
[(c_.) + (d_.)*(x_)]), x_Symbol] :> Simp[1/b Int[(e + f*x)^m*Cos[c + d*x]^p*Sin[c + d*x]^(n - 1), x], x] - S
imp[a/b Int[(e + f*x)^m*Cos[c + d*x]^p*(Sin[c + d*x]^(n - 1)/(a + b*Sin[c + d*x])), x], x] /; FreeQ[{a, b, c
, d, e, f}, x] && IGtQ[m, 0] && IGtQ[n, 0] && IGtQ[p, 0]
-
Int[(Cos[(c_.) + (d_.)*(x_)]^(n_.)*((e_.) + (f_.)*(x_))^(m_.)*Sin[(c_.) + (d_.)*(x_)]^(p_.))/(Cos[(c_.) + (d_.
)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[1/b Int[(e + f*x)^m*Sin[c + d*x]^p*Cos[c + d*x]^(n - 1), x], x] - S
imp[a/b Int[(e + f*x)^m*Sin[c + d*x]^p*(Cos[c + d*x]^(n - 1)/(a + b*Cos[c + d*x])), x], x] /; FreeQ[{a, b, c
, d, e, f}, x] && IGtQ[m, 0] && IGtQ[n, 0] && IGtQ[p, 0]
-
Int[(Cos[(c_.) + (d_.)*(x_)]^(p_.)*((e_.) + (f_.)*(x_))^(m_.)*Tan[(c_.) + (d_.)*(x_)]^(n_.))/((a_) + (b_.)*Sin
[(c_.) + (d_.)*(x_)]), x_Symbol] :> Simp[1/b Int[(e + f*x)^m*Cos[c + d*x]^(p - 1)*Tan[c + d*x]^(n - 1), x],
x] - Simp[a/b Int[(e + f*x)^m*Cos[c + d*x]^(p - 1)*(Tan[c + d*x]^(n - 1)/(a + b*Sin[c + d*x])), x], x] /; Fr
eeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && IGtQ[n, 0] && IGtQ[p, 0]
-
Int[(Cot[(c_.) + (d_.)*(x_)]^(n_.)*((e_.) + (f_.)*(x_))^(m_.)*Sin[(c_.) + (d_.)*(x_)]^(p_.))/(Cos[(c_.) + (d_.
)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[1/b Int[(e + f*x)^m*Sin[c + d*x]^(p - 1)*Cot[c + d*x]^(n - 1), x],
x] - Simp[a/b Int[(e + f*x)^m*Sin[c + d*x]^(p - 1)*(Cot[c + d*x]^(n - 1)/(a + b*Cos[c + d*x])), x], x] /; Fr
eeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && IGtQ[n, 0] && IGtQ[p, 0]
-
Int[(Cos[(c_.) + (d_.)*(x_)]^(p_.)*Cot[(c_.) + (d_.)*(x_)]^(n_.)*((e_.) + (f_.)*(x_))^(m_.))/((a_) + (b_.)*Sin
[(c_.) + (d_.)*(x_)]), x_Symbol] :> Simp[1/a Int[(e + f*x)^m*Cos[c + d*x]^p*Cot[c + d*x]^n, x], x] - Simp[b/
a Int[(e + f*x)^m*Cos[c + d*x]^(p + 1)*(Cot[c + d*x]^(n - 1)/(a + b*Sin[c + d*x])), x], x] /; FreeQ[{a, b, c
, d, e, f}, x] && IGtQ[m, 0] && IGtQ[n, 0] && IGtQ[p, 0]
-
Int[(((e_.) + (f_.)*(x_))^(m_.)*Sin[(c_.) + (d_.)*(x_)]^(p_.)*Tan[(c_.) + (d_.)*(x_)]^(n_.))/(Cos[(c_.) + (d_.
)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[1/a Int[(e + f*x)^m*Sin[c + d*x]^p*Tan[c + d*x]^n, x], x] - Simp[b/
a Int[(e + f*x)^m*Sin[c + d*x]^(p + 1)*(Tan[c + d*x]^(n - 1)/(a + b*Cos[c + d*x])), x], x] /; FreeQ[{a, b, c
, d, e, f}, x] && IGtQ[m, 0] && IGtQ[n, 0] && IGtQ[p, 0]
-
Int[(Cos[(c_.) + (d_.)*(x_)]^(p_.)*Csc[(c_.) + (d_.)*(x_)]^(n_.)*((e_.) + (f_.)*(x_))^(m_.))/((a_) + (b_.)*Sin
[(c_.) + (d_.)*(x_)]), x_Symbol] :> Simp[1/a Int[(e + f*x)^m*Cos[c + d*x]^p*Csc[c + d*x]^n, x], x] - Simp[b/
a Int[(e + f*x)^m*Cos[c + d*x]^p*(Csc[c + d*x]^(n - 1)/(a + b*Sin[c + d*x])), x], x] /; FreeQ[{a, b, c, d, e
, f}, x] && IGtQ[m, 0] && IGtQ[n, 0] && IGtQ[p, 0]
-
Int[(((e_.) + (f_.)*(x_))^(m_.)*Sec[(c_.) + (d_.)*(x_)]^(n_.)*Sin[(c_.) + (d_.)*(x_)]^(p_.))/(Cos[(c_.) + (d_.
)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[1/a Int[(e + f*x)^m*Sin[c + d*x]^p*Sec[c + d*x]^n, x], x] - Simp[b/
a Int[(e + f*x)^m*Sin[c + d*x]^p*(Sec[c + d*x]^(n - 1)/(a + b*Cos[c + d*x])), x], x] /; FreeQ[{a, b, c, d, e
, f}, x] && IGtQ[m, 0] && IGtQ[n, 0] && IGtQ[p, 0]
-
Int[(Cos[(c_.) + (d_.)*(x_)]^(p_.)*((e_.) + (f_.)*(x_))^(m_.)*(F_)[(c_.) + (d_.)*(x_)]^(n_.))/((a_) + (b_.)*Si
n[(c_.) + (d_.)*(x_)]), x_Symbol] :> Unintegrable[((e + f*x)^m*Cos[c + d*x]^p*F[c + d*x]^n)/(a + b*Sin[c + d*x
]), x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && TrigQ[F]
-
Int[(((e_.) + (f_.)*(x_))^(m_.)*Sin[(c_.) + (d_.)*(x_)]^(p_.)*(F_)[(c_.) + (d_.)*(x_)]^(n_.))/(Cos[(c_.) + (d_
.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Unintegrable[((e + f*x)^m*F[c + d*x]^n*Sin[c + d*x]^p)/(a + b*Cos[c + d*x
]), x] /; FreeQ[{a, b, c, d, e, f, m, n}, x] && TrigQ[F]
-
Int[(((e_.) + (f_.)*(x_))^(m_.)*(F_)[(c_.) + (d_.)*(x_)]^(n_.))/((a_) + (b_.)*Sec[(c_.) + (d_.)*(x_)]), x_Symb
ol] :> Int[(e + f*x)^m*Cos[c + d*x]*(F[c + d*x]^n/(b + a*Cos[c + d*x])), x] /; FreeQ[{a, b, c, d, e, f}, x] &&
TrigQ[F] && IntegersQ[m, n]
-
Int[(((e_.) + (f_.)*(x_))^(m_.)*(F_)[(c_.) + (d_.)*(x_)]^(n_.))/(Csc[(c_.) + (d_.)*(x_)]*(b_.) + (a_)), x_Symb
ol] :> Int[(e + f*x)^m*Sin[c + d*x]*(F[c + d*x]^n/(b + a*Sin[c + d*x])), x] /; FreeQ[{a, b, c, d, e, f}, x] &&
TrigQ[F] && IntegersQ[m, n]
-
Int[(((e_.) + (f_.)*(x_))^(m_.)*(F_)[(c_.) + (d_.)*(x_)]^(n_.)*(G_)[(c_.) + (d_.)*(x_)]^(p_.))/((a_) + (b_.)*S
ec[(c_.) + (d_.)*(x_)]), x_Symbol] :> Int[(e + f*x)^m*Cos[c + d*x]*F[c + d*x]^n*(G[c + d*x]^p/(b + a*Cos[c + d
*x])), x] /; FreeQ[{a, b, c, d, e, f}, x] && TrigQ[F] && TrigQ[G] && IntegersQ[m, n, p]
-
Int[(((e_.) + (f_.)*(x_))^(m_.)*(F_)[(c_.) + (d_.)*(x_)]^(n_.)*(G_)[(c_.) + (d_.)*(x_)]^(p_.))/(Csc[(c_.) + (d
_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Int[(e + f*x)^m*Sin[c + d*x]*F[c + d*x]^n*(G[c + d*x]^p/(b + a*Sin[c + d
*x])), x] /; FreeQ[{a, b, c, d, e, f}, x] && TrigQ[F] && TrigQ[G] && IntegersQ[m, n, p]
-
Int[Sin[(a_.) + (b_.)*(x_)]^(p_.)*Sin[(c_.) + (d_.)*(x_)]^(q_.), x_Symbol] :> Simp[1/2^(p + q) Int[ExpandInt
egrand[(I/E^(I*(c + d*x)) - I*E^(I*(c + d*x)))^q, (I/E^(I*(a + b*x)) - I*E^(I*(a + b*x)))^p, x], x], x] /; Fre
eQ[{a, b, c, d, q}, x] && IGtQ[p, 0] && !IntegerQ[q]
-
Int[Cos[(a_.) + (b_.)*(x_)]^(p_.)*Cos[(c_.) + (d_.)*(x_)]^(q_.), x_Symbol] :> Simp[1/2^(p + q) Int[ExpandInt
egrand[(E^((-I)*(c + d*x)) + E^(I*(c + d*x)))^q, (E^((-I)*(a + b*x)) + E^(I*(a + b*x)))^p, x], x], x] /; FreeQ
[{a, b, c, d, q}, x] && IGtQ[p, 0] && !IntegerQ[q]
-
Int[Cos[(c_.) + (d_.)*(x_)]^(q_.)*Sin[(a_.) + (b_.)*(x_)]^(p_.), x_Symbol] :> Simp[1/2^(p + q) Int[ExpandInt
egrand[(E^((-I)*(c + d*x)) + E^(I*(c + d*x)))^q, (I/E^(I*(a + b*x)) - I*E^(I*(a + b*x)))^p, x], x], x] /; Free
Q[{a, b, c, d, q}, x] && IGtQ[p, 0] && !IntegerQ[q]
-
Int[Cos[(a_.) + (b_.)*(x_)]^(p_.)*Sin[(c_.) + (d_.)*(x_)]^(q_.), x_Symbol] :> Simp[1/2^(p + q) Int[ExpandInt
egrand[(I/E^(I*(c + d*x)) - I*E^(I*(c + d*x)))^q, (E^((-I)*(a + b*x)) + E^(I*(a + b*x)))^p, x], x], x] /; Free
Q[{a, b, c, d, q}, x] && IGtQ[p, 0] && !IntegerQ[q]
-
Int[Sin[(a_.) + (b_.)*(x_)]*Tan[(c_.) + (d_.)*(x_)], x_Symbol] :> Int[1/(E^(I*(a + b*x))*2) - E^(I*(a + b*x))/
2 - 1/(E^(I*(a + b*x))*(1 + E^(2*I*(c + d*x)))) + E^(I*(a + b*x))/(1 + E^(2*I*(c + d*x))), x] /; FreeQ[{a, b,
c, d}, x] && NeQ[b^2 - d^2, 0]
-
Int[Cos[(a_.) + (b_.)*(x_)]*Cot[(c_.) + (d_.)*(x_)], x_Symbol] :> Int[I*(1/(E^(I*(a + b*x))*2)) + I*(E^(I*(a +
b*x))/2) - I*(1/(E^(I*(a + b*x))*(1 - E^(2*I*(c + d*x))))) - I*(E^(I*(a + b*x))/(1 - E^(2*I*(c + d*x)))), x]
/; FreeQ[{a, b, c, d}, x] && NeQ[b^2 - d^2, 0]
-
Int[Cot[(c_.) + (d_.)*(x_)]*Sin[(a_.) + (b_.)*(x_)], x_Symbol] :> Int[-E^((-I)*(a + b*x))/2 + E^(I*(a + b*x))/
2 + 1/(E^(I*(a + b*x))*(1 - E^(2*I*(c + d*x)))) - E^(I*(a + b*x))/(1 - E^(2*I*(c + d*x))), x] /; FreeQ[{a, b,
c, d}, x] && NeQ[b^2 - d^2, 0]
-
Int[Cos[(a_.) + (b_.)*(x_)]*Tan[(c_.) + (d_.)*(x_)], x_Symbol] :> Int[(-I)*(1/(E^(I*(a + b*x))*2)) - I*(E^(I*(
a + b*x))/2) + I*(1/(E^(I*(a + b*x))*(1 + E^(2*I*(c + d*x))))) + I*(E^(I*(a + b*x))/(1 + E^(2*I*(c + d*x)))),
x] /; FreeQ[{a, b, c, d}, x] && NeQ[b^2 - d^2, 0]
-
Int[Sin[(a_.)/((c_.) + (d_.)*(x_))]^(n_.), x_Symbol] :> Simp[-d^(-1) Subst[Int[Sin[a*x]^n/x^2, x], x, 1/(c +
d*x)], x] /; FreeQ[{a, c, d}, x] && IGtQ[n, 0]
-
Int[Cos[(a_.)/((c_.) + (d_.)*(x_))]^(n_.), x_Symbol] :> Simp[-d^(-1) Subst[Int[Cos[a*x]^n/x^2, x], x, 1/(c +
d*x)], x] /; FreeQ[{a, c, d}, x] && IGtQ[n, 0]
-
Int[Sin[((e_.)*((a_.) + (b_.)*(x_)))/((c_.) + (d_.)*(x_))]^(n_.), x_Symbol] :> Simp[-d^(-1) Subst[Int[Sin[b*
(e/d) - e*(b*c - a*d)*(x/d)]^n/x^2, x], x, 1/(c + d*x)], x] /; FreeQ[{a, b, c, d}, x] && IGtQ[n, 0] && NeQ[b*c
- a*d, 0]
-
Int[Cos[((e_.)*((a_.) + (b_.)*(x_)))/((c_.) + (d_.)*(x_))]^(n_.), x_Symbol] :> Simp[-d^(-1) Subst[Int[Cos[b*
(e/d) - e*(b*c - a*d)*(x/d)]^n/x^2, x], x, 1/(c + d*x)], x] /; FreeQ[{a, b, c, d}, x] && IGtQ[n, 0] && NeQ[b*c
- a*d, 0]
-
Int[Sin[u_]^(n_.), x_Symbol] :> Module[{lst = QuotientOfLinearsParts[u, x]}, Int[Sin[(lst[[1]] + lst[[2]]*x)/(
lst[[3]] + lst[[4]]*x)]^n, x]] /; IGtQ[n, 0] && QuotientOfLinearsQ[u, x]
-
Int[Cos[u_]^(n_.), x_Symbol] :> Module[{lst = QuotientOfLinearsParts[u, x]}, Int[Cos[(lst[[1]] + lst[[2]]*x)/(
lst[[3]] + lst[[4]]*x)]^n, x]] /; IGtQ[n, 0] && QuotientOfLinearsQ[u, x]
-
Int[(u_.)*Sin[v_]^(p_.)*Sin[w_]^(q_.), x_Symbol] :> Int[u*Sin[v]^(p + q), x] /; EqQ[w, v]
-
Int[Cos[v_]^(p_.)*Cos[w_]^(q_.)*(u_.), x_Symbol] :> Int[u*Cos[v]^(p + q), x] /; EqQ[w, v]
-
Int[Sin[v_]^(p_.)*Sin[w_]^(q_.), x_Symbol] :> Int[ExpandTrigReduce[Sin[v]^p*Sin[w]^q, x], x] /; ((PolynomialQ[
v, x] && PolynomialQ[w, x]) || (BinomialQ[{v, w}, x] && IndependentQ[Cancel[v/w], x])) && IGtQ[p, 0] && IGtQ[q
, 0]
-
Int[Cos[v_]^(p_.)*Cos[w_]^(q_.), x_Symbol] :> Int[ExpandTrigReduce[Cos[v]^p*Cos[w]^q, x], x] /; ((PolynomialQ[
v, x] && PolynomialQ[w, x]) || (BinomialQ[{v, w}, x] && IndependentQ[Cancel[v/w], x])) && IGtQ[p, 0] && IGtQ[q
, 0]
-
Int[(x_)^(m_.)*Sin[v_]^(p_.)*Sin[w_]^(q_.), x_Symbol] :> Int[ExpandTrigReduce[x^m, Sin[v]^p*Sin[w]^q, x], x] /
; IGtQ[m, 0] && IGtQ[p, 0] && IGtQ[q, 0] && ((PolynomialQ[v, x] && PolynomialQ[w, x]) || (BinomialQ[{v, w}, x]
&& IndependentQ[Cancel[v/w], x]))
-
Int[Cos[v_]^(p_.)*Cos[w_]^(q_.)*(x_)^(m_.), x_Symbol] :> Int[ExpandTrigReduce[x^m, Cos[v]^p*Cos[w]^q, x], x] /
; IGtQ[m, 0] && IGtQ[p, 0] && IGtQ[q, 0] && ((PolynomialQ[v, x] && PolynomialQ[w, x]) || (BinomialQ[{v, w}, x]
&& IndependentQ[Cancel[v/w], x]))
-
Int[Cos[w_]^(p_.)*(u_.)*Sin[v_]^(p_.), x_Symbol] :> Simp[1/2^p Int[u*Sin[2*v]^p, x], x] /; EqQ[w, v] && Inte
gerQ[p]
-
Int[Cos[w_]^(q_.)*Sin[v_]^(p_.), x_Symbol] :> Int[ExpandTrigReduce[Sin[v]^p*Cos[w]^q, x], x] /; IGtQ[p, 0] &&
IGtQ[q, 0] && ((PolynomialQ[v, x] && PolynomialQ[w, x]) || (BinomialQ[{v, w}, x] && IndependentQ[Cancel[v/w],
x]))
-
Int[Cos[w_]^(q_.)*(x_)^(m_.)*Sin[v_]^(p_.), x_Symbol] :> Int[ExpandTrigReduce[x^m, Sin[v]^p*Cos[w]^q, x], x] /
; IGtQ[m, 0] && IGtQ[p, 0] && IGtQ[q, 0] && ((PolynomialQ[v, x] && PolynomialQ[w, x]) || (BinomialQ[{v, w}, x]
&& IndependentQ[Cancel[v/w], x]))
-
Int[Sin[v_]*Tan[w_]^(n_.), x_Symbol] :> -Int[Cos[v]*Tan[w]^(n - 1), x] + Simp[Cos[v - w] Int[Sec[w]*Tan[w]^(
n - 1), x], x] /; GtQ[n, 0] && FreeQ[v - w, x] && NeQ[w, v]
-
Int[Cos[v_]*Cot[w_]^(n_.), x_Symbol] :> -Int[Sin[v]*Cot[w]^(n - 1), x] + Simp[Cos[v - w] Int[Csc[w]*Cot[w]^(
n - 1), x], x] /; GtQ[n, 0] && FreeQ[v - w, x] && NeQ[w, v]
-
Int[Cot[w_]^(n_.)*Sin[v_], x_Symbol] :> Int[Cos[v]*Cot[w]^(n - 1), x] + Simp[Sin[v - w] Int[Csc[w]*Cot[w]^(n
- 1), x], x] /; GtQ[n, 0] && FreeQ[v - w, x] && NeQ[w, v]
-
Int[Cos[v_]*Tan[w_]^(n_.), x_Symbol] :> Int[Sin[v]*Tan[w]^(n - 1), x] - Simp[Sin[v - w] Int[Sec[w]*Tan[w]^(n
- 1), x], x] /; GtQ[n, 0] && FreeQ[v - w, x] && NeQ[w, v]
-
Int[Sec[w_]^(n_.)*Sin[v_], x_Symbol] :> Simp[Cos[v - w] Int[Tan[w]*Sec[w]^(n - 1), x], x] + Simp[Sin[v - w]
Int[Sec[w]^(n - 1), x], x] /; GtQ[n, 0] && FreeQ[v - w, x] && NeQ[w, v]
-
Int[Cos[v_]*Csc[w_]^(n_.), x_Symbol] :> Simp[Cos[v - w] Int[Cot[w]*Csc[w]^(n - 1), x], x] - Simp[Sin[v - w]
Int[Csc[w]^(n - 1), x], x] /; GtQ[n, 0] && FreeQ[v - w, x] && NeQ[w, v]
-
Int[Csc[w_]^(n_.)*Sin[v_], x_Symbol] :> Simp[Sin[v - w] Int[Cot[w]*Csc[w]^(n - 1), x], x] + Simp[Cos[v - w]
Int[Csc[w]^(n - 1), x], x] /; GtQ[n, 0] && FreeQ[v - w, x] && NeQ[w, v]
-
Int[Cos[v_]*Sec[w_]^(n_.), x_Symbol] :> Simp[-Sin[v - w] Int[Tan[w]*Sec[w]^(n - 1), x], x] + Simp[Cos[v - w]
Int[Sec[w]^(n - 1), x], x] /; GtQ[n, 0] && FreeQ[v - w, x] && NeQ[w, v]
-
Int[((e_.) + (f_.)*(x_))^(m_.)*((a_) + Cos[(c_.) + (d_.)*(x_)]*(b_.)*Sin[(c_.) + (d_.)*(x_)])^(n_.), x_Symbol]
:> Int[(e + f*x)^m*(a + b*(Sin[2*c + 2*d*x]/2))^n, x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]
-
Int[(x_)^(m_.)*((a_) + (b_.)*Sin[(c_.) + (d_.)*(x_)]^2)^(n_), x_Symbol] :> Simp[1/2^n Int[x^m*(2*a + b - b*C
os[2*c + 2*d*x])^n, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a + b, 0] && IGtQ[m, 0] && ILtQ[n, 0] && (EqQ[n, -
1] || (EqQ[m, 1] && EqQ[n, -2]))
-
Int[(Cos[(c_.) + (d_.)*(x_)]^2*(b_.) + (a_))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[1/2^n Int[x^m*(2*a + b + b*C
os[2*c + 2*d*x])^n, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a + b, 0] && IGtQ[m, 0] && ILtQ[n, 0] && (EqQ[n, -
1] || (EqQ[m, 1] && EqQ[n, -2]))
-
Int[((f_.) + (g_.)*(x_))^(m_.)/((a_.) + Cos[(d_.) + (e_.)*(x_)]^2*(b_.) + (c_.)*Sin[(d_.) + (e_.)*(x_)]^2), x_
Symbol] :> Simp[2 Int[(f + g*x)^m/(2*a + b + c + (b - c)*Cos[2*d + 2*e*x]), x], x] /; FreeQ[{a, b, c, d, e,
f, g}, x] && IGtQ[m, 0] && NeQ[a + b, 0] && NeQ[a + c, 0]
-
Int[(((f_.) + (g_.)*(x_))^(m_.)*Sec[(d_.) + (e_.)*(x_)]^2)/((b_) + (c_.)*Tan[(d_.) + (e_.)*(x_)]^2), x_Symbol]
:> Simp[2 Int[(f + g*x)^m/(b + c + (b - c)*Cos[2*d + 2*e*x]), x], x] /; FreeQ[{b, c, d, e, f, g}, x] && IGt
Q[m, 0]
-
Int[(((f_.) + (g_.)*(x_))^(m_.)*Sec[(d_.) + (e_.)*(x_)]^2)/((b_.) + (a_.)*Sec[(d_.) + (e_.)*(x_)]^2 + (c_.)*Ta
n[(d_.) + (e_.)*(x_)]^2), x_Symbol] :> Simp[2 Int[(f + g*x)^m/(2*a + b + c + (b - c)*Cos[2*d + 2*e*x]), x],
x] /; FreeQ[{a, b, c, d, e, f, g}, x] && IGtQ[m, 0] && NeQ[a + b, 0] && NeQ[a + c, 0]
-
Int[(Csc[(d_.) + (e_.)*(x_)]^2*((f_.) + (g_.)*(x_))^(m_.))/(Cot[(d_.) + (e_.)*(x_)]^2*(b_.) + (c_)), x_Symbol]
:> Simp[2 Int[(f + g*x)^m/(b + c + (b - c)*Cos[2*d + 2*e*x]), x], x] /; FreeQ[{b, c, d, e, f, g}, x] && IGt
Q[m, 0]
-
Int[(Csc[(d_.) + (e_.)*(x_)]^2*((f_.) + (g_.)*(x_))^(m_.))/(Csc[(d_.) + (e_.)*(x_)]^2*(a_.) + Cot[(d_.) + (e_.
)*(x_)]^2*(b_.) + (c_.)), x_Symbol] :> Simp[2 Int[(f + g*x)^m/(2*a + b + c + (b - c)*Cos[2*d + 2*e*x]), x],
x] /; FreeQ[{a, b, c, d, e, f, g}, x] && IGtQ[m, 0] && NeQ[a + b, 0] && NeQ[a + c, 0]
-
Int[(((e_.) + (f_.)*(x_))*((A_) + (B_.)*Sin[(c_.) + (d_.)*(x_)]))/((a_) + (b_.)*Sin[(c_.) + (d_.)*(x_)])^2, x_
Symbol] :> Simp[(-B)*(e + f*x)*(Cos[c + d*x]/(a*d*(a + b*Sin[c + d*x]))), x] + Simp[B*(f/(a*d)) Int[Cos[c +
d*x]/(a + b*Sin[c + d*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && EqQ[a*A - b*B, 0]
-
Int[((Cos[(c_.) + (d_.)*(x_)]*(B_.) + (A_))*((e_.) + (f_.)*(x_)))/(Cos[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^2, x_
Symbol] :> Simp[B*(e + f*x)*(Sin[c + d*x]/(a*d*(a + b*Cos[c + d*x]))), x] - Simp[B*(f/(a*d)) Int[Sin[c + d*x
]/(a + b*Cos[c + d*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && EqQ[a*A - b*B, 0]
-
Int[(x_)^2/(Cos[(a_.)*(x_)]*(d_.)*(x_) + (c_.)*Sin[(a_.)*(x_)])^2, x_Symbol] :> Simp[x/(a*d*Sin[a*x]*(c*Sin[a*
x] + d*x*Cos[a*x])), x] + Simp[1/d^2 Int[1/Sin[a*x]^2, x], x] /; FreeQ[{a, c, d}, x] && EqQ[a*c + d, 0]
-
Int[(x_)^2/(Cos[(a_.)*(x_)]*(c_.) + (d_.)*(x_)*Sin[(a_.)*(x_)])^2, x_Symbol] :> Simp[-x/(a*d*Cos[a*x]*(c*Cos[a
*x] + d*x*Sin[a*x])), x] + Simp[1/d^2 Int[1/Cos[a*x]^2, x], x] /; FreeQ[{a, c, d}, x] && EqQ[a*c - d, 0]
-
Int[Sin[(a_.)*(x_)]^2/(Cos[(a_.)*(x_)]*(d_.)*(x_) + (c_.)*Sin[(a_.)*(x_)])^2, x_Symbol] :> Simp[1/(d^2*x), x]
+ Simp[Sin[a*x]/(a*d*x*(d*x*Cos[a*x] + c*Sin[a*x])), x] /; FreeQ[{a, c, d}, x] && EqQ[a*c + d, 0]
-
Int[Cos[(a_.)*(x_)]^2/(Cos[(a_.)*(x_)]*(c_.) + (d_.)*(x_)*Sin[(a_.)*(x_)])^2, x_Symbol] :> Simp[1/(d^2*x), x]
- Simp[Cos[a*x]/(a*d*x*(d*x*Sin[a*x] + c*Cos[a*x])), x] /; FreeQ[{a, c, d}, x] && EqQ[a*c - d, 0]
-
Int[(((b_.)*(x_))^(m_)*Sin[(a_.)*(x_)]^(n_))/(Cos[(a_.)*(x_)]*(d_.)*(x_) + (c_.)*Sin[(a_.)*(x_)])^2, x_Symbol]
:> Simp[b*(b*x)^(m - 1)*(Sin[a*x]^(n - 1)/(a*d*(c*Sin[a*x] + d*x*Cos[a*x]))), x] - Simp[b^2*((n - 1)/d^2) I
nt[(b*x)^(m - 2)*Sin[a*x]^(n - 2), x], x] /; FreeQ[{a, b, c, d, m, n}, x] && EqQ[a*c + d, 0] && EqQ[m, 2 - n]
-
Int[(Cos[(a_.)*(x_)]^(n_)*((b_.)*(x_))^(m_))/(Cos[(a_.)*(x_)]*(c_.) + (d_.)*(x_)*Sin[(a_.)*(x_)])^2, x_Symbol]
:> Simp[(-b)*(b*x)^(m - 1)*(Cos[a*x]^(n - 1)/(a*d*(c*Cos[a*x] + d*x*Sin[a*x]))), x] - Simp[b^2*((n - 1)/d^2)
Int[(b*x)^(m - 2)*Cos[a*x]^(n - 2), x], x] /; FreeQ[{a, b, c, d, m, n}, x] && EqQ[a*c - d, 0] && EqQ[m, 2 -
n]
-
Int[(Csc[(a_.)*(x_)]^(n_.)*((b_.)*(x_))^(m_.))/(Cos[(a_.)*(x_)]*(d_.)*(x_) + (c_.)*Sin[(a_.)*(x_)])^2, x_Symbo
l] :> Simp[b*(b*x)^(m - 1)*(Csc[a*x]^(n + 1)/(a*d*(c*Sin[a*x] + d*x*Cos[a*x]))), x] + Simp[b^2*((n + 1)/d^2)
Int[(b*x)^(m - 2)*Csc[a*x]^(n + 2), x], x] /; FreeQ[{a, b, c, d, m, n}, x] && EqQ[a*c + d, 0] && EqQ[m, n + 2
]
-
Int[(((b_.)*(x_))^(m_.)*Sec[(a_.)*(x_)]^(n_.))/(Cos[(a_.)*(x_)]*(c_.) + (d_.)*(x_)*Sin[(a_.)*(x_)])^2, x_Symbo
l] :> Simp[(-b)*(b*x)^(m - 1)*(Sec[a*x]^(n + 1)/(a*d*(c*Cos[a*x] + d*x*Sin[a*x]))), x] + Simp[b^2*((n + 1)/d^2
) Int[(b*x)^(m - 2)*Sec[a*x]^(n + 2), x], x] /; FreeQ[{a, b, c, d, m, n}, x] && EqQ[a*c - d, 0] && EqQ[m, n
+ 2]
-
Int[((g_.) + (h_.)*(x_))^(p_.)*((a_) + (b_.)*Sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*Sin[(e_.) + (f_.)*(x
_)])^(n_.), x_Symbol] :> Simp[a^m*c^m Int[(g + h*x)^p*Cos[e + f*x]^(2*m)*(c + d*Sin[e + f*x])^(n - m), x], x
] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[m] && IGtQ[n - m
, 0]
-
Int[(Cos[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.)*(Cos[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_.)*((g_.) + (h_.)*(
x_))^(p_.), x_Symbol] :> Simp[a^m*c^m Int[(g + h*x)^p*Sin[e + f*x]^(2*m)*(c + d*Cos[e + f*x])^(n - m), x], x
] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[m] && IGtQ[n - m
, 0]
-
Int[((g_.) + (h_.)*(x_))^(p_.)*((a_) + (b_.)*Sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*Sin[(e_.) + (f_.)*(x_
)])^(n_), x_Symbol] :> Simp[a^IntPart[m]*c^IntPart[m]*(a + b*Sin[e + f*x])^FracPart[m]*((c + d*Sin[e + f*x])^F
racPart[m]/Cos[e + f*x]^(2*FracPart[m])) Int[(g + h*x)^p*Cos[e + f*x]^(2*m)*(c + d*Sin[e + f*x])^(n - m), x]
, x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[p] && Integer
Q[2*m] && IGeQ[n - m, 0]
-
Int[(Cos[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(Cos[(e_.) + (f_.)*(x_)]*(d_.) + (c_))^(n_)*((g_.) + (h_.)*(x_
))^(p_.), x_Symbol] :> Simp[a^IntPart[m]*c^IntPart[m]*(a + b*Cos[e + f*x])^FracPart[m]*((c + d*Cos[e + f*x])^F
racPart[m]/Sin[e + f*x]^(2*FracPart[m])) Int[(g + h*x)^p*Sin[e + f*x]^(2*m)*(c + d*Cos[e + f*x])^(n - m), x]
, x] /; FreeQ[{a, b, c, d, e, f, g, h}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[p] && Integer
Q[2*m] && IGeQ[n - m, 0]
-
Int[Sec[v_]^(m_.)*((a_) + (b_.)*Tan[v_])^(n_.), x_Symbol] :> Int[(a*Cos[v] + b*Sin[v])^n, x] /; FreeQ[{a, b},
x] && IntegerQ[(m - 1)/2] && EqQ[m + n, 0]
-
Int[Csc[v_]^(m_.)*(Cot[v_]*(b_.) + (a_))^(n_.), x_Symbol] :> Int[(b*Cos[v] + a*Sin[v])^n, x] /; FreeQ[{a, b},
x] && IntegerQ[(m - 1)/2] && EqQ[m + n, 0]
-
Int[(u_.)*Sin[(a_.) + (b_.)*(x_)]^(m_.)*Sin[(c_.) + (d_.)*(x_)]^(n_.), x_Symbol] :> Int[ExpandTrigReduce[u, Si
n[a + b*x]^m*Sin[c + d*x]^n, x], x] /; FreeQ[{a, b, c, d}, x] && IGtQ[m, 0] && IGtQ[n, 0]
-
Int[Cos[(a_.) + (b_.)*(x_)]^(m_.)*Cos[(c_.) + (d_.)*(x_)]^(n_.)*(u_.), x_Symbol] :> Int[ExpandTrigReduce[u, Co
s[a + b*x]^m*Cos[c + d*x]^n, x], x] /; FreeQ[{a, b, c, d}, x] && IGtQ[m, 0] && IGtQ[n, 0]
-
Int[Sec[(a_.) + (b_.)*(x_)]*Sec[(c_) + (d_.)*(x_)], x_Symbol] :> Simp[-Csc[(b*c - a*d)/d] Int[Tan[a + b*x],
x], x] + Simp[Csc[(b*c - a*d)/b] Int[Tan[c + d*x], x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[b^2 - d^2, 0] &&
NeQ[b*c - a*d, 0]
-
Int[Csc[(a_.) + (b_.)*(x_)]*Csc[(c_) + (d_.)*(x_)], x_Symbol] :> Simp[Csc[(b*c - a*d)/b] Int[Cot[a + b*x], x
], x] - Simp[Csc[(b*c - a*d)/d] Int[Cot[c + d*x], x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[b^2 - d^2, 0] && N
eQ[b*c - a*d, 0]
-
Int[Tan[(a_.) + (b_.)*(x_)]*Tan[(c_) + (d_.)*(x_)], x_Symbol] :> Simp[(-b)*(x/d), x] + Simp[(b/d)*Cos[(b*c - a
*d)/d] Int[Sec[a + b*x]*Sec[c + d*x], x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[b^2 - d^2, 0] && NeQ[b*c - a*d
, 0]
-
Int[Cot[(a_.) + (b_.)*(x_)]*Cot[(c_) + (d_.)*(x_)], x_Symbol] :> Simp[(-b)*(x/d), x] + Simp[Cos[(b*c - a*d)/d]
Int[Csc[a + b*x]*Csc[c + d*x], x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[b^2 - d^2, 0] && NeQ[b*c - a*d, 0]
-
Int[(u_.)*(Cos[v_]*(a_.) + (b_.)*Sin[v_])^(n_.), x_Symbol] :> Int[u*(a/E^((a/b)*v))^n, x] /; FreeQ[{a, b, n},
x] && EqQ[a^2 + b^2, 0]
-
Int[Sin[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^2*(d_.)], x_Symbol] :> Simp[I/2 Int[E^((-I)*d*(a + b*Log[c*x^n
])^2), x], x] - Simp[I/2 Int[E^(I*d*(a + b*Log[c*x^n])^2), x], x] /; FreeQ[{a, b, c, d, n}, x]
-
Int[Cos[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^2*(d_.)], x_Symbol] :> Simp[1/2 Int[E^((-I)*d*(a + b*Log[c*x^n
])^2), x], x] + Simp[1/2 Int[E^(I*d*(a + b*Log[c*x^n])^2), x], x] /; FreeQ[{a, b, c, d, n}, x]
-
Int[((e_.)*(x_))^(m_.)*Sin[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^2*(d_.)], x_Symbol] :> Simp[I/2 Int[(e*x)^m
/E^(I*d*(a + b*Log[c*x^n])^2), x], x] - Simp[I/2 Int[(e*x)^m*E^(I*d*(a + b*Log[c*x^n])^2), x], x] /; FreeQ[{
a, b, c, d, e, m, n}, x]
-
Int[Cos[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^2*(d_.)]*((e_.)*(x_))^(m_.), x_Symbol] :> Simp[1/2 Int[(e*x)^m
/E^(I*d*(a + b*Log[c*x^n])^2), x], x] + Simp[1/2 Int[(e*x)^m*E^(I*d*(a + b*Log[c*x^n])^2), x], x] /; FreeQ[{
a, b, c, d, e, m, n}, x]
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.), x_Symbol] :> Simp[x*(a + b*ArcSin[c*x])^n, x] - Simp[b*c*n Int
[x*((a + b*ArcSin[c*x])^(n - 1)/Sqrt[1 - c^2*x^2]), x], x] /; FreeQ[{a, b, c}, x] && GtQ[n, 0]
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.), x_Symbol] :> Simp[x*(a + b*ArcCos[c*x])^n, x] + Simp[b*c*n Int
[x*((a + b*ArcCos[c*x])^(n - 1)/Sqrt[1 - c^2*x^2]), x], x] /; FreeQ[{a, b, c}, x] && GtQ[n, 0]
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[Sqrt[1 - c^2*x^2]*((a + b*ArcSin[c*x])^(n + 1)/
(b*c*(n + 1))), x] + Simp[c/(b*(n + 1)) Int[x*((a + b*ArcSin[c*x])^(n + 1)/Sqrt[1 - c^2*x^2]), x], x] /; Fre
eQ[{a, b, c}, x] && LtQ[n, -1]
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-Sqrt[1 - c^2*x^2])*((a + b*ArcCos[c*x])^(n +
1)/(b*c*(n + 1))), x] - Simp[c/(b*(n + 1)) Int[x*((a + b*ArcCos[c*x])^(n + 1)/Sqrt[1 - c^2*x^2]), x], x] /;
FreeQ[{a, b, c}, x] && LtQ[n, -1]
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[1/(b*c) Subst[Int[x^n*Cos[-a/b + x/b], x], x,
a + b*ArcSin[c*x]], x] /; FreeQ[{a, b, c, n}, x]
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[-(b*c)^(-1) Subst[Int[x^n*Sin[-a/b + x/b], x]
, x, a + b*ArcCos[c*x]], x] /; FreeQ[{a, b, c, n}, x]
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/(x_), x_Symbol] :> Subst[Int[(a + b*x)^n*Cot[x], x], x, ArcSin[c*
x]] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0]
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)/(x_), x_Symbol] :> -Subst[Int[(a + b*x)^n*Tan[x], x], x, ArcCos[c
*x]] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0]
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(d*x)^(m + 1)*((a + b*ArcSi
n[c*x])^n/(d*(m + 1))), x] - Simp[b*c*(n/(d*(m + 1))) Int[(d*x)^(m + 1)*((a + b*ArcSin[c*x])^(n - 1)/Sqrt[1
- c^2*x^2]), x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && NeQ[m, -1]
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(d*x)^(m + 1)*((a + b*ArcCo
s[c*x])^n/(d*(m + 1))), x] + Simp[b*c*(n/(d*(m + 1))) Int[(d*x)^(m + 1)*((a + b*ArcCos[c*x])^(n - 1)/Sqrt[1
- c^2*x^2]), x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && NeQ[m, -1]
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)*((a + b*ArcSin[c*x])^n/(m
+ 1)), x] - Simp[b*c*(n/(m + 1)) Int[x^(m + 1)*((a + b*ArcSin[c*x])^(n - 1)/Sqrt[1 - c^2*x^2]), x], x] /; Fr
eeQ[{a, b, c}, x] && IGtQ[m, 0] && GtQ[n, 0]
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)*((a + b*ArcCos[c*x])^n/(m
+ 1)), x] + Simp[b*c*(n/(m + 1)) Int[x^(m + 1)*((a + b*ArcCos[c*x])^(n - 1)/Sqrt[1 - c^2*x^2]), x], x] /; Fr
eeQ[{a, b, c}, x] && IGtQ[m, 0] && GtQ[n, 0]
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[x^m*Sqrt[1 - c^2*x^2]*((a + b*ArcSin
[c*x])^(n + 1)/(b*c*(n + 1))), x] - Simp[1/(b^2*c^(m + 1)*(n + 1)) Subst[Int[ExpandTrigReduce[x^(n + 1), Sin
[-a/b + x/b]^(m - 1)*(m - (m + 1)*Sin[-a/b + x/b]^2), x], x], x, a + b*ArcSin[c*x]], x] /; FreeQ[{a, b, c}, x]
&& IGtQ[m, 0] && GeQ[n, -2] && LtQ[n, -1]
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[(-x^m)*Sqrt[1 - c^2*x^2]*((a + b*Arc
Cos[c*x])^(n + 1)/(b*c*(n + 1))), x] - Simp[1/(b^2*c^(m + 1)*(n + 1)) Subst[Int[ExpandTrigReduce[x^(n + 1),
Cos[-a/b + x/b]^(m - 1)*(m - (m + 1)*Cos[-a/b + x/b]^2), x], x], x, a + b*ArcCos[c*x]], x] /; FreeQ[{a, b, c},
x] && IGtQ[m, 0] && GeQ[n, -2] && LtQ[n, -1]
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[x^m*Sqrt[1 - c^2*x^2]*((a + b*ArcSin
[c*x])^(n + 1)/(b*c*(n + 1))), x] + (Simp[c*((m + 1)/(b*(n + 1))) Int[x^(m + 1)*((a + b*ArcSin[c*x])^(n + 1)
/Sqrt[1 - c^2*x^2]), x], x] - Simp[m/(b*c*(n + 1)) Int[x^(m - 1)*((a + b*ArcSin[c*x])^(n + 1)/Sqrt[1 - c^2*x
^2]), x], x]) /; FreeQ[{a, b, c}, x] && IGtQ[m, 0] && LtQ[n, -2]
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[(-x^m)*Sqrt[1 - c^2*x^2]*((a + b*Arc
Cos[c*x])^(n + 1)/(b*c*(n + 1))), x] + (-Simp[c*((m + 1)/(b*(n + 1))) Int[x^(m + 1)*((a + b*ArcCos[c*x])^(n
+ 1)/Sqrt[1 - c^2*x^2]), x], x] + Simp[m/(b*c*(n + 1)) Int[x^(m - 1)*((a + b*ArcCos[c*x])^(n + 1)/Sqrt[1 - c
^2*x^2]), x], x]) /; FreeQ[{a, b, c}, x] && IGtQ[m, 0] && LtQ[n, -2]
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[1/(b*c^(m + 1)) Subst[Int[x^n*Sin[
-a/b + x/b]^m*Cos[-a/b + x/b], x], x, a + b*ArcSin[c*x]], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[m, 0]
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[-(b*c^(m + 1))^(-1) Subst[Int[x^n*
Cos[-a/b + x/b]^m*Sin[-a/b + x/b], x], x, a + b*ArcCos[c*x]], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[m, 0]
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Unintegrable[(d*x)^m*(a + b*ArcS
in[c*x])^n, x] /; FreeQ[{a, b, c, d, m, n}, x]
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Unintegrable[(d*x)^m*(a + b*ArcC
os[c*x])^n, x] /; FreeQ[{a, b, c, d, m, n}, x]
-
Int[1/(((a_.) + ArcSin[(c_.)*(x_)]*(b_.))*Sqrt[(d_) + (e_.)*(x_)^2]), x_Symbol] :> Simp[(1/(b*c))*Simp[Sqrt[1
- c^2*x^2]/Sqrt[d + e*x^2]]*Log[a + b*ArcSin[c*x]], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0]
-
Int[1/(((a_.) + ArcCos[(c_.)*(x_)]*(b_.))*Sqrt[(d_) + (e_.)*(x_)^2]), x_Symbol] :> Simp[(-(b*c)^(-1))*Simp[Sqr
t[1 - c^2*x^2]/Sqrt[d + e*x^2]]*(Log[a + b*ArcCos[c*x]]/(b*c*Sqrt[d])), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ
[c^2*d + e, 0]
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(1/(b*c*(n + 1)))*Si
mp[Sqrt[1 - c^2*x^2]/Sqrt[d + e*x^2]]*(a + b*ArcSin[c*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c
^2*d + e, 0] && NeQ[n, -1]
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(-(b*c*(n + 1))^(-1)
)*Simp[Sqrt[1 - c^2*x^2]/Sqrt[d + e*x^2]]*(a + b*ArcCos[c*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, n}, x] && E
qQ[c^2*d + e, 0] && NeQ[n, -1]
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> With[{u = IntHide[(d + e*x^2)
^p, x]}, Simp[(a + b*ArcSin[c*x]) u, x] - Simp[b*c Int[SimplifyIntegrand[u/Sqrt[1 - c^2*x^2], x], x], x]]
/; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[p, 0]
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> With[{u = IntHide[(d + e*x^2)
^p, x]}, Simp[(a + b*ArcCos[c*x]) u, x] + Simp[b*c Int[SimplifyIntegrand[u/Sqrt[1 - c^2*x^2], x], x], x]]
/; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[p, 0]
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[x*Sqrt[d + e*x^2]*((
a + b*ArcSin[c*x])^n/2), x] + (Simp[(1/2)*Simp[Sqrt[d + e*x^2]/Sqrt[1 - c^2*x^2]] Int[(a + b*ArcSin[c*x])^n/
Sqrt[1 - c^2*x^2], x], x] - Simp[b*c*(n/2)*Simp[Sqrt[d + e*x^2]/Sqrt[1 - c^2*x^2]] Int[x*(a + b*ArcSin[c*x])
^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0]
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)*Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[x*Sqrt[d + e*x^2]*((
a + b*ArcCos[c*x])^n/2), x] + (Simp[(1/2)*Simp[Sqrt[d + e*x^2]/Sqrt[1 - c^2*x^2]] Int[(a + b*ArcCos[c*x])^n/
Sqrt[1 - c^2*x^2], x], x] + Simp[b*c*(n/2)*Simp[Sqrt[d + e*x^2]/Sqrt[1 - c^2*x^2]] Int[x*(a + b*ArcCos[c*x])
^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0]
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[x*(d + e*x^2)^p*((
a + b*ArcSin[c*x])^n/(2*p + 1)), x] + (Simp[2*d*(p/(2*p + 1)) Int[(d + e*x^2)^(p - 1)*(a + b*ArcSin[c*x])^n,
x], x] - Simp[b*c*(n/(2*p + 1))*Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p] Int[x*(1 - c^2*x^2)^(p - 1/2)*(a + b*Ar
cSin[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && GtQ[p, 0]
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[x*(d + e*x^2)^p*((
a + b*ArcCos[c*x])^n/(2*p + 1)), x] + (Simp[2*d*(p/(2*p + 1)) Int[(d + e*x^2)^(p - 1)*(a + b*ArcCos[c*x])^n,
x], x] + Simp[b*c*(n/(2*p + 1))*Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p] Int[x*(1 - c^2*x^2)^(p - 1/2)*(a + b*Ar
cCos[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && GtQ[p, 0]
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/((d_) + (e_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[x*((a + b*ArcSin[c
*x])^n/(d*Sqrt[d + e*x^2])), x] - Simp[b*c*(n/d)*Simp[Sqrt[1 - c^2*x^2]/Sqrt[d + e*x^2]] Int[x*((a + b*ArcSi
n[c*x])^(n - 1)/(1 - c^2*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0]
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)/((d_) + (e_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[x*((a + b*ArcCos[c
*x])^n/(d*Sqrt[d + e*x^2])), x] + Simp[b*c*(n/d)*Simp[Sqrt[1 - c^2*x^2]/Sqrt[d + e*x^2]] Int[x*((a + b*ArcCo
s[c*x])^(n - 1)/(1 - c^2*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0]
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-x)*(d + e*x^2)^(p
+ 1)*((a + b*ArcSin[c*x])^n/(2*d*(p + 1))), x] + (Simp[(2*p + 3)/(2*d*(p + 1)) Int[(d + e*x^2)^(p + 1)*(a +
b*ArcSin[c*x])^n, x], x] + Simp[b*c*(n/(2*(p + 1)))*Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p] Int[x*(1 - c^2*x^2)
^(p + 1/2)*(a + b*ArcSin[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0]
&& LtQ[p, -1] && NeQ[p, -3/2]
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-x)*(d + e*x^2)^(p
+ 1)*((a + b*ArcCos[c*x])^n/(2*d*(p + 1))), x] + (Simp[(2*p + 3)/(2*d*(p + 1)) Int[(d + e*x^2)^(p + 1)*(a +
b*ArcCos[c*x])^n, x], x] - Simp[b*c*(n/(2*(p + 1)))*Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p] Int[x*(1 - c^2*x^2)
^(p + 1/2)*(a + b*ArcCos[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0]
&& LtQ[p, -1] && NeQ[p, -3/2]
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[1/(c*d) Subst[Int[(a +
b*x)^n*Sec[x], x], x, ArcSin[c*x]], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[n, 0]
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[-(c*d)^(-1) Subst[Int[
(a + b*x)^n*Csc[x], x], x, ArcCos[c*x]], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[n, 0]
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[Sqrt[1 - c^2*x^2]*(
d + e*x^2)^p*((a + b*ArcSin[c*x])^(n + 1)/(b*c*(n + 1))), x] + Simp[c*((2*p + 1)/(b*(n + 1)))*Simp[(d + e*x^2)
^p/(1 - c^2*x^2)^p] Int[x*(1 - c^2*x^2)^(p - 1/2)*(a + b*ArcSin[c*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d,
e, p}, x] && EqQ[c^2*d + e, 0] && LtQ[n, -1]
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(-Sqrt[1 - c^2*x^2]
)*(d + e*x^2)^p*((a + b*ArcCos[c*x])^(n + 1)/(b*c*(n + 1))), x] - Simp[c*((2*p + 1)/(b*(n + 1)))*Simp[(d + e*x
^2)^p/(1 - c^2*x^2)^p] Int[x*(1 - c^2*x^2)^(p - 1/2)*(a + b*ArcCos[c*x])^(n + 1), x], x] /; FreeQ[{a, b, c,
d, e, p}, x] && EqQ[c^2*d + e, 0] && LtQ[n, -1]
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(1/(b*c))*Simp[(d
+ e*x^2)^p/(1 - c^2*x^2)^p] Subst[Int[x^n*Cos[-a/b + x/b]^(2*p + 1), x], x, a + b*ArcSin[c*x]], x] /; FreeQ[
{a, b, c, d, e, n}, x] && EqQ[c^2*d + e, 0] && IGtQ[2*p, 0]
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(-(b*c)^(-1))*Simp
[(d + e*x^2)^p/(1 - c^2*x^2)^p] Subst[Int[x^n*Sin[-a/b + x/b]^(2*p + 1), x], x, a + b*ArcCos[c*x]], x] /; Fr
eeQ[{a, b, c, d, e, n}, x] && EqQ[c^2*d + e, 0] && IGtQ[2*p, 0]
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> With[{u = IntHide[(d + e*x^2)
^p, x]}, Simp[(a + b*ArcSin[c*x]) u, x] - Simp[b*c Int[SimplifyIntegrand[u/Sqrt[1 - c^2*x^2], x], x], x]]
/; FreeQ[{a, b, c, d, e}, x] && NeQ[c^2*d + e, 0] && (IGtQ[p, 0] || ILtQ[p + 1/2, 0])
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> With[{u = IntHide[(d + e*x^2)
^p, x]}, Simp[(a + b*ArcCos[c*x]) u, x] + Simp[b*c Int[SimplifyIntegrand[u/Sqrt[1 - c^2*x^2], x], x], x]]
/; FreeQ[{a, b, c, d, e}, x] && NeQ[c^2*d + e, 0] && (IGtQ[p, 0] || ILtQ[p + 1/2, 0])
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(a
+ b*ArcSin[c*x])^n, (d + e*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, n}, x] && NeQ[c^2*d + e, 0] && IntegerQ[p]
&& (GtQ[p, 0] || IGtQ[n, 0])
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(a
+ b*ArcCos[c*x])^n, (d + e*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, n}, x] && NeQ[c^2*d + e, 0] && IntegerQ[p]
&& (GtQ[p, 0] || IGtQ[n, 0])
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Unintegrable[(d + e*x^2
)^p*(a + b*ArcSin[c*x])^n, x] /; FreeQ[{a, b, c, d, e, n, p}, x]
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Unintegrable[(d + e*x^2
)^p*(a + b*ArcCos[c*x])^n, x] /; FreeQ[{a, b, c, d, e, n, p}, x]
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_))^(p_)*((f_) + (g_.)*(x_))^(q_), x_Symbol] :> S
imp[((-d^2)*(g/e))^q Int[(d + e*x)^(p - q)*(1 - c^2*x^2)^q*(a + b*ArcSin[c*x])^n, x], x] /; FreeQ[{a, b, c,
d, e, f, g, n}, x] && EqQ[e*f + d*g, 0] && EqQ[c^2*d^2 - e^2, 0] && HalfIntegerQ[p, q] && GeQ[p - q, 0] && GtQ
[d, 0] && LtQ[g/e, 0]
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_))^(p_)*((f_) + (g_.)*(x_))^(q_), x_Symbol] :> S
imp[((-d^2)*(g/e))^q Int[(d + e*x)^(p - q)*(1 - c^2*x^2)^q*(a + b*ArcCos[c*x])^n, x], x] /; FreeQ[{a, b, c,
d, e, f, g, n}, x] && EqQ[e*f + d*g, 0] && EqQ[c^2*d^2 - e^2, 0] && HalfIntegerQ[p, q] && GeQ[p - q, 0] && GtQ
[d, 0] && LtQ[g/e, 0]
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_))^(p_)*((f_) + (g_.)*(x_))^(q_), x_Symbol] :> S
imp[(d + e*x)^q*((f + g*x)^q/(1 - c^2*x^2)^q) Int[(d + e*x)^(p - q)*(1 - c^2*x^2)^q*(a + b*ArcSin[c*x])^n, x
], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && EqQ[e*f + d*g, 0] && EqQ[c^2*d^2 - e^2, 0] && HalfIntegerQ[p, q
] && GeQ[p - q, 0]
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_))^(p_)*((f_) + (g_.)*(x_))^(q_), x_Symbol] :> S
imp[(d + e*x)^q*((f + g*x)^q/(1 - c^2*x^2)^q) Int[(d + e*x)^(p - q)*(1 - c^2*x^2)^q*(a + b*ArcCos[c*x])^n, x
], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && EqQ[e*f + d*g, 0] && EqQ[c^2*d^2 - e^2, 0] && HalfIntegerQ[p, q
] && GeQ[p - q, 0]
-
Int[(((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*(x_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[-e^(-1) Subst[I
nt[(a + b*x)^n*Tan[x], x], x, ArcSin[c*x]], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[n, 0]
-
Int[(((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)*(x_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[1/e Subst[Int[(
a + b*x)^n*Cot[x], x], x, ArcCos[c*x]], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[n, 0]
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x^2)^(
p + 1)*((a + b*ArcSin[c*x])^n/(2*e*(p + 1))), x] + Simp[b*(n/(2*c*(p + 1)))*Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p
] Int[(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSin[c*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2
*d + e, 0] && GtQ[n, 0] && NeQ[p, -1]
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x^2)^(
p + 1)*((a + b*ArcCos[c*x])^n/(2*e*(p + 1))), x] - Simp[b*(n/(2*c*(p + 1)))*Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p
] Int[(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcCos[c*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2
*d + e, 0] && GtQ[n, 0] && NeQ[p, -1]
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/((x_)*((d_) + (e_.)*(x_)^2)), x_Symbol] :> Simp[1/d Subst[Int[(
a + b*x)^n/(Cos[x]*Sin[x]), x], x, ArcSin[c*x]], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[
n, 0]
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)/((x_)*((d_) + (e_.)*(x_)^2)), x_Symbol] :> Simp[-d^(-1) Subst[I
nt[(a + b*x)^n/(Cos[x]*Sin[x]), x], x, ArcCos[c*x]], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && I
GtQ[n, 0]
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(
f*x)^(m + 1)*(d + e*x^2)^(p + 1)*((a + b*ArcSin[c*x])^n/(d*f*(m + 1))), x] - Simp[b*c*(n/(f*(m + 1)))*Simp[(d
+ e*x^2)^p/(1 - c^2*x^2)^p] Int[(f*x)^(m + 1)*(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSin[c*x])^(n - 1), x], x] /;
FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && EqQ[m + 2*p + 3, 0] && NeQ[m, -1]
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(
f*x)^(m + 1)*(d + e*x^2)^(p + 1)*((a + b*ArcCos[c*x])^n/(d*f*(m + 1))), x] + Simp[b*c*(n/(f*(m + 1)))*Simp[(d
+ e*x^2)^p/(1 - c^2*x^2)^p] Int[(f*x)^(m + 1)*(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcCos[c*x])^(n - 1), x], x] /;
FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && EqQ[m + 2*p + 3, 0] && NeQ[m, -1]
-
Int[(((a_.) + ArcSin[(c_.)*(x_)]*(b_.))*((d_) + (e_.)*(x_)^2)^(p_.))/(x_), x_Symbol] :> Simp[(d + e*x^2)^p*((a
+ b*ArcSin[c*x])/(2*p)), x] + (Simp[d Int[(d + e*x^2)^(p - 1)*((a + b*ArcSin[c*x])/x), x], x] - Simp[b*c*(d
^p/(2*p)) Int[(1 - c^2*x^2)^(p - 1/2), x], x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[p,
0]
-
Int[(((a_.) + ArcCos[(c_.)*(x_)]*(b_.))*((d_) + (e_.)*(x_)^2)^(p_.))/(x_), x_Symbol] :> Simp[(d + e*x^2)^p*((a
+ b*ArcCos[c*x])/(2*p)), x] + (Simp[d Int[(d + e*x^2)^(p - 1)*((a + b*ArcCos[c*x])/x), x], x] + Simp[b*c*(d
^p/(2*p)) Int[(1 - c^2*x^2)^(p - 1/2), x], x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[p,
0]
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(f*x)^
(m + 1)*(d + e*x^2)^p*((a + b*ArcSin[c*x])/(f*(m + 1))), x] + (-Simp[b*c*(d^p/(f*(m + 1))) Int[(f*x)^(m + 1)
*(1 - c^2*x^2)^(p - 1/2), x], x] - Simp[2*e*(p/(f^2*(m + 1))) Int[(f*x)^(m + 2)*(d + e*x^2)^(p - 1)*(a + b*A
rcSin[c*x]), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[c^2*d + e, 0] && IGtQ[p, 0] && ILtQ[(m + 1)/2, 0]
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(f*x)^
(m + 1)*(d + e*x^2)^p*((a + b*ArcCos[c*x])/(f*(m + 1))), x] + (Simp[b*c*(d^p/(f*(m + 1))) Int[(f*x)^(m + 1)*
(1 - c^2*x^2)^(p - 1/2), x], x] - Simp[2*e*(p/(f^2*(m + 1))) Int[(f*x)^(m + 2)*(d + e*x^2)^(p - 1)*(a + b*Ar
cCos[c*x]), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[c^2*d + e, 0] && IGtQ[p, 0] && ILtQ[(m + 1)/2, 0]
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> With[{u = I
ntHide[(f*x)^m*(d + e*x^2)^p, x]}, Simp[(a + b*ArcSin[c*x]) u, x] - Simp[b*c Int[SimplifyIntegrand[u/Sqrt[
1 - c^2*x^2], x], x], x]] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && IGtQ[p, 0]
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> With[{u = I
ntHide[(f*x)^m*(d + e*x^2)^p, x]}, Simp[(a + b*ArcCos[c*x]) u, x] + Simp[b*c Int[SimplifyIntegrand[u/Sqrt[
1 - c^2*x^2], x], x], x]] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && IGtQ[p, 0]
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))*(x_)^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> With[{u = IntHide[x^
m*(d + e*x^2)^p, x]}, Simp[(a + b*ArcSin[c*x]) u, x] - Simp[b*c*Simp[Sqrt[d + e*x^2]/Sqrt[1 - c^2*x^2]] In
t[SimplifyIntegrand[u/Sqrt[d + e*x^2], x], x], x]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && Intege
rQ[p - 1/2] && NeQ[p, -2^(-1)] && (IGtQ[(m + 1)/2, 0] || ILtQ[(m + 2*p + 3)/2, 0])
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))*(x_)^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> With[{u = IntHide[x^
m*(d + e*x^2)^p, x]}, Simp[(a + b*ArcCos[c*x]) u, x] + Simp[b*c*Simp[Sqrt[d + e*x^2]/Sqrt[1 - c^2*x^2]] In
t[SimplifyIntegrand[u/Sqrt[d + e*x^2], x], x], x]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && Intege
rQ[p - 1/2] && NeQ[p, -2^(-1)] && (IGtQ[(m + 1)/2, 0] || ILtQ[(m + 2*p + 3)/2, 0])
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(f
*x)^(m + 1)*Sqrt[d + e*x^2]*((a + b*ArcSin[c*x])^n/(f*(m + 1))), x] + (-Simp[b*c*(n/(f*(m + 1)))*Simp[Sqrt[d +
e*x^2]/Sqrt[1 - c^2*x^2]] Int[(f*x)^(m + 1)*(a + b*ArcSin[c*x])^(n - 1), x], x] + Simp[(c^2/(f^2*(m + 1)))*
Simp[Sqrt[d + e*x^2]/Sqrt[1 - c^2*x^2]] Int[(f*x)^(m + 2)*((a + b*ArcSin[c*x])^n/Sqrt[1 - c^2*x^2]), x], x])
/; FreeQ[{a, b, c, d, e, f}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && LtQ[m, -1]
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(f
*x)^(m + 1)*Sqrt[d + e*x^2]*((a + b*ArcCos[c*x])^n/(f*(m + 1))), x] + (Simp[b*c*(n/(f*(m + 1)))*Simp[Sqrt[d +
e*x^2]/Sqrt[1 - c^2*x^2]] Int[(f*x)^(m + 1)*(a + b*ArcCos[c*x])^(n - 1), x], x] + Simp[(c^2/(f^2*(m + 1)))*S
imp[Sqrt[d + e*x^2]/Sqrt[1 - c^2*x^2]] Int[(f*x)^(m + 2)*((a + b*ArcCos[c*x])^n/Sqrt[1 - c^2*x^2]), x], x])
/; FreeQ[{a, b, c, d, e, f}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && LtQ[m, -1]
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(f
*x)^(m + 1)*Sqrt[d + e*x^2]*((a + b*ArcSin[c*x])^n/(f*(m + 2))), x] + (Simp[(1/(m + 2))*Simp[Sqrt[d + e*x^2]/S
qrt[1 - c^2*x^2]] Int[(f*x)^m*((a + b*ArcSin[c*x])^n/Sqrt[1 - c^2*x^2]), x], x] - Simp[b*c*(n/(f*(m + 2)))*S
imp[Sqrt[d + e*x^2]/Sqrt[1 - c^2*x^2]] Int[(f*x)^(m + 1)*(a + b*ArcSin[c*x])^(n - 1), x], x]) /; FreeQ[{a, b
, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && (IGtQ[m, -2] || EqQ[n, 1])
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(f
*x)^(m + 1)*Sqrt[d + e*x^2]*((a + b*ArcCos[c*x])^n/(f*(m + 2))), x] + (Simp[(1/(m + 2))*Simp[Sqrt[d + e*x^2]/S
qrt[1 - c^2*x^2]] Int[(f*x)^m*((a + b*ArcCos[c*x])^n/Sqrt[1 - c^2*x^2]), x], x] + Simp[b*c*(n/(f*(m + 2)))*S
imp[Sqrt[d + e*x^2]/Sqrt[1 - c^2*x^2]] Int[(f*x)^(m + 1)*(a + b*ArcCos[c*x])^(n - 1), x], x]) /; FreeQ[{a, b
, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && (IGtQ[m, -2] || EqQ[n, 1])
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[
(f*x)^(m + 1)*(d + e*x^2)^p*((a + b*ArcSin[c*x])^n/(f*(m + 1))), x] + (-Simp[2*e*(p/(f^2*(m + 1))) Int[(f*x)
^(m + 2)*(d + e*x^2)^(p - 1)*(a + b*ArcSin[c*x])^n, x], x] - Simp[b*c*(n/(f*(m + 1)))*Simp[(d + e*x^2)^p/(1 -
c^2*x^2)^p] Int[(f*x)^(m + 1)*(1 - c^2*x^2)^(p - 1/2)*(a + b*ArcSin[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c
, d, e, f}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && GtQ[p, 0] && LtQ[m, -1]
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[
(f*x)^(m + 1)*(d + e*x^2)^p*((a + b*ArcCos[c*x])^n/(f*(m + 1))), x] + (-Simp[2*e*(p/(f^2*(m + 1))) Int[(f*x)
^(m + 2)*(d + e*x^2)^(p - 1)*(a + b*ArcCos[c*x])^n, x], x] + Simp[b*c*(n/(f*(m + 1)))*Simp[(d + e*x^2)^p/(1 -
c^2*x^2)^p] Int[(f*x)^(m + 1)*(1 - c^2*x^2)^(p - 1/2)*(a + b*ArcCos[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c
, d, e, f}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && GtQ[p, 0] && LtQ[m, -1]
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[
(f*x)^(m + 1)*(d + e*x^2)^p*((a + b*ArcSin[c*x])^n/(f*(m + 2*p + 1))), x] + (Simp[2*d*(p/(m + 2*p + 1)) Int[
(f*x)^m*(d + e*x^2)^(p - 1)*(a + b*ArcSin[c*x])^n, x], x] - Simp[b*c*(n/(f*(m + 2*p + 1)))*Simp[(d + e*x^2)^p/
(1 - c^2*x^2)^p] Int[(f*x)^(m + 1)*(1 - c^2*x^2)^(p - 1/2)*(a + b*ArcSin[c*x])^(n - 1), x], x]) /; FreeQ[{a,
b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && GtQ[p, 0] && !LtQ[m, -1]
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[
(f*x)^(m + 1)*(d + e*x^2)^p*((a + b*ArcCos[c*x])^n/(f*(m + 2*p + 1))), x] + (Simp[2*d*(p/(m + 2*p + 1)) Int[
(f*x)^m*(d + e*x^2)^(p - 1)*(a + b*ArcCos[c*x])^n, x], x] + Simp[b*c*(n/(f*(m + 2*p + 1)))*Simp[(d + e*x^2)^p/
(1 - c^2*x^2)^p] Int[(f*x)^(m + 1)*(1 - c^2*x^2)^(p - 1/2)*(a + b*ArcCos[c*x])^(n - 1), x], x]) /; FreeQ[{a,
b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && GtQ[p, 0] && !LtQ[m, -1]
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(
f*x)^(m + 1)*(d + e*x^2)^(p + 1)*((a + b*ArcSin[c*x])^n/(d*f*(m + 1))), x] + (Simp[c^2*((m + 2*p + 3)/(f^2*(m
+ 1))) Int[(f*x)^(m + 2)*(d + e*x^2)^p*(a + b*ArcSin[c*x])^n, x], x] - Simp[b*c*(n/(f*(m + 1)))*Simp[(d + e*
x^2)^p/(1 - c^2*x^2)^p] Int[(f*x)^(m + 1)*(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSin[c*x])^(n - 1), x], x]) /; Fr
eeQ[{a, b, c, d, e, f, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && ILtQ[m, -1]
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(
f*x)^(m + 1)*(d + e*x^2)^(p + 1)*((a + b*ArcCos[c*x])^n/(d*f*(m + 1))), x] + (Simp[c^2*((m + 2*p + 3)/(f^2*(m
+ 1))) Int[(f*x)^(m + 2)*(d + e*x^2)^p*(a + b*ArcCos[c*x])^n, x], x] + Simp[b*c*(n/(f*(m + 1)))*Simp[(d + e*
x^2)^p/(1 - c^2*x^2)^p] Int[(f*x)^(m + 1)*(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcCos[c*x])^(n - 1), x], x]) /; Fr
eeQ[{a, b, c, d, e, f, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && ILtQ[m, -1]
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[f
*(f*x)^(m - 1)*(d + e*x^2)^(p + 1)*((a + b*ArcSin[c*x])^n/(2*e*(p + 1))), x] + (-Simp[f^2*((m - 1)/(2*e*(p + 1
))) Int[(f*x)^(m - 2)*(d + e*x^2)^(p + 1)*(a + b*ArcSin[c*x])^n, x], x] + Simp[b*f*(n/(2*c*(p + 1)))*Simp[(d
+ e*x^2)^p/(1 - c^2*x^2)^p] Int[(f*x)^(m - 1)*(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSin[c*x])^(n - 1), x], x])
/; FreeQ[{a, b, c, d, e, f}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && LtQ[p, -1] && IGtQ[m, 1]
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[f
*(f*x)^(m - 1)*(d + e*x^2)^(p + 1)*((a + b*ArcCos[c*x])^n/(2*e*(p + 1))), x] + (-Simp[f^2*((m - 1)/(2*e*(p + 1
))) Int[(f*x)^(m - 2)*(d + e*x^2)^(p + 1)*(a + b*ArcCos[c*x])^n, x], x] - Simp[b*f*(n/(2*c*(p + 1)))*Simp[(d
+ e*x^2)^p/(1 - c^2*x^2)^p] Int[(f*x)^(m - 1)*(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcCos[c*x])^(n - 1), x], x])
/; FreeQ[{a, b, c, d, e, f}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && LtQ[p, -1] && IGtQ[m, 1]
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(
-(f*x)^(m + 1))*(d + e*x^2)^(p + 1)*((a + b*ArcSin[c*x])^n/(2*d*f*(p + 1))), x] + (Simp[(m + 2*p + 3)/(2*d*(p
+ 1)) Int[(f*x)^m*(d + e*x^2)^(p + 1)*(a + b*ArcSin[c*x])^n, x], x] + Simp[b*c*(n/(2*f*(p + 1)))*Simp[(d + e
*x^2)^p/(1 - c^2*x^2)^p] Int[(f*x)^(m + 1)*(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSin[c*x])^(n - 1), x], x]) /; F
reeQ[{a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && LtQ[p, -1] && !GtQ[m, 1] && (IntegerQ[m]
|| IntegerQ[p] || EqQ[n, 1])
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(
-(f*x)^(m + 1))*(d + e*x^2)^(p + 1)*((a + b*ArcCos[c*x])^n/(2*d*f*(p + 1))), x] + (Simp[(m + 2*p + 3)/(2*d*(p
+ 1)) Int[(f*x)^m*(d + e*x^2)^(p + 1)*(a + b*ArcCos[c*x])^n, x], x] - Simp[b*c*(n/(2*f*(p + 1)))*Simp[(d + e
*x^2)^p/(1 - c^2*x^2)^p] Int[(f*x)^(m + 1)*(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcCos[c*x])^(n - 1), x], x]) /; F
reeQ[{a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && LtQ[p, -1] && !GtQ[m, 1] && (IntegerQ[m]
|| IntegerQ[p] || EqQ[n, 1])
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[f
*(f*x)^(m - 1)*(d + e*x^2)^(p + 1)*((a + b*ArcSin[c*x])^n/(e*(m + 2*p + 1))), x] + (Simp[f^2*((m - 1)/(c^2*(m
+ 2*p + 1))) Int[(f*x)^(m - 2)*(d + e*x^2)^p*(a + b*ArcSin[c*x])^n, x], x] + Simp[b*f*(n/(c*(m + 2*p + 1)))*
Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p] Int[(f*x)^(m - 1)*(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSin[c*x])^(n - 1), x
], x]) /; FreeQ[{a, b, c, d, e, f, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && IGtQ[m, 1] && NeQ[m + 2*p + 1,
0]
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[f
*(f*x)^(m - 1)*(d + e*x^2)^(p + 1)*((a + b*ArcCos[c*x])^n/(e*(m + 2*p + 1))), x] + (Simp[f^2*((m - 1)/(c^2*(m
+ 2*p + 1))) Int[(f*x)^(m - 2)*(d + e*x^2)^p*(a + b*ArcCos[c*x])^n, x], x] - Simp[b*f*(n/(c*(m + 2*p + 1)))*
Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p] Int[(f*x)^(m - 1)*(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcCos[c*x])^(n - 1), x
], x]) /; FreeQ[{a, b, c, d, e, f, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && IGtQ[m, 1] && NeQ[m + 2*p + 1,
0]
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[
(f*x)^m*Sqrt[1 - c^2*x^2]*(d + e*x^2)^p*((a + b*ArcSin[c*x])^(n + 1)/(b*c*(n + 1))), x] - Simp[f*(m/(b*c*(n +
1)))*Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p] Int[(f*x)^(m - 1)*(1 - c^2*x^2)^(p - 1/2)*(a + b*ArcSin[c*x])^(n +
1), x], x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[c^2*d + e, 0] && LtQ[n, -1] && EqQ[m + 2*p + 1, 0]
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[
(-(f*x)^m)*Sqrt[1 - c^2*x^2]*(d + e*x^2)^p*((a + b*ArcCos[c*x])^(n + 1)/(b*c*(n + 1))), x] + Simp[f*(m/(b*c*(n
+ 1)))*Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p] Int[(f*x)^(m - 1)*(1 - c^2*x^2)^(p - 1/2)*(a + b*ArcCos[c*x])^(n
+ 1), x], x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[c^2*d + e, 0] && LtQ[n, -1] && EqQ[m + 2*p + 1, 0]
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[
(f*x)^m*Sqrt[1 - c^2*x^2]*(d + e*x^2)^p*((a + b*ArcSin[c*x])^(n + 1)/(b*c*(n + 1))), x] + (-Simp[f*(m/(b*c*(n
+ 1)))*Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p] Int[(f*x)^(m - 1)*(1 - c^2*x^2)^(p - 1/2)*(a + b*ArcSin[c*x])^(n
+ 1), x], x] + Simp[c*((m + 2*p + 1)/(b*f*(n + 1)))*Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p] Int[(f*x)^(m + 1)*(1
- c^2*x^2)^(p - 1/2)*(a + b*ArcSin[c*x])^(n + 1), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[c^2*d + e, 0
] && LtQ[n, -1] && IGtQ[2*p, 0] && NeQ[m + 2*p + 1, 0] && IGtQ[m, -3]
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[
(-(f*x)^m)*Sqrt[1 - c^2*x^2]*(d + e*x^2)^p*((a + b*ArcCos[c*x])^(n + 1)/(b*c*(n + 1))), x] + (Simp[f*(m/(b*c*(
n + 1)))*Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p] Int[(f*x)^(m - 1)*(1 - c^2*x^2)^(p - 1/2)*(a + b*ArcCos[c*x])^(
n + 1), x], x] - Simp[c*((m + 2*p + 1)/(b*f*(n + 1)))*Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p] Int[(f*x)^(m + 1)*
(1 - c^2*x^2)^(p - 1/2)*(a + b*ArcCos[c*x])^(n + 1), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[c^2*d + e,
0] && LtQ[n, -1] && IGtQ[2*p, 0] && NeQ[m + 2*p + 1, 0] && IGtQ[m, -3]
-
Int[(((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[
f*(f*x)^(m - 1)*Sqrt[d + e*x^2]*((a + b*ArcSin[c*x])^n/(e*m)), x] + (Simp[f^2*((m - 1)/(c^2*m)) Int[((f*x)^(
m - 2)*(a + b*ArcSin[c*x])^n)/Sqrt[d + e*x^2], x], x] + Simp[b*f*(n/(c*m))*Simp[Sqrt[1 - c^2*x^2]/Sqrt[d + e*x
^2]] Int[(f*x)^(m - 1)*(a + b*ArcSin[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[c^2*d + e
, 0] && GtQ[n, 0] && IGtQ[m, 1]
-
Int[(((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[
f*(f*x)^(m - 1)*Sqrt[d + e*x^2]*((a + b*ArcCos[c*x])^n/(e*m)), x] + (Simp[f^2*((m - 1)/(c^2*m)) Int[((f*x)^(
m - 2)*(a + b*ArcCos[c*x])^n)/Sqrt[d + e*x^2], x], x] - Simp[b*f*(n/(c*m))*Simp[Sqrt[1 - c^2*x^2]/Sqrt[d + e*x
^2]] Int[(f*x)^(m - 1)*(a + b*ArcCos[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[c^2*d + e
, 0] && GtQ[n, 0] && IGtQ[m, 1]
-
Int[(((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(1/c^(m
+ 1))*Simp[Sqrt[1 - c^2*x^2]/Sqrt[d + e*x^2]] Subst[Int[(a + b*x)^n*Sin[x]^m, x], x, ArcSin[c*x]], x] /; Fre
eQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[n, 0] && IntegerQ[m]
-
Int[(((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(-(c^(m
+ 1))^(-1))*Simp[Sqrt[1 - c^2*x^2]/Sqrt[d + e*x^2]] Subst[Int[(a + b*x)^n*Cos[x]^m, x], x, ArcCos[c*x]], x]
/; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[n, 0] && IntegerQ[m]
-
Int[(((a_.) + ArcSin[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[((f*x)
^(m + 1)/(f*(m + 1)))*Simp[Sqrt[1 - c^2*x^2]/Sqrt[d + e*x^2]]*(a + b*ArcSin[c*x])*Hypergeometric2F1[1/2, (1 +
m)/2, (3 + m)/2, c^2*x^2], x] - Simp[b*c*((f*x)^(m + 2)/(f^2*(m + 1)*(m + 2)))*Simp[Sqrt[1 - c^2*x^2]/Sqrt[d +
e*x^2]]*HypergeometricPFQ[{1, 1 + m/2, 1 + m/2}, {3/2 + m/2, 2 + m/2}, c^2*x^2], x] /; FreeQ[{a, b, c, d, e,
f, m}, x] && EqQ[c^2*d + e, 0] && !IntegerQ[m]
-
Int[(((a_.) + ArcCos[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[((f*x)
^(m + 1)/(f*(m + 1)))*(a + b*ArcCos[c*x])*Simp[Sqrt[1 - c^2*x^2]/Sqrt[d + e*x^2]]*Hypergeometric2F1[1/2, (1 +
m)/2, (3 + m)/2, c^2*x^2], x] + Simp[b*c*((f*x)^(m + 2)/(f^2*(m + 1)*(m + 2)))*Simp[Sqrt[1 - c^2*x^2]/Sqrt[d +
e*x^2]]*HypergeometricPFQ[{1, 1 + m/2, 1 + m/2}, {3/2 + m/2, 2 + m/2}, c^2*x^2], x] /; FreeQ[{a, b, c, d, e,
f, m}, x] && EqQ[c^2*d + e, 0] && !IntegerQ[m]
-
Int[(((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*((f_.)*(x_))^(m_.))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[
((f*x)^m/(b*c*(n + 1)))*Simp[Sqrt[1 - c^2*x^2]/Sqrt[d + e*x^2]]*(a + b*ArcSin[c*x])^(n + 1), x] - Simp[f*(m/(b
*c*(n + 1)))*Simp[Sqrt[1 - c^2*x^2]/Sqrt[d + e*x^2]] Int[(f*x)^(m - 1)*(a + b*ArcSin[c*x])^(n + 1), x], x] /
; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && LtQ[n, -1]
-
Int[(((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_)*((f_.)*(x_))^(m_.))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[
(-(f*x)^m/(b*c*(n + 1)))*Simp[Sqrt[1 - c^2*x^2]/Sqrt[d + e*x^2]]*(a + b*ArcCos[c*x])^(n + 1), x] + Simp[f*(m/(
b*c*(n + 1)))*Simp[Sqrt[1 - c^2*x^2]/Sqrt[d + e*x^2]] Int[(f*x)^(m - 1)*(a + b*ArcCos[c*x])^(n + 1), x], x]
/; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && LtQ[n, -1]
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(1/(b*c
^(m + 1)))*Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p] Subst[Int[x^n*Sin[-a/b + x/b]^m*Cos[-a/b + x/b]^(2*p + 1), x]
, x, a + b*ArcSin[c*x]], x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c^2*d + e, 0] && IGtQ[2*p + 2, 0] && IGtQ[m
, 0]
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(-(b*c^
(m + 1))^(-1))*Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p] Subst[Int[x^n*Cos[-a/b + x/b]^m*Sin[-a/b + x/b]^(2*p + 1)
, x], x, a + b*ArcCos[c*x]], x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c^2*d + e, 0] && IGtQ[2*p + 2, 0] && IG
tQ[m, 0]
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Int[Ex
pandIntegrand[(a + b*ArcSin[c*x])^n/Sqrt[d + e*x^2], (f*x)^m*(d + e*x^2)^(p + 1/2), x], x] /; FreeQ[{a, b, c,
d, e, f, m, n}, x] && EqQ[c^2*d + e, 0] && IGtQ[p + 1/2, 0] && !IGtQ[(m + 1)/2, 0] && (EqQ[m, -1] || EqQ[m, -
2])
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Int[Ex
pandIntegrand[(a + b*ArcCos[c*x])^n/Sqrt[d + e*x^2], (f*x)^m*(d + e*x^2)^(p + 1/2), x], x] /; FreeQ[{a, b, c,
d, e, f, m, n}, x] && EqQ[c^2*d + e, 0] && IGtQ[p + 1/2, 0] && !IGtQ[(m + 1)/2, 0] && (EqQ[m, -1] || EqQ[m, -
2])
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))*(x_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x^2)^(p + 1)
*((a + b*ArcSin[c*x])/(2*e*(p + 1))), x] - Simp[b*(c/(2*e*(p + 1))) Int[(d + e*x^2)^(p + 1)/Sqrt[1 - c^2*x^2
], x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[c^2*d + e, 0] && NeQ[p, -1]
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))*(x_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x^2)^(p + 1)
*((a + b*ArcCos[c*x])/(2*e*(p + 1))), x] + Simp[b*(c/(2*e*(p + 1))) Int[(d + e*x^2)^(p + 1)/Sqrt[1 - c^2*x^2
], x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[c^2*d + e, 0] && NeQ[p, -1]
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> With[{u =
IntHide[(f*x)^m*(d + e*x^2)^p, x]}, Simp[(a + b*ArcSin[c*x]) u, x] - Simp[b*c Int[SimplifyIntegrand[u/Sqrt
[1 - c^2*x^2], x], x], x]] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[c^2*d + e, 0] && IntegerQ[p] && (GtQ[p, 0
] || (IGtQ[(m - 1)/2, 0] && LeQ[m + p, 0]))
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> With[{u =
IntHide[(f*x)^m*(d + e*x^2)^p, x]}, Simp[(a + b*ArcCos[c*x]) u, x] + Simp[b*c Int[SimplifyIntegrand[u/Sqrt
[1 - c^2*x^2], x], x], x]] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[c^2*d + e, 0] && IntegerQ[p] && (GtQ[p, 0
] || (IGtQ[(m - 1)/2, 0] && LeQ[m + p, 0]))
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Int[
ExpandIntegrand[(a + b*ArcSin[c*x])^n, (f*x)^m*(d + e*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[c^
2*d + e, 0] && IGtQ[n, 0] && IntegerQ[p] && IntegerQ[m]
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Int[
ExpandIntegrand[(a + b*ArcCos[c*x])^n, (f*x)^m*(d + e*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[c^
2*d + e, 0] && IGtQ[n, 0] && IntegerQ[p] && IntegerQ[m]
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Unin
tegrable[(f*x)^m*(d + e*x^2)^p*(a + b*ArcSin[c*x])^n, x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x]
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Unin
tegrable[(f*x)^m*(d + e*x^2)^p*(a + b*ArcCos[c*x])^n, x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x]
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((h_.)*(x_))^(m_.)*((d_) + (e_.)*(x_))^(p_)*((f_) + (g_.)*(x_))^(
q_), x_Symbol] :> Simp[((-d^2)*(g/e))^q Int[(h*x)^m*(d + e*x)^(p - q)*(1 - c^2*x^2)^q*(a + b*ArcSin[c*x])^n,
x], x] /; FreeQ[{a, b, c, d, e, f, g, h, m, n}, x] && EqQ[e*f + d*g, 0] && EqQ[c^2*d^2 - e^2, 0] && HalfInteg
erQ[p, q] && GeQ[p - q, 0] && GtQ[d, 0] && LtQ[g/e, 0]
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)*((h_.)*(x_))^(m_.)*((d_) + (e_.)*(x_))^(p_)*((f_) + (g_.)*(x_))^(
q_), x_Symbol] :> Simp[((-d^2)*(g/e))^q Int[(h*x)^m*(d + e*x)^(p - q)*(1 - c^2*x^2)^q*(a + b*ArcCos[c*x])^n,
x], x] /; FreeQ[{a, b, c, d, e, f, g, h, m, n}, x] && EqQ[e*f + d*g, 0] && EqQ[c^2*d^2 - e^2, 0] && HalfInteg
erQ[p, q] && GeQ[p - q, 0] && GtQ[d, 0] && LtQ[g/e, 0]
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((h_.)*(x_))^(m_.)*((d_) + (e_.)*(x_))^(p_)*((f_) + (g_.)*(x_))^(
q_), x_Symbol] :> Simp[((-d^2)*(g/e))^IntPart[q]*(d + e*x)^FracPart[q]*((f + g*x)^FracPart[q]/(1 - c^2*x^2)^Fr
acPart[q]) Int[(h*x)^m*(d + e*x)^(p - q)*(1 - c^2*x^2)^q*(a + b*ArcSin[c*x])^n, x], x] /; FreeQ[{a, b, c, d,
e, f, g, h, m, n}, x] && EqQ[e*f + d*g, 0] && EqQ[c^2*d^2 - e^2, 0] && HalfIntegerQ[p, q] && GeQ[p - q, 0]
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)*((h_.)*(x_))^(m_.)*((d_) + (e_.)*(x_))^(p_)*((f_) + (g_.)*(x_))^(
q_), x_Symbol] :> Simp[((-d^2)*(g/e))^IntPart[q]*(d + e*x)^FracPart[q]*((f + g*x)^FracPart[q]/(1 - c^2*x^2)^Fr
acPart[q]) Int[(h*x)^m*(d + e*x)^(p - q)*(1 - c^2*x^2)^q*(a + b*ArcCos[c*x])^n, x], x] /; FreeQ[{a, b, c, d,
e, f, g, h, m, n}, x] && EqQ[e*f + d*g, 0] && EqQ[c^2*d^2 - e^2, 0] && HalfIntegerQ[p, q] && GeQ[p - q, 0]
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/((d_) + (e_.)*(x_)), x_Symbol] :> Subst[Int[(a + b*x)^n*(Cos[x]/(
c*d + e*Sin[x])), x], x, ArcSin[c*x]] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[n, 0]
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)/((d_) + (e_.)*(x_)), x_Symbol] :> -Subst[Int[(a + b*x)^n*(Sin[x]/
(c*d + e*Cos[x])), x], x, ArcCos[c*x]] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[n, 0]
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_))^(m_.), x_Symbol] :> Simp[(d + e*x)^(m + 1)*((
a + b*ArcSin[c*x])^n/(e*(m + 1))), x] - Simp[b*c*(n/(e*(m + 1))) Int[(d + e*x)^(m + 1)*((a + b*ArcSin[c*x])^
(n - 1)/Sqrt[1 - c^2*x^2]), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && IGtQ[n, 0] && NeQ[m, -1]
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_))^(m_.), x_Symbol] :> Simp[(d + e*x)^(m + 1)*((
a + b*ArcCos[c*x])^n/(e*(m + 1))), x] + Simp[b*c*(n/(e*(m + 1))) Int[(d + e*x)^(m + 1)*((a + b*ArcCos[c*x])^
(n - 1)/Sqrt[1 - c^2*x^2]), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && IGtQ[n, 0] && NeQ[m, -1]
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*((d_) + (e_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(d + e
*x)^m*(a + b*ArcSin[c*x])^n, x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[m, 0] && LtQ[n, -1]
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_)*((d_) + (e_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(d + e
*x)^m*(a + b*ArcCos[c*x])^n, x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[m, 0] && LtQ[n, -1]
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*((d_.) + (e_.)*(x_))^(m_.), x_Symbol] :> Simp[1/c^(m + 1) Subst[
Int[(a + b*x)^n*Cos[x]*(c*d + e*Sin[x])^m, x], x, ArcSin[c*x]], x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[m,
0]
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_)*((d_.) + (e_.)*(x_))^(m_.), x_Symbol] :> Simp[-(c^(m + 1))^(-1)
Subst[Int[(a + b*x)^n*Sin[x]*(c*d + e*Cos[x])^m, x], x, ArcCos[c*x]], x] /; FreeQ[{a, b, c, d, e, n}, x] && IG
tQ[m, 0]
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))*(Px_), x_Symbol] :> With[{u = IntHide[ExpandExpression[Px, x], x]}, Sim
p[(a + b*ArcSin[c*x]) u, x] - Simp[b*c Int[SimplifyIntegrand[u/Sqrt[1 - c^2*x^2], x], x], x]] /; FreeQ[{a,
b, c}, x] && PolynomialQ[Px, x]
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))*(Px_), x_Symbol] :> With[{u = IntHide[ExpandExpression[Px, x], x]}, Sim
p[(a + b*ArcCos[c*x]) u, x] + Simp[b*c Int[SimplifyIntegrand[u/Sqrt[1 - c^2*x^2], x], x], x]] /; FreeQ[{a,
b, c}, x] && PolynomialQ[Px, x]
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*(Px_), x_Symbol] :> Int[ExpandIntegrand[Px*(a + b*ArcSin[c*x])^n,
x], x] /; FreeQ[{a, b, c, n}, x] && PolynomialQ[Px, x]
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_)*(Px_), x_Symbol] :> Int[ExpandIntegrand[Px*(a + b*ArcCos[c*x])^n,
x], x] /; FreeQ[{a, b, c, n}, x] && PolynomialQ[Px, x]
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))*(Px_)*((d_.) + (e_.)*(x_))^(m_.), x_Symbol] :> With[{u = IntHide[Px*(d
+ e*x)^m, x]}, Simp[(a + b*ArcSin[c*x]) u, x] - Simp[b*c Int[SimplifyIntegrand[u/Sqrt[1 - c^2*x^2], x], x]
, x]] /; FreeQ[{a, b, c, d, e, m}, x] && PolynomialQ[Px, x]
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))*(Px_)*((d_.) + (e_.)*(x_))^(m_.), x_Symbol] :> With[{u = IntHide[Px*(d
+ e*x)^m, x]}, Simp[(a + b*ArcCos[c*x]) u, x] + Simp[b*c Int[SimplifyIntegrand[u/Sqrt[1 - c^2*x^2], x], x]
, x]] /; FreeQ[{a, b, c, d, e, m}, x] && PolynomialQ[Px, x]
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(p_.), x_Symbol] :>
With[{u = IntHide[(f + g*x)^p*(d + e*x)^m, x]}, Simp[(a + b*ArcSin[c*x])^n u, x] - Simp[b*c*n Int[Simplify
Integrand[u*((a + b*ArcSin[c*x])^(n - 1)/Sqrt[1 - c^2*x^2]), x], x], x]] /; FreeQ[{a, b, c, d, e, f, g}, x] &&
IGtQ[n, 0] && IGtQ[p, 0] && ILtQ[m, 0] && LtQ[m + p + 1, 0]
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_)*((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(p_.), x_Symbol] :>
With[{u = IntHide[(f + g*x)^p*(d + e*x)^m, x]}, Simp[(a + b*ArcCos[c*x])^n u, x] + Simp[b*c*n Int[Simplify
Integrand[u*((a + b*ArcCos[c*x])^(n - 1)/Sqrt[1 - c^2*x^2]), x], x], x]] /; FreeQ[{a, b, c, d, e, f, g}, x] &&
IGtQ[n, 0] && IGtQ[p, 0] && ILtQ[m, 0] && LtQ[m + p + 1, 0]
-
Int[(((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*((f_.) + (g_.)*(x_) + (h_.)*(x_)^2)^(p_.))/((d_) + (e_.)*(x_))^2,
x_Symbol] :> With[{u = IntHide[(f + g*x + h*x^2)^p/(d + e*x)^2, x]}, Simp[(a + b*ArcSin[c*x])^n u, x] - Sim
p[b*c*n Int[SimplifyIntegrand[u*((a + b*ArcSin[c*x])^(n - 1)/Sqrt[1 - c^2*x^2]), x], x], x]] /; FreeQ[{a, b,
c, d, e, f, g, h}, x] && IGtQ[n, 0] && IGtQ[p, 0] && EqQ[e*g - 2*d*h, 0]
-
Int[(((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_)*((f_.) + (g_.)*(x_) + (h_.)*(x_)^2)^(p_.))/((d_) + (e_.)*(x_))^2,
x_Symbol] :> With[{u = IntHide[(f + g*x + h*x^2)^p/(d + e*x)^2, x]}, Simp[(a + b*ArcCos[c*x])^n u, x] + Sim
p[b*c*n Int[SimplifyIntegrand[u*((a + b*ArcCos[c*x])^(n - 1)/Sqrt[1 - c^2*x^2]), x], x], x]] /; FreeQ[{a, b,
c, d, e, f, g, h}, x] && IGtQ[n, 0] && IGtQ[p, 0] && EqQ[e*g - 2*d*h, 0]
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*(Px_)*((d_) + (e_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[
Px*(d + e*x)^m*(a + b*ArcSin[c*x])^n, x], x] /; FreeQ[{a, b, c, d, e}, x] && PolynomialQ[Px, x] && IGtQ[n, 0]
&& IntegerQ[m]
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_)*(Px_)*((d_) + (e_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[
Px*(d + e*x)^m*(a + b*ArcCos[c*x])^n, x], x] /; FreeQ[{a, b, c, d, e}, x] && PolynomialQ[Px, x] && IGtQ[n, 0]
&& IntegerQ[m]
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))*((f_) + (g_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> With
[{u = IntHide[(f + g*x)^m*(d + e*x^2)^p, x]}, Simp[(a + b*ArcSin[c*x]) u, x] - Simp[b*c Int[1/Sqrt[1 - c^2
*x^2] u, x], x]] /; FreeQ[{a, b, c, d, e, f, g}, x] && EqQ[c^2*d + e, 0] && IGtQ[m, 0] && ILtQ[p + 1/2, 0] &
& GtQ[d, 0] && (LtQ[m, -2*p - 1] || GtQ[m, 3])
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))*((f_) + (g_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> With
[{u = IntHide[(f + g*x)^m*(d + e*x^2)^p, x]}, Simp[(a + b*ArcCos[c*x]) u, x] + Simp[b*c Int[1/Sqrt[1 - c^2
*x^2] u, x], x]] /; FreeQ[{a, b, c, d, e, f, g}, x] && EqQ[c^2*d + e, 0] && IGtQ[m, 0] && ILtQ[p + 1/2, 0] &
& GtQ[d, 0] && (LtQ[m, -2*p - 1] || GtQ[m, 3])
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_) + (g_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :
> Int[ExpandIntegrand[(d + e*x^2)^p*(a + b*ArcSin[c*x])^n, (f + g*x)^m, x], x] /; FreeQ[{a, b, c, d, e, f, g},
x] && EqQ[c^2*d + e, 0] && IGtQ[m, 0] && IntegerQ[p + 1/2] && GtQ[d, 0] && IGtQ[n, 0] && (m == 1 || p > 0 ||
(n == 1 && p > -1) || (m == 2 && p < -2))
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)*((f_) + (g_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :
> Int[ExpandIntegrand[(d + e*x^2)^p*(a + b*ArcCos[c*x])^n, (f + g*x)^m, x], x] /; FreeQ[{a, b, c, d, e, f, g},
x] && EqQ[c^2*d + e, 0] && IGtQ[m, 0] && IntegerQ[p + 1/2] && GtQ[d, 0] && IGtQ[n, 0] && (m == 1 || p > 0 ||
(n == 1 && p > -1) || (m == 2 && p < -2))
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_) + (g_.)*(x_))^(m_)*Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :>
Simp[(f + g*x)^m*(d + e*x^2)*((a + b*ArcSin[c*x])^(n + 1)/(b*c*Sqrt[d]*(n + 1))), x] - Simp[1/(b*c*Sqrt[d]*(n
+ 1)) Int[(d*g*m + 2*e*f*x + e*g*(m + 2)*x^2)*(f + g*x)^(m - 1)*(a + b*ArcSin[c*x])^(n + 1), x], x] /; FreeQ
[{a, b, c, d, e, f, g}, x] && EqQ[c^2*d + e, 0] && ILtQ[m, 0] && GtQ[d, 0] && IGtQ[n, 0]
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)*((f_) + (g_.)*(x_))^(m_)*Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :>
Simp[(-(f + g*x)^m)*(d + e*x^2)*((a + b*ArcCos[c*x])^(n + 1)/(b*c*Sqrt[d]*(n + 1))), x] + Simp[1/(b*c*Sqrt[d]*
(n + 1)) Int[(d*g*m + 2*e*f*x + e*g*(m + 2)*x^2)*(f + g*x)^(m - 1)*(a + b*ArcCos[c*x])^(n + 1), x], x] /; Fr
eeQ[{a, b, c, d, e, f, g}, x] && EqQ[c^2*d + e, 0] && ILtQ[m, 0] && GtQ[d, 0] && IGtQ[n, 0]
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_) + (g_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :
> Int[ExpandIntegrand[Sqrt[d + e*x^2]*(a + b*ArcSin[c*x])^n, (f + g*x)^m*(d + e*x^2)^(p - 1/2), x], x] /; Free
Q[{a, b, c, d, e, f, g}, x] && EqQ[c^2*d + e, 0] && IntegerQ[m] && IGtQ[p + 1/2, 0] && GtQ[d, 0] && IGtQ[n, 0]
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)*((f_) + (g_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :
> Int[ExpandIntegrand[Sqrt[d + e*x^2]*(a + b*ArcCos[c*x])^n, (f + g*x)^m*(d + e*x^2)^(p - 1/2), x], x] /; Free
Q[{a, b, c, d, e, f, g}, x] && EqQ[c^2*d + e, 0] && IntegerQ[m] && IGtQ[p + 1/2, 0] && GtQ[d, 0] && IGtQ[n, 0]
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_) + (g_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :
> Simp[(f + g*x)^m*(d + e*x^2)^(p + 1/2)*((a + b*ArcSin[c*x])^(n + 1)/(b*c*Sqrt[d]*(n + 1))), x] - Simp[1/(b*c
*Sqrt[d]*(n + 1)) Int[ExpandIntegrand[(f + g*x)^(m - 1)*(a + b*ArcSin[c*x])^(n + 1), (d*g*m + e*f*(2*p + 1)*
x + e*g*(m + 2*p + 1)*x^2)*(d + e*x^2)^(p - 1/2), x], x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && EqQ[c^2*d +
e, 0] && ILtQ[m, 0] && IGtQ[p - 1/2, 0] && GtQ[d, 0] && IGtQ[n, 0]
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)*((f_) + (g_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :
> Simp[(-(f + g*x)^m)*(d + e*x^2)^(p + 1/2)*((a + b*ArcCos[c*x])^(n + 1)/(b*c*Sqrt[d]*(n + 1))), x] + Simp[1/(
b*c*Sqrt[d]*(n + 1)) Int[ExpandIntegrand[(f + g*x)^(m - 1)*(a + b*ArcCos[c*x])^(n + 1), (d*g*m + e*f*(2*p +
1)*x + e*g*(m + 2*p + 1)*x^2)*(d + e*x^2)^(p - 1/2), x], x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && EqQ[c^2*
d + e, 0] && ILtQ[m, 0] && IGtQ[p - 1/2, 0] && GtQ[d, 0] && IGtQ[n, 0]
-
Int[(((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_)*((f_) + (g_.)*(x_))^(m_.))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :
> Simp[(f + g*x)^m*((a + b*ArcSin[c*x])^(n + 1)/(b*c*Sqrt[d]*(n + 1))), x] - Simp[g*(m/(b*c*Sqrt[d]*(n + 1)))
Int[(f + g*x)^(m - 1)*(a + b*ArcSin[c*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && EqQ[c^2*d +
e, 0] && IGtQ[m, 0] && GtQ[d, 0] && LtQ[n, -1]
-
Int[(((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_)*((f_) + (g_.)*(x_))^(m_.))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :
> Simp[(-(f + g*x)^m)*((a + b*ArcCos[c*x])^(n + 1)/(b*c*Sqrt[d]*(n + 1))), x] + Simp[g*(m/(b*c*Sqrt[d]*(n + 1)
)) Int[(f + g*x)^(m - 1)*(a + b*ArcCos[c*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && EqQ[c^2*d
+ e, 0] && IGtQ[m, 0] && GtQ[d, 0] && LtQ[n, -1]
-
Int[(((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_) + (g_.)*(x_))^(m_.))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol]
:> Simp[1/(c^(m + 1)*Sqrt[d]) Subst[Int[(a + b*x)^n*(c*f + g*Sin[x])^m, x], x, ArcSin[c*x]], x] /; FreeQ[{a,
b, c, d, e, f, g, n}, x] && EqQ[c^2*d + e, 0] && IntegerQ[m] && GtQ[d, 0] && (GtQ[m, 0] || IGtQ[n, 0])
-
Int[(((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)*((f_) + (g_.)*(x_))^(m_.))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol]
:> Simp[-(c^(m + 1)*Sqrt[d])^(-1) Subst[Int[(a + b*x)^n*(c*f + g*Cos[x])^m, x], x, ArcCos[c*x]], x] /; FreeQ
[{a, b, c, d, e, f, g, n}, x] && EqQ[c^2*d + e, 0] && IntegerQ[m] && GtQ[d, 0] && (GtQ[m, 0] || IGtQ[n, 0])
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_) + (g_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :
> Int[ExpandIntegrand[(a + b*ArcSin[c*x])^n/Sqrt[d + e*x^2], (f + g*x)^m*(d + e*x^2)^(p + 1/2), x], x] /; Free
Q[{a, b, c, d, e, f, g}, x] && EqQ[c^2*d + e, 0] && IntegerQ[m] && ILtQ[p + 1/2, 0] && GtQ[d, 0] && IGtQ[n, 0]
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)*((f_) + (g_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :
> Int[ExpandIntegrand[(a + b*ArcCos[c*x])^n/Sqrt[d + e*x^2], (f + g*x)^m*(d + e*x^2)^(p + 1/2), x], x] /; Free
Q[{a, b, c, d, e, f, g}, x] && EqQ[c^2*d + e, 0] && IntegerQ[m] && ILtQ[p + 1/2, 0] && GtQ[d, 0] && IGtQ[n, 0]
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_) + (g_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :
> Simp[Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p] Int[(f + g*x)^m*(1 - c^2*x^2)^p*(a + b*ArcSin[c*x])^n, x], x] /;
FreeQ[{a, b, c, d, e, f, g, n}, x] && EqQ[c^2*d + e, 0] && IntegerQ[m] && IntegerQ[p - 1/2] && !GtQ[d, 0]
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)*((f_) + (g_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :
> Simp[Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p] Int[(f + g*x)^m*(1 - c^2*x^2)^p*(a + b*ArcCos[c*x])^n, x], x] /;
FreeQ[{a, b, c, d, e, f, g, n}, x] && EqQ[c^2*d + e, 0] && IntegerQ[m] && IntegerQ[p - 1/2] && !GtQ[d, 0]
-
Int[(Log[(h_.)*((f_.) + (g_.)*(x_))^(m_.)]*((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.))/Sqrt[(d_) + (e_.)*(x_)^2]
, x_Symbol] :> Simp[Log[h*(f + g*x)^m]*((a + b*ArcSin[c*x])^(n + 1)/(b*c*Sqrt[d]*(n + 1))), x] - Simp[g*(m/(b*
c*Sqrt[d]*(n + 1))) Int[(a + b*ArcSin[c*x])^(n + 1)/(f + g*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h, m},
x] && EqQ[c^2*d + e, 0] && GtQ[d, 0] && IGtQ[n, 0]
-
Int[(Log[(h_.)*((f_.) + (g_.)*(x_))^(m_.)]*((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.))/Sqrt[(d_) + (e_.)*(x_)^2]
, x_Symbol] :> Simp[(-Log[h*(f + g*x)^m])*((a + b*ArcCos[c*x])^(n + 1)/(b*c*Sqrt[d]*(n + 1))), x] + Simp[g*(m/
(b*c*Sqrt[d]*(n + 1))) Int[(a + b*ArcCos[c*x])^(n + 1)/(f + g*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h, m
}, x] && EqQ[c^2*d + e, 0] && GtQ[d, 0] && IGtQ[n, 0]
-
Int[Log[(h_.)*((f_.) + (g_.)*(x_))^(m_.)]*((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_),
x_Symbol] :> Simp[Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p] Int[Log[h*(f + g*x)^m]*(1 - c^2*x^2)^p*(a + b*ArcSin[
c*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, m, n}, x] && EqQ[c^2*d + e, 0] && IntegerQ[p - 1/2] && !GtQ
[d, 0]
-
Int[Log[(h_.)*((f_.) + (g_.)*(x_))^(m_.)]*((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_),
x_Symbol] :> Simp[Simp[(d + e*x^2)^p/(1 - c^2*x^2)^p] Int[Log[h*(f + g*x)^m]*(1 - c^2*x^2)^p*(a + b*ArcCos[
c*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, m, n}, x] && EqQ[c^2*d + e, 0] && IntegerQ[p - 1/2] && !GtQ
[d, 0]
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))*((d_) + (e_.)*(x_))^(m_)*((f_) + (g_.)*(x_))^(m_), x_Symbol] :> With[{u
= IntHide[(d + e*x)^m*(f + g*x)^m, x]}, Simp[(a + b*ArcSin[c*x]) u, x] - Simp[b*c Int[1/Sqrt[1 - c^2*x^2]
u, x], x]] /; FreeQ[{a, b, c, d, e, f, g}, x] && ILtQ[m + 1/2, 0]
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))*((d_) + (e_.)*(x_))^(m_)*((f_) + (g_.)*(x_))^(m_), x_Symbol] :> With[{u
= IntHide[(d + e*x)^m*(f + g*x)^m, x]}, Simp[(a + b*ArcCos[c*x]) u, x] + Simp[b*c Int[1/Sqrt[1 - c^2*x^2]
u, x], x]] /; FreeQ[{a, b, c, d, e, f, g}, x] && ILtQ[m + 1/2, 0]
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_))^(m_.)*((f_) + (g_.)*(x_))^(m_.), x_Symbol] :>
Int[ExpandIntegrand[(d + e*x)^m*(f + g*x)^m*(a + b*ArcSin[c*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, n},
x] && IntegerQ[m]
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_))^(m_.)*((f_) + (g_.)*(x_))^(m_.), x_Symbol] :>
Int[ExpandIntegrand[(d + e*x)^m*(f + g*x)^m*(a + b*ArcCos[c*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, n},
x] && IntegerQ[m]
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))*(u_), x_Symbol] :> With[{v = IntHide[u, x]}, Simp[(a + b*ArcSin[c*x])
v, x] - Simp[b*c Int[SimplifyIntegrand[v/Sqrt[1 - c^2*x^2], x], x], x] /; InverseFunctionFreeQ[v, x]] /; Fr
eeQ[{a, b, c}, x]
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))*(u_), x_Symbol] :> With[{v = IntHide[u, x]}, Simp[(a + b*ArcCos[c*x])
v, x] + Simp[b*c Int[SimplifyIntegrand[v/Sqrt[1 - c^2*x^2], x], x], x] /; InverseFunctionFreeQ[v, x]] /; Fr
eeQ[{a, b, c}, x]
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*(Px_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> With[{u = ExpandIn
tegrand[Px*(d + e*x^2)^p*(a + b*ArcSin[c*x])^n, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c, d, e, n}, x] &&
PolynomialQ[Px, x] && EqQ[c^2*d + e, 0] && IntegerQ[p - 1/2]
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)*(Px_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> With[{u = ExpandIn
tegrand[Px*(d + e*x^2)^p*(a + b*ArcCos[c*x])^n, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c, d, e, n}, x] &&
PolynomialQ[Px, x] && EqQ[c^2*d + e, 0] && IntegerQ[p - 1/2]
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*(Px_.)*((f_) + (g_.)*((d_) + (e_.)*(x_)^2)^(p_))^(m_.), x_Symbol]
:> With[{u = ExpandIntegrand[Px*(f + g*(d + e*x^2)^p)^m*(a + b*ArcSin[c*x])^n, x]}, Int[u, x] /; SumQ[u]] /;
FreeQ[{a, b, c, d, e, f, g}, x] && PolynomialQ[Px, x] && EqQ[c^2*d + e, 0] && IGtQ[p + 1/2, 0] && IntegersQ[m,
n]
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)*(Px_.)*((f_) + (g_.)*((d_) + (e_.)*(x_)^2)^(p_))^(m_.), x_Symbol]
:> With[{u = ExpandIntegrand[Px*(f + g*(d + e*x^2)^p)^m*(a + b*ArcCos[c*x])^n, x]}, Int[u, x] /; SumQ[u]] /;
FreeQ[{a, b, c, d, e, f, g}, x] && PolynomialQ[Px, x] && EqQ[c^2*d + e, 0] && IGtQ[p + 1/2, 0] && IntegersQ[m,
n]
-
Int[ArcSin[(c_.)*(x_)]^(n_.)*(RFx_), x_Symbol] :> With[{u = ExpandIntegrand[ArcSin[c*x]^n, RFx, x]}, Int[u, x]
/; SumQ[u]] /; FreeQ[c, x] && RationalFunctionQ[RFx, x] && IGtQ[n, 0]
-
Int[ArcCos[(c_.)*(x_)]^(n_.)*(RFx_), x_Symbol] :> With[{u = ExpandIntegrand[ArcCos[c*x]^n, RFx, x]}, Int[u, x]
/; SumQ[u]] /; FreeQ[c, x] && RationalFunctionQ[RFx, x] && IGtQ[n, 0]
-
Int[(ArcSin[(c_.)*(x_)]*(b_.) + (a_))^(n_.)*(RFx_), x_Symbol] :> Int[ExpandIntegrand[RFx*(a + b*ArcSin[c*x])^n
, x], x] /; FreeQ[{a, b, c}, x] && RationalFunctionQ[RFx, x] && IGtQ[n, 0]
-
Int[(ArcCos[(c_.)*(x_)]*(b_.) + (a_))^(n_.)*(RFx_), x_Symbol] :> Int[ExpandIntegrand[RFx*(a + b*ArcCos[c*x])^n
, x], x] /; FreeQ[{a, b, c}, x] && RationalFunctionQ[RFx, x] && IGtQ[n, 0]
-
Int[ArcSin[(c_.)*(x_)]^(n_.)*(RFx_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> With[{u = ExpandIntegrand[(d + e*
x^2)^p*ArcSin[c*x]^n, RFx, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{c, d, e}, x] && RationalFunctionQ[RFx, x] && I
GtQ[n, 0] && EqQ[c^2*d + e, 0] && IntegerQ[p - 1/2]
-
Int[ArcCos[(c_.)*(x_)]^(n_.)*(RFx_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> With[{u = ExpandIntegrand[(d + e*
x^2)^p*ArcCos[c*x]^n, RFx, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{c, d, e}, x] && RationalFunctionQ[RFx, x] && I
GtQ[n, 0] && EqQ[c^2*d + e, 0] && IntegerQ[p - 1/2]
-
Int[(ArcSin[(c_.)*(x_)]*(b_.) + (a_))^(n_.)*(RFx_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Int[ExpandIntegran
d[(d + e*x^2)^p, RFx*(a + b*ArcSin[c*x])^n, x], x] /; FreeQ[{a, b, c, d, e}, x] && RationalFunctionQ[RFx, x] &
& IGtQ[n, 0] && EqQ[c^2*d + e, 0] && IntegerQ[p - 1/2]
-
Int[(ArcCos[(c_.)*(x_)]*(b_.) + (a_))^(n_.)*(RFx_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Int[ExpandIntegran
d[(d + e*x^2)^p, RFx*(a + b*ArcCos[c*x])^n, x], x] /; FreeQ[{a, b, c, d, e}, x] && RationalFunctionQ[RFx, x] &
& IGtQ[n, 0] && EqQ[c^2*d + e, 0] && IntegerQ[p - 1/2]
-
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*(u_.), x_Symbol] :> Unintegrable[u*(a + b*ArcSin[c*x])^n, x] /; F
reeQ[{a, b, c, n}, x]
-
Int[((a_.) + ArcCos[(c_.)*(x_)]*(b_.))^(n_.)*(u_.), x_Symbol] :> Unintegrable[u*(a + b*ArcCos[c*x])^n, x] /; F
reeQ[{a, b, c, n}, x]
-
Int[((a_.) + ArcSin[(c_) + (d_.)*(x_)]*(b_.))^(n_.), x_Symbol] :> Simp[1/d Subst[Int[(a + b*ArcSin[x])^n, x]
, x, c + d*x], x] /; FreeQ[{a, b, c, d, n}, x]
-
Int[((a_.) + ArcCos[(c_) + (d_.)*(x_)]*(b_.))^(n_.), x_Symbol] :> Simp[1/d Subst[Int[(a + b*ArcCos[x])^n, x]
, x, c + d*x], x] /; FreeQ[{a, b, c, d, n}, x]
-
Int[((a_.) + ArcSin[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[1/d Subst[
Int[((d*e - c*f)/d + f*(x/d))^m*(a + b*ArcSin[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]
-
Int[((a_.) + ArcCos[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[1/d Subst[
Int[((d*e - c*f)/d + f*(x/d))^m*(a + b*ArcCos[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]
-
Int[((a_.) + ArcSin[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((A_.) + (B_.)*(x_) + (C_.)*(x_)^2)^(p_.), x_Symbol] :> Si
mp[1/d Subst[Int[(-C/d^2 + (C/d^2)*x^2)^p*(a + b*ArcSin[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, A,
B, C, n, p}, x] && EqQ[B*(1 - c^2) + 2*A*c*d, 0] && EqQ[2*c*C - B*d, 0]
-
Int[((a_.) + ArcCos[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((A_.) + (B_.)*(x_) + (C_.)*(x_)^2)^(p_.), x_Symbol] :> Si
mp[1/d Subst[Int[(-C/d^2 + (C/d^2)*x^2)^p*(a + b*ArcCos[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, A,
B, C, n, p}, x] && EqQ[B*(1 - c^2) + 2*A*c*d, 0] && EqQ[2*c*C - B*d, 0]
-
Int[((a_.) + ArcSin[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m_.)*((A_.) + (B_.)*(x_) + (C_.)*(x_
)^2)^(p_.), x_Symbol] :> Simp[1/d Subst[Int[((d*e - c*f)/d + f*(x/d))^m*(-C/d^2 + (C/d^2)*x^2)^p*(a + b*ArcS
in[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m, n, p}, x] && EqQ[B*(1 - c^2) + 2*A*c*d,
0] && EqQ[2*c*C - B*d, 0]
-
Int[((a_.) + ArcCos[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m_.)*((A_.) + (B_.)*(x_) + (C_.)*(x_
)^2)^(p_.), x_Symbol] :> Simp[1/d Subst[Int[((d*e - c*f)/d + f*(x/d))^m*(-C/d^2 + (C/d^2)*x^2)^p*(a + b*ArcC
os[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m, n, p}, x] && EqQ[B*(1 - c^2) + 2*A*c*d,
0] && EqQ[2*c*C - B*d, 0]
-
Int[Sqrt[(a_.) + ArcSin[(c_) + (d_.)*(x_)^2]*(b_.)], x_Symbol] :> Simp[x*Sqrt[a + b*ArcSin[c + d*x^2]], x] + (
-Simp[Sqrt[Pi]*x*(Cos[a/(2*b)] + c*Sin[a/(2*b)])*(FresnelC[Sqrt[c/(Pi*b)]*Sqrt[a + b*ArcSin[c + d*x^2]]]/(Sqrt
[c/b]*(Cos[ArcSin[c + d*x^2]/2] - c*Sin[ArcSin[c + d*x^2]/2]))), x] + Simp[Sqrt[Pi]*x*(Cos[a/(2*b)] - c*Sin[a/
(2*b)])*(FresnelS[Sqrt[c/(Pi*b)]*Sqrt[a + b*ArcSin[c + d*x^2]]]/(Sqrt[c/b]*(Cos[ArcSin[c + d*x^2]/2] - c*Sin[A
rcSin[c + d*x^2]/2]))), x]) /; FreeQ[{a, b, c, d}, x] && EqQ[c^2, 1]
-
Int[Sqrt[(a_.) + ArcCos[1 + (d_.)*(x_)^2]*(b_.)], x_Symbol] :> Simp[-2*Sqrt[a + b*ArcCos[1 + d*x^2]]*(Sin[ArcC
os[1 + d*x^2]/2]^2/(d*x)), x] + (-Simp[2*Sqrt[Pi]*Sin[a/(2*b)]*Sin[ArcCos[1 + d*x^2]/2]*(FresnelC[Sqrt[1/(Pi*b
)]*Sqrt[a + b*ArcCos[1 + d*x^2]]]/(Sqrt[1/b]*d*x)), x] + Simp[2*Sqrt[Pi]*Cos[a/(2*b)]*Sin[ArcCos[1 + d*x^2]/2]
*(FresnelS[Sqrt[1/(Pi*b)]*Sqrt[a + b*ArcCos[1 + d*x^2]]]/(Sqrt[1/b]*d*x)), x]) /; FreeQ[{a, b, d}, x]
-
Int[Sqrt[(a_.) + ArcCos[-1 + (d_.)*(x_)^2]*(b_.)], x_Symbol] :> Simp[2*Sqrt[a + b*ArcCos[-1 + d*x^2]]*(Cos[(1/
2)*ArcCos[-1 + d*x^2]]^2/(d*x)), x] + (-Simp[2*Sqrt[Pi]*Cos[a/(2*b)]*Cos[ArcCos[-1 + d*x^2]/2]*(FresnelC[Sqrt[
1/(Pi*b)]*Sqrt[a + b*ArcCos[-1 + d*x^2]]]/(Sqrt[1/b]*d*x)), x] - Simp[2*Sqrt[Pi]*Sin[a/(2*b)]*Cos[ArcCos[-1 +
d*x^2]/2]*(FresnelS[Sqrt[1/(Pi*b)]*Sqrt[a + b*ArcCos[-1 + d*x^2]]]/(Sqrt[1/b]*d*x)), x]) /; FreeQ[{a, b, d}, x
]
-
Int[((a_.) + ArcSin[(c_) + (d_.)*(x_)^2]*(b_.))^(n_), x_Symbol] :> Simp[x*(a + b*ArcSin[c + d*x^2])^n, x] + (S
imp[2*b*n*Sqrt[-2*c*d*x^2 - d^2*x^4]*((a + b*ArcSin[c + d*x^2])^(n - 1)/(d*x)), x] - Simp[4*b^2*n*(n - 1) In
t[(a + b*ArcSin[c + d*x^2])^(n - 2), x], x]) /; FreeQ[{a, b, c, d}, x] && EqQ[c^2, 1] && GtQ[n, 1]
-
Int[((a_.) + ArcCos[(c_) + (d_.)*(x_)^2]*(b_.))^(n_), x_Symbol] :> Simp[x*(a + b*ArcCos[c + d*x^2])^n, x] + (-
Simp[2*b*n*Sqrt[-2*c*d*x^2 - d^2*x^4]*((a + b*ArcCos[c + d*x^2])^(n - 1)/(d*x)), x] - Simp[4*b^2*n*(n - 1) I
nt[(a + b*ArcCos[c + d*x^2])^(n - 2), x], x]) /; FreeQ[{a, b, c, d}, x] && EqQ[c^2, 1] && GtQ[n, 1]
-
Int[((a_.) + ArcSin[(c_) + (d_.)*(x_)^2]*(b_.))^(-1), x_Symbol] :> Simp[(-x)*(c*Cos[a/(2*b)] - Sin[a/(2*b)])*(
CosIntegral[(c/(2*b))*(a + b*ArcSin[c + d*x^2])]/(2*b*(Cos[ArcSin[c + d*x^2]/2] - c*Sin[ArcSin[c + d*x^2]/2]))
), x] - Simp[x*(c*Cos[a/(2*b)] + Sin[a/(2*b)])*(SinIntegral[(c/(2*b))*(a + b*ArcSin[c + d*x^2])]/(2*b*(Cos[Arc
Sin[c + d*x^2]/2] - c*Sin[ArcSin[c + d*x^2]/2]))), x] /; FreeQ[{a, b, c, d}, x] && EqQ[c^2, 1]
-
Int[((a_.) + ArcCos[1 + (d_.)*(x_)^2]*(b_.))^(-1), x_Symbol] :> Simp[x*Cos[a/(2*b)]*(CosIntegral[(a + b*ArcCos
[1 + d*x^2])/(2*b)]/(Sqrt[2]*b*Sqrt[(-d)*x^2])), x] + Simp[x*Sin[a/(2*b)]*(SinIntegral[(a + b*ArcCos[1 + d*x^2
])/(2*b)]/(Sqrt[2]*b*Sqrt[(-d)*x^2])), x] /; FreeQ[{a, b, d}, x]
-
Int[((a_.) + ArcCos[-1 + (d_.)*(x_)^2]*(b_.))^(-1), x_Symbol] :> Simp[x*Sin[a/(2*b)]*(CosIntegral[(a + b*ArcCo
s[-1 + d*x^2])/(2*b)]/(Sqrt[2]*b*Sqrt[d*x^2])), x] - Simp[x*Cos[a/(2*b)]*(SinIntegral[(a + b*ArcCos[-1 + d*x^2
])/(2*b)]/(Sqrt[2]*b*Sqrt[d*x^2])), x] /; FreeQ[{a, b, d}, x]
-
Int[1/Sqrt[(a_.) + ArcSin[(c_) + (d_.)*(x_)^2]*(b_.)], x_Symbol] :> Simp[(-Sqrt[Pi])*x*(Cos[a/(2*b)] - c*Sin[a
/(2*b)])*(FresnelC[(1/(Sqrt[b*c]*Sqrt[Pi]))*Sqrt[a + b*ArcSin[c + d*x^2]]]/(Sqrt[b*c]*(Cos[ArcSin[c + d*x^2]/2
] - c*Sin[ArcSin[c + d*x^2]/2]))), x] - Simp[Sqrt[Pi]*x*(Cos[a/(2*b)] + c*Sin[a/(2*b)])*(FresnelS[(1/(Sqrt[b*c
]*Sqrt[Pi]))*Sqrt[a + b*ArcSin[c + d*x^2]]]/(Sqrt[b*c]*(Cos[ArcSin[c + d*x^2]/2] - c*Sin[ArcSin[c + d*x^2]/2])
)), x] /; FreeQ[{a, b, c, d}, x] && EqQ[c^2, 1]
-
Int[1/Sqrt[(a_.) + ArcCos[1 + (d_.)*(x_)^2]*(b_.)], x_Symbol] :> Simp[-2*Sqrt[Pi/b]*Cos[a/(2*b)]*Sin[ArcCos[1
+ d*x^2]/2]*(FresnelC[Sqrt[1/(Pi*b)]*Sqrt[a + b*ArcCos[1 + d*x^2]]]/(d*x)), x] - Simp[2*Sqrt[Pi/b]*Sin[a/(2*b)
]*Sin[ArcCos[1 + d*x^2]/2]*(FresnelS[Sqrt[1/(Pi*b)]*Sqrt[a + b*ArcCos[1 + d*x^2]]]/(d*x)), x] /; FreeQ[{a, b,
d}, x]
-
Int[1/Sqrt[(a_.) + ArcCos[-1 + (d_.)*(x_)^2]*(b_.)], x_Symbol] :> Simp[2*Sqrt[Pi/b]*Sin[a/(2*b)]*Cos[ArcCos[-1
+ d*x^2]/2]*(FresnelC[Sqrt[1/(Pi*b)]*Sqrt[a + b*ArcCos[-1 + d*x^2]]]/(d*x)), x] - Simp[2*Sqrt[Pi/b]*Cos[a/(2*
b)]*Cos[ArcCos[-1 + d*x^2]/2]*(FresnelS[Sqrt[1/(Pi*b)]*Sqrt[a + b*ArcCos[-1 + d*x^2]]]/(d*x)), x] /; FreeQ[{a,
b, d}, x]
-
Int[((a_.) + ArcSin[(c_) + (d_.)*(x_)^2]*(b_.))^(-3/2), x_Symbol] :> Simp[-Sqrt[-2*c*d*x^2 - d^2*x^4]/(b*d*x*S
qrt[a + b*ArcSin[c + d*x^2]]), x] + (-Simp[(c/b)^(3/2)*Sqrt[Pi]*x*(Cos[a/(2*b)] + c*Sin[a/(2*b)])*(FresnelC[Sq
rt[c/(Pi*b)]*Sqrt[a + b*ArcSin[c + d*x^2]]]/(Cos[(1/2)*ArcSin[c + d*x^2]] - c*Sin[ArcSin[c + d*x^2]/2])), x] +
Simp[(c/b)^(3/2)*Sqrt[Pi]*x*(Cos[a/(2*b)] - c*Sin[a/(2*b)])*(FresnelS[Sqrt[c/(Pi*b)]*Sqrt[a + b*ArcSin[c + d*
x^2]]]/(Cos[(1/2)*ArcSin[c + d*x^2]] - c*Sin[ArcSin[c + d*x^2]/2])), x]) /; FreeQ[{a, b, c, d}, x] && EqQ[c^2,
1]
-
Int[((a_.) + ArcCos[1 + (d_.)*(x_)^2]*(b_.))^(-3/2), x_Symbol] :> Simp[Sqrt[-2*d*x^2 - d^2*x^4]/(b*d*x*Sqrt[a
+ b*ArcCos[1 + d*x^2]]), x] + (-Simp[2*(1/b)^(3/2)*Sqrt[Pi]*Sin[a/(2*b)]*Sin[ArcCos[1 + d*x^2]/2]*(FresnelC[Sq
rt[1/(Pi*b)]*Sqrt[a + b*ArcCos[1 + d*x^2]]]/(d*x)), x] + Simp[2*(1/b)^(3/2)*Sqrt[Pi]*Cos[a/(2*b)]*Sin[ArcCos[1
+ d*x^2]/2]*(FresnelS[Sqrt[1/(Pi*b)]*Sqrt[a + b*ArcCos[1 + d*x^2]]]/(d*x)), x]) /; FreeQ[{a, b, d}, x]
-
Int[((a_.) + ArcCos[-1 + (d_.)*(x_)^2]*(b_.))^(-3/2), x_Symbol] :> Simp[Sqrt[2*d*x^2 - d^2*x^4]/(b*d*x*Sqrt[a
+ b*ArcCos[-1 + d*x^2]]), x] + (-Simp[2*(1/b)^(3/2)*Sqrt[Pi]*Cos[a/(2*b)]*Cos[ArcCos[-1 + d*x^2]/2]*(FresnelC[
Sqrt[1/(Pi*b)]*Sqrt[a + b*ArcCos[-1 + d*x^2]]]/(d*x)), x] - Simp[2*(1/b)^(3/2)*Sqrt[Pi]*Sin[a/(2*b)]*Cos[ArcCo
s[-1 + d*x^2]/2]*(FresnelS[Sqrt[1/(Pi*b)]*Sqrt[a + b*ArcCos[-1 + d*x^2]]]/(d*x)), x]) /; FreeQ[{a, b, d}, x]
-
Int[((a_.) + ArcSin[(c_) + (d_.)*(x_)^2]*(b_.))^(-2), x_Symbol] :> Simp[-Sqrt[-2*c*d*x^2 - d^2*x^4]/(2*b*d*x*(
a + b*ArcSin[c + d*x^2])), x] + (-Simp[x*(Cos[a/(2*b)] + c*Sin[a/(2*b)])*(CosIntegral[(c/(2*b))*(a + b*ArcSin[
c + d*x^2])]/(4*b^2*(Cos[ArcSin[c + d*x^2]/2] - c*Sin[ArcSin[c + d*x^2]/2]))), x] + Simp[x*(Cos[a/(2*b)] - c*S
in[a/(2*b)])*(SinIntegral[(c/(2*b))*(a + b*ArcSin[c + d*x^2])]/(4*b^2*(Cos[ArcSin[c + d*x^2]/2] - c*Sin[ArcSin
[c + d*x^2]/2]))), x]) /; FreeQ[{a, b, c, d}, x] && EqQ[c^2, 1]
-
Int[((a_.) + ArcCos[1 + (d_.)*(x_)^2]*(b_.))^(-2), x_Symbol] :> Simp[Sqrt[-2*d*x^2 - d^2*x^4]/(2*b*d*x*(a + b*
ArcCos[1 + d*x^2])), x] + (Simp[x*Sin[a/(2*b)]*(CosIntegral[(a + b*ArcCos[1 + d*x^2])/(2*b)]/(2*Sqrt[2]*b^2*Sq
rt[(-d)*x^2])), x] - Simp[x*Cos[a/(2*b)]*(SinIntegral[(a + b*ArcCos[1 + d*x^2])/(2*b)]/(2*Sqrt[2]*b^2*Sqrt[(-d
)*x^2])), x]) /; FreeQ[{a, b, d}, x]
-
Int[((a_.) + ArcCos[-1 + (d_.)*(x_)^2]*(b_.))^(-2), x_Symbol] :> Simp[Sqrt[2*d*x^2 - d^2*x^4]/(2*b*d*x*(a + b*
ArcCos[-1 + d*x^2])), x] + (-Simp[x*Cos[a/(2*b)]*(CosIntegral[(a + b*ArcCos[-1 + d*x^2])/(2*b)]/(2*Sqrt[2]*b^2
*Sqrt[d*x^2])), x] - Simp[x*Sin[a/(2*b)]*(SinIntegral[(a + b*ArcCos[-1 + d*x^2])/(2*b)]/(2*Sqrt[2]*b^2*Sqrt[d*
x^2])), x]) /; FreeQ[{a, b, d}, x]
-
Int[((a_.) + ArcSin[(c_) + (d_.)*(x_)^2]*(b_.))^(n_), x_Symbol] :> Simp[x*((a + b*ArcSin[c + d*x^2])^(n + 2)/(
4*b^2*(n + 1)*(n + 2))), x] + (Simp[Sqrt[-2*c*d*x^2 - d^2*x^4]*((a + b*ArcSin[c + d*x^2])^(n + 1)/(2*b*d*(n +
1)*x)), x] - Simp[1/(4*b^2*(n + 1)*(n + 2)) Int[(a + b*ArcSin[c + d*x^2])^(n + 2), x], x]) /; FreeQ[{a, b, c
, d}, x] && EqQ[c^2, 1] && LtQ[n, -1] && NeQ[n, -2]
-
Int[((a_.) + ArcCos[(c_) + (d_.)*(x_)^2]*(b_.))^(n_), x_Symbol] :> Simp[x*((a + b*ArcCos[c + d*x^2])^(n + 2)/(
4*b^2*(n + 1)*(n + 2))), x] + (-Simp[Sqrt[-2*c*d*x^2 - d^2*x^4]*((a + b*ArcCos[c + d*x^2])^(n + 1)/(2*b*d*(n +
1)*x)), x] - Simp[1/(4*b^2*(n + 1)*(n + 2)) Int[(a + b*ArcCos[c + d*x^2])^(n + 2), x], x]) /; FreeQ[{a, b,
c, d}, x] && EqQ[c^2, 1] && LtQ[n, -1] && NeQ[n, -2]
-
Int[ArcSin[(a_.)*(x_)^(p_)]^(n_.)/(x_), x_Symbol] :> Simp[1/p Subst[Int[x^n*Cot[x], x], x, ArcSin[a*x^p]], x
] /; FreeQ[{a, p}, x] && IGtQ[n, 0]
-
Int[ArcCos[(a_.)*(x_)^(p_)]^(n_.)/(x_), x_Symbol] :> Simp[-p^(-1) Subst[Int[x^n*Tan[x], x], x, ArcCos[a*x^p]
], x] /; FreeQ[{a, p}, x] && IGtQ[n, 0]
-
Int[ArcSin[(c_.)/((a_.) + (b_.)*(x_)^(n_.))]^(m_.)*(u_.), x_Symbol] :> Int[u*ArcCsc[a/c + b*(x^n/c)]^m, x] /;
FreeQ[{a, b, c, n, m}, x]
-
Int[ArcCos[(c_.)/((a_.) + (b_.)*(x_)^(n_.))]^(m_.)*(u_.), x_Symbol] :> Int[u*ArcSec[a/c + b*(x^n/c)]^m, x] /;
FreeQ[{a, b, c, n, m}, x]
-
Int[ArcSin[Sqrt[1 + (b_.)*(x_)^2]]^(n_.)/Sqrt[1 + (b_.)*(x_)^2], x_Symbol] :> Simp[Sqrt[(-b)*x^2]/(b*x) Subs
t[Int[ArcSin[x]^n/Sqrt[1 - x^2], x], x, Sqrt[1 + b*x^2]], x] /; FreeQ[{b, n}, x]
-
Int[ArcCos[Sqrt[1 + (b_.)*(x_)^2]]^(n_.)/Sqrt[1 + (b_.)*(x_)^2], x_Symbol] :> Simp[Sqrt[(-b)*x^2]/(b*x) Subs
t[Int[ArcCos[x]^n/Sqrt[1 - x^2], x], x, Sqrt[1 + b*x^2]], x] /; FreeQ[{b, n}, x]
-
Int[(u_.)*(f_)^(ArcSin[(a_.) + (b_.)*(x_)]^(n_.)*(c_.)), x_Symbol] :> Simp[1/b Subst[Int[(u /. x -> -a/b + S
in[x]/b)*f^(c*x^n)*Cos[x], x], x, ArcSin[a + b*x]], x] /; FreeQ[{a, b, c, f}, x] && IGtQ[n, 0]
-
Int[(u_.)*(f_)^(ArcCos[(a_.) + (b_.)*(x_)]^(n_.)*(c_.)), x_Symbol] :> Simp[-b^(-1) Subst[Int[(u /. x -> -a/b
+ Cos[x]/b)*f^(c*x^n)*Sin[x], x], x, ArcCos[a + b*x]], x] /; FreeQ[{a, b, c, f}, x] && IGtQ[n, 0]
-
Int[ArcSin[(a_.)*(x_)^2 + (b_.)*Sqrt[(c_) + (d_.)*(x_)^2]], x_Symbol] :> Simp[x*ArcSin[a*x^2 + b*Sqrt[c + d*x^
2]], x] - Simp[x*(Sqrt[b^2*d + a^2*x^2 + 2*a*b*Sqrt[c + d*x^2]]/Sqrt[(-x^2)*(b^2*d + a^2*x^2 + 2*a*b*Sqrt[c +
d*x^2])]) Int[x*((b*d + 2*a*Sqrt[c + d*x^2])/(Sqrt[c + d*x^2]*Sqrt[b^2*d + a^2*x^2 + 2*a*b*Sqrt[c + d*x^2]])
), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[b^2*c, 1]
-
Int[ArcCos[(a_.)*(x_)^2 + (b_.)*Sqrt[(c_) + (d_.)*(x_)^2]], x_Symbol] :> Simp[x*ArcCos[a*x^2 + b*Sqrt[c + d*x^
2]], x] + Simp[x*(Sqrt[b^2*d + a^2*x^2 + 2*a*b*Sqrt[c + d*x^2]]/Sqrt[(-x^2)*(b^2*d + a^2*x^2 + 2*a*b*Sqrt[c +
d*x^2])]) Int[x*((b*d + 2*a*Sqrt[c + d*x^2])/(Sqrt[c + d*x^2]*Sqrt[b^2*d + a^2*x^2 + 2*a*b*Sqrt[c + d*x^2]])
), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[b^2*c, 1]
-
Int[ArcSin[u_], x_Symbol] :> Simp[x*ArcSin[u], x] - Int[SimplifyIntegrand[x*(D[u, x]/Sqrt[1 - u^2]), x], x] /;
InverseFunctionFreeQ[u, x] && !FunctionOfExponentialQ[u, x]
-
Int[ArcCos[u_], x_Symbol] :> Simp[x*ArcCos[u], x] + Int[SimplifyIntegrand[x*(D[u, x]/Sqrt[1 - u^2]), x], x] /;
InverseFunctionFreeQ[u, x] && !FunctionOfExponentialQ[u, x]
-
Int[((a_.) + ArcSin[u_]*(b_.))*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(c + d*x)^(m + 1)*((a + b*ArcSin[
u])/(d*(m + 1))), x] - Simp[b/(d*(m + 1)) Int[SimplifyIntegrand[(c + d*x)^(m + 1)*(D[u, x]/Sqrt[1 - u^2]), x
], x], x] /; FreeQ[{a, b, c, d, m}, x] && NeQ[m, -1] && InverseFunctionFreeQ[u, x] && !FunctionOfQ[(c + d*x)^
(m + 1), u, x] && !FunctionOfExponentialQ[u, x]
-
Int[((a_.) + ArcCos[u_]*(b_.))*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(c + d*x)^(m + 1)*((a + b*ArcCos[
u])/(d*(m + 1))), x] + Simp[b/(d*(m + 1)) Int[SimplifyIntegrand[(c + d*x)^(m + 1)*(D[u, x]/Sqrt[1 - u^2]), x
], x], x] /; FreeQ[{a, b, c, d, m}, x] && NeQ[m, -1] && InverseFunctionFreeQ[u, x] && !FunctionOfQ[(c + d*x)^
(m + 1), u, x] && !FunctionOfExponentialQ[u, x]
-
Int[((a_.) + ArcSin[u_]*(b_.))*(v_), x_Symbol] :> With[{w = IntHide[v, x]}, Simp[(a + b*ArcSin[u]) w, x] - S
imp[b Int[SimplifyIntegrand[w*(D[u, x]/Sqrt[1 - u^2]), x], x], x] /; InverseFunctionFreeQ[w, x]] /; FreeQ[{a
, b}, x] && InverseFunctionFreeQ[u, x] && !MatchQ[v, ((c_.) + (d_.)*x)^(m_.) /; FreeQ[{c, d, m}, x]]
-
Int[((a_.) + ArcCos[u_]*(b_.))*(v_), x_Symbol] :> With[{w = IntHide[v, x]}, Simp[(a + b*ArcCos[u]) w, x] + S
imp[b Int[SimplifyIntegrand[w*(D[u, x]/Sqrt[1 - u^2]), x], x], x] /; InverseFunctionFreeQ[w, x]] /; FreeQ[{a
, b}, x] && InverseFunctionFreeQ[u, x] && !MatchQ[v, ((c_.) + (d_.)*x)^(m_.) /; FreeQ[{c, d, m}, x]]
-
Int[((a_.) + ArcTan[(c_.)*(x_)^(n_.)]*(b_.))^(p_.), x_Symbol] :> Simp[x*(a + b*ArcTan[c*x^n])^p, x] - Simp[b*c
*n*p Int[x^n*((a + b*ArcTan[c*x^n])^(p - 1)/(1 + c^2*x^(2*n))), x], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[p,
0] && (EqQ[n, 1] || EqQ[p, 1])
-
Int[((a_.) + ArcCot[(c_.)*(x_)^(n_.)]*(b_.))^(p_.), x_Symbol] :> Simp[x*(a + b*ArcCot[c*x^n])^p, x] + Simp[b*c
*n*p Int[x^n*((a + b*ArcCot[c*x^n])^(p - 1)/(1 + c^2*x^(2*n))), x], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[p,
0] && (EqQ[n, 1] || EqQ[p, 1])
-
Int[((a_.) + ArcTan[(c_.)*(x_)^(n_)]*(b_.))^(p_), x_Symbol] :> Int[ExpandIntegrand[(a + (I*b*Log[1 - I*c*x^n])
/2 - (I*b*Log[1 + I*c*x^n])/2)^p, x], x] /; FreeQ[{a, b, c}, x] && IGtQ[p, 1] && IGtQ[n, 0]
-
Int[((a_.) + ArcCot[(c_.)*(x_)^(n_)]*(b_.))^(p_), x_Symbol] :> Int[ExpandIntegrand[(a + (I*b*Log[1 - I*(1/(x^n
*c))])/2 - (I*b*Log[1 + I*(1/(x^n*c))])/2)^p, x], x] /; FreeQ[{a, b, c}, x] && IGtQ[p, 1] && IGtQ[n, 0]
-
Int[((a_.) + ArcTan[(c_.)*(x_)^(n_)]*(b_.))^(p_), x_Symbol] :> Int[(a + b*ArcCot[1/(x^n*c)])^p, x] /; FreeQ[{a
, b, c}, x] && IGtQ[p, 1] && ILtQ[n, 0]
-
Int[((a_.) + ArcCot[(c_.)*(x_)^(n_)]*(b_.))^(p_), x_Symbol] :> Int[(a + b*ArcTan[1/(x^n*c)])^p, x] /; FreeQ[{a
, b, c}, x] && IGtQ[p, 1] && ILtQ[n, 0]
-
Int[((a_.) + ArcTan[(c_.)*(x_)^(n_)]*(b_.))^(p_), x_Symbol] :> With[{k = Denominator[n]}, Simp[k Subst[Int[x
^(k - 1)*(a + b*ArcTan[c*x^(k*n)])^p, x], x, x^(1/k)], x]] /; FreeQ[{a, b, c}, x] && IGtQ[p, 1] && FractionQ[n
]
-
Int[((a_.) + ArcCot[(c_.)*(x_)^(n_)]*(b_.))^(p_), x_Symbol] :> With[{k = Denominator[n]}, Simp[k Subst[Int[x
^(k - 1)*(a + b*ArcCot[c*x^(k*n)])^p, x], x, x^(1/k)], x]] /; FreeQ[{a, b, c}, x] && IGtQ[p, 1] && FractionQ[n
]
-
Int[((a_.) + ArcTan[(c_.)*(x_)^(n_.)]*(b_.))^(p_), x_Symbol] :> Unintegrable[(a + b*ArcTan[c*x^n])^p, x] /; Fr
eeQ[{a, b, c, n, p}, x]
-
Int[((a_.) + ArcCot[(c_.)*(x_)^(n_.)]*(b_.))^(p_), x_Symbol] :> Unintegrable[(a + b*ArcCot[c*x^n])^p, x] /; Fr
eeQ[{a, b, c, n, p}, x]
-
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))/(x_), x_Symbol] :> Simp[a*Log[x], x] + (Simp[I*(b/2) Int[Log[1 - I*c*
x]/x, x], x] - Simp[I*(b/2) Int[Log[1 + I*c*x]/x, x], x]) /; FreeQ[{a, b, c}, x]
-
Int[((a_.) + ArcCot[(c_.)*(x_)]*(b_.))/(x_), x_Symbol] :> Simp[a*Log[x], x] + (-Simp[I*(b/2) Int[Log[1 + I/(
c*x)]/x, x], x] + Simp[I*(b/2) Int[Log[1 - I/(c*x)]/x, x], x]) /; FreeQ[{a, b, c}, x]
-
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_)/(x_), x_Symbol] :> Simp[2*(a + b*ArcTan[c*x])^p*ArcTanh[1 - 2/(1 +
I*c*x)], x] - Simp[2*b*c*p Int[(a + b*ArcTan[c*x])^(p - 1)*(ArcTanh[1 - 2/(1 + I*c*x)]/(1 + c^2*x^2)), x],
x] /; FreeQ[{a, b, c}, x] && IGtQ[p, 1]
-
Int[((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^(p_)/(x_), x_Symbol] :> Simp[2*(a + b*ArcCot[c*x])^p*ArcCoth[1 - 2/(1 +
I*c*x)], x] + Simp[2*b*c*p Int[(a + b*ArcCot[c*x])^(p - 1)*(ArcCoth[1 - 2/(1 + I*c*x)]/(1 + c^2*x^2)), x],
x] /; FreeQ[{a, b, c}, x] && IGtQ[p, 1]
-
Int[((a_.) + ArcTan[(c_.)*(x_)^(n_)]*(b_.))^(p_.)/(x_), x_Symbol] :> Simp[1/n Subst[Int[(a + b*ArcTan[c*x])^
p/x, x], x, x^n], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[p, 0]
-
Int[((a_.) + ArcCot[(c_.)*(x_)^(n_)]*(b_.))^(p_.)/(x_), x_Symbol] :> Simp[1/n Subst[Int[(a + b*ArcCot[c*x])^
p/x, x], x, x^n], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[p, 0]
-
Int[((a_.) + ArcTan[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)*((a + b*ArcTan[c*x^
n])^p/(m + 1)), x] - Simp[b*c*n*(p/(m + 1)) Int[x^(m + n)*((a + b*ArcTan[c*x^n])^(p - 1)/(1 + c^2*x^(2*n))),
x], x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 0] && (EqQ[p, 1] || (EqQ[n, 1] && IntegerQ[m])) && NeQ[m, -1]
-
Int[((a_.) + ArcCot[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)*((a + b*ArcCot[c*x^
n])^p/(m + 1)), x] + Simp[b*c*n*(p/(m + 1)) Int[x^(m + n)*((a + b*ArcCot[c*x^n])^(p - 1)/(1 + c^2*x^(2*n))),
x], x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 0] && (EqQ[p, 1] || (EqQ[n, 1] && IntegerQ[m])) && NeQ[m, -1]
-
Int[((a_.) + ArcTan[(c_.)*(x_)^(n_)]*(b_.))^(p_.)*(x_)^(m_.), x_Symbol] :> Simp[1/n Subst[Int[x^(Simplify[(m
+ 1)/n] - 1)*(a + b*ArcTan[c*x])^p, x], x, x^n], x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 1] && IntegerQ[Si
mplify[(m + 1)/n]]
-
Int[((a_.) + ArcCot[(c_.)*(x_)^(n_)]*(b_.))^(p_.)*(x_)^(m_.), x_Symbol] :> Simp[1/n Subst[Int[x^(Simplify[(m
+ 1)/n] - 1)*(a + b*ArcCot[c*x])^p, x], x, x^n], x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 1] && IntegerQ[Si
mplify[(m + 1)/n]]
-
Int[((a_.) + ArcTan[(c_.)*(x_)^(n_)]*(b_.))^(p_)*(x_)^(m_.), x_Symbol] :> Int[ExpandIntegrand[x^m*(a + (I*b*Lo
g[1 - I*c*x^n])/2 - (I*b*Log[1 + I*c*x^n])/2)^p, x], x] /; FreeQ[{a, b, c}, x] && IGtQ[p, 1] && IGtQ[n, 0] &&
IntegerQ[m]
-
Int[((a_.) + ArcCot[(c_.)*(x_)^(n_)]*(b_.))^(p_)*(x_)^(m_.), x_Symbol] :> Int[ExpandIntegrand[x^m*(a + (I*b*Lo
g[1 - I*(1/(x^n*c))])/2 - (I*b*Log[1 + I*(1/(x^n*c))])/2)^p, x], x] /; FreeQ[{a, b, c}, x] && IGtQ[p, 1] && IG
tQ[n, 0] && IntegerQ[m]
-
Int[((a_.) + ArcTan[(c_.)*(x_)^(n_)]*(b_.))^(p_)*(x_)^(m_.), x_Symbol] :> With[{k = Denominator[m]}, Simp[k
Subst[Int[x^(k*(m + 1) - 1)*(a + b*ArcTan[c*x^(k*n)])^p, x], x, x^(1/k)], x]] /; FreeQ[{a, b, c}, x] && IGtQ[p
, 1] && IGtQ[n, 0] && FractionQ[m]
-
Int[((a_.) + ArcCot[(c_.)*(x_)^(n_)]*(b_.))^(p_)*(x_)^(m_.), x_Symbol] :> With[{k = Denominator[m]}, Simp[k
Subst[Int[x^(k*(m + 1) - 1)*(a + b*ArcCot[c*x^(k*n)])^p, x], x, x^(1/k)], x]] /; FreeQ[{a, b, c}, x] && IGtQ[p
, 1] && IGtQ[n, 0] && FractionQ[m]
-
Int[((a_.) + ArcTan[(c_.)*(x_)^(n_)]*(b_.))^(p_)*(x_)^(m_.), x_Symbol] :> Int[x^m*(a + b*ArcCot[1/(x^n*c)])^p,
x] /; FreeQ[{a, b, c}, x] && IGtQ[p, 1] && ILtQ[n, 0]
-
Int[((a_.) + ArcCot[(c_.)*(x_)^(n_)]*(b_.))^(p_)*(x_)^(m_.), x_Symbol] :> Int[x^m*(a + b*ArcTan[1/(x^n*c)])^p,
x] /; FreeQ[{a, b, c}, x] && IGtQ[p, 1] && ILtQ[n, 0]
-
Int[((a_.) + ArcTan[(c_.)*(x_)^(n_)]*(b_.))^(p_)*(x_)^(m_.), x_Symbol] :> With[{k = Denominator[n]}, Simp[k
Subst[Int[x^(k*(m + 1) - 1)*(a + b*ArcTan[c*x^(k*n)])^p, x], x, x^(1/k)], x]] /; FreeQ[{a, b, c}, x] && IGtQ[p
, 1] && FractionQ[n]
-
Int[((a_.) + ArcCot[(c_.)*(x_)^(n_)]*(b_.))^(p_)*(x_)^(m_.), x_Symbol] :> With[{k = Denominator[n]}, Simp[k
Subst[Int[x^(k*(m + 1) - 1)*(a + b*ArcCot[c*x^(k*n)])^p, x], x, x^(1/k)], x]] /; FreeQ[{a, b, c}, x] && IGtQ[p
, 1] && FractionQ[n]
-
Int[((a_.) + ArcTan[(c_.)*(x_)^(n_.)]*(b_.))*((d_)*(x_))^(m_), x_Symbol] :> Simp[(d*x)^(m + 1)*((a + b*ArcTan[
c*x^n])/(d*(m + 1))), x] - Simp[b*c*(n/(d^n*(m + 1))) Int[(d*x)^(m + n)/(1 + c^2*x^(2*n)), x], x] /; FreeQ[{
a, b, c, d, m, n}, x] && IntegerQ[n] && NeQ[m, -1]
-
Int[((a_.) + ArcCot[(c_.)*(x_)^(n_.)]*(b_.))*((d_)*(x_))^(m_), x_Symbol] :> Simp[(d*x)^(m + 1)*((a + b*ArcCot[
c*x^n])/(d*(m + 1))), x] + Simp[b*c*(n/(d^n*(m + 1))) Int[(d*x)^(m + n)/(1 + c^2*x^(2*n)), x], x] /; FreeQ[{
a, b, c, d, m, n}, x] && IntegerQ[n] && NeQ[m, -1]
-
Int[((a_.) + ArcTan[(c_.)*(x_)^(n_)]*(b_.))^(p_.)*((d_.)*(x_))^(m_), x_Symbol] :> Simp[d^IntPart[m]*((d*x)^Fra
cPart[m]/x^FracPart[m]) Int[x^m*(a + b*ArcTan[c*x])^p, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && IGtQ[p, 0]
&& (EqQ[p, 1] || RationalQ[m, n])
-
Int[((a_.) + ArcCot[(c_.)*(x_)^(n_)]*(b_.))^(p_.)*((d_.)*(x_))^(m_), x_Symbol] :> Simp[d^IntPart[m]*((d*x)^Fra
cPart[m]/x^FracPart[m]) Int[x^m*(a + b*ArcCot[c*x])^p, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && IGtQ[p, 0]
&& (EqQ[p, 1] || RationalQ[m, n])
-
Int[((a_.) + ArcTan[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Unintegrable[(d*x)^m*(a +
b*ArcTan[c*x^n])^p, x] /; FreeQ[{a, b, c, d, m, n, p}, x]
-
Int[((a_.) + ArcCot[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Unintegrable[(d*x)^m*(a +
b*ArcCot[c*x^n])^p, x] /; FreeQ[{a, b, c, d, m, n, p}, x]
-
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[(-(a + b*ArcTan[c*x])^p)*(
Log[2/(1 + e*(x/d))]/e), x] + Simp[b*c*(p/e) Int[(a + b*ArcTan[c*x])^(p - 1)*(Log[2/(1 + e*(x/d))]/(1 + c^2*
x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d^2 + e^2, 0]
-
Int[((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^(p_.)/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[(-(a + b*ArcCot[c*x])^p)*(
Log[2/(1 + e*(x/d))]/e), x] - Simp[b*c*(p/e) Int[(a + b*ArcCot[c*x])^(p - 1)*(Log[2/(1 + e*(x/d))]/(1 + c^2*
x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d^2 + e^2, 0]
-
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[(-(a + b*ArcTan[c*x]))*(Log[2/(1
- I*c*x)]/e), x] + (Simp[(a + b*ArcTan[c*x])*(Log[2*c*((d + e*x)/((c*d + I*e)*(1 - I*c*x)))]/e), x] + Simp[b*
(c/e) Int[Log[2/(1 - I*c*x)]/(1 + c^2*x^2), x], x] - Simp[b*(c/e) Int[Log[2*c*((d + e*x)/((c*d + I*e)*(1 -
I*c*x)))]/(1 + c^2*x^2), x], x]) /; FreeQ[{a, b, c, d, e}, x] && NeQ[c^2*d^2 + e^2, 0]
-
Int[((a_.) + ArcCot[(c_.)*(x_)]*(b_.))/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[(-(a + b*ArcCot[c*x]))*(Log[2/(1
- I*c*x)]/e), x] + (Simp[(a + b*ArcCot[c*x])*(Log[2*c*((d + e*x)/((c*d + I*e)*(1 - I*c*x)))]/e), x] - Simp[b*
(c/e) Int[Log[2/(1 - I*c*x)]/(1 + c^2*x^2), x], x] + Simp[b*(c/e) Int[Log[2*c*((d + e*x)/((c*d + I*e)*(1 -
I*c*x)))]/(1 + c^2*x^2), x], x]) /; FreeQ[{a, b, c, d, e}, x] && NeQ[c^2*d^2 + e^2, 0]
-
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^2/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[(-(a + b*ArcTan[c*x])^2)*(Log[
2/(1 - I*c*x)]/e), x] + (Simp[(a + b*ArcTan[c*x])^2*(Log[2*c*((d + e*x)/((c*d + I*e)*(1 - I*c*x)))]/e), x] + S
imp[I*b*(a + b*ArcTan[c*x])*(PolyLog[2, 1 - 2/(1 - I*c*x)]/e), x] - Simp[I*b*(a + b*ArcTan[c*x])*(PolyLog[2, 1
- 2*c*((d + e*x)/((c*d + I*e)*(1 - I*c*x)))]/e), x] - Simp[b^2*(PolyLog[3, 1 - 2/(1 - I*c*x)]/(2*e)), x] + Si
mp[b^2*(PolyLog[3, 1 - 2*c*((d + e*x)/((c*d + I*e)*(1 - I*c*x)))]/(2*e)), x]) /; FreeQ[{a, b, c, d, e}, x] &&
NeQ[c^2*d^2 + e^2, 0]
-
Int[((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^2/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[(-(a + b*ArcCot[c*x])^2)*(Log[
2/(1 - I*c*x)]/e), x] + (Simp[(a + b*ArcCot[c*x])^2*(Log[2*c*((d + e*x)/((c*d + I*e)*(1 - I*c*x)))]/e), x] - S
imp[I*b*(a + b*ArcCot[c*x])*(PolyLog[2, 1 - 2/(1 - I*c*x)]/e), x] + Simp[I*b*(a + b*ArcCot[c*x])*(PolyLog[2, 1
- 2*c*((d + e*x)/((c*d + I*e)*(1 - I*c*x)))]/e), x] - Simp[b^2*(PolyLog[3, 1 - 2/(1 - I*c*x)]/(2*e)), x] + Si
mp[b^2*(PolyLog[3, 1 - 2*c*((d + e*x)/((c*d + I*e)*(1 - I*c*x)))]/(2*e)), x]) /; FreeQ[{a, b, c, d, e}, x] &&
NeQ[c^2*d^2 + e^2, 0]
-
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^3/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[(-(a + b*ArcTan[c*x])^3)*(Log[
2/(1 - I*c*x)]/e), x] + (Simp[(a + b*ArcTan[c*x])^3*(Log[2*c*((d + e*x)/((c*d + I*e)*(1 - I*c*x)))]/e), x] + S
imp[3*I*b*(a + b*ArcTan[c*x])^2*(PolyLog[2, 1 - 2/(1 - I*c*x)]/(2*e)), x] - Simp[3*I*b*(a + b*ArcTan[c*x])^2*(
PolyLog[2, 1 - 2*c*((d + e*x)/((c*d + I*e)*(1 - I*c*x)))]/(2*e)), x] - Simp[3*b^2*(a + b*ArcTan[c*x])*(PolyLog
[3, 1 - 2/(1 - I*c*x)]/(2*e)), x] + Simp[3*b^2*(a + b*ArcTan[c*x])*(PolyLog[3, 1 - 2*c*((d + e*x)/((c*d + I*e)
*(1 - I*c*x)))]/(2*e)), x] - Simp[3*I*b^3*(PolyLog[4, 1 - 2/(1 - I*c*x)]/(4*e)), x] + Simp[3*I*b^3*(PolyLog[4,
1 - 2*c*((d + e*x)/((c*d + I*e)*(1 - I*c*x)))]/(4*e)), x]) /; FreeQ[{a, b, c, d, e}, x] && NeQ[c^2*d^2 + e^2,
0]
-
Int[((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^3/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[(-(a + b*ArcCot[c*x])^3)*(Log[
2/(1 - I*c*x)]/e), x] + (Simp[(a + b*ArcCot[c*x])^3*(Log[2*c*((d + e*x)/((c*d + I*e)*(1 - I*c*x)))]/e), x] - S
imp[3*I*b*(a + b*ArcCot[c*x])^2*(PolyLog[2, 1 - 2/(1 - I*c*x)]/(2*e)), x] + Simp[3*I*b*(a + b*ArcCot[c*x])^2*(
PolyLog[2, 1 - 2*c*((d + e*x)/((c*d + I*e)*(1 - I*c*x)))]/(2*e)), x] - Simp[3*b^2*(a + b*ArcCot[c*x])*(PolyLog
[3, 1 - 2/(1 - I*c*x)]/(2*e)), x] + Simp[3*b^2*(a + b*ArcCot[c*x])*(PolyLog[3, 1 - 2*c*((d + e*x)/((c*d + I*e)
*(1 - I*c*x)))]/(2*e)), x] + Simp[3*I*b^3*(PolyLog[4, 1 - 2/(1 - I*c*x)]/(4*e)), x] - Simp[3*I*b^3*(PolyLog[4,
1 - 2*c*((d + e*x)/((c*d + I*e)*(1 - I*c*x)))]/(4*e)), x]) /; FreeQ[{a, b, c, d, e}, x] && NeQ[c^2*d^2 + e^2,
0]
-
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))*((d_) + (e_.)*(x_))^(q_.), x_Symbol] :> Simp[(d + e*x)^(q + 1)*((a + b*
ArcTan[c*x])/(e*(q + 1))), x] - Simp[b*(c/(e*(q + 1))) Int[(d + e*x)^(q + 1)/(1 + c^2*x^2), x], x] /; FreeQ[
{a, b, c, d, e, q}, x] && NeQ[q, -1]
-
Int[((a_.) + ArcCot[(c_.)*(x_)]*(b_.))*((d_) + (e_.)*(x_))^(q_.), x_Symbol] :> Simp[(d + e*x)^(q + 1)*((a + b*
ArcCot[c*x])/(e*(q + 1))), x] + Simp[b*(c/(e*(q + 1))) Int[(d + e*x)^(q + 1)/(1 + c^2*x^2), x], x] /; FreeQ[
{a, b, c, d, e, q}, x] && NeQ[q, -1]
-
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_)*((d_) + (e_.)*(x_))^(q_.), x_Symbol] :> Simp[(d + e*x)^(q + 1)*((a
+ b*ArcTan[c*x])^p/(e*(q + 1))), x] - Simp[b*c*(p/(e*(q + 1))) Int[ExpandIntegrand[(a + b*ArcTan[c*x])^(p -
1), (d + e*x)^(q + 1)/(1 + c^2*x^2), x], x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 1] && IntegerQ[q] &&
NeQ[q, -1]
-
Int[((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^(p_)*((d_) + (e_.)*(x_))^(q_.), x_Symbol] :> Simp[(d + e*x)^(q + 1)*((a
+ b*ArcCot[c*x])^p/(e*(q + 1))), x] + Simp[b*c*(p/(e*(q + 1))) Int[ExpandIntegrand[(a + b*ArcCot[c*x])^(p -
1), (d + e*x)^(q + 1)/(1 + c^2*x^2), x], x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 1] && IntegerQ[q] &&
NeQ[q, -1]
-
Int[((a_.) + ArcTan[(c_.)*(x_)^(n_)]*(b_.))/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[Log[d + e*x]*((a + b*ArcTan
[c*x^n])/e), x] - Simp[b*c*(n/e) Int[x^(n - 1)*(Log[d + e*x]/(1 + c^2*x^(2*n))), x], x] /; FreeQ[{a, b, c, d
, e, n}, x] && IntegerQ[n]
-
Int[((a_.) + ArcCot[(c_.)*(x_)^(n_)]*(b_.))/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[Log[d + e*x]*((a + b*ArcCot
[c*x^n])/e), x] + Simp[b*c*(n/e) Int[x^(n - 1)*(Log[d + e*x]/(1 + c^2*x^(2*n))), x], x] /; FreeQ[{a, b, c, d
, e, n}, x] && IntegerQ[n]
-
Int[((a_.) + ArcTan[(c_.)*(x_)^(n_)]*(b_.))/((d_) + (e_.)*(x_)), x_Symbol] :> With[{k = Denominator[n]}, Simp[
k Subst[Int[x^(k - 1)*((a + b*ArcTan[c*x^(k*n)])/(d + e*x^k)), x], x, x^(1/k)], x]] /; FreeQ[{a, b, c, d, e}
, x] && FractionQ[n]
-
Int[((a_.) + ArcCot[(c_.)*(x_)^(n_)]*(b_.))/((d_) + (e_.)*(x_)), x_Symbol] :> With[{k = Denominator[n]}, Simp[
k Subst[Int[x^(k - 1)*((a + b*ArcCot[c*x^(k*n)])/(d + e*x^k)), x], x, x^(1/k)], x]] /; FreeQ[{a, b, c, d, e}
, x] && FractionQ[n]
-
Int[((a_.) + ArcTan[(c_.)*(x_)^(n_)]*(b_.))*((d_) + (e_.)*(x_))^(m_.), x_Symbol] :> Simp[(d + e*x)^(m + 1)*((a
+ b*ArcTan[c*x^n])/(e*(m + 1))), x] - Simp[b*c*(n/(e*(m + 1))) Int[x^(n - 1)*((d + e*x)^(m + 1)/(1 + c^2*x^
(2*n))), x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && NeQ[m, -1]
-
Int[((a_.) + ArcCot[(c_.)*(x_)^(n_)]*(b_.))*((d_) + (e_.)*(x_))^(m_.), x_Symbol] :> Simp[(d + e*x)^(m + 1)*((a
+ b*ArcCot[c*x^n])/(e*(m + 1))), x] + Simp[b*c*(n/(e*(m + 1))) Int[x^(n - 1)*((d + e*x)^(m + 1)/(1 + c^2*x^
(2*n))), x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && NeQ[m, -1]
-
Int[((a_.) + ArcTan[(c_.)*(x_)^(n_)]*(b_.))^(p_)*((d_) + (e_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(
a + b*ArcTan[c*x^n])^p, (d + e*x)^m, x], x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[p, 1] && IGtQ[m, 0]
-
Int[((a_.) + ArcCot[(c_.)*(x_)^(n_)]*(b_.))^(p_)*((d_) + (e_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(
a + b*ArcCot[c*x^n])^p, (d + e*x)^m, x], x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[p, 1] && IGtQ[m, 0]
-
Int[((a_.) + ArcTan[(c_.)*(x_)^(n_)]*(b_.))^(p_.)*((d_.) + (e_.)*(x_))^(m_.), x_Symbol] :> Unintegrable[(d + e
*x)^m*(a + b*ArcTan[c*x^n])^p, x] /; FreeQ[{a, b, c, d, e, m, n, p}, x]
-
Int[((a_.) + ArcCot[(c_.)*(x_)^(n_)]*(b_.))^(p_.)*((d_.) + (e_.)*(x_))^(m_.), x_Symbol] :> Unintegrable[(d + e
*x)^m*(a + b*ArcCot[c*x^n])^p, x] /; FreeQ[{a, b, c, d, e, m, n, p}, x]
-
Int[(((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_.))/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[f/e
Int[(f*x)^(m - 1)*(a + b*ArcTan[c*x])^p, x], x] - Simp[d*(f/e) Int[(f*x)^(m - 1)*((a + b*ArcTan[c*x])^p/(d
+ e*x)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[p, 0] && EqQ[c^2*d^2 + e^2, 0] && GtQ[m, 0]
-
Int[(((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_.))/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[f/e
Int[(f*x)^(m - 1)*(a + b*ArcCot[c*x])^p, x], x] - Simp[d*(f/e) Int[(f*x)^(m - 1)*((a + b*ArcCot[c*x])^p/(d
+ e*x)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[p, 0] && EqQ[c^2*d^2 + e^2, 0] && GtQ[m, 0]
-
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)/((x_)*((d_) + (e_.)*(x_))), x_Symbol] :> Simp[(a + b*ArcTan[c*x])
^p*(Log[2 - 2/(1 + e*(x/d))]/d), x] - Simp[b*c*(p/d) Int[(a + b*ArcTan[c*x])^(p - 1)*(Log[2 - 2/(1 + e*(x/d)
)]/(1 + c^2*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d^2 + e^2, 0]
-
Int[((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^(p_.)/((x_)*((d_) + (e_.)*(x_))), x_Symbol] :> Simp[(a + b*ArcCot[c*x])
^p*(Log[2 - 2/(1 + e*(x/d))]/d), x] + Simp[b*c*(p/d) Int[(a + b*ArcCot[c*x])^(p - 1)*(Log[2 - 2/(1 + e*(x/d)
)]/(1 + c^2*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d^2 + e^2, 0]
-
Int[(((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_))/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[1/d
Int[(f*x)^m*(a + b*ArcTan[c*x])^p, x], x] - Simp[e/(d*f) Int[(f*x)^(m + 1)*((a + b*ArcTan[c*x])^p/(d + e*x))
, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[p, 0] && EqQ[c^2*d^2 + e^2, 0] && LtQ[m, -1]
-
Int[(((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_))/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[1/d
Int[(f*x)^m*(a + b*ArcCot[c*x])^p, x], x] - Simp[e/(d*f) Int[(f*x)^(m + 1)*((a + b*ArcCot[c*x])^p/(d + e*x))
, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[p, 0] && EqQ[c^2*d^2 + e^2, 0] && LtQ[m, -1]
-
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_.)*((d_.) + (e_.)*(x_))^(q_.), x_Symbol] :> With[{u = I
ntHide[(f*x)^m*(d + e*x)^q, x]}, Simp[(a + b*ArcTan[c*x]) u, x] - Simp[b*c Int[SimplifyIntegrand[u/(1 + c^
2*x^2), x], x], x]] /; FreeQ[{a, b, c, d, e, f, q}, x] && NeQ[q, -1] && IntegerQ[2*m] && ((IGtQ[m, 0] && IGtQ[
q, 0]) || (ILtQ[m + q + 1, 0] && LtQ[m*q, 0]))
-
Int[((a_.) + ArcCot[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_.)*((d_.) + (e_.)*(x_))^(q_.), x_Symbol] :> With[{u = I
ntHide[(f*x)^m*(d + e*x)^q, x]}, Simp[(a + b*ArcCot[c*x]) u, x] + Simp[b*c Int[SimplifyIntegrand[u/(1 + c^
2*x^2), x], x], x]] /; FreeQ[{a, b, c, d, e, f, q}, x] && NeQ[q, -1] && IntegerQ[2*m] && ((IGtQ[m, 0] && IGtQ[
q, 0]) || (ILtQ[m + q + 1, 0] && LtQ[m*q, 0]))
-
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_)*((f_.)*(x_))^(m_.)*((d_.) + (e_.)*(x_))^(q_), x_Symbol] :> With[{u
= IntHide[(f*x)^m*(d + e*x)^q, x]}, Simp[(a + b*ArcTan[c*x])^p u, x] - Simp[b*c*p Int[ExpandIntegrand[(a
+ b*ArcTan[c*x])^(p - 1), u/(1 + c^2*x^2), x], x], x]] /; FreeQ[{a, b, c, d, e, f, q}, x] && IGtQ[p, 1] && EqQ
[c^2*d^2 + e^2, 0] && IntegersQ[m, q] && NeQ[m, -1] && NeQ[q, -1] && ILtQ[m + q + 1, 0] && LtQ[m*q, 0]
-
Int[((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^(p_)*((f_.)*(x_))^(m_.)*((d_.) + (e_.)*(x_))^(q_), x_Symbol] :> With[{u
= IntHide[(f*x)^m*(d + e*x)^q, x]}, Simp[(a + b*ArcCot[c*x])^p u, x] + Simp[b*c*p Int[ExpandIntegrand[(a
+ b*ArcCot[c*x])^(p - 1), u/(1 + c^2*x^2), x], x], x]] /; FreeQ[{a, b, c, d, e, f, q}, x] && IGtQ[p, 1] && EqQ
[c^2*d^2 + e^2, 0] && IntegersQ[m, q] && NeQ[m, -1] && NeQ[q, -1] && ILtQ[m + q + 1, 0] && LtQ[m*q, 0]
-
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_))^(q_.), x_Symbol] :> Int[Ex
pandIntegrand[(a + b*ArcTan[c*x])^p, (f*x)^m*(d + e*x)^q, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && IGtQ[p,
0] && IntegerQ[q] && (GtQ[q, 0] || NeQ[a, 0] || IntegerQ[m])
-
Int[((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_))^(q_.), x_Symbol] :> Int[Ex
pandIntegrand[(a + b*ArcCot[c*x])^p, (f*x)^m*(d + e*x)^q, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && IGtQ[p,
0] && IntegerQ[q] && (GtQ[q, 0] || NeQ[a, 0] || IntegerQ[m])
-
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Simp[(-b)*((d + e*x^2)^q/(2*c
*q*(2*q + 1))), x] + (Simp[x*(d + e*x^2)^q*((a + b*ArcTan[c*x])/(2*q + 1)), x] + Simp[2*d*(q/(2*q + 1)) Int[
(d + e*x^2)^(q - 1)*(a + b*ArcTan[c*x]), x], x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && GtQ[q, 0]
-
Int[((a_.) + ArcCot[(c_.)*(x_)]*(b_.))*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Simp[b*((d + e*x^2)^q/(2*c*q*
(2*q + 1))), x] + (Simp[x*(d + e*x^2)^q*((a + b*ArcCot[c*x])/(2*q + 1)), x] + Simp[2*d*(q/(2*q + 1)) Int[(d
+ e*x^2)^(q - 1)*(a + b*ArcCot[c*x]), x], x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && GtQ[q, 0]
-
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_)*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Simp[(-b)*p*(d + e*x^2)^
q*((a + b*ArcTan[c*x])^(p - 1)/(2*c*q*(2*q + 1))), x] + (Simp[x*(d + e*x^2)^q*((a + b*ArcTan[c*x])^p/(2*q + 1)
), x] + Simp[2*d*(q/(2*q + 1)) Int[(d + e*x^2)^(q - 1)*(a + b*ArcTan[c*x])^p, x], x] + Simp[b^2*d*p*((p - 1)
/(2*q*(2*q + 1))) Int[(d + e*x^2)^(q - 1)*(a + b*ArcTan[c*x])^(p - 2), x], x]) /; FreeQ[{a, b, c, d, e}, x]
&& EqQ[e, c^2*d] && GtQ[q, 0] && GtQ[p, 1]
-
Int[((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^(p_)*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Simp[b*p*(d + e*x^2)^q*(
(a + b*ArcCot[c*x])^(p - 1)/(2*c*q*(2*q + 1))), x] + (Simp[x*(d + e*x^2)^q*((a + b*ArcCot[c*x])^p/(2*q + 1)),
x] + Simp[2*d*(q/(2*q + 1)) Int[(d + e*x^2)^(q - 1)*(a + b*ArcCot[c*x])^p, x], x] + Simp[b^2*d*p*((p - 1)/(2
*q*(2*q + 1))) Int[(d + e*x^2)^(q - 1)*(a + b*ArcCot[c*x])^(p - 2), x], x]) /; FreeQ[{a, b, c, d, e}, x] &&
EqQ[e, c^2*d] && GtQ[q, 0] && GtQ[p, 1]
-
Int[1/(((a_.) + ArcTan[(c_.)*(x_)]*(b_.))*((d_) + (e_.)*(x_)^2)), x_Symbol] :> Simp[Log[RemoveContent[a + b*Ar
cTan[c*x], x]]/(b*c*d), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d]
-
Int[1/(((a_.) + ArcCot[(c_.)*(x_)]*(b_.))*((d_) + (e_.)*(x_)^2)), x_Symbol] :> Simp[-Log[RemoveContent[a + b*A
rcCot[c*x], x]]/(b*c*d), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d]
-
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(a + b*ArcTan[c*x])^(p +
1)/(b*c*d*(p + 1)), x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[e, c^2*d] && NeQ[p, -1]
-
Int[((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^(p_.)/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[-(a + b*ArcCot[c*x])^(p
+ 1)/(b*c*d*(p + 1)), x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[e, c^2*d] && NeQ[p, -1]
-
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[-2*I*(a + b*ArcTan[c*x])*(
ArcTan[Sqrt[1 + I*c*x]/Sqrt[1 - I*c*x]]/(c*Sqrt[d])), x] + (Simp[I*b*(PolyLog[2, (-I)*(Sqrt[1 + I*c*x]/Sqrt[1
- I*c*x])]/(c*Sqrt[d])), x] - Simp[I*b*(PolyLog[2, I*(Sqrt[1 + I*c*x]/Sqrt[1 - I*c*x])]/(c*Sqrt[d])), x]) /; F
reeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && GtQ[d, 0]
-
Int[((a_.) + ArcCot[(c_.)*(x_)]*(b_.))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[-2*I*(a + b*ArcCot[c*x])*(
ArcTan[Sqrt[1 + I*c*x]/Sqrt[1 - I*c*x]]/(c*Sqrt[d])), x] + (-Simp[I*b*(PolyLog[2, (-I)*(Sqrt[1 + I*c*x]/Sqrt[1
- I*c*x])]/(c*Sqrt[d])), x] + Simp[I*b*(PolyLog[2, I*(Sqrt[1 + I*c*x]/Sqrt[1 - I*c*x])]/(c*Sqrt[d])), x]) /;
FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && GtQ[d, 0]
-
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[1/(c*Sqrt[d]) Subs
t[Int[(a + b*x)^p*Sec[x], x], x, ArcTan[c*x]], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && IGtQ[p, 0]
&& GtQ[d, 0]
-
Int[((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^(p_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(-x)*(Sqrt[1 + 1/(c^
2*x^2)]/Sqrt[d + e*x^2]) Subst[Int[(a + b*x)^p*Csc[x], x], x, ArcCot[c*x]], x] /; FreeQ[{a, b, c, d, e}, x]
&& EqQ[e, c^2*d] && IGtQ[p, 0] && GtQ[d, 0]
-
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[Sqrt[1 + c^2*x^2]/Sq
rt[d + e*x^2] Int[(a + b*ArcTan[c*x])^p/Sqrt[1 + c^2*x^2], x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2
*d] && IGtQ[p, 0] && !GtQ[d, 0]
-
Int[((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^(p_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[Sqrt[1 + c^2*x^2]/Sq
rt[d + e*x^2] Int[(a + b*ArcCot[c*x])^p/Sqrt[1 + c^2*x^2], x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2
*d] && IGtQ[p, 0] && !GtQ[d, 0]
-
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)/((d_) + (e_.)*(x_)^2)^2, x_Symbol] :> Simp[x*((a + b*ArcTan[c*x])
^p/(2*d*(d + e*x^2))), x] + (Simp[(a + b*ArcTan[c*x])^(p + 1)/(2*b*c*d^2*(p + 1)), x] - Simp[b*c*(p/2) Int[x
*((a + b*ArcTan[c*x])^(p - 1)/(d + e*x^2)^2), x], x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && GtQ[p,
0]
-
Int[((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^(p_.)/((d_) + (e_.)*(x_)^2)^2, x_Symbol] :> Simp[x*((a + b*ArcCot[c*x])
^p/(2*d*(d + e*x^2))), x] + (-Simp[(a + b*ArcCot[c*x])^(p + 1)/(2*b*c*d^2*(p + 1)), x] + Simp[b*c*(p/2) Int[
x*((a + b*ArcCot[c*x])^(p - 1)/(d + e*x^2)^2), x], x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && GtQ[p,
0]
-
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))/((d_) + (e_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[b/(c*d*Sqrt[d + e*x^2]),
x] + Simp[x*((a + b*ArcTan[c*x])/(d*Sqrt[d + e*x^2])), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d]
-
Int[((a_.) + ArcCot[(c_.)*(x_)]*(b_.))/((d_) + (e_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[-b/(c*d*Sqrt[d + e*x^2])
, x] + Simp[x*((a + b*ArcCot[c*x])/(d*Sqrt[d + e*x^2])), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d]
-
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Simp[b*((d + e*x^2)^(q + 1)/(4
*c*d*(q + 1)^2)), x] + (-Simp[x*(d + e*x^2)^(q + 1)*((a + b*ArcTan[c*x])/(2*d*(q + 1))), x] + Simp[(2*q + 3)/(
2*d*(q + 1)) Int[(d + e*x^2)^(q + 1)*(a + b*ArcTan[c*x]), x], x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2
*d] && LtQ[q, -1] && NeQ[q, -3/2]
-
Int[((a_.) + ArcCot[(c_.)*(x_)]*(b_.))*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Simp[(-b)*((d + e*x^2)^(q + 1)
/(4*c*d*(q + 1)^2)), x] + (-Simp[x*(d + e*x^2)^(q + 1)*((a + b*ArcCot[c*x])/(2*d*(q + 1))), x] + Simp[(2*q + 3
)/(2*d*(q + 1)) Int[(d + e*x^2)^(q + 1)*(a + b*ArcCot[c*x]), x], x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[e,
c^2*d] && LtQ[q, -1] && NeQ[q, -3/2]
-
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_)/((d_) + (e_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[b*p*((a + b*ArcTan[
c*x])^(p - 1)/(c*d*Sqrt[d + e*x^2])), x] + (Simp[x*((a + b*ArcTan[c*x])^p/(d*Sqrt[d + e*x^2])), x] - Simp[b^2*
p*(p - 1) Int[(a + b*ArcTan[c*x])^(p - 2)/(d + e*x^2)^(3/2), x], x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[e,
c^2*d] && GtQ[p, 1]
-
Int[((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^(p_)/((d_) + (e_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(-b)*p*((a + b*ArcC
ot[c*x])^(p - 1)/(c*d*Sqrt[d + e*x^2])), x] + (Simp[x*((a + b*ArcCot[c*x])^p/(d*Sqrt[d + e*x^2])), x] - Simp[b
^2*p*(p - 1) Int[(a + b*ArcCot[c*x])^(p - 2)/(d + e*x^2)^(3/2), x], x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[
e, c^2*d] && GtQ[p, 1]
-
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Simp[b*p*(d + e*x^2)^(q +
1)*((a + b*ArcTan[c*x])^(p - 1)/(4*c*d*(q + 1)^2)), x] + (-Simp[x*(d + e*x^2)^(q + 1)*((a + b*ArcTan[c*x])^p/
(2*d*(q + 1))), x] + Simp[(2*q + 3)/(2*d*(q + 1)) Int[(d + e*x^2)^(q + 1)*(a + b*ArcTan[c*x])^p, x], x] - Si
mp[b^2*p*((p - 1)/(4*(q + 1)^2)) Int[(d + e*x^2)^q*(a + b*ArcTan[c*x])^(p - 2), x], x]) /; FreeQ[{a, b, c, d
, e}, x] && EqQ[e, c^2*d] && LtQ[q, -1] && GtQ[p, 1] && NeQ[q, -3/2]
-
Int[((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^(p_)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Simp[(-b)*p*(d + e*x^2)^(
q + 1)*((a + b*ArcCot[c*x])^(p - 1)/(4*c*d*(q + 1)^2)), x] + (-Simp[x*(d + e*x^2)^(q + 1)*((a + b*ArcCot[c*x])
^p/(2*d*(q + 1))), x] + Simp[(2*q + 3)/(2*d*(q + 1)) Int[(d + e*x^2)^(q + 1)*(a + b*ArcCot[c*x])^p, x], x] -
Simp[b^2*p*((p - 1)/(4*(q + 1)^2)) Int[(d + e*x^2)^q*(a + b*ArcCot[c*x])^(p - 2), x], x]) /; FreeQ[{a, b, c
, d, e}, x] && EqQ[e, c^2*d] && LtQ[q, -1] && GtQ[p, 1] && NeQ[q, -3/2]
-
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Simp[(d + e*x^2)^(q + 1)*
((a + b*ArcTan[c*x])^(p + 1)/(b*c*d*(p + 1))), x] - Simp[2*c*((q + 1)/(b*(p + 1))) Int[x*(d + e*x^2)^q*(a +
b*ArcTan[c*x])^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && LtQ[q, -1] && LtQ[p, -1]
-
Int[((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^(p_)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Simp[(-(d + e*x^2)^(q + 1
))*((a + b*ArcCot[c*x])^(p + 1)/(b*c*d*(p + 1))), x] + Simp[2*c*((q + 1)/(b*(p + 1))) Int[x*(d + e*x^2)^q*(a
+ b*ArcCot[c*x])^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && LtQ[q, -1] && LtQ[p, -1]
-
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Simp[d^q/c Subst[Int[(
a + b*x)^p/Cos[x]^(2*(q + 1)), x], x, ArcTan[c*x]], x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[e, c^2*d] && ILt
Q[2*(q + 1), 0] && (IntegerQ[q] || GtQ[d, 0])
-
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Simp[d^(q + 1/2)*(Sqrt[1
+ c^2*x^2]/Sqrt[d + e*x^2]) Int[(1 + c^2*x^2)^q*(a + b*ArcTan[c*x])^p, x], x] /; FreeQ[{a, b, c, d, e, p},
x] && EqQ[e, c^2*d] && ILtQ[2*(q + 1), 0] && !(IntegerQ[q] || GtQ[d, 0])
-
Int[((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^(p_.)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Simp[-d^q/c Subst[Int[
(a + b*x)^p/Sin[x]^(2*(q + 1)), x], x, ArcCot[c*x]], x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[e, c^2*d] && IL
tQ[2*(q + 1), 0] && IntegerQ[q]
-
Int[((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^(p_.)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Simp[(-d^(q + 1/2))*x*(S
qrt[(1 + c^2*x^2)/(c^2*x^2)]/Sqrt[d + e*x^2]) Subst[Int[(a + b*x)^p/Sin[x]^(2*(q + 1)), x], x, ArcCot[c*x]],
x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[e, c^2*d] && ILtQ[2*(q + 1), 0] && !IntegerQ[q]
-
Int[ArcTan[(c_.)*(x_)]/((d_.) + (e_.)*(x_)^2), x_Symbol] :> Simp[I/2 Int[Log[1 - I*c*x]/(d + e*x^2), x], x]
- Simp[I/2 Int[Log[1 + I*c*x]/(d + e*x^2), x], x] /; FreeQ[{c, d, e}, x]
-
Int[ArcCot[(c_.)*(x_)]/((d_.) + (e_.)*(x_)^2), x_Symbol] :> Simp[I/2 Int[Log[1 - I/(c*x)]/(d + e*x^2), x], x
] - Simp[I/2 Int[Log[1 + I/(c*x)]/(d + e*x^2), x], x] /; FreeQ[{c, d, e}, x]
-
Int[(ArcTan[(c_.)*(x_)]*(b_.) + (a_))/((d_.) + (e_.)*(x_)^2), x_Symbol] :> Simp[a Int[1/(d + e*x^2), x], x]
+ Simp[b Int[ArcTan[c*x]/(d + e*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x]
-
Int[(ArcCot[(c_.)*(x_)]*(b_.) + (a_))/((d_.) + (e_.)*(x_)^2), x_Symbol] :> Simp[a Int[1/(d + e*x^2), x], x]
+ Simp[b Int[ArcCot[c*x]/(d + e*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x]
-
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))*((d_.) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> With[{u = IntHide[(d + e*x^2
)^q, x]}, Simp[(a + b*ArcTan[c*x]) u, x] - Simp[b*c Int[SimplifyIntegrand[u/(1 + c^2*x^2), x], x], x]] /;
FreeQ[{a, b, c, d, e}, x] && (IntegerQ[q] || ILtQ[q + 1/2, 0])
-
Int[((a_.) + ArcCot[(c_.)*(x_)]*(b_.))*((d_.) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> With[{u = IntHide[(d + e*x^2
)^q, x]}, Simp[(a + b*ArcCot[c*x]) u, x] + Simp[b*c Int[SimplifyIntegrand[u/(1 + c^2*x^2), x], x], x]] /;
FreeQ[{a, b, c, d, e}, x] && (IntegerQ[q] || ILtQ[q + 1/2, 0])
-
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Int[ExpandIntegrand[(a
+ b*ArcTan[c*x])^p, (d + e*x^2)^q, x], x] /; FreeQ[{a, b, c, d, e}, x] && IntegerQ[q] && IGtQ[p, 0]
-
Int[((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^(p_.)*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Int[ExpandIntegrand[(a
+ b*ArcCot[c*x])^p, (d + e*x^2)^q, x], x] /; FreeQ[{a, b, c, d, e}, x] && IntegerQ[q] && IGtQ[p, 0]
-
Int[(((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[f^2/
e Int[(f*x)^(m - 2)*(a + b*ArcTan[c*x])^p, x], x] - Simp[d*(f^2/e) Int[(f*x)^(m - 2)*((a + b*ArcTan[c*x])^
p/(d + e*x^2)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[p, 0] && GtQ[m, 1]
-
Int[(((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[f^2/
e Int[(f*x)^(m - 2)*(a + b*ArcCot[c*x])^p, x], x] - Simp[d*(f^2/e) Int[(f*x)^(m - 2)*((a + b*ArcCot[c*x])^
p/(d + e*x^2)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[p, 0] && GtQ[m, 1]
-
Int[(((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[1/d
Int[(f*x)^m*(a + b*ArcTan[c*x])^p, x], x] - Simp[e/(d*f^2) Int[(f*x)^(m + 2)*((a + b*ArcTan[c*x])^p/(d + e
*x^2)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[p, 0] && LtQ[m, -1]
-
Int[(((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[1/d
Int[(f*x)^m*(a + b*ArcCot[c*x])^p, x], x] - Simp[e/(d*f^2) Int[(f*x)^(m + 2)*((a + b*ArcCot[c*x])^p/(d + e
*x^2)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[p, 0] && LtQ[m, -1]
-
Int[(((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*(x_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(-I)*((a + b*ArcT
an[c*x])^(p + 1)/(b*e*(p + 1))), x] - Simp[1/(c*d) Int[(a + b*ArcTan[c*x])^p/(I - c*x), x], x] /; FreeQ[{a,
b, c, d, e}, x] && EqQ[e, c^2*d] && IGtQ[p, 0]
-
Int[(((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^(p_.)*(x_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[I*((a + b*ArcCot[
c*x])^(p + 1)/(b*e*(p + 1))), x] - Simp[1/(c*d) Int[(a + b*ArcCot[c*x])^p/(I - c*x), x], x] /; FreeQ[{a, b,
c, d, e}, x] && EqQ[e, c^2*d] && IGtQ[p, 0]
-
Int[(((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_)*(x_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[x*((a + b*ArcTan[c
*x])^(p + 1)/(b*c*d*(p + 1))), x] - Simp[1/(b*c*d*(p + 1)) Int[(a + b*ArcTan[c*x])^(p + 1), x], x] /; FreeQ[
{a, b, c, d, e}, x] && EqQ[e, c^2*d] && !IGtQ[p, 0] && NeQ[p, -1]
-
Int[(((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^(p_)*(x_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(-x)*((a + b*ArcCo
t[c*x])^(p + 1)/(b*c*d*(p + 1))), x] + Simp[1/(b*c*d*(p + 1)) Int[(a + b*ArcCot[c*x])^(p + 1), x], x] /; Fre
eQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && !IGtQ[p, 0] && NeQ[p, -1]
-
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)/((x_)*((d_) + (e_.)*(x_)^2)), x_Symbol] :> Simp[(-I)*((a + b*ArcT
an[c*x])^(p + 1)/(b*d*(p + 1))), x] + Simp[I/d Int[(a + b*ArcTan[c*x])^p/(x*(I + c*x)), x], x] /; FreeQ[{a,
b, c, d, e}, x] && EqQ[e, c^2*d] && GtQ[p, 0]
-
Int[((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^(p_.)/((x_)*((d_) + (e_.)*(x_)^2)), x_Symbol] :> Simp[I*((a + b*ArcCot[
c*x])^(p + 1)/(b*d*(p + 1))), x] + Simp[I/d Int[(a + b*ArcCot[c*x])^p/(x*(I + c*x)), x], x] /; FreeQ[{a, b,
c, d, e}, x] && EqQ[e, c^2*d] && GtQ[p, 0]
-
Int[(((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_)*((f_.)*(x_))^(m_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(f*x)
^m*((a + b*ArcTan[c*x])^(p + 1)/(b*c*d*(p + 1))), x] - Simp[f*(m/(b*c*d*(p + 1))) Int[(f*x)^(m - 1)*(a + b*A
rcTan[c*x])^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[e, c^2*d] && LtQ[p, -1]
-
Int[(((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^(p_)*((f_.)*(x_))^(m_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(-(f*
x)^m)*((a + b*ArcCot[c*x])^(p + 1)/(b*c*d*(p + 1))), x] + Simp[f*(m/(b*c*d*(p + 1))) Int[(f*x)^(m - 1)*(a +
b*ArcCot[c*x])^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[e, c^2*d] && LtQ[p, -1]
-
Int[(((a_.) + ArcTan[(c_.)*(x_)]*(b_.))*(x_)^(m_.))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Int[ExpandIntegrand[a
+ b*ArcTan[c*x], x^m/(d + e*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] && IntegerQ[m] && !(EqQ[m, 1] && NeQ[a,
0])
-
Int[(((a_.) + ArcCot[(c_.)*(x_)]*(b_.))*(x_)^(m_.))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Int[ExpandIntegrand[a
+ b*ArcCot[c*x], x^m/(d + e*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] && IntegerQ[m] && !(EqQ[m, 1] && NeQ[a,
0])
-
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*(x_)*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Simp[(d + e*x^2)^(
q + 1)*((a + b*ArcTan[c*x])^p/(2*e*(q + 1))), x] - Simp[b*(p/(2*c*(q + 1))) Int[(d + e*x^2)^q*(a + b*ArcTan[
c*x])^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, q}, x] && EqQ[e, c^2*d] && GtQ[p, 0] && NeQ[q, -1]
-
Int[((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^(p_.)*(x_)*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Simp[(d + e*x^2)^(
q + 1)*((a + b*ArcCot[c*x])^p/(2*e*(q + 1))), x] + Simp[b*(p/(2*c*(q + 1))) Int[(d + e*x^2)^q*(a + b*ArcCot[
c*x])^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, q}, x] && EqQ[e, c^2*d] && GtQ[p, 0] && NeQ[q, -1]
-
Int[(((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_)*(x_))/((d_) + (e_.)*(x_)^2)^2, x_Symbol] :> Simp[x*((a + b*ArcTan
[c*x])^(p + 1)/(b*c*d*(p + 1)*(d + e*x^2))), x] + (-Simp[(1 - c^2*x^2)*((a + b*ArcTan[c*x])^(p + 2)/(b^2*e*(p
+ 1)*(p + 2)*(d + e*x^2))), x] - Simp[4/(b^2*(p + 1)*(p + 2)) Int[x*((a + b*ArcTan[c*x])^(p + 2)/(d + e*x^2)
^2), x], x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && LtQ[p, -1] && NeQ[p, -2]
-
Int[(((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^(p_)*(x_))/((d_) + (e_.)*(x_)^2)^2, x_Symbol] :> Simp[(-x)*((a + b*Arc
Cot[c*x])^(p + 1)/(b*c*d*(p + 1)*(d + e*x^2))), x] + (-Simp[(1 - c^2*x^2)*((a + b*ArcCot[c*x])^(p + 2)/(b^2*e*
(p + 1)*(p + 2)*(d + e*x^2))), x] - Simp[4/(b^2*(p + 1)*(p + 2)) Int[x*((a + b*ArcCot[c*x])^(p + 2)/(d + e*x
^2)^2), x], x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && LtQ[p, -1] && NeQ[p, -2]
-
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))*(x_)^2*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Simp[(-b)*((d + e*x^2)^
(q + 1)/(4*c^3*d*(q + 1)^2)), x] + (Simp[x*(d + e*x^2)^(q + 1)*((a + b*ArcTan[c*x])/(2*c^2*d*(q + 1))), x] - S
imp[1/(2*c^2*d*(q + 1)) Int[(d + e*x^2)^(q + 1)*(a + b*ArcTan[c*x]), x], x]) /; FreeQ[{a, b, c, d, e}, x] &&
EqQ[e, c^2*d] && LtQ[q, -1] && NeQ[q, -5/2]
-
Int[((a_.) + ArcCot[(c_.)*(x_)]*(b_.))*(x_)^2*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Simp[b*((d + e*x^2)^(q
+ 1)/(4*c^3*d*(q + 1)^2)), x] + (Simp[x*(d + e*x^2)^(q + 1)*((a + b*ArcCot[c*x])/(2*c^2*d*(q + 1))), x] - Simp
[1/(2*c^2*d*(q + 1)) Int[(d + e*x^2)^(q + 1)*(a + b*ArcCot[c*x]), x], x]) /; FreeQ[{a, b, c, d, e}, x] && Eq
Q[e, c^2*d] && LtQ[q, -1] && NeQ[q, -5/2]
-
Int[(((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*(x_)^2)/((d_) + (e_.)*(x_)^2)^2, x_Symbol] :> Simp[(a + b*ArcTan
[c*x])^(p + 1)/(2*b*c^3*d^2*(p + 1)), x] + (-Simp[x*((a + b*ArcTan[c*x])^p/(2*c^2*d*(d + e*x^2))), x] + Simp[b
*(p/(2*c)) Int[x*((a + b*ArcTan[c*x])^(p - 1)/(d + e*x^2)^2), x], x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[e,
c^2*d] && GtQ[p, 0]
-
Int[(((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^(p_.)*(x_)^2)/((d_) + (e_.)*(x_)^2)^2, x_Symbol] :> Simp[-(a + b*ArcCo
t[c*x])^(p + 1)/(2*b*c^3*d^2*(p + 1)), x] + (-Simp[x*((a + b*ArcCot[c*x])^p/(2*c^2*d*(d + e*x^2))), x] - Simp[
b*(p/(2*c)) Int[x*((a + b*ArcCot[c*x])^(p - 1)/(d + e*x^2)^2), x], x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[e
, c^2*d] && GtQ[p, 0]
-
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Simp[b*(f*x)
^m*((d + e*x^2)^(q + 1)/(c*d*m^2)), x] + (-Simp[f*(f*x)^(m - 1)*(d + e*x^2)^(q + 1)*((a + b*ArcTan[c*x])/(c^2*
d*m)), x] + Simp[f^2*((m - 1)/(c^2*d*m)) Int[(f*x)^(m - 2)*(d + e*x^2)^(q + 1)*(a + b*ArcTan[c*x]), x], x])
/; FreeQ[{a, b, c, d, e, f}, x] && EqQ[e, c^2*d] && EqQ[m + 2*q + 2, 0] && LtQ[q, -1]
-
Int[((a_.) + ArcCot[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Simp[(-b)*(f
*x)^m*((d + e*x^2)^(q + 1)/(c*d*m^2)), x] + (-Simp[f*(f*x)^(m - 1)*(d + e*x^2)^(q + 1)*((a + b*ArcCot[c*x])/(c
^2*d*m)), x] + Simp[f^2*((m - 1)/(c^2*d*m)) Int[(f*x)^(m - 2)*(d + e*x^2)^(q + 1)*(a + b*ArcCot[c*x]), x], x
]) /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[e, c^2*d] && EqQ[m + 2*q + 2, 0] && LtQ[q, -1]
-
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Simp[b*
p*(f*x)^m*(d + e*x^2)^(q + 1)*((a + b*ArcTan[c*x])^(p - 1)/(c*d*m^2)), x] + (-Simp[f*(f*x)^(m - 1)*(d + e*x^2)
^(q + 1)*((a + b*ArcTan[c*x])^p/(c^2*d*m)), x] + Simp[f^2*((m - 1)/(c^2*d*m)) Int[(f*x)^(m - 2)*(d + e*x^2)^
(q + 1)*(a + b*ArcTan[c*x])^p, x], x] - Simp[b^2*p*((p - 1)/m^2) Int[(f*x)^m*(d + e*x^2)^q*(a + b*ArcTan[c*x
])^(p - 2), x], x]) /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[e, c^2*d] && EqQ[m + 2*q + 2, 0] && LtQ[q, -1] &
& GtQ[p, 1]
-
Int[((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^(p_)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Simp[(-
b)*p*(f*x)^m*(d + e*x^2)^(q + 1)*((a + b*ArcCot[c*x])^(p - 1)/(c*d*m^2)), x] + (-Simp[f*(f*x)^(m - 1)*(d + e*x
^2)^(q + 1)*((a + b*ArcCot[c*x])^p/(c^2*d*m)), x] + Simp[f^2*((m - 1)/(c^2*d*m)) Int[(f*x)^(m - 2)*(d + e*x^
2)^(q + 1)*(a + b*ArcCot[c*x])^p, x], x] - Simp[b^2*p*((p - 1)/m^2) Int[(f*x)^m*(d + e*x^2)^q*(a + b*ArcCot[
c*x])^(p - 2), x], x]) /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[e, c^2*d] && EqQ[m + 2*q + 2, 0] && LtQ[q, -1
] && GtQ[p, 1]
-
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Simp[
(f*x)^m*(d + e*x^2)^(q + 1)*((a + b*ArcTan[c*x])^(p + 1)/(b*c*d*(p + 1))), x] - Simp[f*(m/(b*c*(p + 1))) Int
[(f*x)^(m - 1)*(d + e*x^2)^q*(a + b*ArcTan[c*x])^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f, m, q}, x] && EqQ[
e, c^2*d] && EqQ[m + 2*q + 2, 0] && LtQ[p, -1]
-
Int[((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^(p_)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Simp[
(-(f*x)^m)*(d + e*x^2)^(q + 1)*((a + b*ArcCot[c*x])^(p + 1)/(b*c*d*(p + 1))), x] + Simp[f*(m/(b*c*(p + 1)))
Int[(f*x)^(m - 1)*(d + e*x^2)^q*(a + b*ArcCot[c*x])^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f, m, q}, x] && E
qQ[e, c^2*d] && EqQ[m + 2*q + 2, 0] && LtQ[p, -1]
-
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Simp
[(f*x)^(m + 1)*(d + e*x^2)^(q + 1)*((a + b*ArcTan[c*x])^p/(d*f*(m + 1))), x] - Simp[b*c*(p/(f*(m + 1))) Int[
(f*x)^(m + 1)*(d + e*x^2)^q*(a + b*ArcTan[c*x])^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, f, m, q}, x] && EqQ[e
, c^2*d] && EqQ[m + 2*q + 3, 0] && GtQ[p, 0] && NeQ[m, -1]
-
Int[((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Simp
[(f*x)^(m + 1)*(d + e*x^2)^(q + 1)*((a + b*ArcCot[c*x])^p/(d*f*(m + 1))), x] + Simp[b*c*(p/(f*(m + 1))) Int[
(f*x)^(m + 1)*(d + e*x^2)^q*(a + b*ArcCot[c*x])^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, f, m, q}, x] && EqQ[e
, c^2*d] && EqQ[m + 2*q + 3, 0] && GtQ[p, 0] && NeQ[m, -1]
-
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_)*Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(f*x)^(m
+ 1)*Sqrt[d + e*x^2]*((a + b*ArcTan[c*x])/(f*(m + 2))), x] + (Simp[d/(m + 2) Int[(f*x)^m*((a + b*ArcTan[c*x
])/Sqrt[d + e*x^2]), x], x] - Simp[b*c*(d/(f*(m + 2))) Int[(f*x)^(m + 1)/Sqrt[d + e*x^2], x], x]) /; FreeQ[{
a, b, c, d, e, f, m}, x] && EqQ[e, c^2*d] && NeQ[m, -2]
-
Int[((a_.) + ArcCot[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_)*Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(f*x)^(m
+ 1)*Sqrt[d + e*x^2]*((a + b*ArcCot[c*x])/(f*(m + 2))), x] + (Simp[d/(m + 2) Int[(f*x)^m*((a + b*ArcCot[c*x
])/Sqrt[d + e*x^2]), x], x] + Simp[b*c*(d/(f*(m + 2))) Int[(f*x)^(m + 1)/Sqrt[d + e*x^2], x], x]) /; FreeQ[{
a, b, c, d, e, f, m}, x] && EqQ[e, c^2*d] && NeQ[m, -2]
-
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Int[Ex
pandIntegrand[(f*x)^m*(d + e*x^2)^q*(a + b*ArcTan[c*x])^p, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[e,
c^2*d] && IGtQ[p, 0] && IGtQ[q, 1] && (EqQ[p, 1] || IntegerQ[m])
-
Int[((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Int[Ex
pandIntegrand[(f*x)^m*(d + e*x^2)^q*(a + b*ArcCot[c*x])^p, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[e,
c^2*d] && IGtQ[p, 0] && IGtQ[q, 1] && (EqQ[p, 1] || IntegerQ[m])
-
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Simp[
d Int[(f*x)^m*(d + e*x^2)^(q - 1)*(a + b*ArcTan[c*x])^p, x], x] + Simp[c^2*(d/f^2) Int[(f*x)^(m + 2)*(d +
e*x^2)^(q - 1)*(a + b*ArcTan[c*x])^p, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[e, c^2*d] && GtQ[q, 0]
&& IGtQ[p, 0] && (RationalQ[m] || (EqQ[p, 1] && IntegerQ[q]))
-
Int[((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Simp[
d Int[(f*x)^m*(d + e*x^2)^(q - 1)*(a + b*ArcCot[c*x])^p, x], x] + Simp[c^2*(d/f^2) Int[(f*x)^(m + 2)*(d +
e*x^2)^(q - 1)*(a + b*ArcCot[c*x])^p, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[e, c^2*d] && GtQ[q, 0]
&& IGtQ[p, 0] && (RationalQ[m] || (EqQ[p, 1] && IntegerQ[q]))
-
Int[(((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[
f*(f*x)^(m - 1)*Sqrt[d + e*x^2]*((a + b*ArcTan[c*x])^p/(c^2*d*m)), x] + (-Simp[b*f*(p/(c*m)) Int[(f*x)^(m -
1)*((a + b*ArcTan[c*x])^(p - 1)/Sqrt[d + e*x^2]), x], x] - Simp[f^2*((m - 1)/(c^2*m)) Int[(f*x)^(m - 2)*((a
+ b*ArcTan[c*x])^p/Sqrt[d + e*x^2]), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[e, c^2*d] && GtQ[p, 0] &&
GtQ[m, 1]
-
Int[(((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[
f*(f*x)^(m - 1)*Sqrt[d + e*x^2]*((a + b*ArcCot[c*x])^p/(c^2*d*m)), x] + (Simp[b*f*(p/(c*m)) Int[(f*x)^(m - 1
)*((a + b*ArcCot[c*x])^(p - 1)/Sqrt[d + e*x^2]), x], x] - Simp[f^2*((m - 1)/(c^2*m)) Int[(f*x)^(m - 2)*((a +
b*ArcCot[c*x])^p/Sqrt[d + e*x^2]), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[e, c^2*d] && GtQ[p, 0] && G
tQ[m, 1]
-
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))/((x_)*Sqrt[(d_) + (e_.)*(x_)^2]), x_Symbol] :> Simp[(-2/Sqrt[d])*(a + b
*ArcTan[c*x])*ArcTanh[Sqrt[1 + I*c*x]/Sqrt[1 - I*c*x]], x] + (Simp[I*(b/Sqrt[d])*PolyLog[2, -Sqrt[1 + I*c*x]/S
qrt[1 - I*c*x]], x] - Simp[I*(b/Sqrt[d])*PolyLog[2, Sqrt[1 + I*c*x]/Sqrt[1 - I*c*x]], x]) /; FreeQ[{a, b, c, d
, e}, x] && EqQ[e, c^2*d] && GtQ[d, 0]
-
Int[((a_.) + ArcCot[(c_.)*(x_)]*(b_.))/((x_)*Sqrt[(d_) + (e_.)*(x_)^2]), x_Symbol] :> Simp[(-2/Sqrt[d])*(a + b
*ArcCot[c*x])*ArcTanh[Sqrt[1 + I*c*x]/Sqrt[1 - I*c*x]], x] + (-Simp[I*(b/Sqrt[d])*PolyLog[2, -Sqrt[1 + I*c*x]/
Sqrt[1 - I*c*x]], x] + Simp[I*(b/Sqrt[d])*PolyLog[2, Sqrt[1 + I*c*x]/Sqrt[1 - I*c*x]], x]) /; FreeQ[{a, b, c,
d, e}, x] && EqQ[e, c^2*d] && GtQ[d, 0]
-
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_)/((x_)*Sqrt[(d_) + (e_.)*(x_)^2]), x_Symbol] :> Simp[1/Sqrt[d] Su
bst[Int[(a + b*x)^p*Csc[x], x], x, ArcTan[c*x]], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && IGtQ[p, 0
] && GtQ[d, 0]
-
Int[((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^(p_)/((x_)*Sqrt[(d_) + (e_.)*(x_)^2]), x_Symbol] :> Simp[(-c)*x*(Sqrt[1
+ 1/(c^2*x^2)]/Sqrt[d + e*x^2]) Subst[Int[(a + b*x)^p*Sec[x], x], x, ArcCot[c*x]], x] /; FreeQ[{a, b, c, d,
e}, x] && EqQ[e, c^2*d] && IGtQ[p, 0] && GtQ[d, 0]
-
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)/((x_)*Sqrt[(d_) + (e_.)*(x_)^2]), x_Symbol] :> Simp[Sqrt[1 + c^2*
x^2]/Sqrt[d + e*x^2] Int[(a + b*ArcTan[c*x])^p/(x*Sqrt[1 + c^2*x^2]), x], x] /; FreeQ[{a, b, c, d, e}, x] &&
EqQ[e, c^2*d] && IGtQ[p, 0] && !GtQ[d, 0]
-
Int[((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^(p_.)/((x_)*Sqrt[(d_) + (e_.)*(x_)^2]), x_Symbol] :> Simp[Sqrt[1 + c^2*
x^2]/Sqrt[d + e*x^2] Int[(a + b*ArcCot[c*x])^p/(x*Sqrt[1 + c^2*x^2]), x], x] /; FreeQ[{a, b, c, d, e}, x] &&
EqQ[e, c^2*d] && IGtQ[p, 0] && !GtQ[d, 0]
-
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)/((x_)^2*Sqrt[(d_) + (e_.)*(x_)^2]), x_Symbol] :> Simp[(-Sqrt[d +
e*x^2])*((a + b*ArcTan[c*x])^p/(d*x)), x] + Simp[b*c*p Int[(a + b*ArcTan[c*x])^(p - 1)/(x*Sqrt[d + e*x^2]),
x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && GtQ[p, 0]
-
Int[((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^(p_.)/((x_)^2*Sqrt[(d_) + (e_.)*(x_)^2]), x_Symbol] :> Simp[(-Sqrt[d +
e*x^2])*((a + b*ArcCot[c*x])^p/(d*x)), x] - Simp[b*c*p Int[(a + b*ArcCot[c*x])^(p - 1)/(x*Sqrt[d + e*x^2]),
x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && GtQ[p, 0]
-
Int[(((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[
(f*x)^(m + 1)*Sqrt[d + e*x^2]*((a + b*ArcTan[c*x])^p/(d*f*(m + 1))), x] + (-Simp[b*c*(p/(f*(m + 1))) Int[(f*
x)^(m + 1)*((a + b*ArcTan[c*x])^(p - 1)/Sqrt[d + e*x^2]), x], x] - Simp[c^2*((m + 2)/(f^2*(m + 1))) Int[(f*x
)^(m + 2)*((a + b*ArcTan[c*x])^p/Sqrt[d + e*x^2]), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[e, c^2*d] &&
GtQ[p, 0] && LtQ[m, -1] && NeQ[m, -2]
-
Int[(((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[
(f*x)^(m + 1)*Sqrt[d + e*x^2]*((a + b*ArcCot[c*x])^p/(d*f*(m + 1))), x] + (Simp[b*c*(p/(f*(m + 1))) Int[(f*x
)^(m + 1)*((a + b*ArcCot[c*x])^(p - 1)/Sqrt[d + e*x^2]), x], x] - Simp[c^2*((m + 2)/(f^2*(m + 1))) Int[(f*x)
^(m + 2)*((a + b*ArcCot[c*x])^p/Sqrt[d + e*x^2]), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[e, c^2*d] &&
GtQ[p, 0] && LtQ[m, -1] && NeQ[m, -2]
-
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*(x_)^(m_)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Simp[1/e Int
[x^(m - 2)*(d + e*x^2)^(q + 1)*(a + b*ArcTan[c*x])^p, x], x] - Simp[d/e Int[x^(m - 2)*(d + e*x^2)^q*(a + b*A
rcTan[c*x])^p, x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && IntegersQ[p, 2*q] && LtQ[q, -1] && IGtQ
[m, 1] && NeQ[p, -1]
-
Int[((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^(p_.)*(x_)^(m_)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Simp[1/e Int
[x^(m - 2)*(d + e*x^2)^(q + 1)*(a + b*ArcCot[c*x])^p, x], x] - Simp[d/e Int[x^(m - 2)*(d + e*x^2)^q*(a + b*A
rcCot[c*x])^p, x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && IntegersQ[p, 2*q] && LtQ[q, -1] && IGtQ
[m, 1] && NeQ[p, -1]
-
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*(x_)^(m_)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Simp[1/d Int
[x^m*(d + e*x^2)^(q + 1)*(a + b*ArcTan[c*x])^p, x], x] - Simp[e/d Int[x^(m + 2)*(d + e*x^2)^q*(a + b*ArcTan[
c*x])^p, x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && IntegersQ[p, 2*q] && LtQ[q, -1] && ILtQ[m, 0]
&& NeQ[p, -1]
-
Int[((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^(p_.)*(x_)^(m_)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Simp[1/d Int
[x^m*(d + e*x^2)^(q + 1)*(a + b*ArcCot[c*x])^p, x], x] - Simp[e/d Int[x^(m + 2)*(d + e*x^2)^q*(a + b*ArcCot[
c*x])^p, x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && IntegersQ[p, 2*q] && LtQ[q, -1] && ILtQ[m, 0]
&& NeQ[p, -1]
-
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Simp[x^m*(d +
e*x^2)^(q + 1)*((a + b*ArcTan[c*x])^(p + 1)/(b*c*d*(p + 1))), x] + (-Simp[c*((m + 2*q + 2)/(b*(p + 1))) Int
[x^(m + 1)*(d + e*x^2)^q*(a + b*ArcTan[c*x])^(p + 1), x], x] - Simp[m/(b*c*(p + 1)) Int[x^(m - 1)*(d + e*x^2
)^q*(a + b*ArcTan[c*x])^(p + 1), x], x]) /; FreeQ[{a, b, c, d, e, m}, x] && EqQ[e, c^2*d] && IntegerQ[m] && Lt
Q[q, -1] && LtQ[p, -1] && NeQ[m + 2*q + 2, 0]
-
Int[((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^(p_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Simp[(-x^m)*(
d + e*x^2)^(q + 1)*((a + b*ArcCot[c*x])^(p + 1)/(b*c*d*(p + 1))), x] + (Simp[c*((m + 2*q + 2)/(b*(p + 1))) I
nt[x^(m + 1)*(d + e*x^2)^q*(a + b*ArcCot[c*x])^(p + 1), x], x] + Simp[m/(b*c*(p + 1)) Int[x^(m - 1)*(d + e*x
^2)^q*(a + b*ArcCot[c*x])^(p + 1), x], x]) /; FreeQ[{a, b, c, d, e, m}, x] && EqQ[e, c^2*d] && IntegerQ[m] &&
LtQ[q, -1] && LtQ[p, -1] && NeQ[m + 2*q + 2, 0]
-
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Simp[d^q/c^(m
+ 1) Subst[Int[(a + b*x)^p*(Sin[x]^m/Cos[x]^(m + 2*(q + 1))), x], x, ArcTan[c*x]], x] /; FreeQ[{a, b, c, d,
e, p}, x] && EqQ[e, c^2*d] && IGtQ[m, 0] && ILtQ[m + 2*q + 1, 0] && (IntegerQ[q] || GtQ[d, 0])
-
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Simp[d^(q + 1
/2)*(Sqrt[1 + c^2*x^2]/Sqrt[d + e*x^2]) Int[x^m*(1 + c^2*x^2)^q*(a + b*ArcTan[c*x])^p, x], x] /; FreeQ[{a, b
, c, d, e, p}, x] && EqQ[e, c^2*d] && IGtQ[m, 0] && ILtQ[m + 2*q + 1, 0] && !(IntegerQ[q] || GtQ[d, 0])
-
Int[((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^(p_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Simp[-d^q/c^(
m + 1) Subst[Int[(a + b*x)^p*(Cos[x]^m/Sin[x]^(m + 2*(q + 1))), x], x, ArcCot[c*x]], x] /; FreeQ[{a, b, c, d
, e, p}, x] && EqQ[e, c^2*d] && IGtQ[m, 0] && ILtQ[m + 2*q + 1, 0] && IntegerQ[q]
-
Int[((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^(p_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Simp[(-d^(q +
1/2))*x*(Sqrt[(1 + c^2*x^2)/(c^2*x^2)]/(c^m*Sqrt[d + e*x^2])) Subst[Int[(a + b*x)^p*(Cos[x]^m/Sin[x]^(m + 2
*(q + 1))), x], x, ArcCot[c*x]], x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[e, c^2*d] && IGtQ[m, 0] && ILtQ[m +
2*q + 1, 0] && !IntegerQ[q]
-
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))*(x_)*((d_.) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Simp[(d + e*x^2)^(q + 1
)*((a + b*ArcTan[c*x])/(2*e*(q + 1))), x] - Simp[b*(c/(2*e*(q + 1))) Int[(d + e*x^2)^(q + 1)/(1 + c^2*x^2),
x], x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[q, -1]
-
Int[((a_.) + ArcCot[(c_.)*(x_)]*(b_.))*(x_)*((d_.) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Simp[(d + e*x^2)^(q + 1
)*((a + b*ArcCot[c*x])/(2*e*(q + 1))), x] + Simp[b*(c/(2*e*(q + 1))) Int[(d + e*x^2)^(q + 1)/(1 + c^2*x^2),
x], x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[q, -1]
-
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_.)*((d_.) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> With[{u =
IntHide[(f*x)^m*(d + e*x^2)^q, x]}, Simp[(a + b*ArcTan[c*x]) u, x] - Simp[b*c Int[SimplifyIntegrand[u/(1
+ c^2*x^2), x], x], x]] /; FreeQ[{a, b, c, d, e, f, m, q}, x] && ((IGtQ[q, 0] && !(ILtQ[(m - 1)/2, 0] && GtQ[
m + 2*q + 3, 0])) || (IGtQ[(m + 1)/2, 0] && !(ILtQ[q, 0] && GtQ[m + 2*q + 3, 0])) || (ILtQ[(m + 2*q + 1)/2, 0
] && !ILtQ[(m - 1)/2, 0]))
-
Int[((a_.) + ArcCot[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_.)*((d_.) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> With[{u =
IntHide[(f*x)^m*(d + e*x^2)^q, x]}, Simp[(a + b*ArcCot[c*x]) u, x] + Simp[b*c Int[SimplifyIntegrand[u/(1
+ c^2*x^2), x], x], x]] /; FreeQ[{a, b, c, d, e, f, m, q}, x] && ((IGtQ[q, 0] && !(ILtQ[(m - 1)/2, 0] && GtQ[
m + 2*q + 3, 0])) || (IGtQ[(m + 1)/2, 0] && !(ILtQ[q, 0] && GtQ[m + 2*q + 3, 0])) || (ILtQ[(m + 2*q + 1)/2, 0
] && !ILtQ[(m - 1)/2, 0]))
-
Int[(((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*(x_))/((d_) + (e_.)*(x_)^2)^2, x_Symbol] :> Simp[1/(4*d^2*Rt[-e/
d, 2]) Int[(a + b*ArcTan[c*x])^p/(1 - Rt[-e/d, 2]*x)^2, x], x] - Simp[1/(4*d^2*Rt[-e/d, 2]) Int[(a + b*Arc
Tan[c*x])^p/(1 + Rt[-e/d, 2]*x)^2, x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0]
-
Int[(((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^(p_.)*(x_))/((d_) + (e_.)*(x_)^2)^2, x_Symbol] :> Simp[1/(4*d^2*Rt[-e/
d, 2]) Int[(a + b*ArcCot[c*x])^p/(1 - Rt[-e/d, 2]*x)^2, x], x] - Simp[1/(4*d^2*Rt[-e/d, 2]) Int[(a + b*Arc
Cot[c*x])^p/(1 + Rt[-e/d, 2]*x)^2, x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0]
-
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> With
[{u = ExpandIntegrand[(a + b*ArcTan[c*x])^p, (f*x)^m*(d + e*x^2)^q, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b,
c, d, e, f, m}, x] && IntegerQ[q] && IGtQ[p, 0] && ((EqQ[p, 1] && GtQ[q, 0]) || IntegerQ[m])
-
Int[((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> With
[{u = ExpandIntegrand[(a + b*ArcCot[c*x])^p, (f*x)^m*(d + e*x^2)^q, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b,
c, d, e, f, m}, x] && IntegerQ[q] && IGtQ[p, 0] && ((EqQ[p, 1] && GtQ[q, 0]) || IntegerQ[m])
-
Int[(ArcTan[(c_.)*(x_)]*(b_.) + (a_))*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Simp[a In
t[(f*x)^m*(d + e*x^2)^q, x], x] + Simp[b Int[(f*x)^m*(d + e*x^2)^q*ArcTan[c*x], x], x] /; FreeQ[{a, b, c, d,
e, f, m, q}, x]
-
Int[(ArcCot[(c_.)*(x_)]*(b_.) + (a_))*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Simp[a In
t[(f*x)^m*(d + e*x^2)^q, x], x] + Simp[b Int[(f*x)^m*(d + e*x^2)^q*ArcCot[c*x], x], x] /; FreeQ[{a, b, c, d,
e, f, m, q}, x]
-
Int[(((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*((f_) + (g_.)*(x_))^(m_.))/((d_) + (e_.)*(x_)^2), x_Symbol] :> I
nt[ExpandIntegrand[(a + b*ArcTan[c*x])^p/(d + e*x^2), (f + g*x)^m, x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] &
& IGtQ[p, 0] && EqQ[e, c^2*d] && IGtQ[m, 0]
-
Int[(((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^(p_.)*((f_) + (g_.)*(x_))^(m_.))/((d_) + (e_.)*(x_)^2), x_Symbol] :> I
nt[ExpandIntegrand[(a + b*ArcCot[c*x])^p/(d + e*x^2), (f + g*x)^m, x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] &
& IGtQ[p, 0] && EqQ[e, c^2*d] && IGtQ[m, 0]
-
Int[(ArcTanh[u_]*((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[1/2 Int[
Log[1 + u]*((a + b*ArcTan[c*x])^p/(d + e*x^2)), x], x] - Simp[1/2 Int[Log[1 - u]*((a + b*ArcTan[c*x])^p/(d +
e*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[e, c^2*d] && EqQ[u^2 - (1 - 2*(I/(I + c*x))
)^2, 0]
-
Int[(ArcCoth[u_]*((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^(p_.))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[1/2 Int[
Log[SimplifyIntegrand[1 + 1/u, x]]*((a + b*ArcCot[c*x])^p/(d + e*x^2)), x], x] - Simp[1/2 Int[Log[SimplifyIn
tegrand[1 - 1/u, x]]*((a + b*ArcCot[c*x])^p/(d + e*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] &&
EqQ[e, c^2*d] && EqQ[u^2 - (1 - 2*(I/(I + c*x)))^2, 0]
-
Int[(ArcTanh[u_]*((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[1/2 Int[
Log[1 + u]*((a + b*ArcTan[c*x])^p/(d + e*x^2)), x], x] - Simp[1/2 Int[Log[1 - u]*((a + b*ArcTan[c*x])^p/(d +
e*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[e, c^2*d] && EqQ[u^2 - (1 - 2*(I/(I - c*x))
)^2, 0]
-
Int[(ArcCoth[u_]*((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^(p_.))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[1/2 Int[
Log[SimplifyIntegrand[1 + 1/u, x]]*((a + b*ArcCot[c*x])^p/(d + e*x^2)), x], x] - Simp[1/2 Int[Log[SimplifyIn
tegrand[1 - 1/u, x]]*((a + b*ArcCot[c*x])^p/(d + e*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] &&
EqQ[e, c^2*d] && EqQ[u^2 - (1 - 2*(I/(I - c*x)))^2, 0]
-
Int[(Log[(f_) + (g_.)*(x_)]*((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp
[(a + b*ArcTan[c*x])^(p + 1)*(Log[f + g*x]/(b*c*d*(p + 1))), x] - Simp[g/(b*c*d*(p + 1)) Int[(a + b*ArcTan[c
*x])^(p + 1)/(f + g*x), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && IGtQ[p, 0] && EqQ[e, c^2*d] && EqQ[c^2*f^
2 + g^2, 0]
-
Int[(Log[(f_) + (g_.)*(x_)]*((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^(p_.))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp
[(a + b*ArcCot[c*x])^(p + 1)*(Log[f + g*x]/(b*c*d*(p + 1))), x] - Simp[g/(b*c*d*(p + 1)) Int[(a + b*ArcCot[c
*x])^(p + 1)/(f + g*x), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && IGtQ[p, 0] && EqQ[e, c^2*d] && EqQ[c^2*f^
2 + g^2, 0]
-
Int[(Log[u_]*((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[I*(a + b*ArcTa
n[c*x])^p*(PolyLog[2, 1 - u]/(2*c*d)), x] - Simp[b*p*(I/2) Int[(a + b*ArcTan[c*x])^(p - 1)*(PolyLog[2, 1 - u
]/(d + e*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[e, c^2*d] && EqQ[(1 - u)^2 - (1 - 2*(
I/(I + c*x)))^2, 0]
-
Int[(Log[u_]*((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^(p_.))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[I*(a + b*ArcCo
t[c*x])^p*(PolyLog[2, 1 - u]/(2*c*d)), x] + Simp[b*p*(I/2) Int[(a + b*ArcCot[c*x])^(p - 1)*(PolyLog[2, 1 - u
]/(d + e*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[e, c^2*d] && EqQ[(1 - u)^2 - (1 - 2*(
I/(I + c*x)))^2, 0]
-
Int[(Log[u_]*((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(-I)*(a + b*Ar
cTan[c*x])^p*(PolyLog[2, 1 - u]/(2*c*d)), x] + Simp[b*p*(I/2) Int[(a + b*ArcTan[c*x])^(p - 1)*(PolyLog[2, 1
- u]/(d + e*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[e, c^2*d] && EqQ[(1 - u)^2 - (1 -
2*(I/(I - c*x)))^2, 0]
-
Int[(Log[u_]*((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^(p_.))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(-I)*(a + b*Ar
cCot[c*x])^p*(PolyLog[2, 1 - u]/(2*c*d)), x] - Simp[b*p*(I/2) Int[(a + b*ArcCot[c*x])^(p - 1)*(PolyLog[2, 1
- u]/(d + e*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[e, c^2*d] && EqQ[(1 - u)^2 - (1 -
2*(I/(I - c*x)))^2, 0]
-
Int[(((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*PolyLog[k_, u_])/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(-I)*(
a + b*ArcTan[c*x])^p*(PolyLog[k + 1, u]/(2*c*d)), x] + Simp[b*p*(I/2) Int[(a + b*ArcTan[c*x])^(p - 1)*(PolyL
og[k + 1, u]/(d + e*x^2)), x], x] /; FreeQ[{a, b, c, d, e, k}, x] && IGtQ[p, 0] && EqQ[e, c^2*d] && EqQ[u^2 -
(1 - 2*(I/(I + c*x)))^2, 0]
-
Int[(((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^(p_.)*PolyLog[k_, u_])/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(-I)*(
a + b*ArcCot[c*x])^p*(PolyLog[k + 1, u]/(2*c*d)), x] - Simp[b*p*(I/2) Int[(a + b*ArcCot[c*x])^(p - 1)*(PolyL
og[k + 1, u]/(d + e*x^2)), x], x] /; FreeQ[{a, b, c, d, e, k}, x] && IGtQ[p, 0] && EqQ[e, c^2*d] && EqQ[u^2 -
(1 - 2*(I/(I + c*x)))^2, 0]
-
Int[(((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*PolyLog[k_, u_])/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[I*(a +
b*ArcTan[c*x])^p*(PolyLog[k + 1, u]/(2*c*d)), x] - Simp[b*p*(I/2) Int[(a + b*ArcTan[c*x])^(p - 1)*(PolyLog[
k + 1, u]/(d + e*x^2)), x], x] /; FreeQ[{a, b, c, d, e, k}, x] && IGtQ[p, 0] && EqQ[e, c^2*d] && EqQ[u^2 - (1
- 2*(I/(I - c*x)))^2, 0]
-
Int[(((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^(p_.)*PolyLog[k_, u_])/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[I*(a +
b*ArcCot[c*x])^p*(PolyLog[k + 1, u]/(2*c*d)), x] + Simp[b*p*(I/2) Int[(a + b*ArcCot[c*x])^(p - 1)*(PolyLog[
k + 1, u]/(d + e*x^2)), x], x] /; FreeQ[{a, b, c, d, e, k}, x] && IGtQ[p, 0] && EqQ[e, c^2*d] && EqQ[u^2 - (1
- 2*(I/(I - c*x)))^2, 0]
-
Int[1/(((a_.) + ArcCot[(c_.)*(x_)]*(b_.))*((a_.) + ArcTan[(c_.)*(x_)]*(b_.))*((d_) + (e_.)*(x_)^2)), x_Symbol]
:> Simp[(-Log[a + b*ArcCot[c*x]] + Log[a + b*ArcTan[c*x]])/(b*c*d*(2*a + b*ArcCot[c*x] + b*ArcTan[c*x])), x]
/; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d]
-
Int[(((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^(q_.)*((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.))/((d_) + (e_.)*(x_)^2),
x_Symbol] :> Simp[(-(a + b*ArcCot[c*x])^(q + 1))*((a + b*ArcTan[c*x])^p/(b*c*d*(q + 1))), x] + Simp[p/(q + 1)
Int[(a + b*ArcCot[c*x])^(q + 1)*((a + b*ArcTan[c*x])^(p - 1)/(d + e*x^2)), x], x] /; FreeQ[{a, b, c, d, e},
x] && EqQ[e, c^2*d] && IGtQ[p, 0] && IGeQ[q, p]
-
Int[(((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^(p_.)*((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(q_.))/((d_) + (e_.)*(x_)^2),
x_Symbol] :> Simp[(a + b*ArcTan[c*x])^(q + 1)*((a + b*ArcCot[c*x])^p/(b*c*d*(q + 1))), x] + Simp[p/(q + 1)
Int[(a + b*ArcTan[c*x])^(q + 1)*((a + b*ArcCot[c*x])^(p - 1)/(d + e*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x]
&& EqQ[e, c^2*d] && IGtQ[p, 0] && IGeQ[q, p]
-
Int[ArcTan[(a_.)*(x_)]/((c_) + (d_.)*(x_)^(n_.)), x_Symbol] :> Simp[I/2 Int[Log[1 - I*a*x]/(c + d*x^n), x],
x] - Simp[I/2 Int[Log[1 + I*a*x]/(c + d*x^n), x], x] /; FreeQ[{a, c, d}, x] && IntegerQ[n] && !(EqQ[n, 2] &
& EqQ[d, a^2*c])
-
Int[ArcCot[(a_.)*(x_)]/((c_) + (d_.)*(x_)^(n_.)), x_Symbol] :> Simp[I/2 Int[Log[1 - I/(a*x)]/(c + d*x^n), x]
, x] - Simp[I/2 Int[Log[1 + I/(a*x)]/(c + d*x^n), x], x] /; FreeQ[{a, c, d}, x] && IntegerQ[n] && !(EqQ[n,
2] && EqQ[d, a^2*c])
-
Int[(ArcTan[(c_.)*(x_)^(n_.)]*Log[(d_.)*(x_)^(m_.)])/(x_), x_Symbol] :> Simp[I/2 Int[Log[d*x^m]*(Log[1 - I*c
*x^n]/x), x], x] - Simp[I/2 Int[Log[d*x^m]*(Log[1 + I*c*x^n]/x), x], x] /; FreeQ[{c, d, m, n}, x]
-
Int[(ArcCot[(c_.)*(x_)^(n_.)]*Log[(d_.)*(x_)^(m_.)])/(x_), x_Symbol] :> Simp[I/2 Int[Log[d*x^m]*(Log[1 - I/(
c*x^n)]/x), x], x] - Simp[I/2 Int[Log[d*x^m]*(Log[1 + I/(c*x^n)]/x), x], x] /; FreeQ[{c, d, m, n}, x]
-
Int[(Log[(d_.)*(x_)^(m_.)]*(ArcTan[(c_.)*(x_)^(n_.)]*(b_.) + (a_)))/(x_), x_Symbol] :> Simp[a Int[Log[d*x^m]
/x, x], x] + Simp[b Int[(Log[d*x^m]*ArcTan[c*x^n])/x, x], x] /; FreeQ[{a, b, c, d, m, n}, x]
-
Int[(Log[(d_.)*(x_)^(m_.)]*(ArcCot[(c_.)*(x_)^(n_.)]*(b_.) + (a_)))/(x_), x_Symbol] :> Simp[a Int[Log[d*x^m]
/x, x], x] + Simp[b Int[(Log[d*x^m]*ArcCot[c*x^n])/x, x], x] /; FreeQ[{a, b, c, d, m, n}, x]
-
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))*((d_.) + Log[(f_.) + (g_.)*(x_)^2]*(e_.)), x_Symbol] :> Simp[x*(d + e*L
og[f + g*x^2])*(a + b*ArcTan[c*x]), x] + (-Simp[b*c Int[x*((d + e*Log[f + g*x^2])/(1 + c^2*x^2)), x], x] - S
imp[2*e*g Int[x^2*((a + b*ArcTan[c*x])/(f + g*x^2)), x], x]) /; FreeQ[{a, b, c, d, e, f, g}, x]
-
Int[((a_.) + ArcCot[(c_.)*(x_)]*(b_.))*((d_.) + Log[(f_.) + (g_.)*(x_)^2]*(e_.)), x_Symbol] :> Simp[x*(d + e*L
og[f + g*x^2])*(a + b*ArcCot[c*x]), x] + (Simp[b*c Int[x*((d + e*Log[f + g*x^2])/(1 + c^2*x^2)), x], x] - Si
mp[2*e*g Int[x^2*((a + b*ArcCot[c*x])/(f + g*x^2)), x], x]) /; FreeQ[{a, b, c, d, e, f, g}, x]
-
Int[(ArcTan[(c_.)*(x_)]*Log[(f_.) + (g_.)*(x_)^2])/(x_), x_Symbol] :> Simp[(Log[f + g*x^2] - Log[1 - I*c*x] -
Log[1 + I*c*x]) Int[ArcTan[c*x]/x, x], x] + (Simp[I/2 Int[Log[1 - I*c*x]^2/x, x], x] - Simp[I/2 Int[Log[
1 + I*c*x]^2/x, x], x]) /; FreeQ[{c, f, g}, x] && EqQ[g, c^2*f]
-
Int[(ArcCot[(c_.)*(x_)]*Log[(f_.) + (g_.)*(x_)^2])/(x_), x_Symbol] :> Simp[(Log[f + g*x^2] - Log[c^2*x^2] - Lo
g[1 - I/(c*x)] - Log[1 + I/(c*x)]) Int[ArcCot[c*x]/x, x], x] + (Int[Log[c^2*x^2]*(ArcCot[c*x]/x), x] - Simp[
I/2 Int[Log[1 + I/(c*x)]^2/x, x], x] + Simp[I/2 Int[Log[1 - I/(c*x)]^2/x, x], x]) /; FreeQ[{c, f, g}, x] &
& EqQ[g, c^2*f]
-
Int[(Log[(f_.) + (g_.)*(x_)^2]*(ArcTan[(c_.)*(x_)]*(b_.) + (a_)))/(x_), x_Symbol] :> Simp[a Int[Log[f + g*x^
2]/x, x], x] + Simp[b Int[Log[f + g*x^2]*(ArcTan[c*x]/x), x], x] /; FreeQ[{a, b, c, f, g}, x]
-
Int[(Log[(f_.) + (g_.)*(x_)^2]*(ArcCot[(c_.)*(x_)]*(b_.) + (a_)))/(x_), x_Symbol] :> Simp[a Int[Log[f + g*x^
2]/x, x], x] + Simp[b Int[Log[f + g*x^2]*(ArcCot[c*x]/x), x], x] /; FreeQ[{a, b, c, f, g}, x]
-
Int[(((a_.) + ArcTan[(c_.)*(x_)]*(b_.))*(Log[(f_.) + (g_.)*(x_)^2]*(e_.) + (d_)))/(x_), x_Symbol] :> Simp[d
Int[(a + b*ArcTan[c*x])/x, x], x] + Simp[e Int[Log[f + g*x^2]*((a + b*ArcTan[c*x])/x), x], x] /; FreeQ[{a, b
, c, d, e, f, g}, x]
-
Int[(((a_.) + ArcCot[(c_.)*(x_)]*(b_.))*(Log[(f_.) + (g_.)*(x_)^2]*(e_.) + (d_)))/(x_), x_Symbol] :> Simp[d
Int[(a + b*ArcCot[c*x])/x, x], x] + Simp[e Int[Log[f + g*x^2]*((a + b*ArcCot[c*x])/x), x], x] /; FreeQ[{a, b
, c, d, e, f, g}, x]
-
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))*((d_.) + Log[(f_.) + (g_.)*(x_)^2]*(e_.))*(x_)^(m_.), x_Symbol] :> Simp
[x^(m + 1)*(d + e*Log[f + g*x^2])*((a + b*ArcTan[c*x])/(m + 1)), x] + (-Simp[b*(c/(m + 1)) Int[x^(m + 1)*((d
+ e*Log[f + g*x^2])/(1 + c^2*x^2)), x], x] - Simp[2*e*(g/(m + 1)) Int[x^(m + 2)*((a + b*ArcTan[c*x])/(f + g
*x^2)), x], x]) /; FreeQ[{a, b, c, d, e, f, g}, x] && ILtQ[m/2, 0]
-
Int[((a_.) + ArcCot[(c_.)*(x_)]*(b_.))*((d_.) + Log[(f_.) + (g_.)*(x_)^2]*(e_.))*(x_)^(m_.), x_Symbol] :> Simp
[x^(m + 1)*(d + e*Log[f + g*x^2])*((a + b*ArcCot[c*x])/(m + 1)), x] + (Simp[b*(c/(m + 1)) Int[x^(m + 1)*((d
+ e*Log[f + g*x^2])/(1 + c^2*x^2)), x], x] - Simp[2*e*(g/(m + 1)) Int[x^(m + 2)*((a + b*ArcCot[c*x])/(f + g*
x^2)), x], x]) /; FreeQ[{a, b, c, d, e, f, g}, x] && ILtQ[m/2, 0]
-
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))*((d_.) + Log[(f_.) + (g_.)*(x_)^2]*(e_.))*(x_)^(m_.), x_Symbol] :> With
[{u = IntHide[x^m*(d + e*Log[f + g*x^2]), x]}, Simp[(a + b*ArcTan[c*x]) u, x] - Simp[b*c Int[ExpandIntegra
nd[u/(1 + c^2*x^2), x], x], x]] /; FreeQ[{a, b, c, d, e, f, g}, x] && IGtQ[(m + 1)/2, 0]
-
Int[((a_.) + ArcCot[(c_.)*(x_)]*(b_.))*((d_.) + Log[(f_.) + (g_.)*(x_)^2]*(e_.))*(x_)^(m_.), x_Symbol] :> With
[{u = IntHide[x^m*(d + e*Log[f + g*x^2]), x]}, Simp[(a + b*ArcCot[c*x]) u, x] + Simp[b*c Int[ExpandIntegra
nd[u/(1 + c^2*x^2), x], x], x]] /; FreeQ[{a, b, c, d, e, f, g}, x] && IGtQ[(m + 1)/2, 0]
-
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))*((d_.) + Log[(f_.) + (g_.)*(x_)^2]*(e_.))*(x_)^(m_.), x_Symbol] :> With
[{u = IntHide[x^m*(a + b*ArcTan[c*x]), x]}, Simp[(d + e*Log[f + g*x^2]) u, x] - Simp[2*e*g Int[ExpandInteg
rand[x*(u/(f + g*x^2)), x], x], x]] /; FreeQ[{a, b, c, d, e, f, g}, x] && IntegerQ[m] && NeQ[m, -1]
-
Int[((a_.) + ArcCot[(c_.)*(x_)]*(b_.))*((d_.) + Log[(f_.) + (g_.)*(x_)^2]*(e_.))*(x_)^(m_.), x_Symbol] :> With
[{u = IntHide[x^m*(a + b*ArcCot[c*x]), x]}, Simp[(d + e*Log[f + g*x^2]) u, x] - Simp[2*e*g Int[ExpandInteg
rand[x*(u/(f + g*x^2)), x], x], x]] /; FreeQ[{a, b, c, d, e, f, g}, x] && IntegerQ[m] && NeQ[m, -1]
-
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^2*((d_.) + Log[(f_) + (g_.)*(x_)^2]*(e_.))*(x_), x_Symbol] :> Simp[(f +
g*x^2)*(d + e*Log[f + g*x^2])*((a + b*ArcTan[c*x])^2/(2*g)), x] + (-Simp[e*x^2*((a + b*ArcTan[c*x])^2/2), x]
- Simp[b/c Int[(d + e*Log[f + g*x^2])*(a + b*ArcTan[c*x]), x], x] + Simp[b*c*e Int[x^2*((a + b*ArcTan[c*x]
)/(1 + c^2*x^2)), x], x]) /; FreeQ[{a, b, c, d, e, f, g}, x] && EqQ[g, c^2*f]
-
Int[((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^2*((d_.) + Log[(f_) + (g_.)*(x_)^2]*(e_.))*(x_), x_Symbol] :> Simp[(f +
g*x^2)*(d + e*Log[f + g*x^2])*((a + b*ArcCot[c*x])^2/(2*g)), x] + (-Simp[e*x^2*((a + b*ArcCot[c*x])^2/2), x]
+ Simp[b/c Int[(d + e*Log[f + g*x^2])*(a + b*ArcCot[c*x]), x], x] - Simp[b*c*e Int[x^2*((a + b*ArcCot[c*x]
)/(1 + c^2*x^2)), x], x]) /; FreeQ[{a, b, c, d, e, f, g}, x] && EqQ[g, c^2*f]
-
Int[((a_.) + ArcTan[(c_.)*(x_)]*(b_.))^(p_.)*(u_.), x_Symbol] :> Unintegrable[u*(a + b*ArcTan[c*x])^p, x] /; F
reeQ[{a, b, c, p}, x] && (EqQ[u, 1] || MatchQ[u, ((d_.) + (e_.)*x)^(q_.) /; FreeQ[{d, e, q}, x]] || MatchQ[u,
((f_.)*x)^(m_.)*((d_.) + (e_.)*x)^(q_.) /; FreeQ[{d, e, f, m, q}, x]] || MatchQ[u, ((d_.) + (e_.)*x^2)^(q_.) /
; FreeQ[{d, e, q}, x]] || MatchQ[u, ((f_.)*x)^(m_.)*((d_.) + (e_.)*x^2)^(q_.) /; FreeQ[{d, e, f, m, q}, x]])
-
Int[((a_.) + ArcCot[(c_.)*(x_)]*(b_.))^(p_.)*(u_.), x_Symbol] :> Unintegrable[u*(a + b*ArcCot[c*x])^p, x] /; F
reeQ[{a, b, c, p}, x] && (EqQ[u, 1] || MatchQ[u, ((d_.) + (e_.)*x)^(q_.) /; FreeQ[{d, e, q}, x]] || MatchQ[u,
((f_.)*x)^(m_.)*((d_.) + (e_.)*x)^(q_.) /; FreeQ[{d, e, f, m, q}, x]] || MatchQ[u, ((d_.) + (e_.)*x^2)^(q_.) /
; FreeQ[{d, e, q}, x]] || MatchQ[u, ((f_.)*x)^(m_.)*((d_.) + (e_.)*x^2)^(q_.) /; FreeQ[{d, e, f, m, q}, x]])
-
Int[((a_.) + ArcTan[(c_) + (d_.)*(x_)]*(b_.))^(p_.), x_Symbol] :> Simp[1/d Subst[Int[(a + b*ArcTan[x])^p, x]
, x, c + d*x], x] /; FreeQ[{a, b, c, d}, x] && IGtQ[p, 0]
-
Int[((a_.) + ArcCot[(c_) + (d_.)*(x_)]*(b_.))^(p_.), x_Symbol] :> Simp[1/d Subst[Int[(a + b*ArcCot[x])^p, x]
, x, c + d*x], x] /; FreeQ[{a, b, c, d}, x] && IGtQ[p, 0]
-
Int[((a_.) + ArcTan[(c_) + (d_.)*(x_)]*(b_.))^(p_), x_Symbol] :> Unintegrable[(a + b*ArcTan[c + d*x])^p, x] /;
FreeQ[{a, b, c, d, p}, x] && !IGtQ[p, 0]
-
Int[((a_.) + ArcCot[(c_) + (d_.)*(x_)]*(b_.))^(p_), x_Symbol] :> Unintegrable[(a + b*ArcCot[c + d*x])^p, x] /;
FreeQ[{a, b, c, d, p}, x] && !IGtQ[p, 0]
-
Int[((a_.) + ArcTan[(c_) + (d_.)*(x_)]*(b_.))^(p_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[1/d Subst[
Int[(f*(x/d))^m*(a + b*ArcTan[x])^p, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[d*e - c*f,
0] && IGtQ[p, 0]
-
Int[((a_.) + ArcCot[(c_) + (d_.)*(x_)]*(b_.))^(p_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[1/d Subst[
Int[(f*(x/d))^m*(a + b*ArcCot[x])^p, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[d*e - c*f,
0] && IGtQ[p, 0]
-
Int[((a_.) + ArcTan[(c_) + (d_.)*(x_)]*(b_.))^(p_.)*((e_.) + (f_.)*(x_))^(m_), x_Symbol] :> Simp[(e + f*x)^(m
+ 1)*((a + b*ArcTan[c + d*x])^p/(f*(m + 1))), x] - Simp[b*d*(p/(f*(m + 1))) Int[(e + f*x)^(m + 1)*((a + b*Ar
cTan[c + d*x])^(p - 1)/(1 + (c + d*x)^2)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[p, 0] && ILtQ[m, -1]
-
Int[((a_.) + ArcCot[(c_) + (d_.)*(x_)]*(b_.))^(p_.)*((e_.) + (f_.)*(x_))^(m_), x_Symbol] :> Simp[(e + f*x)^(m
+ 1)*((a + b*ArcCot[c + d*x])^p/(f*(m + 1))), x] + Simp[b*d*(p/(f*(m + 1))) Int[(e + f*x)^(m + 1)*((a + b*Ar
cCot[c + d*x])^(p - 1)/(1 + (c + d*x)^2)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[p, 0] && ILtQ[m, -1]
-
Int[((a_.) + ArcTan[(c_) + (d_.)*(x_)]*(b_.))^(p_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[1/d Subst[
Int[((d*e - c*f)/d + f*(x/d))^m*(a + b*ArcTan[x])^p, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, p}, x]
&& IGtQ[p, 0]
-
Int[((a_.) + ArcCot[(c_) + (d_.)*(x_)]*(b_.))^(p_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[1/d Subst[
Int[((d*e - c*f)/d + f*(x/d))^m*(a + b*ArcCot[x])^p, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, p}, x]
&& IGtQ[p, 0]
-
Int[((a_.) + ArcTan[(c_) + (d_.)*(x_)]*(b_.))^(p_)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Unintegrable[(e +
f*x)^m*(a + b*ArcTan[c + d*x])^p, x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && !IGtQ[p, 0]
-
Int[((a_.) + ArcCot[(c_) + (d_.)*(x_)]*(b_.))^(p_)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Unintegrable[(e +
f*x)^m*(a + b*ArcCot[c + d*x])^p, x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && !IGtQ[p, 0]
-
Int[ArcTan[(a_) + (b_.)*(x_)]/((c_) + (d_.)*(x_)^(n_.)), x_Symbol] :> Simp[I/2 Int[Log[1 - I*a - I*b*x]/(c +
d*x^n), x], x] - Simp[I/2 Int[Log[1 + I*a + I*b*x]/(c + d*x^n), x], x] /; FreeQ[{a, b, c, d}, x] && Rationa
lQ[n]
-
Int[ArcCot[(a_) + (b_.)*(x_)]/((c_) + (d_.)*(x_)^(n_.)), x_Symbol] :> Simp[I/2 Int[Log[(-I + a + b*x)/(a + b
*x)]/(c + d*x^n), x], x] - Simp[I/2 Int[Log[(I + a + b*x)/(a + b*x)]/(c + d*x^n), x], x] /; FreeQ[{a, b, c,
d}, x] && RationalQ[n]
-
Int[ArcTan[(a_) + (b_.)*(x_)]/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Unintegrable[ArcTan[a + b*x]/(c + d*x^n),
x] /; FreeQ[{a, b, c, d, n}, x] && !RationalQ[n]
-
Int[ArcCot[(a_) + (b_.)*(x_)]/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Unintegrable[ArcCot[a + b*x]/(c + d*x^n),
x] /; FreeQ[{a, b, c, d, n}, x] && !RationalQ[n]
-
Int[((a_.) + ArcTan[(c_) + (d_.)*(x_)]*(b_.))^(p_.)*((A_.) + (B_.)*(x_) + (C_.)*(x_)^2)^(q_.), x_Symbol] :> Si
mp[1/d Subst[Int[(C/d^2 + (C/d^2)*x^2)^q*(a + b*ArcTan[x])^p, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, A, B
, C, p, q}, x] && EqQ[B*(1 + c^2) - 2*A*c*d, 0] && EqQ[2*c*C - B*d, 0]
-
Int[((a_.) + ArcCot[(c_) + (d_.)*(x_)]*(b_.))^(p_.)*((A_.) + (B_.)*(x_) + (C_.)*(x_)^2)^(q_.), x_Symbol] :> Si
mp[1/d Subst[Int[(C/d^2 + (C/d^2)*x^2)^q*(a + b*ArcCot[x])^p, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, A, B
, C, p, q}, x] && EqQ[B*(1 + c^2) - 2*A*c*d, 0] && EqQ[2*c*C - B*d, 0]
-
Int[((a_.) + ArcTan[(c_) + (d_.)*(x_)]*(b_.))^(p_.)*((e_.) + (f_.)*(x_))^(m_.)*((A_.) + (B_.)*(x_) + (C_.)*(x_
)^2)^(q_.), x_Symbol] :> Simp[1/d Subst[Int[((d*e - c*f)/d + f*(x/d))^m*(C/d^2 + (C/d^2)*x^2)^q*(a + b*ArcTa
n[x])^p, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m, p, q}, x] && EqQ[B*(1 + c^2) - 2*A*c*d, 0
] && EqQ[2*c*C - B*d, 0]
-
Int[((a_.) + ArcCot[(c_) + (d_.)*(x_)]*(b_.))^(p_.)*((e_.) + (f_.)*(x_))^(m_.)*((A_.) + (B_.)*(x_) + (C_.)*(x_
)^2)^(q_.), x_Symbol] :> Simp[1/d Subst[Int[((d*e - c*f)/d + f*(x/d))^m*(C/d^2 + (C/d^2)*x^2)^q*(a + b*ArcCo
t[x])^p, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m, p, q}, x] && EqQ[B*(1 + c^2) - 2*A*c*d, 0
] && EqQ[2*c*C - B*d, 0]
-
Int[E^(ArcTan[(a_.)*(x_)]*(n_)), x_Symbol] :> Int[(1 - I*a*x)^((I*n + 1)/2)/((1 + I*a*x)^((I*n - 1)/2)*Sqrt[1
+ a^2*x^2]), x] /; FreeQ[a, x] && IntegerQ[(I*n - 1)/2]
-
Int[E^(ArcTan[(a_.)*(x_)]*(n_))*(x_)^(m_.), x_Symbol] :> Int[x^m*((1 - I*a*x)^((I*n + 1)/2)/((1 + I*a*x)^((I*n
- 1)/2)*Sqrt[1 + a^2*x^2])), x] /; FreeQ[{a, m}, x] && IntegerQ[(I*n - 1)/2]
-
Int[E^(ArcTan[(a_.)*(x_)]*(n_.)), x_Symbol] :> Int[(1 - I*a*x)^(I*(n/2))/(1 + I*a*x)^(I*(n/2)), x] /; FreeQ[{a
, n}, x] && !IntegerQ[(I*n - 1)/2]
-
Int[E^(ArcTan[(a_.)*(x_)]*(n_.))*(x_)^(m_.), x_Symbol] :> Int[x^m*((1 - I*a*x)^(I*(n/2))/(1 + I*a*x)^(I*(n/2))
), x] /; FreeQ[{a, m, n}, x] && !IntegerQ[(I*n - 1)/2]
-
Int[E^(ArcTan[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_))^(p_.), x_Symbol] :> Simp[c^p Int[u*(1 + d*(x/c))^
p*((1 - I*a*x)^(I*(n/2))/(1 + I*a*x)^(I*(n/2))), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c^2 + d^2, 0]
&& (IntegerQ[p] || GtQ[c, 0])
-
Int[E^(ArcTan[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_))^(p_.), x_Symbol] :> Int[u*(c + d*x)^p*((1 - I*a*x)^
(I*(n/2))/(1 + I*a*x)^(I*(n/2))), x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c^2 + d^2, 0] && !(IntegerQ[p] |
| GtQ[c, 0])
-
Int[E^(ArcTan[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)/(x_))^(p_.), x_Symbol] :> Simp[d^p Int[(u/x^p)*(1 + c*(
x/d))^p*E^(n*ArcTan[a*x]), x], x] /; FreeQ[{a, c, d, n}, x] && EqQ[c^2 + a^2*d^2, 0] && IntegerQ[p]
-
Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*(u_.)*((c_) + (d_.)/(x_))^(p_), x_Symbol] :> Simp[(-1)^(n/2)*c^p Int[u*(1 +
d/(c*x))^p*((1 - 1/(I*a*x))^(I*(n/2))/(1 + 1/(I*a*x))^(I*(n/2))), x], x] /; FreeQ[{a, c, d, p}, x] && EqQ[c^2
+ a^2*d^2, 0] && !IntegerQ[p] && IntegerQ[I*(n/2)] && GtQ[c, 0]
-
Int[E^(ArcTan[(a_.)*(x_)]*(n_))*(u_.)*((c_) + (d_.)/(x_))^(p_), x_Symbol] :> Int[u*(c + d/x)^p*((1 - I*a*x)^(I
*(n/2))/(1 + I*a*x)^(I*(n/2))), x] /; FreeQ[{a, c, d, p}, x] && EqQ[c^2 + a^2*d^2, 0] && !IntegerQ[p] && Inte
gerQ[I*(n/2)] && !GtQ[c, 0]
-
Int[E^(ArcTan[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)/(x_))^(p_), x_Symbol] :> Simp[x^p*((c + d/x)^p/(1 + c*(x/
d))^p) Int[(u/x^p)*(1 + c*(x/d))^p*E^(n*ArcTan[a*x]), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c^2 + a^2*d
^2, 0] && !IntegerQ[p]
-
Int[E^(ArcTan[(a_.)*(x_)]*(n_.))/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(n + a*x)*(E^(n*ArcTan[a*x])/(
a*c*(n^2 + 1)*Sqrt[c + d*x^2])), x] /; FreeQ[{a, c, d, n}, x] && EqQ[d, a^2*c] && !IntegerQ[I*n]
-
Int[E^(ArcTan[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(n - 2*a*(p + 1)*x)*(c + d*x^2)
^(p + 1)*(E^(n*ArcTan[a*x])/(a*c*(n^2 + 4*(p + 1)^2))), x] + Simp[2*(p + 1)*((2*p + 3)/(c*(n^2 + 4*(p + 1)^2))
) Int[(c + d*x^2)^(p + 1)*E^(n*ArcTan[a*x]), x], x] /; FreeQ[{a, c, d, n}, x] && EqQ[d, a^2*c] && LtQ[p, -1]
&& !IntegerQ[I*n] && NeQ[n^2 + 4*(p + 1)^2, 0] && IntegerQ[2*p]
-
Int[E^(ArcTan[(a_.)*(x_)]*(n_.))/((c_) + (d_.)*(x_)^2), x_Symbol] :> Simp[E^(n*ArcTan[a*x])/(a*c*n), x] /; Fre
eQ[{a, c, d, n}, x] && EqQ[d, a^2*c]
-
Int[E^(ArcTan[(a_.)*(x_)]*(n_))*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[c^p Int[(1 + a^2*x^2)^(p - I*
(n/2))*(1 - I*a*x)^(I*n), x], x] /; FreeQ[{a, c, d, p}, x] && EqQ[d, a^2*c] && IntegerQ[p] && IntegerQ[(I*n +
1)/2] && !IntegerQ[p - I*(n/2)]
-
Int[E^(ArcTan[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[c^p Int[(1 - I*a*x)^(p + I*(
n/2))*(1 + I*a*x)^(p - I*(n/2)), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[d, a^2*c] && (IntegerQ[p] || GtQ[c
, 0])
-
Int[E^(ArcTan[(a_.)*(x_)]*(n_))*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Simp[c^(I*(n/2)) Int[(c + d*x^2)^(p
- I*(n/2))*(1 - I*a*x)^(I*n), x], x] /; FreeQ[{a, c, d, p}, x] && EqQ[d, a^2*c] && !(IntegerQ[p] || GtQ[c, 0
]) && IGtQ[I*(n/2), 0]
-
Int[E^(ArcTan[(a_.)*(x_)]*(n_))*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Simp[1/c^(I*(n/2)) Int[(c + d*x^2)^
(p + I*(n/2))/(1 + I*a*x)^(I*n), x], x] /; FreeQ[{a, c, d, p}, x] && EqQ[d, a^2*c] && !(IntegerQ[p] || GtQ[c,
0]) && ILtQ[I*(n/2), 0]
-
Int[E^(ArcTan[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Simp[c^IntPart[p]*((c + d*x^2)^FracP
art[p]/(1 + a^2*x^2)^FracPart[p]) Int[(1 + a^2*x^2)^p*E^(n*ArcTan[a*x]), x], x] /; FreeQ[{a, c, d, n, p}, x]
&& EqQ[d, a^2*c] && !(IntegerQ[p] || GtQ[c, 0])
-
Int[(E^(ArcTan[(a_.)*(x_)]*(n_.))*(x_))/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(-(1 - a*n*x))*(E^(n*Ar
cTan[a*x])/(d*(n^2 + 1)*Sqrt[c + d*x^2])), x] /; FreeQ[{a, c, d, n}, x] && EqQ[d, a^2*c] && !IntegerQ[I*n]
-
Int[E^(ArcTan[(a_.)*(x_)]*(n_.))*(x_)*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(c + d*x^2)^(p + 1)*(E^(n*
ArcTan[a*x])/(2*d*(p + 1))), x] - Simp[a*c*(n/(2*d*(p + 1))) Int[(c + d*x^2)^p*E^(n*ArcTan[a*x]), x], x] /;
FreeQ[{a, c, d, n}, x] && EqQ[d, a^2*c] && LtQ[p, -1] && !IntegerQ[I*n] && IntegerQ[2*p]
-
Int[E^(ArcTan[(a_.)*(x_)]*(n_.))*(x_)^2*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(-(1 - a*n*x))*(c + d*x
^2)^(p + 1)*(E^(n*ArcTan[a*x])/(a*d*n*(n^2 + 1))), x] /; FreeQ[{a, c, d, n}, x] && EqQ[d, a^2*c] && EqQ[n^2 -
2*(p + 1), 0] && !IntegerQ[I*n]
-
Int[E^(ArcTan[(a_.)*(x_)]*(n_.))*(x_)^2*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-(n - 2*(p + 1)*a*x))*(
c + d*x^2)^(p + 1)*(E^(n*ArcTan[a*x])/(a*d*(n^2 + 4*(p + 1)^2))), x] + Simp[(n^2 - 2*(p + 1))/(d*(n^2 + 4*(p +
1)^2)) Int[(c + d*x^2)^(p + 1)*E^(n*ArcTan[a*x]), x], x] /; FreeQ[{a, c, d, n}, x] && EqQ[d, a^2*c] && LtQ[
p, -1] && !IntegerQ[I*n] && NeQ[n^2 + 4*(p + 1)^2, 0] && IntegerQ[2*p]
-
Int[E^(ArcTan[(a_.)*(x_)]*(n_))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[c^p Int[x^m*(1 + a
^2*x^2)^(p - I*(n/2))*(1 - I*a*x)^(I*n), x], x] /; FreeQ[{a, c, d, m, p}, x] && EqQ[d, a^2*c] && (IntegerQ[p]
|| GtQ[c, 0]) && IntegerQ[(I*n + 1)/2] && !IntegerQ[p - I*(n/2)]
-
Int[E^(ArcTan[(a_.)*(x_)]*(n_.))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[c^p Int[x^m*(1 -
I*a*x)^(p + I*(n/2))*(1 + I*a*x)^(p - I*(n/2)), x], x] /; FreeQ[{a, c, d, m, n, p}, x] && EqQ[d, a^2*c] && (In
tegerQ[p] || GtQ[c, 0])
-
Int[E^(ArcTan[(a_.)*(x_)]*(n_))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Simp[c^(I*(n/2)) Int[x^m
*(c + d*x^2)^(p - I*(n/2))*(1 - I*a*x)^(I*n), x], x] /; FreeQ[{a, c, d, m, p}, x] && EqQ[d, a^2*c] && !(Integ
erQ[p] || GtQ[c, 0]) && IGtQ[I*(n/2), 0]
-
Int[E^(ArcTan[(a_.)*(x_)]*(n_))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Simp[1/c^(I*(n/2)) Int[x
^m*((c + d*x^2)^(p + I*(n/2))/(1 + I*a*x)^(I*n)), x], x] /; FreeQ[{a, c, d, m, p}, x] && EqQ[d, a^2*c] && !(I
ntegerQ[p] || GtQ[c, 0]) && ILtQ[I*(n/2), 0]
-
Int[E^(ArcTan[(a_.)*(x_)]*(n_.))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Simp[c^IntPart[p]*((c + d
*x^2)^FracPart[p]/(1 + a^2*x^2)^FracPart[p]) Int[x^m*(1 + a^2*x^2)^p*E^(n*ArcTan[a*x]), x], x] /; FreeQ[{a,
c, d, m, n, p}, x] && EqQ[d, a^2*c] && !(IntegerQ[p] || GtQ[c, 0])
-
Int[E^(ArcTan[(a_.)*(x_)]*(n_.))*(u_)*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[c^p Int[u*(1 - I*a*x)^(
p + I*(n/2))*(1 + I*a*x)^(p - I*(n/2)), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[d, a^2*c] && (IntegerQ[p] |
| GtQ[c, 0])
-
Int[E^(ArcTan[(a_.)*(x_)]*(n_))*(u_)*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[c^IntPart[p]*((c + d*x^2)^
FracPart[p]/((1 - I*a*x)^FracPart[p]*(1 + I*a*x)^FracPart[p])) Int[u*(1 - I*a*x)^(p + I*(n/2))*(1 + I*a*x)^(
p - I*(n/2)), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[d, a^2*c] && (IntegerQ[p] || GtQ[c, 0]) && IntegerQ[I
*(n/2)]
-
Int[E^(ArcTan[(a_.)*(x_)]*(n_.))*(u_)*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Simp[c^IntPart[p]*((c + d*x^2)^
FracPart[p]/(1 + a^2*x^2)^FracPart[p]) Int[u*(1 + a^2*x^2)^p*E^(n*ArcTan[a*x]), x], x] /; FreeQ[{a, c, d, n,
p}, x] && EqQ[d, a^2*c] && !(IntegerQ[p] || GtQ[c, 0]) && !IntegerQ[I*(n/2)]
-
Int[E^(ArcTan[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)/(x_)^2)^(p_.), x_Symbol] :> Simp[d^p Int[(u/x^(2*p))*(1
+ a^2*x^2)^p*E^(n*ArcTan[a*x]), x], x] /; FreeQ[{a, c, d, n}, x] && EqQ[c - a^2*d, 0] && IntegerQ[p]
-
Int[E^(ArcTan[(a_.)*(x_)]*(n_))*(u_.)*((c_) + (d_.)/(x_)^2)^(p_), x_Symbol] :> Simp[c^p Int[u*(1 - I/(a*x))^
p*(1 + I/(a*x))^p*E^(n*ArcTan[a*x]), x], x] /; FreeQ[{a, c, d, p}, x] && EqQ[c - a^2*d, 0] && !IntegerQ[p] &&
IntegerQ[I*(n/2)] && GtQ[c, 0]
-
Int[E^(ArcTan[(a_.)*(x_)]*(n_))*(u_.)*((c_) + (d_.)/(x_)^2)^(p_), x_Symbol] :> Simp[x^(2*p)*((c + d/x^2)^p/(1
+ a^2*x^2)^p) Int[u*((1 + a^2*x^2)^(I*(n/2) + p)/(x^(2*p)*(1 + I*a*x)^(I*n))), x], x] /; FreeQ[{a, c, d, p},
x] && EqQ[c - a^2*d, 0] && !IntegerQ[p] && IntegerQ[I*(n/2)] && !GtQ[c, 0]
-
Int[E^(ArcTan[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)/(x_)^2)^(p_), x_Symbol] :> Simp[x^(2*p)*((c + d/x^2)^p/(1
+ a^2*x^2)^p) Int[(u/x^(2*p))*(1 + a^2*x^2)^p*E^(n*ArcTan[a*x]), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ
[c - a^2*d, 0] && !IntegerQ[p] && !IntegerQ[I*(n/2)]
-
Int[E^(ArcTan[(c_.)*((a_) + (b_.)*(x_))]*(n_.)), x_Symbol] :> Int[(1 - I*a*c - I*b*c*x)^(I*(n/2))/(1 + I*a*c +
I*b*c*x)^(I*(n/2)), x] /; FreeQ[{a, b, c, n}, x]
-
Int[E^(ArcTan[(c_.)*((a_) + (b_.)*(x_))]*(n_))*(x_)^(m_), x_Symbol] :> Simp[4/(I^m*n*b^(m + 1)*c^(m + 1)) Su
bst[Int[x^(2/(I*n))*((1 - I*a*c - (1 + I*a*c)*x^(2/(I*n)))^m/(1 + x^(2/(I*n)))^(m + 2)), x], x, (1 - I*c*(a +
b*x))^(I*(n/2))/(1 + I*c*(a + b*x))^(I*(n/2))], x] /; FreeQ[{a, b, c}, x] && ILtQ[m, 0] && LtQ[-1, I*n, 1]
-
Int[E^(ArcTan[(c_.)*((a_) + (b_.)*(x_))]*(n_.))*((d_.) + (e_.)*(x_))^(m_.), x_Symbol] :> Int[(d + e*x)^m*((1 -
I*a*c - I*b*c*x)^(I*(n/2))/(1 + I*a*c + I*b*c*x)^(I*(n/2))), x] /; FreeQ[{a, b, c, d, e, m, n}, x]
-
Int[E^(ArcTan[(a_) + (b_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(c/(
1 + a^2))^p Int[u*(1 - I*a - I*b*x)^(p + I*(n/2))*(1 + I*a + I*b*x)^(p - I*(n/2)), x], x] /; FreeQ[{a, b, c,
d, e, n, p}, x] && EqQ[b*d, 2*a*e] && EqQ[b^2*c - e*(1 + a^2), 0] && (IntegerQ[p] || GtQ[c/(1 + a^2), 0])
-
Int[E^(ArcTan[(a_) + (b_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(c +
d*x + e*x^2)^p/(1 + a^2 + 2*a*b*x + b^2*x^2)^p Int[u*(1 + a^2 + 2*a*b*x + b^2*x^2)^p*E^(n*ArcTan[a*x]), x],
x] /; FreeQ[{a, b, c, d, e, n, p}, x] && EqQ[b*d, 2*a*e] && EqQ[b^2*c - e*(1 + a^2), 0] && !(IntegerQ[p] ||
GtQ[c/(1 + a^2), 0])
-
Int[E^(ArcTan[(c_.)/((a_.) + (b_.)*(x_))]*(n_.))*(u_.), x_Symbol] :> Int[u*E^(n*ArcCot[a/c + b*(x/c)]), x] /;
FreeQ[{a, b, c, n}, x]
-
Int[E^(ArcCot[(a_.)*(x_)]*(n_))*(u_.), x_Symbol] :> Simp[(-1)^(I*(n/2)) Int[u/E^(n*ArcTan[a*x]), x], x] /; F
reeQ[a, x] && IntegerQ[I*(n/2)]
-
Int[E^(ArcCot[(a_.)*(x_)]*(n_)), x_Symbol] :> -Subst[Int[(1 - I*(x/a))^((I*n + 1)/2)/(x^2*(1 + I*(x/a))^((I*n
- 1)/2)*Sqrt[1 + x^2/a^2]), x], x, 1/x] /; FreeQ[a, x] && IntegerQ[(I*n - 1)/2]
-
Int[E^(ArcCot[(a_.)*(x_)]*(n_))*(x_)^(m_.), x_Symbol] :> -Subst[Int[(1 - I*(x/a))^((I*n + 1)/2)/(x^(m + 2)*(1
+ I*(x/a))^((I*n - 1)/2)*Sqrt[1 + x^2/a^2]), x], x, 1/x] /; FreeQ[a, x] && IntegerQ[(I*n - 1)/2] && IntegerQ[m
]
-
Int[E^(ArcCot[(a_.)*(x_)]*(n_.)), x_Symbol] :> -Subst[Int[(1 - I*(x/a))^(I*(n/2))/(x^2*(1 + I*(x/a))^(I*(n/2))
), x], x, 1/x] /; FreeQ[{a, n}, x] && !IntegerQ[I*n]
-
Int[E^(ArcCot[(a_.)*(x_)]*(n_.))*(x_)^(m_.), x_Symbol] :> -Subst[Int[(1 - I*(x/a))^(n/2)/(x^(m + 2)*(1 + I*(x/
a))^(n/2)), x], x, 1/x] /; FreeQ[{a, n}, x] && !IntegerQ[I*n] && IntegerQ[m]
-
Int[E^(ArcCot[(a_.)*(x_)]*(n_))*(x_)^(m_), x_Symbol] :> Simp[(-x^m)*(1/x)^m Subst[Int[(1 - I*(x/a))^((I*n +
1)/2)/(x^(m + 2)*(1 + I*(x/a))^((I*n - 1)/2)*Sqrt[1 + x^2/a^2]), x], x, 1/x], x] /; FreeQ[{a, m}, x] && Intege
rQ[(I*n - 1)/2] && !IntegerQ[m]
-
Int[E^(ArcCot[(a_.)*(x_)]*(n_.))*(x_)^(m_), x_Symbol] :> -Subst[Int[(1 - I*(x/a))^(n/2)/(x^(m + 2)*(1 + I*(x/a
))^(n/2)), x], x, 1/x] /; FreeQ[{a, m, n}, x] && !IntegerQ[I*(n/2)] && !IntegerQ[m]
-
Int[E^(ArcCot[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_))^(p_.), x_Symbol] :> Simp[d^p Int[u*x^p*(1 + c/(d*
x))^p*E^(n*ArcCot[a*x]), x], x] /; FreeQ[{a, c, d, n}, x] && EqQ[a^2*c^2 + d^2, 0] && !IntegerQ[I*(n/2)] && I
ntegerQ[p]
-
Int[E^(ArcCot[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_))^(p_), x_Symbol] :> Simp[(c + d*x)^p/(x^p*(1 + c/(d*
x))^p) Int[u*x^p*(1 + c/(d*x))^p*E^(n*ArcCot[a*x]), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c^2 + d^2
, 0] && !IntegerQ[I*(n/2)] && !IntegerQ[p]
-
Int[E^(ArcCot[(a_.)*(x_)]*(n_.))*((c_) + (d_.)/(x_))^(p_.), x_Symbol] :> Simp[-c^p Subst[Int[(1 + d*(x/c))^p
*((1 - I*(x/a))^(I*(n/2))/(x^2*(1 + I*(x/a))^(I*(n/2)))), x], x, 1/x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[
c^2 + a^2*d^2, 0] && !IntegerQ[I*(n/2)] && (IntegerQ[p] || GtQ[c, 0])
-
Int[E^(ArcCot[(a_.)*(x_)]*(n_.))*((c_) + (d_.)/(x_))^(p_.)*(x_)^(m_.), x_Symbol] :> Simp[-c^p Subst[Int[(1 +
d*(x/c))^p*((1 - I*(x/a))^(I*(n/2))/(x^(m + 2)*(1 + I*(x/a))^(I*(n/2)))), x], x, 1/x], x] /; FreeQ[{a, c, d,
m, n, p}, x] && EqQ[c^2 + a^2*d^2, 0] && !IntegerQ[I*(n/2)] && (IntegerQ[p] || GtQ[c, 0]) && IntegerQ[m]
-
Int[E^(ArcCot[(a_.)*(x_)]*(n_.))*((c_) + (d_.)/(x_))^(p_), x_Symbol] :> Simp[(c + d/x)^p/(1 + d/(c*x))^p Int
[(1 + d/(c*x))^p*E^(n*ArcCot[a*x]), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c^2 + a^2*d^2, 0] && !IntegerQ
[I*(n/2)] && !(IntegerQ[p] || GtQ[c, 0])
-
Int[E^(ArcCot[(a_.)*(x_)]*(n_.))*((c_) + (d_.)/(x_))^(p_.)*(x_)^(m_), x_Symbol] :> Simp[(-c^p)*x^m*(1/x)^m S
ubst[Int[(1 + d*(x/c))^p*((1 - I*(x/a))^(I*(n/2))/(x^(m + 2)*(1 + I*(x/a))^(I*(n/2)))), x], x, 1/x], x] /; Fre
eQ[{a, c, d, m, n, p}, x] && EqQ[c^2 + a^2*d^2, 0] && !IntegerQ[I*(n/2)] && (IntegerQ[p] || GtQ[c, 0]) && !I
ntegerQ[m]
-
Int[E^(ArcCot[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)/(x_))^(p_), x_Symbol] :> Simp[(c + d/x)^p/(1 + d/(c*x))^p
Int[u*(1 + d/(c*x))^p*E^(n*ArcCot[a*x]), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c^2 + a^2*d^2, 0] && !
IntegerQ[I*(n/2)] && !(IntegerQ[p] || GtQ[c, 0])
-
Int[E^(ArcCot[(a_.)*(x_)]*(n_.))/((c_) + (d_.)*(x_)^2), x_Symbol] :> Simp[-E^(n*ArcCot[a*x])/(a*c*n), x] /; Fr
eeQ[{a, c, d, n}, x] && EqQ[d, a^2*c]
-
Int[E^(ArcCot[(a_.)*(x_)]*(n_.))/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(-(n - a*x))*(E^(n*ArcCot[a*x]
)/(a*c*(n^2 + 1)*Sqrt[c + d*x^2])), x] /; FreeQ[{a, c, d, n}, x] && EqQ[d, a^2*c] && !IntegerQ[(I*n - 1)/2]
-
Int[E^(ArcCot[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-(n + 2*a*(p + 1)*x))*(c + d*x
^2)^(p + 1)*(E^(n*ArcCot[a*x])/(a*c*(n^2 + 4*(p + 1)^2))), x] + Simp[2*(p + 1)*((2*p + 3)/(c*(n^2 + 4*(p + 1)^
2))) Int[(c + d*x^2)^(p + 1)*E^(n*ArcCot[a*x]), x], x] /; FreeQ[{a, c, d, n}, x] && EqQ[d, a^2*c] && LtQ[p,
-1] && NeQ[p, -3/2] && NeQ[n^2 + 4*(p + 1)^2, 0] && !(IntegerQ[p] && IntegerQ[I*(n/2)]) && !( !IntegerQ[p] &
& IntegerQ[(I*n - 1)/2])
-
Int[(E^(ArcCot[(a_.)*(x_)]*(n_.))*(x_))/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(-(1 + a*n*x))*(E^(n*Ar
cCot[a*x])/(a^2*c*(n^2 + 1)*Sqrt[c + d*x^2])), x] /; FreeQ[{a, c, d, n}, x] && EqQ[d, a^2*c] && !IntegerQ[(I*
n - 1)/2]
-
Int[E^(ArcCot[(a_.)*(x_)]*(n_.))*(x_)*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(2*(p + 1) - a*n*x)*(c + d
*x^2)^(p + 1)*(E^(n*ArcCot[a*x])/(a^2*c*(n^2 + 4*(p + 1)^2))), x] + Simp[n*((2*p + 3)/(a*c*(n^2 + 4*(p + 1)^2)
)) Int[(c + d*x^2)^(p + 1)*E^(n*ArcCot[a*x]), x], x] /; FreeQ[{a, c, d, n}, x] && EqQ[d, a^2*c] && LeQ[p, -1
] && NeQ[p, -3/2] && NeQ[n^2 + 4*(p + 1)^2, 0] && !(IntegerQ[p] && IntegerQ[I*(n/2)]) && !( !IntegerQ[p] &&
IntegerQ[(I*n - 1)/2])
-
Int[E^(ArcCot[(a_.)*(x_)]*(n_.))*(x_)^2*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(n + 2*(p + 1)*a*x)*(c
+ d*x^2)^(p + 1)*(E^(n*ArcCot[a*x])/(a^3*c*n^2*(n^2 + 1))), x] /; FreeQ[{a, c, d, n}, x] && EqQ[d, a^2*c] && E
qQ[n^2 - 2*(p + 1), 0] && NeQ[n^2 + 1, 0]
-
Int[E^(ArcCot[(a_.)*(x_)]*(n_.))*(x_)^2*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(n + 2*(p + 1)*a*x)*(c +
d*x^2)^(p + 1)*(E^(n*ArcCot[a*x])/(a^3*c*(n^2 + 4*(p + 1)^2))), x] + Simp[(n^2 - 2*(p + 1))/(a^2*c*(n^2 + 4*(
p + 1)^2)) Int[(c + d*x^2)^(p + 1)*E^(n*ArcCot[a*x]), x], x] /; FreeQ[{a, c, d, n}, x] && EqQ[d, a^2*c] && L
eQ[p, -1] && NeQ[n^2 - 2*(p + 1), 0] && NeQ[n^2 + 4*(p + 1)^2, 0] && !(IntegerQ[p] && IntegerQ[I*(n/2)]) &&
!( !IntegerQ[p] && IntegerQ[(I*n - 1)/2])
-
Int[E^(ArcCot[(a_.)*(x_)]*(n_.))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Simp[-c^p/a^(m + 1) Sub
st[Int[E^(n*x)*(Cot[x]^(m + 2*(p + 1))/Cos[x]^(2*(p + 1))), x], x, ArcCot[a*x]], x] /; FreeQ[{a, c, d, n}, x]
&& EqQ[d, a^2*c] && IntegerQ[m] && LeQ[3, m, -2*(p + 1)] && IntegerQ[p]
-
Int[E^(ArcCot[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[d^p Int[u*x^(2*p)*(1 +
1/(a^2*x^2))^p*E^(n*ArcCot[a*x]), x], x] /; FreeQ[{a, c, d, n}, x] && EqQ[d, a^2*c] && !IntegerQ[I*(n/2)] &&
IntegerQ[p]
-
Int[E^(ArcCot[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(c + d*x^2)^p/(x^(2*p)*(1
+ 1/(a^2*x^2))^p) Int[u*x^(2*p)*(1 + 1/(a^2*x^2))^p*E^(n*ArcCot[a*x]), x], x] /; FreeQ[{a, c, d, n, p}, x]
&& EqQ[d, a^2*c] && !IntegerQ[I*(n/2)] && !IntegerQ[p]
-
Int[E^(ArcCot[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)/(x_)^2)^(p_.), x_Symbol] :> Simp[c^p/(I*a)^(2*p) Int[(u
/x^(2*p))*(-1 + I*a*x)^(p - I*(n/2))*(1 + I*a*x)^(p + I*(n/2)), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c,
a^2*d] && !IntegerQ[I*(n/2)] && (IntegerQ[p] || GtQ[c, 0]) && IntegersQ[2*p, p + I*(n/2)]
-
Int[E^(ArcCot[(a_.)*(x_)]*(n_.))*((c_) + (d_.)/(x_)^2)^(p_.), x_Symbol] :> Simp[-c^p Subst[Int[(1 - I*(x/a))
^(p + I*(n/2))*((1 + I*(x/a))^(p - I*(n/2))/x^2), x], x, 1/x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c, a^2*d
] && !IntegerQ[I*(n/2)] && (IntegerQ[p] || GtQ[c, 0]) && !(IntegerQ[2*p] && IntegerQ[p + I*(n/2)])
-
Int[E^(ArcCot[(a_.)*(x_)]*(n_.))*((c_) + (d_.)/(x_)^2)^(p_.)*(x_)^(m_.), x_Symbol] :> Simp[-c^p Subst[Int[(1
- I*(x/a))^(p + I*(n/2))*((1 + I*(x/a))^(p - I*(n/2))/x^(m + 2)), x], x, 1/x], x] /; FreeQ[{a, c, d, n, p}, x
] && EqQ[c, a^2*d] && !IntegerQ[I*(n/2)] && (IntegerQ[p] || GtQ[c, 0]) && !(IntegerQ[2*p] && IntegerQ[p + I*
(n/2)]) && IntegerQ[m]
-
Int[E^(ArcCot[(a_.)*(x_)]*(n_.))*((c_) + (d_.)/(x_)^2)^(p_.)*(x_)^(m_), x_Symbol] :> Simp[(-c^p)*x^m*(1/x)^m
Subst[Int[(1 - I*(x/a))^(p + I*(n/2))*((1 + I*(x/a))^(p - I*(n/2))/x^(m + 2)), x], x, 1/x], x] /; FreeQ[{a, c
, d, m, n, p}, x] && EqQ[c, a^2*d] && !IntegerQ[I*(n/2)] && (IntegerQ[p] || GtQ[c, 0]) && !(IntegerQ[2*p] &&
IntegerQ[p + I*(n/2)]) && !IntegerQ[m]
-
Int[E^(ArcCot[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)/(x_)^2)^(p_), x_Symbol] :> Simp[(c + d/x^2)^p/(1 + 1/(a^2
*x^2))^p Int[u*(1 + 1/(a^2*x^2))^p*E^(n*ArcCot[a*x]), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c, a^2*d] &
& !IntegerQ[I*(n/2)] && !(IntegerQ[p] || GtQ[c, 0])
-
Int[E^(ArcCot[(c_.)*((a_) + (b_.)*(x_))]*(n_))*(u_.), x_Symbol] :> Simp[(-1)^(I*(n/2)) Int[u/E^(n*ArcTan[c*(
a + b*x)]), x], x] /; FreeQ[{a, b, c}, x] && IntegerQ[I*(n/2)]
-
Int[E^(ArcCot[(c_.)*((a_) + (b_.)*(x_))]*(n_.)), x_Symbol] :> Simp[(I*c*(a + b*x))^(I*(n/2))*((1 + 1/(I*c*(a +
b*x)))^(I*(n/2))/(1 + I*a*c + I*b*c*x)^(I*(n/2))) Int[(1 + I*a*c + I*b*c*x)^(I*(n/2))/(-1 + I*a*c + I*b*c*x
)^(I*(n/2)), x], x] /; FreeQ[{a, b, c, n}, x] && !IntegerQ[I*(n/2)]
-
Int[E^(ArcCoth[(c_.)*((a_) + (b_.)*(x_))]*(n_))*(x_)^(m_), x_Symbol] :> Simp[4/(I^m*n*b^(m + 1)*c^(m + 1)) S
ubst[Int[x^(2/(I*n))*((1 + I*a*c + (1 - I*a*c)*x^(2/(I*n)))^m/(-1 + x^(2/(I*n)))^(m + 2)), x], x, (1 + 1/(I*c*
(a + b*x)))^(I*(n/2))/(1 - 1/(I*c*(a + b*x)))^(I*(n/2))], x] /; FreeQ[{a, b, c}, x] && ILtQ[m, 0] && LtQ[-1, I
*n, 1]
-
Int[E^(ArcCoth[(c_.)*((a_) + (b_.)*(x_))]*(n_.))*((d_.) + (e_.)*(x_))^(m_.), x_Symbol] :> Simp[(I*c*(a + b*x))
^(I*(n/2))*((1 + 1/(I*c*(a + b*x)))^(I*(n/2))/(1 + I*a*c + I*b*c*x)^(I*(n/2))) Int[(d + e*x)^m*((1 + I*a*c +
I*b*c*x)^(I*(n/2))/(-1 + I*a*c + I*b*c*x)^(I*(n/2))), x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && !IntegerQ
[I*(n/2)]
-
Int[E^(ArcCot[(a_) + (b_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(c/(
1 + a^2))^p*((I*a + I*b*x)/(1 + I*a + I*b*x))^(I*(n/2))*((1 + I*a + I*b*x)/(I*a + I*b*x))^(I*(n/2))*((1 - I*a
- I*b*x)^(I*(n/2))/(-1 + I*a + I*b*x)^(I*(n/2))) Int[u*(1 - I*a - I*b*x)^(p - I*(n/2))*(1 + I*a + I*b*x)^(p
+ I*(n/2)), x], x] /; FreeQ[{a, b, c, d, e, n, p}, x] && !IntegerQ[I*(n/2)] && EqQ[b*d - 2*a*e, 0] && EqQ[b^2
*c - e*(1 + a^2), 0] && (IntegerQ[p] || GtQ[c/(1 + a^2), 0])
-
Int[E^(ArcCot[(a_) + (b_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(c +
d*x + e*x^2)^p/(1 + a^2 + 2*a*b*x + b^2*x^2)^p Int[u*(1 + a^2 + 2*a*b*x + b^2*x^2)^p*E^(n*ArcCot[a*x]), x],
x] /; FreeQ[{a, b, c, d, e, n, p}, x] && !IntegerQ[I*(n/2)] && EqQ[b*d - 2*a*e, 0] && EqQ[b^2*c - e*(1 + a^2
), 0] && !(IntegerQ[p] || GtQ[c/(1 + a^2), 0])
-
Int[E^(ArcCot[(c_.)/((a_.) + (b_.)*(x_))]*(n_.))*(u_.), x_Symbol] :> Int[u*E^(n*ArcTan[a/c + b*(x/c)]), x] /;
FreeQ[{a, b, c, n}, x]
-
Int[ArcTan[(a_) + (b_.)*(x_)^(n_)], x_Symbol] :> Simp[x*ArcTan[a + b*x^n], x] - Simp[b*n Int[x^n/(1 + a^2 +
2*a*b*x^n + b^2*x^(2*n)), x], x] /; FreeQ[{a, b, n}, x]
-
Int[ArcCot[(a_) + (b_.)*(x_)^(n_)], x_Symbol] :> Simp[x*ArcCot[a + b*x^n], x] + Simp[b*n Int[x^n/(1 + a^2 +
2*a*b*x^n + b^2*x^(2*n)), x], x] /; FreeQ[{a, b, n}, x]
-
Int[ArcTan[(a_.) + (b_.)*(x_)^(n_)]/(x_), x_Symbol] :> Simp[I/2 Int[Log[1 - I*a - I*b*x^n]/x, x], x] - Simp[
I/2 Int[Log[1 + I*a + I*b*x^n]/x, x], x] /; FreeQ[{a, b, n}, x]
-
Int[ArcCot[(a_.) + (b_.)*(x_)^(n_)]/(x_), x_Symbol] :> Simp[I/2 Int[Log[1 - I/(a + b*x^n)]/x, x], x] - Simp[
I/2 Int[Log[1 + I/(a + b*x^n)]/x, x], x] /; FreeQ[{a, b, n}, x]
-
Int[ArcTan[(a_) + (b_.)*(x_)^(n_)]*(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)*(ArcTan[a + b*x^n]/(m + 1)), x] - S
imp[b*(n/(m + 1)) Int[x^(m + n)/(1 + a^2 + 2*a*b*x^n + b^2*x^(2*n)), x], x] /; FreeQ[{a, b}, x] && RationalQ
[m, n] && m + 1 != 0 && m + 1 != n
-
Int[ArcCot[(a_) + (b_.)*(x_)^(n_)]*(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)*(ArcCot[a + b*x^n]/(m + 1)), x] + S
imp[b*(n/(m + 1)) Int[x^(m + n)/(1 + a^2 + 2*a*b*x^n + b^2*x^(2*n)), x], x] /; FreeQ[{a, b}, x] && RationalQ
[m, n] && m + 1 != 0 && m + 1 != n
-
Int[ArcTan[(a_.) + (b_.)*(f_)^((c_.) + (d_.)*(x_))], x_Symbol] :> Simp[I/2 Int[Log[1 - I*a - I*b*f^(c + d*x)
], x], x] - Simp[I/2 Int[Log[1 + I*a + I*b*f^(c + d*x)], x], x] /; FreeQ[{a, b, c, d, f}, x]
-
Int[ArcCot[(a_.) + (b_.)*(f_)^((c_.) + (d_.)*(x_))], x_Symbol] :> Simp[I/2 Int[Log[1 - I/(a + b*f^(c + d*x))
], x], x] - Simp[I/2 Int[Log[1 + I/(a + b*f^(c + d*x))], x], x] /; FreeQ[{a, b, c, d, f}, x]
-
Int[ArcTan[(a_.) + (b_.)*(f_)^((c_.) + (d_.)*(x_))]*(x_)^(m_.), x_Symbol] :> Simp[I/2 Int[x^m*Log[1 - I*a -
I*b*f^(c + d*x)], x], x] - Simp[I/2 Int[x^m*Log[1 + I*a + I*b*f^(c + d*x)], x], x] /; FreeQ[{a, b, c, d, f},
x] && IntegerQ[m] && m > 0
-
Int[ArcCot[(a_.) + (b_.)*(f_)^((c_.) + (d_.)*(x_))]*(x_)^(m_.), x_Symbol] :> Simp[I/2 Int[x^m*Log[1 - I/(a +
b*f^(c + d*x))], x], x] - Simp[I/2 Int[x^m*Log[1 + I/(a + b*f^(c + d*x))], x], x] /; FreeQ[{a, b, c, d, f},
x] && IntegerQ[m] && m > 0
-
Int[ArcTan[(c_.)/((a_.) + (b_.)*(x_)^(n_.))]^(m_.)*(u_.), x_Symbol] :> Int[u*ArcCot[a/c + b*(x^n/c)]^m, x] /;
FreeQ[{a, b, c, n, m}, x]
-
Int[ArcCot[(c_.)/((a_.) + (b_.)*(x_)^(n_.))]^(m_.)*(u_.), x_Symbol] :> Int[u*ArcTan[a/c + b*(x^n/c)]^m, x] /;
FreeQ[{a, b, c, n, m}, x]
-
Int[ArcTan[((c_.)*(x_))/Sqrt[(a_.) + (b_.)*(x_)^2]], x_Symbol] :> Simp[x*ArcTan[(c*x)/Sqrt[a + b*x^2]], x] - S
imp[c Int[x/Sqrt[a + b*x^2], x], x] /; FreeQ[{a, b, c}, x] && EqQ[b + c^2, 0]
-
Int[ArcCot[((c_.)*(x_))/Sqrt[(a_.) + (b_.)*(x_)^2]], x_Symbol] :> Simp[x*ArcCot[(c*x)/Sqrt[a + b*x^2]], x] + S
imp[c Int[x/Sqrt[a + b*x^2], x], x] /; FreeQ[{a, b, c}, x] && EqQ[b + c^2, 0]
-
Int[ArcTan[((c_.)*(x_))/Sqrt[(a_.) + (b_.)*(x_)^2]]/(x_), x_Symbol] :> Simp[ArcTan[c*(x/Sqrt[a + b*x^2])]*Log[
x], x] - Simp[c Int[Log[x]/Sqrt[a + b*x^2], x], x] /; FreeQ[{a, b, c}, x] && EqQ[b + c^2, 0]
-
Int[ArcCot[((c_.)*(x_))/Sqrt[(a_.) + (b_.)*(x_)^2]]/(x_), x_Symbol] :> Simp[ArcCot[c*(x/Sqrt[a + b*x^2])]*Log[
x], x] + Simp[c Int[Log[x]/Sqrt[a + b*x^2], x], x] /; FreeQ[{a, b, c}, x] && EqQ[b + c^2, 0]
-
Int[ArcTan[((c_.)*(x_))/Sqrt[(a_.) + (b_.)*(x_)^2]]*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(d*x)^(m + 1)*(ArcTa
n[(c*x)/Sqrt[a + b*x^2]]/(d*(m + 1))), x] - Simp[c/(d*(m + 1)) Int[(d*x)^(m + 1)/Sqrt[a + b*x^2], x], x] /;
FreeQ[{a, b, c, d, m}, x] && EqQ[b + c^2, 0] && NeQ[m, -1]
-
Int[ArcCot[((c_.)*(x_))/Sqrt[(a_.) + (b_.)*(x_)^2]]*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(d*x)^(m + 1)*(ArcCo
t[(c*x)/Sqrt[a + b*x^2]]/(d*(m + 1))), x] + Simp[c/(d*(m + 1)) Int[(d*x)^(m + 1)/Sqrt[a + b*x^2], x], x] /;
FreeQ[{a, b, c, d, m}, x] && EqQ[b + c^2, 0] && NeQ[m, -1]
-
Int[1/(ArcTan[((c_.)*(x_))/Sqrt[(a_.) + (b_.)*(x_)^2]]*Sqrt[(a_.) + (b_.)*(x_)^2]), x_Symbol] :> Simp[(1/c)*Lo
g[ArcTan[c*(x/Sqrt[a + b*x^2])]], x] /; FreeQ[{a, b, c}, x] && EqQ[b + c^2, 0]
-
Int[1/(ArcCot[((c_.)*(x_))/Sqrt[(a_.) + (b_.)*(x_)^2]]*Sqrt[(a_.) + (b_.)*(x_)^2]), x_Symbol] :> Simp[(-c^(-1)
)*Log[ArcCot[c*(x/Sqrt[a + b*x^2])]], x] /; FreeQ[{a, b, c}, x] && EqQ[b + c^2, 0]
-
Int[ArcTan[((c_.)*(x_))/Sqrt[(a_.) + (b_.)*(x_)^2]]^(m_.)/Sqrt[(a_.) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcTan
[c*(x/Sqrt[a + b*x^2])]^(m + 1)/(c*(m + 1)), x] /; FreeQ[{a, b, c, m}, x] && EqQ[b + c^2, 0] && NeQ[m, -1]
-
Int[ArcCot[((c_.)*(x_))/Sqrt[(a_.) + (b_.)*(x_)^2]]^(m_.)/Sqrt[(a_.) + (b_.)*(x_)^2], x_Symbol] :> Simp[-ArcCo
t[c*(x/Sqrt[a + b*x^2])]^(m + 1)/(c*(m + 1)), x] /; FreeQ[{a, b, c, m}, x] && EqQ[b + c^2, 0] && NeQ[m, -1]
-
Int[ArcTan[((c_.)*(x_))/Sqrt[(a_.) + (b_.)*(x_)^2]]^(m_.)/Sqrt[(d_.) + (e_.)*(x_)^2], x_Symbol] :> Simp[Sqrt[a
+ b*x^2]/Sqrt[d + e*x^2] Int[ArcTan[c*(x/Sqrt[a + b*x^2])]^m/Sqrt[a + b*x^2], x], x] /; FreeQ[{a, b, c, d,
e, m}, x] && EqQ[b + c^2, 0] && EqQ[b*d - a*e, 0]
-
Int[ArcCot[((c_.)*(x_))/Sqrt[(a_.) + (b_.)*(x_)^2]]^(m_.)/Sqrt[(d_.) + (e_.)*(x_)^2], x_Symbol] :> Simp[Sqrt[a
+ b*x^2]/Sqrt[d + e*x^2] Int[ArcCot[c*(x/Sqrt[a + b*x^2])]^m/Sqrt[a + b*x^2], x], x] /; FreeQ[{a, b, c, d,
e, m}, x] && EqQ[b + c^2, 0] && EqQ[b*d - a*e, 0]
-
Int[ArcTan[(v_) + (s_.)*Sqrt[w_]]*(u_.), x_Symbol] :> Simp[Pi*(s/4) Int[u, x], x] + Simp[1/2 Int[u*ArcTan[
v], x], x] /; EqQ[s^2, 1] && EqQ[w, v^2 + 1]
-
Int[ArcCot[(v_) + (s_.)*Sqrt[w_]]*(u_.), x_Symbol] :> Simp[Pi*(s/4) Int[u, x], x] - Simp[1/2 Int[u*ArcTan[
v], x], x] /; EqQ[s^2, 1] && EqQ[w, v^2 + 1]
-
Int[(u_)*(v_)^(n_.), x_Symbol] :> With[{tmp = InverseFunctionOfLinear[u, x]}, Simp[((-Discriminant[v, x]/(4*Co
efficient[v, x, 2]))^n/Coefficient[tmp[[1]], x, 1])*Subst[Int[SimplifyIntegrand[SubstForInverseFunction[u, tmp
, x]*Sec[x]^(2*(n + 1)), x], x], x, tmp], x] /; !FalseQ[tmp] && EqQ[Head[tmp], ArcTan] && EqQ[Discriminant[v,
x]*tmp[[1]]^2 + D[v, x]^2, 0]] /; QuadraticQ[v, x] && ILtQ[n, 0] && NegQ[Discriminant[v, x]] && MatchQ[u, (r_
.)*(f_)^(w_) /; FreeQ[f, x]]
-
Int[(u_)*(v_)^(n_.), x_Symbol] :> With[{tmp = InverseFunctionOfLinear[u, x]}, Simp[(-(-Discriminant[v, x]/(4*C
oefficient[v, x, 2]))^n/Coefficient[tmp[[1]], x, 1])*Subst[Int[SimplifyIntegrand[SubstForInverseFunction[u, tm
p, x]*Csc[x]^(2*(n + 1)), x], x], x, tmp], x] /; !FalseQ[tmp] && EqQ[Head[tmp], ArcCot] && EqQ[Discriminant[v
, x]*tmp[[1]]^2 + D[v, x]^2, 0]] /; QuadraticQ[v, x] && ILtQ[n, 0] && NegQ[Discriminant[v, x]] && MatchQ[u, (r
_.)*(f_)^(w_) /; FreeQ[f, x]]
-
Int[ArcTan[(c_.) + (d_.)*Tan[(a_.) + (b_.)*(x_)]], x_Symbol] :> Simp[x*ArcTan[c + d*Tan[a + b*x]], x] - Simp[I
*b Int[x/(c + I*d + c*E^(2*I*a + 2*I*b*x)), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[(c + I*d)^2, -1]
-
Int[ArcCot[(c_.) + (d_.)*Tan[(a_.) + (b_.)*(x_)]], x_Symbol] :> Simp[x*ArcCot[c + d*Tan[a + b*x]], x] + Simp[I
*b Int[x/(c + I*d + c*E^(2*I*a + 2*I*b*x)), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[(c + I*d)^2, -1]
-
Int[ArcTan[(c_.) + Cot[(a_.) + (b_.)*(x_)]*(d_.)], x_Symbol] :> Simp[x*ArcTan[c + d*Cot[a + b*x]], x] - Simp[I
*b Int[x/(c - I*d - c*E^(2*I*a + 2*I*b*x)), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[(c - I*d)^2, -1]
-
Int[ArcCot[(c_.) + Cot[(a_.) + (b_.)*(x_)]*(d_.)], x_Symbol] :> Simp[x*ArcCot[c + d*Cot[a + b*x]], x] + Simp[I
*b Int[x/(c - I*d - c*E^(2*I*a + 2*I*b*x)), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[(c - I*d)^2, -1]
-
Int[ArcTan[(c_.) + (d_.)*Tan[(a_.) + (b_.)*(x_)]], x_Symbol] :> Simp[x*ArcTan[c + d*Tan[a + b*x]], x] + (Simp[
b*(1 - I*c - d) Int[x*(E^(2*I*a + 2*I*b*x)/(1 - I*c + d + (1 - I*c - d)*E^(2*I*a + 2*I*b*x))), x], x] - Simp
[b*(1 + I*c + d) Int[x*(E^(2*I*a + 2*I*b*x)/(1 + I*c - d + (1 + I*c + d)*E^(2*I*a + 2*I*b*x))), x], x]) /; F
reeQ[{a, b, c, d}, x] && NeQ[(c + I*d)^2, -1]
-
Int[ArcCot[(c_.) + (d_.)*Tan[(a_.) + (b_.)*(x_)]], x_Symbol] :> Simp[x*ArcCot[c + d*Tan[a + b*x]], x] + (-Simp
[b*(1 - I*c - d) Int[x*(E^(2*I*a + 2*I*b*x)/(1 - I*c + d + (1 - I*c - d)*E^(2*I*a + 2*I*b*x))), x], x] + Sim
p[b*(1 + I*c + d) Int[x*(E^(2*I*a + 2*I*b*x)/(1 + I*c - d + (1 + I*c + d)*E^(2*I*a + 2*I*b*x))), x], x]) /;
FreeQ[{a, b, c, d}, x] && NeQ[(c + I*d)^2, -1]
-
Int[ArcTan[(c_.) + Cot[(a_.) + (b_.)*(x_)]*(d_.)], x_Symbol] :> Simp[x*ArcTan[c + d*Cot[a + b*x]], x] + (Simp[
b*(1 + I*c - d) Int[x*(E^(2*I*a + 2*I*b*x)/(1 + I*c + d - (1 + I*c - d)*E^(2*I*a + 2*I*b*x))), x], x] - Simp
[b*(1 - I*c + d) Int[x*(E^(2*I*a + 2*I*b*x)/(1 - I*c - d - (1 - I*c + d)*E^(2*I*a + 2*I*b*x))), x], x]) /; F
reeQ[{a, b, c, d}, x] && NeQ[(c + I*d)^2, -1]
-
Int[ArcCot[(c_.) + Cot[(a_.) + (b_.)*(x_)]*(d_.)], x_Symbol] :> Simp[x*ArcCot[c + d*Cot[a + b*x]], x] + (-Simp
[b*(1 + I*c - d) Int[x*(E^(2*I*a + 2*I*b*x)/(1 + I*c + d - (1 + I*c - d)*E^(2*I*a + 2*I*b*x))), x], x] + Sim
p[b*(1 - I*c + d) Int[x*(E^(2*I*a + 2*I*b*x)/(1 - I*c - d - (1 - I*c + d)*E^(2*I*a + 2*I*b*x))), x], x]) /;
FreeQ[{a, b, c, d}, x] && NeQ[(c - I*d)^2, -1]
-
Int[ArcTan[(c_.) + (d_.)*Tan[(a_.) + (b_.)*(x_)]]*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[(e + f*x)^(m +
1)*(ArcTan[c + d*Tan[a + b*x]]/(f*(m + 1))), x] - Simp[I*(b/(f*(m + 1))) Int[(e + f*x)^(m + 1)/(c + I*d + c
*E^(2*I*a + 2*I*b*x)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && EqQ[(c + I*d)^2, -1]
-
Int[ArcCot[(c_.) + (d_.)*Tan[(a_.) + (b_.)*(x_)]]*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[(e + f*x)^(m +
1)*(ArcCot[c + d*Tan[a + b*x]]/(f*(m + 1))), x] + Simp[I*(b/(f*(m + 1))) Int[(e + f*x)^(m + 1)/(c + I*d + c
*E^(2*I*a + 2*I*b*x)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && EqQ[(c + I*d)^2, -1]
-
Int[ArcTan[(c_.) + Cot[(a_.) + (b_.)*(x_)]*(d_.)]*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[(e + f*x)^(m +
1)*(ArcTan[c + d*Cot[a + b*x]]/(f*(m + 1))), x] - Simp[I*(b/(f*(m + 1))) Int[(e + f*x)^(m + 1)/(c - I*d - c
*E^(2*I*a + 2*I*b*x)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && EqQ[(c - I*d)^2, -1]
-
Int[ArcCot[(c_.) + Cot[(a_.) + (b_.)*(x_)]*(d_.)]*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[(e + f*x)^(m +
1)*(ArcCot[c + d*Cot[a + b*x]]/(f*(m + 1))), x] + Simp[I*(b/(f*(m + 1))) Int[(e + f*x)^(m + 1)/(c - I*d - c
*E^(2*I*a + 2*I*b*x)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && EqQ[(c - I*d)^2, -1]
-
Int[ArcTan[(c_.) + (d_.)*Tan[(a_.) + (b_.)*(x_)]]*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[(e + f*x)^(m +
1)*(ArcTan[c + d*Tan[a + b*x]]/(f*(m + 1))), x] + (Simp[b*((1 - I*c - d)/(f*(m + 1))) Int[(e + f*x)^(m + 1)
*(E^(2*I*a + 2*I*b*x)/(1 - I*c + d + (1 - I*c - d)*E^(2*I*a + 2*I*b*x))), x], x] - Simp[b*((1 + I*c + d)/(f*(m
+ 1))) Int[(e + f*x)^(m + 1)*(E^(2*I*a + 2*I*b*x)/(1 + I*c - d + (1 + I*c + d)*E^(2*I*a + 2*I*b*x))), x], x
]) /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && NeQ[(c + I*d)^2, -1]
-
Int[ArcCot[(c_.) + (d_.)*Tan[(a_.) + (b_.)*(x_)]]*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[(e + f*x)^(m +
1)*(ArcCot[c + d*Tan[a + b*x]]/(f*(m + 1))), x] + (-Simp[b*((1 - I*c - d)/(f*(m + 1))) Int[(e + f*x)^(m + 1
)*(E^(2*I*a + 2*I*b*x)/(1 - I*c + d + (1 - I*c - d)*E^(2*I*a + 2*I*b*x))), x], x] + Simp[b*((1 + I*c + d)/(f*(
m + 1))) Int[(e + f*x)^(m + 1)*(E^(2*I*a + 2*I*b*x)/(1 + I*c - d + (1 + I*c + d)*E^(2*I*a + 2*I*b*x))), x],
x]) /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && NeQ[(c + I*d)^2, -1]
-
Int[ArcTan[(c_.) + Cot[(a_.) + (b_.)*(x_)]*(d_.)]*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[(e + f*x)^(m +
1)*(ArcTan[c + d*Cot[a + b*x]]/(f*(m + 1))), x] + (Simp[b*((1 + I*c - d)/(f*(m + 1))) Int[(e + f*x)^(m + 1)
*(E^(2*I*a + 2*I*b*x)/(1 + I*c + d - (1 + I*c - d)*E^(2*I*a + 2*I*b*x))), x], x] - Simp[b*((1 - I*c + d)/(f*(m
+ 1))) Int[(e + f*x)^(m + 1)*(E^(2*I*a + 2*I*b*x)/(1 - I*c - d - (1 - I*c + d)*E^(2*I*a + 2*I*b*x))), x], x
]) /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && NeQ[(c - I*d)^2, -1]
-
Int[ArcCot[(c_.) + Cot[(a_.) + (b_.)*(x_)]*(d_.)]*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[(e + f*x)^(m +
1)*(ArcCot[c + d*Cot[a + b*x]]/(f*(m + 1))), x] + (-Simp[b*((1 + I*c - d)/(f*(m + 1))) Int[(e + f*x)^(m + 1
)*(E^(2*I*a + 2*I*b*x)/(1 + I*c + d - (1 + I*c - d)*E^(2*I*a + 2*I*b*x))), x], x] + Simp[b*((1 - I*c + d)/(f*(
m + 1))) Int[(e + f*x)^(m + 1)*(E^(2*I*a + 2*I*b*x)/(1 - I*c - d - (1 - I*c + d)*E^(2*I*a + 2*I*b*x))), x],
x]) /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && NeQ[(c - I*d)^2, -1]
-
Int[ArcTan[Tanh[(a_.) + (b_.)*(x_)]], x_Symbol] :> Simp[x*ArcTan[Tanh[a + b*x]], x] - Simp[b Int[x*Sech[2*a
+ 2*b*x], x], x] /; FreeQ[{a, b}, x]
-
Int[ArcCot[Tanh[(a_.) + (b_.)*(x_)]], x_Symbol] :> Simp[x*ArcCot[Tanh[a + b*x]], x] + Simp[b Int[x*Sech[2*a
+ 2*b*x], x], x] /; FreeQ[{a, b}, x]
-
Int[ArcTan[Coth[(a_.) + (b_.)*(x_)]], x_Symbol] :> Simp[x*ArcTan[Coth[a + b*x]], x] + Simp[b Int[x*Sech[2*a
+ 2*b*x], x], x] /; FreeQ[{a, b}, x]
-
Int[ArcCot[Coth[(a_.) + (b_.)*(x_)]], x_Symbol] :> Simp[x*ArcCot[Coth[a + b*x]], x] - Simp[b Int[x*Sech[2*a
+ 2*b*x], x], x] /; FreeQ[{a, b}, x]
-
Int[ArcTan[Tanh[(a_.) + (b_.)*(x_)]]*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[(e + f*x)^(m + 1)*(ArcTan[T
anh[a + b*x]]/(f*(m + 1))), x] - Simp[b/(f*(m + 1)) Int[(e + f*x)^(m + 1)*Sech[2*a + 2*b*x], x], x] /; FreeQ
[{a, b, e, f}, x] && IGtQ[m, 0]
-
Int[ArcCot[Tanh[(a_.) + (b_.)*(x_)]]*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[(e + f*x)^(m + 1)*(ArcCot[T
anh[a + b*x]]/(f*(m + 1))), x] + Simp[b/(f*(m + 1)) Int[(e + f*x)^(m + 1)*Sech[2*a + 2*b*x], x], x] /; FreeQ
[{a, b, e, f}, x] && IGtQ[m, 0]
-
Int[ArcTan[Coth[(a_.) + (b_.)*(x_)]]*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[(e + f*x)^(m + 1)*(ArcTan[C
oth[a + b*x]]/(f*(m + 1))), x] + Simp[b/(f*(m + 1)) Int[(e + f*x)^(m + 1)*Sech[2*a + 2*b*x], x], x] /; FreeQ
[{a, b, e, f}, x] && IGtQ[m, 0]
-
Int[ArcCot[Coth[(a_.) + (b_.)*(x_)]]*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[(e + f*x)^(m + 1)*(ArcCot[C
oth[a + b*x]]/(f*(m + 1))), x] - Simp[b/(f*(m + 1)) Int[(e + f*x)^(m + 1)*Sech[2*a + 2*b*x], x], x] /; FreeQ
[{a, b, e, f}, x] && IGtQ[m, 0]
-
Int[ArcTan[(c_.) + (d_.)*Tanh[(a_.) + (b_.)*(x_)]], x_Symbol] :> Simp[x*ArcTan[c + d*Tanh[a + b*x]], x] - Simp
[b Int[x/(c - d + c*E^(2*a + 2*b*x)), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[(c - d)^2, -1]
-
Int[ArcCot[(c_.) + (d_.)*Tanh[(a_.) + (b_.)*(x_)]], x_Symbol] :> Simp[x*ArcCot[c + d*Tanh[a + b*x]], x] + Simp
[b Int[x/(c - d + c*E^(2*a + 2*b*x)), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[(c - d)^2, -1]
-
Int[ArcTan[(c_.) + Coth[(a_.) + (b_.)*(x_)]*(d_.)], x_Symbol] :> Simp[x*ArcTan[c + d*Coth[a + b*x]], x] - Simp
[b Int[x/(c - d - c*E^(2*a + 2*b*x)), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[(c - d)^2, -1]
-
Int[ArcCot[(c_.) + Coth[(a_.) + (b_.)*(x_)]*(d_.)], x_Symbol] :> Simp[x*ArcCot[c + d*Coth[a + b*x]], x] + Simp
[b Int[x/(c - d - c*E^(2*a + 2*b*x)), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[(c - d)^2, -1]
-
Int[ArcTan[(c_.) + (d_.)*Tanh[(a_.) + (b_.)*(x_)]], x_Symbol] :> Simp[x*ArcTan[c + d*Tanh[a + b*x]], x] + (Sim
p[I*b*(I - c - d) Int[x*(E^(2*a + 2*b*x)/(I - c + d + (I - c - d)*E^(2*a + 2*b*x))), x], x] - Simp[I*b*(I +
c + d) Int[x*(E^(2*a + 2*b*x)/(I + c - d + (I + c + d)*E^(2*a + 2*b*x))), x], x]) /; FreeQ[{a, b, c, d}, x]
&& NeQ[(c - d)^2, -1]
-
Int[ArcCot[(c_.) + (d_.)*Tanh[(a_.) + (b_.)*(x_)]], x_Symbol] :> Simp[x*ArcCot[c + d*Tanh[a + b*x]], x] + (-Si
mp[I*b*(I - c - d) Int[x*(E^(2*a + 2*b*x)/(I - c + d + (I - c - d)*E^(2*a + 2*b*x))), x], x] + Simp[I*b*(I +
c + d) Int[x*(E^(2*a + 2*b*x)/(I + c - d + (I + c + d)*E^(2*a + 2*b*x))), x], x]) /; FreeQ[{a, b, c, d}, x]
&& NeQ[(c - d)^2, -1]
-
Int[ArcTan[(c_.) + Coth[(a_.) + (b_.)*(x_)]*(d_.)], x_Symbol] :> Simp[x*ArcTan[c + d*Coth[a + b*x]], x] + (-Si
mp[I*b*(I - c - d) Int[x*(E^(2*a + 2*b*x)/(I - c + d - (I - c - d)*E^(2*a + 2*b*x))), x], x] + Simp[I*b*(I +
c + d) Int[x*(E^(2*a + 2*b*x)/(I + c - d - (I + c + d)*E^(2*a + 2*b*x))), x], x]) /; FreeQ[{a, b, c, d}, x]
&& NeQ[(c - d)^2, -1]
-
Int[ArcCot[(c_.) + Coth[(a_.) + (b_.)*(x_)]*(d_.)], x_Symbol] :> Simp[x*ArcCot[c + d*Coth[a + b*x]], x] + (Sim
p[I*b*(I - c - d) Int[x*(E^(2*a + 2*b*x)/(I - c + d - (I - c - d)*E^(2*a + 2*b*x))), x], x] - Simp[I*b*(I +
c + d) Int[x*(E^(2*a + 2*b*x)/(I + c - d - (I + c + d)*E^(2*a + 2*b*x))), x], x]) /; FreeQ[{a, b, c, d}, x]
&& NeQ[(c - d)^2, -1]
-
Int[ArcTan[(c_.) + (d_.)*Tanh[(a_.) + (b_.)*(x_)]]*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[(e + f*x)^(m
+ 1)*(ArcTan[c + d*Tanh[a + b*x]]/(f*(m + 1))), x] - Simp[b/(f*(m + 1)) Int[(e + f*x)^(m + 1)/(c - d + c*E^(
2*a + 2*b*x)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && EqQ[(c - d)^2, -1]
-
Int[ArcCot[(c_.) + (d_.)*Tanh[(a_.) + (b_.)*(x_)]]*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[(e + f*x)^(m
+ 1)*(ArcCot[c + d*Tanh[a + b*x]]/(f*(m + 1))), x] + Simp[b/(f*(m + 1)) Int[(e + f*x)^(m + 1)/(c - d + c*E^(
2*a + 2*b*x)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && EqQ[(c - d)^2, -1]
-
Int[ArcTan[(c_.) + Coth[(a_.) + (b_.)*(x_)]*(d_.)]*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[(e + f*x)^(m
+ 1)*(ArcTan[c + d*Coth[a + b*x]]/(f*(m + 1))), x] - Simp[b/(f*(m + 1)) Int[(e + f*x)^(m + 1)/(c - d - c*E^(
2*a + 2*b*x)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && EqQ[(c - d)^2, -1]
-
Int[ArcCot[(c_.) + Coth[(a_.) + (b_.)*(x_)]*(d_.)]*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[(e + f*x)^(m
+ 1)*(ArcCot[c + d*Coth[a + b*x]]/(f*(m + 1))), x] + Simp[b/(f*(m + 1)) Int[(e + f*x)^(m + 1)/(c - d - c*E^(
2*a + 2*b*x)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && EqQ[(c - d)^2, -1]
-
Int[ArcTan[(c_.) + (d_.)*Tanh[(a_.) + (b_.)*(x_)]]*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[(e + f*x)^(m
+ 1)*(ArcTan[c + d*Tanh[a + b*x]]/(f*(m + 1))), x] + (Simp[I*b*((I - c - d)/(f*(m + 1))) Int[(e + f*x)^(m +
1)*(E^(2*a + 2*b*x)/(I - c + d + (I - c - d)*E^(2*a + 2*b*x))), x], x] - Simp[I*b*((I + c + d)/(f*(m + 1)))
Int[(e + f*x)^(m + 1)*(E^(2*a + 2*b*x)/(I + c - d + (I + c + d)*E^(2*a + 2*b*x))), x], x]) /; FreeQ[{a, b, c,
d, e, f}, x] && IGtQ[m, 0] && NeQ[(c - d)^2, -1]
-
Int[ArcCot[(c_.) + (d_.)*Tanh[(a_.) + (b_.)*(x_)]]*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[(e + f*x)^(m
+ 1)*(ArcCot[c + d*Tanh[a + b*x]]/(f*(m + 1))), x] + (-Simp[I*b*((I - c - d)/(f*(m + 1))) Int[(e + f*x)^(m +
1)*(E^(2*a + 2*b*x)/(I - c + d + (I - c - d)*E^(2*a + 2*b*x))), x], x] + Simp[I*b*((I + c + d)/(f*(m + 1)))
Int[(e + f*x)^(m + 1)*(E^(2*a + 2*b*x)/(I + c - d + (I + c + d)*E^(2*a + 2*b*x))), x], x]) /; FreeQ[{a, b, c,
d, e, f}, x] && IGtQ[m, 0] && NeQ[(c - d)^2, -1]
-
Int[ArcTan[(c_.) + Coth[(a_.) + (b_.)*(x_)]*(d_.)]*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[(e + f*x)^(m
+ 1)*(ArcTan[c + d*Coth[a + b*x]]/(f*(m + 1))), x] + (-Simp[I*b*((I - c - d)/(f*(m + 1))) Int[(e + f*x)^(m +
1)*(E^(2*a + 2*b*x)/(I - c + d - (I - c - d)*E^(2*a + 2*b*x))), x], x] + Simp[I*b*((I + c + d)/(f*(m + 1)))
Int[(e + f*x)^(m + 1)*(E^(2*a + 2*b*x)/(I + c - d - (I + c + d)*E^(2*a + 2*b*x))), x], x]) /; FreeQ[{a, b, c,
d, e, f}, x] && IGtQ[m, 0] && NeQ[(c - d)^2, -1]
-
Int[ArcCot[(c_.) + Coth[(a_.) + (b_.)*(x_)]*(d_.)]*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[(e + f*x)^(m
+ 1)*(ArcCot[c + d*Coth[a + b*x]]/(f*(m + 1))), x] + (Simp[I*b*((I - c - d)/(f*(m + 1))) Int[(e + f*x)^(m +
1)*(E^(2*a + 2*b*x)/(I - c + d - (I - c - d)*E^(2*a + 2*b*x))), x], x] - Simp[I*b*((I + c + d)/(f*(m + 1)))
Int[(e + f*x)^(m + 1)*(E^(2*a + 2*b*x)/(I + c - d - (I + c + d)*E^(2*a + 2*b*x))), x], x]) /; FreeQ[{a, b, c,
d, e, f}, x] && IGtQ[m, 0] && NeQ[(c - d)^2, -1]
-
Int[ArcTan[u_], x_Symbol] :> Simp[x*ArcTan[u], x] - Int[SimplifyIntegrand[x*(D[u, x]/(1 + u^2)), x], x] /; Inv
erseFunctionFreeQ[u, x]
-
Int[ArcCot[u_], x_Symbol] :> Simp[x*ArcCot[u], x] + Int[SimplifyIntegrand[x*(D[u, x]/(1 + u^2)), x], x] /; Inv
erseFunctionFreeQ[u, x]
-
Int[((a_.) + ArcTan[u_]*(b_.))*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(c + d*x)^(m + 1)*((a + b*ArcTan[
u])/(d*(m + 1))), x] - Simp[b/(d*(m + 1)) Int[SimplifyIntegrand[(c + d*x)^(m + 1)*(D[u, x]/(1 + u^2)), x], x
], x] /; FreeQ[{a, b, c, d, m}, x] && NeQ[m, -1] && InverseFunctionFreeQ[u, x] && !FunctionOfQ[(c + d*x)^(m +
1), u, x] && FalseQ[PowerVariableExpn[u, m + 1, x]]
-
Int[((a_.) + ArcCot[u_]*(b_.))*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(c + d*x)^(m + 1)*((a + b*ArcCot[
u])/(d*(m + 1))), x] + Simp[b/(d*(m + 1)) Int[SimplifyIntegrand[(c + d*x)^(m + 1)*(D[u, x]/(1 + u^2)), x], x
], x] /; FreeQ[{a, b, c, d, m}, x] && NeQ[m, -1] && InverseFunctionFreeQ[u, x] && !FunctionOfQ[(c + d*x)^(m +
1), u, x] && FalseQ[PowerVariableExpn[u, m + 1, x]]
-
Int[((a_.) + ArcTan[u_]*(b_.))*(v_), x_Symbol] :> With[{w = IntHide[v, x]}, Simp[(a + b*ArcTan[u]) w, x] - S
imp[b Int[SimplifyIntegrand[w*(D[u, x]/(1 + u^2)), x], x], x] /; InverseFunctionFreeQ[w, x]] /; FreeQ[{a, b}
, x] && InverseFunctionFreeQ[u, x] && !MatchQ[v, ((c_.) + (d_.)*x)^(m_.) /; FreeQ[{c, d, m}, x]] && FalseQ[Fu
nctionOfLinear[v*(a + b*ArcTan[u]), x]]
-
Int[((a_.) + ArcCot[u_]*(b_.))*(v_), x_Symbol] :> With[{w = IntHide[v, x]}, Simp[(a + b*ArcCot[u])*w, x] + Sim
p[b Int[SimplifyIntegrand[w*(D[u, x]/(1 + u^2)), x], x], x] /; InverseFunctionFreeQ[w, x]] /; FreeQ[{a, b},
x] && InverseFunctionFreeQ[u, x] && !MatchQ[v, ((c_.) + (d_.)*x)^(m_.) /; FreeQ[{c, d, m}, x]] && FalseQ[Func
tionOfLinear[v*(a + b*ArcCot[u]), x]]
-
Int[(ArcTan[v_]*Log[w_])/((a_.) + (b_.)*(x_)), x_Symbol] :> Simp[I/2 Int[Log[1 - I*v]*(Log[w]/(a + b*x)), x]
, x] - Simp[I/2 Int[Log[1 + I*v]*(Log[w]/(a + b*x)), x], x] /; FreeQ[{a, b}, x] && LinearQ[v, x] && LinearQ[
w, x] && EqQ[Simplify[D[v/(a + b*x), x]], 0] && EqQ[Simplify[D[w/(a + b*x), x]], 0]
-
Int[ArcTan[v_]*Log[w_], x_Symbol] :> Simp[x*ArcTan[v]*Log[w], x] + (-Int[SimplifyIntegrand[x*Log[w]*(D[v, x]/(
1 + v^2)), x], x] - Int[SimplifyIntegrand[x*ArcTan[v]*(D[w, x]/w), x], x]) /; InverseFunctionFreeQ[v, x] && In
verseFunctionFreeQ[w, x]
-
Int[ArcCot[v_]*Log[w_], x_Symbol] :> Simp[x*ArcCot[v]*Log[w], x] + (Int[SimplifyIntegrand[x*Log[w]*(D[v, x]/(1
+ v^2)), x], x] - Int[SimplifyIntegrand[x*ArcCot[v]*(D[w, x]/w), x], x]) /; InverseFunctionFreeQ[v, x] && Inv
erseFunctionFreeQ[w, x]
-
Int[ArcTan[v_]*Log[w_]*(u_), x_Symbol] :> With[{z = IntHide[u, x]}, Simp[ArcTan[v]*Log[w] z, x] + (-Int[Simp
lifyIntegrand[z*Log[w]*(D[v, x]/(1 + v^2)), x], x] - Int[SimplifyIntegrand[z*ArcTan[v]*(D[w, x]/w), x], x]) /;
InverseFunctionFreeQ[z, x]] /; InverseFunctionFreeQ[v, x] && InverseFunctionFreeQ[w, x]
-
Int[ArcCot[v_]*Log[w_]*(u_), x_Symbol] :> With[{z = IntHide[u, x]}, Simp[ArcCot[v]*Log[w] z, x] + (Int[Simpl
ifyIntegrand[z*Log[w]*(D[v, x]/(1 + v^2)), x], x] - Int[SimplifyIntegrand[z*ArcCot[v]*(D[w, x]/w), x], x]) /;
InverseFunctionFreeQ[z, x]] /; InverseFunctionFreeQ[v, x] && InverseFunctionFreeQ[w, x]
-
Int[ArcSec[(c_.)*(x_)], x_Symbol] :> Simp[x*ArcSec[c*x], x] - Simp[1/c Int[1/(x*Sqrt[1 - 1/(c^2*x^2)]), x],
x] /; FreeQ[c, x]
-
Int[ArcCsc[(c_.)*(x_)], x_Symbol] :> Simp[x*ArcCsc[c*x], x] + Simp[1/c Int[1/(x*Sqrt[1 - 1/(c^2*x^2)]), x],
x] /; FreeQ[c, x]
-
Int[((a_.) + ArcSec[(c_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[1/c Subst[Int[(a + b*x)^n*Sec[x]*Tan[x], x],
x, ArcSec[c*x]], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[n, 0]
-
Int[((a_.) + ArcCsc[(c_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[-c^(-1) Subst[Int[(a + b*x)^n*Csc[x]*Cot[x],
x], x, ArcCsc[c*x]], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[n, 0]
-
Int[((a_.) + ArcSec[(c_.)*(x_)]*(b_.))/(x_), x_Symbol] :> -Subst[Int[(a + b*ArcCos[x/c])/x, x], x, 1/x] /; Fre
eQ[{a, b, c}, x]
-
Int[((a_.) + ArcCsc[(c_.)*(x_)]*(b_.))/(x_), x_Symbol] :> -Subst[Int[(a + b*ArcSin[x/c])/x, x], x, 1/x] /; Fre
eQ[{a, b, c}, x]
-
Int[((a_.) + ArcSec[(c_.)*(x_)]*(b_.))*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(d*x)^(m + 1)*((a + b*ArcSec[c*x]
)/(d*(m + 1))), x] - Simp[b*(d/(c*(m + 1))) Int[(d*x)^(m - 1)/Sqrt[1 - 1/(c^2*x^2)], x], x] /; FreeQ[{a, b,
c, d, m}, x] && NeQ[m, -1]
-
Int[((a_.) + ArcCsc[(c_.)*(x_)]*(b_.))*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(d*x)^(m + 1)*((a + b*ArcCsc[c*x]
)/(d*(m + 1))), x] + Simp[b*(d/(c*(m + 1))) Int[(d*x)^(m - 1)/Sqrt[1 - 1/(c^2*x^2)], x], x] /; FreeQ[{a, b,
c, d, m}, x] && NeQ[m, -1]
-
Int[((a_.) + ArcSec[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[1/c^(m + 1) Subst[Int[(a + b*x)^n*
Sec[x]^(m + 1)*Tan[x], x], x, ArcSec[c*x]], x] /; FreeQ[{a, b, c}, x] && IntegerQ[n] && IntegerQ[m] && (GtQ[n,
0] || LtQ[m, -1])
-
Int[((a_.) + ArcCsc[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[-(c^(m + 1))^(-1) Subst[Int[(a + b
*x)^n*Csc[x]^(m + 1)*Cot[x], x], x, ArcCsc[c*x]], x] /; FreeQ[{a, b, c}, x] && IntegerQ[n] && IntegerQ[m] && (
GtQ[n, 0] || LtQ[m, -1])
-
Int[((a_.) + ArcSec[(c_.)*(x_)]*(b_.))/((d_.) + (e_.)*(x_)), x_Symbol] :> Simp[(a + b*ArcSec[c*x])*(Log[1 + (e
- Sqrt[(-c^2)*d^2 + e^2])*(E^(I*ArcSec[c*x])/(c*d))]/e), x] + (Simp[(a + b*ArcSec[c*x])*(Log[1 + (e + Sqrt[(-
c^2)*d^2 + e^2])*(E^(I*ArcSec[c*x])/(c*d))]/e), x] - Simp[(a + b*ArcSec[c*x])*(Log[1 + E^(2*I*ArcSec[c*x])]/e)
, x] - Simp[b/(c*e) Int[Log[1 + (e - Sqrt[(-c^2)*d^2 + e^2])*(E^(I*ArcSec[c*x])/(c*d))]/(x^2*Sqrt[1 - 1/(c^2
*x^2)]), x], x] - Simp[b/(c*e) Int[Log[1 + (e + Sqrt[(-c^2)*d^2 + e^2])*(E^(I*ArcSec[c*x])/(c*d))]/(x^2*Sqrt
[1 - 1/(c^2*x^2)]), x], x] + Simp[b/(c*e) Int[Log[1 + E^(2*I*ArcSec[c*x])]/(x^2*Sqrt[1 - 1/(c^2*x^2)]), x],
x]) /; FreeQ[{a, b, c, d, e}, x]
-
Int[((a_.) + ArcCsc[(c_.)*(x_)]*(b_.))/((d_.) + (e_.)*(x_)), x_Symbol] :> Simp[(a + b*ArcCsc[c*x])*(Log[1 - I*
(e - Sqrt[(-c^2)*d^2 + e^2])*(E^(I*ArcCsc[c*x])/(c*d))]/e), x] + (Simp[(a + b*ArcCsc[c*x])*(Log[1 - I*(e + Sqr
t[(-c^2)*d^2 + e^2])*(E^(I*ArcCsc[c*x])/(c*d))]/e), x] - Simp[(a + b*ArcCsc[c*x])*(Log[1 - E^(2*I*ArcCsc[c*x])
]/e), x] + Simp[b/(c*e) Int[Log[1 - I*(e - Sqrt[(-c^2)*d^2 + e^2])*(E^(I*ArcCsc[c*x])/(c*d))]/(x^2*Sqrt[1 -
1/(c^2*x^2)]), x], x] + Simp[b/(c*e) Int[Log[1 - I*(e + Sqrt[(-c^2)*d^2 + e^2])*(E^(I*ArcCsc[c*x])/(c*d))]/(
x^2*Sqrt[1 - 1/(c^2*x^2)]), x], x] - Simp[b/(c*e) Int[Log[1 - E^(2*I*ArcCsc[c*x])]/(x^2*Sqrt[1 - 1/(c^2*x^2)
]), x], x]) /; FreeQ[{a, b, c, d, e}, x]
-
Int[((a_.) + ArcSec[(c_.)*(x_)]*(b_.))*((d_.) + (e_.)*(x_))^(m_.), x_Symbol] :> Simp[(d + e*x)^(m + 1)*((a + b
*ArcSec[c*x])/(e*(m + 1))), x] - Simp[b/(c*e*(m + 1)) Int[(d + e*x)^(m + 1)/(x^2*Sqrt[1 - 1/(c^2*x^2)]), x],
x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[m, -1]
-
Int[((a_.) + ArcCsc[(c_.)*(x_)]*(b_.))*((d_.) + (e_.)*(x_))^(m_.), x_Symbol] :> Simp[(d + e*x)^(m + 1)*((a + b
*ArcCsc[c*x])/(e*(m + 1))), x] + Simp[b/(c*e*(m + 1)) Int[(d + e*x)^(m + 1)/(x^2*Sqrt[1 - 1/(c^2*x^2)]), x],
x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[m, -1]
-
Int[((a_.) + ArcSec[(c_.)*(x_)]*(b_.))*((d_.) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> With[{u = IntHide[(d + e*x^2
)^p, x]}, Simp[(a + b*ArcSec[c*x]) u, x] - Simp[b*c*(x/Sqrt[c^2*x^2]) Int[SimplifyIntegrand[u/(x*Sqrt[c^2*
x^2 - 1]), x], x], x]] /; FreeQ[{a, b, c, d, e}, x] && (IGtQ[p, 0] || ILtQ[p + 1/2, 0])
-
Int[((a_.) + ArcCsc[(c_.)*(x_)]*(b_.))*((d_.) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> With[{u = IntHide[(d + e*x^2
)^p, x]}, Simp[(a + b*ArcCsc[c*x]) u, x] + Simp[b*c*(x/Sqrt[c^2*x^2]) Int[SimplifyIntegrand[u/(x*Sqrt[c^2*
x^2 - 1]), x], x], x]] /; FreeQ[{a, b, c, d, e}, x] && (IGtQ[p, 0] || ILtQ[p + 1/2, 0])
-
Int[((a_.) + ArcSec[(c_.)*(x_)]*(b_.))^(n_.)*((d_.) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> -Subst[Int[(e + d*x^2)
^p*((a + b*ArcCos[x/c])^n/x^(2*(p + 1))), x], x, 1/x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[n, 0] && Integer
Q[p]
-
Int[((a_.) + ArcCsc[(c_.)*(x_)]*(b_.))^(n_.)*((d_.) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> -Subst[Int[(e + d*x^2)
^p*((a + b*ArcSin[x/c])^n/x^(2*(p + 1))), x], x, 1/x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[n, 0] && Integer
Q[p]
-
Int[((a_.) + ArcSec[(c_.)*(x_)]*(b_.))^(n_.)*((d_.) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[-Sqrt[x^2]/x Sub
st[Int[(e + d*x^2)^p*((a + b*ArcCos[x/c])^n/x^(2*(p + 1))), x], x, 1/x], x] /; FreeQ[{a, b, c, d, e, n}, x] &&
IGtQ[n, 0] && EqQ[c^2*d + e, 0] && IntegerQ[p + 1/2] && GtQ[e, 0] && LtQ[d, 0]
-
Int[((a_.) + ArcCsc[(c_.)*(x_)]*(b_.))^(n_.)*((d_.) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[-Sqrt[x^2]/x Sub
st[Int[(e + d*x^2)^p*((a + b*ArcSin[x/c])^n/x^(2*(p + 1))), x], x, 1/x], x] /; FreeQ[{a, b, c, d, e, n}, x] &&
IGtQ[n, 0] && EqQ[c^2*d + e, 0] && IntegerQ[p + 1/2] && GtQ[e, 0] && LtQ[d, 0]
-
Int[((a_.) + ArcSec[(c_.)*(x_)]*(b_.))^(n_.)*((d_.) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[-Sqrt[d + e*x^2]/(
x*Sqrt[e + d/x^2]) Subst[Int[(e + d*x^2)^p*((a + b*ArcCos[x/c])^n/x^(2*(p + 1))), x], x, 1/x], x] /; FreeQ[{
a, b, c, d, e, n}, x] && IGtQ[n, 0] && EqQ[c^2*d + e, 0] && IntegerQ[p + 1/2] && !(GtQ[e, 0] && LtQ[d, 0])
-
Int[((a_.) + ArcCsc[(c_.)*(x_)]*(b_.))^(n_.)*((d_.) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[-Sqrt[d + e*x^2]/(
x*Sqrt[e + d/x^2]) Subst[Int[(e + d*x^2)^p*((a + b*ArcSin[x/c])^n/x^(2*(p + 1))), x], x, 1/x], x] /; FreeQ[{
a, b, c, d, e, n}, x] && IGtQ[n, 0] && EqQ[c^2*d + e, 0] && IntegerQ[p + 1/2] && !(GtQ[e, 0] && LtQ[d, 0])
-
Int[((a_.) + ArcSec[(c_.)*(x_)]*(b_.))*(x_)*((d_.) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x^2)^(p + 1
)*((a + b*ArcSec[c*x])/(2*e*(p + 1))), x] - Simp[b*c*(x/(2*e*(p + 1)*Sqrt[c^2*x^2])) Int[(d + e*x^2)^(p + 1)
/(x*Sqrt[c^2*x^2 - 1]), x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[p, -1]
-
Int[((a_.) + ArcCsc[(c_.)*(x_)]*(b_.))*(x_)*((d_.) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x^2)^(p + 1
)*((a + b*ArcCsc[c*x])/(2*e*(p + 1))), x] + Simp[b*c*(x/(2*e*(p + 1)*Sqrt[c^2*x^2])) Int[(d + e*x^2)^(p + 1)
/(x*Sqrt[c^2*x^2 - 1]), x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[p, -1]
-
Int[((a_.) + ArcSec[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_.)*((d_.) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> With[{u =
IntHide[(f*x)^m*(d + e*x^2)^p, x]}, Simp[(a + b*ArcSec[c*x]) u, x] - Simp[b*c*(x/Sqrt[c^2*x^2]) Int[Simpl
ifyIntegrand[u/(x*Sqrt[c^2*x^2 - 1]), x], x], x]] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && ((IGtQ[p, 0] && !(
ILtQ[(m - 1)/2, 0] && GtQ[m + 2*p + 3, 0])) || (IGtQ[(m + 1)/2, 0] && !(ILtQ[p, 0] && GtQ[m + 2*p + 3, 0])) |
| (ILtQ[(m + 2*p + 1)/2, 0] && !ILtQ[(m - 1)/2, 0]))
-
Int[((a_.) + ArcCsc[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_.)*((d_.) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> With[{u =
IntHide[(f*x)^m*(d + e*x^2)^p, x]}, Simp[(a + b*ArcCsc[c*x]) u, x] + Simp[b*c*(x/Sqrt[c^2*x^2]) Int[Simpl
ifyIntegrand[u/(x*Sqrt[c^2*x^2 - 1]), x], x], x]] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && ((IGtQ[p, 0] && !(
ILtQ[(m - 1)/2, 0] && GtQ[m + 2*p + 3, 0])) || (IGtQ[(m + 1)/2, 0] && !(ILtQ[p, 0] && GtQ[m + 2*p + 3, 0])) |
| (ILtQ[(m + 2*p + 1)/2, 0] && !ILtQ[(m - 1)/2, 0]))
-
Int[((a_.) + ArcSec[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_.) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> -Subst[Int[
(e + d*x^2)^p*((a + b*ArcCos[x/c])^n/x^(m + 2*(p + 1))), x], x, 1/x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[n
, 0] && IntegerQ[m] && IntegerQ[p]
-
Int[((a_.) + ArcCsc[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_.) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> -Subst[Int[
(e + d*x^2)^p*((a + b*ArcSin[x/c])^n/x^(m + 2*(p + 1))), x], x, 1/x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[n
, 0] && IntegerQ[m] && IntegerQ[p]
-
Int[((a_.) + ArcSec[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_.) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[-Sqrt[x
^2]/x Subst[Int[(e + d*x^2)^p*((a + b*ArcCos[x/c])^n/x^(m + 2*(p + 1))), x], x, 1/x], x] /; FreeQ[{a, b, c,
d, e, n}, x] && IGtQ[n, 0] && EqQ[c^2*d + e, 0] && IntegerQ[m] && IntegerQ[p + 1/2] && GtQ[e, 0] && LtQ[d, 0]
-
Int[((a_.) + ArcCsc[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_.) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[-Sqrt[x
^2]/x Subst[Int[(e + d*x^2)^p*((a + b*ArcSin[x/c])^n/x^(m + 2*(p + 1))), x], x, 1/x], x] /; FreeQ[{a, b, c,
d, e, n}, x] && IGtQ[n, 0] && EqQ[c^2*d + e, 0] && IntegerQ[m] && IntegerQ[p + 1/2] && GtQ[e, 0] && LtQ[d, 0]
-
Int[((a_.) + ArcSec[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_.) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[-Sqrt[d
+ e*x^2]/(x*Sqrt[e + d/x^2]) Subst[Int[(e + d*x^2)^p*((a + b*ArcCos[x/c])^n/x^(m + 2*(p + 1))), x], x, 1/x]
, x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[n, 0] && EqQ[c^2*d + e, 0] && IntegerQ[m] && IntegerQ[p + 1/2] &&
!(GtQ[e, 0] && LtQ[d, 0])
-
Int[((a_.) + ArcCsc[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_.) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[-Sqrt[d
+ e*x^2]/(x*Sqrt[e + d/x^2]) Subst[Int[(e + d*x^2)^p*((a + b*ArcSin[x/c])^n/x^(m + 2*(p + 1))), x], x, 1/x]
, x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[n, 0] && EqQ[c^2*d + e, 0] && IntegerQ[m] && IntegerQ[p + 1/2] &&
!(GtQ[e, 0] && LtQ[d, 0])
-
Int[((a_.) + ArcSec[(c_.)*(x_)]*(b_.))*(u_), x_Symbol] :> With[{v = IntHide[u, x]}, Simp[(a + b*ArcSec[c*x])
v, x] - Simp[b/c Int[SimplifyIntegrand[v/(x^2*Sqrt[1 - 1/(c^2*x^2)]), x], x], x] /; InverseFunctionFreeQ[v,
x]] /; FreeQ[{a, b, c}, x]
-
Int[((a_.) + ArcCsc[(c_.)*(x_)]*(b_.))*(u_), x_Symbol] :> With[{v = IntHide[u, x]}, Simp[(a + b*ArcCsc[c*x])
v, x] + Simp[b/c Int[SimplifyIntegrand[v/(x^2*Sqrt[1 - 1/(c^2*x^2)]), x], x], x] /; InverseFunctionFreeQ[v,
x]] /; FreeQ[{a, b, c}, x]
-
Int[((a_.) + ArcSec[(c_.)*(x_)]*(b_.))^(n_.)*(u_.), x_Symbol] :> Unintegrable[u*(a + b*ArcSec[c*x])^n, x] /; F
reeQ[{a, b, c, n}, x]
-
Int[((a_.) + ArcCsc[(c_.)*(x_)]*(b_.))^(n_.)*(u_.), x_Symbol] :> Unintegrable[u*(a + b*ArcCsc[c*x])^n, x] /; F
reeQ[{a, b, c, n}, x]
-
Int[ArcSec[(c_) + (d_.)*(x_)], x_Symbol] :> Simp[(c + d*x)*(ArcSec[c + d*x]/d), x] - Int[1/((c + d*x)*Sqrt[1 -
1/(c + d*x)^2]), x] /; FreeQ[{c, d}, x]
-
Int[ArcCsc[(c_) + (d_.)*(x_)], x_Symbol] :> Simp[(c + d*x)*(ArcCsc[c + d*x]/d), x] + Int[1/((c + d*x)*Sqrt[1 -
1/(c + d*x)^2]), x] /; FreeQ[{c, d}, x]
-
Int[((a_.) + ArcSec[(c_) + (d_.)*(x_)]*(b_.))^(p_.), x_Symbol] :> Simp[1/d Subst[Int[(a + b*ArcSec[x])^p, x]
, x, c + d*x], x] /; FreeQ[{a, b, c, d}, x] && IGtQ[p, 0]
-
Int[((a_.) + ArcCsc[(c_) + (d_.)*(x_)]*(b_.))^(p_.), x_Symbol] :> Simp[1/d Subst[Int[(a + b*ArcCsc[x])^p, x]
, x, c + d*x], x] /; FreeQ[{a, b, c, d}, x] && IGtQ[p, 0]
-
Int[((a_.) + ArcSec[(c_) + (d_.)*(x_)]*(b_.))^(p_), x_Symbol] :> Unintegrable[(a + b*ArcSec[c + d*x])^p, x] /;
FreeQ[{a, b, c, d, p}, x] && !IGtQ[p, 0]
-
Int[((a_.) + ArcCsc[(c_) + (d_.)*(x_)]*(b_.))^(p_), x_Symbol] :> Unintegrable[(a + b*ArcCsc[c + d*x])^p, x] /;
FreeQ[{a, b, c, d, p}, x] && !IGtQ[p, 0]
-
Int[((a_.) + ArcSec[(c_) + (d_.)*(x_)]*(b_.))^(p_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[1/d Subst[
Int[(f*(x/d))^m*(a + b*ArcSec[x])^p, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[d*e - c*f,
0] && IGtQ[p, 0]
-
Int[((a_.) + ArcCsc[(c_) + (d_.)*(x_)]*(b_.))^(p_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[1/d Subst[
Int[(f*(x/d))^m*(a + b*ArcCsc[x])^p, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[d*e - c*f,
0] && IGtQ[p, 0]
-
Int[((a_.) + ArcSec[(c_) + (d_.)*(x_)]*(b_.))^(p_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[1/d^(m + 1)
Subst[Int[(a + b*x)^p*Sec[x]*Tan[x]*(d*e - c*f + f*Sec[x])^m, x], x, ArcSec[c + d*x]], x] /; FreeQ[{a, b, c,
d, e, f}, x] && IGtQ[p, 0] && IntegerQ[m]
-
Int[((a_.) + ArcCsc[(c_) + (d_.)*(x_)]*(b_.))^(p_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[-(d^(m + 1))
^(-1) Subst[Int[(a + b*x)^p*Csc[x]*Cot[x]*(d*e - c*f + f*Csc[x])^m, x], x, ArcCsc[c + d*x]], x] /; FreeQ[{a,
b, c, d, e, f}, x] && IGtQ[p, 0] && IntegerQ[m]
-
Int[((a_.) + ArcSec[(c_) + (d_.)*(x_)]*(b_.))^(p_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[1/d Subst[
Int[((d*e - c*f)/d + f*(x/d))^m*(a + b*ArcSec[x])^p, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] &&
IGtQ[p, 0]
-
Int[((a_.) + ArcCsc[(c_) + (d_.)*(x_)]*(b_.))^(p_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[1/d Subst[
Int[((d*e - c*f)/d + f*(x/d))^m*(a + b*ArcCsc[x])^p, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] &&
IGtQ[p, 0]
-
Int[((a_.) + ArcSec[(c_) + (d_.)*(x_)]*(b_.))^(p_)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Unintegrable[(e +
f*x)^m*(a + b*ArcSec[c + d*x])^p, x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && !IGtQ[p, 0]
-
Int[((a_.) + ArcCsc[(c_) + (d_.)*(x_)]*(b_.))^(p_)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Unintegrable[(e +
f*x)^m*(a + b*ArcCsc[c + d*x])^p, x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && !IGtQ[p, 0]
-
Int[ArcSec[(c_.)/((a_.) + (b_.)*(x_)^(n_.))]^(m_.)*(u_.), x_Symbol] :> Int[u*ArcCos[a/c + b*(x^n/c)]^m, x] /;
FreeQ[{a, b, c, n, m}, x]
-
Int[ArcCsc[(c_.)/((a_.) + (b_.)*(x_)^(n_.))]^(m_.)*(u_.), x_Symbol] :> Int[u*ArcSin[a/c + b*(x^n/c)]^m, x] /;
FreeQ[{a, b, c, n, m}, x]
-
Int[(u_.)*(f_)^(ArcSec[(a_.) + (b_.)*(x_)]^(n_.)*(c_.)), x_Symbol] :> Simp[1/b Subst[Int[(u /. x -> -a/b + S
ec[x]/b)*f^(c*x^n)*Sec[x]*Tan[x], x], x, ArcSec[a + b*x]], x] /; FreeQ[{a, b, c, f}, x] && IGtQ[n, 0]
-
Int[(u_.)*(f_)^(ArcCsc[(a_.) + (b_.)*(x_)]^(n_.)*(c_.)), x_Symbol] :> Simp[-b^(-1) Subst[Int[(u /. x -> -a/b
+ Csc[x]/b)*f^(c*x^n)*Csc[x]*Cot[x], x], x, ArcCsc[a + b*x]], x] /; FreeQ[{a, b, c, f}, x] && IGtQ[n, 0]
-
Int[ArcSec[u_], x_Symbol] :> Simp[x*ArcSec[u], x] - Simp[u/Sqrt[u^2] Int[SimplifyIntegrand[x*(D[u, x]/(u*Sqr
t[u^2 - 1])), x], x], x] /; InverseFunctionFreeQ[u, x] && !FunctionOfExponentialQ[u, x]
-
Int[ArcCsc[u_], x_Symbol] :> Simp[x*ArcCsc[u], x] + Simp[u/Sqrt[u^2] Int[SimplifyIntegrand[x*(D[u, x]/(u*Sqr
t[u^2 - 1])), x], x], x] /; InverseFunctionFreeQ[u, x] && !FunctionOfExponentialQ[u, x]
-
Int[((a_.) + ArcSec[u_]*(b_.))*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(c + d*x)^(m + 1)*((a + b*ArcSec[
u])/(d*(m + 1))), x] - Simp[b*(u/(d*(m + 1)*Sqrt[u^2])) Int[SimplifyIntegrand[(c + d*x)^(m + 1)*(D[u, x]/(u*
Sqrt[u^2 - 1])), x], x], x] /; FreeQ[{a, b, c, d, m}, x] && NeQ[m, -1] && InverseFunctionFreeQ[u, x] && !Func
tionOfQ[(c + d*x)^(m + 1), u, x] && !FunctionOfExponentialQ[u, x]
-
Int[((a_.) + ArcCsc[u_]*(b_.))*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(c + d*x)^(m + 1)*((a + b*ArcCsc[
u])/(d*(m + 1))), x] + Simp[b*(u/(d*(m + 1)*Sqrt[u^2])) Int[SimplifyIntegrand[(c + d*x)^(m + 1)*(D[u, x]/(u*
Sqrt[u^2 - 1])), x], x], x] /; FreeQ[{a, b, c, d, m}, x] && NeQ[m, -1] && InverseFunctionFreeQ[u, x] && !Func
tionOfQ[(c + d*x)^(m + 1), u, x] && !FunctionOfExponentialQ[u, x]
-
Int[((a_.) + ArcSec[u_]*(b_.))*(v_), x_Symbol] :> With[{w = IntHide[v, x]}, Simp[(a + b*ArcSec[u]) w, x] - S
imp[b*(u/Sqrt[u^2]) Int[SimplifyIntegrand[w*(D[u, x]/(u*Sqrt[u^2 - 1])), x], x], x] /; InverseFunctionFreeQ[
w, x]] /; FreeQ[{a, b}, x] && InverseFunctionFreeQ[u, x] && !MatchQ[v, ((c_.) + (d_.)*x)^(m_.) /; FreeQ[{c, d
, m}, x]]
-
Int[((a_.) + ArcCsc[u_]*(b_.))*(v_), x_Symbol] :> With[{w = IntHide[v, x]}, Simp[(a + b*ArcCsc[u]) w, x] + S
imp[b*(u/Sqrt[u^2]) Int[SimplifyIntegrand[w*(D[u, x]/(u*Sqrt[u^2 - 1])), x], x], x] /; InverseFunctionFreeQ[
w, x]] /; FreeQ[{a, b}, x] && InverseFunctionFreeQ[u, x] && !MatchQ[v, ((c_.) + (d_.)*x)^(m_.) /; FreeQ[{c, d
, m}, x]]
-
Int[(u_)^(m_.)*((a_.) + (b_.)*Sinh[v_])^(n_.), x_Symbol] :> Int[ExpandToSum[u, x]^m*(a + b*Sinh[ExpandToSum[v,
x]])^n, x] /; FreeQ[{a, b, m, n}, x] && LinearQ[{u, v}, x] && !LinearMatchQ[{u, v}, x]
-
Int[((a_.) + Cosh[v_]*(b_.))^(n_.)*(u_)^(m_.), x_Symbol] :> Int[ExpandToSum[u, x]^m*(a + b*Cosh[ExpandToSum[v,
x]])^n, x] /; FreeQ[{a, b, m, n}, x] && LinearQ[{u, v}, x] && !LinearMatchQ[{u, v}, x]
-
Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*Sinh[(c_.) + (d_.)*(x_)], x_Symbol] :> Int[ExpandIntegrand[Sinh[c + d*x], (
a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, n}, x] && IGtQ[p, 0]
-
Int[Cosh[(c_.) + (d_.)*(x_)]*((a_) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Int[ExpandIntegrand[Cosh[c + d*x], (
a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, n}, x] && IGtQ[p, 0]
-
Int[((a_) + (b_.)*(x_)^(n_))^(p_)*Sinh[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[x^(-n + 1)*(a + b*x^n)^(p + 1)*(
Sinh[c + d*x]/(b*n*(p + 1))), x] + (-Simp[(-n + 1)/(b*n*(p + 1)) Int[((a + b*x^n)^(p + 1)*Sinh[c + d*x])/x^n
, x], x] - Simp[d/(b*n*(p + 1)) Int[x^(-n + 1)*(a + b*x^n)^(p + 1)*Cosh[c + d*x], x], x]) /; FreeQ[{a, b, c,
d}, x] && IntegerQ[p] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[n, 2]
-
Int[Cosh[(c_.) + (d_.)*(x_)]*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[x^(-n + 1)*(a + b*x^n)^(p + 1)*(
Cosh[c + d*x]/(b*n*(p + 1))), x] + (-Simp[(-n + 1)/(b*n*(p + 1)) Int[((a + b*x^n)^(p + 1)*Cosh[c + d*x])/x^n
, x], x] - Simp[d/(b*n*(p + 1)) Int[x^(-n + 1)*(a + b*x^n)^(p + 1)*Sinh[c + d*x], x], x]) /; FreeQ[{a, b, c,
d}, x] && IntegerQ[p] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[n, 2]
-
Int[((a_) + (b_.)*(x_)^(n_))^(p_)*Sinh[(c_.) + (d_.)*(x_)], x_Symbol] :> Int[ExpandIntegrand[Sinh[c + d*x], (a
+ b*x^n)^p, x], x] /; FreeQ[{a, b, c, d}, x] && ILtQ[p, 0] && IGtQ[n, 0] && (EqQ[n, 2] || EqQ[p, -1])
-
Int[Cosh[(c_.) + (d_.)*(x_)]*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Int[ExpandIntegrand[Cosh[c + d*x], (a
+ b*x^n)^p, x], x] /; FreeQ[{a, b, c, d}, x] && ILtQ[p, 0] && IGtQ[n, 0] && (EqQ[n, 2] || EqQ[p, -1])
-
Int[((a_) + (b_.)*(x_)^(n_))^(p_)*Sinh[(c_.) + (d_.)*(x_)], x_Symbol] :> Int[x^(n*p)*(b + a/x^n)^p*Sinh[c + d*
x], x] /; FreeQ[{a, b, c, d}, x] && ILtQ[p, 0] && ILtQ[n, 0]
-
Int[Cosh[(c_.) + (d_.)*(x_)]*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Int[x^(n*p)*(b + a/x^n)^p*Cosh[c + d*
x], x] /; FreeQ[{a, b, c, d}, x] && ILtQ[p, 0] && ILtQ[n, 0]
-
Int[((a_) + (b_.)*(x_)^(n_))^(p_)*Sinh[(c_.) + (d_.)*(x_)], x_Symbol] :> Unintegrable[(a + b*x^n)^p*Sinh[c + d
*x], x] /; FreeQ[{a, b, c, d, n, p}, x]
-
Int[Cosh[(c_.) + (d_.)*(x_)]*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Unintegrable[(a + b*x^n)^p*Cosh[c + d
*x], x] /; FreeQ[{a, b, c, d, n, p}, x]
-
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*Sinh[(c_.) + (d_.)*(x_)], x_Symbol] :> Int[ExpandIntegra
nd[Sinh[c + d*x], (e*x)^m*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && IGtQ[p, 0]
-
Int[Cosh[(c_.) + (d_.)*(x_)]*((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Int[ExpandIntegra
nd[Cosh[c + d*x], (e*x)^m*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && IGtQ[p, 0]
-
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*Sinh[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[e^m*(a + b*x^
n)^(p + 1)*(Sinh[c + d*x]/(b*n*(p + 1))), x] - Simp[d*(e^m/(b*n*(p + 1))) Int[(a + b*x^n)^(p + 1)*Cosh[c + d
*x], x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && IntegerQ[p] && EqQ[m - n + 1, 0] && LtQ[p, -1] && (IntegerQ[
n] || GtQ[e, 0])
-
Int[Cosh[(c_.) + (d_.)*(x_)]*((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[e^m*(a + b*x^
n)^(p + 1)*(Cosh[c + d*x]/(b*n*(p + 1))), x] - Simp[d*(e^m/(b*n*(p + 1))) Int[(a + b*x^n)^(p + 1)*Sinh[c + d
*x], x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && IntegerQ[p] && EqQ[m - n + 1, 0] && LtQ[p, -1] && (IntegerQ[
n] || GtQ[e, 0])
-
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*Sinh[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[x^(m - n + 1)*(a + b*
x^n)^(p + 1)*(Sinh[c + d*x]/(b*n*(p + 1))), x] + (-Simp[(m - n + 1)/(b*n*(p + 1)) Int[x^(m - n)*(a + b*x^n)^
(p + 1)*Sinh[c + d*x], x], x] - Simp[d/(b*n*(p + 1)) Int[x^(m - n + 1)*(a + b*x^n)^(p + 1)*Cosh[c + d*x], x]
, x]) /; FreeQ[{a, b, c, d}, x] && ILtQ[p, -1] && IGtQ[n, 0] && RationalQ[m] && (GtQ[m - n + 1, 0] || GtQ[n, 2
])
-
Int[Cosh[(c_.) + (d_.)*(x_)]*(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[x^(m - n + 1)*(a + b*
x^n)^(p + 1)*(Cosh[c + d*x]/(b*n*(p + 1))), x] + (-Simp[(m - n + 1)/(b*n*(p + 1)) Int[x^(m - n)*(a + b*x^n)^
(p + 1)*Cosh[c + d*x], x], x] - Simp[d/(b*n*(p + 1)) Int[x^(m - n + 1)*(a + b*x^n)^(p + 1)*Sinh[c + d*x], x]
, x]) /; FreeQ[{a, b, c, d}, x] && ILtQ[p, -1] && IGtQ[n, 0] && RationalQ[m] && (GtQ[m - n + 1, 0] || GtQ[n, 2
])
-
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*Sinh[(c_.) + (d_.)*(x_)], x_Symbol] :> Int[ExpandIntegrand[Sinh[c
+ d*x], x^m*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d}, x] && ILtQ[p, 0] && IntegerQ[m] && IGtQ[n, 0] && (Eq
Q[n, 2] || EqQ[p, -1])
-
Int[Cosh[(c_.) + (d_.)*(x_)]*(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Int[ExpandIntegrand[Cosh[c
+ d*x], x^m*(a + b*x^n)^p, x], x] /; FreeQ[{a, b, c, d}, x] && ILtQ[p, 0] && IntegerQ[m] && IGtQ[n, 0] && (Eq
Q[n, 2] || EqQ[p, -1])
-
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*Sinh[(c_.) + (d_.)*(x_)], x_Symbol] :> Int[x^(m + n*p)*(b + a/x^n
)^p*Sinh[c + d*x], x] /; FreeQ[{a, b, c, d, m}, x] && ILtQ[p, 0] && ILtQ[n, 0]
-
Int[Cosh[(c_.) + (d_.)*(x_)]*(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Int[x^(m + n*p)*(b + a/x^n
)^p*Cosh[c + d*x], x] /; FreeQ[{a, b, c, d, m}, x] && ILtQ[p, 0] && ILtQ[n, 0]
-
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*Sinh[(c_.) + (d_.)*(x_)], x_Symbol] :> Unintegrable[(e*x
)^m*(a + b*x^n)^p*Sinh[c + d*x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x]
-
Int[Cosh[(c_.) + (d_.)*(x_)]*((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Unintegrable[(e*x
)^m*(a + b*x^n)^p*Cosh[c + d*x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x]
-
Int[Sinh[(c_.) + (d_.)*(x_)^(n_)], x_Symbol] :> Simp[1/2 Int[E^(c + d*x^n), x], x] - Simp[1/2 Int[E^(-c -
d*x^n), x], x] /; FreeQ[{c, d}, x] && IGtQ[n, 1]
-
Int[Cosh[(c_.) + (d_.)*(x_)^(n_)], x_Symbol] :> Simp[1/2 Int[E^(c + d*x^n), x], x] + Simp[1/2 Int[E^(-c -
d*x^n), x], x] /; FreeQ[{c, d}, x] && IGtQ[n, 1]
-
Int[((a_.) + (b_.)*Sinh[(c_.) + (d_.)*(x_)^(n_)])^(p_), x_Symbol] :> Int[ExpandTrigReduce[(a + b*Sinh[c + d*x^
n])^p, x], x] /; FreeQ[{a, b, c, d}, x] && IGtQ[n, 1] && IGtQ[p, 1]
-
Int[((a_.) + Cosh[(c_.) + (d_.)*(x_)^(n_)]*(b_.))^(p_), x_Symbol] :> Int[ExpandTrigReduce[(a + b*Cosh[c + d*x^
n])^p, x], x] /; FreeQ[{a, b, c, d}, x] && IGtQ[n, 1] && IGtQ[p, 1]
-
Int[((a_.) + (b_.)*Sinh[(c_.) + (d_.)*(x_)^(n_)])^(p_.), x_Symbol] :> -Subst[Int[(a + b*Sinh[c + d/x^n])^p/x^2
, x], x, 1/x] /; FreeQ[{a, b, c, d}, x] && ILtQ[n, 0] && IntegerQ[p]
-
Int[((a_.) + Cosh[(c_.) + (d_.)*(x_)^(n_)]*(b_.))^(p_.), x_Symbol] :> -Subst[Int[(a + b*Cosh[c + d/x^n])^p/x^2
, x], x, 1/x] /; FreeQ[{a, b, c, d}, x] && ILtQ[n, 0] && IntegerQ[p]
-
Int[((a_.) + (b_.)*Sinh[(c_.) + (d_.)*(x_)^(n_)])^(p_.), x_Symbol] :> Module[{k = Denominator[n]}, Simp[k Su
bst[Int[x^(k - 1)*(a + b*Sinh[c + d*x^(k*n)])^p, x], x, x^(1/k)], x]] /; FreeQ[{a, b, c, d}, x] && FractionQ[n
] && IntegerQ[p]
-
Int[((a_.) + Cosh[(c_.) + (d_.)*(x_)^(n_)]*(b_.))^(p_.), x_Symbol] :> Module[{k = Denominator[n]}, Simp[k Su
bst[Int[x^(k - 1)*(a + b*Cosh[c + d*x^(k*n)])^p, x], x, x^(1/k)], x]] /; FreeQ[{a, b, c, d}, x] && FractionQ[n
] && IntegerQ[p]
-
Int[Sinh[(c_.) + (d_.)*(x_)^(n_)], x_Symbol] :> Simp[1/2 Int[E^(c + d*x^n), x], x] - Simp[1/2 Int[E^(-c -
d*x^n), x], x] /; FreeQ[{c, d, n}, x]
-
Int[Cosh[(c_.) + (d_.)*(x_)^(n_)], x_Symbol] :> Simp[1/2 Int[E^(c + d*x^n), x], x] + Simp[1/2 Int[E^(-c -
d*x^n), x], x] /; FreeQ[{c, d, n}, x]
-
Int[((a_.) + (b_.)*Sinh[(c_.) + (d_.)*(x_)^(n_)])^(p_), x_Symbol] :> Int[ExpandTrigReduce[(a + b*Sinh[c + d*x^
n])^p, x], x] /; FreeQ[{a, b, c, d, n}, x] && IGtQ[p, 0]
-
Int[((a_.) + Cosh[(c_.) + (d_.)*(x_)^(n_)]*(b_.))^(p_), x_Symbol] :> Int[ExpandTrigReduce[(a + b*Cosh[c + d*x^
n])^p, x], x] /; FreeQ[{a, b, c, d, n}, x] && IGtQ[p, 0]
-
Int[((a_.) + (b_.)*Sinh[(c_.) + (d_.)*(u_)^(n_)])^(p_.), x_Symbol] :> Simp[1/Coefficient[u, x, 1] Subst[Int[
(a + b*Sinh[c + d*x^n])^p, x], x, u], x] /; FreeQ[{a, b, c, d, n}, x] && IntegerQ[p] && LinearQ[u, x] && NeQ[u
, x]
-
Int[((a_.) + Cosh[(c_.) + (d_.)*(u_)^(n_)]*(b_.))^(p_.), x_Symbol] :> Simp[1/Coefficient[u, x, 1] Subst[Int[
(a + b*Cosh[c + d*x^n])^p, x], x, u], x] /; FreeQ[{a, b, c, d, n}, x] && IntegerQ[p] && LinearQ[u, x] && NeQ[u
, x]
-
Int[((a_.) + (b_.)*Sinh[(c_.) + (d_.)*(u_)^(n_)])^(p_), x_Symbol] :> Unintegrable[(a + b*Sinh[c + d*u^n])^p, x
] /; FreeQ[{a, b, c, d, n, p}, x] && LinearQ[u, x]
-
Int[((a_.) + Cosh[(c_.) + (d_.)*(u_)^(n_)]*(b_.))^(p_), x_Symbol] :> Unintegrable[(a + b*Cosh[c + d*u^n])^p, x
] /; FreeQ[{a, b, c, d, n, p}, x] && LinearQ[u, x]
-
Int[((a_.) + (b_.)*Sinh[u_])^(p_.), x_Symbol] :> Int[(a + b*Sinh[ExpandToSum[u, x]])^p, x] /; FreeQ[{a, b, p},
x] && BinomialQ[u, x] && !BinomialMatchQ[u, x]
-
Int[((a_.) + Cosh[u_]*(b_.))^(p_.), x_Symbol] :> Int[(a + b*Cosh[ExpandToSum[u, x]])^p, x] /; FreeQ[{a, b, p},
x] && BinomialQ[u, x] && !BinomialMatchQ[u, x]
-
Int[Sinh[(d_.)*(x_)^(n_)]/(x_), x_Symbol] :> Simp[SinhIntegral[d*x^n]/n, x] /; FreeQ[{d, n}, x]
-
Int[Cosh[(d_.)*(x_)^(n_)]/(x_), x_Symbol] :> Simp[CoshIntegral[d*x^n]/n, x] /; FreeQ[{d, n}, x]
-
Int[Sinh[(c_) + (d_.)*(x_)^(n_)]/(x_), x_Symbol] :> Simp[Sinh[c] Int[Cosh[d*x^n]/x, x], x] + Simp[Cosh[c]
Int[Sinh[d*x^n]/x, x], x] /; FreeQ[{c, d, n}, x]
-
Int[Cosh[(c_) + (d_.)*(x_)^(n_)]/(x_), x_Symbol] :> Simp[Cosh[c] Int[Cosh[d*x^n]/x, x], x] + Simp[Sinh[c]
Int[Sinh[d*x^n]/x, x], x] /; FreeQ[{c, d, n}, x]
-
Int[(x_)^(m_.)*((a_.) + (b_.)*Sinh[(c_.) + (d_.)*(x_)^(n_)])^(p_.), x_Symbol] :> Simp[1/n Subst[Int[x^(Simpl
ify[(m + 1)/n] - 1)*(a + b*Sinh[c + d*x])^p, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p}, x] && IntegerQ[Si
mplify[(m + 1)/n]] && (EqQ[p, 1] || EqQ[m, n - 1] || (IntegerQ[p] && GtQ[Simplify[(m + 1)/n], 0]))
-
Int[((a_.) + Cosh[(c_.) + (d_.)*(x_)^(n_)]*(b_.))^(p_.)*(x_)^(m_.), x_Symbol] :> Simp[1/n Subst[Int[x^(Simpl
ify[(m + 1)/n] - 1)*(a + b*Cosh[c + d*x])^p, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p}, x] && IntegerQ[Si
mplify[(m + 1)/n]] && (EqQ[p, 1] || EqQ[m, n - 1] || (IntegerQ[p] && GtQ[Simplify[(m + 1)/n], 0]))
-
Int[((e_)*(x_))^(m_)*((a_.) + (b_.)*Sinh[(c_.) + (d_.)*(x_)^(n_)])^(p_.), x_Symbol] :> Simp[e^IntPart[m]*((e*x
)^FracPart[m]/x^FracPart[m]) Int[x^m*(a + b*Sinh[c + d*x^n])^p, x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x]
&& IntegerQ[Simplify[(m + 1)/n]]
-
Int[((a_.) + Cosh[(c_.) + (d_.)*(x_)^(n_)]*(b_.))^(p_.)*((e_)*(x_))^(m_), x_Symbol] :> Simp[e^IntPart[m]*((e*x
)^FracPart[m]/x^FracPart[m]) Int[x^m*(a + b*Cosh[c + d*x^n])^p, x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x]
&& IntegerQ[Simplify[(m + 1)/n]]
-
Int[((e_.)*(x_))^(m_.)*Sinh[(c_.) + (d_.)*(x_)^(n_)], x_Symbol] :> Simp[e^(n - 1)*(e*x)^(m - n + 1)*(Cosh[c +
d*x^n]/(d*n)), x] - Simp[e^n*((m - n + 1)/(d*n)) Int[(e*x)^(m - n)*Cosh[c + d*x^n], x], x] /; FreeQ[{c, d, e
}, x] && IGtQ[n, 0] && LtQ[0, n, m + 1]
-
Int[Cosh[(c_.) + (d_.)*(x_)^(n_)]*((e_.)*(x_))^(m_.), x_Symbol] :> Simp[e^(n - 1)*(e*x)^(m - n + 1)*(Sinh[c +
d*x^n]/(d*n)), x] - Simp[e^n*((m - n + 1)/(d*n)) Int[(e*x)^(m - n)*Sinh[c + d*x^n], x], x] /; FreeQ[{c, d, e
}, x] && IGtQ[n, 0] && LtQ[0, n, m + 1]
-
Int[((e_.)*(x_))^(m_)*Sinh[(c_.) + (d_.)*(x_)^(n_)], x_Symbol] :> Simp[(e*x)^(m + 1)*(Sinh[c + d*x^n]/(e*(m +
1))), x] - Simp[d*(n/(e^n*(m + 1))) Int[(e*x)^(m + n)*Cosh[c + d*x^n], x], x] /; FreeQ[{c, d, e}, x] && IGtQ
[n, 0] && LtQ[m, -1]
-
Int[Cosh[(c_.) + (d_.)*(x_)^(n_)]*((e_.)*(x_))^(m_), x_Symbol] :> Simp[(e*x)^(m + 1)*(Cosh[c + d*x^n]/(e*(m +
1))), x] - Simp[d*(n/(e^n*(m + 1))) Int[(e*x)^(m + n)*Sinh[c + d*x^n], x], x] /; FreeQ[{c, d, e}, x] && IGtQ
[n, 0] && LtQ[m, -1]
-
Int[((e_.)*(x_))^(m_.)*Sinh[(c_.) + (d_.)*(x_)^(n_)], x_Symbol] :> Simp[1/2 Int[(e*x)^m*E^(c + d*x^n), x], x
] - Simp[1/2 Int[(e*x)^m*E^(-c - d*x^n), x], x] /; FreeQ[{c, d, e, m}, x] && IGtQ[n, 0]
-
Int[Cosh[(c_.) + (d_.)*(x_)^(n_)]*((e_.)*(x_))^(m_.), x_Symbol] :> Simp[1/2 Int[(e*x)^m*E^(c + d*x^n), x], x
] + Simp[1/2 Int[(e*x)^m*E^(-c - d*x^n), x], x] /; FreeQ[{c, d, e, m}, x] && IGtQ[n, 0]
-
Int[(x_)^(m_.)*Sinh[(a_.) + (b_.)*(x_)^(n_)]^(p_), x_Symbol] :> Simp[-Sinh[a + b*x^n]^p/((n - 1)*x^(n - 1)), x
] + Simp[b*n*(p/(n - 1)) Int[Sinh[a + b*x^n]^(p - 1)*Cosh[a + b*x^n], x], x] /; FreeQ[{a, b}, x] && Integers
Q[n, p] && EqQ[m + n, 0] && GtQ[p, 1] && NeQ[n, 1]
-
Int[Cosh[(a_.) + (b_.)*(x_)^(n_)]^(p_)*(x_)^(m_.), x_Symbol] :> Simp[-Cosh[a + b*x^n]^p/((n - 1)*x^(n - 1)), x
] + Simp[b*n*(p/(n - 1)) Int[Cosh[a + b*x^n]^(p - 1)*Sinh[a + b*x^n], x], x] /; FreeQ[{a, b}, x] && Integers
Q[n, p] && EqQ[m + n, 0] && GtQ[p, 1] && NeQ[n, 1]
-
Int[(x_)^(m_.)*Sinh[(a_.) + (b_.)*(x_)^(n_)]^(p_), x_Symbol] :> Simp[(-n)*(Sinh[a + b*x^n]^p/(b^2*n^2*p^2)), x
] + (Simp[x^n*Cosh[a + b*x^n]*(Sinh[a + b*x^n]^(p - 1)/(b*n*p)), x] - Simp[(p - 1)/p Int[x^m*Sinh[a + b*x^n]
^(p - 2), x], x]) /; FreeQ[{a, b, m, n}, x] && EqQ[m - 2*n + 1] && GtQ[p, 1]
-
Int[Cosh[(a_.) + (b_.)*(x_)^(n_)]^(p_)*(x_)^(m_.), x_Symbol] :> Simp[(-n)*(Cosh[a + b*x^n]^p/(b^2*n^2*p^2)), x
] + (Simp[x^n*Sinh[a + b*x^n]*(Cosh[a + b*x^n]^(p - 1)/(b*n*p)), x] + Simp[(p - 1)/p Int[x^m*Cosh[a + b*x^n]
^(p - 2), x], x]) /; FreeQ[{a, b, m, n}, x] && EqQ[m - 2*n + 1] && GtQ[p, 1]
-
Int[(x_)^(m_.)*Sinh[(a_.) + (b_.)*(x_)^(n_)]^(p_), x_Symbol] :> Simp[(-(m - n + 1))*x^(m - 2*n + 1)*(Sinh[a +
b*x^n]^p/(b^2*n^2*p^2)), x] + (Simp[x^(m - n + 1)*Cosh[a + b*x^n]*(Sinh[a + b*x^n]^(p - 1)/(b*n*p)), x] - Simp
[(p - 1)/p Int[x^m*Sinh[a + b*x^n]^(p - 2), x], x] + Simp[(m - n + 1)*((m - 2*n + 1)/(b^2*n^2*p^2)) Int[x^
(m - 2*n)*Sinh[a + b*x^n]^p, x], x]) /; FreeQ[{a, b}, x] && IntegersQ[m, n] && GtQ[p, 1] && LtQ[0, 2*n, m + 1]
-
Int[Cosh[(a_.) + (b_.)*(x_)^(n_)]^(p_)*(x_)^(m_.), x_Symbol] :> Simp[(-(m - n + 1))*x^(m - 2*n + 1)*(Cosh[a +
b*x^n]^p/(b^2*n^2*p^2)), x] + (Simp[x^(m - n + 1)*Sinh[a + b*x^n]*(Cosh[a + b*x^n]^(p - 1)/(b*n*p)), x] + Simp
[(p - 1)/p Int[x^m*Cosh[a + b*x^n]^(p - 2), x], x] + Simp[(m - n + 1)*((m - 2*n + 1)/(b^2*n^2*p^2)) Int[x^
(m - 2*n)*Cosh[a + b*x^n]^p, x], x]) /; FreeQ[{a, b}, x] && IntegersQ[m, n] && GtQ[p, 1] && LtQ[0, 2*n, m + 1]
-
Int[(x_)^(m_.)*Sinh[(a_.) + (b_.)*(x_)^(n_)]^(p_), x_Symbol] :> Simp[x^(m + 1)*(Sinh[a + b*x^n]^p/(m + 1)), x]
+ (-Simp[b*n*p*x^(m + n + 1)*Cosh[a + b*x^n]*(Sinh[a + b*x^n]^(p - 1)/((m + 1)*(m + n + 1))), x] + Simp[b^2*n
^2*p*((p - 1)/((m + 1)*(m + n + 1))) Int[x^(m + 2*n)*Sinh[a + b*x^n]^(p - 2), x], x] + Simp[b^2*n^2*(p^2/((m
+ 1)*(m + n + 1))) Int[x^(m + 2*n)*Sinh[a + b*x^n]^p, x], x]) /; FreeQ[{a, b}, x] && IntegersQ[m, n] && GtQ
[p, 1] && LtQ[0, 2*n, 1 - m] && NeQ[m + n + 1, 0]
-
Int[Cosh[(a_.) + (b_.)*(x_)^(n_)]^(p_)*(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)*(Cosh[a + b*x^n]^p/(m + 1)), x]
+ (-Simp[b*n*p*x^(m + n + 1)*Sinh[a + b*x^n]*(Cosh[a + b*x^n]^(p - 1)/((m + 1)*(m + n + 1))), x] - Simp[b^2*n
^2*p*((p - 1)/((m + 1)*(m + n + 1))) Int[x^(m + 2*n)*Cosh[a + b*x^n]^(p - 2), x], x] + Simp[b^2*n^2*(p^2/((m
+ 1)*(m + n + 1))) Int[x^(m + 2*n)*Cosh[a + b*x^n]^p, x], x]) /; FreeQ[{a, b}, x] && IntegersQ[m, n] && GtQ
[p, 1] && LtQ[0, 2*n, 1 - m] && NeQ[m + n + 1, 0]
-
Int[((e_.)*(x_))^(m_)*((a_.) + (b_.)*Sinh[(c_.) + (d_.)*(x_)^(n_)])^(p_.), x_Symbol] :> With[{k = Denominator[
m]}, Simp[k/e Subst[Int[x^(k*(m + 1) - 1)*(a + b*Sinh[c + d*(x^(k*n)/e^n)])^p, x], x, (e*x)^(1/k)], x]] /; F
reeQ[{a, b, c, d, e}, x] && IntegerQ[p] && IGtQ[n, 0] && FractionQ[m]
-
Int[((a_.) + Cosh[(c_.) + (d_.)*(x_)^(n_)]*(b_.))^(p_.)*((e_.)*(x_))^(m_), x_Symbol] :> With[{k = Denominator[
m]}, Simp[k/e Subst[Int[x^(k*(m + 1) - 1)*(a + b*Cosh[c + d*(x^(k*n)/e^n)])^p, x], x, (e*x)^(1/k)], x]] /; F
reeQ[{a, b, c, d, e}, x] && IntegerQ[p] && IGtQ[n, 0] && FractionQ[m]
-
Int[((e_.)*(x_))^(m_.)*((a_.) + (b_.)*Sinh[(c_.) + (d_.)*(x_)^(n_)])^(p_), x_Symbol] :> Int[ExpandTrigReduce[(
e*x)^m, (a + b*Sinh[c + d*x^n])^p, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && IGtQ[p, 1] && IGtQ[n, 0]
-
Int[((a_.) + Cosh[(c_.) + (d_.)*(x_)^(n_)]*(b_.))^(p_)*((e_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandTrigReduce[(
e*x)^m, (a + b*Cosh[c + d*x^n])^p, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && IGtQ[p, 1] && IGtQ[n, 0]
-
Int[(x_)^(m_.)*Sinh[(a_.) + (b_.)*(x_)^(n_)]^(p_), x_Symbol] :> Simp[x^n*Cosh[a + b*x^n]*(Sinh[a + b*x^n]^(p +
1)/(b*n*(p + 1))), x] + (-Simp[n*(Sinh[a + b*x^n]^(p + 2)/(b^2*n^2*(p + 1)*(p + 2))), x] - Simp[(p + 2)/(p +
1) Int[x^m*Sinh[a + b*x^n]^(p + 2), x], x]) /; FreeQ[{a, b, m, n}, x] && EqQ[m - 2*n + 1, 0] && LtQ[p, -1] &
& NeQ[p, -2]
-
Int[Cosh[(a_.) + (b_.)*(x_)^(n_)]^(p_)*(x_)^(m_.), x_Symbol] :> Simp[(-x^n)*Sinh[a + b*x^n]*(Cosh[a + b*x^n]^(
p + 1)/(b*n*(p + 1))), x] + (Simp[n*(Cosh[a + b*x^n]^(p + 2)/(b^2*n^2*(p + 1)*(p + 2))), x] + Simp[(p + 2)/(p
+ 1) Int[x^m*Cosh[a + b*x^n]^(p + 2), x], x]) /; FreeQ[{a, b, m, n}, x] && EqQ[m - 2*n + 1, 0] && LtQ[p, -1]
&& NeQ[p, -2]
-
Int[(x_)^(m_.)*Sinh[(a_.) + (b_.)*(x_)^(n_)]^(p_), x_Symbol] :> Simp[x^(m - n + 1)*Cosh[a + b*x^n]*(Sinh[a + b
*x^n]^(p + 1)/(b*n*(p + 1))), x] + (-Simp[(m - n + 1)*x^(m - 2*n + 1)*(Sinh[a + b*x^n]^(p + 2)/(b^2*n^2*(p + 1
)*(p + 2))), x] - Simp[(p + 2)/(p + 1) Int[x^m*Sinh[a + b*x^n]^(p + 2), x], x] + Simp[(m - n + 1)*((m - 2*n
+ 1)/(b^2*n^2*(p + 1)*(p + 2))) Int[x^(m - 2*n)*Sinh[a + b*x^n]^(p + 2), x], x]) /; FreeQ[{a, b}, x] && Inte
gersQ[m, n] && LtQ[p, -1] && NeQ[p, -2] && LtQ[0, 2*n, m + 1]
-
Int[Cosh[(a_.) + (b_.)*(x_)^(n_)]^(p_)*(x_)^(m_.), x_Symbol] :> Simp[(-x^(m - n + 1))*Sinh[a + b*x^n]*(Cosh[a
+ b*x^n]^(p + 1)/(b*n*(p + 1))), x] + (Simp[(m - n + 1)*x^(m - 2*n + 1)*(Cosh[a + b*x^n]^(p + 2)/(b^2*n^2*(p +
1)*(p + 2))), x] + Simp[(p + 2)/(p + 1) Int[x^m*Cosh[a + b*x^n]^(p + 2), x], x] - Simp[(m - n + 1)*((m - 2*
n + 1)/(b^2*n^2*(p + 1)*(p + 2))) Int[x^(m - 2*n)*Cosh[a + b*x^n]^(p + 2), x], x]) /; FreeQ[{a, b}, x] && In
tegersQ[m, n] && LtQ[p, -1] && NeQ[p, -2] && LtQ[0, 2*n, m + 1]
-
Int[(x_)^(m_.)*((a_.) + (b_.)*Sinh[(c_.) + (d_.)*(x_)^(n_)])^(p_.), x_Symbol] :> -Subst[Int[(a + b*Sinh[c + d/
x^n])^p/x^(m + 2), x], x, 1/x] /; FreeQ[{a, b, c, d}, x] && IntegerQ[p] && ILtQ[n, 0] && IntegerQ[m]
-
Int[((a_.) + Cosh[(c_.) + (d_.)*(x_)^(n_)]*(b_.))^(p_.)*(x_)^(m_.), x_Symbol] :> -Subst[Int[(a + b*Cosh[c + d/
x^n])^p/x^(m + 2), x], x, 1/x] /; FreeQ[{a, b, c, d}, x] && IntegerQ[p] && ILtQ[n, 0] && IntegerQ[m]
-
Int[((e_.)*(x_))^(m_)*((a_.) + (b_.)*Sinh[(c_.) + (d_.)*(x_)^(n_)])^(p_.), x_Symbol] :> With[{k = Denominator[
m]}, Simp[-k/e Subst[Int[(a + b*Sinh[c + d/(e^n*x^(k*n))])^p/x^(k*(m + 1) + 1), x], x, 1/(e*x)^(1/k)], x]] /
; FreeQ[{a, b, c, d, e}, x] && IntegerQ[p] && ILtQ[n, 0] && FractionQ[m]
-
Int[((a_.) + Cosh[(c_.) + (d_.)*(x_)^(n_)]*(b_.))^(p_.)*((e_.)*(x_))^(m_), x_Symbol] :> With[{k = Denominator[
m]}, Simp[-k/e Subst[Int[(a + b*Cosh[c + d/(e^n*x^(k*n))])^p/x^(k*(m + 1) + 1), x], x, 1/(e*x)^(1/k)], x]] /
; FreeQ[{a, b, c, d, e}, x] && IntegerQ[p] && ILtQ[n, 0] && FractionQ[m]
-
Int[((e_.)*(x_))^(m_)*((a_.) + (b_.)*Sinh[(c_.) + (d_.)*(x_)^(n_)])^(p_.), x_Symbol] :> Simp[(-(e*x)^m)*(x^(-1
))^m Subst[Int[(a + b*Sinh[c + d/x^n])^p/x^(m + 2), x], x, 1/x], x] /; FreeQ[{a, b, c, d, e, m}, x] && Integ
erQ[p] && ILtQ[n, 0] && !RationalQ[m]
-
Int[((a_.) + Cosh[(c_.) + (d_.)*(x_)^(n_)]*(b_.))^(p_.)*((e_.)*(x_))^(m_), x_Symbol] :> Simp[(-(e*x)^m)*(x^(-1
))^m Subst[Int[(a + b*Cosh[c + d/x^n])^p/x^(m + 2), x], x, 1/x], x] /; FreeQ[{a, b, c, d, e, m}, x] && Integ
erQ[p] && ILtQ[n, 0] && !RationalQ[m]
-
Int[(x_)^(m_.)*((a_.) + (b_.)*Sinh[(c_.) + (d_.)*(x_)^(n_)])^(p_.), x_Symbol] :> Module[{k = Denominator[n]},
Simp[k Subst[Int[x^(k*(m + 1) - 1)*(a + b*Sinh[c + d*x^(k*n)])^p, x], x, x^(1/k)], x]] /; FreeQ[{a, b, c, d,
m}, x] && IntegerQ[p] && FractionQ[n]
-
Int[((a_.) + Cosh[(c_.) + (d_.)*(x_)^(n_)]*(b_.))^(p_.)*(x_)^(m_.), x_Symbol] :> Module[{k = Denominator[n]},
Simp[k Subst[Int[x^(k*(m + 1) - 1)*(a + b*Cosh[c + d*x^(k*n)])^p, x], x, x^(1/k)], x]] /; FreeQ[{a, b, c, d,
m}, x] && IntegerQ[p] && FractionQ[n]
-
Int[((e_)*(x_))^(m_)*((a_.) + (b_.)*Sinh[(c_.) + (d_.)*(x_)^(n_)])^(p_.), x_Symbol] :> Simp[e^IntPart[m]*((e*x
)^FracPart[m]/x^FracPart[m]) Int[x^m*(a + b*Sinh[c + d*x^n])^p, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && In
tegerQ[p] && FractionQ[n]
-
Int[((a_.) + Cosh[(c_.) + (d_.)*(x_)^(n_)]*(b_.))^(p_.)*((e_)*(x_))^(m_), x_Symbol] :> Simp[e^IntPart[m]*((e*x
)^FracPart[m]/x^FracPart[m]) Int[x^m*(a + b*Cosh[c + d*x^n])^p, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && In
tegerQ[p] && FractionQ[n]
-
Int[(x_)^(m_.)*((a_.) + (b_.)*Sinh[(c_.) + (d_.)*(x_)^(n_)])^(p_.), x_Symbol] :> Simp[1/(m + 1) Subst[Int[(a
+ b*Sinh[c + d*x^Simplify[n/(m + 1)]])^p, x], x, x^(m + 1)], x] /; FreeQ[{a, b, c, d, m, n}, x] && IntegerQ[p
] && NeQ[m, -1] && IGtQ[Simplify[n/(m + 1)], 0] && !IntegerQ[n]
-
Int[((a_.) + Cosh[(c_.) + (d_.)*(x_)^(n_)]*(b_.))^(p_.)*(x_)^(m_.), x_Symbol] :> Simp[1/(m + 1) Subst[Int[(a
+ b*Cosh[c + d*x^Simplify[n/(m + 1)]])^p, x], x, x^(m + 1)], x] /; FreeQ[{a, b, c, d, m, n}, x] && IntegerQ[p
] && NeQ[m, -1] && IGtQ[Simplify[n/(m + 1)], 0] && !IntegerQ[n]
-
Int[((e_)*(x_))^(m_)*((a_.) + (b_.)*Sinh[(c_.) + (d_.)*(x_)^(n_)])^(p_.), x_Symbol] :> Simp[e^IntPart[m]*((e*x
)^FracPart[m]/x^FracPart[m]) Int[x^m*(a + b*Sinh[c + d*x^n])^p, x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] &&
IntegerQ[p] && NeQ[m, -1] && IGtQ[Simplify[n/(m + 1)], 0] && !IntegerQ[n]
-
Int[((a_.) + Cosh[(c_.) + (d_.)*(x_)^(n_)]*(b_.))^(p_.)*((e_)*(x_))^(m_), x_Symbol] :> Simp[e^IntPart[m]*((e*x
)^FracPart[m]/x^FracPart[m]) Int[x^m*(a + b*Cosh[c + d*x^n])^p, x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] &&
IntegerQ[p] && NeQ[m, -1] && IGtQ[Simplify[n/(m + 1)], 0] && !IntegerQ[n]
-
Int[((e_.)*(x_))^(m_.)*Sinh[(c_.) + (d_.)*(x_)^(n_)], x_Symbol] :> Simp[1/2 Int[(e*x)^m*E^(c + d*x^n), x], x
] - Simp[1/2 Int[(e*x)^m*E^(-c - d*x^n), x], x] /; FreeQ[{c, d, e, m, n}, x]
-
Int[Cosh[(c_.) + (d_.)*(x_)^(n_)]*((e_.)*(x_))^(m_.), x_Symbol] :> Simp[1/2 Int[(e*x)^m*E^(c + d*x^n), x], x
] + Simp[1/2 Int[(e*x)^m*E^(-c - d*x^n), x], x] /; FreeQ[{c, d, e, m, n}, x]
-
Int[((e_.)*(x_))^(m_.)*((a_.) + (b_.)*Sinh[(c_.) + (d_.)*(x_)^(n_)])^(p_), x_Symbol] :> Int[ExpandTrigReduce[(
e*x)^m, (a + b*Sinh[c + d*x^n])^p, x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && IGtQ[p, 0]
-
Int[((a_.) + Cosh[(c_.) + (d_.)*(x_)^(n_)]*(b_.))^(p_)*((e_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandTrigReduce[(
e*x)^m, (a + b*Cosh[c + d*x^n])^p, x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && IGtQ[p, 0]
-
Int[(x_)^(m_.)*((a_.) + (b_.)*Sinh[(c_.) + (d_.)*(u_)^(n_)])^(p_.), x_Symbol] :> Simp[1/Coefficient[u, x, 1]^(
m + 1) Subst[Int[(x - Coefficient[u, x, 0])^m*(a + b*Sinh[c + d*x^n])^p, x], x, u], x] /; FreeQ[{a, b, c, d,
n, p}, x] && LinearQ[u, x] && NeQ[u, x] && IntegerQ[m]
-
Int[((a_.) + Cosh[(c_.) + (d_.)*(u_)^(n_)]*(b_.))^(p_.)*(x_)^(m_.), x_Symbol] :> Simp[1/Coefficient[u, x, 1]^(
m + 1) Subst[Int[(x - Coefficient[u, x, 0])^m*(a + b*Cosh[c + d*x^n])^p, x], x, u], x] /; FreeQ[{a, b, c, d,
n, p}, x] && LinearQ[u, x] && NeQ[u, x] && IntegerQ[m]
-
Int[((e_.)*(x_))^(m_.)*((a_.) + (b_.)*Sinh[(c_.) + (d_.)*(u_)^(n_)])^(p_.), x_Symbol] :> Unintegrable[(e*x)^m*
(a + b*Sinh[c + d*u^n])^p, x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && LinearQ[u, x]
-
Int[((a_.) + Cosh[(c_.) + (d_.)*(u_)^(n_)]*(b_.))^(p_.)*((e_.)*(x_))^(m_.), x_Symbol] :> Unintegrable[(e*x)^m*
(a + b*Cosh[c + d*u^n])^p, x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && LinearQ[u, x]
-
Int[((e_)*(x_))^(m_.)*((a_.) + (b_.)*Sinh[u_])^(p_.), x_Symbol] :> Int[(e*x)^m*(a + b*Sinh[ExpandToSum[u, x]])
^p, x] /; FreeQ[{a, b, e, m, p}, x] && BinomialQ[u, x] && !BinomialMatchQ[u, x]
-
Int[((a_.) + Cosh[u_]*(b_.))^(p_.)*((e_)*(x_))^(m_.), x_Symbol] :> Int[(e*x)^m*(a + b*Cosh[ExpandToSum[u, x]])
^p, x] /; FreeQ[{a, b, e, m, p}, x] && BinomialQ[u, x] && !BinomialMatchQ[u, x]
-
Int[Cosh[(a_.) + (b_.)*(x_)^(n_.)]*(x_)^(m_.)*Sinh[(a_.) + (b_.)*(x_)^(n_)]^(p_.), x_Symbol] :> Simp[Sinh[a +
b*x^n]^(p + 1)/(b*n*(p + 1)), x] /; FreeQ[{a, b, m, n, p}, x] && EqQ[m, n - 1] && NeQ[p, -1]
-
Int[Cosh[(a_.) + (b_.)*(x_)^(n_)]^(p_.)*(x_)^(m_.)*Sinh[(a_.) + (b_.)*(x_)^(n_.)], x_Symbol] :> Simp[Cosh[a +
b*x^n]^(p + 1)/(b*n*(p + 1)), x] /; FreeQ[{a, b, m, n, p}, x] && EqQ[m, n - 1] && NeQ[p, -1]
-
Int[Cosh[(a_.) + (b_.)*(x_)^(n_.)]*(x_)^(m_.)*Sinh[(a_.) + (b_.)*(x_)^(n_.)]^(p_.), x_Symbol] :> Simp[x^(m - n
+ 1)*(Sinh[a + b*x^n]^(p + 1)/(b*n*(p + 1))), x] - Simp[(m - n + 1)/(b*n*(p + 1)) Int[x^(m - n)*Sinh[a + b*
x^n]^(p + 1), x], x] /; FreeQ[{a, b, p}, x] && LtQ[0, n, m + 1] && NeQ[p, -1]
-
Int[Cosh[(a_.) + (b_.)*(x_)^(n_.)]^(p_.)*(x_)^(m_.)*Sinh[(a_.) + (b_.)*(x_)^(n_.)], x_Symbol] :> Simp[x^(m - n
+ 1)*(Cosh[a + b*x^n]^(p + 1)/(b*n*(p + 1))), x] - Simp[(m - n + 1)/(b*n*(p + 1)) Int[x^(m - n)*Cosh[a + b*
x^n]^(p + 1), x], x] /; FreeQ[{a, b, p}, x] && LtQ[0, n, m + 1] && NeQ[p, -1]
-
Int[Sinh[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Simp[1/2 Int[E^(a + b*x + c*x^2), x], x] - Simp[1/
2 Int[E^(-a - b*x - c*x^2), x], x] /; FreeQ[{a, b, c}, x]
-
Int[Cosh[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Simp[1/2 Int[E^(a + b*x + c*x^2), x], x] + Simp[1/
2 Int[E^(-a - b*x - c*x^2), x], x] /; FreeQ[{a, b, c}, x]
-
Int[Sinh[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]^(n_), x_Symbol] :> Int[ExpandTrigReduce[Sinh[a + b*x + c*x^2]^n, x
], x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 1]
-
Int[Cosh[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]^(n_), x_Symbol] :> Int[ExpandTrigReduce[Cosh[a + b*x + c*x^2]^n, x
], x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 1]
-
Int[Sinh[v_]^(n_.), x_Symbol] :> Int[Sinh[ExpandToSum[v, x]]^n, x] /; IGtQ[n, 0] && QuadraticQ[v, x] && !Quad
raticMatchQ[v, x]
-
Int[Cosh[v_]^(n_.), x_Symbol] :> Int[Cosh[ExpandToSum[v, x]]^n, x] /; IGtQ[n, 0] && QuadraticQ[v, x] && !Quad
raticMatchQ[v, x]
-
Int[((d_.) + (e_.)*(x_))*Sinh[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Simp[e*(Cosh[a + b*x + c*x^2]/(
2*c)), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[b*e - 2*c*d, 0]
-
Int[Cosh[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]*((d_.) + (e_.)*(x_)), x_Symbol] :> Simp[e*(Sinh[a + b*x + c*x^2]/(
2*c)), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[b*e - 2*c*d, 0]
-
Int[((d_.) + (e_.)*(x_))*Sinh[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Simp[e*(Cosh[a + b*x + c*x^2]/(
2*c)), x] - Simp[(b*e - 2*c*d)/(2*c) Int[Sinh[a + b*x + c*x^2], x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b
*e - 2*c*d, 0]
-
Int[Cosh[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]*((d_.) + (e_.)*(x_)), x_Symbol] :> Simp[e*(Sinh[a + b*x + c*x^2]/(
2*c)), x] - Simp[(b*e - 2*c*d)/(2*c) Int[Cosh[a + b*x + c*x^2], x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b
*e - 2*c*d, 0]
-
Int[((d_.) + (e_.)*(x_))^(m_)*Sinh[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Simp[e*(d + e*x)^(m - 1)*(
Cosh[a + b*x + c*x^2]/(2*c)), x] - Simp[e^2*((m - 1)/(2*c)) Int[(d + e*x)^(m - 2)*Cosh[a + b*x + c*x^2], x],
x] /; FreeQ[{a, b, c, d, e}, x] && GtQ[m, 1] && EqQ[b*e - 2*c*d, 0]
-
Int[Cosh[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]*((d_.) + (e_.)*(x_))^(m_), x_Symbol] :> Simp[e*(d + e*x)^(m - 1)*(
Sinh[a + b*x + c*x^2]/(2*c)), x] - Simp[e^2*((m - 1)/(2*c)) Int[(d + e*x)^(m - 2)*Sinh[a + b*x + c*x^2], x],
x] /; FreeQ[{a, b, c, d, e}, x] && GtQ[m, 1] && EqQ[b*e - 2*c*d, 0]
-
Int[((d_.) + (e_.)*(x_))^(m_)*Sinh[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Simp[e*(d + e*x)^(m - 1)*(
Cosh[a + b*x + c*x^2]/(2*c)), x] + (-Simp[(b*e - 2*c*d)/(2*c) Int[(d + e*x)^(m - 1)*Sinh[a + b*x + c*x^2], x
], x] - Simp[e^2*((m - 1)/(2*c)) Int[(d + e*x)^(m - 2)*Cosh[a + b*x + c*x^2], x], x]) /; FreeQ[{a, b, c, d,
e}, x] && GtQ[m, 1] && NeQ[b*e - 2*c*d, 0]
-
Int[Cosh[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]*((d_.) + (e_.)*(x_))^(m_), x_Symbol] :> Simp[e*(d + e*x)^(m - 1)*(
Sinh[a + b*x + c*x^2]/(2*c)), x] + (-Simp[(b*e - 2*c*d)/(2*c) Int[(d + e*x)^(m - 1)*Cosh[a + b*x + c*x^2], x
], x] - Simp[e^2*((m - 1)/(2*c)) Int[(d + e*x)^(m - 2)*Sinh[a + b*x + c*x^2], x], x]) /; FreeQ[{a, b, c, d,
e}, x] && GtQ[m, 1] && NeQ[b*e - 2*c*d, 0]
-
Int[((d_.) + (e_.)*(x_))^(m_)*Sinh[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Simp[(d + e*x)^(m + 1)*(Si
nh[a + b*x + c*x^2]/(e*(m + 1))), x] - Simp[2*(c/(e^2*(m + 1))) Int[(d + e*x)^(m + 2)*Cosh[a + b*x + c*x^2],
x], x] /; FreeQ[{a, b, c, d, e}, x] && LtQ[m, -1] && EqQ[b*e - 2*c*d, 0]
-
Int[Cosh[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]*((d_.) + (e_.)*(x_))^(m_), x_Symbol] :> Simp[(d + e*x)^(m + 1)*(Co
sh[a + b*x + c*x^2]/(e*(m + 1))), x] - Simp[2*(c/(e^2*(m + 1))) Int[(d + e*x)^(m + 2)*Sinh[a + b*x + c*x^2],
x], x] /; FreeQ[{a, b, c, d, e}, x] && LtQ[m, -1] && EqQ[b*e - 2*c*d, 0]
-
Int[((d_.) + (e_.)*(x_))^(m_)*Sinh[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Simp[(d + e*x)^(m + 1)*(Si
nh[a + b*x + c*x^2]/(e*(m + 1))), x] + (-Simp[(b*e - 2*c*d)/(e^2*(m + 1)) Int[(d + e*x)^(m + 1)*Cosh[a + b*x
+ c*x^2], x], x] - Simp[2*(c/(e^2*(m + 1))) Int[(d + e*x)^(m + 2)*Cosh[a + b*x + c*x^2], x], x]) /; FreeQ[{
a, b, c, d, e}, x] && LtQ[m, -1] && NeQ[b*e - 2*c*d, 0]
-
Int[Cosh[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]*((d_.) + (e_.)*(x_))^(m_), x_Symbol] :> Simp[(d + e*x)^(m + 1)*(Co
sh[a + b*x + c*x^2]/(e*(m + 1))), x] + (-Simp[(b*e - 2*c*d)/(e^2*(m + 1)) Int[(d + e*x)^(m + 1)*Sinh[a + b*x
+ c*x^2], x], x] - Simp[2*(c/(e^2*(m + 1))) Int[(d + e*x)^(m + 2)*Sinh[a + b*x + c*x^2], x], x]) /; FreeQ[{
a, b, c, d, e}, x] && LtQ[m, -1] && NeQ[b*e - 2*c*d, 0]
-
Int[((d_.) + (e_.)*(x_))^(m_.)*Sinh[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Unintegrable[(d + e*x)^m*
Sinh[a + b*x + c*x^2], x] /; FreeQ[{a, b, c, d, e, m}, x]
-
Int[Cosh[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]*((d_.) + (e_.)*(x_))^(m_.), x_Symbol] :> Unintegrable[(d + e*x)^m*
Cosh[a + b*x + c*x^2], x] /; FreeQ[{a, b, c, d, e, m}, x]
-
Int[((d_.) + (e_.)*(x_))^(m_.)*Sinh[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]^(n_), x_Symbol] :> Int[ExpandTrigReduce
[(d + e*x)^m, Sinh[a + b*x + c*x^2]^n, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && IGtQ[n, 1]
-
Int[Cosh[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]^(n_)*((d_.) + (e_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandTrigReduce
[(d + e*x)^m, Cosh[a + b*x + c*x^2]^n, x], x] /; FreeQ[{a, b, c, d, e, m}, x] && IGtQ[n, 1]
-
Int[(u_)^(m_.)*Sinh[v_]^(n_.), x_Symbol] :> Int[ExpandToSum[u, x]^m*Sinh[ExpandToSum[v, x]]^n, x] /; FreeQ[m,
x] && IGtQ[n, 0] && LinearQ[u, x] && QuadraticQ[v, x] && !(LinearMatchQ[u, x] && QuadraticMatchQ[v, x])
-
Int[Cosh[v_]^(n_.)*(u_)^(m_.), x_Symbol] :> Int[ExpandToSum[u, x]^m*Cosh[ExpandToSum[v, x]]^n, x] /; FreeQ[m,
x] && IGtQ[n, 0] && LinearQ[u, x] && QuadraticQ[v, x] && !(LinearMatchQ[u, x] && QuadraticMatchQ[v, x])
-
Int[(u_)^(m_.)*((a_.) + (b_.)*Tanh[v_])^(n_.), x_Symbol] :> Int[ExpandToSum[u, x]^m*(a + b*Tanh[ExpandToSum[v,
x]])^n, x] /; FreeQ[{a, b, m, n}, x] && LinearQ[{u, v}, x] && !LinearMatchQ[{u, v}, x]
-
Int[((a_.) + Coth[v_]*(b_.))^(n_.)*(u_)^(m_.), x_Symbol] :> Int[ExpandToSum[u, x]^m*(a + b*Coth[ExpandToSum[v,
x]])^n, x] /; FreeQ[{a, b, m, n}, x] && LinearQ[{u, v}, x] && !LinearMatchQ[{u, v}, x]
-
Int[((a_.) + (b_.)*Tanh[(c_.) + (d_.)*(x_)^(n_)])^(p_.), x_Symbol] :> Simp[1/n Subst[Int[x^(1/n - 1)*(a + b*
Tanh[c + d*x])^p, x], x, x^n], x] /; FreeQ[{a, b, c, d, p}, x] && IGtQ[1/n, 0] && IntegerQ[p]
-
Int[((a_.) + Coth[(c_.) + (d_.)*(x_)^(n_)]*(b_.))^(p_.), x_Symbol] :> Simp[1/n Subst[Int[x^(1/n - 1)*(a + b*
Coth[c + d*x])^p, x], x, x^n], x] /; FreeQ[{a, b, c, d, p}, x] && IGtQ[1/n, 0] && IntegerQ[p]
-
Int[((a_.) + (b_.)*Tanh[(c_.) + (d_.)*(x_)^(n_)])^(p_.), x_Symbol] :> Simp[Integral[(a + b*Tanh[c + d*x^n])^p,
x], x] /; FreeQ[{a, b, c, d, n, p}, x]
-
Int[((a_.) + Coth[(c_.) + (d_.)*(x_)^(n_)]*(b_.))^(p_.), x_Symbol] :> Simp[Integral[(a + b*Coth[c + d*x^n])^p,
x], x] /; FreeQ[{a, b, c, d, n, p}, x]
-
Int[((a_.) + (b_.)*Tanh[(c_.) + (d_.)*(u_)^(n_)])^(p_.), x_Symbol] :> Simp[1/Coefficient[u, x, 1] Subst[Int[
(a + b*Tanh[c + d*x^n])^p, x], x, u], x] /; FreeQ[{a, b, c, d, n, p}, x] && LinearQ[u, x] && NeQ[u, x]
-
Int[((a_.) + Coth[(c_.) + (d_.)*(u_)^(n_)]*(b_.))^(p_.), x_Symbol] :> Simp[1/Coefficient[u, x, 1] Subst[Int[
(a + b*Coth[c + d*x^n])^p, x], x, u], x] /; FreeQ[{a, b, c, d, n, p}, x] && LinearQ[u, x] && NeQ[u, x]
-
Int[((a_.) + (b_.)*Tanh[u_])^(p_.), x_Symbol] :> Int[(a + b*Tanh[ExpandToSum[u, x]])^p, x] /; FreeQ[{a, b, p},
x] && BinomialQ[u, x] && !BinomialMatchQ[u, x]
-
Int[((a_.) + Coth[u_]*(b_.))^(p_.), x_Symbol] :> Int[(a + b*Coth[ExpandToSum[u, x]])^p, x] /; FreeQ[{a, b, p},
x] && BinomialQ[u, x] && !BinomialMatchQ[u, x]
-
Int[(x_)^(m_.)*((a_.) + (b_.)*Tanh[(c_.) + (d_.)*(x_)^(n_)])^(p_.), x_Symbol] :> Simp[1/n Subst[Int[x^(Simpl
ify[(m + 1)/n] - 1)*(a + b*Tanh[c + d*x])^p, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p}, x] && IGtQ[Simpli
fy[(m + 1)/n], 0] && IntegerQ[p]
-
Int[((a_.) + Coth[(c_.) + (d_.)*(x_)^(n_)]*(b_.))^(p_.)*(x_)^(m_.), x_Symbol] :> Simp[1/n Subst[Int[x^(Simpl
ify[(m + 1)/n] - 1)*(a + b*Coth[c + d*x])^p, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p}, x] && IGtQ[Simpli
fy[(m + 1)/n], 0] && IntegerQ[p]
-
Int[(x_)^(m_.)*Tanh[(c_.) + (d_.)*(x_)^(n_)]^2, x_Symbol] :> Simp[(-x^(m - n + 1))*(Tanh[c + d*x^n]/(d*n)), x]
+ (Int[x^m, x] + Simp[((m - n + 1)/(d*n))*Int[x^(m - n)*Tanh[c + d*x^n], x], x]) /; FreeQ[{c, d, m, n}, x]
-
Int[Coth[(c_.) + (d_.)*(x_)^(n_)]^2*(x_)^(m_.), x_Symbol] :> Simp[(-x^(m - n + 1))*(Coth[c + d*x^n]/(d*n)), x]
+ (Int[x^m, x] + Simp[((m - n + 1)/(d*n))*Int[x^(m - n)*Coth[c + d*x^n], x], x]) /; FreeQ[{c, d, m, n}, x]
-
Int[(x_)^(m_.)*((a_.) + (b_.)*Tanh[(c_.) + (d_.)*(x_)^(n_)])^(p_.), x_Symbol] :> Simp[Integral[x^m*(a + b*Tanh
[c + d*x^n])^p, x], x] /; FreeQ[{a, b, c, d, m, n, p}, x]
-
Int[((a_.) + Coth[(c_.) + (d_.)*(x_)^(n_)]*(b_.))^(p_.)*(x_)^(m_.), x_Symbol] :> Simp[Integral[x^m*(a + b*Coth
[c + d*x^n])^p, x], x] /; FreeQ[{a, b, c, d, m, n, p}, x]
-
Int[((e_)*(x_))^(m_.)*((a_.) + (b_.)*Tanh[(c_.) + (d_.)*(x_)^(n_)])^(p_.), x_Symbol] :> Simp[e^IntPart[m]*((e*
x)^FracPart[m]/x^FracPart[m]) Int[x^m*(a + b*Tanh[c + d*x^n])^p, x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x
]
-
Int[((a_.) + Coth[(c_.) + (d_.)*(x_)^(n_)]*(b_.))^(p_.)*((e_)*(x_))^(m_.), x_Symbol] :> Simp[e^IntPart[m]*((e*
x)^FracPart[m]/x^FracPart[m]) Int[x^m*(a + b*Coth[c + d*x^n])^p, x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x
]
-
Int[((e_)*(x_))^(m_.)*((a_.) + (b_.)*Tanh[u_])^(p_.), x_Symbol] :> Int[(e*x)^m*(a + b*Tanh[ExpandToSum[u, x]])
^p, x] /; FreeQ[{a, b, e, m, p}, x] && BinomialQ[u, x] && !BinomialMatchQ[u, x]
-
Int[((a_.) + Coth[u_]*(b_.))^(p_.)*((e_)*(x_))^(m_.), x_Symbol] :> Int[(e*x)^m*(a + b*Coth[ExpandToSum[u, x]])
^p, x] /; FreeQ[{a, b, e, m, p}, x] && BinomialQ[u, x] && !BinomialMatchQ[u, x]
-
Int[(x_)^(m_.)*Sech[(a_.) + (b_.)*(x_)^(n_.)]^(p_.)*Tanh[(a_.) + (b_.)*(x_)^(n_.)]^(q_.), x_Symbol] :> Simp[(-
x^(m - n + 1))*(Sech[a + b*x^n]^p/(b*n*p)), x] + Simp[(m - n + 1)/(b*n*p) Int[x^(m - n)*Sech[a + b*x^n]^p, x
], x] /; FreeQ[{a, b, p}, x] && RationalQ[m] && IntegerQ[n] && GeQ[m - n, 0] && EqQ[q, 1]
-
Int[Coth[(a_.) + (b_.)*(x_)^(n_.)]^(q_.)*Csch[(a_.) + (b_.)*(x_)^(n_.)]^(p_.)*(x_)^(m_.), x_Symbol] :> Simp[(-
x^(m - n + 1))*(Csch[a + b*x^n]^p/(b*n*p)), x] + Simp[(m - n + 1)/(b*n*p) Int[x^(m - n)*Csch[a + b*x^n]^p, x
], x] /; FreeQ[{a, b, p}, x] && RationalQ[m] && IntegerQ[n] && GeQ[m - n, 0] && EqQ[q, 1]
-
Int[Tanh[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]^(n_.), x_Symbol] :> Simp[Integral[Tanh[a + b*x + c*x^2]^n, x], x]
/; FreeQ[{a, b, c, n}, x]
-
Int[Coth[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]^(n_.), x_Symbol] :> Simp[Integral[Coth[a + b*x + c*x^2]^n, x], x]
/; FreeQ[{a, b, c, n}, x]
-
Int[((d_.) + (e_.)*(x_))*Tanh[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Simp[e*(Log[Cosh[a + b*x + c*x^
2]]/(2*c)), x] + Simp[(2*c*d - b*e)/(2*c) Int[Tanh[a + b*x + c*x^2], x], x] /; FreeQ[{a, b, c, d, e}, x]
-
Int[Coth[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]*((d_.) + (e_.)*(x_)), x_Symbol] :> Simp[e*(Log[Sinh[a + b*x + c*x^
2]]/(2*c)), x] + Simp[(2*c*d - b*e)/(2*c) Int[Coth[a + b*x + c*x^2], x], x] /; FreeQ[{a, b, c, d, e}, x]
-
Int[((d_.) + (e_.)*(x_))^(m_.)*Tanh[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]^(n_.), x_Symbol] :> Simp[Integral[(d +
e*x)^m*Tanh[a + b*x + c*x^2]^n, x], x] /; FreeQ[{a, b, c, d, e, m, n}, x]
-
Int[Coth[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]^(n_.)*((d_.) + (e_.)*(x_))^(m_.), x_Symbol] :> Simp[Integral[(d +
e*x)^m*Coth[a + b*x + c*x^2]^n, x], x] /; FreeQ[{a, b, c, d, e, m, n}, x]
-
Int[(u_)^(m_.)*Sech[v_]^(n_.), x_Symbol] :> Int[ExpandToSum[u, x]^m*Sech[ExpandToSum[v, x]]^n, x] /; FreeQ[{m,
n}, x] && LinearQ[{u, v}, x] && !LinearMatchQ[{u, v}, x]
-
Int[Csch[v_]^(n_.)*(u_)^(m_.), x_Symbol] :> Int[ExpandToSum[u, x]^m*Csch[ExpandToSum[v, x]]^n, x] /; FreeQ[{m,
n}, x] && LinearQ[{u, v}, x] && !LinearMatchQ[{u, v}, x]
-
Int[((a_.) + (b_.)*Sech[(c_.) + (d_.)*(x_)^(n_)])^(p_.), x_Symbol] :> Simp[1/n Subst[Int[x^(1/n - 1)*(a + b*
Sech[c + d*x])^p, x], x, x^n], x] /; FreeQ[{a, b, c, d, p}, x] && IGtQ[1/n, 0] && IntegerQ[p]
-
Int[((a_.) + Csch[(c_.) + (d_.)*(x_)^(n_)]*(b_.))^(p_.), x_Symbol] :> Simp[1/n Subst[Int[x^(1/n - 1)*(a + b*
Csch[c + d*x])^p, x], x, x^n], x] /; FreeQ[{a, b, c, d, p}, x] && IGtQ[1/n, 0] && IntegerQ[p]
-
Int[((a_.) + (b_.)*Sech[(c_.) + (d_.)*(x_)^(n_)])^(p_.), x_Symbol] :> Unintegrable[(a + b*Sech[c + d*x^n])^p,
x] /; FreeQ[{a, b, c, d, n, p}, x]
-
Int[((a_.) + Csch[(c_.) + (d_.)*(x_)^(n_)]*(b_.))^(p_.), x_Symbol] :> Unintegrable[(a + b*Csch[c + d*x^n])^p,
x] /; FreeQ[{a, b, c, d, n, p}, x]
-
Int[((a_.) + (b_.)*Sech[(c_.) + (d_.)*(u_)^(n_)])^(p_.), x_Symbol] :> Simp[1/Coefficient[u, x, 1] Subst[Int[
(a + b*Sech[c + d*x^n])^p, x], x, u], x] /; FreeQ[{a, b, c, d, n, p}, x] && LinearQ[u, x] && NeQ[u, x]
-
Int[((a_.) + Csch[(c_.) + (d_.)*(u_)^(n_)]*(b_.))^(p_.), x_Symbol] :> Simp[1/Coefficient[u, x, 1] Subst[Int[
(a + b*Csch[c + d*x^n])^p, x], x, u], x] /; FreeQ[{a, b, c, d, n, p}, x] && LinearQ[u, x] && NeQ[u, x]
-
Int[((a_.) + (b_.)*Sech[u_])^(p_.), x_Symbol] :> Int[(a + b*Sech[ExpandToSum[u, x]])^p, x] /; FreeQ[{a, b, p},
x] && BinomialQ[u, x] && !BinomialMatchQ[u, x]
-
Int[((a_.) + Csch[u_]*(b_.))^(p_.), x_Symbol] :> Int[(a + b*Csch[ExpandToSum[u, x]])^p, x] /; FreeQ[{a, b, p},
x] && BinomialQ[u, x] && !BinomialMatchQ[u, x]
-
Int[(x_)^(m_.)*((a_.) + (b_.)*Sech[(c_.) + (d_.)*(x_)^(n_)])^(p_.), x_Symbol] :> Simp[1/n Subst[Int[x^(Simpl
ify[(m + 1)/n] - 1)*(a + b*Sech[c + d*x])^p, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p}, x] && IGtQ[Simpli
fy[(m + 1)/n], 0] && IntegerQ[p]
-
Int[((a_.) + Csch[(c_.) + (d_.)*(x_)^(n_)]*(b_.))^(p_.)*(x_)^(m_.), x_Symbol] :> Simp[1/n Subst[Int[x^(Simpl
ify[(m + 1)/n] - 1)*(a + b*Csch[c + d*x])^p, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p}, x] && IGtQ[Simpli
fy[(m + 1)/n], 0] && IntegerQ[p]
-
Int[(x_)^(m_.)*((a_.) + (b_.)*Sech[(c_.) + (d_.)*(x_)^(n_)])^(p_.), x_Symbol] :> Unintegrable[x^m*(a + b*Sech[
c + d*x^n])^p, x] /; FreeQ[{a, b, c, d, m, n, p}, x]
-
Int[((a_.) + Csch[(c_.) + (d_.)*(x_)^(n_)]*(b_.))^(p_.)*(x_)^(m_.), x_Symbol] :> Unintegrable[x^m*(a + b*Csch[
c + d*x^n])^p, x] /; FreeQ[{a, b, c, d, m, n, p}, x]
-
Int[((e_)*(x_))^(m_.)*((a_.) + (b_.)*Sech[(c_.) + (d_.)*(x_)^(n_)])^(p_.), x_Symbol] :> Simp[e^IntPart[m]*((e*
x)^FracPart[m]/x^FracPart[m]) Int[x^m*(a + b*Sech[c + d*x^n])^p, x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x
]
-
Int[((a_.) + Csch[(c_.) + (d_.)*(x_)^(n_)]*(b_.))^(p_.)*((e_)*(x_))^(m_.), x_Symbol] :> Simp[e^IntPart[m]*((e*
x)^FracPart[m]/x^FracPart[m]) Int[x^m*(a + b*Csch[c + d*x^n])^p, x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x
]
-
Int[((e_)*(x_))^(m_.)*((a_.) + (b_.)*Sech[u_])^(p_.), x_Symbol] :> Int[(e*x)^m*(a + b*Sech[ExpandToSum[u, x]])
^p, x] /; FreeQ[{a, b, e, m, p}, x] && BinomialQ[u, x] && !BinomialMatchQ[u, x]
-
Int[((a_.) + Csch[u_]*(b_.))^(p_.)*((e_)*(x_))^(m_.), x_Symbol] :> Int[(e*x)^m*(a + b*Csch[ExpandToSum[u, x]])
^p, x] /; FreeQ[{a, b, e, m, p}, x] && BinomialQ[u, x] && !BinomialMatchQ[u, x]
-
Int[(x_)^(m_.)*Sech[(a_.) + (b_.)*(x_)^(n_.)]^(p_)*Sinh[(a_.) + (b_.)*(x_)^(n_.)], x_Symbol] :> Simp[(-x^(m -
n + 1))*(Sech[a + b*x^n]^(p - 1)/(b*n*(p - 1))), x] + Simp[(m - n + 1)/(b*n*(p - 1)) Int[x^(m - n)*Sech[a +
b*x^n]^(p - 1), x], x] /; FreeQ[{a, b, p}, x] && IntegerQ[n] && GeQ[m - n, 0] && NeQ[p, 1]
-
Int[Cosh[(a_.) + (b_.)*(x_)^(n_.)]*Csch[(a_.) + (b_.)*(x_)^(n_.)]^(p_)*(x_)^(m_.), x_Symbol] :> Simp[(-x^(m -
n + 1))*(Csch[a + b*x^n]^(p - 1)/(b*n*(p - 1))), x] + Simp[(m - n + 1)/(b*n*(p - 1)) Int[x^(m - n)*Csch[a +
b*x^n]^(p - 1), x], x] /; FreeQ[{a, b, p}, x] && IntegerQ[n] && GeQ[m - n, 0] && NeQ[p, 1]
-
Int[Cosh[(a_.) + (b_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.)*Sinh[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Simp[(c +
d*x)^m*(Sinh[a + b*x]^(n + 1)/(b*(n + 1))), x] - Simp[d*(m/(b*(n + 1))) Int[(c + d*x)^(m - 1)*Sinh[a + b*x]
^(n + 1), x], x] /; FreeQ[{a, b, c, d, n}, x] && IGtQ[m, 0] && NeQ[n, -1]
-
Int[Cosh[(a_.) + (b_.)*(x_)]^(n_.)*((c_.) + (d_.)*(x_))^(m_.)*Sinh[(a_.) + (b_.)*(x_)], x_Symbol] :> Simp[(c +
d*x)^m*(Cosh[a + b*x]^(n + 1)/(b*(n + 1))), x] - Simp[d*(m/(b*(n + 1))) Int[(c + d*x)^(m - 1)*Cosh[a + b*x]
^(n + 1), x], x] /; FreeQ[{a, b, c, d, n}, x] && IGtQ[m, 0] && NeQ[n, -1]
-
Int[Cosh[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sinh[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Int
[ExpandTrigReduce[(c + d*x)^m, Sinh[a + b*x]^n*Cosh[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n,
0] && IGtQ[p, 0]
-
Int[((c_.) + (d_.)*(x_))^(m_.)*Sinh[(a_.) + (b_.)*(x_)]^(n_.)*Tanh[(a_.) + (b_.)*(x_)]^(p_.), x_Symbol] :> Int
[(c + d*x)^m*Sinh[a + b*x]^n*Tanh[a + b*x]^(p - 2), x] - Int[(c + d*x)^m*Sinh[a + b*x]^(n - 2)*Tanh[a + b*x]^p
, x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && IGtQ[p, 0]
-
Int[Cosh[(a_.) + (b_.)*(x_)]^(n_.)*Coth[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Int
[(c + d*x)^m*Cosh[a + b*x]^n*Coth[a + b*x]^(p - 2), x] + Int[(c + d*x)^m*Cosh[a + b*x]^(n - 2)*Coth[a + b*x]^p
, x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && IGtQ[p, 0]
-
Int[((c_.) + (d_.)*(x_))^(m_.)*Sech[(a_.) + (b_.)*(x_)]^(n_.)*Tanh[(a_.) + (b_.)*(x_)]^(p_.), x_Symbol] :> Sim
p[(-(c + d*x)^m)*(Sech[a + b*x]^n/(b*n)), x] + Simp[d*(m/(b*n)) Int[(c + d*x)^(m - 1)*Sech[a + b*x]^n, x], x
] /; FreeQ[{a, b, c, d, n}, x] && EqQ[p, 1] && GtQ[m, 0]
-
Int[Coth[(a_.) + (b_.)*(x_)]^(p_.)*Csch[(a_.) + (b_.)*(x_)]^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Sim
p[(-(c + d*x)^m)*(Csch[a + b*x]^n/(b*n)), x] + Simp[d*(m/(b*n)) Int[(c + d*x)^(m - 1)*Csch[a + b*x]^n, x], x
] /; FreeQ[{a, b, c, d, n}, x] && EqQ[p, 1] && GtQ[m, 0]
-
Int[((c_.) + (d_.)*(x_))^(m_.)*Sech[(a_.) + (b_.)*(x_)]^2*Tanh[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Simp[(c
+ d*x)^m*(Tanh[a + b*x]^(n + 1)/(b*(n + 1))), x] - Simp[d*(m/(b*(n + 1))) Int[(c + d*x)^(m - 1)*Tanh[a + b*
x]^(n + 1), x], x] /; FreeQ[{a, b, c, d, n}, x] && IGtQ[m, 0] && NeQ[n, -1]
-
Int[Coth[(a_.) + (b_.)*(x_)]^(n_.)*Csch[(a_.) + (b_.)*(x_)]^2*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(-
(c + d*x)^m)*(Coth[a + b*x]^(n + 1)/(b*(n + 1))), x] + Simp[d*(m/(b*(n + 1))) Int[(c + d*x)^(m - 1)*Coth[a +
b*x]^(n + 1), x], x] /; FreeQ[{a, b, c, d, n}, x] && IGtQ[m, 0] && NeQ[n, -1]
-
Int[((c_.) + (d_.)*(x_))^(m_.)*Sech[(a_.) + (b_.)*(x_)]*Tanh[(a_.) + (b_.)*(x_)]^(p_), x_Symbol] :> Int[(c + d
*x)^m*Sech[a + b*x]*Tanh[a + b*x]^(p - 2), x] - Int[(c + d*x)^m*Sech[a + b*x]^3*Tanh[a + b*x]^(p - 2), x] /; F
reeQ[{a, b, c, d, m}, x] && IGtQ[p/2, 0]
-
Int[((c_.) + (d_.)*(x_))^(m_.)*Sech[(a_.) + (b_.)*(x_)]^(n_.)*Tanh[(a_.) + (b_.)*(x_)]^(p_), x_Symbol] :> Int[
(c + d*x)^m*Sech[a + b*x]^n*Tanh[a + b*x]^(p - 2), x] - Int[(c + d*x)^m*Sech[a + b*x]^(n + 2)*Tanh[a + b*x]^(p
- 2), x] /; FreeQ[{a, b, c, d, m, n}, x] && IGtQ[p/2, 0]
-
Int[Coth[(a_.) + (b_.)*(x_)]^(p_)*Csch[(a_.) + (b_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Int[(c + d
*x)^m*Csch[a + b*x]*Coth[a + b*x]^(p - 2), x] + Int[(c + d*x)^m*Csch[a + b*x]^3*Coth[a + b*x]^(p - 2), x] /; F
reeQ[{a, b, c, d, m}, x] && IGtQ[p/2, 0]
-
Int[Coth[(a_.) + (b_.)*(x_)]^(p_)*Csch[(a_.) + (b_.)*(x_)]^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Int[
(c + d*x)^m*Csch[a + b*x]^n*Coth[a + b*x]^(p - 2), x] + Int[(c + d*x)^m*Csch[a + b*x]^(n + 2)*Coth[a + b*x]^(p
- 2), x] /; FreeQ[{a, b, c, d, m, n}, x] && IGtQ[p/2, 0]
-
Int[((c_.) + (d_.)*(x_))^(m_.)*Sech[(a_.) + (b_.)*(x_)]^(n_.)*Tanh[(a_.) + (b_.)*(x_)]^(p_.), x_Symbol] :> Wit
h[{u = IntHide[Sech[a + b*x]^n*Tanh[a + b*x]^p, x]}, Simp[(c + d*x)^m u, x] - Simp[d*m Int[(c + d*x)^(m -
1)*u, x], x]] /; FreeQ[{a, b, c, d, n, p}, x] && IGtQ[m, 0] && (IntegerQ[n/2] || IntegerQ[(p - 1)/2])
-
Int[Coth[(a_.) + (b_.)*(x_)]^(p_.)*Csch[(a_.) + (b_.)*(x_)]^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Wit
h[{u = IntHide[Csch[a + b*x]^n*Coth[a + b*x]^p, x]}, Simp[(c + d*x)^m u, x] - Simp[d*m Int[(c + d*x)^(m -
1)*u, x], x]] /; FreeQ[{a, b, c, d, n, p}, x] && IGtQ[m, 0] && (IntegerQ[n/2] || IntegerQ[(p - 1)/2])
-
Int[Csch[(a_.) + (b_.)*(x_)]^(n_.)*((c_.) + (d_.)*(x_))^(m_.)*Sech[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Sim
p[2^n Int[(c + d*x)^m*Csch[2*a + 2*b*x]^n, x], x] /; FreeQ[{a, b, c, d}, x] && RationalQ[m] && IntegerQ[n]
-
Int[Csch[(a_.) + (b_.)*(x_)]^(n_.)*((c_.) + (d_.)*(x_))^(m_.)*Sech[(a_.) + (b_.)*(x_)]^(p_.), x_Symbol] :> Wit
h[{u = IntHide[Csch[a + b*x]^n*Sech[a + b*x]^p, x]}, Simp[(c + d*x)^m u, x] - Simp[d*m Int[(c + d*x)^(m -
1)*u, x], x]] /; FreeQ[{a, b, c, d}, x] && IntegersQ[n, p] && GtQ[m, 0] && NeQ[n, p]
-
Int[(u_)^(m_.)*(F_)[v_]^(n_.)*(G_)[w_]^(p_.), x_Symbol] :> Int[ExpandToSum[u, x]^m*F[ExpandToSum[v, x]]^n*G[Ex
pandToSum[v, x]]^p, x] /; FreeQ[{m, n, p}, x] && HyperbolicQ[F] && HyperbolicQ[G] && EqQ[v, w] && LinearQ[{u,
v, w}, x] && !LinearMatchQ[{u, v, w}, x]
-
Int[Cosh[(c_.) + (d_.)*(x_)]*((e_.) + (f_.)*(x_))^(m_.)*((a_) + (b_.)*Sinh[(c_.) + (d_.)*(x_)])^(n_.), x_Symbo
l] :> Simp[(e + f*x)^m*((a + b*Sinh[c + d*x])^(n + 1)/(b*d*(n + 1))), x] - Simp[f*(m/(b*d*(n + 1))) Int[(e +
f*x)^(m - 1)*(a + b*Sinh[c + d*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && IGtQ[m, 0] && NeQ[n,
-1]
-
Int[(Cosh[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_.)*((e_.) + (f_.)*(x_))^(m_.)*Sinh[(c_.) + (d_.)*(x_)], x_Symbo
l] :> Simp[(e + f*x)^m*((a + b*Cosh[c + d*x])^(n + 1)/(b*d*(n + 1))), x] - Simp[f*(m/(b*d*(n + 1))) Int[(e +
f*x)^(m - 1)*(a + b*Cosh[c + d*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && IGtQ[m, 0] && NeQ[n,
-1]
-
Int[((e_.) + (f_.)*(x_))^(m_.)*Sech[(c_.) + (d_.)*(x_)]^2*((a_) + (b_.)*Tanh[(c_.) + (d_.)*(x_)])^(n_.), x_Sym
bol] :> Simp[(e + f*x)^m*((a + b*Tanh[c + d*x])^(n + 1)/(b*d*(n + 1))), x] - Simp[f*(m/(b*d*(n + 1))) Int[(e
+ f*x)^(m - 1)*(a + b*Tanh[c + d*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && IGtQ[m, 0] && NeQ[
n, -1]
-
Int[Csch[(c_.) + (d_.)*(x_)]^2*(Coth[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_.)*((e_.) + (f_.)*(x_))^(m_.), x_Sym
bol] :> Simp[(-(e + f*x)^m)*((a + b*Coth[c + d*x])^(n + 1)/(b*d*(n + 1))), x] + Simp[f*(m/(b*d*(n + 1))) Int
[(e + f*x)^(m - 1)*(a + b*Coth[c + d*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && IGtQ[m, 0] && N
eQ[n, -1]
-
Int[((e_.) + (f_.)*(x_))^(m_.)*Sech[(c_.) + (d_.)*(x_)]*((a_) + (b_.)*Sech[(c_.) + (d_.)*(x_)])^(n_.)*Tanh[(c_
.) + (d_.)*(x_)], x_Symbol] :> Simp[(-(e + f*x)^m)*((a + b*Sech[c + d*x])^(n + 1)/(b*d*(n + 1))), x] + Simp[f*
(m/(b*d*(n + 1))) Int[(e + f*x)^(m - 1)*(a + b*Sech[c + d*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, n}
, x] && IGtQ[m, 0] && NeQ[n, -1]
-
Int[Coth[(c_.) + (d_.)*(x_)]*Csch[(c_.) + (d_.)*(x_)]*(Csch[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^(n_.)*((e_.) + (
f_.)*(x_))^(m_.), x_Symbol] :> Simp[(-(e + f*x)^m)*((a + b*Csch[c + d*x])^(n + 1)/(b*d*(n + 1))), x] + Simp[f*
(m/(b*d*(n + 1))) Int[(e + f*x)^(m - 1)*(a + b*Csch[c + d*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, n}
, x] && IGtQ[m, 0] && NeQ[n, -1]
-
Int[((e_.) + (f_.)*(x_))^(m_.)*Sinh[(a_.) + (b_.)*(x_)]^(p_.)*Sinh[(c_.) + (d_.)*(x_)]^(q_.), x_Symbol] :> Int
[ExpandTrigReduce[(e + f*x)^m, Sinh[a + b*x]^p*Sinh[c + d*x]^q, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ
[p, 0] && IGtQ[q, 0] && IntegerQ[m]
-
Int[Cosh[(a_.) + (b_.)*(x_)]^(p_.)*Cosh[(c_.) + (d_.)*(x_)]^(q_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Int
[ExpandTrigReduce[(e + f*x)^m, Cosh[a + b*x]^p*Cosh[c + d*x]^q, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ
[p, 0] && IGtQ[q, 0] && IntegerQ[m]
-
Int[Cosh[(c_.) + (d_.)*(x_)]^(q_.)*((e_.) + (f_.)*(x_))^(m_.)*Sinh[(a_.) + (b_.)*(x_)]^(p_.), x_Symbol] :> Int
[ExpandTrigReduce[(e + f*x)^m, Sinh[a + b*x]^p*Cosh[c + d*x]^q, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && I
GtQ[p, 0] && IGtQ[q, 0]
-
Int[((e_.) + (f_.)*(x_))^(m_.)*(F_)[(a_.) + (b_.)*(x_)]^(p_.)*(G_)[(c_.) + (d_.)*(x_)]^(q_.), x_Symbol] :> Int
[ExpandTrigExpand[(e + f*x)^m*G[c + d*x]^q, F, c + d*x, p, b/d, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && M
emberQ[{Sinh, Cosh}, F] && MemberQ[{Sech, Csch}, G] && IGtQ[p, 0] && IGtQ[q, 0] && EqQ[b*c - a*d, 0] && IGtQ[b
/d, 1]
-
Int[(F_)^((c_.)*((a_.) + (b_.)*(x_)))*Sinh[(d_.) + (e_.)*(x_)], x_Symbol] :> Simp[(-b)*c*Log[F]*F^(c*(a + b*x)
)*(Sinh[d + e*x]/(e^2 - b^2*c^2*Log[F]^2)), x] + Simp[e*F^(c*(a + b*x))*(Cosh[d + e*x]/(e^2 - b^2*c^2*Log[F]^2
)), x] /; FreeQ[{F, a, b, c, d, e}, x] && NeQ[e^2 - b^2*c^2*Log[F]^2, 0]
-
Int[Cosh[(d_.) + (e_.)*(x_)]*(F_)^((c_.)*((a_.) + (b_.)*(x_))), x_Symbol] :> Simp[(-b)*c*Log[F]*F^(c*(a + b*x)
)*(Cosh[d + e*x]/(e^2 - b^2*c^2*Log[F]^2)), x] + Simp[e*F^(c*(a + b*x))*(Sinh[d + e*x]/(e^2 - b^2*c^2*Log[F]^2
)), x] /; FreeQ[{F, a, b, c, d, e}, x] && NeQ[e^2 - b^2*c^2*Log[F]^2, 0]
-
Int[(F_)^((c_.)*((a_.) + (b_.)*(x_)))*Sinh[(d_.) + (e_.)*(x_)]^(n_), x_Symbol] :> Simp[(-b)*c*Log[F]*F^(c*(a +
b*x))*(Sinh[d + e*x]^n/(e^2*n^2 - b^2*c^2*Log[F]^2)), x] + (Simp[e*n*F^(c*(a + b*x))*Cosh[d + e*x]*(Sinh[d +
e*x]^(n - 1)/(e^2*n^2 - b^2*c^2*Log[F]^2)), x] - Simp[n*(n - 1)*(e^2/(e^2*n^2 - b^2*c^2*Log[F]^2)) Int[F^(c*
(a + b*x))*Sinh[d + e*x]^(n - 2), x], x]) /; FreeQ[{F, a, b, c, d, e}, x] && NeQ[e^2*n^2 - b^2*c^2*Log[F]^2, 0
] && GtQ[n, 1]
-
Int[Cosh[(d_.) + (e_.)*(x_)]^(n_)*(F_)^((c_.)*((a_.) + (b_.)*(x_))), x_Symbol] :> Simp[(-b)*c*Log[F]*F^(c*(a +
b*x))*(Cosh[d + e*x]^n/(e^2*n^2 - b^2*c^2*Log[F]^2)), x] + (Simp[e*n*F^(c*(a + b*x))*Sinh[d + e*x]*(Cosh[d +
e*x]^(n - 1)/(e^2*n^2 - b^2*c^2*Log[F]^2)), x] + Simp[n*(n - 1)*(e^2/(e^2*n^2 - b^2*c^2*Log[F]^2)) Int[F^(c*
(a + b*x))*Cosh[d + e*x]^(n - 2), x], x]) /; FreeQ[{F, a, b, c, d, e}, x] && NeQ[e^2*n^2 - b^2*c^2*Log[F]^2, 0
] && GtQ[n, 1]
-
Int[(F_)^((c_.)*((a_.) + (b_.)*(x_)))*Sinh[(d_.) + (e_.)*(x_)]^(n_), x_Symbol] :> Simp[(-b)*c*Log[F]*F^(c*(a +
b*x))*(Sinh[d + e*x]^(n + 2)/(e^2*(n + 1)*(n + 2))), x] + Simp[F^(c*(a + b*x))*Cosh[d + e*x]*(Sinh[d + e*x]^(
n + 1)/(e*(n + 1))), x] /; FreeQ[{F, a, b, c, d, e, n}, x] && EqQ[e^2*(n + 2)^2 - b^2*c^2*Log[F]^2, 0] && NeQ[
n, -1] && NeQ[n, -2]
-
Int[Cosh[(d_.) + (e_.)*(x_)]^(n_)*(F_)^((c_.)*((a_.) + (b_.)*(x_))), x_Symbol] :> Simp[b*c*Log[F]*F^(c*(a + b*
x))*(Cosh[d + e*x]^(n + 2)/(e^2*(n + 1)*(n + 2))), x] - Simp[F^(c*(a + b*x))*Sinh[d + e*x]*(Cosh[d + e*x]^(n +
1)/(e*(n + 1))), x] /; FreeQ[{F, a, b, c, d, e, n}, x] && EqQ[e^2*(n + 2)^2 - b^2*c^2*Log[F]^2, 0] && NeQ[n,
-1] && NeQ[n, -2]
-
Int[(F_)^((c_.)*((a_.) + (b_.)*(x_)))*Sinh[(d_.) + (e_.)*(x_)]^(n_), x_Symbol] :> Simp[(-b)*c*Log[F]*F^(c*(a +
b*x))*(Sinh[d + e*x]^(n + 2)/(e^2*(n + 1)*(n + 2))), x] + (Simp[F^(c*(a + b*x))*Cosh[d + e*x]*(Sinh[d + e*x]^
(n + 1)/(e*(n + 1))), x] - Simp[(e^2*(n + 2)^2 - b^2*c^2*Log[F]^2)/(e^2*(n + 1)*(n + 2)) Int[F^(c*(a + b*x))
*Sinh[d + e*x]^(n + 2), x], x]) /; FreeQ[{F, a, b, c, d, e}, x] && NeQ[e^2*(n + 2)^2 - b^2*c^2*Log[F]^2, 0] &&
LtQ[n, -1] && NeQ[n, -2]
-
Int[Cosh[(d_.) + (e_.)*(x_)]^(n_)*(F_)^((c_.)*((a_.) + (b_.)*(x_))), x_Symbol] :> Simp[b*c*Log[F]*F^(c*(a + b*
x))*(Cosh[d + e*x]^(n + 2)/(e^2*(n + 1)*(n + 2))), x] + (-Simp[F^(c*(a + b*x))*Sinh[d + e*x]*(Cosh[d + e*x]^(n
+ 1)/(e*(n + 1))), x] + Simp[(e^2*(n + 2)^2 - b^2*c^2*Log[F]^2)/(e^2*(n + 1)*(n + 2)) Int[F^(c*(a + b*x))*C
osh[d + e*x]^(n + 2), x], x]) /; FreeQ[{F, a, b, c, d, e}, x] && NeQ[e^2*(n + 2)^2 - b^2*c^2*Log[F]^2, 0] && L
tQ[n, -1] && NeQ[n, -2]
-
Int[(F_)^((c_.)*((a_.) + (b_.)*(x_)))*Sinh[(d_.) + (e_.)*(x_)]^(n_), x_Symbol] :> Simp[E^(n*(d + e*x))*(Sinh[d
+ e*x]^n/(-1 + E^(2*(d + e*x)))^n) Int[F^(c*(a + b*x))*((-1 + E^(2*(d + e*x)))^n/E^(n*(d + e*x))), x], x] /
; FreeQ[{F, a, b, c, d, e, n}, x] && !IntegerQ[n]
-
Int[Cosh[(d_.) + (e_.)*(x_)]^(n_)*(F_)^((c_.)*((a_.) + (b_.)*(x_))), x_Symbol] :> Simp[E^(n*(d + e*x))*(Cosh[d
+ e*x]^n/(1 + E^(2*(d + e*x)))^n) Int[F^(c*(a + b*x))*((1 + E^(2*(d + e*x)))^n/E^(n*(d + e*x))), x], x] /;
FreeQ[{F, a, b, c, d, e, n}, x] && !IntegerQ[n]
-
Int[(F_)^((c_.)*((a_.) + (b_.)*(x_)))*Tanh[(d_.) + (e_.)*(x_)]^(n_.), x_Symbol] :> Int[ExpandIntegrand[F^(c*(a
+ b*x))*((-1 + E^(2*(d + e*x)))^n/(1 + E^(2*(d + e*x)))^n), x], x] /; FreeQ[{F, a, b, c, d, e}, x] && Integer
Q[n]
-
Int[Coth[(d_.) + (e_.)*(x_)]^(n_.)*(F_)^((c_.)*((a_.) + (b_.)*(x_))), x_Symbol] :> Int[ExpandIntegrand[F^(c*(a
+ b*x))*((1 + E^(2*(d + e*x)))^n/(-1 + E^(2*(d + e*x)))^n), x], x] /; FreeQ[{F, a, b, c, d, e}, x] && Integer
Q[n]
-
Int[(F_)^((c_.)*((a_.) + (b_.)*(x_)))*Sech[(d_.) + (e_.)*(x_)]^(n_), x_Symbol] :> Simp[(-b)*c*Log[F]*F^(c*(a +
b*x))*(Sech[d + e*x]^n/(e^2*n^2 - b^2*c^2*Log[F]^2)), x] + (-Simp[e*n*F^(c*(a + b*x))*Sech[d + e*x]^(n + 1)*(
Sinh[d + e*x]/(e^2*n^2 - b^2*c^2*Log[F]^2)), x] + Simp[e^2*n*((n + 1)/(e^2*n^2 - b^2*c^2*Log[F]^2)) Int[F^(c
*(a + b*x))*Sech[d + e*x]^(n + 2), x], x]) /; FreeQ[{F, a, b, c, d, e}, x] && NeQ[e^2*n^2 + b^2*c^2*Log[F]^2,
0] && LtQ[n, -1]
-
Int[Csch[(d_.) + (e_.)*(x_)]^(n_)*(F_)^((c_.)*((a_.) + (b_.)*(x_))), x_Symbol] :> Simp[(-b)*c*Log[F]*F^(c*(a +
b*x))*(Csch[d + e*x]^n/(e^2*n^2 - b^2*c^2*Log[F]^2)), x] + (-Simp[e*n*F^(c*(a + b*x))*Csch[d + e*x]^(n + 1)*(
Cosh[d + e*x]/(e^2*n^2 - b^2*c^2*Log[F]^2)), x] - Simp[e^2*n*((n + 1)/(e^2*n^2 - b^2*c^2*Log[F]^2)) Int[F^(c
*(a + b*x))*Csch[d + e*x]^(n + 2), x], x]) /; FreeQ[{F, a, b, c, d, e}, x] && NeQ[e^2*n^2 + b^2*c^2*Log[F]^2,
0] && LtQ[n, -1]
-
Int[(F_)^((c_.)*((a_.) + (b_.)*(x_)))*Sech[(d_.) + (e_.)*(x_)]^(n_), x_Symbol] :> Simp[b*c*Log[F]*F^(c*(a + b*
x))*(Sech[d + e*x]^(n - 2)/(e^2*(n - 1)*(n - 2))), x] + Simp[F^(c*(a + b*x))*Sech[d + e*x]^(n - 1)*(Sinh[d + e
*x]/(e*(n - 1))), x] /; FreeQ[{F, a, b, c, d, e, n}, x] && EqQ[e^2*(n - 2)^2 - b^2*c^2*Log[F]^2, 0] && NeQ[n,
1] && NeQ[n, 2]
-
Int[Csch[(d_.) + (e_.)*(x_)]^(n_)*(F_)^((c_.)*((a_.) + (b_.)*(x_))), x_Symbol] :> Simp[(-b)*c*Log[F]*F^(c*(a +
b*x))*(Csch[d + e*x]^(n - 2)/(e^2*(n - 1)*(n - 2))), x] - Simp[F^(c*(a + b*x))*Csch[d + e*x]^(n - 1)*(Cosh[d
+ e*x]/(e*(n - 1))), x] /; FreeQ[{F, a, b, c, d, e, n}, x] && EqQ[e^2*(n - 2)^2 - b^2*c^2*Log[F]^2, 0] && NeQ[
n, 1] && NeQ[n, 2]
-
Int[(F_)^((c_.)*((a_.) + (b_.)*(x_)))*Sech[(d_.) + (e_.)*(x_)]^(n_), x_Symbol] :> Simp[b*c*Log[F]*F^(c*(a + b*
x))*(Sech[d + e*x]^(n - 2)/(e^2*(n - 1)*(n - 2))), x] + (Simp[F^(c*(a + b*x))*Sech[d + e*x]^(n - 1)*(Sinh[d +
e*x]/(e*(n - 1))), x] + Simp[(e^2*(n - 2)^2 - b^2*c^2*Log[F]^2)/(e^2*(n - 1)*(n - 2)) Int[F^(c*(a + b*x))*Se
ch[d + e*x]^(n - 2), x], x]) /; FreeQ[{F, a, b, c, d, e}, x] && NeQ[e^2*(n - 2)^2 - b^2*c^2*Log[F]^2, 0] && Gt
Q[n, 1] && NeQ[n, 2]
-
Int[Csch[(d_.) + (e_.)*(x_)]^(n_)*(F_)^((c_.)*((a_.) + (b_.)*(x_))), x_Symbol] :> Simp[(-b)*c*Log[F]*F^(c*(a +
b*x))*(Csch[d + e*x]^(n - 2)/(e^2*(n - 1)*(n - 2))), x] + (-Simp[F^(c*(a + b*x))*Csch[d + e*x]^(n - 1)*(Cosh[
d + e*x]/(e*(n - 1))), x] - Simp[(e^2*(n - 2)^2 - b^2*c^2*Log[F]^2)/(e^2*(n - 1)*(n - 2)) Int[F^(c*(a + b*x)
)*Csch[d + e*x]^(n - 2), x], x]) /; FreeQ[{F, a, b, c, d, e}, x] && NeQ[e^2*(n - 2)^2 - b^2*c^2*Log[F]^2, 0] &
& GtQ[n, 1] && NeQ[n, 2]
-
Int[(F_)^((c_.)*((a_.) + (b_.)*(x_)))*Sech[(d_.) + (e_.)*(x_)]^(n_.), x_Symbol] :> Simp[2^n*E^(n*(d + e*x))*(F
^(c*(a + b*x))/(e*n + b*c*Log[F]))*Hypergeometric2F1[n, n/2 + b*c*(Log[F]/(2*e)), 1 + n/2 + b*c*(Log[F]/(2*e))
, -E^(2*(d + e*x))], x] /; FreeQ[{F, a, b, c, d, e}, x] && IntegerQ[n]
-
Int[Csch[(d_.) + (e_.)*(x_)]^(n_.)*(F_)^((c_.)*((a_.) + (b_.)*(x_))), x_Symbol] :> Simp[(-2)^n*E^(n*(d + e*x))
*(F^(c*(a + b*x))/(e*n + b*c*Log[F]))*Hypergeometric2F1[n, n/2 + b*c*(Log[F]/(2*e)), 1 + n/2 + b*c*(Log[F]/(2*
e)), E^(2*(d + e*x))], x] /; FreeQ[{F, a, b, c, d, e}, x] && IntegerQ[n]
-
Int[(F_)^((c_.)*((a_.) + (b_.)*(x_)))*Sech[(d_.) + (e_.)*(x_)]^(n_.), x_Symbol] :> Simp[(1 + E^(2*(d + e*x)))^
n*(Sech[d + e*x]^n/E^(n*(d + e*x))) Int[SimplifyIntegrand[F^(c*(a + b*x))*(E^(n*(d + e*x))/(1 + E^(2*(d + e*
x)))^n), x], x], x] /; FreeQ[{F, a, b, c, d, e}, x] && !IntegerQ[n]
-
Int[Csch[(d_.) + (e_.)*(x_)]^(n_.)*(F_)^((c_.)*((a_.) + (b_.)*(x_))), x_Symbol] :> Simp[(1 - E^(-2*(d + e*x)))
^n*(Csch[d + e*x]^n/E^((-n)*(d + e*x))) Int[SimplifyIntegrand[F^(c*(a + b*x))*(1/(E^(n*(d + e*x))*(1 - E^(-2
*(d + e*x)))^n)), x], x], x] /; FreeQ[{F, a, b, c, d, e}, x] && !IntegerQ[n]
-
Int[(F_)^((c_.)*((a_.) + (b_.)*(x_)))*((f_) + (g_.)*Sinh[(d_.) + (e_.)*(x_)])^(n_.), x_Symbol] :> Simp[2^n*f^n
Int[F^(c*(a + b*x))*Cosh[d/2 - f*(Pi/(4*g)) + e*(x/2)]^(2*n), x], x] /; FreeQ[{F, a, b, c, d, e, f, g}, x]
&& EqQ[f^2 + g^2, 0] && ILtQ[n, 0]
-
Int[(Cosh[(d_.) + (e_.)*(x_)]*(g_.) + (f_))^(n_.)*(F_)^((c_.)*((a_.) + (b_.)*(x_))), x_Symbol] :> Simp[2^n*g^n
Int[F^(c*(a + b*x))*Cosh[d/2 + e*(x/2)]^(2*n), x], x] /; FreeQ[{F, a, b, c, d, e, f, g}, x] && EqQ[f - g, 0
] && ILtQ[n, 0]
-
Int[(Cosh[(d_.) + (e_.)*(x_)]*(g_.) + (f_))^(n_.)*(F_)^((c_.)*((a_.) + (b_.)*(x_))), x_Symbol] :> Simp[2^n*g^n
Int[F^(c*(a + b*x))*Sinh[d/2 + e*(x/2)]^(2*n), x], x] /; FreeQ[{F, a, b, c, d, e, f, g}, x] && EqQ[f + g, 0
] && ILtQ[n, 0]
-
Int[(F_)^((c_.)*((a_.) + (b_.)*(x_)))*((f_) + (g_.)*Sinh[(d_.) + (e_.)*(x_)])^(n_.), x_Symbol] :> Simp[(f + g*
Sinh[d + e*x])^n/Cosh[d/2 - f*(Pi/(4*g)) + e*(x/2)]^(2*n) Int[F^(c*(a + b*x))*Cosh[d/2 - f*(Pi/(4*g)) + e*(x
/2)]^(2*n), x], x] /; FreeQ[{F, a, b, c, d, e, f, g, n}, x] && EqQ[f^2 + g^2, 0] && !IntegerQ[n]
-
Int[(Cosh[(d_.) + (e_.)*(x_)]*(g_.) + (f_))^(n_.)*(F_)^((c_.)*((a_.) + (b_.)*(x_))), x_Symbol] :> Simp[(f + g*
Cosh[d + e*x])^n/Cosh[d/2 + e*(x/2)]^(2*n) Int[F^(c*(a + b*x))*Cosh[d/2 + e*(x/2)]^(2*n), x], x] /; FreeQ[{F
, a, b, c, d, e, f, g, n}, x] && EqQ[f - g, 0] && !IntegerQ[n]
-
Int[(Cosh[(d_.) + (e_.)*(x_)]*(g_.) + (f_))^(n_.)*(F_)^((c_.)*((a_.) + (b_.)*(x_))), x_Symbol] :> Simp[(f + g*
Cosh[d + e*x])^n/Sinh[d/2 + e*(x/2)]^(2*n) Int[F^(c*(a + b*x))*Sinh[d/2 + e*(x/2)]^(2*n), x], x] /; FreeQ[{F
, a, b, c, d, e, f, g, n}, x] && EqQ[f + g, 0] && !IntegerQ[n]
-
Int[Cosh[(d_.) + (e_.)*(x_)]^(m_.)*(F_)^((c_.)*((a_.) + (b_.)*(x_)))*((f_) + (g_.)*Sinh[(d_.) + (e_.)*(x_)])^(
n_.), x_Symbol] :> Simp[g^n Int[F^(c*(a + b*x))*Tanh[d/2 + e*(x/2) - f*(Pi/(4*g))]^m, x], x] /; FreeQ[{F, a,
b, c, d, e, f, g}, x] && EqQ[f^2 + g^2, 0] && IntegersQ[m, n] && EqQ[m + n, 0]
-
Int[(Cosh[(d_.) + (e_.)*(x_)]*(g_.) + (f_))^(n_.)*(F_)^((c_.)*((a_.) + (b_.)*(x_)))*Sinh[(d_.) + (e_.)*(x_)]^(
m_.), x_Symbol] :> Simp[g^n Int[F^(c*(a + b*x))*Tanh[d/2 + e*(x/2)]^m, x], x] /; FreeQ[{F, a, b, c, d, e, f,
g}, x] && EqQ[f - g, 0] && IntegersQ[m, n] && EqQ[m + n, 0]
-
Int[(Cosh[(d_.) + (e_.)*(x_)]*(g_.) + (f_))^(n_.)*(F_)^((c_.)*((a_.) + (b_.)*(x_)))*Sinh[(d_.) + (e_.)*(x_)]^(
m_.), x_Symbol] :> Simp[g^n Int[F^(c*(a + b*x))*Coth[d/2 + e*(x/2)]^m, x], x] /; FreeQ[{F, a, b, c, d, e, f,
g}, x] && EqQ[f + g, 0] && IntegersQ[m, n] && EqQ[m + n, 0]
-
Int[((F_)^((c_.)*((a_.) + (b_.)*(x_)))*(Cosh[(d_.) + (e_.)*(x_)]*(i_.) + (h_)))/((f_) + (g_.)*Sinh[(d_.) + (e_
.)*(x_)]), x_Symbol] :> Simp[2*i Int[F^(c*(a + b*x))*(Cosh[d + e*x]/(f + g*Sinh[d + e*x])), x], x] + Int[F^(
c*(a + b*x))*((h - i*Cosh[d + e*x])/(f + g*Sinh[d + e*x])), x] /; FreeQ[{F, a, b, c, d, e, f, g, h, i}, x] &&
EqQ[f^2 + g^2, 0] && EqQ[h^2 - i^2, 0] && EqQ[g*h - f*i, 0]
-
Int[((F_)^((c_.)*((a_.) + (b_.)*(x_)))*((h_) + (i_.)*Sinh[(d_.) + (e_.)*(x_)]))/(Cosh[(d_.) + (e_.)*(x_)]*(g_.
) + (f_)), x_Symbol] :> Simp[2*i Int[F^(c*(a + b*x))*(Sinh[d + e*x]/(f + g*Cosh[d + e*x])), x], x] + Int[F^(
c*(a + b*x))*((h - i*Sinh[d + e*x])/(f + g*Cosh[d + e*x])), x] /; FreeQ[{F, a, b, c, d, e, f, g, h, i}, x] &&
EqQ[f^2 - g^2, 0] && EqQ[h^2 + i^2, 0] && EqQ[g*h + f*i, 0]
-
Int[(F_)^((c_.)*(u_))*(G_)[v_]^(n_.), x_Symbol] :> Int[F^(c*ExpandToSum[u, x])*G[ExpandToSum[v, x]]^n, x] /; F
reeQ[{F, c, n}, x] && HyperbolicQ[G] && LinearQ[{u, v}, x] && !LinearMatchQ[{u, v}, x]
-
Int[(F_)^((c_.)*((a_.) + (b_.)*(x_)))*((f_.)*(x_))^(m_.)*Sinh[(d_.) + (e_.)*(x_)]^(n_.), x_Symbol] :> Module[{
u = IntHide[F^(c*(a + b*x))*Sinh[d + e*x]^n, x]}, Simp[(f*x)^m u, x] - Simp[f*m Int[(f*x)^(m - 1)*u, x], x
]] /; FreeQ[{F, a, b, c, d, e, f}, x] && IGtQ[n, 0] && GtQ[m, 0]
-
Int[Cosh[(d_.) + (e_.)*(x_)]^(n_.)*(F_)^((c_.)*((a_.) + (b_.)*(x_)))*((f_.)*(x_))^(m_.), x_Symbol] :> Module[{
u = IntHide[F^(c*(a + b*x))*Cosh[d + e*x]^n, x]}, Simp[(f*x)^m u, x] - Simp[f*m Int[(f*x)^(m - 1)*u, x], x
]] /; FreeQ[{F, a, b, c, d, e, f}, x] && IGtQ[n, 0] && GtQ[m, 0]
-
Int[(F_)^((c_.)*((a_.) + (b_.)*(x_)))*((f_.)*(x_))^(m_)*Sinh[(d_.) + (e_.)*(x_)], x_Symbol] :> Simp[((f*x)^(m
+ 1)/(f*(m + 1)))*F^(c*(a + b*x))*Sinh[d + e*x], x] + (-Simp[e/(f*(m + 1)) Int[(f*x)^(m + 1)*F^(c*(a + b*x))
*Cosh[d + e*x], x], x] - Simp[b*c*(Log[F]/(f*(m + 1))) Int[(f*x)^(m + 1)*F^(c*(a + b*x))*Sinh[d + e*x], x],
x]) /; FreeQ[{F, a, b, c, d, e, f, m}, x] && (LtQ[m, -1] || SumSimplerQ[m, 1])
-
Int[Cosh[(d_.) + (e_.)*(x_)]*(F_)^((c_.)*((a_.) + (b_.)*(x_)))*((f_.)*(x_))^(m_), x_Symbol] :> Simp[((f*x)^(m
+ 1)/(f*(m + 1)))*F^(c*(a + b*x))*Cosh[d + e*x], x] + (-Simp[e/(f*(m + 1)) Int[(f*x)^(m + 1)*F^(c*(a + b*x))
*Sinh[d + e*x], x], x] - Simp[b*c*(Log[F]/(f*(m + 1))) Int[(f*x)^(m + 1)*F^(c*(a + b*x))*Cosh[d + e*x], x],
x]) /; FreeQ[{F, a, b, c, d, e, f, m}, x] && (LtQ[m, -1] || SumSimplerQ[m, 1])
-
Int[Cosh[(f_.) + (g_.)*(x_)]^(n_.)*(F_)^((c_.)*((a_.) + (b_.)*(x_)))*Sinh[(d_.) + (e_.)*(x_)]^(m_.), x_Symbol]
:> Int[ExpandTrigReduce[F^(c*(a + b*x)), Sinh[d + e*x]^m*Cosh[f + g*x]^n, x], x] /; FreeQ[{F, a, b, c, d, e,
f, g}, x] && IGtQ[m, 0] && IGtQ[n, 0]
-
Int[Cosh[(f_.) + (g_.)*(x_)]^(n_.)*(F_)^((c_.)*((a_.) + (b_.)*(x_)))*(x_)^(p_.)*Sinh[(d_.) + (e_.)*(x_)]^(m_.)
, x_Symbol] :> Int[ExpandTrigReduce[x^p*F^(c*(a + b*x)), Sinh[d + e*x]^m*Cosh[f + g*x]^n, x], x] /; FreeQ[{F,
a, b, c, d, e, f, g}, x] && IGtQ[m, 0] && IGtQ[n, 0] && IGtQ[p, 0]
-
Int[(F_)^((c_.)*((a_.) + (b_.)*(x_)))*(G_)[(d_.) + (e_.)*(x_)]^(m_.)*(H_)[(d_.) + (e_.)*(x_)]^(n_.), x_Symbol]
:> Int[ExpandTrigToExp[F^(c*(a + b*x)), G[d + e*x]^m*H[d + e*x]^n, x], x] /; FreeQ[{F, a, b, c, d, e}, x] &&
IGtQ[m, 0] && IGtQ[n, 0] && HyperbolicQ[G] && HyperbolicQ[H]
-
Int[(F_)^(u_)*Sinh[v_]^(n_.), x_Symbol] :> Int[ExpandTrigToExp[F^u, Sinh[v]^n, x], x] /; FreeQ[F, x] && (Linea
rQ[u, x] || PolyQ[u, x, 2]) && (LinearQ[v, x] || PolyQ[v, x, 2]) && IGtQ[n, 0]
-
Int[Cosh[v_]^(n_.)*(F_)^(u_), x_Symbol] :> Int[ExpandTrigToExp[F^u, Cosh[v]^n, x], x] /; FreeQ[F, x] && (Linea
rQ[u, x] || PolyQ[u, x, 2]) && (LinearQ[v, x] || PolyQ[v, x, 2]) && IGtQ[n, 0]
-
Int[Cosh[v_]^(n_.)*(F_)^(u_)*Sinh[v_]^(m_.), x_Symbol] :> Int[ExpandTrigToExp[F^u, Sinh[v]^m*Cosh[v]^n, x], x]
/; FreeQ[F, x] && (LinearQ[u, x] || PolyQ[u, x, 2]) && (LinearQ[v, x] || PolyQ[v, x, 2]) && IGtQ[m, 0] && IGt
Q[n, 0]
-
Int[Sinh[Log[(c_.)*(x_)^(n_.)]*(b_.)]^(p_.), x_Symbol] :> Int[((c*x^n)^b/2 - 1/(2*(c*x^n)^b))^p, x] /; FreeQ[c
, x] && RationalQ[b, n, p]
-
Int[Cosh[Log[(c_.)*(x_)^(n_.)]*(b_.)]^(p_.), x_Symbol] :> Int[((c*x^n)^b/2 + 1/(2*(c*x^n)^b))^p, x] /; FreeQ[c
, x] && RationalQ[b, n, p]
-
Int[Sinh[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)], x_Symbol] :> Simp[(-x)*(Sinh[d*(a + b*Log[c*x^n])]/(b^2
*d^2*n^2 - 1)), x] + Simp[b*d*n*x*(Cosh[d*(a + b*Log[c*x^n])]/(b^2*d^2*n^2 - 1)), x] /; FreeQ[{a, b, c, d, n},
x] && NeQ[b^2*d^2*n^2 - 1, 0]
-
Int[Cosh[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)], x_Symbol] :> Simp[(-x)*(Cosh[d*(a + b*Log[c*x^n])]/(b^2
*d^2*n^2 - 1)), x] + Simp[b*d*n*x*(Sinh[d*(a + b*Log[c*x^n])]/(b^2*d^2*n^2 - 1)), x] /; FreeQ[{a, b, c, d, n},
x] && NeQ[b^2*d^2*n^2 - 1, 0]
-
Int[Sinh[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]^(p_), x_Symbol] :> Simp[(-x)*(Sinh[d*(a + b*Log[c*x^n])]
^p/(b^2*d^2*n^2*p^2 - 1)), x] + (Simp[b*d*n*p*x*Cosh[d*(a + b*Log[c*x^n])]*(Sinh[d*(a + b*Log[c*x^n])]^(p - 1)
/(b^2*d^2*n^2*p^2 - 1)), x] - Simp[b^2*d^2*n^2*p*((p - 1)/(b^2*d^2*n^2*p^2 - 1)) Int[Sinh[d*(a + b*Log[c*x^n
])]^(p - 2), x], x]) /; FreeQ[{a, b, c, d, n}, x] && IGtQ[p, 1] && NeQ[b^2*d^2*n^2*p^2 - 1, 0]
-
Int[Cosh[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]^(p_), x_Symbol] :> Simp[(-x)*(Cosh[d*(a + b*Log[c*x^n])]
^p/(b^2*d^2*n^2*p^2 - 1)), x] + (Simp[b*d*n*p*x*Cosh[d*(a + b*Log[c*x^n])]^(p - 1)*(Sinh[d*(a + b*Log[c*x^n])]
/(b^2*d^2*n^2*p^2 - 1)), x] + Simp[b^2*d^2*n^2*p*((p - 1)/(b^2*d^2*n^2*p^2 - 1)) Int[Cosh[d*(a + b*Log[c*x^n
])]^(p - 2), x], x]) /; FreeQ[{a, b, c, d, n}, x] && IGtQ[p, 1] && NeQ[b^2*d^2*n^2*p^2 - 1, 0]
-
Int[Sinh[((a_.) + Log[x_]*(b_.))*(d_.)]^(p_.), x_Symbol] :> Simp[1/(2^p*b^p*d^p*p^p) Int[ExpandIntegrand[(-E
^((-a)*b*d^2*p)/x^p^(-1) + E^(a*b*d^2*p)*x^(1/p))^p, x], x], x] /; FreeQ[{a, b, d}, x] && IGtQ[p, 0] && EqQ[b^
2*d^2*p^2 - 1, 0]
-
Int[Cosh[((a_.) + Log[x_]*(b_.))*(d_.)]^(p_.), x_Symbol] :> Simp[1/2^p Int[ExpandIntegrand[(1/(E^(a*b*d^2*p)
*x^p^(-1)) + E^(a*b*d^2*p)*x^(1/p))^p, x], x], x] /; FreeQ[{a, b, d}, x] && IGtQ[p, 0] && EqQ[b^2*d^2*p^2 - 1,
0]
-
Int[Sinh[((a_.) + Log[x_]*(b_.))*(d_.)]^(p_), x_Symbol] :> Simp[Sinh[d*(a + b*Log[x])]^p/(x^(b*d*p)*(1 - 1/(E^
(2*a*d)*x^(2*b*d)))^p) Int[x^(b*d*p)*(1 - 1/(E^(2*a*d)*x^(2*b*d)))^p, x], x] /; FreeQ[{a, b, d, p}, x] && !
IntegerQ[p]
-
Int[Cosh[((a_.) + Log[x_]*(b_.))*(d_.)]^(p_), x_Symbol] :> Simp[Cosh[d*(a + b*Log[x])]^p/(x^(b*d*p)*(1 + 1/(E^
(2*a*d)*x^(2*b*d)))^p) Int[x^(b*d*p)*(1 + 1/(E^(2*a*d)*x^(2*b*d)))^p, x], x] /; FreeQ[{a, b, d, p}, x] && !
IntegerQ[p]
-
Int[Sinh[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]^(p_.), x_Symbol] :> Simp[x/(n*(c*x^n)^(1/n)) Subst[Int
[x^(1/n - 1)*Sinh[d*(a + b*Log[x])]^p, x], x, c*x^n], x] /; FreeQ[{a, b, c, d, n, p}, x] && (NeQ[c, 1] || NeQ[
n, 1])
-
Int[Cosh[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]^(p_.), x_Symbol] :> Simp[x/(n*(c*x^n)^(1/n)) Subst[Int
[x^(1/n - 1)*Cosh[d*(a + b*Log[x])]^p, x], x, c*x^n], x] /; FreeQ[{a, b, c, d, n, p}, x] && (NeQ[c, 1] || NeQ[
n, 1])
-
Int[((e_.)*(x_))^(m_.)*Sinh[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)], x_Symbol] :> Simp[(-(m + 1))*(e*x)^(
m + 1)*(Sinh[d*(a + b*Log[c*x^n])]/(b^2*d^2*e*n^2 - e*(m + 1)^2)), x] + Simp[b*d*n*(e*x)^(m + 1)*(Cosh[d*(a +
b*Log[c*x^n])]/(b^2*d^2*e*n^2 - e*(m + 1)^2)), x] /; FreeQ[{a, b, c, d, e, m, n}, x] && NeQ[b^2*d^2*n^2 - (m +
1)^2, 0]
-
Int[Cosh[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]*((e_.)*(x_))^(m_.), x_Symbol] :> Simp[(-(m + 1))*(e*x)^(
m + 1)*(Cosh[d*(a + b*Log[c*x^n])]/(b^2*d^2*e*n^2 - e*(m + 1)^2)), x] + Simp[b*d*n*(e*x)^(m + 1)*(Sinh[d*(a +
b*Log[c*x^n])]/(b^2*d^2*e*n^2 - e*(m + 1)^2)), x] /; FreeQ[{a, b, c, d, e, m, n}, x] && NeQ[b^2*d^2*n^2 - (m +
1)^2, 0]
-
Int[((e_.)*(x_))^(m_.)*Sinh[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]^(p_), x_Symbol] :> Simp[(-(m + 1))*(e
*x)^(m + 1)*(Sinh[d*(a + b*Log[c*x^n])]^p/(b^2*d^2*e*n^2*p^2 - e*(m + 1)^2)), x] + (Simp[b*d*n*p*(e*x)^(m + 1)
*Cosh[d*(a + b*Log[c*x^n])]*(Sinh[d*(a + b*Log[c*x^n])]^(p - 1)/(b^2*d^2*e*n^2*p^2 - e*(m + 1)^2)), x] - Simp[
b^2*d^2*n^2*p*((p - 1)/(b^2*d^2*n^2*p^2 - (m + 1)^2)) Int[(e*x)^m*Sinh[d*(a + b*Log[c*x^n])]^(p - 2), x], x]
) /; FreeQ[{a, b, c, d, e, m, n}, x] && IGtQ[p, 1] && NeQ[b^2*d^2*n^2*p^2 - (m + 1)^2, 0]
-
Int[Cosh[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]^(p_)*((e_.)*(x_))^(m_.), x_Symbol] :> Simp[(-(m + 1))*(e
*x)^(m + 1)*(Cosh[d*(a + b*Log[c*x^n])]^p/(b^2*d^2*e*n^2*p^2 - e*(m + 1)^2)), x] + (Simp[b*d*n*p*(e*x)^(m + 1)
*Sinh[d*(a + b*Log[c*x^n])]*(Cosh[d*(a + b*Log[c*x^n])]^(p - 1)/(b^2*d^2*e*n^2*p^2 - e*(m + 1)^2)), x] + Simp[
b^2*d^2*n^2*p*((p - 1)/(b^2*d^2*n^2*p^2 - (m + 1)^2)) Int[(e*x)^m*Cosh[d*(a + b*Log[c*x^n])]^(p - 2), x], x]
) /; FreeQ[{a, b, c, d, e, m, n}, x] && IGtQ[p, 1] && NeQ[b^2*d^2*n^2*p^2 - (m + 1)^2, 0]
-
Int[((e_.)*(x_))^(m_.)*Sinh[((a_.) + Log[x_]*(b_.))*(d_.)]^(p_.), x_Symbol] :> Simp[(m + 1)^p/(2^p*b^p*d^p*p^p
) Int[ExpandIntegrand[(e*x)^m*(-E^((-a)*b*d^2*(p/(m + 1)))/x^((m + 1)/p) + E^(a*b*d^2*(p/(m + 1)))*x^((m + 1
)/p))^p, x], x], x] /; FreeQ[{a, b, d, e, m}, x] && IGtQ[p, 0] && EqQ[b^2*d^2*p^2 - (m + 1)^2, 0]
-
Int[Cosh[((a_.) + Log[x_]*(b_.))*(d_.)]^(p_.)*((e_.)*(x_))^(m_.), x_Symbol] :> Simp[1/2^p Int[ExpandIntegran
d[(e*x)^m*(1/(E^(a*b*d^2*(p/(m + 1)))*x^((m + 1)/p)) + E^(a*b*d^2*(p/(m + 1)))*x^((m + 1)/p))^p, x], x], x] /;
FreeQ[{a, b, d, e, m}, x] && IGtQ[p, 0] && EqQ[b^2*d^2*p^2 - (m + 1)^2, 0]
-
Int[((e_.)*(x_))^(m_.)*Sinh[((a_.) + Log[x_]*(b_.))*(d_.)]^(p_), x_Symbol] :> Simp[Sinh[d*(a + b*Log[x])]^p/(x
^(b*d*p)*(1 - 1/(E^(2*a*d)*x^(2*b*d)))^p) Int[(e*x)^m*x^(b*d*p)*(1 - 1/(E^(2*a*d)*x^(2*b*d)))^p, x], x] /; F
reeQ[{a, b, d, e, m, p}, x] && !IntegerQ[p]
-
Int[Cosh[((a_.) + Log[x_]*(b_.))*(d_.)]^(p_)*((e_.)*(x_))^(m_.), x_Symbol] :> Simp[Cosh[d*(a + b*Log[x])]^p/(x
^(b*d*p)*(1 + 1/(E^(2*a*d)*x^(2*b*d)))^p) Int[(e*x)^m*x^(b*d*p)*(1 + 1/(E^(2*a*d)*x^(2*b*d)))^p, x], x] /; F
reeQ[{a, b, d, e, m, p}, x] && !IntegerQ[p]
-
Int[((e_.)*(x_))^(m_.)*Sinh[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]^(p_.), x_Symbol] :> Simp[(e*x)^(m + 1
)/(e*n*(c*x^n)^((m + 1)/n)) Subst[Int[x^((m + 1)/n - 1)*Sinh[d*(a + b*Log[x])]^p, x], x, c*x^n], x] /; FreeQ
[{a, b, c, d, e, m, n, p}, x] && (NeQ[c, 1] || NeQ[n, 1])
-
Int[Cosh[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]^(p_.)*((e_.)*(x_))^(m_.), x_Symbol] :> Simp[(e*x)^(m + 1
)/(e*n*(c*x^n)^((m + 1)/n)) Subst[Int[x^((m + 1)/n - 1)*Cosh[d*(a + b*Log[x])]^p, x], x, c*x^n], x] /; FreeQ
[{a, b, c, d, e, m, n, p}, x] && (NeQ[c, 1] || NeQ[n, 1])
-
Int[(((e_.) + Log[(g_.)*(x_)^(m_.)]*(f_.))*(h_.))^(q_.)*Sinh[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)], x_S
ymbol] :> Simp[(-E^((-a)*d))*(1/((c*x^n)^(b*d)*(2/x^(b*d*n)))) Int[(h*(e + f*Log[g*x^m]))^q/x^(b*d*n), x], x
] + Simp[E^(a*d)*((c*x^n)^(b*d)/(2*x^(b*d*n))) Int[x^(b*d*n)*(h*(e + f*Log[g*x^m]))^q, x], x] /; FreeQ[{a, b
, c, d, e, f, g, h, m, n, q}, x]
-
Int[Cosh[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]*(((e_.) + Log[(g_.)*(x_)^(m_.)]*(f_.))*(h_.))^(q_.), x_S
ymbol] :> Simp[1/((c*x^n)^(b*d)*(2/x^(b*d*n)))/E^(a*d) Int[(h*(e + f*Log[g*x^m]))^q/x^(b*d*n), x], x] + Simp
[E^(a*d)*((c*x^n)^(b*d)/(2*x^(b*d*n))) Int[x^(b*d*n)*(h*(e + f*Log[g*x^m]))^q, x], x] /; FreeQ[{a, b, c, d,
e, f, g, h, m, n, q}, x]
-
Int[(((e_.) + Log[(g_.)*(x_)^(m_.)]*(f_.))*(h_.))^(q_.)*((i_.)*(x_))^(r_.)*Sinh[((a_.) + Log[(c_.)*(x_)^(n_.)]
*(b_.))*(d_.)], x_Symbol] :> Simp[(-E^((-a)*d))*(i*x)^r*(1/((c*x^n)^(b*d)*(2*x^(r - b*d*n)))) Int[x^(r - b*d
*n)*(h*(e + f*Log[g*x^m]))^q, x], x] + Simp[E^(a*d)*(i*x)^r*((c*x^n)^(b*d)/(2*x^(r + b*d*n))) Int[x^(r + b*d
*n)*(h*(e + f*Log[g*x^m]))^q, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, i, m, n, q, r}, x]
-
Int[Cosh[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]*(((e_.) + Log[(g_.)*(x_)^(m_.)]*(f_.))*(h_.))^(q_.)*((i_
.)*(x_))^(r_.), x_Symbol] :> Simp[((i*x)^r*(1/((c*x^n)^(b*d)*(2*x^(r - b*d*n)))))/E^(a*d) Int[x^(r - b*d*n)*
(h*(e + f*Log[g*x^m]))^q, x], x] + Simp[E^(a*d)*(i*x)^r*((c*x^n)^(b*d)/(2*x^(r + b*d*n))) Int[x^(r + b*d*n)*
(h*(e + f*Log[g*x^m]))^q, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, i, m, n, q, r}, x]
-
Int[Tanh[((a_.) + Log[x_]*(b_.))*(d_.)]^(p_.), x_Symbol] :> Int[(-1 + E^(2*a*d)*x^(2*b*d))^p/(1 + E^(2*a*d)*x^
(2*b*d))^p, x] /; FreeQ[{a, b, d, p}, x]
-
Int[Coth[((a_.) + Log[x_]*(b_.))*(d_.)]^(p_.), x_Symbol] :> Int[(-1 - E^(2*a*d)*x^(2*b*d))^p/(1 - E^(2*a*d)*x^
(2*b*d))^p, x] /; FreeQ[{a, b, d, p}, x]
-
Int[Tanh[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]^(p_.), x_Symbol] :> Simp[x/(n*(c*x^n)^(1/n)) Subst[Int
[x^(1/n - 1)*Tanh[d*(a + b*Log[x])]^p, x], x, c*x^n], x] /; FreeQ[{a, b, c, d, n, p}, x] && (NeQ[c, 1] || NeQ[
n, 1])
-
Int[Coth[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]^(p_.), x_Symbol] :> Simp[x/(n*(c*x^n)^(1/n)) Subst[Int
[x^(1/n - 1)*Coth[d*(a + b*Log[x])]^p, x], x, c*x^n], x] /; FreeQ[{a, b, c, d, n, p}, x] && (NeQ[c, 1] || NeQ[
n, 1])
-
Int[((e_.)*(x_))^(m_.)*Tanh[((a_.) + Log[x_]*(b_.))*(d_.)]^(p_.), x_Symbol] :> Int[(e*x)^m*((-1 + E^(2*a*d)*x^
(2*b*d))^p/(1 + E^(2*a*d)*x^(2*b*d))^p), x] /; FreeQ[{a, b, d, e, m, p}, x]
-
Int[Coth[((a_.) + Log[x_]*(b_.))*(d_.)]^(p_.)*((e_.)*(x_))^(m_.), x_Symbol] :> Int[(e*x)^m*((-1 - E^(2*a*d)*x^
(2*b*d))^p/(1 - E^(2*a*d)*x^(2*b*d))^p), x] /; FreeQ[{a, b, d, e, m, p}, x]
-
Int[((e_.)*(x_))^(m_.)*Tanh[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]^(p_.), x_Symbol] :> Simp[(e*x)^(m + 1
)/(e*n*(c*x^n)^((m + 1)/n)) Subst[Int[x^((m + 1)/n - 1)*Tanh[d*(a + b*Log[x])]^p, x], x, c*x^n], x] /; FreeQ
[{a, b, c, d, e, m, n, p}, x] && (NeQ[c, 1] || NeQ[n, 1])
-
Int[Coth[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]^(p_.)*((e_.)*(x_))^(m_.), x_Symbol] :> Simp[(e*x)^(m + 1
)/(e*n*(c*x^n)^((m + 1)/n)) Subst[Int[x^((m + 1)/n - 1)*Coth[d*(a + b*Log[x])]^p, x], x, c*x^n], x] /; FreeQ
[{a, b, c, d, e, m, n, p}, x] && (NeQ[c, 1] || NeQ[n, 1])
-
Int[Sech[((a_.) + Log[x_]*(b_.))*(d_.)]^(p_.), x_Symbol] :> Simp[2^p/E^(a*d*p) Int[1/(x^(b*d*p)*(1 + 1/(E^(2
*a*d)*x^(2*b*d)))^p), x], x] /; FreeQ[{a, b, d}, x] && IntegerQ[p]
-
Int[Csch[((a_.) + Log[x_]*(b_.))*(d_.)]^(p_.), x_Symbol] :> Simp[2^p/E^(a*d*p) Int[1/(x^(b*d*p)*(1 - 1/(E^(2
*a*d)*x^(2*b*d)))^p), x], x] /; FreeQ[{a, b, d}, x] && IntegerQ[p]
-
Int[Sech[((a_.) + Log[x_]*(b_.))*(d_.)]^(p_.), x_Symbol] :> Simp[Sech[d*(a + b*Log[x])]^p*((1 + 1/(E^(2*a*d)*x
^(2*b*d)))^p/x^((-b)*d*p)) Int[1/(x^(b*d*p)*(1 + 1/(E^(2*a*d)*x^(2*b*d)))^p), x], x] /; FreeQ[{a, b, d, p},
x] && !IntegerQ[p]
-
Int[Csch[((a_.) + Log[x_]*(b_.))*(d_.)]^(p_.), x_Symbol] :> Simp[Csch[d*(a + b*Log[x])]^p*((1 - 1/(E^(2*a*d)*x
^(2*b*d)))^p/x^((-b)*d*p)) Int[1/(x^(b*d*p)*(1 - 1/(E^(2*a*d)*x^(2*b*d)))^p), x], x] /; FreeQ[{a, b, d, p},
x] && !IntegerQ[p]
-
Int[Sech[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]^(p_.), x_Symbol] :> Simp[x/(n*(c*x^n)^(1/n)) Subst[Int
[x^(1/n - 1)*Sech[d*(a + b*Log[x])]^p, x], x, c*x^n], x] /; FreeQ[{a, b, c, d, n, p}, x] && (NeQ[c, 1] || NeQ[
n, 1])
-
Int[Csch[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]^(p_.), x_Symbol] :> Simp[x/(n*(c*x^n)^(1/n)) Subst[Int
[x^(1/n - 1)*Csch[d*(a + b*Log[x])]^p, x], x, c*x^n], x] /; FreeQ[{a, b, c, d, n, p}, x] && (NeQ[c, 1] || NeQ[
n, 1])
-
Int[((e_.)*(x_))^(m_.)*Sech[((a_.) + Log[x_]*(b_.))*(d_.)]^(p_.), x_Symbol] :> Simp[2^p/E^(a*d*p) Int[(e*x)^
m*(1/(x^(b*d*p)*(1 + 1/(E^(2*a*d)*x^(2*b*d)))^p)), x], x] /; FreeQ[{a, b, d, e, m}, x] && IntegerQ[p]
-
Int[Csch[((a_.) + Log[x_]*(b_.))*(d_.)]^(p_.)*((e_.)*(x_))^(m_.), x_Symbol] :> Simp[2^p/E^(a*d*p) Int[(e*x)^
m*(1/(x^(b*d*p)*(1 - 1/(E^(2*a*d)*x^(2*b*d)))^p)), x], x] /; FreeQ[{a, b, d, e, m}, x] && IntegerQ[p]
-
Int[((e_.)*(x_))^(m_.)*Sech[((a_.) + Log[x_]*(b_.))*(d_.)]^(p_.), x_Symbol] :> Simp[Sech[d*(a + b*Log[x])]^p*(
(1 + 1/(E^(2*a*d)*x^(2*b*d)))^p/x^((-b)*d*p)) Int[(e*x)^m*(1/(x^(b*d*p)*(1 + 1/(E^(2*a*d)*x^(2*b*d)))^p)), x
], x] /; FreeQ[{a, b, d, e, m, p}, x] && !IntegerQ[p]
-
Int[Csch[((a_.) + Log[x_]*(b_.))*(d_.)]^(p_.)*((e_.)*(x_))^(m_.), x_Symbol] :> Simp[Csch[d*(a + b*Log[x])]^p*(
(1 - 1/(E^(2*a*d)*x^(2*b*d)))^p/x^((-b)*d*p)) Int[(e*x)^m*(1/(x^(b*d*p)*(1 - 1/(E^(2*a*d)*x^(2*b*d)))^p)), x
], x] /; FreeQ[{a, b, d, e, m, p}, x] && !IntegerQ[p]
-
Int[((e_.)*(x_))^(m_.)*Sech[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]^(p_.), x_Symbol] :> Simp[(e*x)^(m + 1
)/(e*n*(c*x^n)^((m + 1)/n)) Subst[Int[x^((m + 1)/n - 1)*Sech[d*(a + b*Log[x])]^p, x], x, c*x^n], x] /; FreeQ
[{a, b, c, d, e, m, n, p}, x] && (NeQ[c, 1] || NeQ[n, 1])
-
Int[Csch[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]^(p_.)*((e_.)*(x_))^(m_.), x_Symbol] :> Simp[(e*x)^(m + 1
)/(e*n*(c*x^n)^((m + 1)/n)) Subst[Int[x^((m + 1)/n - 1)*Csch[d*(a + b*Log[x])]^p, x], x, c*x^n], x] /; FreeQ
[{a, b, c, d, e, m, n, p}, x] && (NeQ[c, 1] || NeQ[n, 1])
-
Int[Log[(b_.)*(x_)]*Sinh[Log[(b_.)*(x_)]*(a_.)*(x_)], x_Symbol] :> Simp[Cosh[a*x*Log[b*x]]/a, x] - Int[Sinh[a*
x*Log[b*x]], x] /; FreeQ[{a, b}, x]
-
Int[Cosh[Log[(b_.)*(x_)]*(a_.)*(x_)]*Log[(b_.)*(x_)], x_Symbol] :> Simp[Sinh[a*x*Log[b*x]]/a, x] - Int[Cosh[a*
x*Log[b*x]], x] /; FreeQ[{a, b}, x]
-
Int[Log[(b_.)*(x_)]*(x_)^(m_.)*Sinh[Log[(b_.)*(x_)]*(a_.)*(x_)^(n_.)], x_Symbol] :> Simp[Cosh[a*x^n*Log[b*x]]/
(a*n), x] - Simp[1/n Int[x^m*Sinh[a*x^n*Log[b*x]], x], x] /; FreeQ[{a, b, m, n}, x] && EqQ[m, n - 1]
-
Int[Cosh[Log[(b_.)*(x_)]*(a_.)*(x_)^(n_.)]*Log[(b_.)*(x_)]*(x_)^(m_.), x_Symbol] :> Simp[Sinh[a*x^n*Log[b*x]]/
(a*n), x] - Simp[1/n Int[x^m*Cosh[a*x^n*Log[b*x]], x], x] /; FreeQ[{a, b, m, n}, x] && EqQ[m, n - 1]
-
Int[(((e_.) + (f_.)*(x_))^(m_.)*Sinh[(c_.) + (d_.)*(x_)]^(n_.))/((a_) + (b_.)*Sinh[(c_.) + (d_.)*(x_)]), x_Sym
bol] :> Simp[1/b Int[(e + f*x)^m*Sinh[c + d*x]^(n - 1), x], x] - Simp[a/b Int[(e + f*x)^m*(Sinh[c + d*x]^(
n - 1)/(a + b*Sinh[c + d*x])), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && IGtQ[n, 0]
-
Int[(Cosh[(c_.) + (d_.)*(x_)]^(n_.)*((e_.) + (f_.)*(x_))^(m_.))/(Cosh[(c_.) + (d_.)*(x_)]*(b_.) + (a_)), x_Sym
bol] :> Simp[1/b Int[(e + f*x)^m*Cosh[c + d*x]^(n - 1), x], x] - Simp[a/b Int[(e + f*x)^m*(Cosh[c + d*x]^(
n - 1)/(a + b*Cosh[c + d*x])), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && IGtQ[n, 0]
-
Int[(Cosh[(c_.) + (d_.)*(x_)]*((e_.) + (f_.)*(x_))^(m_.))/((a_) + (b_.)*Sinh[(c_.) + (d_.)*(x_)]), x_Symbol] :
> Simp[-(e + f*x)^(m + 1)/(b*f*(m + 1)), x] + Simp[2 Int[(e + f*x)^m*(E^(c + d*x)/(a + b*E^(c + d*x))), x],
x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && EqQ[a^2 + b^2, 0]
-
Int[(((e_.) + (f_.)*(x_))^(m_.)*Sinh[(c_.) + (d_.)*(x_)])/(Cosh[(c_.) + (d_.)*(x_)]*(b_.) + (a_)), x_Symbol] :
> Simp[-(e + f*x)^(m + 1)/(b*f*(m + 1)), x] + Simp[2 Int[(e + f*x)^m*(E^(c + d*x)/(a + b*E^(c + d*x))), x],
x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && EqQ[a^2 - b^2, 0]
-
Int[(Cosh[(c_.) + (d_.)*(x_)]*((e_.) + (f_.)*(x_))^(m_.))/((a_) + (b_.)*Sinh[(c_.) + (d_.)*(x_)]), x_Symbol] :
> Simp[-(e + f*x)^(m + 1)/(b*f*(m + 1)), x] + (Int[(e + f*x)^m*(E^(c + d*x)/(a - Rt[a^2 + b^2, 2] + b*E^(c + d
*x))), x] + Int[(e + f*x)^m*(E^(c + d*x)/(a + Rt[a^2 + b^2, 2] + b*E^(c + d*x))), x]) /; FreeQ[{a, b, c, d, e,
f}, x] && IGtQ[m, 0] && NeQ[a^2 + b^2, 0]
-
Int[(((e_.) + (f_.)*(x_))^(m_.)*Sinh[(c_.) + (d_.)*(x_)])/(Cosh[(c_.) + (d_.)*(x_)]*(b_.) + (a_)), x_Symbol] :
> Simp[-(e + f*x)^(m + 1)/(b*f*(m + 1)), x] + (Int[(e + f*x)^m*(E^(c + d*x)/(a - Rt[a^2 - b^2, 2] + b*E^(c + d
*x))), x] + Int[(e + f*x)^m*(E^(c + d*x)/(a + Rt[a^2 - b^2, 2] + b*E^(c + d*x))), x]) /; FreeQ[{a, b, c, d, e,
f}, x] && IGtQ[m, 0] && NeQ[a^2 - b^2, 0]
-
Int[(Cosh[(c_.) + (d_.)*(x_)]^(n_)*((e_.) + (f_.)*(x_))^(m_.))/((a_) + (b_.)*Sinh[(c_.) + (d_.)*(x_)]), x_Symb
ol] :> Simp[1/a Int[(e + f*x)^m*Cosh[c + d*x]^(n - 2), x], x] + Simp[1/b Int[(e + f*x)^m*Cosh[c + d*x]^(n
- 2)*Sinh[c + d*x], x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && IGtQ[n, 1] && EqQ[a^2 + b^2, 0]
-
Int[(((e_.) + (f_.)*(x_))^(m_.)*Sinh[(c_.) + (d_.)*(x_)]^(n_))/(Cosh[(c_.) + (d_.)*(x_)]*(b_.) + (a_)), x_Symb
ol] :> Simp[-a^(-1) Int[(e + f*x)^m*Sinh[c + d*x]^(n - 2), x], x] + Simp[1/b Int[(e + f*x)^m*Sinh[c + d*x]
^(n - 2)*Cosh[c + d*x], x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && IGtQ[n, 1] && EqQ[a^2 - b^2, 0]
-
Int[(Cosh[(c_.) + (d_.)*(x_)]^(n_)*((e_.) + (f_.)*(x_))^(m_.))/((a_) + (b_.)*Sinh[(c_.) + (d_.)*(x_)]), x_Symb
ol] :> Simp[-a/b^2 Int[(e + f*x)^m*Cosh[c + d*x]^(n - 2), x], x] + (Simp[1/b Int[(e + f*x)^m*Cosh[c + d*x]
^(n - 2)*Sinh[c + d*x], x], x] + Simp[(a^2 + b^2)/b^2 Int[(e + f*x)^m*(Cosh[c + d*x]^(n - 2)/(a + b*Sinh[c +
d*x])), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[n, 1] && NeQ[a^2 + b^2, 0] && IGtQ[m, 0]
-
Int[(((e_.) + (f_.)*(x_))^(m_.)*Sinh[(c_.) + (d_.)*(x_)]^(n_))/(Cosh[(c_.) + (d_.)*(x_)]*(b_.) + (a_)), x_Symb
ol] :> Simp[-a/b^2 Int[(e + f*x)^m*Sinh[c + d*x]^(n - 2), x], x] + (Simp[1/b Int[(e + f*x)^m*Sinh[c + d*x]
^(n - 2)*Cosh[c + d*x], x], x] + Simp[(a^2 - b^2)/b^2 Int[(e + f*x)^m*(Sinh[c + d*x]^(n - 2)/(a + b*Cosh[c +
d*x])), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[n, 1] && NeQ[a^2 - b^2, 0] && IGtQ[m, 0]
-
Int[(((e_.) + (f_.)*(x_))^(m_.)*Tanh[(c_.) + (d_.)*(x_)]^(n_.))/((a_) + (b_.)*Sinh[(c_.) + (d_.)*(x_)]), x_Sym
bol] :> Simp[1/b Int[(e + f*x)^m*Sech[c + d*x]*Tanh[c + d*x]^(n - 1), x], x] - Simp[a/b Int[(e + f*x)^m*Se
ch[c + d*x]*(Tanh[c + d*x]^(n - 1)/(a + b*Sinh[c + d*x])), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0
] && IGtQ[n, 0]
-
Int[(Coth[(c_.) + (d_.)*(x_)]^(n_.)*((e_.) + (f_.)*(x_))^(m_.))/(Cosh[(c_.) + (d_.)*(x_)]*(b_.) + (a_)), x_Sym
bol] :> Simp[1/b Int[(e + f*x)^m*Csch[c + d*x]*Coth[c + d*x]^(n - 1), x], x] - Simp[a/b Int[(e + f*x)^m*Cs
ch[c + d*x]*(Coth[c + d*x]^(n - 1)/(a + b*Cosh[c + d*x])), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0
] && IGtQ[n, 0]
-
Int[(Coth[(c_.) + (d_.)*(x_)]^(n_.)*((e_.) + (f_.)*(x_))^(m_.))/((a_) + (b_.)*Sinh[(c_.) + (d_.)*(x_)]), x_Sym
bol] :> Simp[1/a Int[(e + f*x)^m*Coth[c + d*x]^n, x], x] - Simp[b/a Int[(e + f*x)^m*Cosh[c + d*x]*(Coth[c
+ d*x]^(n - 1)/(a + b*Sinh[c + d*x])), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && IGtQ[n, 0]
-
Int[(((e_.) + (f_.)*(x_))^(m_.)*Tanh[(c_.) + (d_.)*(x_)]^(n_.))/(Cosh[(c_.) + (d_.)*(x_)]*(b_.) + (a_)), x_Sym
bol] :> Simp[1/a Int[(e + f*x)^m*Tanh[c + d*x]^n, x], x] - Simp[b/a Int[(e + f*x)^m*Sinh[c + d*x]*(Tanh[c
+ d*x]^(n - 1)/(a + b*Cosh[c + d*x])), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && IGtQ[n, 0]
-
Int[(((e_.) + (f_.)*(x_))^(m_.)*Sech[(c_.) + (d_.)*(x_)]^(n_.))/((a_) + (b_.)*Sinh[(c_.) + (d_.)*(x_)]), x_Sym
bol] :> Simp[1/a Int[(e + f*x)^m*Sech[c + d*x]^(n + 2), x], x] + Simp[1/b Int[(e + f*x)^m*Sech[c + d*x]^(n
+ 1)*Tanh[c + d*x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && IGtQ[m, 0] && EqQ[a^2 + b^2, 0]
-
Int[(Csch[(c_.) + (d_.)*(x_)]^(n_.)*((e_.) + (f_.)*(x_))^(m_.))/(Cosh[(c_.) + (d_.)*(x_)]*(b_.) + (a_)), x_Sym
bol] :> Simp[-a^(-1) Int[(e + f*x)^m*Csch[c + d*x]^(n + 2), x], x] + Simp[1/b Int[(e + f*x)^m*Csch[c + d*x
]^(n + 1)*Coth[c + d*x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && IGtQ[m, 0] && EqQ[a^2 - b^2, 0]
-
Int[(((e_.) + (f_.)*(x_))^(m_.)*Sech[(c_.) + (d_.)*(x_)]^(n_.))/((a_) + (b_.)*Sinh[(c_.) + (d_.)*(x_)]), x_Sym
bol] :> Simp[b^2/(a^2 + b^2) Int[(e + f*x)^m*(Sech[c + d*x]^(n - 2)/(a + b*Sinh[c + d*x])), x], x] + Simp[1/
(a^2 + b^2) Int[(e + f*x)^m*Sech[c + d*x]^n*(a - b*Sinh[c + d*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] &&
IGtQ[m, 0] && NeQ[a^2 + b^2, 0] && IGtQ[n, 0]
-
Int[(Csch[(c_.) + (d_.)*(x_)]^(n_.)*((e_.) + (f_.)*(x_))^(m_.))/(Cosh[(c_.) + (d_.)*(x_)]*(b_.) + (a_)), x_Sym
bol] :> Simp[b^2/(a^2 - b^2) Int[(e + f*x)^m*(Csch[c + d*x]^(n - 2)/(a + b*Cosh[c + d*x])), x], x] + Simp[1/
(a^2 - b^2) Int[(e + f*x)^m*Csch[c + d*x]^n*(a - b*Cosh[c + d*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] &&
IGtQ[m, 0] && NeQ[a^2 - b^2, 0] && IGtQ[n, 0]
-
Int[(Csch[(c_.) + (d_.)*(x_)]^(n_.)*((e_.) + (f_.)*(x_))^(m_.))/((a_) + (b_.)*Sinh[(c_.) + (d_.)*(x_)]), x_Sym
bol] :> Simp[1/a Int[(e + f*x)^m*Csch[c + d*x]^n, x], x] - Simp[b/a Int[(e + f*x)^m*(Csch[c + d*x]^(n - 1)
/(a + b*Sinh[c + d*x])), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && IGtQ[n, 0]
-
Int[(((e_.) + (f_.)*(x_))^(m_.)*Sech[(c_.) + (d_.)*(x_)]^(n_.))/(Cosh[(c_.) + (d_.)*(x_)]*(b_.) + (a_)), x_Sym
bol] :> Simp[1/a Int[(e + f*x)^m*Sech[c + d*x]^n, x], x] - Simp[b/a Int[(e + f*x)^m*(Sech[c + d*x]^(n - 1)
/(a + b*Cosh[c + d*x])), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && IGtQ[n, 0]
-
Int[(((e_.) + (f_.)*(x_))^(m_.)*(F_)[(c_.) + (d_.)*(x_)]^(n_.))/((a_) + (b_.)*Sinh[(c_.) + (d_.)*(x_)]), x_Sym
bol] :> Unintegrable[((e + f*x)^m*F[c + d*x]^n)/(a + b*Sinh[c + d*x]), x] /; FreeQ[{a, b, c, d, e, f, m, n}, x
] && HyperbolicQ[F]
-
Int[(((e_.) + (f_.)*(x_))^(m_.)*(F_)[(c_.) + (d_.)*(x_)]^(n_.))/(Cosh[(c_.) + (d_.)*(x_)]*(b_.) + (a_)), x_Sym
bol] :> Unintegrable[((e + f*x)^m*F[c + d*x]^n)/(a + b*Cosh[c + d*x]), x] /; FreeQ[{a, b, c, d, e, f, m, n}, x
] && HyperbolicQ[F]
-
Int[(Cosh[(c_.) + (d_.)*(x_)]^(p_.)*((e_.) + (f_.)*(x_))^(m_.)*Sinh[(c_.) + (d_.)*(x_)]^(n_.))/((a_) + (b_.)*S
inh[(c_.) + (d_.)*(x_)]), x_Symbol] :> Simp[1/b Int[(e + f*x)^m*Cosh[c + d*x]^p*Sinh[c + d*x]^(n - 1), x], x
] - Simp[a/b Int[(e + f*x)^m*Cosh[c + d*x]^p*(Sinh[c + d*x]^(n - 1)/(a + b*Sinh[c + d*x])), x], x] /; FreeQ[
{a, b, c, d, e, f}, x] && IGtQ[m, 0] && IGtQ[n, 0] && IGtQ[p, 0]
-
Int[(Cosh[(c_.) + (d_.)*(x_)]^(n_.)*((e_.) + (f_.)*(x_))^(m_.)*Sinh[(c_.) + (d_.)*(x_)]^(p_.))/(Cosh[(c_.) + (
d_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[1/b Int[(e + f*x)^m*Sinh[c + d*x]^p*Cosh[c + d*x]^(n - 1), x], x
] - Simp[a/b Int[(e + f*x)^m*Sinh[c + d*x]^p*(Cosh[c + d*x]^(n - 1)/(a + b*Cosh[c + d*x])), x], x] /; FreeQ[
{a, b, c, d, e, f}, x] && IGtQ[m, 0] && IGtQ[n, 0] && IGtQ[p, 0]
-
Int[(((e_.) + (f_.)*(x_))^(m_.)*Sinh[(c_.) + (d_.)*(x_)]^(p_.)*Tanh[(c_.) + (d_.)*(x_)]^(n_.))/((a_) + (b_.)*S
inh[(c_.) + (d_.)*(x_)]), x_Symbol] :> Simp[1/b Int[(e + f*x)^m*Sinh[c + d*x]^(p - 1)*Tanh[c + d*x]^n, x], x
] - Simp[a/b Int[(e + f*x)^m*Sinh[c + d*x]^(p - 1)*(Tanh[c + d*x]^n/(a + b*Sinh[c + d*x])), x], x] /; FreeQ[
{a, b, c, d, e, f}, x] && IGtQ[m, 0] && IGtQ[n, 0] && IGtQ[p, 0]
-
Int[(Cosh[(c_.) + (d_.)*(x_)]^(p_.)*Coth[(c_.) + (d_.)*(x_)]^(n_.)*((e_.) + (f_.)*(x_))^(m_.))/(Cosh[(c_.) + (
d_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[1/b Int[(e + f*x)^m*Cosh[c + d*x]^(p - 1)*Coth[c + d*x]^n, x], x
] - Simp[a/b Int[(e + f*x)^m*Cosh[c + d*x]^(p - 1)*(Coth[c + d*x]^n/(a + b*Cosh[c + d*x])), x], x] /; FreeQ[
{a, b, c, d, e, f}, x] && IGtQ[m, 0] && IGtQ[n, 0] && IGtQ[p, 0]
-
Int[(((e_.) + (f_.)*(x_))^(m_.)*Sech[(c_.) + (d_.)*(x_)]^(p_.)*Tanh[(c_.) + (d_.)*(x_)]^(n_.))/((a_) + (b_.)*S
inh[(c_.) + (d_.)*(x_)]), x_Symbol] :> Simp[1/b Int[(e + f*x)^m*Sech[c + d*x]^(p + 1)*Tanh[c + d*x]^(n - 1),
x], x] - Simp[a/b Int[(e + f*x)^m*Sech[c + d*x]^(p + 1)*(Tanh[c + d*x]^(n - 1)/(a + b*Sinh[c + d*x])), x],
x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && IGtQ[n, 0] && IGtQ[p, 0]
-
Int[(Coth[(c_.) + (d_.)*(x_)]^(n_.)*Csch[(c_.) + (d_.)*(x_)]^(p_.)*((e_.) + (f_.)*(x_))^(m_.))/(Cosh[(c_.) + (
d_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[1/b Int[(e + f*x)^m*Csch[c + d*x]^(p + 1)*Coth[c + d*x]^(n - 1),
x], x] - Simp[a/b Int[(e + f*x)^m*Csch[c + d*x]^(p + 1)*(Coth[c + d*x]^(n - 1)/(a + b*Cosh[c + d*x])), x],
x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && IGtQ[n, 0] && IGtQ[p, 0]
-
Int[(Cosh[(c_.) + (d_.)*(x_)]^(p_.)*Coth[(c_.) + (d_.)*(x_)]^(n_.)*((e_.) + (f_.)*(x_))^(m_.))/((a_) + (b_.)*S
inh[(c_.) + (d_.)*(x_)]), x_Symbol] :> Simp[1/a Int[(e + f*x)^m*Cosh[c + d*x]^p*Coth[c + d*x]^n, x], x] - Si
mp[b/a Int[(e + f*x)^m*Cosh[c + d*x]^(p + 1)*(Coth[c + d*x]^(n - 1)/(a + b*Sinh[c + d*x])), x], x] /; FreeQ[
{a, b, c, d, e, f}, x] && IGtQ[m, 0] && IGtQ[n, 0] && IGtQ[p, 0]
-
Int[(((e_.) + (f_.)*(x_))^(m_.)*Sinh[(c_.) + (d_.)*(x_)]^(p_.)*Tanh[(c_.) + (d_.)*(x_)]^(n_.))/(Cosh[(c_.) + (
d_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[1/a Int[(e + f*x)^m*Sinh[c + d*x]^p*Tanh[c + d*x]^n, x], x] - Si
mp[b/a Int[(e + f*x)^m*Sinh[c + d*x]^(p + 1)*(Tanh[c + d*x]^(n - 1)/(a + b*Cosh[c + d*x])), x], x] /; FreeQ[
{a, b, c, d, e, f}, x] && IGtQ[m, 0] && IGtQ[n, 0] && IGtQ[p, 0]
-
Int[(Coth[(c_.) + (d_.)*(x_)]^(n_.)*Csch[(c_.) + (d_.)*(x_)]^(p_.)*((e_.) + (f_.)*(x_))^(m_.))/((a_) + (b_.)*S
inh[(c_.) + (d_.)*(x_)]), x_Symbol] :> Simp[1/a Int[(e + f*x)^m*Csch[c + d*x]^p*Coth[c + d*x]^n, x], x] - Si
mp[b/a Int[(e + f*x)^m*Csch[c + d*x]^(p - 1)*(Coth[c + d*x]^n/(a + b*Sinh[c + d*x])), x], x] /; FreeQ[{a, b,
c, d, e, f}, x] && IGtQ[m, 0] && IGtQ[n, 0] && IGtQ[p, 0]
-
Int[(((e_.) + (f_.)*(x_))^(m_.)*Sech[(c_.) + (d_.)*(x_)]^(p_.)*Tanh[(c_.) + (d_.)*(x_)]^(n_.))/(Cosh[(c_.) + (
d_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[1/a Int[(e + f*x)^m*Sech[c + d*x]^p*Tanh[c + d*x]^n, x], x] - Si
mp[b/a Int[(e + f*x)^m*Sech[c + d*x]^(p - 1)*(Tanh[c + d*x]^n/(a + b*Cosh[c + d*x])), x], x] /; FreeQ[{a, b,
c, d, e, f}, x] && IGtQ[m, 0] && IGtQ[n, 0] && IGtQ[p, 0]
-
Int[(Csch[(c_.) + (d_.)*(x_)]^(n_.)*((e_.) + (f_.)*(x_))^(m_.)*Sech[(c_.) + (d_.)*(x_)]^(p_.))/((a_) + (b_.)*S
inh[(c_.) + (d_.)*(x_)]), x_Symbol] :> Simp[1/a Int[(e + f*x)^m*Sech[c + d*x]^p*Csch[c + d*x]^n, x], x] - Si
mp[b/a Int[(e + f*x)^m*Sech[c + d*x]^p*(Csch[c + d*x]^(n - 1)/(a + b*Sinh[c + d*x])), x], x] /; FreeQ[{a, b,
c, d, e, f}, x] && IGtQ[m, 0] && IGtQ[n, 0] && IGtQ[p, 0]
-
Int[(Csch[(c_.) + (d_.)*(x_)]^(p_.)*((e_.) + (f_.)*(x_))^(m_.)*Sech[(c_.) + (d_.)*(x_)]^(n_.))/(Cosh[(c_.) + (
d_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Simp[1/a Int[(e + f*x)^m*Csch[c + d*x]^p*Sech[c + d*x]^n, x], x] - Si
mp[b/a Int[(e + f*x)^m*Csch[c + d*x]^p*(Sech[c + d*x]^(n - 1)/(a + b*Cosh[c + d*x])), x], x] /; FreeQ[{a, b,
c, d, e, f}, x] && IGtQ[m, 0] && IGtQ[n, 0] && IGtQ[p, 0]
-
Int[(((e_.) + (f_.)*(x_))^(m_.)*(F_)[(c_.) + (d_.)*(x_)]^(n_.)*(G_)[(c_.) + (d_.)*(x_)]^(p_.))/((a_) + (b_.)*S
inh[(c_.) + (d_.)*(x_)]), x_Symbol] :> Unintegrable[((e + f*x)^m*F[c + d*x]^n*G[c + d*x]^p)/(a + b*Sinh[c + d*
x]), x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && HyperbolicQ[F] && HyperbolicQ[G]
-
Int[(((e_.) + (f_.)*(x_))^(m_.)*(F_)[(c_.) + (d_.)*(x_)]^(n_.)*(G_)[(c_.) + (d_.)*(x_)]^(p_.))/(Cosh[(c_.) + (
d_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Unintegrable[((e + f*x)^m*F[c + d*x]^n*G[c + d*x]^p)/(a + b*Cosh[c + d*
x]), x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && HyperbolicQ[F] && HyperbolicQ[G]
-
Int[(((e_.) + (f_.)*(x_))^(m_.)*(F_)[(c_.) + (d_.)*(x_)]^(n_.))/((a_) + (b_.)*Sech[(c_.) + (d_.)*(x_)]), x_Sym
bol] :> Int[(e + f*x)^m*Cosh[c + d*x]*(F[c + d*x]^n/(b + a*Cosh[c + d*x])), x] /; FreeQ[{a, b, c, d, e, f}, x]
&& HyperbolicQ[F] && IntegersQ[m, n]
-
Int[(((e_.) + (f_.)*(x_))^(m_.)*(F_)[(c_.) + (d_.)*(x_)]^(n_.))/(Csch[(c_.) + (d_.)*(x_)]*(b_.) + (a_)), x_Sym
bol] :> Int[(e + f*x)^m*Sinh[c + d*x]*(F[c + d*x]^n/(b + a*Sinh[c + d*x])), x] /; FreeQ[{a, b, c, d, e, f}, x]
&& HyperbolicQ[F] && IntegersQ[m, n]
-
Int[(((e_.) + (f_.)*(x_))^(m_.)*(F_)[(c_.) + (d_.)*(x_)]^(n_.)*(G_)[(c_.) + (d_.)*(x_)]^(p_.))/((a_) + (b_.)*S
ech[(c_.) + (d_.)*(x_)]), x_Symbol] :> Int[(e + f*x)^m*Cosh[c + d*x]*F[c + d*x]^n*(G[c + d*x]^p/(b + a*Cosh[c
+ d*x])), x] /; FreeQ[{a, b, c, d, e, f}, x] && HyperbolicQ[F] && HyperbolicQ[G] && IntegersQ[m, n, p]
-
Int[(((e_.) + (f_.)*(x_))^(m_.)*(F_)[(c_.) + (d_.)*(x_)]^(n_.)*(G_)[(c_.) + (d_.)*(x_)]^(p_.))/(Csch[(c_.) + (
d_.)*(x_)]*(b_.) + (a_)), x_Symbol] :> Int[(e + f*x)^m*Sinh[c + d*x]*F[c + d*x]^n*(G[c + d*x]^p/(b + a*Sinh[c
+ d*x])), x] /; FreeQ[{a, b, c, d, e, f}, x] && HyperbolicQ[F] && HyperbolicQ[G] && IntegersQ[m, n, p]
-
Int[Sinh[(a_.) + (b_.)*(x_)]^(p_.)*Sinh[(c_.) + (d_.)*(x_)]^(q_.), x_Symbol] :> Simp[1/2^(p + q) Int[ExpandI
ntegrand[(-E^(-c - d*x) + E^(c + d*x))^q, (-E^(-a - b*x) + E^(a + b*x))^p, x], x], x] /; FreeQ[{a, b, c, d, q}
, x] && IGtQ[p, 0] && !IntegerQ[q]
-
Int[Cosh[(a_.) + (b_.)*(x_)]^(p_.)*Cosh[(c_.) + (d_.)*(x_)]^(q_.), x_Symbol] :> Simp[1/2^(p + q) Int[ExpandI
ntegrand[(E^(-c - d*x) + E^(c + d*x))^q, (E^(-a - b*x) + E^(a + b*x))^p, x], x], x] /; FreeQ[{a, b, c, d, q},
x] && IGtQ[p, 0] && !IntegerQ[q]
-
Int[Cosh[(c_.) + (d_.)*(x_)]^(q_.)*Sinh[(a_.) + (b_.)*(x_)]^(p_.), x_Symbol] :> Simp[1/2^(p + q) Int[ExpandI
ntegrand[(E^(-c - d*x) + E^(c + d*x))^q, (-E^(-a - b*x) + E^(a + b*x))^p, x], x], x] /; FreeQ[{a, b, c, d, q},
x] && IGtQ[p, 0] && !IntegerQ[q]
-
Int[Cosh[(a_.) + (b_.)*(x_)]^(p_.)*Sinh[(c_.) + (d_.)*(x_)]^(q_.), x_Symbol] :> Simp[1/2^(p + q) Int[ExpandI
ntegrand[(-E^(-c - d*x) + E^(c + d*x))^q, (E^(-a - b*x) + E^(a + b*x))^p, x], x], x] /; FreeQ[{a, b, c, d, q},
x] && IGtQ[p, 0] && !IntegerQ[q]
-
Int[Sinh[(a_.) + (b_.)*(x_)]*Tanh[(c_.) + (d_.)*(x_)], x_Symbol] :> Int[-E^(-(a + b*x))/2 + E^(a + b*x)/2 + 1/
(E^(a + b*x)*(1 + E^(2*(c + d*x)))) - E^(a + b*x)/(1 + E^(2*(c + d*x))), x] /; FreeQ[{a, b, c, d}, x] && NeQ[b
^2 - d^2, 0]
-
Int[Cosh[(a_.) + (b_.)*(x_)]*Coth[(c_.) + (d_.)*(x_)], x_Symbol] :> Int[1/(E^(a + b*x)*2) + E^(a + b*x)/2 - 1/
(E^(a + b*x)*(1 - E^(2*(c + d*x)))) - E^(a + b*x)/(1 - E^(2*(c + d*x))), x] /; FreeQ[{a, b, c, d}, x] && NeQ[b
^2 - d^2, 0]
-
Int[Coth[(c_.) + (d_.)*(x_)]*Sinh[(a_.) + (b_.)*(x_)], x_Symbol] :> Int[-E^(-(a + b*x))/2 + E^(a + b*x)/2 + 1/
(E^(a + b*x)*(1 - E^(2*(c + d*x)))) - E^(a + b*x)/(1 - E^(2*(c + d*x))), x] /; FreeQ[{a, b, c, d}, x] && NeQ[b
^2 - d^2, 0]
-
Int[Cosh[(a_.) + (b_.)*(x_)]*Tanh[(c_.) + (d_.)*(x_)], x_Symbol] :> Int[1/(E^(a + b*x)*2) + E^(a + b*x)/2 - 1/
(E^(a + b*x)*(1 + E^(2*(c + d*x)))) - E^(a + b*x)/(1 + E^(2*(c + d*x))), x] /; FreeQ[{a, b, c, d}, x] && NeQ[b
^2 - d^2, 0]
-
Int[Sinh[(a_.)/((c_.) + (d_.)*(x_))]^(n_.), x_Symbol] :> Simp[-d^(-1) Subst[Int[Sinh[a*x]^n/x^2, x], x, 1/(c
+ d*x)], x] /; FreeQ[{a, c, d}, x] && IGtQ[n, 0]
-
Int[Cosh[(a_.)/((c_.) + (d_.)*(x_))]^(n_.), x_Symbol] :> Simp[-d^(-1) Subst[Int[Cosh[a*x]^n/x^2, x], x, 1/(c
+ d*x)], x] /; FreeQ[{a, c, d}, x] && IGtQ[n, 0]
-
Int[Sinh[((e_.)*((a_.) + (b_.)*(x_)))/((c_.) + (d_.)*(x_))]^(n_.), x_Symbol] :> Simp[-d^(-1) Subst[Int[Sinh[
b*(e/d) - e*(b*c - a*d)*(x/d)]^n/x^2, x], x, 1/(c + d*x)], x] /; FreeQ[{a, b, c, d}, x] && IGtQ[n, 0] && NeQ[b
*c - a*d, 0]
-
Int[Cosh[((e_.)*((a_.) + (b_.)*(x_)))/((c_.) + (d_.)*(x_))]^(n_.), x_Symbol] :> Simp[-d^(-1) Subst[Int[Cosh[
b*(e/d) - e*(b*c - a*d)*(x/d)]^n/x^2, x], x, 1/(c + d*x)], x] /; FreeQ[{a, b, c, d}, x] && IGtQ[n, 0] && NeQ[b
*c - a*d, 0]
-
Int[Sinh[u_]^(n_.), x_Symbol] :> With[{lst = QuotientOfLinearsParts[u, x]}, Int[Sinh[(lst[[1]] + lst[[2]]*x)/(
lst[[3]] + lst[[4]]*x)]^n, x]] /; IGtQ[n, 0] && QuotientOfLinearsQ[u, x]
-
Int[Cosh[u_]^(n_.), x_Symbol] :> With[{lst = QuotientOfLinearsParts[u, x]}, Int[Cosh[(lst[[1]] + lst[[2]]*x)/(
lst[[3]] + lst[[4]]*x)]^n, x]] /; IGtQ[n, 0] && QuotientOfLinearsQ[u, x]
-
Int[(u_.)*Sinh[v_]^(p_.)*Sinh[w_]^(q_.), x_Symbol] :> Int[u*Sinh[v]^(p + q), x] /; EqQ[w, v]
-
Int[Cosh[v_]^(p_.)*Cosh[w_]^(q_.)*(u_.), x_Symbol] :> Int[u*Cosh[v]^(p + q), x] /; EqQ[w, v]
-
Int[Sinh[v_]^(p_.)*Sinh[w_]^(q_.), x_Symbol] :> Int[ExpandTrigReduce[Sinh[v]^p*Sinh[w]^q, x], x] /; IGtQ[p, 0]
&& IGtQ[q, 0] && ((PolynomialQ[v, x] && PolynomialQ[w, x]) || (BinomialQ[{v, w}, x] && IndependentQ[Cancel[v/
w], x]))
-
Int[Cosh[v_]^(p_.)*Cosh[w_]^(q_.), x_Symbol] :> Int[ExpandTrigReduce[Cosh[v]^p*Cosh[w]^q, x], x] /; IGtQ[p, 0]
&& IGtQ[q, 0] && ((PolynomialQ[v, x] && PolynomialQ[w, x]) || (BinomialQ[{v, w}, x] && IndependentQ[Cancel[v/
w], x]))
-
Int[(x_)^(m_.)*Sinh[v_]^(p_.)*Sinh[w_]^(q_.), x_Symbol] :> Int[ExpandTrigReduce[x^m, Sinh[v]^p*Sinh[w]^q, x],
x] /; IGtQ[m, 0] && IGtQ[p, 0] && IGtQ[q, 0] && ((PolynomialQ[v, x] && PolynomialQ[w, x]) || (BinomialQ[{v, w}
, x] && IndependentQ[Cancel[v/w], x]))
-
Int[Cosh[v_]^(p_.)*Cosh[w_]^(q_.)*(x_)^(m_.), x_Symbol] :> Int[ExpandTrigReduce[x^m, Cosh[v]^p*Cosh[w]^q, x],
x] /; IGtQ[m, 0] && IGtQ[p, 0] && IGtQ[q, 0] && ((PolynomialQ[v, x] && PolynomialQ[w, x]) || (BinomialQ[{v, w}
, x] && IndependentQ[Cancel[v/w], x]))
-
Int[Cosh[w_]^(p_.)*(u_.)*Sinh[v_]^(p_.), x_Symbol] :> Simp[1/2^p Int[u*Sinh[2*v]^p, x], x] /; EqQ[w, v] && I
ntegerQ[p]
-
Int[Cosh[w_]^(q_.)*Sinh[v_]^(p_.), x_Symbol] :> Int[ExpandTrigReduce[Sinh[v]^p*Cosh[w]^q, x], x] /; IGtQ[p, 0]
&& IGtQ[q, 0] && ((PolynomialQ[v, x] && PolynomialQ[w, x]) || (BinomialQ[{v, w}, x] && IndependentQ[Cancel[v/
w], x]))
-
Int[Cosh[w_]^(q_.)*(x_)^(m_.)*Sinh[v_]^(p_.), x_Symbol] :> Int[ExpandTrigReduce[x^m, Sinh[v]^p*Cosh[w]^q, x],
x] /; IGtQ[m, 0] && IGtQ[p, 0] && IGtQ[q, 0] && ((PolynomialQ[v, x] && PolynomialQ[w, x]) || (BinomialQ[{v, w}
, x] && IndependentQ[Cancel[v/w], x]))
-
Int[Sinh[v_]*Tanh[w_]^(n_.), x_Symbol] :> Int[Cosh[v]*Tanh[w]^(n - 1), x] - Simp[Cosh[v - w] Int[Sech[w]*Tan
h[w]^(n - 1), x], x] /; GtQ[n, 0] && NeQ[w, v] && FreeQ[v - w, x]
-
Int[Cosh[v_]*Coth[w_]^(n_.), x_Symbol] :> Int[Sinh[v]*Coth[w]^(n - 1), x] + Simp[Cosh[v - w] Int[Csch[w]*Cot
h[w]^(n - 1), x], x] /; GtQ[n, 0] && NeQ[w, v] && FreeQ[v - w, x]
-
Int[Coth[w_]^(n_.)*Sinh[v_], x_Symbol] :> Int[Cosh[v]*Coth[w]^(n - 1), x] + Simp[Sinh[v - w] Int[Csch[w]*Cot
h[w]^(n - 1), x], x] /; GtQ[n, 0] && NeQ[w, v] && FreeQ[v - w, x]
-
Int[Cosh[v_]*Tanh[w_]^(n_.), x_Symbol] :> Int[Sinh[v]*Tanh[w]^(n - 1), x] - Simp[Sinh[v - w] Int[Sech[w]*Tan
h[w]^(n - 1), x], x] /; GtQ[n, 0] && NeQ[w, v] && FreeQ[v - w, x]
-
Int[Sech[w_]^(n_.)*Sinh[v_], x_Symbol] :> Simp[Cosh[v - w] Int[Tanh[w]*Sech[w]^(n - 1), x], x] + Simp[Sinh[v
- w] Int[Sech[w]^(n - 1), x], x] /; GtQ[n, 0] && NeQ[w, v] && FreeQ[v - w, x]
-
Int[Cosh[v_]*Csch[w_]^(n_.), x_Symbol] :> Simp[Cosh[v - w] Int[Coth[w]*Csch[w]^(n - 1), x], x] + Simp[Sinh[v
- w] Int[Csch[w]^(n - 1), x], x] /; GtQ[n, 0] && NeQ[w, v] && FreeQ[v - w, x]
-
Int[Csch[w_]^(n_.)*Sinh[v_], x_Symbol] :> Simp[Sinh[v - w] Int[Coth[w]*Csch[w]^(n - 1), x], x] + Simp[Cosh[v
- w] Int[Csch[w]^(n - 1), x], x] /; GtQ[n, 0] && NeQ[w, v] && FreeQ[v - w, x]
-
Int[Cosh[v_]*Sech[w_]^(n_.), x_Symbol] :> Simp[Sinh[v - w] Int[Tanh[w]*Sech[w]^(n - 1), x], x] + Simp[Cosh[v
- w] Int[Sech[w]^(n - 1), x], x] /; GtQ[n, 0] && NeQ[w, v] && FreeQ[v - w, x]
-
Int[((e_.) + (f_.)*(x_))^(m_.)*((a_) + Cosh[(c_.) + (d_.)*(x_)]*(b_.)*Sinh[(c_.) + (d_.)*(x_)])^(n_.), x_Symbo
l] :> Int[(e + f*x)^m*(a + b*(Sinh[2*c + 2*d*x]/2))^n, x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]
-
Int[(x_)^(m_.)*((a_) + (b_.)*Sinh[(c_.) + (d_.)*(x_)]^2)^(n_), x_Symbol] :> Simp[1/2^n Int[x^m*(2*a - b + b*
Cosh[2*c + 2*d*x])^n, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a - b, 0] && IGtQ[m, 0] && ILtQ[n, 0] && (EqQ[n,
-1] || (EqQ[m, 1] && EqQ[n, -2]))
-
Int[(Cosh[(c_.) + (d_.)*(x_)]^2*(b_.) + (a_))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[1/2^n Int[x^m*(2*a + b + b*
Cosh[2*c + 2*d*x])^n, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a - b, 0] && IGtQ[m, 0] && ILtQ[n, 0] && (EqQ[n,
-1] || (EqQ[m, 1] && EqQ[n, -2]))
-
Int[((f_.) + (g_.)*(x_))^(m_.)/((a_.) + Cosh[(d_.) + (e_.)*(x_)]^2*(b_.) + (c_.)*Sinh[(d_.) + (e_.)*(x_)]^2),
x_Symbol] :> Simp[2 Int[(f + g*x)^m/(2*a + b - c + (b + c)*Cosh[2*d + 2*e*x]), x], x] /; FreeQ[{a, b, c, d,
e, f, g}, x] && IGtQ[m, 0] && NeQ[a + b, 0] && NeQ[a + c, 0]
-
Int[(((f_.) + (g_.)*(x_))^(m_.)*Sech[(d_.) + (e_.)*(x_)]^2)/((b_) + (c_.)*Tanh[(d_.) + (e_.)*(x_)]^2), x_Symbo
l] :> Simp[2 Int[(f + g*x)^m/(b - c + (b + c)*Cosh[2*d + 2*e*x]), x], x] /; FreeQ[{b, c, d, e, f, g}, x] &&
IGtQ[m, 0]
-
Int[(((f_.) + (g_.)*(x_))^(m_.)*Sech[(d_.) + (e_.)*(x_)]^2)/((b_.) + (a_.)*Sech[(d_.) + (e_.)*(x_)]^2 + (c_.)*
Tanh[(d_.) + (e_.)*(x_)]^2), x_Symbol] :> Simp[2 Int[(f + g*x)^m/(2*a + b - c + (b + c)*Cosh[2*d + 2*e*x]),
x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && IGtQ[m, 0] && NeQ[a + b, 0] && NeQ[a + c, 0]
-
Int[(Csch[(d_.) + (e_.)*(x_)]^2*((f_.) + (g_.)*(x_))^(m_.))/(Coth[(d_.) + (e_.)*(x_)]^2*(b_.) + (c_)), x_Symbo
l] :> Simp[2 Int[(f + g*x)^m/(b - c + (b + c)*Cosh[2*d + 2*e*x]), x], x] /; FreeQ[{b, c, d, e, f, g}, x] &&
IGtQ[m, 0]
-
Int[(Csch[(d_.) + (e_.)*(x_)]^2*((f_.) + (g_.)*(x_))^(m_.))/(Csch[(d_.) + (e_.)*(x_)]^2*(a_.) + Coth[(d_.) + (
e_.)*(x_)]^2*(b_.) + (c_.)), x_Symbol] :> Simp[2 Int[(f + g*x)^m/(2*a + b - c + (b + c)*Cosh[2*d + 2*e*x]),
x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && IGtQ[m, 0] && NeQ[a + b, 0] && NeQ[a + c, 0]
-
Int[(((e_.) + (f_.)*(x_))*((A_) + (B_.)*Sinh[(c_.) + (d_.)*(x_)]))/((a_) + (b_.)*Sinh[(c_.) + (d_.)*(x_)])^2,
x_Symbol] :> Simp[B*(e + f*x)*(Cosh[c + d*x]/(a*d*(a + b*Sinh[c + d*x]))), x] - Simp[B*(f/(a*d)) Int[Cosh[c
+ d*x]/(a + b*Sinh[c + d*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && EqQ[a*A + b*B, 0]
-
Int[((Cosh[(c_.) + (d_.)*(x_)]*(B_.) + (A_))*((e_.) + (f_.)*(x_)))/(Cosh[(c_.) + (d_.)*(x_)]*(b_.) + (a_))^2,
x_Symbol] :> Simp[B*(e + f*x)*(Sinh[c + d*x]/(a*d*(a + b*Cosh[c + d*x]))), x] - Simp[B*(f/(a*d)) Int[Sinh[c
+ d*x]/(a + b*Cosh[c + d*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && EqQ[a*A - b*B, 0]
-
Int[((e_.) + (f_.)*(x_))^(m_.)*Sinh[(a_.) + (b_.)*((c_) + (d_.)*(x_))^(n_)]^(p_.), x_Symbol] :> Simp[1/d^(m +
1) Subst[Int[(d*e - c*f + f*x)^m*Sinh[a + b*x^n]^p, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &
& IGtQ[m, 0] && RationalQ[p]
-
Int[Cosh[(a_.) + (b_.)*((c_) + (d_.)*(x_))^(n_)]^(p_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[1/d^(m +
1) Subst[Int[(d*e - c*f + f*x)^m*Cosh[a + b*x^n]^p, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] &
& IGtQ[m, 0] && RationalQ[p]
-
Int[Sech[v_]^(m_.)*((a_) + (b_.)*Tanh[v_])^(n_.), x_Symbol] :> Int[(a*Cosh[v] + b*Sinh[v])^n, x] /; FreeQ[{a,
b}, x] && IntegerQ[(m - 1)/2] && EqQ[m + n, 0]
-
Int[Csch[v_]^(m_.)*(Coth[v_]*(b_.) + (a_))^(n_.), x_Symbol] :> Int[(b*Cosh[v] + a*Sinh[v])^n, x] /; FreeQ[{a,
b}, x] && IntegerQ[(m - 1)/2] && EqQ[m + n, 0]
-
Int[(u_.)*Sinh[(a_.) + (b_.)*(x_)]^(m_.)*Sinh[(c_.) + (d_.)*(x_)]^(n_.), x_Symbol] :> Int[ExpandTrigReduce[u,
Sinh[a + b*x]^m*Sinh[c + d*x]^n, x], x] /; FreeQ[{a, b, c, d}, x] && IGtQ[m, 0] && IGtQ[n, 0]
-
Int[Cosh[(a_.) + (b_.)*(x_)]^(m_.)*Cosh[(c_.) + (d_.)*(x_)]^(n_.)*(u_.), x_Symbol] :> Int[ExpandTrigReduce[u,
Cosh[a + b*x]^m*Cosh[c + d*x]^n, x], x] /; FreeQ[{a, b, c, d}, x] && IGtQ[m, 0] && IGtQ[n, 0]
-
Int[Sech[(a_.) + (b_.)*(x_)]*Sech[(c_) + (d_.)*(x_)], x_Symbol] :> Simp[-Csch[(b*c - a*d)/d] Int[Tanh[a + b*
x], x], x] + Simp[Csch[(b*c - a*d)/b] Int[Tanh[c + d*x], x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[b^2 - d^2,
0] && NeQ[b*c - a*d, 0]
-
Int[Csch[(a_.) + (b_.)*(x_)]*Csch[(c_) + (d_.)*(x_)], x_Symbol] :> Simp[Csch[(b*c - a*d)/b] Int[Coth[a + b*x
], x], x] - Simp[Csch[(b*c - a*d)/d] Int[Coth[c + d*x], x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[b^2 - d^2, 0
] && NeQ[b*c - a*d, 0]
-
Int[Tanh[(a_.) + (b_.)*(x_)]*Tanh[(c_) + (d_.)*(x_)], x_Symbol] :> Simp[b*(x/d), x] - Simp[(b/d)*Cosh[(b*c - a
*d)/d] Int[Sech[a + b*x]*Sech[c + d*x], x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[b^2 - d^2, 0] && NeQ[b*c - a
*d, 0]
-
Int[Coth[(a_.) + (b_.)*(x_)]*Coth[(c_) + (d_.)*(x_)], x_Symbol] :> Simp[b*(x/d), x] + Simp[Cosh[(b*c - a*d)/d]
Int[Csch[a + b*x]*Csch[c + d*x], x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[b^2 - d^2, 0] && NeQ[b*c - a*d, 0]
-
Int[(u_.)*(Cosh[v_]*(a_.) + (b_.)*Sinh[v_])^(n_.), x_Symbol] :> Int[u*(a*E^((a/b)*v))^n, x] /; FreeQ[{a, b, n}
, x] && EqQ[a^2 - b^2, 0]
-
Int[Sinh[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^2*(d_.)], x_Symbol] :> Simp[-2^(-1) Int[E^((-d)*(a + b*Log[c*
x^n])^2), x], x] + Simp[1/2 Int[E^(d*(a + b*Log[c*x^n])^2), x], x] /; FreeQ[{a, b, c, d, n}, x]
-
Int[Cosh[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^2*(d_.)], x_Symbol] :> Simp[1/2 Int[E^((-d)*(a + b*Log[c*x^n]
)^2), x], x] + Simp[1/2 Int[E^(d*(a + b*Log[c*x^n])^2), x], x] /; FreeQ[{a, b, c, d, n}, x]
-
Int[((e_.)*(x_))^(m_.)*Sinh[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^2*(d_.)], x_Symbol] :> Simp[-2^(-1) Int[(e
*x)^m/E^(d*(a + b*Log[c*x^n])^2), x], x] + Simp[1/2 Int[(e*x)^m*E^(d*(a + b*Log[c*x^n])^2), x], x] /; FreeQ[
{a, b, c, d, e, m, n}, x]
-
Int[Cosh[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^2*(d_.)]*((e_.)*(x_))^(m_.), x_Symbol] :> Simp[1/2 Int[(e*x)^
m/E^(d*(a + b*Log[c*x^n])^2), x], x] + Simp[1/2 Int[(e*x)^m*E^(d*(a + b*Log[c*x^n])^2), x], x] /; FreeQ[{a,
b, c, d, e, m, n}, x]
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.), x_Symbol] :> Simp[x*(a + b*ArcSinh[c*x])^n, x] - Simp[b*c*n I
nt[x*((a + b*ArcSinh[c*x])^(n - 1)/Sqrt[1 + c^2*x^2]), x], x] /; FreeQ[{a, b, c}, x] && GtQ[n, 0]
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[Sqrt[1 + c^2*x^2]*((a + b*ArcSinh[c*x])^(n + 1
)/(b*c*(n + 1))), x] - Simp[c/(b*(n + 1)) Int[x*((a + b*ArcSinh[c*x])^(n + 1)/Sqrt[1 + c^2*x^2]), x], x] /;
FreeQ[{a, b, c}, x] && LtQ[n, -1]
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[1/(b*c) Subst[Int[x^n*Cosh[-a/b + x/b], x],
x, a + b*ArcSinh[c*x]], x] /; FreeQ[{a, b, c, n}, x]
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)/(x_), x_Symbol] :> Simp[1/b Subst[Int[x^n*Coth[-a/b + x/b], x]
, x, a + b*ArcSinh[c*x]], x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0]
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(d*x)^(m + 1)*((a + b*ArcS
inh[c*x])^n/(d*(m + 1))), x] - Simp[b*c*(n/(d*(m + 1))) Int[(d*x)^(m + 1)*((a + b*ArcSinh[c*x])^(n - 1)/Sqrt
[1 + c^2*x^2]), x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && NeQ[m, -1]
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)*((a + b*ArcSinh[c*x])^n/(
m + 1)), x] - Simp[b*c*(n/(m + 1)) Int[x^(m + 1)*((a + b*ArcSinh[c*x])^(n - 1)/Sqrt[1 + c^2*x^2]), x], x] /;
FreeQ[{a, b, c}, x] && IGtQ[m, 0] && GtQ[n, 0]
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[x^m*Sqrt[1 + c^2*x^2]*((a + b*ArcSi
nh[c*x])^(n + 1)/(b*c*(n + 1))), x] - Simp[1/(b^2*c^(m + 1)*(n + 1)) Subst[Int[ExpandTrigReduce[x^(n + 1), S
inh[-a/b + x/b]^(m - 1)*(m + (m + 1)*Sinh[-a/b + x/b]^2), x], x], x, a + b*ArcSinh[c*x]], x] /; FreeQ[{a, b, c
}, x] && IGtQ[m, 0] && GeQ[n, -2] && LtQ[n, -1]
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[x^m*Sqrt[1 + c^2*x^2]*((a + b*ArcSi
nh[c*x])^(n + 1)/(b*c*(n + 1))), x] + (-Simp[c*((m + 1)/(b*(n + 1))) Int[x^(m + 1)*((a + b*ArcSinh[c*x])^(n
+ 1)/Sqrt[1 + c^2*x^2]), x], x] - Simp[m/(b*c*(n + 1)) Int[x^(m - 1)*((a + b*ArcSinh[c*x])^(n + 1)/Sqrt[1 +
c^2*x^2]), x], x]) /; FreeQ[{a, b, c}, x] && IGtQ[m, 0] && LtQ[n, -2]
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[1/(b*c^(m + 1)) Subst[Int[x^n*Sin
h[-a/b + x/b]^m*Cosh[-a/b + x/b], x], x, a + b*ArcSinh[c*x]], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[m, 0]
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Unintegrable[(d*x)^m*(a + b*Arc
Sinh[c*x])^n, x] /; FreeQ[{a, b, c, d, m, n}, x]
-
Int[1/(((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))*Sqrt[(d_) + (e_.)*(x_)^2]), x_Symbol] :> Simp[(1/(b*c))*Simp[Sqrt[1
+ c^2*x^2]/Sqrt[d + e*x^2]]*Log[a + b*ArcSinh[c*x]], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d]
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(1/(b*c*(n + 1)))*S
imp[Sqrt[1 + c^2*x^2]/Sqrt[d + e*x^2]]*(a + b*ArcSinh[c*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ
[e, c^2*d] && NeQ[n, -1]
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> With[{u = IntHide[(d + e*x^2
)^p, x]}, Simp[(a + b*ArcSinh[c*x]) u, x] - Simp[b*c Int[SimplifyIntegrand[u/Sqrt[1 + c^2*x^2], x], x], x]
] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && IGtQ[p, 0]
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[x*Sqrt[d + e*x^2]*(
(a + b*ArcSinh[c*x])^n/2), x] + (Simp[(1/2)*Simp[Sqrt[d + e*x^2]/Sqrt[1 + c^2*x^2]] Int[(a + b*ArcSinh[c*x])
^n/Sqrt[1 + c^2*x^2], x], x] - Simp[b*c*(n/2)*Simp[Sqrt[d + e*x^2]/Sqrt[1 + c^2*x^2]] Int[x*(a + b*ArcSinh[c
*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && GtQ[n, 0]
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[x*(d + e*x^2)^p*(
(a + b*ArcSinh[c*x])^n/(2*p + 1)), x] + (Simp[2*d*(p/(2*p + 1)) Int[(d + e*x^2)^(p - 1)*(a + b*ArcSinh[c*x])
^n, x], x] - Simp[b*c*(n/(2*p + 1))*Simp[(d + e*x^2)^p/(1 + c^2*x^2)^p] Int[x*(1 + c^2*x^2)^(p - 1/2)*(a + b
*ArcSinh[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && GtQ[n, 0] && GtQ[p, 0]
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)/((d_) + (e_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[x*((a + b*ArcSinh
[c*x])^n/(d*Sqrt[d + e*x^2])), x] - Simp[b*c*(n/d)*Simp[Sqrt[1 + c^2*x^2]/Sqrt[d + e*x^2]] Int[x*((a + b*Arc
Sinh[c*x])^(n - 1)/(1 + c^2*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && GtQ[n, 0]
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-x)*(d + e*x^2)^(
p + 1)*((a + b*ArcSinh[c*x])^n/(2*d*(p + 1))), x] + (Simp[(2*p + 3)/(2*d*(p + 1)) Int[(d + e*x^2)^(p + 1)*(a
+ b*ArcSinh[c*x])^n, x], x] + Simp[b*c*(n/(2*(p + 1)))*Simp[(d + e*x^2)^p/(1 + c^2*x^2)^p] Int[x*(1 + c^2*x
^2)^(p + 1/2)*(a + b*ArcSinh[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && GtQ[n, 0]
&& LtQ[p, -1] && NeQ[p, -3/2]
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[1/(c*d) Subst[Int[(a
+ b*x)^n*Sech[x], x], x, ArcSinh[c*x]], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && IGtQ[n, 0]
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[Simp[Sqrt[1 + c^2*
x^2]*(d + e*x^2)^p]*((a + b*ArcSinh[c*x])^(n + 1)/(b*c*(n + 1))), x] - Simp[c*((2*p + 1)/(b*(n + 1)))*Simp[(d
+ e*x^2)^p/(1 + c^2*x^2)^p] Int[x*(1 + c^2*x^2)^(p - 1/2)*(a + b*ArcSinh[c*x])^(n + 1), x], x] /; FreeQ[{a,
b, c, d, e, p}, x] && EqQ[e, c^2*d] && LtQ[n, -1]
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(1/(b*c))*Simp[(d
+ e*x^2)^p/(1 + c^2*x^2)^p] Subst[Int[x^n*Cosh[-a/b + x/b]^(2*p + 1), x], x, a + b*ArcSinh[c*x]], x] /; Fre
eQ[{a, b, c, d, e, n}, x] && EqQ[e, c^2*d] && IGtQ[2*p, 0]
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> With[{u = IntHide[(d + e*x^2
)^p, x]}, Simp[(a + b*ArcSinh[c*x]) u, x] - Simp[b*c Int[SimplifyIntegrand[u/Sqrt[1 + c^2*x^2], x], x], x]
] /; FreeQ[{a, b, c, d, e}, x] && NeQ[e, c^2*d] && (IGtQ[p, 0] || ILtQ[p + 1/2, 0])
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(a
+ b*ArcSinh[c*x])^n, (d + e*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, n}, x] && NeQ[e, c^2*d] && IntegerQ[p] &&
(p > 0 || IGtQ[n, 0])
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Unintegrable[(d + e*x^
2)^p*(a + b*ArcSinh[c*x])^n, x] /; FreeQ[{a, b, c, d, e, n, p}, x]
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_))^(p_)*((f_) + (g_.)*(x_))^(q_), x_Symbol] :>
Simp[((-d^2)*(g/e))^q Int[(d + e*x)^(p - q)*(1 + c^2*x^2)^q*(a + b*ArcSinh[c*x])^n, x], x] /; FreeQ[{a, b, c
, d, e, f, g, n}, x] && EqQ[e*f + d*g, 0] && EqQ[c^2*d^2 + e^2, 0] && HalfIntegerQ[p, q] && GeQ[p - q, 0] && G
tQ[d, 0] && LtQ[g/e, 0]
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_))^(p_)*((f_) + (g_.)*(x_))^(q_), x_Symbol] :>
Simp[(d + e*x)^q*((f + g*x)^q/(1 + c^2*x^2)^q) Int[(d + e*x)^(p - q)*(1 + c^2*x^2)^q*(a + b*ArcSinh[c*x])^n,
x], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && EqQ[e*f + d*g, 0] && EqQ[c^2*d^2 + e^2, 0] && HalfIntegerQ[p,
q] && GeQ[p - q, 0]
-
Int[(((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*(x_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[1/e Subst[Int[
(a + b*x)^n*Tanh[x], x], x, ArcSinh[c*x]], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && IGtQ[n, 0]
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x^2)^
(p + 1)*((a + b*ArcSinh[c*x])^n/(2*e*(p + 1))), x] - Simp[b*(n/(2*c*(p + 1)))*Simp[(d + e*x^2)^p/(1 + c^2*x^2)
^p] Int[(1 + c^2*x^2)^(p + 1/2)*(a + b*ArcSinh[c*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[
e, c^2*d] && GtQ[n, 0] && NeQ[p, -1]
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)/((x_)*((d_) + (e_.)*(x_)^2)), x_Symbol] :> Simp[1/d Subst[Int[
(a + b*x)^n/(Cosh[x]*Sinh[x]), x], x, ArcSinh[c*x]], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && IGtQ[
n, 0]
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[
(f*x)^(m + 1)*(d + e*x^2)^(p + 1)*((a + b*ArcSinh[c*x])^n/(d*f*(m + 1))), x] - Simp[b*c*(n/(f*(m + 1)))*Simp[(
d + e*x^2)^p/(1 + c^2*x^2)^p] Int[(f*x)^(m + 1)*(1 + c^2*x^2)^(p + 1/2)*(a + b*ArcSinh[c*x])^(n - 1), x], x]
/; FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[e, c^2*d] && GtQ[n, 0] && EqQ[m + 2*p + 3, 0] && NeQ[m, -1]
-
Int[(((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))*((d_) + (e_.)*(x_)^2)^(p_.))/(x_), x_Symbol] :> Simp[(d + e*x^2)^p*((
a + b*ArcSinh[c*x])/(2*p)), x] + (Simp[d Int[(d + e*x^2)^(p - 1)*((a + b*ArcSinh[c*x])/x), x], x] - Simp[b*c
*(d^p/(2*p)) Int[(1 + c^2*x^2)^(p - 1/2), x], x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && IGtQ[p, 0
]
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(f*x)
^(m + 1)*(d + e*x^2)^p*((a + b*ArcSinh[c*x])/(f*(m + 1))), x] + (-Simp[b*c*(d^p/(f*(m + 1))) Int[(f*x)^(m +
1)*(1 + c^2*x^2)^(p - 1/2), x], x] - Simp[2*e*(p/(f^2*(m + 1))) Int[(f*x)^(m + 2)*(d + e*x^2)^(p - 1)*(a + b
*ArcSinh[c*x]), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[e, c^2*d] && IGtQ[p, 0] && ILtQ[(m + 1)/2, 0]
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> With[{u =
IntHide[(f*x)^m*(d + e*x^2)^p, x]}, Simp[(a + b*ArcSinh[c*x]) u, x] - Simp[b*c Int[SimplifyIntegrand[u/Sqr
t[1 + c^2*x^2], x], x], x]] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[e, c^2*d] && IGtQ[p, 0]
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))*(x_)^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> With[{u = IntHide[x
^m*(d + e*x^2)^p, x]}, Simp[(a + b*ArcSinh[c*x]) u, x] - Simp[b*c*Simp[Sqrt[d + e*x^2]/Sqrt[1 + c^2*x^2]]
Int[SimplifyIntegrand[u/Sqrt[d + e*x^2], x], x], x]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && IntegerQ
[p - 1/2] && NeQ[p, -2^(-1)] && (IGtQ[(m + 1)/2, 0] || ILtQ[(m + 2*p + 3)/2, 0])
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(
f*x)^(m + 1)*Sqrt[d + e*x^2]*((a + b*ArcSinh[c*x])^n/(f*(m + 1))), x] + (-Simp[b*c*(n/(f*(m + 1)))*Simp[Sqrt[d
+ e*x^2]/Sqrt[1 + c^2*x^2]] Int[(f*x)^(m + 1)*(a + b*ArcSinh[c*x])^(n - 1), x], x] - Simp[(c^2/(f^2*(m + 1)
))*Simp[Sqrt[d + e*x^2]/Sqrt[1 + c^2*x^2]] Int[(f*x)^(m + 2)*((a + b*ArcSinh[c*x])^n/Sqrt[1 + c^2*x^2]), x],
x]) /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[e, c^2*d] && GtQ[n, 0] && LtQ[m, -1]
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(
f*x)^(m + 1)*Sqrt[d + e*x^2]*((a + b*ArcSinh[c*x])^n/(f*(m + 2))), x] + (Simp[(1/(m + 2))*Simp[Sqrt[d + e*x^2]
/Sqrt[1 + c^2*x^2]] Int[(f*x)^m*((a + b*ArcSinh[c*x])^n/Sqrt[1 + c^2*x^2]), x], x] - Simp[b*c*(n/(f*(m + 2))
)*Simp[Sqrt[d + e*x^2]/Sqrt[1 + c^2*x^2]] Int[(f*x)^(m + 1)*(a + b*ArcSinh[c*x])^(n - 1), x], x]) /; FreeQ[{
a, b, c, d, e, f, m}, x] && EqQ[e, c^2*d] && IGtQ[n, 0] && (IGtQ[m, -2] || EqQ[n, 1])
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp
[(f*x)^(m + 1)*(d + e*x^2)^p*((a + b*ArcSinh[c*x])^n/(f*(m + 1))), x] + (-Simp[2*e*(p/(f^2*(m + 1))) Int[(f*
x)^(m + 2)*(d + e*x^2)^(p - 1)*(a + b*ArcSinh[c*x])^n, x], x] - Simp[b*c*(n/(f*(m + 1)))*Simp[(d + e*x^2)^p/(1
+ c^2*x^2)^p] Int[(f*x)^(m + 1)*(1 + c^2*x^2)^(p - 1/2)*(a + b*ArcSinh[c*x])^(n - 1), x], x]) /; FreeQ[{a,
b, c, d, e, f}, x] && EqQ[e, c^2*d] && GtQ[n, 0] && GtQ[p, 0] && LtQ[m, -1]
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp
[(f*x)^(m + 1)*(d + e*x^2)^p*((a + b*ArcSinh[c*x])^n/(f*(m + 2*p + 1))), x] + (Simp[2*d*(p/(m + 2*p + 1)) In
t[(f*x)^m*(d + e*x^2)^(p - 1)*(a + b*ArcSinh[c*x])^n, x], x] - Simp[b*c*(n/(f*(m + 2*p + 1)))*Simp[(d + e*x^2)
^p/(1 + c^2*x^2)^p] Int[(f*x)^(m + 1)*(1 + c^2*x^2)^(p - 1/2)*(a + b*ArcSinh[c*x])^(n - 1), x], x]) /; FreeQ
[{a, b, c, d, e, f, m}, x] && EqQ[e, c^2*d] && GtQ[n, 0] && GtQ[p, 0] && !LtQ[m, -1]
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[
(f*x)^(m + 1)*(d + e*x^2)^(p + 1)*((a + b*ArcSinh[c*x])^n/(d*f*(m + 1))), x] + (-Simp[c^2*((m + 2*p + 3)/(f^2*
(m + 1))) Int[(f*x)^(m + 2)*(d + e*x^2)^p*(a + b*ArcSinh[c*x])^n, x], x] - Simp[b*c*(n/(f*(m + 1)))*Simp[(d
+ e*x^2)^p/(1 + c^2*x^2)^p] Int[(f*x)^(m + 1)*(1 + c^2*x^2)^(p + 1/2)*(a + b*ArcSinh[c*x])^(n - 1), x], x])
/; FreeQ[{a, b, c, d, e, f, p}, x] && EqQ[e, c^2*d] && GtQ[n, 0] && ILtQ[m, -1]
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[
f*(f*x)^(m - 1)*(d + e*x^2)^(p + 1)*((a + b*ArcSinh[c*x])^n/(2*e*(p + 1))), x] + (-Simp[f^2*((m - 1)/(2*e*(p +
1))) Int[(f*x)^(m - 2)*(d + e*x^2)^(p + 1)*(a + b*ArcSinh[c*x])^n, x], x] - Simp[b*f*(n/(2*c*(p + 1)))*Simp
[(d + e*x^2)^p/(1 + c^2*x^2)^p] Int[(f*x)^(m - 1)*(1 + c^2*x^2)^(p + 1/2)*(a + b*ArcSinh[c*x])^(n - 1), x],
x]) /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[e, c^2*d] && GtQ[n, 0] && LtQ[p, -1] && IGtQ[m, 1]
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[
(-(f*x)^(m + 1))*(d + e*x^2)^(p + 1)*((a + b*ArcSinh[c*x])^n/(2*d*f*(p + 1))), x] + (Simp[(m + 2*p + 3)/(2*d*(
p + 1)) Int[(f*x)^m*(d + e*x^2)^(p + 1)*(a + b*ArcSinh[c*x])^n, x], x] + Simp[b*c*(n/(2*f*(p + 1)))*Simp[(d
+ e*x^2)^p/(1 + c^2*x^2)^p] Int[(f*x)^(m + 1)*(1 + c^2*x^2)^(p + 1/2)*(a + b*ArcSinh[c*x])^(n - 1), x], x])
/; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[e, c^2*d] && GtQ[n, 0] && LtQ[p, -1] && !GtQ[m, 1] && (IntegerQ[m]
|| IntegerQ[p] || EqQ[n, 1])
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[
f*(f*x)^(m - 1)*(d + e*x^2)^(p + 1)*((a + b*ArcSinh[c*x])^n/(e*(m + 2*p + 1))), x] + (-Simp[f^2*((m - 1)/(c^2*
(m + 2*p + 1))) Int[(f*x)^(m - 2)*(d + e*x^2)^p*(a + b*ArcSinh[c*x])^n, x], x] - Simp[b*f*(n/(c*(m + 2*p + 1
)))*Simp[(d + e*x^2)^p/(1 + c^2*x^2)^p] Int[(f*x)^(m - 1)*(1 + c^2*x^2)^(p + 1/2)*(a + b*ArcSinh[c*x])^(n -
1), x], x]) /; FreeQ[{a, b, c, d, e, f, p}, x] && EqQ[e, c^2*d] && GtQ[n, 0] && IGtQ[m, 1] && NeQ[m + 2*p + 1,
0]
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp
[(f*x)^m*Sqrt[1 + c^2*x^2]*(d + e*x^2)^p*((a + b*ArcSinh[c*x])^(n + 1)/(b*c*(n + 1))), x] - Simp[f*(m/(b*c*(n
+ 1)))*Simp[(d + e*x^2)^p/(1 + c^2*x^2)^p] Int[(f*x)^(m - 1)*(1 + c^2*x^2)^(p - 1/2)*(a + b*ArcSinh[c*x])^(n
+ 1), x], x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[e, c^2*d] && LtQ[n, -1] && EqQ[m + 2*p + 1, 0]
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp
[(f*x)^m*Sqrt[1 + c^2*x^2]*(d + e*x^2)^p*((a + b*ArcSinh[c*x])^(n + 1)/(b*c*(n + 1))), x] + (-Simp[f*(m/(b*c*(
n + 1)))*Simp[(d + e*x^2)^p/(1 + c^2*x^2)^p] Int[(f*x)^(m - 1)*(1 + c^2*x^2)^(p - 1/2)*(a + b*ArcSinh[c*x])^
(n + 1), x], x] - Simp[c*((m + 2*p + 1)/(b*f*(n + 1)))*Simp[(d + e*x^2)^p/(1 + c^2*x^2)^p] Int[(f*x)^(m + 1)
*(1 + c^2*x^2)^(p - 1/2)*(a + b*ArcSinh[c*x])^(n + 1), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[e, c^2*d
] && LtQ[n, -1] && IGtQ[2*p, 0] && NeQ[m + 2*p + 1, 0] && IGtQ[m, -3]
-
Int[(((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp
[f*(f*x)^(m - 1)*Sqrt[d + e*x^2]*((a + b*ArcSinh[c*x])^n/(e*m)), x] + (-Simp[f^2*((m - 1)/(c^2*m)) Int[((f*x
)^(m - 2)*(a + b*ArcSinh[c*x])^n)/Sqrt[d + e*x^2], x], x] - Simp[b*f*(n/(c*m))*Simp[Sqrt[1 + c^2*x^2]/Sqrt[d +
e*x^2]] Int[(f*x)^(m - 1)*(a + b*ArcSinh[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[e, c
^2*d] && GtQ[n, 0] && IGtQ[m, 1]
-
Int[(((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(1/c^(m
+ 1))*Simp[Sqrt[1 + c^2*x^2]/Sqrt[d + e*x^2]] Subst[Int[(a + b*x)^n*Sinh[x]^m, x], x, ArcSinh[c*x]], x] /;
FreeQ[{a, b, c, d, e}, x] && EqQ[e, c^2*d] && IGtQ[n, 0] && IntegerQ[m]
-
Int[(((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[((f*x
)^(m + 1)/(f*(m + 1)))*Simp[Sqrt[1 + c^2*x^2]/Sqrt[d + e*x^2]]*(a + b*ArcSinh[c*x])*Hypergeometric2F1[1/2, (1
+ m)/2, (3 + m)/2, (-c^2)*x^2], x] - Simp[b*c*((f*x)^(m + 2)/(f^2*(m + 1)*(m + 2)))*Simp[Sqrt[1 + c^2*x^2]/Sqr
t[d + e*x^2]]*HypergeometricPFQ[{1, 1 + m/2, 1 + m/2}, {3/2 + m/2, 2 + m/2}, (-c^2)*x^2], x] /; FreeQ[{a, b, c
, d, e, f, m}, x] && EqQ[e, c^2*d] && !IntegerQ[m]
-
Int[(((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*((f_.)*(x_))^(m_.))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp
[((f*x)^m/(b*c*(n + 1)))*Simp[Sqrt[1 + c^2*x^2]/Sqrt[d + e*x^2]]*(a + b*ArcSinh[c*x])^(n + 1), x] - Simp[f*(m/
(b*c*(n + 1)))*Simp[Sqrt[1 + c^2*x^2]/Sqrt[d + e*x^2]] Int[(f*x)^(m - 1)*(a + b*ArcSinh[c*x])^(n + 1), x], x
] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[e, c^2*d] && LtQ[n, -1]
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(1/(b*
c^(m + 1)))*Simp[(d + e*x^2)^p/(1 + c^2*x^2)^p] Subst[Int[x^n*Sinh[-a/b + x/b]^m*Cosh[-a/b + x/b]^(2*p + 1),
x], x, a + b*ArcSinh[c*x]], x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[e, c^2*d] && IGtQ[2*p + 2, 0] && IGtQ[m
, 0]
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Int[E
xpandIntegrand[(a + b*ArcSinh[c*x])^n/Sqrt[d + e*x^2], (f*x)^m*(d + e*x^2)^(p + 1/2), x], x] /; FreeQ[{a, b, c
, d, e, f, m, n}, x] && EqQ[e, c^2*d] && IGtQ[p + 1/2, 0] && !IGtQ[(m + 1)/2, 0] && (EqQ[m, -1] || EqQ[m, -2]
)
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))*(x_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x^2)^(p + 1
)*((a + b*ArcSinh[c*x])/(2*e*(p + 1))), x] - Simp[b*(c/(2*e*(p + 1))) Int[(d + e*x^2)^(p + 1)/Sqrt[1 + c^2*x
^2], x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[e, c^2*d] && NeQ[p, -1]
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> With[{u =
IntHide[(f*x)^m*(d + e*x^2)^p, x]}, Simp[(a + b*ArcSinh[c*x]) u, x] - Simp[b*c Int[SimplifyIntegrand[u/Sq
rt[1 + c^2*x^2], x], x], x]] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[e, c^2*d] && IntegerQ[p] && (GtQ[p, 0]
|| (IGtQ[(m - 1)/2, 0] && LeQ[m + p, 0]))
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Int
[ExpandIntegrand[(a + b*ArcSinh[c*x])^n, (f*x)^m*(d + e*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[
e, c^2*d] && IGtQ[n, 0] && IntegerQ[p] && IntegerQ[m]
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Uni
ntegrable[(f*x)^m*(d + e*x^2)^p*(a + b*ArcSinh[c*x])^n, x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x]
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((h_.)*(x_))^(m_.)*((d_) + (e_.)*(x_))^(p_)*((f_) + (g_.)*(x_))^
(q_), x_Symbol] :> Simp[((-d^2)*(g/e))^q Int[(h*x)^m*(d + e*x)^(p - q)*(1 + c^2*x^2)^q*(a + b*ArcSinh[c*x])^
n, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, m, n}, x] && EqQ[e*f + d*g, 0] && EqQ[c^2*d^2 + e^2, 0] && HalfInt
egerQ[p, q] && GeQ[p - q, 0] && GtQ[d, 0] && LtQ[g/e, 0]
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((h_.)*(x_))^(m_.)*((d_) + (e_.)*(x_))^(p_)*((f_) + (g_.)*(x_))^
(q_), x_Symbol] :> Simp[((-d^2)*(g/e))^IntPart[q]*(d + e*x)^FracPart[q]*((f + g*x)^FracPart[q]/(1 + c^2*x^2)^F
racPart[q]) Int[(h*x)^m*(d + e*x)^(p - q)*(1 + c^2*x^2)^q*(a + b*ArcSinh[c*x])^n, x], x] /; FreeQ[{a, b, c,
d, e, f, g, h, m, n}, x] && EqQ[e*f + d*g, 0] && EqQ[c^2*d^2 + e^2, 0] && HalfIntegerQ[p, q] && GeQ[p - q, 0]
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)/((d_.) + (e_.)*(x_)), x_Symbol] :> Subst[Int[(a + b*x)^n*(Cosh[x
]/(c*d + e*Sinh[x])), x], x, ArcSinh[c*x]] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[n, 0]
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((d_.) + (e_.)*(x_))^(m_.), x_Symbol] :> Simp[(d + e*x)^(m + 1)*
((a + b*ArcSinh[c*x])^n/(e*(m + 1))), x] - Simp[b*c*(n/(e*(m + 1))) Int[(d + e*x)^(m + 1)*((a + b*ArcSinh[c*
x])^(n - 1)/Sqrt[1 + c^2*x^2]), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && IGtQ[n, 0] && NeQ[m, -1]
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*((d_) + (e_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(d +
e*x)^m*(a + b*ArcSinh[c*x])^n, x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[m, 0] && LtQ[n, -1]
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((d_.) + (e_.)*(x_))^(m_.), x_Symbol] :> Simp[1/c^(m + 1) Subs
t[Int[(a + b*x)^n*Cosh[x]*(c*d + e*Sinh[x])^m, x], x, ArcSinh[c*x]], x] /; FreeQ[{a, b, c, d, e, n}, x] && IGt
Q[m, 0]
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))*(Px_), x_Symbol] :> With[{u = IntHide[ExpandExpression[Px, x], x]}, Si
mp[(a + b*ArcSinh[c*x]) u, x] - Simp[b*c Int[SimplifyIntegrand[u/Sqrt[1 + c^2*x^2], x], x], x]] /; FreeQ[{
a, b, c}, x] && PolynomialQ[Px, x]
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*(Px_), x_Symbol] :> Int[ExpandIntegrand[Px*(a + b*ArcSinh[c*x])^n
, x], x] /; FreeQ[{a, b, c, n}, x] && PolynomialQ[Px, x]
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))*(Px_)*((d_.) + (e_.)*(x_))^(m_.), x_Symbol] :> With[{u = IntHide[Px*(d
+ e*x)^m, x]}, Simp[(a + b*ArcSinh[c*x]) u, x] - Simp[b*c Int[SimplifyIntegrand[u/Sqrt[1 + c^2*x^2], x],
x], x]] /; FreeQ[{a, b, c, d, e, m}, x] && PolynomialQ[Px, x]
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(p_.), x_Symbol] :>
With[{u = IntHide[(f + g*x)^p*(d + e*x)^m, x]}, Simp[(a + b*ArcSinh[c*x])^n u, x] - Simp[b*c*n Int[Simpli
fyIntegrand[u*((a + b*ArcSinh[c*x])^(n - 1)/Sqrt[1 + c^2*x^2]), x], x], x]] /; FreeQ[{a, b, c, d, e, f, g}, x]
&& IGtQ[n, 0] && IGtQ[p, 0] && ILtQ[m, 0] && LtQ[m + p + 1, 0]
-
Int[(((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*((f_.) + (g_.)*(x_) + (h_.)*(x_)^2)^(p_.))/((d_) + (e_.)*(x_))^2
, x_Symbol] :> With[{u = IntHide[(f + g*x + h*x^2)^p/(d + e*x)^2, x]}, Simp[(a + b*ArcSinh[c*x])^n u, x] - S
imp[b*c*n Int[SimplifyIntegrand[u*((a + b*ArcSinh[c*x])^(n - 1)/Sqrt[1 + c^2*x^2]), x], x], x]] /; FreeQ[{a,
b, c, d, e, f, g, h}, x] && IGtQ[n, 0] && IGtQ[p, 0] && EqQ[e*g - 2*d*h, 0]
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*(Px_)*((d_) + (e_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegran
d[Px*(d + e*x)^m*(a + b*ArcSinh[c*x])^n, x], x] /; FreeQ[{a, b, c, d, e}, x] && PolynomialQ[Px, x] && IGtQ[n,
0] && IntegerQ[m]
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))*((f_) + (g_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Wit
h[{u = IntHide[(f + g*x)^m*(d + e*x^2)^p, x]}, Simp[(a + b*ArcSinh[c*x]) u, x] - Simp[b*c Int[1/Sqrt[1 + c
^2*x^2] u, x], x]] /; FreeQ[{a, b, c, d, e, f, g}, x] && EqQ[e, c^2*d] && IGtQ[m, 0] && ILtQ[p + 1/2, 0] &&
GtQ[d, 0] && (LtQ[m, -2*p - 1] || GtQ[m, 3])
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_) + (g_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol]
:> Int[ExpandIntegrand[(d + e*x^2)^p*(a + b*ArcSinh[c*x])^n, (f + g*x)^m, x], x] /; FreeQ[{a, b, c, d, e, f, g
}, x] && EqQ[e, c^2*d] && IGtQ[m, 0] && IntegerQ[p + 1/2] && GtQ[d, 0] && IGtQ[n, 0] && ((EqQ[n, 1] && GtQ[p,
-1]) || GtQ[p, 0] || EqQ[m, 1] || (EqQ[m, 2] && LtQ[p, -2]))
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.) + (g_.)*(x_))^(m_)*Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :
> Simp[(f + g*x)^m*(d + e*x^2)*((a + b*ArcSinh[c*x])^(n + 1)/(b*c*Sqrt[d]*(n + 1))), x] - Simp[1/(b*c*Sqrt[d]*
(n + 1)) Int[(d*g*m + 2*e*f*x + e*g*(m + 2)*x^2)*(f + g*x)^(m - 1)*(a + b*ArcSinh[c*x])^(n + 1), x], x] /; F
reeQ[{a, b, c, d, e, f, g}, x] && EqQ[e, c^2*d] && ILtQ[m, 0] && GtQ[d, 0] && IGtQ[n, 0]
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_) + (g_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol]
:> Int[ExpandIntegrand[Sqrt[d + e*x^2]*(a + b*ArcSinh[c*x])^n, (f + g*x)^m*(d + e*x^2)^(p - 1/2), x], x] /; Fr
eeQ[{a, b, c, d, e, f, g}, x] && EqQ[e, c^2*d] && IntegerQ[m] && IGtQ[p + 1/2, 0] && GtQ[d, 0] && IGtQ[n, 0]
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_) + (g_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol]
:> Simp[(f + g*x)^m*(d + e*x^2)^(p + 1/2)*((a + b*ArcSinh[c*x])^(n + 1)/(b*c*Sqrt[d]*(n + 1))), x] - Simp[1/(b
*c*Sqrt[d]*(n + 1)) Int[ExpandIntegrand[(f + g*x)^(m - 1)*(a + b*ArcSinh[c*x])^(n + 1), (d*g*m + e*f*(2*p +
1)*x + e*g*(m + 2*p + 1)*x^2)*(d + e*x^2)^(p - 1/2), x], x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && EqQ[e, c
^2*d] && ILtQ[m, 0] && IGtQ[p - 1/2, 0] && GtQ[d, 0] && IGtQ[n, 0]
-
Int[(((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*((f_) + (g_.)*(x_))^(m_.))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol]
:> Simp[(f + g*x)^m*((a + b*ArcSinh[c*x])^(n + 1)/(b*c*Sqrt[d]*(n + 1))), x] - Simp[g*(m/(b*c*Sqrt[d]*(n + 1))
) Int[(f + g*x)^(m - 1)*(a + b*ArcSinh[c*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && EqQ[e, c^
2*d] && IGtQ[m, 0] && GtQ[d, 0] && LtQ[n, -1]
-
Int[(((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_) + (g_.)*(x_))^(m_.))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol]
:> Simp[1/(c^(m + 1)*Sqrt[d]) Subst[Int[(a + b*x)^n*(c*f + g*Sinh[x])^m, x], x, ArcSinh[c*x]], x] /; FreeQ[
{a, b, c, d, e, f, g, n}, x] && EqQ[e, c^2*d] && IntegerQ[m] && GtQ[d, 0] && (GtQ[m, 0] || IGtQ[n, 0])
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_) + (g_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol]
:> Int[ExpandIntegrand[(a + b*ArcSinh[c*x])^n/Sqrt[d + e*x^2], (f + g*x)^m*(d + e*x^2)^(p + 1/2), x], x] /; Fr
eeQ[{a, b, c, d, e, f, g}, x] && EqQ[e, c^2*d] && IntegerQ[m] && ILtQ[p + 1/2, 0] && GtQ[d, 0] && IGtQ[n, 0]
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_) + (g_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol]
:> Simp[Simp[(d + e*x^2)^p/(1 + c^2*x^2)^p] Int[(f + g*x)^m*(1 + c^2*x^2)^p*(a + b*ArcSinh[c*x])^n, x], x] /
; FreeQ[{a, b, c, d, e, f, g, n}, x] && EqQ[e, c^2*d] && IntegerQ[m] && IntegerQ[p - 1/2] && !GtQ[d, 0]
-
Int[(Log[(h_.)*((f_.) + (g_.)*(x_))^(m_.)]*((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.))/Sqrt[(d_) + (e_.)*(x_)^2
], x_Symbol] :> Simp[Log[h*(f + g*x)^m]*((a + b*ArcSinh[c*x])^(n + 1)/(b*c*Sqrt[d]*(n + 1))), x] - Simp[g*(m/(
b*c*Sqrt[d]*(n + 1))) Int[(a + b*ArcSinh[c*x])^(n + 1)/(f + g*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h, m
}, x] && EqQ[e, c^2*d] && GtQ[d, 0] && IGtQ[n, 0]
-
Int[Log[(h_.)*((f_.) + (g_.)*(x_))^(m_.)]*((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_)
, x_Symbol] :> Simp[Simp[(d + e*x^2)^p/(1 + c^2*x^2)^p] Int[Log[h*(f + g*x)^m]*(1 + c^2*x^2)^p*(a + b*ArcSin
h[c*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, h, m, n}, x] && EqQ[e, c^2*d] && IntegerQ[p - 1/2] && !GtQ[d
, 0]
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))*((d_) + (e_.)*(x_))^(m_)*((f_) + (g_.)*(x_))^(m_), x_Symbol] :> With[{
u = IntHide[(d + e*x)^m*(f + g*x)^m, x]}, Simp[(a + b*ArcSinh[c*x]) u, x] - Simp[b*c Int[1/Sqrt[1 + c^2*x^
2] u, x], x]] /; FreeQ[{a, b, c, d, e, f, g}, x] && ILtQ[m + 1/2, 0]
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_))^(m_.)*((f_) + (g_.)*(x_))^(m_.), x_Symbol] :
> Int[ExpandIntegrand[(a + b*ArcSinh[c*x])^n, (d + e*x)^m*(f + g*x)^m, x], x] /; FreeQ[{a, b, c, d, e, f, g, n
}, x] && IntegerQ[m]
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))*(u_), x_Symbol] :> With[{v = IntHide[u, x]}, Simp[(a + b*ArcSinh[c*x])
v, x] - Simp[b*c Int[SimplifyIntegrand[v/Sqrt[1 + c^2*x^2], x], x], x] /; InverseFunctionFreeQ[v, x]] /;
FreeQ[{a, b, c}, x]
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*(Px_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> With[{u = ExpandIn
tegrand[Px*(d + e*x^2)^p*(a + b*ArcSinh[c*x])^n, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c, d, e, n}, x] &&
PolynomialQ[Px, x] && EqQ[e, c^2*d] && IntegerQ[p - 1/2]
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*(Px_.)*((f_) + (g_.)*((d_) + (e_.)*(x_)^2)^(p_))^(m_.), x_Symbol
] :> With[{u = ExpandIntegrand[Px*(f + g*(d + e*x^2)^p)^m*(a + b*ArcSinh[c*x])^n, x]}, Int[u, x] /; SumQ[u]] /
; FreeQ[{a, b, c, d, e, f, g}, x] && PolynomialQ[Px, x] && EqQ[e, c^2*d] && IGtQ[p + 1/2, 0] && IntegersQ[m, n
]
-
Int[ArcSinh[(c_.)*(x_)]^(n_.)*(RFx_), x_Symbol] :> With[{u = ExpandIntegrand[ArcSinh[c*x]^n, RFx, x]}, Int[u,
x] /; SumQ[u]] /; FreeQ[c, x] && RationalFunctionQ[RFx, x] && IGtQ[n, 0]
-
Int[(ArcSinh[(c_.)*(x_)]*(b_.) + (a_))^(n_.)*(RFx_), x_Symbol] :> Int[ExpandIntegrand[RFx*(a + b*ArcSinh[c*x])
^n, x], x] /; FreeQ[{a, b, c}, x] && RationalFunctionQ[RFx, x] && IGtQ[n, 0]
-
Int[ArcSinh[(c_.)*(x_)]^(n_.)*(RFx_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> With[{u = ExpandIntegrand[(d + e
*x^2)^p*ArcSinh[c*x]^n, RFx, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{c, d, e}, x] && RationalFunctionQ[RFx, x] &&
IGtQ[n, 0] && EqQ[e, c^2*d] && IntegerQ[p - 1/2]
-
Int[(ArcSinh[(c_.)*(x_)]*(b_.) + (a_))^(n_.)*(RFx_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Int[ExpandIntegra
nd[(d + e*x^2)^p, RFx*(a + b*ArcSinh[c*x])^n, x], x] /; FreeQ[{a, b, c, d, e}, x] && RationalFunctionQ[RFx, x]
&& IGtQ[n, 0] && EqQ[e, c^2*d] && IntegerQ[p - 1/2]
-
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*(u_.), x_Symbol] :> Unintegrable[u*(a + b*ArcSinh[c*x])^n, x] /;
FreeQ[{a, b, c, n}, x]
-
Int[((a_.) + ArcSinh[(c_) + (d_.)*(x_)]*(b_.))^(n_.), x_Symbol] :> Simp[1/d Subst[Int[(a + b*ArcSinh[x])^n,
x], x, c + d*x], x] /; FreeQ[{a, b, c, d, n}, x]
-
Int[((a_.) + ArcSinh[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[1/d Subst
[Int[((d*e - c*f)/d + f*(x/d))^m*(a + b*ArcSinh[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n},
x]
-
Int[((a_.) + ArcSinh[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((A_.) + (B_.)*(x_) + (C_.)*(x_)^2)^(p_.), x_Symbol] :> S
imp[1/d Subst[Int[(C/d^2 + (C/d^2)*x^2)^p*(a + b*ArcSinh[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, A,
B, C, n, p}, x] && EqQ[B*(1 + c^2) - 2*A*c*d, 0] && EqQ[2*c*C - B*d, 0]
-
Int[((a_.) + ArcSinh[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m_.)*((A_.) + (B_.)*(x_) + (C_.)*(x
_)^2)^(p_.), x_Symbol] :> Simp[1/d Subst[Int[((d*e - c*f)/d + f*(x/d))^m*(C/d^2 + (C/d^2)*x^2)^p*(a + b*ArcS
inh[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m, n, p}, x] && EqQ[B*(1 + c^2) - 2*A*c*d,
0] && EqQ[2*c*C - B*d, 0]
-
Int[Sqrt[(a_.) + ArcSinh[(c_) + (d_.)*(x_)^2]*(b_.)], x_Symbol] :> Simp[x*Sqrt[a + b*ArcSinh[c + d*x^2]], x] +
(-Simp[Sqrt[Pi]*x*(Cosh[a/(2*b)] - c*Sinh[a/(2*b)])*(FresnelC[Sqrt[-c/(Pi*b)]*Sqrt[a + b*ArcSinh[c + d*x^2]]]
/(Sqrt[-(c/b)]*(Cosh[ArcSinh[c + d*x^2]/2] + c*Sinh[ArcSinh[c + d*x^2]/2]))), x] + Simp[Sqrt[Pi]*x*(Cosh[a/(2*
b)] + c*Sinh[a/(2*b)])*(FresnelS[Sqrt[-c/(Pi*b)]*Sqrt[a + b*ArcSinh[c + d*x^2]]]/(Sqrt[-(c/b)]*(Cosh[ArcSinh[c
+ d*x^2]/2] + c*Sinh[ArcSinh[c + d*x^2]/2]))), x]) /; FreeQ[{a, b, c, d}, x] && EqQ[c^2, -1]
-
Int[((a_.) + ArcSinh[(c_) + (d_.)*(x_)^2]*(b_.))^(n_), x_Symbol] :> Simp[x*(a + b*ArcSinh[c + d*x^2])^n, x] +
(-Simp[2*b*n*Sqrt[2*c*d*x^2 + d^2*x^4]*((a + b*ArcSinh[c + d*x^2])^(n - 1)/(d*x)), x] + Simp[4*b^2*n*(n - 1)
Int[(a + b*ArcSinh[c + d*x^2])^(n - 2), x], x]) /; FreeQ[{a, b, c, d}, x] && EqQ[c^2, -1] && GtQ[n, 1]
-
Int[((a_.) + ArcSinh[(c_) + (d_.)*(x_)^2]*(b_.))^(-1), x_Symbol] :> Simp[x*(c*Cosh[a/(2*b)] - Sinh[a/(2*b)])*(
CoshIntegral[(a + b*ArcSinh[c + d*x^2])/(2*b)]/(2*b*(Cosh[ArcSinh[c + d*x^2]/2] + c*Sinh[(1/2)*ArcSinh[c + d*x
^2]]))), x] + Simp[x*(Cosh[a/(2*b)] - c*Sinh[a/(2*b)])*(SinhIntegral[(a + b*ArcSinh[c + d*x^2])/(2*b)]/(2*b*(C
osh[ArcSinh[c + d*x^2]/2] + c*Sinh[(1/2)*ArcSinh[c + d*x^2]]))), x] /; FreeQ[{a, b, c, d}, x] && EqQ[c^2, -1]
-
Int[1/Sqrt[(a_.) + ArcSinh[(c_) + (d_.)*(x_)^2]*(b_.)], x_Symbol] :> Simp[(c + 1)*Sqrt[Pi/2]*x*(Cosh[a/(2*b)]
- Sinh[a/(2*b)])*(Erfi[Sqrt[a + b*ArcSinh[c + d*x^2]]/Sqrt[2*b]]/(2*Sqrt[b]*(Cosh[ArcSinh[c + d*x^2]/2] + c*Si
nh[ArcSinh[c + d*x^2]/2]))), x] + Simp[(c - 1)*Sqrt[Pi/2]*x*(Cosh[a/(2*b)] + Sinh[a/(2*b)])*(Erf[Sqrt[a + b*Ar
cSinh[c + d*x^2]]/Sqrt[2*b]]/(2*Sqrt[b]*(Cosh[ArcSinh[c + d*x^2]/2] + c*Sinh[ArcSinh[c + d*x^2]/2]))), x] /; F
reeQ[{a, b, c, d}, x] && EqQ[c^2, -1]
-
Int[((a_.) + ArcSinh[(c_) + (d_.)*(x_)^2]*(b_.))^(-3/2), x_Symbol] :> Simp[-Sqrt[2*c*d*x^2 + d^2*x^4]/(b*d*x*S
qrt[a + b*ArcSinh[c + d*x^2]]), x] + (-Simp[(-c/b)^(3/2)*Sqrt[Pi]*x*(Cosh[a/(2*b)] - c*Sinh[a/(2*b)])*(Fresnel
C[Sqrt[-c/(Pi*b)]*Sqrt[a + b*ArcSinh[c + d*x^2]]]/(Cosh[ArcSinh[c + d*x^2]/2] + c*Sinh[ArcSinh[c + d*x^2]/2]))
, x] + Simp[(-c/b)^(3/2)*Sqrt[Pi]*x*(Cosh[a/(2*b)] + c*Sinh[a/(2*b)])*(FresnelS[Sqrt[-c/(Pi*b)]*Sqrt[a + b*Arc
Sinh[c + d*x^2]]]/(Cosh[ArcSinh[c + d*x^2]/2] + c*Sinh[ArcSinh[c + d*x^2]/2])), x]) /; FreeQ[{a, b, c, d}, x]
&& EqQ[c^2, -1]
-
Int[((a_.) + ArcSinh[(c_) + (d_.)*(x_)^2]*(b_.))^(-2), x_Symbol] :> Simp[-Sqrt[2*c*d*x^2 + d^2*x^4]/(2*b*d*x*(
a + b*ArcSinh[c + d*x^2])), x] + (Simp[x*(Cosh[a/(2*b)] - c*Sinh[a/(2*b)])*(CoshIntegral[(a + b*ArcSinh[c + d*
x^2])/(2*b)]/(4*b^2*(Cosh[ArcSinh[c + d*x^2]/2] + c*Sinh[ArcSinh[c + d*x^2]/2]))), x] + Simp[x*(c*Cosh[a/(2*b)
] - Sinh[a/(2*b)])*(SinhIntegral[(a + b*ArcSinh[c + d*x^2])/(2*b)]/(4*b^2*(Cosh[ArcSinh[c + d*x^2]/2] + c*Sinh
[ArcSinh[c + d*x^2]/2]))), x]) /; FreeQ[{a, b, c, d}, x] && EqQ[c^2, -1]
-
Int[((a_.) + ArcSinh[(c_) + (d_.)*(x_)^2]*(b_.))^(n_), x_Symbol] :> Simp[(-x)*((a + b*ArcSinh[c + d*x^2])^(n +
2)/(4*b^2*(n + 1)*(n + 2))), x] + (Simp[Sqrt[2*c*d*x^2 + d^2*x^4]*((a + b*ArcSinh[c + d*x^2])^(n + 1)/(2*b*d*
(n + 1)*x)), x] + Simp[1/(4*b^2*(n + 1)*(n + 2)) Int[(a + b*ArcSinh[c + d*x^2])^(n + 2), x], x]) /; FreeQ[{a
, b, c, d}, x] && EqQ[c^2, -1] && LtQ[n, -1] && NeQ[n, -2]
-
Int[ArcSinh[(a_.)*(x_)^(p_)]^(n_.)/(x_), x_Symbol] :> Simp[1/p Subst[Int[x^n*Coth[x], x], x, ArcSinh[a*x^p]]
, x] /; FreeQ[{a, p}, x] && IGtQ[n, 0]
-
Int[ArcSinh[(c_.)/((a_.) + (b_.)*(x_)^(n_.))]^(m_.)*(u_.), x_Symbol] :> Int[u*ArcCsch[a/c + b*(x^n/c)]^m, x] /
; FreeQ[{a, b, c, n, m}, x]
-
Int[ArcSinh[Sqrt[-1 + (b_.)*(x_)^2]]^(n_.)/Sqrt[-1 + (b_.)*(x_)^2], x_Symbol] :> Simp[Sqrt[b*x^2]/(b*x) Subs
t[Int[ArcSinh[x]^n/Sqrt[1 + x^2], x], x, Sqrt[-1 + b*x^2]], x] /; FreeQ[{b, n}, x]
-
Int[(f_)^(ArcSinh[(a_.) + (b_.)*(x_)]^(n_.)*(c_.)), x_Symbol] :> Simp[1/b Subst[Int[f^(c*x^n)*Cosh[x], x], x
, ArcSinh[a + b*x]], x] /; FreeQ[{a, b, c, f}, x] && IGtQ[n, 0]
-
Int[(f_)^(ArcSinh[(a_.) + (b_.)*(x_)]^(n_.)*(c_.))*(x_)^(m_.), x_Symbol] :> Simp[1/b Subst[Int[(-a/b + Sinh[
x]/b)^m*f^(c*x^n)*Cosh[x], x], x, ArcSinh[a + b*x]], x] /; FreeQ[{a, b, c, f}, x] && IGtQ[m, 0] && IGtQ[n, 0]
-
Int[ArcSinh[u_], x_Symbol] :> Simp[x*ArcSinh[u], x] - Int[SimplifyIntegrand[x*(D[u, x]/Sqrt[1 + u^2]), x], x]
/; InverseFunctionFreeQ[u, x] && !FunctionOfExponentialQ[u, x]
-
Int[((a_.) + ArcSinh[u_]*(b_.))*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(c + d*x)^(m + 1)*((a + b*ArcSin
h[u])/(d*(m + 1))), x] - Simp[b/(d*(m + 1)) Int[SimplifyIntegrand[(c + d*x)^(m + 1)*(D[u, x]/Sqrt[1 + u^2]),
x], x], x] /; FreeQ[{a, b, c, d, m}, x] && NeQ[m, -1] && InverseFunctionFreeQ[u, x] && !FunctionOfQ[(c + d*x
)^(m + 1), u, x] && !FunctionOfExponentialQ[u, x]
-
Int[((a_.) + ArcSinh[u_]*(b_.))*(v_), x_Symbol] :> With[{w = IntHide[v, x]}, Simp[(a + b*ArcSinh[u]) w, x] -
Simp[b Int[SimplifyIntegrand[w*(D[u, x]/Sqrt[1 + u^2]), x], x], x] /; InverseFunctionFreeQ[w, x]] /; FreeQ[
{a, b}, x] && InverseFunctionFreeQ[u, x] && !MatchQ[v, ((c_.) + (d_.)*x)^(m_.) /; FreeQ[{c, d, m}, x]]
-
Int[E^(ArcSinh[u_]*(n_.)), x_Symbol] :> Int[(u + Sqrt[1 + u^2])^n, x] /; IntegerQ[n] && PolyQ[u, x]
-
Int[E^(ArcSinh[u_]*(n_.))*(x_)^(m_.), x_Symbol] :> Int[x^m*(u + Sqrt[1 + u^2])^n, x] /; RationalQ[m] && Intege
rQ[n] && PolyQ[u, x]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.), x_Symbol] :> Simp[x*(a + b*ArcCosh[c*x])^n, x] - Simp[b*c*n I
nt[x*((a + b*ArcCosh[c*x])^(n - 1)/(Sqrt[1 + c*x]*Sqrt[-1 + c*x])), x], x] /; FreeQ[{a, b, c}, x] && GtQ[n, 0]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[Sqrt[1 + c*x]*Sqrt[-1 + c*x]*((a + b*ArcCosh[c
*x])^(n + 1)/(b*c*(n + 1))), x] - Simp[c/(b*(n + 1)) Int[x*((a + b*ArcCosh[c*x])^(n + 1)/(Sqrt[1 + c*x]*Sqrt
[-1 + c*x])), x], x] /; FreeQ[{a, b, c}, x] && LtQ[n, -1]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[1/(b*c) Subst[Int[x^n*Sinh[-a/b + x/b], x],
x, a + b*ArcCosh[c*x]], x] /; FreeQ[{a, b, c, n}, x]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)/(x_), x_Symbol] :> Simp[1/b Subst[Int[x^n*Tanh[-a/b + x/b], x]
, x, a + b*ArcCosh[c*x]], x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(d*x)^(m + 1)*((a + b*ArcC
osh[c*x])^n/(d*(m + 1))), x] - Simp[b*c*(n/(d*(m + 1))) Int[(d*x)^(m + 1)*((a + b*ArcCosh[c*x])^(n - 1)/(Sqr
t[1 + c*x]*Sqrt[-1 + c*x])), x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && NeQ[m, -1]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)*((a + b*ArcCosh[c*x])^n/(
m + 1)), x] - Simp[b*c*(n/(m + 1)) Int[x^(m + 1)*((a + b*ArcCosh[c*x])^(n - 1)/(Sqrt[1 + c*x]*Sqrt[-1 + c*x]
)), x], x] /; FreeQ[{a, b, c}, x] && IGtQ[m, 0] && GtQ[n, 0]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[x^m*Sqrt[1 + c*x]*Sqrt[-1 + c*x]*((
a + b*ArcCosh[c*x])^(n + 1)/(b*c*(n + 1))), x] + Simp[1/(b^2*c^(m + 1)*(n + 1)) Subst[Int[ExpandTrigReduce[x
^(n + 1), Cosh[-a/b + x/b]^(m - 1)*(m - (m + 1)*Cosh[-a/b + x/b]^2), x], x], x, a + b*ArcCosh[c*x]], x] /; Fre
eQ[{a, b, c}, x] && IGtQ[m, 0] && GeQ[n, -2] && LtQ[n, -1]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[x^m*Sqrt[1 + c*x]*Sqrt[-1 + c*x]*((
a + b*ArcCosh[c*x])^(n + 1)/(b*c*(n + 1))), x] + (-Simp[c*((m + 1)/(b*(n + 1))) Int[x^(m + 1)*((a + b*ArcCos
h[c*x])^(n + 1)/(Sqrt[1 + c*x]*Sqrt[-1 + c*x])), x], x] + Simp[m/(b*c*(n + 1)) Int[x^(m - 1)*((a + b*ArcCosh
[c*x])^(n + 1)/(Sqrt[1 + c*x]*Sqrt[-1 + c*x])), x], x]) /; FreeQ[{a, b, c}, x] && IGtQ[m, 0] && LtQ[n, -2]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[1/(b*c^(m + 1)) Subst[Int[x^n*Cos
h[-a/b + x/b]^m*Sinh[-a/b + x/b], x], x, a + b*ArcCosh[c*x]], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[m, 0]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Unintegrable[(d*x)^m*(a + b*Arc
Cosh[c*x])^n, x] /; FreeQ[{a, b, c, d, m, n}, x]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((d1_) + (e1_.)*(x_))^(p_.)*((d2_) + (e2_.)*(x_))^(p_.), x_Symbo
l] :> Int[(d1*d2 + e1*e2*x^2)^p*(a + b*ArcCosh[c*x])^n, x] /; FreeQ[{a, b, c, d1, e1, d2, e2, n}, x] && EqQ[d2
*e1 + d1*e2, 0] && IntegerQ[p]
-
Int[1/(((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))*Sqrt[(d_) + (e_.)*(x_)^2]), x_Symbol] :> Simp[(1/(b*c))*Simp[Sqrt[1
+ c*x]*(Sqrt[-1 + c*x]/Sqrt[d + e*x^2])]*Log[a + b*ArcCosh[c*x]], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*
d + e, 0]
-
Int[1/(((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))*Sqrt[(d1_) + (e1_.)*(x_)]*Sqrt[(d2_) + (e2_.)*(x_)]), x_Symbol] :>
Simp[(1/(b*c))*Simp[Sqrt[1 + c*x]/Sqrt[d1 + e1*x]]*Simp[Sqrt[-1 + c*x]/Sqrt[d2 + e2*x]]*Log[a + b*ArcCosh[c*x]
], x] /; FreeQ[{a, b, c, d1, e1, d2, e2}, x] && EqQ[e1, c*d1] && EqQ[e2, (-c)*d2]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(1/(b*c*(n + 1)))*S
imp[Sqrt[1 + c*x]*(Sqrt[-1 + c*x]/Sqrt[d + e*x^2])]*(a + b*ArcCosh[c*x])^(n + 1), x] /; FreeQ[{a, b, c, d, e,
n}, x] && EqQ[c^2*d + e, 0] && NeQ[n, -1]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)/(Sqrt[(d1_) + (e1_.)*(x_)]*Sqrt[(d2_) + (e2_.)*(x_)]), x_Symbol]
:> Simp[(1/(b*c*(n + 1)))*Simp[Sqrt[1 + c*x]/Sqrt[d1 + e1*x]]*Simp[Sqrt[-1 + c*x]/Sqrt[d2 + e2*x]]*(a + b*Arc
Cosh[c*x])^(n + 1), x] /; FreeQ[{a, b, c, d1, e1, d2, e2, n}, x] && EqQ[e1, c*d1] && EqQ[e2, (-c)*d2] && NeQ[n
, -1]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> With[{u = IntHide[(d + e*x^2
)^p, x]}, Simp[(a + b*ArcCosh[c*x]) u, x] - Simp[b*c Int[SimplifyIntegrand[u/(Sqrt[1 + c*x]*Sqrt[-1 + c*x]
), x], x], x]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[p, 0]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[x*Sqrt[d + e*x^2]*(
(a + b*ArcCosh[c*x])^n/2), x] + (-Simp[(1/2)*Simp[Sqrt[d + e*x^2]/(Sqrt[1 + c*x]*Sqrt[-1 + c*x])] Int[(a + b
*ArcCosh[c*x])^n/(Sqrt[1 + c*x]*Sqrt[-1 + c*x]), x], x] - Simp[b*c*(n/2)*Simp[Sqrt[d + e*x^2]/(Sqrt[1 + c*x]*S
qrt[-1 + c*x])] Int[x*(a + b*ArcCosh[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0
] && GtQ[n, 0]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*Sqrt[(d1_) + (e1_.)*(x_)]*Sqrt[(d2_) + (e2_.)*(x_)], x_Symbol] :
> Simp[x*Sqrt[d1 + e1*x]*Sqrt[d2 + e2*x]*((a + b*ArcCosh[c*x])^n/2), x] + (-Simp[(1/2)*Simp[Sqrt[d1 + e1*x]/Sq
rt[1 + c*x]]*Simp[Sqrt[d2 + e2*x]/Sqrt[-1 + c*x]] Int[(a + b*ArcCosh[c*x])^n/(Sqrt[1 + c*x]*Sqrt[-1 + c*x]),
x], x] - Simp[b*c*(n/2)*Simp[Sqrt[d1 + e1*x]/Sqrt[1 + c*x]]*Simp[Sqrt[d2 + e2*x]/Sqrt[-1 + c*x]] Int[x*(a +
b*ArcCosh[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d1, e1, d2, e2}, x] && EqQ[e1, c*d1] && EqQ[e2, (-c)*d2]
&& GtQ[n, 0]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[x*(d + e*x^2)^p*(
(a + b*ArcCosh[c*x])^n/(2*p + 1)), x] + (Simp[2*d*(p/(2*p + 1)) Int[(d + e*x^2)^(p - 1)*(a + b*ArcCosh[c*x])
^n, x], x] - Simp[b*c*(n/(2*p + 1))*Simp[(d + e*x^2)^p/((1 + c*x)^p*(-1 + c*x)^p)] Int[x*(1 + c*x)^(p - 1/2)
*(-1 + c*x)^(p - 1/2)*(a + b*ArcCosh[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0]
&& GtQ[n, 0] && GtQ[p, 0]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((d1_) + (e1_.)*(x_))^(p_.)*((d2_) + (e2_.)*(x_))^(p_.), x_Symbo
l] :> Simp[x*(d1 + e1*x)^p*(d2 + e2*x)^p*((a + b*ArcCosh[c*x])^n/(2*p + 1)), x] + (Simp[2*d1*d2*(p/(2*p + 1))
Int[(d1 + e1*x)^(p - 1)*(d2 + e2*x)^(p - 1)*(a + b*ArcCosh[c*x])^n, x], x] - Simp[b*c*(n/(2*p + 1))*Simp[(d1
+ e1*x)^p/(1 + c*x)^p]*Simp[(d2 + e2*x)^p/(-1 + c*x)^p] Int[x*(1 + c*x)^(p - 1/2)*(-1 + c*x)^(p - 1/2)*(a +
b*ArcCosh[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d1, e1, d2, e2}, x] && EqQ[e1, c*d1] && EqQ[e2, (-c)*d2]
&& GtQ[n, 0] && GtQ[p, 0]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)/((d_) + (e_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[x*((a + b*ArcCosh
[c*x])^n/(d*Sqrt[d + e*x^2])), x] + Simp[b*c*(n/d)*Simp[Sqrt[1 + c*x]*(Sqrt[-1 + c*x]/Sqrt[d + e*x^2])] Int[
x*((a + b*ArcCosh[c*x])^(n - 1)/(1 - c^2*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && Gt
Q[n, 0]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)/(((d1_) + (e1_.)*(x_))^(3/2)*((d2_) + (e2_.)*(x_))^(3/2)), x_Sym
bol] :> Simp[x*((a + b*ArcCosh[c*x])^n/(d1*d2*Sqrt[d1 + e1*x]*Sqrt[d2 + e2*x])), x] + Simp[b*c*(n/(d1*d2))*Sim
p[Sqrt[1 + c*x]/Sqrt[d1 + e1*x]]*Simp[Sqrt[-1 + c*x]/Sqrt[d2 + e2*x]] Int[x*((a + b*ArcCosh[c*x])^(n - 1)/(1
- c^2*x^2)), x], x] /; FreeQ[{a, b, c, d1, e1, d2, e2}, x] && EqQ[e1, c*d1] && EqQ[e2, (-c)*d2] && GtQ[n, 0]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-x)*(d + e*x^2)^(
p + 1)*((a + b*ArcCosh[c*x])^n/(2*d*(p + 1))), x] + (Simp[(2*p + 3)/(2*d*(p + 1)) Int[(d + e*x^2)^(p + 1)*(a
+ b*ArcCosh[c*x])^n, x], x] - Simp[b*c*(n/(2*(p + 1)))*Simp[(d + e*x^2)^p/((1 + c*x)^p*(-1 + c*x)^p)] Int[x
*(1 + c*x)^(p + 1/2)*(-1 + c*x)^(p + 1/2)*(a + b*ArcCosh[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e}, x] &
& EqQ[c^2*d + e, 0] && GtQ[n, 0] && LtQ[p, -1] && NeQ[p, -3/2]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((d1_) + (e1_.)*(x_))^(p_)*((d2_) + (e2_.)*(x_))^(p_), x_Symbol]
:> Simp[(-x)*(d1 + e1*x)^(p + 1)*(d2 + e2*x)^(p + 1)*((a + b*ArcCosh[c*x])^n/(2*d1*d2*(p + 1))), x] + (Simp[(
2*p + 3)/(2*d1*d2*(p + 1)) Int[(d1 + e1*x)^(p + 1)*(d2 + e2*x)^(p + 1)*(a + b*ArcCosh[c*x])^n, x], x] - Simp
[b*c*(n/(2*(p + 1)))*Simp[(d1 + e1*x)^p/(1 + c*x)^p]*Simp[(d2 + e2*x)^p/(-1 + c*x)^p] Int[x*(1 + c*x)^(p + 1
/2)*(-1 + c*x)^(p + 1/2)*(a + b*ArcCosh[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d1, e1, d2, e2}, x] && EqQ[e
1, c*d1] && EqQ[e2, (-c)*d2] && GtQ[n, 0] && LtQ[p, -1] && NeQ[p, -3/2]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[-(c*d)^(-1) Subst[Int
[(a + b*x)^n*Csch[x], x], x, ArcCosh[c*x]], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[n, 0]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[Simp[Sqrt[1 + c*x]
*Sqrt[-1 + c*x]*(d + e*x^2)^p]*((a + b*ArcCosh[c*x])^(n + 1)/(b*c*(n + 1))), x] - Simp[c*((2*p + 1)/(b*(n + 1)
))*Simp[(d + e*x^2)^p/((1 + c*x)^p*(-1 + c*x)^p)] Int[x*(1 + c*x)^(p - 1/2)*(-1 + c*x)^(p - 1/2)*(a + b*ArcC
osh[c*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2*d + e, 0] && LtQ[n, -1] && IntegerQ[2*p]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_)*((d1_) + (e1_.)*(x_))^(p_.)*((d2_) + (e2_.)*(x_))^(p_.), x_Symbol
] :> Simp[Sqrt[1 + c*x]*Sqrt[-1 + c*x]*(d1 + e1*x)^p*(d2 + e2*x)^p*((a + b*ArcCosh[c*x])^(n + 1)/(b*c*(n + 1))
), x] - Simp[c*((2*p + 1)/(b*(n + 1)))*Simp[(d1 + e1*x)^p/(1 + c*x)^p]*Simp[(d2 + e2*x)^p/(-1 + c*x)^p] Int[
x*(-1 + c^2*x^2)^(p - 1/2)*(a + b*ArcCosh[c*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d1, e1, d2, e2, p}, x] && E
qQ[e1, c*d1] && EqQ[e2, (-c)*d2] && LtQ[n, -1] && IntegerQ[p + 1/2]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(1/(b*c))*Simp[(d
+ e*x^2)^p/((1 + c*x)^p*(-1 + c*x)^p)] Subst[Int[x^n*Sinh[-a/b + x/b]^(2*p + 1), x], x, a + b*ArcCosh[c*x]]
, x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c^2*d + e, 0] && IGtQ[2*p, 0]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((d1_) + (e1_.)*(x_))^(p_.)*((d2_) + (e2_.)*(x_))^(p_.), x_Symbo
l] :> Simp[(1/(b*c))*Simp[(d1 + e1*x)^p/(1 + c*x)^p]*Simp[(d2 + e2*x)^p/(-1 + c*x)^p] Subst[Int[x^n*Sinh[-a/
b + x/b]^(2*p + 1), x], x, a + b*ArcCosh[c*x]], x] /; FreeQ[{a, b, c, d1, e1, d2, e2, n}, x] && EqQ[e1, c*d1]
&& EqQ[e2, (-c)*d2] && IGtQ[2*p, 0]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> With[{u = IntHide[(d + e*x^2
)^p, x]}, Simp[(a + b*ArcCosh[c*x]) u, x] - Simp[b*c Int[SimplifyIntegrand[u/(Sqrt[1 + c*x]*Sqrt[-1 + c*x]
), x], x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[c^2*d + e, 0] && (IGtQ[p, 0] || ILtQ[p + 1/2, 0])
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(a
+ b*ArcCosh[c*x])^n, (d + e*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, n}, x] && NeQ[c^2*d + e, 0] && IntegerQ[p
] && (p > 0 || IGtQ[n, 0])
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Unintegrable[(d + e*x^
2)^p*(a + b*ArcCosh[c*x])^n, x] /; FreeQ[{a, b, c, d, e, n, p}, x]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((d1_) + (e1_.)*(x_))^(p_.)*((d2_) + (e2_.)*(x_))^(p_.), x_Symbo
l] :> Unintegrable[(d1 + e1*x)^p*(d2 + e2*x)^p*(a + b*ArcCosh[c*x])^n, x] /; FreeQ[{a, b, c, d1, e1, d2, e2, n
, p}, x]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d1_) + (e1_.)*(x_))^(p_.)*((d2_) + (e2_.)*(
x_))^(p_.), x_Symbol] :> Int[(f*x)^m*(d1*d2 + e1*e2*x^2)^p*(a + b*ArcCosh[c*x])^n, x] /; FreeQ[{a, b, c, d1, e
1, d2, e2, f, m, n}, x] && EqQ[d2*e1 + d1*e2, 0] && IntegerQ[p]
-
Int[(((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*(x_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[1/e Subst[Int[
(a + b*x)^n*Coth[x], x], x, ArcCosh[c*x]], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[n, 0]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x^2)^
(p + 1)*((a + b*ArcCosh[c*x])^n/(2*e*(p + 1))), x] - Simp[b*(n/(2*c*(p + 1)))*Simp[(d + e*x^2)^p/((1 + c*x)^p*
(-1 + c*x)^p)] Int[(1 + c*x)^(p + 1/2)*(-1 + c*x)^(p + 1/2)*(a + b*ArcCosh[c*x])^(n - 1), x], x] /; FreeQ[{a
, b, c, d, e, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && NeQ[p, -1]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d1_) + (e1_.)*(x_))^(p_)*((d2_) + (e2_.)*(x_))^(p_), x_Sy
mbol] :> Simp[(d1 + e1*x)^(p + 1)*(d2 + e2*x)^(p + 1)*((a + b*ArcCosh[c*x])^n/(2*e1*e2*(p + 1))), x] - Simp[b*
(n/(2*c*(p + 1)))*Simp[(d1 + e1*x)^p/(1 + c*x)^p]*Simp[(d2 + e2*x)^p/(-1 + c*x)^p] Int[(1 + c*x)^(p + 1/2)*(
-1 + c*x)^(p + 1/2)*(a + b*ArcCosh[c*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d1, e1, d2, e2, p}, x] && EqQ[e1,
c*d1] && EqQ[e2, (-c)*d2] && GtQ[n, 0] && NeQ[p, -1]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)/((x_)*((d_) + (e_.)*(x_)^2)), x_Symbol] :> Simp[-d^(-1) Subst[
Int[(a + b*x)^n/(Cosh[x]*Sinh[x]), x], x, ArcCosh[c*x]], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0]
&& IGtQ[n, 0]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp
[(f*x)^(m + 1)*(d + e*x^2)^(p + 1)*((a + b*ArcCosh[c*x])^n/(d*f*(m + 1))), x] + Simp[b*c*(n/(f*(m + 1)))*Simp[
(d + e*x^2)^p/((1 + c*x)^p*(-1 + c*x)^p)] Int[(f*x)^(m + 1)*(1 + c*x)^(p + 1/2)*(-1 + c*x)^(p + 1/2)*(a + b*
ArcCosh[c*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && EqQ[m
+ 2*p + 3, 0] && NeQ[m, -1]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d1_) + (e1_.)*(x_))^(p_)*((d2_) + (e2_.)*(x_
))^(p_), x_Symbol] :> Simp[(f*x)^(m + 1)*(d1 + e1*x)^(p + 1)*(d2 + e2*x)^(p + 1)*((a + b*ArcCosh[c*x])^n/(d1*d
2*f*(m + 1))), x] + Simp[b*c*(n/(f*(m + 1)))*Simp[(d1 + e1*x)^p/(1 + c*x)^p]*Simp[(d2 + e2*x)^p/(-1 + c*x)^p]
Int[(f*x)^(m + 1)*(1 + c*x)^(p + 1/2)*(-1 + c*x)^(p + 1/2)*(a + b*ArcCosh[c*x])^(n - 1), x], x] /; FreeQ[{a,
b, c, d1, e1, d2, e2, f, m, p}, x] && EqQ[e1, c*d1] && EqQ[e2, (-c)*d2] && GtQ[n, 0] && EqQ[m + 2*p + 3, 0] &
& NeQ[p, -1]
-
Int[(((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))*((d_) + (e_.)*(x_)^2)^(p_.))/(x_), x_Symbol] :> Simp[(d + e*x^2)^p*((
a + b*ArcCosh[c*x])/(2*p)), x] + (Simp[d Int[(d + e*x^2)^(p - 1)*((a + b*ArcCosh[c*x])/x), x], x] - Simp[b*c
*((-d)^p/(2*p)) Int[(1 + c*x)^(p - 1/2)*(-1 + c*x)^(p - 1/2), x], x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^
2*d + e, 0] && IGtQ[p, 0]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(f*x)
^(m + 1)*(d + e*x^2)^p*((a + b*ArcCosh[c*x])/(f*(m + 1))), x] + (-Simp[b*c*((-d)^p/(f*(m + 1))) Int[(f*x)^(m
+ 1)*(1 + c*x)^(p - 1/2)*(-1 + c*x)^(p - 1/2), x], x] - Simp[2*e*(p/(f^2*(m + 1))) Int[(f*x)^(m + 2)*(d + e
*x^2)^(p - 1)*(a + b*ArcCosh[c*x]), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[c^2*d + e, 0] && IGtQ[p, 0]
&& ILtQ[(m + 1)/2, 0]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> With[{u =
IntHide[(f*x)^m*(d + e*x^2)^p, x]}, Simp[(a + b*ArcCosh[c*x]) u, x] - Simp[b*c Int[SimplifyIntegrand[u/(Sq
rt[1 + c*x]*Sqrt[-1 + c*x]), x], x], x]] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && IGtQ[p, 0]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))*(x_)^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> With[{u = IntHide[x
^m*(d + e*x^2)^p, x]}, Simp[(a + b*ArcCosh[c*x]) u, x] - Simp[b*c*Simp[Sqrt[d + e*x^2]/(Sqrt[1 + c*x]*Sqrt[-
1 + c*x])] Int[SimplifyIntegrand[u/Sqrt[d + e*x^2], x], x], x]] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d +
e, 0] && IntegerQ[p - 1/2] && NeQ[p, -2^(-1)] && (IGtQ[(m + 1)/2, 0] || ILtQ[(m + 2*p + 3)/2, 0])
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))*(x_)^(m_)*((d1_) + (e1_.)*(x_))^(p_)*((d2_) + (e2_.)*(x_))^(p_), x_Sym
bol] :> With[{u = IntHide[x^m*(d1 + e1*x)^p*(d2 + e2*x)^p, x]}, Simp[(a + b*ArcCosh[c*x]) u, x] - Simp[b*c*S
imp[Sqrt[d1 + e1*x]*(Sqrt[d2 + e2*x]/(Sqrt[1 + c*x]*Sqrt[-1 + c*x]))] Int[SimplifyIntegrand[u/(Sqrt[d1 + e1*
x]*Sqrt[d2 + e2*x]), x], x], x]] /; FreeQ[{a, b, c, d1, e1, d2, e2}, x] && EqQ[e1, c*d1] && EqQ[e2, (-c)*d2] &
& IntegerQ[p - 1/2] && NeQ[p, -2^(-1)] && (IGtQ[(m + 1)/2, 0] || ILtQ[(m + 2*p + 3)/2, 0])
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(
f*x)^(m + 1)*Sqrt[d + e*x^2]*((a + b*ArcCosh[c*x])^n/(f*(m + 1))), x] + (-Simp[b*c*(n/(f*(m + 1)))*Simp[Sqrt[d
+ e*x^2]/(Sqrt[1 + c*x]*Sqrt[-1 + c*x])] Int[(f*x)^(m + 1)*(a + b*ArcCosh[c*x])^(n - 1), x], x] - Simp[(c^2
/(f^2*(m + 1)))*Simp[Sqrt[d + e*x^2]/(Sqrt[1 + c*x]*Sqrt[-1 + c*x])] Int[(f*x)^(m + 2)*((a + b*ArcCosh[c*x])
^n/(Sqrt[1 + c*x]*Sqrt[-1 + c*x])), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0]
&& LtQ[m, -1]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*Sqrt[(d1_) + (e1_.)*(x_)]*Sqrt[(d2_) + (e2_.)*
(x_)], x_Symbol] :> Simp[(f*x)^(m + 1)*Sqrt[d1 + e1*x]*Sqrt[d2 + e2*x]*((a + b*ArcCosh[c*x])^n/(f*(m + 1))), x
] + (-Simp[b*c*(n/(f*(m + 1)))*Simp[Sqrt[d1 + e1*x]/Sqrt[1 + c*x]]*Simp[Sqrt[d2 + e2*x]/Sqrt[-1 + c*x]] Int[
(f*x)^(m + 1)*(a + b*ArcCosh[c*x])^(n - 1), x], x] - Simp[(c^2/(f^2*(m + 1)))*Simp[Sqrt[d1 + e1*x]/Sqrt[1 + c*
x]]*Simp[Sqrt[d2 + e2*x]/Sqrt[-1 + c*x]] Int[((f*x)^(m + 2)*(a + b*ArcCosh[c*x])^n)/(Sqrt[1 + c*x]*Sqrt[-1 +
c*x]), x], x]) /; FreeQ[{a, b, c, d1, e1, d2, e2, f}, x] && EqQ[e1, c*d1] && EqQ[e2, (-c)*d2] && GtQ[n, 0] &&
LtQ[m, -1]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(
f*x)^(m + 1)*Sqrt[d + e*x^2]*((a + b*ArcCosh[c*x])^n/(f*(m + 2))), x] + (-Simp[(1/(m + 2))*Simp[Sqrt[d + e*x^2
]/(Sqrt[1 + c*x]*Sqrt[-1 + c*x])] Int[(f*x)^m*((a + b*ArcCosh[c*x])^n/(Sqrt[1 + c*x]*Sqrt[-1 + c*x])), x], x
] - Simp[b*c*(n/(f*(m + 2)))*Simp[Sqrt[d + e*x^2]/(Sqrt[1 + c*x]*Sqrt[-1 + c*x])] Int[(f*x)^(m + 1)*(a + b*A
rcCosh[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && IGtQ[n, 0] && (IGtQ[m
, -2] || EqQ[n, 1])
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*Sqrt[(d1_) + (e1_.)*(x_)]*Sqrt[(d2_) + (e2_.)*
(x_)], x_Symbol] :> Simp[(f*x)^(m + 1)*Sqrt[d1 + e1*x]*Sqrt[d2 + e2*x]*((a + b*ArcCosh[c*x])^n/(f*(m + 2))), x
] + (-Simp[(1/(m + 2))*Simp[Sqrt[d1 + e1*x]/Sqrt[1 + c*x]]*Simp[Sqrt[d2 + e2*x]/Sqrt[-1 + c*x]] Int[(f*x)^m*
((a + b*ArcCosh[c*x])^n/(Sqrt[1 + c*x]*Sqrt[-1 + c*x])), x], x] - Simp[b*c*(n/(f*(m + 2)))*Simp[Sqrt[d1 + e1*x
]/Sqrt[1 + c*x]]*Simp[Sqrt[d2 + e2*x]/Sqrt[-1 + c*x]] Int[(f*x)^(m + 1)*(a + b*ArcCosh[c*x])^(n - 1), x], x]
) /; FreeQ[{a, b, c, d1, e1, d2, e2, f, m}, x] && EqQ[e1, c*d1] && EqQ[e2, (-c)*d2] && IGtQ[n, 0] && (IGtQ[m,
-2] || EqQ[n, 1])
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp
[(f*x)^(m + 1)*(d + e*x^2)^p*((a + b*ArcCosh[c*x])^n/(f*(m + 1))), x] + (-Simp[2*e*(p/(f^2*(m + 1))) Int[(f*
x)^(m + 2)*(d + e*x^2)^(p - 1)*(a + b*ArcCosh[c*x])^n, x], x] - Simp[b*c*(n/(f*(m + 1)))*Simp[(d + e*x^2)^p/((
1 + c*x)^p*(-1 + c*x)^p)] Int[(f*x)^(m + 1)*(1 + c*x)^(p - 1/2)*(-1 + c*x)^(p - 1/2)*(a + b*ArcCosh[c*x])^(n
- 1), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && GtQ[p, 0] && LtQ[m, -1]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d1_) + (e1_.)*(x_))^(p_)*((d2_) + (e2_.)*(x_
))^(p_), x_Symbol] :> Simp[(f*x)^(m + 1)*(d1 + e1*x)^p*(d2 + e2*x)^p*((a + b*ArcCosh[c*x])^n/(f*(m + 1))), x]
+ (-Simp[2*e1*e2*(p/(f^2*(m + 1))) Int[(f*x)^(m + 2)*(d1 + e1*x)^(p - 1)*(d2 + e2*x)^(p - 1)*(a + b*ArcCosh[
c*x])^n, x], x] - Simp[b*c*(n/(f*(m + 1)))*Simp[(d1 + e1*x)^p/(1 + c*x)^p]*Simp[(d2 + e2*x)^p/(-1 + c*x)^p]
Int[(f*x)^(m + 1)*(1 + c*x)^(p - 1/2)*(-1 + c*x)^(p - 1/2)*(a + b*ArcCosh[c*x])^(n - 1), x], x]) /; FreeQ[{a,
b, c, d1, e1, d2, e2, f}, x] && EqQ[e1, c*d1] && EqQ[e2, (-c)*d2] && GtQ[n, 0] && GtQ[p, 0] && LtQ[m, -1]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp
[(f*x)^(m + 1)*(d + e*x^2)^p*((a + b*ArcCosh[c*x])^n/(f*(m + 2*p + 1))), x] + (Simp[2*d*(p/(m + 2*p + 1)) In
t[(f*x)^m*(d + e*x^2)^(p - 1)*(a + b*ArcCosh[c*x])^n, x], x] - Simp[b*c*(n/(f*(m + 2*p + 1)))*Simp[(d + e*x^2)
^p/((1 + c*x)^p*(-1 + c*x)^p)] Int[(f*x)^(m + 1)*(1 + c*x)^(p - 1/2)*(-1 + c*x)^(p - 1/2)*(a + b*ArcCosh[c*x
])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && GtQ[p, 0] && !LtQ
[m, -1]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d1_) + (e1_.)*(x_))^(p_)*((d2_) + (e2_.)*(x_
))^(p_), x_Symbol] :> Simp[(f*x)^(m + 1)*(d1 + e1*x)^p*(d2 + e2*x)^p*((a + b*ArcCosh[c*x])^n/(f*(m + 2*p + 1))
), x] + (Simp[2*d1*d2*(p/(m + 2*p + 1)) Int[(f*x)^m*(d1 + e1*x)^(p - 1)*(d2 + e2*x)^(p - 1)*(a + b*ArcCosh[c
*x])^n, x], x] - Simp[b*c*(n/(f*(m + 2*p + 1)))*Simp[(d1 + e1*x)^p/(1 + c*x)^p]*Simp[(d2 + e2*x)^p/(-1 + c*x)^
p] Int[(f*x)^(m + 1)*(1 + c*x)^(p - 1/2)*(-1 + c*x)^(p - 1/2)*(a + b*ArcCosh[c*x])^(n - 1), x], x]) /; FreeQ
[{a, b, c, d1, e1, d2, e2, f, m}, x] && EqQ[e1, c*d1] && EqQ[e2, (-c)*d2] && GtQ[n, 0] && GtQ[p, 0] && !LtQ[m
, -1]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[
(f*x)^(m + 1)*(d + e*x^2)^(p + 1)*((a + b*ArcCosh[c*x])^n/(d*f*(m + 1))), x] + (Simp[c^2*((m + 2*p + 3)/(f^2*(
m + 1))) Int[(f*x)^(m + 2)*(d + e*x^2)^p*(a + b*ArcCosh[c*x])^n, x], x] + Simp[b*c*(n/(f*(m + 1)))*Simp[(d +
e*x^2)^p/((1 + c*x)^p*(-1 + c*x)^p)] Int[(f*x)^(m + 1)*(1 + c*x)^(p + 1/2)*(-1 + c*x)^(p + 1/2)*(a + b*ArcC
osh[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e, f, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && ILtQ[m, -1]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d1_) + (e1_.)*(x_))^(p_)*((d2_) + (e2_.)*(x_
))^(p_), x_Symbol] :> Simp[(f*x)^(m + 1)*(d1 + e1*x)^(p + 1)*(d2 + e2*x)^(p + 1)*((a + b*ArcCosh[c*x])^n/(d1*d
2*f*(m + 1))), x] + (Simp[c^2*((m + 2*p + 3)/(f^2*(m + 1))) Int[(f*x)^(m + 2)*(d1 + e1*x)^p*(d2 + e2*x)^p*(a
+ b*ArcCosh[c*x])^n, x], x] + Simp[b*c*(n/(f*(m + 1)))*Simp[(d1 + e1*x)^p/(1 + c*x)^p]*Simp[(d2 + e2*x)^p/(-1
+ c*x)^p] Int[(f*x)^(m + 1)*(1 + c*x)^(p + 1/2)*(-1 + c*x)^(p + 1/2)*(a + b*ArcCosh[c*x])^(n - 1), x], x])
/; FreeQ[{a, b, c, d1, e1, d2, e2, f, p}, x] && EqQ[e1, c*d1] && EqQ[e2, (-c)*d2] && GtQ[n, 0] && ILtQ[m, -1]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[
f*(f*x)^(m - 1)*(d + e*x^2)^(p + 1)*((a + b*ArcCosh[c*x])^n/(2*e*(p + 1))), x] + (-Simp[f^2*((m - 1)/(2*e*(p +
1))) Int[(f*x)^(m - 2)*(d + e*x^2)^(p + 1)*(a + b*ArcCosh[c*x])^n, x], x] - Simp[b*f*(n/(2*c*(p + 1)))*Simp
[(d + e*x^2)^p/((1 + c*x)^p*(-1 + c*x)^p)] Int[(f*x)^(m - 1)*(1 + c*x)^(p + 1/2)*(-1 + c*x)^(p + 1/2)*(a + b
*ArcCosh[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && LtQ[p, -1
] && IGtQ[m, 1]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d1_) + (e1_.)*(x_))^(p_)*((d2_) + (e2_.)*(x_
))^(p_), x_Symbol] :> Simp[f*(f*x)^(m - 1)*(d1 + e1*x)^(p + 1)*(d2 + e2*x)^(p + 1)*((a + b*ArcCosh[c*x])^n/(2*
e1*e2*(p + 1))), x] + (-Simp[f^2*((m - 1)/(2*e1*e2*(p + 1))) Int[(f*x)^(m - 2)*(d1 + e1*x)^(p + 1)*(d2 + e2*
x)^(p + 1)*(a + b*ArcCosh[c*x])^n, x], x] - Simp[b*f*(n/(2*c*(p + 1)))*Simp[(d1 + e1*x)^p/(1 + c*x)^p]*Simp[(d
2 + e2*x)^p/(-1 + c*x)^p] Int[(f*x)^(m - 1)*(1 + c*x)^(p + 1/2)*(-1 + c*x)^(p + 1/2)*(a + b*ArcCosh[c*x])^(n
- 1), x], x]) /; FreeQ[{a, b, c, d1, e1, d2, e2, f}, x] && EqQ[e1, c*d1] && EqQ[e2, (-c)*d2] && GtQ[n, 0] &&
LtQ[p, -1] && IGtQ[m, 1]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[
(-(f*x)^(m + 1))*(d + e*x^2)^(p + 1)*((a + b*ArcCosh[c*x])^n/(2*d*f*(p + 1))), x] + (Simp[(m + 2*p + 3)/(2*d*(
p + 1)) Int[(f*x)^m*(d + e*x^2)^(p + 1)*(a + b*ArcCosh[c*x])^n, x], x] - Simp[b*c*(n/(2*f*(p + 1)))*Simp[(d
+ e*x^2)^p/((1 + c*x)^p*(-1 + c*x)^p)] Int[(f*x)^(m + 1)*(1 + c*x)^(p + 1/2)*(-1 + c*x)^(p + 1/2)*(a + b*Arc
Cosh[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && LtQ[p, -1]
&& !GtQ[m, 1] && (IntegerQ[m] || IntegerQ[p] || EqQ[n, 1])
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d1_) + (e1_.)*(x_))^(p_)*((d2_) + (e2_.)*(x_
))^(p_), x_Symbol] :> Simp[(-(f*x)^(m + 1))*(d1 + e1*x)^(p + 1)*(d2 + e2*x)^(p + 1)*((a + b*ArcCosh[c*x])^n/(2
*d1*d2*f*(p + 1))), x] + (Simp[(m + 2*p + 3)/(2*d1*d2*(p + 1)) Int[(f*x)^m*(d1 + e1*x)^(p + 1)*(d2 + e2*x)^(
p + 1)*(a + b*ArcCosh[c*x])^n, x], x] - Simp[b*c*(n/(2*f*(p + 1)))*Simp[(d1 + e1*x)^p/(1 + c*x)^p]*Simp[(d2 +
e2*x)^p/(-1 + c*x)^p] Int[(f*x)^(m + 1)*(1 + c*x)^(p + 1/2)*(-1 + c*x)^(p + 1/2)*(a + b*ArcCosh[c*x])^(n - 1
), x], x]) /; FreeQ[{a, b, c, d1, e1, d2, e2, f, m}, x] && EqQ[e1, c*d1] && EqQ[e2, (-c)*d2] && GtQ[n, 0] && L
tQ[p, -1] && !GtQ[m, 1] && (IntegerQ[m] || EqQ[n, 1])
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[
f*(f*x)^(m - 1)*(d + e*x^2)^(p + 1)*((a + b*ArcCosh[c*x])^n/(e*(m + 2*p + 1))), x] + (Simp[f^2*((m - 1)/(c^2*(
m + 2*p + 1))) Int[(f*x)^(m - 2)*(d + e*x^2)^p*(a + b*ArcCosh[c*x])^n, x], x] - Simp[b*f*(n/(c*(m + 2*p + 1)
))*Simp[(d + e*x^2)^p/((1 + c*x)^p*(-1 + c*x)^p)] Int[(f*x)^(m - 1)*(1 + c*x)^(p + 1/2)*(-1 + c*x)^(p + 1/2)
*(a + b*ArcCosh[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e, f, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] &&
IGtQ[m, 1] && NeQ[m + 2*p + 1, 0]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d1_) + (e1_.)*(x_))^(p_)*((d2_) + (e2_.)*(x_
))^(p_), x_Symbol] :> Simp[f*(f*x)^(m - 1)*(d1 + e1*x)^(p + 1)*(d2 + e2*x)^(p + 1)*((a + b*ArcCosh[c*x])^n/(e1
*e2*(m + 2*p + 1))), x] + (Simp[f^2*((m - 1)/(c^2*(m + 2*p + 1))) Int[(f*x)^(m - 2)*(d1 + e1*x)^p*(d2 + e2*x
)^p*(a + b*ArcCosh[c*x])^n, x], x] - Simp[b*f*(n/(c*(m + 2*p + 1)))*Simp[(d1 + e1*x)^p/(1 + c*x)^p]*Simp[(d2 +
e2*x)^p/(-1 + c*x)^p] Int[(f*x)^(m - 1)*(1 + c*x)^(p + 1/2)*(-1 + c*x)^(p + 1/2)*(a + b*ArcCosh[c*x])^(n -
1), x], x]) /; FreeQ[{a, b, c, d1, e1, d2, e2, f, p}, x] && EqQ[e1, c*d1] && EqQ[e2, (-c)*d2] && GtQ[n, 0] &&
IGtQ[m, 1] && NeQ[m + 2*p + 1, 0]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp
[(f*x)^m*Simp[Sqrt[1 + c*x]*Sqrt[-1 + c*x]*(d + e*x^2)^p]*((a + b*ArcCosh[c*x])^(n + 1)/(b*c*(n + 1))), x] + S
imp[f*(m/(b*c*(n + 1)))*Simp[(d + e*x^2)^p/((1 + c*x)^p*(-1 + c*x)^p)] Int[(f*x)^(m - 1)*(1 + c*x)^(p - 1/2)
*(-1 + c*x)^(p - 1/2)*(a + b*ArcCosh[c*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[c^2*d
+ e, 0] && LtQ[n, -1] && EqQ[m + 2*p + 1, 0]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_)*((f_.)*(x_))^(m_.)*((d1_) + (e1_.)*(x_))^(p_)*((d2_) + (e2_.)*(x_
))^(p_), x_Symbol] :> Simp[(f*x)^m*Simp[Sqrt[1 + c*x]*Sqrt[-1 + c*x]*(d1 + e1*x)^p]*(d2 + e2*x)^p*((a + b*ArcC
osh[c*x])^(n + 1)/(b*c*(n + 1))), x] + Simp[f*(m/(b*c*(n + 1)))*Simp[(d1 + e1*x)^p/(1 + c*x)^p]*Simp[(d2 + e2*
x)^p/(-1 + c*x)^p] Int[(f*x)^(m - 1)*(1 + c*x)^(p - 1/2)*(-1 + c*x)^(p - 1/2)*(a + b*ArcCosh[c*x])^(n + 1),
x], x] /; FreeQ[{a, b, c, d1, e1, d2, e2, f, m, p}, x] && EqQ[e1, c*d1] && EqQ[e2, (-c)*d2] && LtQ[n, -1] && E
qQ[m + 2*p + 1, 0]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp
[(f*x)^m*Simp[Sqrt[1 + c*x]*Sqrt[-1 + c*x]*(d + e*x^2)^p]*((a + b*ArcCosh[c*x])^(n + 1)/(b*c*(n + 1))), x] + (
Simp[f*(m/(b*c*(n + 1)))*Simp[(d + e*x^2)^p/((1 + c*x)^p*(-1 + c*x)^p)] Int[(f*x)^(m - 1)*(1 + c*x)^(p - 1/2
)*(-1 + c*x)^(p - 1/2)*(a + b*ArcCosh[c*x])^(n + 1), x], x] - Simp[c*((m + 2*p + 1)/(b*f*(n + 1)))*Simp[(d + e
*x^2)^p/((1 + c*x)^p*(-1 + c*x)^p)] Int[(f*x)^(m + 1)*(1 + c*x)^(p - 1/2)*(-1 + c*x)^(p - 1/2)*(a + b*ArcCos
h[c*x])^(n + 1), x], x]) /; FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[c^2*d + e, 0] && LtQ[n, -1] && IGtQ[2*p,
0] && NeQ[m + 2*p + 1, 0] && IGtQ[m, -3]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_)*((f_.)*(x_))^(m_.)*((d1_) + (e1_.)*(x_))^(p_)*((d2_) + (e2_.)*(x_
))^(p_), x_Symbol] :> Simp[(f*x)^m*Sqrt[1 + c*x]*Sqrt[-1 + c*x]*(d1 + e1*x)^p*(d2 + e2*x)^p*((a + b*ArcCosh[c*
x])^(n + 1)/(b*c*(n + 1))), x] + (Simp[f*(m/(b*c*(n + 1)))*Simp[(d1 + e1*x)^p/(1 + c*x)^p]*Simp[(d2 + e2*x)^p/
(-1 + c*x)^p] Int[(f*x)^(m - 1)*(-1 + c^2*x^2)^(p - 1/2)*(a + b*ArcCosh[c*x])^(n + 1), x], x] - Simp[c*((m +
2*p + 1)/(b*f*(n + 1)))*Simp[(d1 + e1*x)^p/(1 + c*x)^p]*Simp[(d2 + e2*x)^p/(-1 + c*x)^p] Int[(f*x)^(m + 1)*
(-1 + c^2*x^2)^(p - 1/2)*(a + b*ArcCosh[c*x])^(n + 1), x], x]) /; FreeQ[{a, b, c, d1, e1, d2, e2, f, m, p}, x]
&& EqQ[e1, c*d1] && EqQ[e2, (-c)*d2] && LtQ[n, -1] && IGtQ[p + 1/2, 0] && NeQ[m + 2*p + 1, 0] && IGtQ[m, -3]
-
Int[(((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp
[f*(f*x)^(m - 1)*Sqrt[d + e*x^2]*((a + b*ArcCosh[c*x])^n/(e*m)), x] + (Simp[f^2*((m - 1)/(c^2*m)) Int[(f*x)^
(m - 2)*((a + b*ArcCosh[c*x])^n/Sqrt[d + e*x^2]), x], x] - Simp[b*f*(n/(c*m))*Simp[Sqrt[1 + c*x]*(Sqrt[-1 + c*
x]/Sqrt[d + e*x^2])] Int[(f*x)^(m - 1)*(a + b*ArcCosh[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d, e, f}, x]
&& EqQ[c^2*d + e, 0] && GtQ[n, 0] && IGtQ[m, 1]
-
Int[(((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_))/(Sqrt[(d1_) + (e1_.)*(x_)]*Sqrt[(d2_) + (e2_
.)*(x_)]), x_Symbol] :> Simp[f*(f*x)^(m - 1)*Sqrt[d1 + e1*x]*Sqrt[d2 + e2*x]*((a + b*ArcCosh[c*x])^n/(e1*e2*m)
), x] + (Simp[f^2*((m - 1)/(c^2*m)) Int[(f*x)^(m - 2)*((a + b*ArcCosh[c*x])^n/(Sqrt[d1 + e1*x]*Sqrt[d2 + e2*
x])), x], x] - Simp[b*f*(n/(c*m))*Simp[Sqrt[1 + c*x]/Sqrt[d1 + e1*x]]*Simp[Sqrt[-1 + c*x]/Sqrt[d2 + e2*x]] I
nt[(f*x)^(m - 1)*(a + b*ArcCosh[c*x])^(n - 1), x], x]) /; FreeQ[{a, b, c, d1, e1, d2, e2, f}, x] && EqQ[e1, c*
d1] && EqQ[e2, (-c)*d2] && GtQ[n, 0] && IGtQ[m, 1]
-
Int[(((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(1/c^(m
+ 1))*Simp[Sqrt[1 + c*x]*(Sqrt[-1 + c*x]/Sqrt[d + e*x^2])] Subst[Int[(a + b*x)^n*Cosh[x]^m, x], x, ArcCosh[
c*x]], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[n, 0] && IntegerQ[m]
-
Int[(((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_))/(Sqrt[(d1_) + (e1_.)*(x_)]*Sqrt[(d2_) + (e2_.)*(x_)]
), x_Symbol] :> Simp[(1/c^(m + 1))*Simp[Sqrt[1 + c*x]/Sqrt[d1 + e1*x]]*Simp[Sqrt[-1 + c*x]/Sqrt[d2 + e2*x]]
Subst[Int[(a + b*x)^n*Cosh[x]^m, x], x, ArcCosh[c*x]], x] /; FreeQ[{a, b, c, d1, e1, d2, e2}, x] && EqQ[e1, c*
d1] && EqQ[e2, (-c)*d2] && IGtQ[n, 0] && IntegerQ[m]
-
Int[(((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[((f*x
)^(m + 1)/(f*(m + 1)))*Simp[Sqrt[1 - c^2*x^2]/Sqrt[d + e*x^2]]*(a + b*ArcCosh[c*x])*Hypergeometric2F1[1/2, (1
+ m)/2, (3 + m)/2, c^2*x^2], x] + Simp[b*c*((f*x)^(m + 2)/(f^2*(m + 1)*(m + 2)))*Simp[Sqrt[1 + c*x]*(Sqrt[-1 +
c*x]/Sqrt[d + e*x^2])]*HypergeometricPFQ[{1, 1 + m/2, 1 + m/2}, {3/2 + m/2, 2 + m/2}, c^2*x^2], x] /; FreeQ[{
a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && !IntegerQ[m]
-
Int[(((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_))/(Sqrt[(d1_) + (e1_.)*(x_)]*Sqrt[(d2_) + (e2_.)*(x_
)]), x_Symbol] :> Simp[((f*x)^(m + 1)/(f*(m + 1)))*Simp[Sqrt[1 - c^2*x^2]/(Sqrt[d1 + e1*x]*Sqrt[d2 + e2*x])]*(
a + b*ArcCosh[c*x])*Hypergeometric2F1[1/2, (1 + m)/2, (3 + m)/2, c^2*x^2], x] + Simp[b*c*((f*x)^(m + 2)/(f^2*(
m + 1)*(m + 2)))*Simp[Sqrt[1 + c*x]/Sqrt[d1 + e1*x]]*Simp[Sqrt[-1 + c*x]/Sqrt[d2 + e2*x]]*HypergeometricPFQ[{1
, 1 + m/2, 1 + m/2}, {3/2 + m/2, 2 + m/2}, c^2*x^2], x] /; FreeQ[{a, b, c, d1, e1, d2, e2, f, m}, x] && EqQ[e1
, c*d1] && EqQ[e2, (-c)*d2] && !IntegerQ[m]
-
Int[(((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_)*((f_.)*(x_))^(m_.))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp
[(f*x)^m*((a + b*ArcCosh[c*x])^(n + 1)/(b*c*(n + 1)))*Simp[Sqrt[1 + c*x]*(Sqrt[-1 + c*x]/Sqrt[d + e*x^2])], x]
- Simp[f*(m/(b*c*(n + 1)))*Simp[Sqrt[1 + c*x]*(Sqrt[-1 + c*x]/Sqrt[d + e*x^2])] Int[(f*x)^(m - 1)*(a + b*Ar
cCosh[c*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && LtQ[n, -1]
-
Int[(((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_)*((f_.)*(x_))^(m_.))/(Sqrt[(d1_) + (e1_.)*(x_)]*Sqrt[(d2_) + (e2_
.)*(x_)]), x_Symbol] :> Simp[(f*x)^m*((a + b*ArcCosh[c*x])^(n + 1)/(b*c*(n + 1)))*Simp[Sqrt[1 + c*x]/Sqrt[d1 +
e1*x]]*Simp[Sqrt[-1 + c*x]/Sqrt[d2 + e2*x]], x] - Simp[f*(m/(b*c*(n + 1)))*Simp[Sqrt[1 + c*x]/Sqrt[d1 + e1*x]
]*Simp[Sqrt[-1 + c*x]/Sqrt[d2 + e2*x]] Int[(f*x)^(m - 1)*(a + b*ArcCosh[c*x])^(n + 1), x], x] /; FreeQ[{a, b
, c, d1, e1, d2, e2, f, m}, x] && EqQ[e1, c*d1] && EqQ[e2, (-c)*d2] && LtQ[n, -1]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(1/(b*
c^(m + 1)))*Simp[(d + e*x^2)^p/((1 + c*x)^p*(-1 + c*x)^p)] Subst[Int[x^n*Cosh[-a/b + x/b]^m*Sinh[-a/b + x/b]
^(2*p + 1), x], x, a + b*ArcCosh[c*x]], x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c^2*d + e, 0] && IGtQ[2*p +
2, 0] && IGtQ[m, 0]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d1_) + (e1_.)*(x_))^(p_.)*((d2_) + (e2_.)*(x_))^(p_
.), x_Symbol] :> Simp[(1/(b*c^(m + 1)))*Simp[(d1 + e1*x)^p/(1 + c*x)^p]*Simp[(d2 + e2*x)^p/(-1 + c*x)^p] Sub
st[Int[x^n*Cosh[-a/b + x/b]^m*Sinh[-a/b + x/b]^(2*p + 1), x], x, a + b*ArcCosh[c*x]], x] /; FreeQ[{a, b, c, d1
, e1, d2, e2, n}, x] && EqQ[e1, c*d1] && EqQ[e2, (-c)*d2] && IGtQ[p + 3/2, 0] && IGtQ[m, 0]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Int[E
xpandIntegrand[(a + b*ArcCosh[c*x])^n/Sqrt[d + e*x^2], (f*x)^m*(d + e*x^2)^(p + 1/2), x], x] /; FreeQ[{a, b, c
, d, e, f, m, n}, x] && EqQ[c^2*d + e, 0] && IGtQ[p + 1/2, 0] && !IGtQ[(m + 1)/2, 0] && (EqQ[m, -1] || EqQ[m,
-2])
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d1_) + (e1_.)*(x_))^(p_)*((d2_) + (e2_.)*(x_
))^(p_), x_Symbol] :> Int[ExpandIntegrand[(a + b*ArcCosh[c*x])^n/(Sqrt[d1 + e1*x]*Sqrt[d2 + e2*x]), (f*x)^m*(d
1 + e1*x)^(p + 1/2)*(d2 + e2*x)^(p + 1/2), x], x] /; FreeQ[{a, b, c, d1, e1, d2, e2, f, m, n}, x] && EqQ[e1, c
*d1] && EqQ[e2, (-c)*d2] && GtQ[d1, 0] && LtQ[d2, 0] && IGtQ[p + 1/2, 0] && !IGtQ[(m + 1)/2, 0] && (EqQ[m, -1
] || EqQ[m, -2])
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[d*(f*x)^(m
+ 1)*((a + b*ArcCosh[c*x])/(f*(m + 1))), x] + (Simp[e*(f*x)^(m + 3)*((a + b*ArcCosh[c*x])/(f^3*(m + 3))), x]
- Simp[b*(c/(f*(m + 1)*(m + 3))) Int[(f*x)^(m + 1)*((d*(m + 3) + e*(m + 1)*x^2)/(Sqrt[1 + c*x]*Sqrt[-1 + c*x
])), x], x]) /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[c^2*d + e, 0] && NeQ[m, -1] && NeQ[m, -3]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))*(x_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x^2)^(p + 1
)*((a + b*ArcCosh[c*x])/(2*e*(p + 1))), x] - Simp[b*(c/(2*e*(p + 1))) Int[(d + e*x^2)^(p + 1)/(Sqrt[1 + c*x]
*Sqrt[-1 + c*x]), x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[c^2*d + e, 0] && NeQ[p, -1]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> With[{u =
IntHide[(f*x)^m*(d + e*x^2)^p, x]}, Simp[(a + b*ArcCosh[c*x]) u, x] - Simp[b*c Int[SimplifyIntegrand[u/(S
qrt[1 + c*x]*Sqrt[-1 + c*x]), x], x], x]] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[c^2*d + e, 0] && IntegerQ[
p] && (GtQ[p, 0] || (IGtQ[(m - 1)/2, 0] && LeQ[m + p, 0]))
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Int
[ExpandIntegrand[(a + b*ArcCosh[c*x])^n, (f*x)^m*(d + e*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[
c^2*d + e, 0] && IGtQ[n, 0] && IntegerQ[p] && IntegerQ[m]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Uni
ntegrable[(f*x)^m*(d + e*x^2)^p*(a + b*ArcCosh[c*x])^n, x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d1_) + (e1_.)*(x_))^(p_.)*((d2_) + (e2_.)*(
x_))^(p_.), x_Symbol] :> Unintegrable[(f*x)^m*(d1 + e1*x)^p*(d2 + e2*x)^p*(a + b*ArcCosh[c*x])^n, x] /; FreeQ[
{a, b, c, d1, e1, d2, e2, f, m, n, p}, x]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)/((d_.) + (e_.)*(x_)), x_Symbol] :> Subst[Int[(a + b*x)^n*(Sinh[x
]/(c*d + e*Cosh[x])), x], x, ArcCosh[c*x]] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[n, 0]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((d_.) + (e_.)*(x_))^(m_.), x_Symbol] :> Simp[(d + e*x)^(m + 1)*
((a + b*ArcCosh[c*x])^n/(e*(m + 1))), x] - Simp[b*c*(n/(e*(m + 1))) Int[(d + e*x)^(m + 1)*((a + b*ArcCosh[c*
x])^(n - 1)/(Sqrt[-1 + c*x]*Sqrt[1 + c*x])), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && IGtQ[n, 0] && NeQ[m, -1
]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_)*((d_) + (e_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(d +
e*x)^m*(a + b*ArcCosh[c*x])^n, x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[m, 0] && LtQ[n, -1]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((d_.) + (e_.)*(x_))^(m_.), x_Symbol] :> Simp[1/c^(m + 1) Subs
t[Int[(a + b*x)^n*Sinh[x]*(c*d + e*Cosh[x])^m, x], x, ArcCosh[c*x]], x] /; FreeQ[{a, b, c, d, e, n}, x] && IGt
Q[m, 0]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))*(Px_), x_Symbol] :> With[{u = IntHide[ExpandExpression[Px, x], x]}, Si
mp[(a + b*ArcCosh[c*x]) u, x] - Simp[b*c*(Sqrt[1 - c^2*x^2]/(Sqrt[-1 + c*x]*Sqrt[1 + c*x])) Int[SimplifyIn
tegrand[u/Sqrt[1 - c^2*x^2], x], x], x]] /; FreeQ[{a, b, c}, x] && PolyQ[Px, x]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_)*(Px_), x_Symbol] :> Int[ExpandIntegrand[Px*(a + b*ArcCosh[c*x])^n
, x], x] /; FreeQ[{a, b, c, n}, x] && PolyQ[Px, x]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))*(Px_)*((d_.) + (e_.)*(x_))^(m_.), x_Symbol] :> With[{u = IntHide[Px*(d
+ e*x)^m, x]}, Simp[(a + b*ArcCosh[c*x]) u, x] - Simp[b*c*(Sqrt[1 - c^2*x^2]/(Sqrt[-1 + c*x]*Sqrt[1 + c*x])
) Int[SimplifyIntegrand[u/Sqrt[1 - c^2*x^2], x], x], x]] /; FreeQ[{a, b, c, d, e, m}, x] && PolyQ[Px, x]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_)*((d_) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))^(p_.), x_Symbol] :>
With[{u = IntHide[(f + g*x)^p*(d + e*x)^m, x]}, Simp[(a + b*ArcCosh[c*x])^n u, x] - Simp[b*c*n Int[Simpli
fyIntegrand[u*((a + b*ArcCosh[c*x])^(n - 1)/(Sqrt[-1 + c*x]*Sqrt[1 + c*x])), x], x], x]] /; FreeQ[{a, b, c, d,
e, f, g}, x] && IGtQ[n, 0] && IGtQ[p, 0] && ILtQ[m, 0] && LtQ[m + p + 1, 0]
-
Int[(((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_)*((f_.) + (g_.)*(x_) + (h_.)*(x_)^2)^(p_.))/((d_) + (e_.)*(x_))^2
, x_Symbol] :> With[{u = IntHide[(f + g*x + h*x^2)^p/(d + e*x)^2, x]}, Simp[(a + b*ArcCosh[c*x])^n u, x] - S
imp[b*c*n Int[SimplifyIntegrand[u*((a + b*ArcCosh[c*x])^(n - 1)/(Sqrt[-1 + c*x]*Sqrt[1 + c*x])), x], x], x]]
/; FreeQ[{a, b, c, d, e, f, g, h}, x] && IGtQ[n, 0] && IGtQ[p, 0] && EqQ[e*g - 2*d*h, 0]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*(Px_)*((d_) + (e_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegran
d[Px*(d + e*x)^m*(a + b*ArcCosh[c*x])^n, x], x] /; FreeQ[{a, b, c, d, e}, x] && PolyQ[Px, x] && IGtQ[n, 0] &&
IntegerQ[m]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_) + (g_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol]
:> Simp[(-d)^IntPart[p]*((d + e*x^2)^FracPart[p]/((-1 + c*x)^FracPart[p]*(1 + c*x)^FracPart[p])) Int[(f + g*
x)^m*(-1 + c*x)^p*(1 + c*x)^p*(a + b*ArcCosh[c*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && EqQ[c^2*
d + e, 0] && IntegerQ[p - 1/2] && IntegerQ[m]
-
Int[Log[(h_.)*((f_.) + (g_.)*(x_))^(m_.)]*((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_)^2)^(p_)
, x_Symbol] :> Simp[(-d)^IntPart[p]*((d + e*x^2)^FracPart[p]/((-1 + c*x)^FracPart[p]*(1 + c*x)^FracPart[p]))
Int[Log[h*(f + g*x)^m]*(-1 + c*x)^p*(1 + c*x)^p*(a + b*ArcCosh[c*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g,
h, m, n}, x] && EqQ[c^2*d + e, 0] && IntegerQ[p - 1/2]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))*((d1_) + (e1_.)*(x_))^(p_)*((d2_) + (e2_.)*(x_))^(p_)*((f_) + (g_.)*(x
_))^(m_.), x_Symbol] :> With[{u = IntHide[(f + g*x)^m*(d1 + e1*x)^p*(d2 + e2*x)^p, x]}, Simp[(a + b*ArcCosh[c*
x]) u, x] - Simp[b*c Int[1/(Sqrt[-1 + c*x]*Sqrt[1 + c*x]) u, x], x]] /; FreeQ[{a, b, c, d1, e1, d2, e2,
f, g}, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && IGtQ[m, 0] && ILtQ[p + 1/2, 0] && GtQ[d1, 0] && LtQ[d2,
0] && (GtQ[m, 3] || LtQ[m, -2*p - 1])
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((d1_) + (e1_.)*(x_))^(p_)*((d2_) + (e2_.)*(x_))^(p_)*((f_) + (g
_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(d1 + e1*x)^p*(d2 + e2*x)^p*(a + b*ArcCosh[c*x])^n, (f + g*x
)^m, x], x] /; FreeQ[{a, b, c, d1, e1, d2, e2, f, g}, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && IGtQ[m,
0] && IntegerQ[p + 1/2] && GtQ[d1, 0] && LtQ[d2, 0] && IGtQ[n, 0] && ((EqQ[n, 1] && GtQ[p, -1]) || GtQ[p, 0] |
| EqQ[m, 1] || (EqQ[m, 2] && LtQ[p, -2]))
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*Sqrt[(d1_) + (e1_.)*(x_)]*Sqrt[(d2_) + (e2_.)*(x_)]*((f_) + (g_.
)*(x_))^(m_), x_Symbol] :> Simp[(f + g*x)^m*(d1*d2 + e1*e2*x^2)*((a + b*ArcCosh[c*x])^(n + 1)/(b*c*Sqrt[(-d1)*
d2]*(n + 1))), x] - Simp[1/(b*c*Sqrt[(-d1)*d2]*(n + 1)) Int[(d1*d2*g*m + 2*e1*e2*f*x + e1*e2*g*(m + 2)*x^2)*
(f + g*x)^(m - 1)*(a + b*ArcCosh[c*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d1, e1, d2, e2, f, g}, x] && EqQ[e1
- c*d1, 0] && EqQ[e2 + c*d2, 0] && ILtQ[m, 0] && GtQ[d1, 0] && LtQ[d2, 0] && IGtQ[n, 0]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((d1_) + (e1_.)*(x_))^(p_)*((d2_) + (e2_.)*(x_))^(p_)*((f_) + (g
_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[Sqrt[d1 + e1*x]*Sqrt[d2 + e2*x]*(a + b*ArcCosh[c*x])^n, (f +
g*x)^m*(d1 + e1*x)^(p - 1/2)*(d2 + e2*x)^(p - 1/2), x], x] /; FreeQ[{a, b, c, d1, e1, d2, e2, f, g}, x] && Eq
Q[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && IntegerQ[m] && IGtQ[p + 1/2, 0] && GtQ[d1, 0] && LtQ[d2, 0] && IGtQ[n,
0]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((d1_) + (e1_.)*(x_))^(p_)*((d2_) + (e2_.)*(x_))^(p_)*((f_) + (g
_.)*(x_))^(m_.), x_Symbol] :> Simp[(f + g*x)^m*(d1 + e1*x)^(p + 1/2)*(d2 + e2*x)^(p + 1/2)*((a + b*ArcCosh[c*x
])^(n + 1)/(b*c*Sqrt[(-d1)*d2]*(n + 1))), x] - Simp[1/(b*c*Sqrt[(-d1)*d2]*(n + 1)) Int[ExpandIntegrand[(f +
g*x)^(m - 1)*(a + b*ArcCosh[c*x])^(n + 1), (d1*d2*g*m + e1*e2*f*(2*p + 1)*x + e1*e2*g*(m + 2*p + 1)*x^2)*(d1 +
e1*x)^(p - 1/2)*(d2 + e2*x)^(p - 1/2), x], x], x] /; FreeQ[{a, b, c, d1, e1, d2, e2, f, g}, x] && EqQ[e1 - c*
d1, 0] && EqQ[e2 + c*d2, 0] && ILtQ[m, 0] && IGtQ[p - 1/2, 0] && GtQ[d1, 0] && LtQ[d2, 0] && IGtQ[n, 0]
-
Int[(((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_)*((f_) + (g_.)*(x_))^(m_.))/(Sqrt[(d1_) + (e1_.)*(x_)]*Sqrt[(d2_)
+ (e2_.)*(x_)]), x_Symbol] :> Simp[(f + g*x)^m*((a + b*ArcCosh[c*x])^(n + 1)/(b*c*Sqrt[(-d1)*d2]*(n + 1))), x
] - Simp[g*(m/(b*c*Sqrt[(-d1)*d2]*(n + 1))) Int[(f + g*x)^(m - 1)*(a + b*ArcCosh[c*x])^(n + 1), x], x] /; Fr
eeQ[{a, b, c, d1, e1, d2, e2, f, g}, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && IGtQ[m, 0] && GtQ[d1, 0]
&& LtQ[d2, 0] && LtQ[n, -1]
-
Int[(((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_) + (g_.)*(x_))^(m_.))/(Sqrt[(d1_) + (e1_.)*(x_)]*Sqrt[(d2_
) + (e2_.)*(x_)]), x_Symbol] :> Simp[1/(c^(m + 1)*Sqrt[(-d1)*d2]) Subst[Int[(a + b*x)^n*(c*f + g*Cosh[x])^m,
x], x, ArcCosh[c*x]], x] /; FreeQ[{a, b, c, d1, e1, d2, e2, f, g, n}, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d
2, 0] && IntegerQ[m] && GtQ[d1, 0] && LtQ[d2, 0] && (GtQ[m, 0] || IGtQ[n, 0])
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((d1_) + (e1_.)*(x_))^(p_)*((d2_) + (e2_.)*(x_))^(p_)*((f_) + (g
_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*ArcCosh[c*x])^n/(Sqrt[d1 + e1*x]*Sqrt[d2 + e2*x]), (f
+ g*x)^m*(d1 + e1*x)^(p + 1/2)*(d2 + e2*x)^(p + 1/2), x], x] /; FreeQ[{a, b, c, d1, e1, d2, e2, f, g}, x] &&
EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && IntegerQ[m] && ILtQ[p + 1/2, 0] && GtQ[d1, 0] && LtQ[d2, 0] && IGtQ[
n, 0]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((d1_) + (e1_.)*(x_))^(p_)*((d2_) + (e2_.)*(x_))^(p_)*((f_) + (g
_.)*(x_))^(m_.), x_Symbol] :> Simp[((-d1)*d2)^IntPart[p]*(d1 + e1*x)^FracPart[p]*((d2 + e2*x)^FracPart[p]/((-1
+ c*x)^FracPart[p]*(1 + c*x)^FracPart[p])) Int[(f + g*x)^m*(-1 + c*x)^p*(1 + c*x)^p*(a + b*ArcCosh[c*x])^n,
x], x] /; FreeQ[{a, b, c, d1, e1, d2, e2, f, g, n}, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && IntegerQ[
m] && IntegerQ[p - 1/2] && !(GtQ[d1, 0] && LtQ[d2, 0])
-
Int[(Log[(h_.)*((f_.) + (g_.)*(x_))^(m_.)]*((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.))/(Sqrt[(d1_) + (e1_.)*(x_
)]*Sqrt[(d2_) + (e2_.)*(x_)]), x_Symbol] :> Simp[Log[h*(f + g*x)^m]*((a + b*ArcCosh[c*x])^(n + 1)/(b*c*Sqrt[(-
d1)*d2]*(n + 1))), x] - Simp[g*(m/(b*c*Sqrt[(-d1)*d2]*(n + 1))) Int[(a + b*ArcCosh[c*x])^(n + 1)/(f + g*x),
x], x] /; FreeQ[{a, b, c, d1, e1, d2, e2, f, g, h, m}, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && GtQ[d1,
0] && LtQ[d2, 0] && IGtQ[n, 0]
-
Int[Log[(h_.)*((f_.) + (g_.)*(x_))^(m_.)]*((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((d1_) + (e1_.)*(x_))^(p_)
*((d2_) + (e2_.)*(x_))^(p_), x_Symbol] :> Simp[((-d1)*d2)^IntPart[p]*(d1 + e1*x)^FracPart[p]*((d2 + e2*x)^Frac
Part[p]/((-1 + c*x)^FracPart[p]*(1 + c*x)^FracPart[p])) Int[Log[h*(f + g*x)^m]*(-1 + c*x)^p*(1 + c*x)^p*(a +
b*ArcCosh[c*x])^n, x], x] /; FreeQ[{a, b, c, d1, e1, d2, e2, f, g, h, m, n}, x] && EqQ[e1 - c*d1, 0] && EqQ[e
2 + c*d2, 0] && IntegerQ[p - 1/2] && !(GtQ[d1, 0] && LtQ[d2, 0])
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))*((d_) + (e_.)*(x_))^(m_)*((f_) + (g_.)*(x_))^(m_), x_Symbol] :> With[{
u = IntHide[(d + e*x)^m*(f + g*x)^m, x]}, Simp[(a + b*ArcCosh[c*x]) u, x] - Simp[b*c Int[1/(Sqrt[-1 + c*x]
*Sqrt[1 + c*x]) u, x], x]] /; FreeQ[{a, b, c, d, e, f, g}, x] && ILtQ[m + 1/2, 0]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((d_) + (e_.)*(x_))^(m_.)*((f_) + (g_.)*(x_))^(m_.), x_Symbol] :
> Int[ExpandIntegrand[(a + b*ArcCosh[c*x])^n, (d + e*x)^m*(f + g*x)^m, x], x] /; FreeQ[{a, b, c, d, e, f, g, n
}, x] && IntegerQ[m]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))*(u_), x_Symbol] :> With[{v = IntHide[u, x]}, Simp[(a + b*ArcCosh[c*x])
v, x] - Simp[b*c*(Sqrt[1 - c^2*x^2]/(Sqrt[-1 + c*x]*Sqrt[1 + c*x])) Int[SimplifyIntegrand[v/Sqrt[1 - c^2*
x^2], x], x], x] /; InverseFunctionFreeQ[v, x]] /; FreeQ[{a, b, c}, x]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_)*(Px_)*((d1_) + (e1_.)*(x_))^(p_)*((d2_) + (e2_.)*(x_))^(p_), x_Sy
mbol] :> With[{u = ExpandIntegrand[Px*(d1 + e1*x)^p*(d2 + e2*x)^p*(a + b*ArcCosh[c*x])^n, x]}, Int[u, x] /; Su
mQ[u]] /; FreeQ[{a, b, c, d1, e1, d2, e2, n}, x] && PolyQ[Px, x] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] &&
IntegerQ[p - 1/2]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*(Px_.)*((f_) + (g_.)*((d1_) + (e1_.)*(x_))^(p_)*((d2_) + (e2_.)*
(x_))^(p_))^(m_.), x_Symbol] :> With[{u = ExpandIntegrand[Px*(f + g*(d1 + e1*x)^p*(d2 + e2*x)^p)^m*(a + b*ArcC
osh[c*x])^n, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c, d1, e1, d2, e2, f, g}, x] && PolyQ[Px, x] && EqQ[e1
- c*d1, 0] && EqQ[e2 + c*d2, 0] && IGtQ[p + 1/2, 0] && IntegersQ[m, n]
-
Int[ArcCosh[(c_.)*(x_)]^(n_.)*(RFx_), x_Symbol] :> With[{u = ExpandIntegrand[ArcCosh[c*x]^n, RFx, x]}, Int[u,
x] /; SumQ[u]] /; FreeQ[c, x] && RationalFunctionQ[RFx, x] && IGtQ[n, 0]
-
Int[(ArcCosh[(c_.)*(x_)]*(b_.) + (a_))^(n_.)*(RFx_), x_Symbol] :> Int[ExpandIntegrand[RFx*(a + b*ArcCosh[c*x])
^n, x], x] /; FreeQ[{a, b, c}, x] && RationalFunctionQ[RFx, x] && IGtQ[n, 0]
-
Int[ArcCosh[(c_.)*(x_)]^(n_.)*(RFx_)*((d1_) + (e1_.)*(x_))^(p_)*((d2_) + (e2_.)*(x_))^(p_), x_Symbol] :> With[
{u = ExpandIntegrand[(d1 + e1*x)^p*(d2 + e2*x)^p*ArcCosh[c*x]^n, RFx, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{c,
d1, e1, d2, e2}, x] && RationalFunctionQ[RFx, x] && IGtQ[n, 0] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] && In
tegerQ[p - 1/2]
-
Int[(ArcCosh[(c_.)*(x_)]*(b_.) + (a_))^(n_.)*(RFx_)*((d1_) + (e1_.)*(x_))^(p_)*((d2_) + (e2_.)*(x_))^(p_), x_S
ymbol] :> Int[ExpandIntegrand[(d1 + e1*x)^p*(d2 + e2*x)^p, RFx*(a + b*ArcCosh[c*x])^n, x], x] /; FreeQ[{a, b,
c, d1, e1, d2, e2}, x] && RationalFunctionQ[RFx, x] && IGtQ[n, 0] && EqQ[e1 - c*d1, 0] && EqQ[e2 + c*d2, 0] &&
IntegerQ[p - 1/2]
-
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*(u_.), x_Symbol] :> Unintegrable[u*(a + b*ArcCosh[c*x])^n, x] /;
FreeQ[{a, b, c, n}, x]
-
Int[((a_.) + ArcCosh[(c_) + (d_.)*(x_)]*(b_.))^(n_.), x_Symbol] :> Simp[1/d Subst[Int[(a + b*ArcCosh[x])^n,
x], x, c + d*x], x] /; FreeQ[{a, b, c, d, n}, x]
-
Int[((a_.) + ArcCosh[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[1/d Subst
[Int[((d*e - c*f)/d + f*(x/d))^m*(a + b*ArcCosh[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n},
x]
-
Int[((a_.) + ArcCosh[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((A_.) + (B_.)*(x_) + (C_.)*(x_)^2)^(p_.), x_Symbol] :> S
imp[1/d Subst[Int[(-C/d^2 + (C/d^2)*x^2)^p*(a + b*ArcCosh[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, A
, B, C, n, p}, x] && EqQ[B*(1 - c^2) + 2*A*c*d, 0] && EqQ[2*c*C - B*d, 0]
-
Int[((a_.) + ArcCosh[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^(m_.)*((A_.) + (B_.)*(x_) + (C_.)*(x
_)^2)^(p_.), x_Symbol] :> Simp[1/d Subst[Int[((d*e - c*f)/d + f*(x/d))^m*(-C/d^2 + (C/d^2)*x^2)^p*(a + b*Arc
Cosh[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m, n, p}, x] && EqQ[B*(1 - c^2) + 2*A*c*d
, 0] && EqQ[2*c*C - B*d, 0]
-
Int[Sqrt[(a_.) + ArcCosh[1 + (d_.)*(x_)^2]*(b_.)], x_Symbol] :> Simp[2*Sqrt[a + b*ArcCosh[1 + d*x^2]]*(Sinh[(1
/2)*ArcCosh[1 + d*x^2]]^2/(d*x)), x] + (Simp[Sqrt[b]*Sqrt[Pi/2]*(Cosh[a/(2*b)] + Sinh[a/(2*b)])*Sinh[(1/2)*Arc
Cosh[1 + d*x^2]]*(Erf[(1/Sqrt[2*b])*Sqrt[a + b*ArcCosh[1 + d*x^2]]]/(d*x)), x] - Simp[Sqrt[b]*Sqrt[Pi/2]*(Cosh
[a/(2*b)] - Sinh[a/(2*b)])*Sinh[(1/2)*ArcCosh[1 + d*x^2]]*(Erfi[(1/Sqrt[2*b])*Sqrt[a + b*ArcCosh[1 + d*x^2]]]/
(d*x)), x]) /; FreeQ[{a, b, d}, x]
-
Int[Sqrt[(a_.) + ArcCosh[-1 + (d_.)*(x_)^2]*(b_.)], x_Symbol] :> Simp[2*Sqrt[a + b*ArcCosh[-1 + d*x^2]]*(Cosh[
(1/2)*ArcCosh[-1 + d*x^2]]^2/(d*x)), x] + (-Simp[Sqrt[b]*Sqrt[Pi/2]*(Cosh[a/(2*b)] + Sinh[a/(2*b)])*Cosh[(1/2)
*ArcCosh[-1 + d*x^2]]*(Erf[(1/Sqrt[2*b])*Sqrt[a + b*ArcCosh[-1 + d*x^2]]]/(d*x)), x] - Simp[Sqrt[b]*Sqrt[Pi/2]
*(Cosh[a/(2*b)] - Sinh[a/(2*b)])*Cosh[(1/2)*ArcCosh[-1 + d*x^2]]*(Erfi[(1/Sqrt[2*b])*Sqrt[a + b*ArcCosh[-1 + d
*x^2]]]/(d*x)), x]) /; FreeQ[{a, b, d}, x]
-
Int[((a_.) + ArcCosh[(c_) + (d_.)*(x_)^2]*(b_.))^(n_), x_Symbol] :> Simp[x*(a + b*ArcCosh[c + d*x^2])^n, x] +
(-Simp[2*b*n*(2*c*d*x^2 + d^2*x^4)*((a + b*ArcCosh[c + d*x^2])^(n - 1)/(d*x*Sqrt[-1 + c + d*x^2]*Sqrt[1 + c +
d*x^2])), x] + Simp[4*b^2*n*(n - 1) Int[(a + b*ArcCosh[c + d*x^2])^(n - 2), x], x]) /; FreeQ[{a, b, c, d}, x
] && EqQ[c^2, 1] && GtQ[n, 1]
-
Int[((a_.) + ArcCosh[1 + (d_.)*(x_)^2]*(b_.))^(-1), x_Symbol] :> Simp[x*Cosh[a/(2*b)]*(CoshIntegral[(a + b*Arc
Cosh[1 + d*x^2])/(2*b)]/(Sqrt[2]*b*Sqrt[d*x^2])), x] - Simp[x*Sinh[a/(2*b)]*(SinhIntegral[(a + b*ArcCosh[1 + d
*x^2])/(2*b)]/(Sqrt[2]*b*Sqrt[d*x^2])), x] /; FreeQ[{a, b, d}, x]
-
Int[((a_.) + ArcCosh[-1 + (d_.)*(x_)^2]*(b_.))^(-1), x_Symbol] :> Simp[(-x)*Sinh[a/(2*b)]*(CoshIntegral[(a + b
*ArcCosh[-1 + d*x^2])/(2*b)]/(Sqrt[2]*b*Sqrt[d*x^2])), x] + Simp[x*Cosh[a/(2*b)]*(SinhIntegral[(a + b*ArcCosh[
-1 + d*x^2])/(2*b)]/(Sqrt[2]*b*Sqrt[d*x^2])), x] /; FreeQ[{a, b, d}, x]
-
Int[1/Sqrt[(a_.) + ArcCosh[1 + (d_.)*(x_)^2]*(b_.)], x_Symbol] :> Simp[Sqrt[Pi/2]*(Cosh[a/(2*b)] - Sinh[a/(2*b
)])*Sinh[ArcCosh[1 + d*x^2]/2]*(Erfi[Sqrt[a + b*ArcCosh[1 + d*x^2]]/Sqrt[2*b]]/(Sqrt[b]*d*x)), x] + Simp[Sqrt[
Pi/2]*(Cosh[a/(2*b)] + Sinh[a/(2*b)])*Sinh[ArcCosh[1 + d*x^2]/2]*(Erf[Sqrt[a + b*ArcCosh[1 + d*x^2]]/Sqrt[2*b]
]/(Sqrt[b]*d*x)), x] /; FreeQ[{a, b, d}, x]
-
Int[1/Sqrt[(a_.) + ArcCosh[-1 + (d_.)*(x_)^2]*(b_.)], x_Symbol] :> Simp[Sqrt[Pi/2]*(Cosh[a/(2*b)] - Sinh[a/(2*
b)])*Cosh[ArcCosh[-1 + d*x^2]/2]*(Erfi[Sqrt[a + b*ArcCosh[-1 + d*x^2]]/Sqrt[2*b]]/(Sqrt[b]*d*x)), x] - Simp[Sq
rt[Pi/2]*(Cosh[a/(2*b)] + Sinh[a/(2*b)])*Cosh[ArcCosh[-1 + d*x^2]/2]*(Erf[Sqrt[a + b*ArcCosh[-1 + d*x^2]]/Sqrt
[2*b]]/(Sqrt[b]*d*x)), x] /; FreeQ[{a, b, d}, x]
-
Int[((a_.) + ArcCosh[1 + (d_.)*(x_)^2]*(b_.))^(-3/2), x_Symbol] :> Simp[(-Sqrt[d*x^2])*(Sqrt[2 + d*x^2]/(b*d*x
*Sqrt[a + b*ArcCosh[1 + d*x^2]])), x] + (-Simp[Sqrt[Pi/2]*(Cosh[a/(2*b)] + Sinh[a/(2*b)])*Sinh[ArcCosh[1 + d*x
^2]/2]*(Erf[Sqrt[a + b*ArcCosh[1 + d*x^2]]/Sqrt[2*b]]/(b^(3/2)*d*x)), x] + Simp[Sqrt[Pi/2]*(Cosh[a/(2*b)] - Si
nh[a/(2*b)])*Sinh[ArcCosh[1 + d*x^2]/2]*(Erfi[Sqrt[a + b*ArcCosh[1 + d*x^2]]/Sqrt[2*b]]/(b^(3/2)*d*x)), x]) /;
FreeQ[{a, b, d}, x]
-
Int[((a_.) + ArcCosh[-1 + (d_.)*(x_)^2]*(b_.))^(-3/2), x_Symbol] :> Simp[(-Sqrt[d*x^2])*(Sqrt[-2 + d*x^2]/(b*d
*x*Sqrt[a + b*ArcCosh[-1 + d*x^2]])), x] + (Simp[Sqrt[Pi/2]*(Cosh[a/(2*b)] + Sinh[a/(2*b)])*Cosh[ArcCosh[-1 +
d*x^2]/2]*(Erf[Sqrt[a + b*ArcCosh[-1 + d*x^2]]/Sqrt[2*b]]/(b^(3/2)*d*x)), x] + Simp[Sqrt[Pi/2]*(Cosh[a/(2*b)]
- Sinh[a/(2*b)])*Cosh[ArcCosh[-1 + d*x^2]/2]*(Erfi[Sqrt[a + b*ArcCosh[-1 + d*x^2]]/Sqrt[2*b]]/(b^(3/2)*d*x)),
x]) /; FreeQ[{a, b, d}, x]
-
Int[((a_.) + ArcCosh[1 + (d_.)*(x_)^2]*(b_.))^(-2), x_Symbol] :> Simp[(-Sqrt[d*x^2])*(Sqrt[2 + d*x^2]/(2*b*d*x
*(a + b*ArcCosh[1 + d*x^2]))), x] + (-Simp[x*Sinh[a/(2*b)]*(CoshIntegral[(a + b*ArcCosh[1 + d*x^2])/(2*b)]/(2*
Sqrt[2]*b^2*Sqrt[d*x^2])), x] + Simp[x*Cosh[a/(2*b)]*(SinhIntegral[(a + b*ArcCosh[1 + d*x^2])/(2*b)]/(2*Sqrt[2
]*b^2*Sqrt[d*x^2])), x]) /; FreeQ[{a, b, d}, x]
-
Int[((a_.) + ArcCosh[-1 + (d_.)*(x_)^2]*(b_.))^(-2), x_Symbol] :> Simp[(-Sqrt[d*x^2])*(Sqrt[-2 + d*x^2]/(2*b*d
*x*(a + b*ArcCosh[-1 + d*x^2]))), x] + (Simp[x*Cosh[a/(2*b)]*(CoshIntegral[(a + b*ArcCosh[-1 + d*x^2])/(2*b)]/
(2*Sqrt[2]*b^2*Sqrt[d*x^2])), x] - Simp[x*Sinh[a/(2*b)]*(SinhIntegral[(a + b*ArcCosh[-1 + d*x^2])/(2*b)]/(2*Sq
rt[2]*b^2*Sqrt[d*x^2])), x]) /; FreeQ[{a, b, d}, x]
-
Int[((a_.) + ArcCosh[(c_) + (d_.)*(x_)^2]*(b_.))^(n_), x_Symbol] :> Simp[(-x)*((a + b*ArcCosh[c + d*x^2])^(n +
2)/(4*b^2*(n + 1)*(n + 2))), x] + (Simp[(2*c*x^2 + d*x^4)*((a + b*ArcCosh[c + d*x^2])^(n + 1)/(2*b*(n + 1)*x*
Sqrt[-1 + c + d*x^2]*Sqrt[1 + c + d*x^2])), x] + Simp[1/(4*b^2*(n + 1)*(n + 2)) Int[(a + b*ArcCosh[c + d*x^2
])^(n + 2), x], x]) /; FreeQ[{a, b, c, d}, x] && EqQ[c^2, 1] && LtQ[n, -1] && NeQ[n, -2]
-
Int[ArcCosh[(a_.)*(x_)^(p_)]^(n_.)/(x_), x_Symbol] :> Simp[1/p Subst[Int[x^n*Tanh[x], x], x, ArcCosh[a*x^p]]
, x] /; FreeQ[{a, p}, x] && IGtQ[n, 0]
-
Int[ArcCosh[(c_.)/((a_.) + (b_.)*(x_)^(n_.))]^(m_.)*(u_.), x_Symbol] :> Int[u*ArcSech[a/c + b*(x^n/c)]^m, x] /
; FreeQ[{a, b, c, n, m}, x]
-
Int[ArcCosh[Sqrt[1 + (b_.)*(x_)^2]]^(n_.)/Sqrt[1 + (b_.)*(x_)^2], x_Symbol] :> Simp[Sqrt[-1 + Sqrt[1 + b*x^2]]
*(Sqrt[1 + Sqrt[1 + b*x^2]]/(b*x)) Subst[Int[ArcCosh[x]^n/(Sqrt[-1 + x]*Sqrt[1 + x]), x], x, Sqrt[1 + b*x^2]
], x] /; FreeQ[{b, n}, x]
-
Int[(f_)^(ArcCosh[(a_.) + (b_.)*(x_)]^(n_.)*(c_.)), x_Symbol] :> Simp[1/b Subst[Int[f^(c*x^n)*Sinh[x], x], x
, ArcCosh[a + b*x]], x] /; FreeQ[{a, b, c, f}, x] && IGtQ[n, 0]
-
Int[(f_)^(ArcCosh[(a_.) + (b_.)*(x_)]^(n_.)*(c_.))*(x_)^(m_.), x_Symbol] :> Simp[1/b Subst[Int[(-a/b + Cosh[
x]/b)^m*f^(c*x^n)*Sinh[x], x], x, ArcCosh[a + b*x]], x] /; FreeQ[{a, b, c, f}, x] && IGtQ[m, 0] && IGtQ[n, 0]
-
Int[ArcCosh[u_], x_Symbol] :> Simp[x*ArcCosh[u], x] - Int[SimplifyIntegrand[x*(D[u, x]/(Sqrt[-1 + u]*Sqrt[1 +
u])), x], x] /; InverseFunctionFreeQ[u, x] && !FunctionOfExponentialQ[u, x]
-
Int[((a_.) + ArcCosh[u_]*(b_.))*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(c + d*x)^(m + 1)*((a + b*ArcCos
h[u])/(d*(m + 1))), x] - Simp[b/(d*(m + 1)) Int[SimplifyIntegrand[(c + d*x)^(m + 1)*(D[u, x]/(Sqrt[-1 + u]*S
qrt[1 + u])), x], x], x] /; FreeQ[{a, b, c, d, m}, x] && NeQ[m, -1] && InverseFunctionFreeQ[u, x] && !Functio
nOfQ[(c + d*x)^(m + 1), u, x] && !FunctionOfExponentialQ[u, x]
-
Int[((a_.) + ArcCosh[u_]*(b_.))*(v_), x_Symbol] :> With[{w = IntHide[v, x]}, Simp[(a + b*ArcCosh[u]) w, x] -
Simp[b Int[SimplifyIntegrand[w*(D[u, x]/(Sqrt[-1 + u]*Sqrt[1 + u])), x], x], x] /; InverseFunctionFreeQ[w,
x]] /; FreeQ[{a, b}, x] && InverseFunctionFreeQ[u, x] && !MatchQ[v, ((c_.) + (d_.)*x)^(m_.) /; FreeQ[{c, d, m
}, x]]
-
Int[E^(ArcCosh[u_]*(n_.)), x_Symbol] :> Int[(u + Sqrt[-1 + u]*Sqrt[1 + u])^n, x] /; IntegerQ[n] && PolyQ[u, x]
-
Int[E^(ArcCosh[u_]*(n_.))*(x_)^(m_.), x_Symbol] :> Int[x^m*(u + Sqrt[-1 + u]*Sqrt[1 + u])^n, x] /; RationalQ[m
] && IntegerQ[n] && PolyQ[u, x]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)^(n_.)]*(b_.))^(p_.), x_Symbol] :> Simp[x*(a + b*ArcTanh[c*x^n])^p, x] - Simp[b
*c*n*p Int[x^n*((a + b*ArcTanh[c*x^n])^(p - 1)/(1 - c^2*x^(2*n))), x], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[
p, 0] && (EqQ[n, 1] || EqQ[p, 1])
-
Int[((a_.) + ArcCoth[(c_.)*(x_)^(n_.)]*(b_.))^(p_.), x_Symbol] :> Simp[x*(a + b*ArcCoth[c*x^n])^p, x] - Simp[b
*c*n*p Int[x^n*((a + b*ArcCoth[c*x^n])^(p - 1)/(1 - c^2*x^(2*n))), x], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[
p, 0] && (EqQ[n, 1] || EqQ[p, 1])
-
Int[((a_.) + ArcTanh[(c_.)*(x_)^(n_)]*(b_.))^(p_), x_Symbol] :> Int[ExpandIntegrand[(a + b*(Log[1 + c*x^n]/2)
- b*(Log[1 - c*x^n]/2))^p, x], x] /; FreeQ[{a, b, c}, x] && IGtQ[p, 1] && IGtQ[n, 0]
-
Int[((a_.) + ArcCoth[(c_.)*(x_)^(n_)]*(b_.))^(p_), x_Symbol] :> Int[ExpandIntegrand[(a + b*(Log[1 + 1/(x^n*c)]
/2) - b*(Log[1 - 1/(x^n*c)]/2))^p, x], x] /; FreeQ[{a, b, c}, x] && IGtQ[p, 1] && IGtQ[n, 0]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)^(n_)]*(b_.))^(p_), x_Symbol] :> Int[(a + b*ArcCoth[1/(x^n*c)])^p, x] /; FreeQ[
{a, b, c}, x] && IGtQ[p, 1] && ILtQ[n, 0]
-
Int[((a_.) + ArcCoth[(c_.)*(x_)^(n_)]*(b_.))^(p_), x_Symbol] :> Int[(a + b*ArcTanh[1/(x^n*c)])^p, x] /; FreeQ[
{a, b, c}, x] && IGtQ[p, 1] && ILtQ[n, 0]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)^(n_)]*(b_.))^(p_), x_Symbol] :> With[{k = Denominator[n]}, Simp[k Subst[Int[
x^(k - 1)*(a + b*ArcTanh[c*x^(k*n)])^p, x], x, x^(1/k)], x]] /; FreeQ[{a, b, c}, x] && IGtQ[p, 1] && FractionQ
[n]
-
Int[((a_.) + ArcCoth[(c_.)*(x_)^(n_)]*(b_.))^(p_), x_Symbol] :> With[{k = Denominator[n]}, Simp[k Subst[Int[
x^(k - 1)*(a + b*ArcCoth[c*x^(k*n)])^p, x], x, x^(1/k)], x]] /; FreeQ[{a, b, c}, x] && IGtQ[p, 1] && FractionQ
[n]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)^(n_.)]*(b_.))^(p_), x_Symbol] :> Unintegrable[(a + b*ArcTanh[c*x^n])^p, x] /;
FreeQ[{a, b, c, n, p}, x]
-
Int[((a_.) + ArcCoth[(c_.)*(x_)^(n_.)]*(b_.))^(p_), x_Symbol] :> Unintegrable[(a + b*ArcCoth[c*x^n])^p, x] /;
FreeQ[{a, b, c, n, p}, x]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))/(x_), x_Symbol] :> Simp[a*Log[x], x] + (-Simp[(b/2)*PolyLog[2, (-c)*x]
, x] + Simp[(b/2)*PolyLog[2, c*x], x]) /; FreeQ[{a, b, c}, x]
-
Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))/(x_), x_Symbol] :> Simp[a*Log[x], x] + (Simp[(b/2)*PolyLog[2, -(c*x)^(
-1)], x] - Simp[(b/2)*PolyLog[2, 1/(c*x)], x]) /; FreeQ[{a, b, c}, x]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_)/(x_), x_Symbol] :> Simp[2*(a + b*ArcTanh[c*x])^p*ArcTanh[1 - 2/(1
- c*x)], x] - Simp[2*b*c*p Int[(a + b*ArcTanh[c*x])^(p - 1)*(ArcTanh[1 - 2/(1 - c*x)]/(1 - c^2*x^2)), x], x
] /; FreeQ[{a, b, c}, x] && IGtQ[p, 1]
-
Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^(p_)/(x_), x_Symbol] :> Simp[2*(a + b*ArcCoth[c*x])^p*ArcCoth[1 - 2/(1
- c*x)], x] - Simp[2*b*c*p Int[(a + b*ArcCoth[c*x])^(p - 1)*(ArcCoth[1 - 2/(1 - c*x)]/(1 - c^2*x^2)), x], x
] /; FreeQ[{a, b, c}, x] && IGtQ[p, 1]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)^(n_)]*(b_.))^(p_.)/(x_), x_Symbol] :> Simp[1/n Subst[Int[(a + b*ArcTanh[c*x]
)^p/x, x], x, x^n], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[p, 0]
-
Int[((a_.) + ArcCoth[(c_.)*(x_)^(n_)]*(b_.))^(p_.)/(x_), x_Symbol] :> Simp[1/n Subst[Int[(a + b*ArcCoth[c*x]
)^p/x, x], x, x^n], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[p, 0]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)*((a + b*ArcTanh[c*
x^n])^p/(m + 1)), x] - Simp[b*c*n*(p/(m + 1)) Int[x^(m + n)*((a + b*ArcTanh[c*x^n])^(p - 1)/(1 - c^2*x^(2*n)
)), x], x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 0] && (EqQ[p, 1] || (EqQ[n, 1] && IntegerQ[m])) && NeQ[m, -
1]
-
Int[((a_.) + ArcCoth[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)*((a + b*ArcCoth[c*
x^n])^p/(m + 1)), x] - Simp[b*c*n*(p/(m + 1)) Int[x^(m + n)*((a + b*ArcCoth[c*x^n])^(p - 1)/(1 - c^2*x^(2*n)
)), x], x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 0] && (EqQ[p, 1] || (EqQ[n, 1] && IntegerQ[m])) && NeQ[m, -
1]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)^(n_)]*(b_.))^(p_.)*(x_)^(m_.), x_Symbol] :> Simp[1/n Subst[Int[x^(Simplify[(
m + 1)/n] - 1)*(a + b*ArcTanh[c*x])^p, x], x, x^n], x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 1] && IntegerQ[
Simplify[(m + 1)/n]]
-
Int[((a_.) + ArcCoth[(c_.)*(x_)^(n_)]*(b_.))^(p_.)*(x_)^(m_.), x_Symbol] :> Simp[1/n Subst[Int[x^(Simplify[(
m + 1)/n] - 1)*(a + b*ArcCoth[c*x])^p, x], x, x^n], x] /; FreeQ[{a, b, c, m, n}, x] && IGtQ[p, 1] && IntegerQ[
Simplify[(m + 1)/n]]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)^(n_)]*(b_.))^(p_)*(x_)^(m_.), x_Symbol] :> Int[ExpandIntegrand[x^m*(a + b*(Log
[1 + c*x^n]/2) - b*(Log[1 - c*x^n]/2))^p, x], x] /; FreeQ[{a, b, c}, x] && IGtQ[p, 1] && IGtQ[n, 0] && Integer
Q[m]
-
Int[((a_.) + ArcCoth[(c_.)*(x_)^(n_)]*(b_.))^(p_)*(x_)^(m_.), x_Symbol] :> Int[ExpandIntegrand[x^m*(a + b*(Log
[1 + 1/(x^n*c)]/2) - b*(Log[1 - 1/(x^n*c)]/2))^p, x], x] /; FreeQ[{a, b, c}, x] && IGtQ[p, 1] && IGtQ[n, 0] &&
IntegerQ[m]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)^(n_)]*(b_.))^(p_)*(x_)^(m_.), x_Symbol] :> With[{k = Denominator[m]}, Simp[k
Subst[Int[x^(k*(m + 1) - 1)*(a + b*ArcTanh[c*x^(k*n)])^p, x], x, x^(1/k)], x]] /; FreeQ[{a, b, c}, x] && IGtQ
[p, 1] && IGtQ[n, 0] && FractionQ[m]
-
Int[((a_.) + ArcCoth[(c_.)*(x_)^(n_)]*(b_.))^(p_)*(x_)^(m_.), x_Symbol] :> With[{k = Denominator[m]}, Simp[k
Subst[Int[x^(k*(m + 1) - 1)*(a + b*ArcCoth[c*x^(k*n)])^p, x], x, x^(1/k)], x]] /; FreeQ[{a, b, c}, x] && IGtQ
[p, 1] && IGtQ[n, 0] && FractionQ[m]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)^(n_)]*(b_.))^(p_)*(x_)^(m_.), x_Symbol] :> Int[x^m*(a + b*ArcCoth[1/(x^n*c)])^
p, x] /; FreeQ[{a, b, c, m}, x] && IGtQ[p, 1] && ILtQ[n, 0]
-
Int[((a_.) + ArcCoth[(c_.)*(x_)^(n_)]*(b_.))^(p_)*(x_)^(m_.), x_Symbol] :> Int[x^m*(a + b*ArcTanh[1/(x^n*c)])^
p, x] /; FreeQ[{a, b, c, m}, x] && IGtQ[p, 1] && ILtQ[n, 0]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)^(n_)]*(b_.))^(p_)*(x_)^(m_.), x_Symbol] :> With[{k = Denominator[n]}, Simp[k
Subst[Int[x^(k*(m + 1) - 1)*(a + b*ArcTanh[c*x^(k*n)])^p, x], x, x^(1/k)], x]] /; FreeQ[{a, b, c, m}, x] && I
GtQ[p, 1] && FractionQ[n]
-
Int[((a_.) + ArcCoth[(c_.)*(x_)^(n_)]*(b_.))^(p_)*(x_)^(m_.), x_Symbol] :> With[{k = Denominator[n]}, Simp[k
Subst[Int[x^(k*(m + 1) - 1)*(a + b*ArcCoth[c*x^(k*n)])^p, x], x, x^(1/k)], x]] /; FreeQ[{a, b, c, m}, x] && I
GtQ[p, 1] && FractionQ[n]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)^(n_.)]*(b_.))*((d_)*(x_))^(m_), x_Symbol] :> Simp[(d*x)^(m + 1)*((a + b*ArcTan
h[c*x^n])/(d*(m + 1))), x] - Simp[b*c*(n/(d^n*(m + 1))) Int[(d*x)^(m + n)/(1 - c^2*x^(2*n)), x], x] /; FreeQ
[{a, b, c, d, m, n}, x] && IntegerQ[n] && NeQ[m, -1]
-
Int[((a_.) + ArcCoth[(c_.)*(x_)^(n_.)]*(b_.))*((d_)*(x_))^(m_), x_Symbol] :> Simp[(d*x)^(m + 1)*((a + b*ArcCot
h[c*x^n])/(d*(m + 1))), x] - Simp[b*c*(n/(d^n*(m + 1))) Int[(d*x)^(m + n)/(1 - c^2*x^(2*n)), x], x] /; FreeQ
[{a, b, c, d, m, n}, x] && IntegerQ[n] && NeQ[m, -1]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_)*(x_))^(m_), x_Symbol] :> Simp[d^IntPart[m]*((d*x)^Fr
acPart[m]/x^FracPart[m]) Int[x^m*(a + b*ArcTanh[c*x^n])^p, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && IGtQ[p,
0] && (EqQ[p, 1] || RationalQ[m, n])
-
Int[((a_.) + ArcCoth[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_)*(x_))^(m_), x_Symbol] :> Simp[d^IntPart[m]*((d*x)^Fr
acPart[m]/x^FracPart[m]) Int[x^m*(a + b*ArcCoth[c*x^n])^p, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && IGtQ[p,
0] && (EqQ[p, 1] || RationalQ[m, n])
-
Int[((a_.) + ArcTanh[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Unintegrable[(d*x)^m*(a +
b*ArcTanh[c*x^n])^p, x] /; FreeQ[{a, b, c, d, m, n, p}, x]
-
Int[((a_.) + ArcCoth[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Unintegrable[(d*x)^m*(a +
b*ArcCoth[c*x^n])^p, x] /; FreeQ[{a, b, c, d, m, n, p}, x]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[(-(a + b*ArcTanh[c*x])^p)
*(Log[2/(1 + e*(x/d))]/e), x] + Simp[b*c*(p/e) Int[(a + b*ArcTanh[c*x])^(p - 1)*(Log[2/(1 + e*(x/d))]/(1 - c
^2*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d^2 - e^2, 0]
-
Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^(p_.)/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[(-(a + b*ArcCoth[c*x])^p)
*(Log[2/(1 + e*(x/d))]/e), x] + Simp[b*c*(p/e) Int[(a + b*ArcCoth[c*x])^(p - 1)*(Log[2/(1 + e*(x/d))]/(1 - c
^2*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d^2 - e^2, 0]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[(-(a + b*ArcTanh[c*x]))*(Log[2/
(1 + c*x)]/e), x] + (Simp[(a + b*ArcTanh[c*x])*(Log[2*c*((d + e*x)/((c*d + e)*(1 + c*x)))]/e), x] + Simp[b*(c/
e) Int[Log[2/(1 + c*x)]/(1 - c^2*x^2), x], x] - Simp[b*(c/e) Int[Log[2*c*((d + e*x)/((c*d + e)*(1 + c*x)))
]/(1 - c^2*x^2), x], x]) /; FreeQ[{a, b, c, d, e}, x] && NeQ[c^2*d^2 - e^2, 0]
-
Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[(-(a + b*ArcCoth[c*x]))*(Log[2/
(1 + c*x)]/e), x] + (Simp[(a + b*ArcCoth[c*x])*(Log[2*c*((d + e*x)/((c*d + e)*(1 + c*x)))]/e), x] + Simp[b*(c/
e) Int[Log[2/(1 + c*x)]/(1 - c^2*x^2), x], x] - Simp[b*(c/e) Int[Log[2*c*((d + e*x)/((c*d + e)*(1 + c*x)))
]/(1 - c^2*x^2), x], x]) /; FreeQ[{a, b, c, d, e}, x] && NeQ[c^2*d^2 - e^2, 0]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^2/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[(-(a + b*ArcTanh[c*x])^2)*(Lo
g[2/(1 + c*x)]/e), x] + (Simp[(a + b*ArcTanh[c*x])^2*(Log[2*c*((d + e*x)/((c*d + e)*(1 + c*x)))]/e), x] + Simp
[b*(a + b*ArcTanh[c*x])*(PolyLog[2, 1 - 2/(1 + c*x)]/e), x] - Simp[b*(a + b*ArcTanh[c*x])*(PolyLog[2, 1 - 2*c*
((d + e*x)/((c*d + e)*(1 + c*x)))]/e), x] + Simp[b^2*(PolyLog[3, 1 - 2/(1 + c*x)]/(2*e)), x] - Simp[b^2*(PolyL
og[3, 1 - 2*c*((d + e*x)/((c*d + e)*(1 + c*x)))]/(2*e)), x]) /; FreeQ[{a, b, c, d, e}, x] && NeQ[c^2*d^2 - e^2
, 0]
-
Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^2/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[(-(a + b*ArcCoth[c*x])^2)*(Lo
g[2/(1 + c*x)]/e), x] + (Simp[(a + b*ArcCoth[c*x])^2*(Log[2*c*((d + e*x)/((c*d + e)*(1 + c*x)))]/e), x] + Simp
[b*(a + b*ArcCoth[c*x])*(PolyLog[2, 1 - 2/(1 + c*x)]/e), x] - Simp[b*(a + b*ArcCoth[c*x])*(PolyLog[2, 1 - 2*c*
((d + e*x)/((c*d + e)*(1 + c*x)))]/e), x] + Simp[b^2*(PolyLog[3, 1 - 2/(1 + c*x)]/(2*e)), x] - Simp[b^2*(PolyL
og[3, 1 - 2*c*((d + e*x)/((c*d + e)*(1 + c*x)))]/(2*e)), x]) /; FreeQ[{a, b, c, d, e}, x] && NeQ[c^2*d^2 - e^2
, 0]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^3/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[(-(a + b*ArcTanh[c*x])^3)*(Lo
g[2/(1 + c*x)]/e), x] + (Simp[(a + b*ArcTanh[c*x])^3*(Log[2*c*((d + e*x)/((c*d + e)*(1 + c*x)))]/e), x] + Simp
[3*b*(a + b*ArcTanh[c*x])^2*(PolyLog[2, 1 - 2/(1 + c*x)]/(2*e)), x] - Simp[3*b*(a + b*ArcTanh[c*x])^2*(PolyLog
[2, 1 - 2*c*((d + e*x)/((c*d + e)*(1 + c*x)))]/(2*e)), x] + Simp[3*b^2*(a + b*ArcTanh[c*x])*(PolyLog[3, 1 - 2/
(1 + c*x)]/(2*e)), x] - Simp[3*b^2*(a + b*ArcTanh[c*x])*(PolyLog[3, 1 - 2*c*((d + e*x)/((c*d + e)*(1 + c*x)))]
/(2*e)), x] + Simp[3*b^3*(PolyLog[4, 1 - 2/(1 + c*x)]/(4*e)), x] - Simp[3*b^3*(PolyLog[4, 1 - 2*c*((d + e*x)/(
(c*d + e)*(1 + c*x)))]/(4*e)), x]) /; FreeQ[{a, b, c, d, e}, x] && NeQ[c^2*d^2 - e^2, 0]
-
Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^3/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[(-(a + b*ArcCoth[c*x])^3)*(Lo
g[2/(1 + c*x)]/e), x] + (Simp[(a + b*ArcCoth[c*x])^3*(Log[2*c*((d + e*x)/((c*d + e)*(1 + c*x)))]/e), x] + Simp
[3*b*(a + b*ArcCoth[c*x])^2*(PolyLog[2, 1 - 2/(1 + c*x)]/(2*e)), x] - Simp[3*b*(a + b*ArcCoth[c*x])^2*(PolyLog
[2, 1 - 2*c*((d + e*x)/((c*d + e)*(1 + c*x)))]/(2*e)), x] + Simp[3*b^2*(a + b*ArcCoth[c*x])*(PolyLog[3, 1 - 2/
(1 + c*x)]/(2*e)), x] - Simp[3*b^2*(a + b*ArcCoth[c*x])*(PolyLog[3, 1 - 2*c*((d + e*x)/((c*d + e)*(1 + c*x)))]
/(2*e)), x] + Simp[3*b^3*(PolyLog[4, 1 - 2/(1 + c*x)]/(4*e)), x] - Simp[3*b^3*(PolyLog[4, 1 - 2*c*((d + e*x)/(
(c*d + e)*(1 + c*x)))]/(4*e)), x]) /; FreeQ[{a, b, c, d, e}, x] && NeQ[c^2*d^2 - e^2, 0]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))*((d_) + (e_.)*(x_))^(q_.), x_Symbol] :> Simp[(d + e*x)^(q + 1)*((a + b
*ArcTanh[c*x])/(e*(q + 1))), x] - Simp[b*(c/(e*(q + 1))) Int[(d + e*x)^(q + 1)/(1 - c^2*x^2), x], x] /; Free
Q[{a, b, c, d, e, q}, x] && NeQ[q, -1]
-
Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))*((d_) + (e_.)*(x_))^(q_.), x_Symbol] :> Simp[(d + e*x)^(q + 1)*((a + b
*ArcCoth[c*x])/(e*(q + 1))), x] - Simp[b*(c/(e*(q + 1))) Int[(d + e*x)^(q + 1)/(1 - c^2*x^2), x], x] /; Free
Q[{a, b, c, d, e, q}, x] && NeQ[q, -1]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_)*((d_) + (e_.)*(x_))^(q_.), x_Symbol] :> Simp[(d + e*x)^(q + 1)*((
a + b*ArcTanh[c*x])^p/(e*(q + 1))), x] - Simp[b*c*(p/(e*(q + 1))) Int[ExpandIntegrand[(a + b*ArcTanh[c*x])^(
p - 1), (d + e*x)^(q + 1)/(1 - c^2*x^2), x], x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 1] && IntegerQ[q]
&& NeQ[q, -1]
-
Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^(p_)*((d_) + (e_.)*(x_))^(q_.), x_Symbol] :> Simp[(d + e*x)^(q + 1)*((
a + b*ArcCoth[c*x])^p/(e*(q + 1))), x] - Simp[b*c*(p/(e*(q + 1))) Int[ExpandIntegrand[(a + b*ArcCoth[c*x])^(
p - 1), (d + e*x)^(q + 1)/(1 - c^2*x^2), x], x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 1] && IntegerQ[q]
&& NeQ[q, -1]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)^(n_)]*(b_.))/((d_.) + (e_.)*(x_)), x_Symbol] :> Simp[Log[d + e*x]*((a + b*ArcT
anh[c*x^n])/e), x] - Simp[b*c*(n/e) Int[x^(n - 1)*(Log[d + e*x]/(1 - c^2*x^(2*n))), x], x] /; FreeQ[{a, b, c
, d, e, n}, x] && IntegerQ[n]
-
Int[((a_.) + ArcCoth[(c_.)*(x_)^(n_)]*(b_.))/((d_.) + (e_.)*(x_)), x_Symbol] :> Simp[Log[d + e*x]*((a + b*ArcC
oth[c*x^n])/e), x] - Simp[b*c*(n/e) Int[x^(n - 1)*(Log[d + e*x]/(1 - c^2*x^(2*n))), x], x] /; FreeQ[{a, b, c
, d, e, n}, x] && IntegerQ[n]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)^(n_)]*(b_.))/((d_) + (e_.)*(x_)), x_Symbol] :> With[{k = Denominator[n]}, Simp
[k Subst[Int[x^(k - 1)*((a + b*ArcTanh[c*x^(k*n)])/(d + e*x^k)), x], x, x^(1/k)], x]] /; FreeQ[{a, b, c, d,
e}, x] && FractionQ[n]
-
Int[((a_.) + ArcCoth[(c_.)*(x_)^(n_)]*(b_.))/((d_) + (e_.)*(x_)), x_Symbol] :> With[{k = Denominator[n]}, Simp
[k Subst[Int[x^(k - 1)*((a + b*ArcCoth[c*x^(k*n)])/(d + e*x^k)), x], x, x^(1/k)], x]] /; FreeQ[{a, b, c, d,
e}, x] && FractionQ[n]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)^(n_)]*(b_.))*((d_.) + (e_.)*(x_))^(m_.), x_Symbol] :> Simp[(d + e*x)^(m + 1)*(
(a + b*ArcTanh[c*x^n])/(e*(m + 1))), x] - Simp[b*c*(n/(e*(m + 1))) Int[x^(n - 1)*((d + e*x)^(m + 1)/(1 - c^2
*x^(2*n))), x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && NeQ[m, -1]
-
Int[((a_.) + ArcCoth[(c_.)*(x_)^(n_)]*(b_.))*((d_.) + (e_.)*(x_))^(m_.), x_Symbol] :> Simp[(d + e*x)^(m + 1)*(
(a + b*ArcCoth[c*x^n])/(e*(m + 1))), x] - Simp[b*c*(n/(e*(m + 1))) Int[x^(n - 1)*((d + e*x)^(m + 1)/(1 - c^2
*x^(2*n))), x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && NeQ[m, -1]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)^(n_)]*(b_.))^(p_)*((d_) + (e_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[
(a + b*ArcTanh[c*x^n])^p, (d + e*x)^m, x], x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[p, 1] && IGtQ[m, 0]
-
Int[((a_.) + ArcCoth[(c_.)*(x_)^(n_)]*(b_.))^(p_)*((d_) + (e_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[
(a + b*ArcCoth[c*x^n])^p, (d + e*x)^m, x], x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[p, 1] && IGtQ[m, 0]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)^(n_)]*(b_.))^(p_.)*((d_.) + (e_.)*(x_))^(m_.), x_Symbol] :> Unintegrable[(d +
e*x)^m*(a + b*ArcTanh[c*x^n])^p, x] /; FreeQ[{a, b, c, d, e, m, n, p}, x]
-
Int[((a_.) + ArcCoth[(c_.)*(x_)^(n_)]*(b_.))^(p_.)*((d_.) + (e_.)*(x_))^(m_.), x_Symbol] :> Unintegrable[(d +
e*x)^m*(a + b*ArcCoth[c*x^n])^p, x] /; FreeQ[{a, b, c, d, e, m, n, p}, x]
-
Int[(((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_.))/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[f/e
Int[(f*x)^(m - 1)*(a + b*ArcTanh[c*x])^p, x], x] - Simp[d*(f/e) Int[(f*x)^(m - 1)*((a + b*ArcTanh[c*x])^p/
(d + e*x)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[p, 0] && EqQ[c^2*d^2 - e^2, 0] && GtQ[m, 0]
-
Int[(((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_.))/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[f/e
Int[(f*x)^(m - 1)*(a + b*ArcCoth[c*x])^p, x], x] - Simp[d*(f/e) Int[(f*x)^(m - 1)*((a + b*ArcCoth[c*x])^p/
(d + e*x)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[p, 0] && EqQ[c^2*d^2 - e^2, 0] && GtQ[m, 0]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)/((x_)*((d_) + (e_.)*(x_))), x_Symbol] :> Simp[(a + b*ArcTanh[c*x
])^p*(Log[2 - 2/(1 + e*(x/d))]/d), x] - Simp[b*c*(p/d) Int[(a + b*ArcTanh[c*x])^(p - 1)*(Log[2 - 2/(1 + e*(x
/d))]/(1 - c^2*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d^2 - e^2, 0]
-
Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^(p_.)/((x_)*((d_) + (e_.)*(x_))), x_Symbol] :> Simp[(a + b*ArcCoth[c*x
])^p*(Log[2 - 2/(1 + e*(x/d))]/d), x] - Simp[b*c*(p/d) Int[(a + b*ArcCoth[c*x])^(p - 1)*(Log[2 - 2/(1 + e*(x
/d))]/(1 - c^2*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d^2 - e^2, 0]
-
Int[(((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_))/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[1/d
Int[(f*x)^m*(a + b*ArcTanh[c*x])^p, x], x] - Simp[e/(d*f) Int[(f*x)^(m + 1)*((a + b*ArcTanh[c*x])^p/(d + e*
x)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[p, 0] && EqQ[c^2*d^2 - e^2, 0] && LtQ[m, -1]
-
Int[(((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_))/((d_) + (e_.)*(x_)), x_Symbol] :> Simp[1/d
Int[(f*x)^m*(a + b*ArcCoth[c*x])^p, x], x] - Simp[e/(d*f) Int[(f*x)^(m + 1)*((a + b*ArcCoth[c*x])^p/(d + e*
x)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[p, 0] && EqQ[c^2*d^2 - e^2, 0] && LtQ[m, -1]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_.)*((d_.) + (e_.)*(x_))^(q_.), x_Symbol] :> With[{u =
IntHide[(f*x)^m*(d + e*x)^q, x]}, Simp[(a + b*ArcTanh[c*x]) u, x] - Simp[b*c Int[SimplifyIntegrand[u/(1 -
c^2*x^2), x], x], x]] /; FreeQ[{a, b, c, d, e, f, q}, x] && NeQ[q, -1] && IntegerQ[2*m] && ((IGtQ[m, 0] && IGt
Q[q, 0]) || (ILtQ[m + q + 1, 0] && LtQ[m*q, 0]))
-
Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_.)*((d_.) + (e_.)*(x_))^(q_.), x_Symbol] :> With[{u =
IntHide[(f*x)^m*(d + e*x)^q, x]}, Simp[(a + b*ArcCoth[c*x]) u, x] - Simp[b*c Int[SimplifyIntegrand[u/(1 -
c^2*x^2), x], x], x]] /; FreeQ[{a, b, c, d, e, f, q}, x] && NeQ[q, -1] && IntegerQ[2*m] && ((IGtQ[m, 0] && IGt
Q[q, 0]) || (ILtQ[m + q + 1, 0] && LtQ[m*q, 0]))
-
Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_)*((f_.)*(x_))^(m_.)*((d_.) + (e_.)*(x_))^(q_), x_Symbol] :> With[{
u = IntHide[(f*x)^m*(d + e*x)^q, x]}, Simp[(a + b*ArcTanh[c*x])^p u, x] - Simp[b*c*p Int[ExpandIntegrand[(
a + b*ArcTanh[c*x])^(p - 1), u/(1 - c^2*x^2), x], x], x]] /; FreeQ[{a, b, c, d, e, f, q}, x] && IGtQ[p, 1] &&
EqQ[c^2*d^2 - e^2, 0] && IntegersQ[m, q] && NeQ[m, -1] && NeQ[q, -1] && ILtQ[m + q + 1, 0] && LtQ[m*q, 0]
-
Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^(p_)*((f_.)*(x_))^(m_.)*((d_.) + (e_.)*(x_))^(q_), x_Symbol] :> With[{
u = IntHide[(f*x)^m*(d + e*x)^q, x]}, Simp[(a + b*ArcCoth[c*x])^p u, x] - Simp[b*c*p Int[ExpandIntegrand[(
a + b*ArcCoth[c*x])^(p - 1), u/(1 - c^2*x^2), x], x], x]] /; FreeQ[{a, b, c, d, e, f, q}, x] && IGtQ[p, 1] &&
EqQ[c^2*d^2 - e^2, 0] && IntegersQ[m, q] && NeQ[m, -1] && NeQ[q, -1] && ILtQ[m + q + 1, 0] && LtQ[m*q, 0]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_))^(q_.), x_Symbol] :> Int[E
xpandIntegrand[(a + b*ArcTanh[c*x])^p, (f*x)^m*(d + e*x)^q, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && IGtQ[
p, 0] && IntegerQ[q] && (GtQ[q, 0] || NeQ[a, 0] || IntegerQ[m])
-
Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_))^(q_.), x_Symbol] :> Int[E
xpandIntegrand[(a + b*ArcCoth[c*x])^p, (f*x)^m*(d + e*x)^q, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && IGtQ[
p, 0] && IntegerQ[q] && (GtQ[q, 0] || NeQ[a, 0] || IntegerQ[m])
-
Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Simp[b*((d + e*x^2)^q/(2*c*q
*(2*q + 1))), x] + (Simp[x*(d + e*x^2)^q*((a + b*ArcTanh[c*x])/(2*q + 1)), x] + Simp[2*d*(q/(2*q + 1)) Int[(
d + e*x^2)^(q - 1)*(a + b*ArcTanh[c*x]), x], x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[q, 0
]
-
Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Simp[b*((d + e*x^2)^q/(2*c*q
*(2*q + 1))), x] + (Simp[x*(d + e*x^2)^q*((a + b*ArcCoth[c*x])/(2*q + 1)), x] + Simp[2*d*(q/(2*q + 1)) Int[(
d + e*x^2)^(q - 1)*(a + b*ArcCoth[c*x]), x], x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[q, 0
]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_)*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Simp[b*p*(d + e*x^2)^q*
((a + b*ArcTanh[c*x])^(p - 1)/(2*c*q*(2*q + 1))), x] + (Simp[x*(d + e*x^2)^q*((a + b*ArcTanh[c*x])^p/(2*q + 1)
), x] + Simp[2*d*(q/(2*q + 1)) Int[(d + e*x^2)^(q - 1)*(a + b*ArcTanh[c*x])^p, x], x] - Simp[b^2*d*p*((p - 1
)/(2*q*(2*q + 1))) Int[(d + e*x^2)^(q - 1)*(a + b*ArcTanh[c*x])^(p - 2), x], x]) /; FreeQ[{a, b, c, d, e}, x
] && EqQ[c^2*d + e, 0] && GtQ[q, 0] && GtQ[p, 1]
-
Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^(p_)*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Simp[b*p*(d + e*x^2)^q*
((a + b*ArcCoth[c*x])^(p - 1)/(2*c*q*(2*q + 1))), x] + (Simp[x*(d + e*x^2)^q*((a + b*ArcCoth[c*x])^p/(2*q + 1)
), x] + Simp[2*d*(q/(2*q + 1)) Int[(d + e*x^2)^(q - 1)*(a + b*ArcCoth[c*x])^p, x], x] - Simp[b^2*d*p*((p - 1
)/(2*q*(2*q + 1))) Int[(d + e*x^2)^(q - 1)*(a + b*ArcCoth[c*x])^(p - 2), x], x]) /; FreeQ[{a, b, c, d, e}, x
] && EqQ[c^2*d + e, 0] && GtQ[q, 0] && GtQ[p, 1]
-
Int[1/(((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))*((d_) + (e_.)*(x_)^2)), x_Symbol] :> Simp[Log[RemoveContent[a + b*A
rcTanh[c*x], x]]/(b*c*d), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0]
-
Int[1/(((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))*((d_) + (e_.)*(x_)^2)), x_Symbol] :> Simp[Log[RemoveContent[a + b*A
rcCoth[c*x], x]]/(b*c*d), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(a + b*ArcTanh[c*x])^(p
+ 1)/(b*c*d*(p + 1)), x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2*d + e, 0] && NeQ[p, -1]
-
Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^(p_.)/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(a + b*ArcCoth[c*x])^(p
+ 1)/(b*c*d*(p + 1)), x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2*d + e, 0] && NeQ[p, -1]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[-2*(a + b*ArcTanh[c*x])*(
ArcTan[Sqrt[1 - c*x]/Sqrt[1 + c*x]]/(c*Sqrt[d])), x] + (-Simp[I*b*(PolyLog[2, (-I)*(Sqrt[1 - c*x]/Sqrt[1 + c*x
])]/(c*Sqrt[d])), x] + Simp[I*b*(PolyLog[2, I*(Sqrt[1 - c*x]/Sqrt[1 + c*x])]/(c*Sqrt[d])), x]) /; FreeQ[{a, b,
c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[d, 0]
-
Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[-2*(a + b*ArcCoth[c*x])*(
ArcTan[Sqrt[1 - c*x]/Sqrt[1 + c*x]]/(c*Sqrt[d])), x] + (-Simp[I*b*(PolyLog[2, (-I)*(Sqrt[1 - c*x]/Sqrt[1 + c*x
])]/(c*Sqrt[d])), x] + Simp[I*b*(PolyLog[2, I*(Sqrt[1 - c*x]/Sqrt[1 + c*x])]/(c*Sqrt[d])), x]) /; FreeQ[{a, b,
c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[d, 0]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[1/(c*Sqrt[d]) Sub
st[Int[(a + b*x)^p*Sech[x], x], x, ArcTanh[c*x]], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ
[p, 0] && GtQ[d, 0]
-
Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^(p_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(-x)*(Sqrt[1 - 1/(c
^2*x^2)]/Sqrt[d + e*x^2]) Subst[Int[(a + b*x)^p*Csch[x], x], x, ArcCoth[c*x]], x] /; FreeQ[{a, b, c, d, e},
x] && EqQ[c^2*d + e, 0] && IGtQ[p, 0] && GtQ[d, 0]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[Sqrt[1 - c^2*x^2]/S
qrt[d + e*x^2] Int[(a + b*ArcTanh[c*x])^p/Sqrt[1 - c^2*x^2], x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*
d + e, 0] && IGtQ[p, 0] && !GtQ[d, 0]
-
Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^(p_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[Sqrt[1 - c^2*x^2]/S
qrt[d + e*x^2] Int[(a + b*ArcCoth[c*x])^p/Sqrt[1 - c^2*x^2], x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*
d + e, 0] && IGtQ[p, 0] && !GtQ[d, 0]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)/((d_) + (e_.)*(x_)^2)^2, x_Symbol] :> Simp[x*((a + b*ArcTanh[c*x
])^p/(2*d*(d + e*x^2))), x] + (Simp[(a + b*ArcTanh[c*x])^(p + 1)/(2*b*c*d^2*(p + 1)), x] - Simp[b*c*(p/2) In
t[x*((a + b*ArcTanh[c*x])^(p - 1)/(d + e*x^2)^2), x], x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] &&
GtQ[p, 0]
-
Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^(p_.)/((d_) + (e_.)*(x_)^2)^2, x_Symbol] :> Simp[x*((a + b*ArcCoth[c*x
])^p/(2*d*(d + e*x^2))), x] + (Simp[(a + b*ArcCoth[c*x])^(p + 1)/(2*b*c*d^2*(p + 1)), x] - Simp[b*c*(p/2) In
t[x*((a + b*ArcCoth[c*x])^(p - 1)/(d + e*x^2)^2), x], x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] &&
GtQ[p, 0]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))/((d_) + (e_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[-b/(c*d*Sqrt[d + e*x^2]
), x] + Simp[x*((a + b*ArcTanh[c*x])/(d*Sqrt[d + e*x^2])), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0
]
-
Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))/((d_) + (e_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[-b/(c*d*Sqrt[d + e*x^2]
), x] + Simp[x*((a + b*ArcCoth[c*x])/(d*Sqrt[d + e*x^2])), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0
]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Simp[(-b)*((d + e*x^2)^(q + 1
)/(4*c*d*(q + 1)^2)), x] + (-Simp[x*(d + e*x^2)^(q + 1)*((a + b*ArcTanh[c*x])/(2*d*(q + 1))), x] + Simp[(2*q +
3)/(2*d*(q + 1)) Int[(d + e*x^2)^(q + 1)*(a + b*ArcTanh[c*x]), x], x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[
c^2*d + e, 0] && LtQ[q, -1] && NeQ[q, -3/2]
-
Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Simp[(-b)*((d + e*x^2)^(q + 1
)/(4*c*d*(q + 1)^2)), x] + (-Simp[x*(d + e*x^2)^(q + 1)*((a + b*ArcCoth[c*x])/(2*d*(q + 1))), x] + Simp[(2*q +
3)/(2*d*(q + 1)) Int[(d + e*x^2)^(q + 1)*(a + b*ArcCoth[c*x]), x], x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[
c^2*d + e, 0] && LtQ[q, -1] && NeQ[q, -3/2]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_)/((d_) + (e_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(-b)*p*((a + b*Arc
Tanh[c*x])^(p - 1)/(c*d*Sqrt[d + e*x^2])), x] + (Simp[x*((a + b*ArcTanh[c*x])^p/(d*Sqrt[d + e*x^2])), x] + Sim
p[b^2*p*(p - 1) Int[(a + b*ArcTanh[c*x])^(p - 2)/(d + e*x^2)^(3/2), x], x]) /; FreeQ[{a, b, c, d, e}, x] &&
EqQ[c^2*d + e, 0] && GtQ[p, 1]
-
Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^(p_)/((d_) + (e_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(-b)*p*((a + b*Arc
Coth[c*x])^(p - 1)/(c*d*Sqrt[d + e*x^2])), x] + (Simp[x*((a + b*ArcCoth[c*x])^p/(d*Sqrt[d + e*x^2])), x] + Sim
p[b^2*p*(p - 1) Int[(a + b*ArcCoth[c*x])^(p - 2)/(d + e*x^2)^(3/2), x], x]) /; FreeQ[{a, b, c, d, e}, x] &&
EqQ[c^2*d + e, 0] && GtQ[p, 1]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Simp[(-b)*p*(d + e*x^2)^
(q + 1)*((a + b*ArcTanh[c*x])^(p - 1)/(4*c*d*(q + 1)^2)), x] + (-Simp[x*(d + e*x^2)^(q + 1)*((a + b*ArcTanh[c*
x])^p/(2*d*(q + 1))), x] + Simp[(2*q + 3)/(2*d*(q + 1)) Int[(d + e*x^2)^(q + 1)*(a + b*ArcTanh[c*x])^p, x],
x] + Simp[b^2*p*((p - 1)/(4*(q + 1)^2)) Int[(d + e*x^2)^q*(a + b*ArcTanh[c*x])^(p - 2), x], x]) /; FreeQ[{a,
b, c, d, e}, x] && EqQ[c^2*d + e, 0] && LtQ[q, -1] && GtQ[p, 1] && NeQ[q, -3/2]
-
Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^(p_)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Simp[(-b)*p*(d + e*x^2)^
(q + 1)*((a + b*ArcCoth[c*x])^(p - 1)/(4*c*d*(q + 1)^2)), x] + (-Simp[x*(d + e*x^2)^(q + 1)*((a + b*ArcCoth[c*
x])^p/(2*d*(q + 1))), x] + Simp[(2*q + 3)/(2*d*(q + 1)) Int[(d + e*x^2)^(q + 1)*(a + b*ArcCoth[c*x])^p, x],
x] + Simp[b^2*p*((p - 1)/(4*(q + 1)^2)) Int[(d + e*x^2)^q*(a + b*ArcCoth[c*x])^(p - 2), x], x]) /; FreeQ[{a,
b, c, d, e}, x] && EqQ[c^2*d + e, 0] && LtQ[q, -1] && GtQ[p, 1] && NeQ[q, -3/2]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Simp[(d + e*x^2)^(q + 1)
*((a + b*ArcTanh[c*x])^(p + 1)/(b*c*d*(p + 1))), x] + Simp[2*c*((q + 1)/(b*(p + 1))) Int[x*(d + e*x^2)^q*(a
+ b*ArcTanh[c*x])^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && LtQ[q, -1] && LtQ[p, -1
]
-
Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^(p_)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Simp[(d + e*x^2)^(q + 1)
*((a + b*ArcCoth[c*x])^(p + 1)/(b*c*d*(p + 1))), x] + Simp[2*c*((q + 1)/(b*(p + 1))) Int[x*(d + e*x^2)^q*(a
+ b*ArcCoth[c*x])^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && LtQ[q, -1] && LtQ[p, -1
]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Simp[d^q/c Subst[Int[
(a + b*x)^p/Cosh[x]^(2*(q + 1)), x], x, ArcTanh[c*x]], x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2*d + e, 0]
&& ILtQ[2*(q + 1), 0] && (IntegerQ[q] || GtQ[d, 0])
-
Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Simp[d^(q + 1/2)*(Sqrt[
1 - c^2*x^2]/Sqrt[d + e*x^2]) Int[(1 - c^2*x^2)^q*(a + b*ArcTanh[c*x])^p, x], x] /; FreeQ[{a, b, c, d, e, p}
, x] && EqQ[c^2*d + e, 0] && ILtQ[2*(q + 1), 0] && !(IntegerQ[q] || GtQ[d, 0])
-
Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^(p_.)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Simp[-(-d)^q/c Subst[
Int[(a + b*x)^p/Sinh[x]^(2*(q + 1)), x], x, ArcCoth[c*x]], x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2*d + e
, 0] && ILtQ[2*(q + 1), 0] && IntegerQ[q]
-
Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^(p_.)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Simp[(-(-d)^(q + 1/2))*
x*(Sqrt[(c^2*x^2 - 1)/(c^2*x^2)]/Sqrt[d + e*x^2]) Subst[Int[(a + b*x)^p/Sinh[x]^(2*(q + 1)), x], x, ArcCoth[
c*x]], x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2*d + e, 0] && ILtQ[2*(q + 1), 0] && !IntegerQ[q]
-
Int[ArcTanh[(c_.)*(x_)]/((d_.) + (e_.)*(x_)^2), x_Symbol] :> Simp[1/2 Int[Log[1 + c*x]/(d + e*x^2), x], x] -
Simp[1/2 Int[Log[1 - c*x]/(d + e*x^2), x], x] /; FreeQ[{c, d, e}, x]
-
Int[ArcCoth[(c_.)*(x_)]/((d_.) + (e_.)*(x_)^2), x_Symbol] :> Simp[1/2 Int[Log[1 + 1/(c*x)]/(d + e*x^2), x],
x] - Simp[1/2 Int[Log[1 - 1/(c*x)]/(d + e*x^2), x], x] /; FreeQ[{c, d, e}, x]
-
Int[(ArcTanh[(c_.)*(x_)]*(b_.) + (a_))/((d_.) + (e_.)*(x_)^2), x_Symbol] :> Simp[a Int[1/(d + e*x^2), x], x]
+ Simp[b Int[ArcTanh[c*x]/(d + e*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x]
-
Int[(ArcCoth[(c_.)*(x_)]*(b_.) + (a_))/((d_.) + (e_.)*(x_)^2), x_Symbol] :> Simp[a Int[1/(d + e*x^2), x], x]
+ Simp[b Int[ArcCoth[c*x]/(d + e*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))*((d_.) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> With[{u = IntHide[(d + e*x^
2)^q, x]}, Simp[(a + b*ArcTanh[c*x]) u, x] - Simp[b*c Int[SimplifyIntegrand[u/(1 - c^2*x^2), x], x], x]] /
; FreeQ[{a, b, c, d, e}, x] && (IntegerQ[q] || ILtQ[q + 1/2, 0])
-
Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))*((d_.) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> With[{u = IntHide[(d + e*x^
2)^q, x]}, Simp[(a + b*ArcCoth[c*x]) u, x] - Simp[b*c Int[SimplifyIntegrand[u/(1 - c^2*x^2), x], x], x]] /
; FreeQ[{a, b, c, d, e}, x] && (IntegerQ[q] || ILtQ[q + 1/2, 0])
-
Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Int[ExpandIntegrand[(a
+ b*ArcTanh[c*x])^p, (d + e*x^2)^q, x], x] /; FreeQ[{a, b, c, d, e}, x] && IntegerQ[q] && IGtQ[p, 0]
-
Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^(p_.)*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Int[ExpandIntegrand[(a
+ b*ArcCoth[c*x])^p, (d + e*x^2)^q, x], x] /; FreeQ[{a, b, c, d, e}, x] && IntegerQ[q] && IGtQ[p, 0]
-
Int[(((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[f^2
/e Int[(f*x)^(m - 2)*(a + b*ArcTanh[c*x])^p, x], x] - Simp[d*(f^2/e) Int[(f*x)^(m - 2)*((a + b*ArcTanh[c*x
])^p/(d + e*x^2)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[p, 0] && GtQ[m, 1]
-
Int[(((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[f^2
/e Int[(f*x)^(m - 2)*(a + b*ArcCoth[c*x])^p, x], x] - Simp[d*(f^2/e) Int[(f*x)^(m - 2)*((a + b*ArcCoth[c*x
])^p/(d + e*x^2)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[p, 0] && GtQ[m, 1]
-
Int[(((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[1/d
Int[(f*x)^m*(a + b*ArcTanh[c*x])^p, x], x] - Simp[e/(d*f^2) Int[(f*x)^(m + 2)*((a + b*ArcTanh[c*x])^p/(d
+ e*x^2)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[p, 0] && LtQ[m, -1]
-
Int[(((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[1/d
Int[(f*x)^m*(a + b*ArcCoth[c*x])^p, x], x] - Simp[e/(d*f^2) Int[(f*x)^(m + 2)*((a + b*ArcCoth[c*x])^p/(d
+ e*x^2)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && GtQ[p, 0] && LtQ[m, -1]
-
Int[(((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*(x_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(a + b*ArcTanh[c
*x])^(p + 1)/(b*e*(p + 1)), x] + Simp[1/(c*d) Int[(a + b*ArcTanh[c*x])^p/(1 - c*x), x], x] /; FreeQ[{a, b, c
, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[p, 0]
-
Int[(((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^(p_.)*(x_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(a + b*ArcCoth[c
*x])^(p + 1)/(b*e*(p + 1)), x] + Simp[1/(c*d) Int[(a + b*ArcCoth[c*x])^p/(1 - c*x), x], x] /; FreeQ[{a, b, c
, d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[p, 0]
-
Int[(((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_)*(x_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[x*((a + b*ArcTanh
[c*x])^(p + 1)/(b*c*d*(p + 1))), x] - Simp[1/(b*c*d*(p + 1)) Int[(a + b*ArcTanh[c*x])^(p + 1), x], x] /; Fre
eQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && !IGtQ[p, 0] && NeQ[p, -1]
-
Int[(((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^(p_)*(x_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(-x)*((a + b*ArcC
oth[c*x])^(p + 1)/(b*c*d*(p + 1))), x] - Simp[1/(b*c*d*(p + 1)) Int[(a + b*ArcCoth[c*x])^(p + 1), x], x] /;
FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && !IGtQ[p, 0] && NeQ[p, -1]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)/((x_)*((d_) + (e_.)*(x_)^2)), x_Symbol] :> Simp[(a + b*ArcTanh[c
*x])^(p + 1)/(b*d*(p + 1)), x] + Simp[1/d Int[(a + b*ArcTanh[c*x])^p/(x*(1 + c*x)), x], x] /; FreeQ[{a, b, c
, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[p, 0]
-
Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^(p_.)/((x_)*((d_) + (e_.)*(x_)^2)), x_Symbol] :> Simp[(a + b*ArcCoth[c
*x])^(p + 1)/(b*d*(p + 1)), x] + Simp[1/d Int[(a + b*ArcCoth[c*x])^p/(x*(1 + c*x)), x], x] /; FreeQ[{a, b, c
, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[p, 0]
-
Int[(((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_)*((f_.)*(x_))^(m_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(f*x
)^m*((a + b*ArcTanh[c*x])^(p + 1)/(b*c*d*(p + 1))), x] - Simp[f*(m/(b*c*d*(p + 1))) Int[(f*x)^(m - 1)*(a + b
*ArcTanh[c*x])^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && LtQ[p, -1]
-
Int[(((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^(p_)*((f_.)*(x_))^(m_))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(f*x
)^m*((a + b*ArcCoth[c*x])^(p + 1)/(b*c*d*(p + 1))), x] - Simp[f*(m/(b*c*d*(p + 1))) Int[(f*x)^(m - 1)*(a + b
*ArcCoth[c*x])^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && LtQ[p, -1]
-
Int[(((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))*(x_)^(m_.))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Int[ExpandIntegrand[a
+ b*ArcTanh[c*x], x^m/(d + e*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] && IntegerQ[m] && !(EqQ[m, 1] && NeQ[
a, 0])
-
Int[(((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))*(x_)^(m_.))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Int[ExpandIntegrand[a
+ b*ArcCoth[c*x], x^m/(d + e*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] && IntegerQ[m] && !(EqQ[m, 1] && NeQ[
a, 0])
-
Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*(x_)*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Simp[(d + e*x^2)^
(q + 1)*((a + b*ArcTanh[c*x])^p/(2*e*(q + 1))), x] + Simp[b*(p/(2*c*(q + 1))) Int[(d + e*x^2)^q*(a + b*ArcTa
nh[c*x])^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, q}, x] && EqQ[c^2*d + e, 0] && GtQ[p, 0] && NeQ[q, -1]
-
Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^(p_.)*(x_)*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Simp[(d + e*x^2)^
(q + 1)*((a + b*ArcCoth[c*x])^p/(2*e*(q + 1))), x] + Simp[b*(p/(2*c*(q + 1))) Int[(d + e*x^2)^q*(a + b*ArcCo
th[c*x])^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, q}, x] && EqQ[c^2*d + e, 0] && GtQ[p, 0] && NeQ[q, -1]
-
Int[(((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_)*(x_))/((d_) + (e_.)*(x_)^2)^2, x_Symbol] :> Simp[x*((a + b*ArcTa
nh[c*x])^(p + 1)/(b*c*d*(p + 1)*(d + e*x^2))), x] + (Simp[(1 + c^2*x^2)*((a + b*ArcTanh[c*x])^(p + 2)/(b^2*e*(
p + 1)*(p + 2)*(d + e*x^2))), x] + Simp[4/(b^2*(p + 1)*(p + 2)) Int[x*((a + b*ArcTanh[c*x])^(p + 2)/(d + e*x
^2)^2), x], x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && LtQ[p, -1] && NeQ[p, -2]
-
Int[(((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^(p_)*(x_))/((d_) + (e_.)*(x_)^2)^2, x_Symbol] :> Simp[x*((a + b*ArcCo
th[c*x])^(p + 1)/(b*c*d*(p + 1)*(d + e*x^2))), x] + (Simp[(1 + c^2*x^2)*((a + b*ArcCoth[c*x])^(p + 2)/(b^2*e*(
p + 1)*(p + 2)*(d + e*x^2))), x] + Simp[4/(b^2*(p + 1)*(p + 2)) Int[x*((a + b*ArcCoth[c*x])^(p + 2)/(d + e*x
^2)^2), x], x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && LtQ[p, -1] && NeQ[p, -2]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))*(x_)^2*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Simp[(-b)*((d + e*x^2)
^(q + 1)/(4*c^3*d*(q + 1)^2)), x] + (-Simp[x*(d + e*x^2)^(q + 1)*((a + b*ArcTanh[c*x])/(2*c^2*d*(q + 1))), x]
+ Simp[1/(2*c^2*d*(q + 1)) Int[(d + e*x^2)^(q + 1)*(a + b*ArcTanh[c*x]), x], x]) /; FreeQ[{a, b, c, d, e}, x
] && EqQ[c^2*d + e, 0] && LtQ[q, -1] && NeQ[q, -5/2]
-
Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))*(x_)^2*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Simp[(-b)*((d + e*x^2)
^(q + 1)/(4*c^3*d*(q + 1)^2)), x] + (-Simp[x*(d + e*x^2)^(q + 1)*((a + b*ArcCoth[c*x])/(2*c^2*d*(q + 1))), x]
+ Simp[1/(2*c^2*d*(q + 1)) Int[(d + e*x^2)^(q + 1)*(a + b*ArcCoth[c*x]), x], x]) /; FreeQ[{a, b, c, d, e}, x
] && EqQ[c^2*d + e, 0] && LtQ[q, -1] && NeQ[q, -5/2]
-
Int[(((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*(x_)^2)/((d_) + (e_.)*(x_)^2)^2, x_Symbol] :> Simp[-(a + b*ArcT
anh[c*x])^(p + 1)/(2*b*c^3*d^2*(p + 1)), x] + (Simp[x*((a + b*ArcTanh[c*x])^p/(2*c^2*d*(d + e*x^2))), x] - Sim
p[b*(p/(2*c)) Int[x*((a + b*ArcTanh[c*x])^(p - 1)/(d + e*x^2)^2), x], x]) /; FreeQ[{a, b, c, d, e}, x] && Eq
Q[c^2*d + e, 0] && GtQ[p, 0]
-
Int[(((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^(p_.)*(x_)^2)/((d_) + (e_.)*(x_)^2)^2, x_Symbol] :> Simp[-(a + b*ArcC
oth[c*x])^(p + 1)/(2*b*c^3*d^2*(p + 1)), x] + (Simp[x*((a + b*ArcCoth[c*x])^p/(2*c^2*d*(d + e*x^2))), x] - Sim
p[b*(p/(2*c)) Int[x*((a + b*ArcCoth[c*x])^(p - 1)/(d + e*x^2)^2), x], x]) /; FreeQ[{a, b, c, d, e}, x] && Eq
Q[c^2*d + e, 0] && GtQ[p, 0]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Simp[(-b)*(
f*x)^m*((d + e*x^2)^(q + 1)/(c*d*m^2)), x] + (Simp[f*(f*x)^(m - 1)*(d + e*x^2)^(q + 1)*((a + b*ArcTanh[c*x])/(
c^2*d*m)), x] - Simp[f^2*((m - 1)/(c^2*d*m)) Int[(f*x)^(m - 2)*(d + e*x^2)^(q + 1)*(a + b*ArcTanh[c*x]), x],
x]) /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[c^2*d + e, 0] && EqQ[m + 2*q + 2, 0] && LtQ[q, -1]
-
Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Simp[(-b)*(
f*x)^m*((d + e*x^2)^(q + 1)/(c*d*m^2)), x] + (Simp[f*(f*x)^(m - 1)*(d + e*x^2)^(q + 1)*((a + b*ArcCoth[c*x])/(
c^2*d*m)), x] - Simp[f^2*((m - 1)/(c^2*d*m)) Int[(f*x)^(m - 2)*(d + e*x^2)^(q + 1)*(a + b*ArcCoth[c*x]), x],
x]) /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[c^2*d + e, 0] && EqQ[m + 2*q + 2, 0] && LtQ[q, -1]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Simp[(
-b)*p*(f*x)^m*(d + e*x^2)^(q + 1)*((a + b*ArcTanh[c*x])^(p - 1)/(c*d*m^2)), x] + (Simp[f*(f*x)^(m - 1)*(d + e*
x^2)^(q + 1)*((a + b*ArcTanh[c*x])^p/(c^2*d*m)), x] - Simp[f^2*((m - 1)/(c^2*d*m)) Int[(f*x)^(m - 2)*(d + e*
x^2)^(q + 1)*(a + b*ArcTanh[c*x])^p, x], x] + Simp[b^2*p*((p - 1)/m^2) Int[(f*x)^m*(d + e*x^2)^q*(a + b*ArcT
anh[c*x])^(p - 2), x], x]) /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && EqQ[m + 2*q + 2, 0] && L
tQ[q, -1] && GtQ[p, 1]
-
Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^(p_)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Simp[(
-b)*p*(f*x)^m*(d + e*x^2)^(q + 1)*((a + b*ArcCoth[c*x])^(p - 1)/(c*d*m^2)), x] + (Simp[f*(f*x)^(m - 1)*(d + e*
x^2)^(q + 1)*((a + b*ArcCoth[c*x])^p/(c^2*d*m)), x] - Simp[f^2*((m - 1)/(c^2*d*m)) Int[(f*x)^(m - 2)*(d + e*
x^2)^(q + 1)*(a + b*ArcCoth[c*x])^p, x], x] + Simp[b^2*p*((p - 1)/m^2) Int[(f*x)^m*(d + e*x^2)^q*(a + b*ArcC
oth[c*x])^(p - 2), x], x]) /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && EqQ[m + 2*q + 2, 0] && L
tQ[q, -1] && GtQ[p, 1]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Simp
[(f*x)^m*(d + e*x^2)^(q + 1)*((a + b*ArcTanh[c*x])^(p + 1)/(b*c*d*(p + 1))), x] - Simp[f*(m/(b*c*(p + 1))) I
nt[(f*x)^(m - 1)*(d + e*x^2)^q*(a + b*ArcTanh[c*x])^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f, m, q}, x] && E
qQ[c^2*d + e, 0] && EqQ[m + 2*q + 2, 0] && LtQ[p, -1]
-
Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^(p_)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Simp
[(f*x)^m*(d + e*x^2)^(q + 1)*((a + b*ArcCoth[c*x])^(p + 1)/(b*c*d*(p + 1))), x] - Simp[f*(m/(b*c*(p + 1))) I
nt[(f*x)^(m - 1)*(d + e*x^2)^q*(a + b*ArcCoth[c*x])^(p + 1), x], x] /; FreeQ[{a, b, c, d, e, f, m, q}, x] && E
qQ[c^2*d + e, 0] && EqQ[m + 2*q + 2, 0] && LtQ[p, -1]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Sim
p[(f*x)^(m + 1)*(d + e*x^2)^(q + 1)*((a + b*ArcTanh[c*x])^p/(d*(m + 1))), x] - Simp[b*c*(p/(m + 1)) Int[(f*x
)^(m + 1)*(d + e*x^2)^q*(a + b*ArcTanh[c*x])^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, f, m, q}, x] && EqQ[c^2*
d + e, 0] && EqQ[m + 2*q + 3, 0] && GtQ[p, 0] && NeQ[m, -1]
-
Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Sim
p[(f*x)^(m + 1)*(d + e*x^2)^(q + 1)*((a + b*ArcCoth[c*x])^p/(d*f*(m + 1))), x] - Simp[b*c*(p/(f*(m + 1))) In
t[(f*x)^(m + 1)*(d + e*x^2)^q*(a + b*ArcCoth[c*x])^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, f, m, q}, x] && Eq
Q[c^2*d + e, 0] && EqQ[m + 2*q + 3, 0] && GtQ[p, 0] && NeQ[m, -1]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_)*Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(f*x)^(
m + 1)*Sqrt[d + e*x^2]*((a + b*ArcTanh[c*x])/(f*(m + 2))), x] + (Simp[d/(m + 2) Int[(f*x)^m*((a + b*ArcTanh[
c*x])/Sqrt[d + e*x^2]), x], x] - Simp[b*c*(d/(f*(m + 2))) Int[(f*x)^(m + 1)/Sqrt[d + e*x^2], x], x]) /; Free
Q[{a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && NeQ[m, -2]
-
Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_)*Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(f*x)^(
m + 1)*Sqrt[d + e*x^2]*((a + b*ArcCoth[c*x])/(f*(m + 2))), x] + (Simp[d/(m + 2) Int[(f*x)^m*((a + b*ArcCoth[
c*x])/Sqrt[d + e*x^2]), x], x] - Simp[b*c*(d/(f*(m + 2))) Int[(f*x)^(m + 1)/Sqrt[d + e*x^2], x], x]) /; Free
Q[{a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && NeQ[m, -2]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Int[E
xpandIntegrand[(f*x)^m*(d + e*x^2)^q*(a + b*ArcTanh[c*x])^p, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[
c^2*d + e, 0] && IGtQ[p, 0] && IGtQ[q, 1]
-
Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Int[E
xpandIntegrand[(f*x)^m*(d + e*x^2)^q*(a + b*ArcCoth[c*x])^p, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[
c^2*d + e, 0] && IGtQ[p, 0] && IGtQ[q, 1]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Simp
[d Int[(f*x)^m*(d + e*x^2)^(q - 1)*(a + b*ArcTanh[c*x])^p, x], x] - Simp[c^2*(d/f^2) Int[(f*x)^(m + 2)*(d
+ e*x^2)^(q - 1)*(a + b*ArcTanh[c*x])^p, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && GtQ
[q, 0] && IGtQ[p, 0] && (RationalQ[m] || (EqQ[p, 1] && IntegerQ[q]))
-
Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Simp
[d Int[(f*x)^m*(d + e*x^2)^(q - 1)*(a + b*ArcCoth[c*x])^p, x], x] - Simp[c^2*(d/f^2) Int[(f*x)^(m + 2)*(d
+ e*x^2)^(q - 1)*(a + b*ArcCoth[c*x])^p, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[c^2*d + e, 0] && GtQ
[q, 0] && IGtQ[p, 0] && (RationalQ[m] || (EqQ[p, 1] && IntegerQ[q]))
-
Int[(((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp
[(-f)*(f*x)^(m - 1)*Sqrt[d + e*x^2]*((a + b*ArcTanh[c*x])^p/(c^2*d*m)), x] + (Simp[b*f*(p/(c*m)) Int[(f*x)^(
m - 1)*((a + b*ArcTanh[c*x])^(p - 1)/Sqrt[d + e*x^2]), x], x] + Simp[f^2*((m - 1)/(c^2*m)) Int[(f*x)^(m - 2)
*((a + b*ArcTanh[c*x])^p/Sqrt[d + e*x^2]), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[c^2*d + e, 0] && GtQ
[p, 0] && GtQ[m, 1]
-
Int[(((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp
[(-f)*(f*x)^(m - 1)*Sqrt[d + e*x^2]*((a + b*ArcCoth[c*x])^p/(c^2*d*m)), x] + (Simp[b*f*(p/(c*m)) Int[(f*x)^(
m - 1)*((a + b*ArcCoth[c*x])^(p - 1)/Sqrt[d + e*x^2]), x], x] + Simp[f^2*((m - 1)/(c^2*m)) Int[(f*x)^(m - 2)
*((a + b*ArcCoth[c*x])^p/Sqrt[d + e*x^2]), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[c^2*d + e, 0] && GtQ
[p, 0] && GtQ[m, 1]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))/((x_)*Sqrt[(d_) + (e_.)*(x_)^2]), x_Symbol] :> Simp[(-2/Sqrt[d])*(a +
b*ArcTanh[c*x])*ArcTanh[Sqrt[1 - c*x]/Sqrt[1 + c*x]], x] + (Simp[(b/Sqrt[d])*PolyLog[2, -Sqrt[1 - c*x]/Sqrt[1
+ c*x]], x] - Simp[(b/Sqrt[d])*PolyLog[2, Sqrt[1 - c*x]/Sqrt[1 + c*x]], x]) /; FreeQ[{a, b, c, d, e}, x] && Eq
Q[c^2*d + e, 0] && GtQ[d, 0]
-
Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))/((x_)*Sqrt[(d_) + (e_.)*(x_)^2]), x_Symbol] :> Simp[(-2/Sqrt[d])*(a +
b*ArcCoth[c*x])*ArcTanh[Sqrt[1 - c*x]/Sqrt[1 + c*x]], x] + (Simp[(b/Sqrt[d])*PolyLog[2, -Sqrt[1 - c*x]/Sqrt[1
+ c*x]], x] - Simp[(b/Sqrt[d])*PolyLog[2, Sqrt[1 - c*x]/Sqrt[1 + c*x]], x]) /; FreeQ[{a, b, c, d, e}, x] && Eq
Q[c^2*d + e, 0] && GtQ[d, 0]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_)/((x_)*Sqrt[(d_) + (e_.)*(x_)^2]), x_Symbol] :> Simp[1/Sqrt[d] S
ubst[Int[(a + b*x)^p*Csch[x], x], x, ArcTanh[c*x]], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IG
tQ[p, 0] && GtQ[d, 0]
-
Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^(p_)/((x_)*Sqrt[(d_) + (e_.)*(x_)^2]), x_Symbol] :> Simp[(-c)*x*(Sqrt[
1 - 1/(c^2*x^2)]/Sqrt[d + e*x^2]) Subst[Int[(a + b*x)^p*Sech[x], x], x, ArcCoth[c*x]], x] /; FreeQ[{a, b, c,
d, e}, x] && EqQ[c^2*d + e, 0] && IGtQ[p, 0] && GtQ[d, 0]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)/((x_)*Sqrt[(d_) + (e_.)*(x_)^2]), x_Symbol] :> Simp[Sqrt[1 - c^2
*x^2]/Sqrt[d + e*x^2] Int[(a + b*ArcTanh[c*x])^p/(x*Sqrt[1 - c^2*x^2]), x], x] /; FreeQ[{a, b, c, d, e}, x]
&& EqQ[c^2*d + e, 0] && IGtQ[p, 0] && !GtQ[d, 0]
-
Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^(p_.)/((x_)*Sqrt[(d_) + (e_.)*(x_)^2]), x_Symbol] :> Simp[Sqrt[1 - c^2
*x^2]/Sqrt[d + e*x^2] Int[(a + b*ArcCoth[c*x])^p/(x*Sqrt[1 - c^2*x^2]), x], x] /; FreeQ[{a, b, c, d, e}, x]
&& EqQ[c^2*d + e, 0] && IGtQ[p, 0] && !GtQ[d, 0]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)/((x_)^2*Sqrt[(d_) + (e_.)*(x_)^2]), x_Symbol] :> Simp[(-Sqrt[d +
e*x^2])*((a + b*ArcTanh[c*x])^p/(d*x)), x] + Simp[b*c*p Int[(a + b*ArcTanh[c*x])^(p - 1)/(x*Sqrt[d + e*x^2]
), x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[p, 0]
-
Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^(p_.)/((x_)^2*Sqrt[(d_) + (e_.)*(x_)^2]), x_Symbol] :> Simp[(-Sqrt[d +
e*x^2])*((a + b*ArcCoth[c*x])^p/(d*x)), x] + Simp[b*c*p Int[(a + b*ArcCoth[c*x])^(p - 1)/(x*Sqrt[d + e*x^2]
), x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[p, 0]
-
Int[(((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp
[(f*x)^(m + 1)*Sqrt[d + e*x^2]*((a + b*ArcTanh[c*x])^p/(d*f*(m + 1))), x] + (-Simp[b*c*(p/(f*(m + 1))) Int[(
f*x)^(m + 1)*((a + b*ArcTanh[c*x])^(p - 1)/Sqrt[d + e*x^2]), x], x] + Simp[c^2*((m + 2)/(f^2*(m + 1))) Int[(
f*x)^(m + 2)*((a + b*ArcTanh[c*x])^p/Sqrt[d + e*x^2]), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[c^2*d +
e, 0] && GtQ[p, 0] && LtQ[m, -1] && NeQ[m, -2]
-
Int[(((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_))/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp
[(f*x)^(m + 1)*Sqrt[d + e*x^2]*((a + b*ArcCoth[c*x])^p/(d*f*(m + 1))), x] + (-Simp[b*c*(p/(f*(m + 1))) Int[(
f*x)^(m + 1)*((a + b*ArcCoth[c*x])^(p - 1)/Sqrt[d + e*x^2]), x], x] + Simp[c^2*((m + 2)/(f^2*(m + 1))) Int[(
f*x)^(m + 2)*((a + b*ArcCoth[c*x])^p/Sqrt[d + e*x^2]), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[c^2*d +
e, 0] && GtQ[p, 0] && LtQ[m, -1] && NeQ[m, -2]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*(x_)^(m_)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Simp[1/e In
t[x^(m - 2)*(d + e*x^2)^(q + 1)*(a + b*ArcTanh[c*x])^p, x], x] - Simp[d/e Int[x^(m - 2)*(d + e*x^2)^q*(a + b
*ArcTanh[c*x])^p, x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IntegersQ[p, 2*q] && LtQ[q, -1]
&& IGtQ[m, 1] && NeQ[p, -1]
-
Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^(p_.)*(x_)^(m_)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Simp[1/e In
t[x^(m - 2)*(d + e*x^2)^(q + 1)*(a + b*ArcCoth[c*x])^p, x], x] - Simp[d/e Int[x^(m - 2)*(d + e*x^2)^q*(a + b
*ArcCoth[c*x])^p, x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IntegersQ[p, 2*q] && LtQ[q, -1]
&& IGtQ[m, 1] && NeQ[p, -1]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*(x_)^(m_)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Simp[1/d In
t[x^m*(d + e*x^2)^(q + 1)*(a + b*ArcTanh[c*x])^p, x], x] - Simp[e/d Int[x^(m + 2)*(d + e*x^2)^q*(a + b*ArcTa
nh[c*x])^p, x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IntegersQ[p, 2*q] && LtQ[q, -1] && ILt
Q[m, 0] && NeQ[p, -1]
-
Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^(p_.)*(x_)^(m_)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Simp[1/d In
t[x^m*(d + e*x^2)^(q + 1)*(a + b*ArcCoth[c*x])^p, x], x] - Simp[e/d Int[x^(m + 2)*(d + e*x^2)^q*(a + b*ArcCo
th[c*x])^p, x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IntegersQ[p, 2*q] && LtQ[q, -1] && ILt
Q[m, 0] && NeQ[p, -1]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Simp[x^m*(d
+ e*x^2)^(q + 1)*((a + b*ArcTanh[c*x])^(p + 1)/(b*c*d*(p + 1))), x] + (Simp[c*((m + 2*q + 2)/(b*(p + 1))) In
t[x^(m + 1)*(d + e*x^2)^q*(a + b*ArcTanh[c*x])^(p + 1), x], x] - Simp[m/(b*c*(p + 1)) Int[x^(m - 1)*(d + e*x
^2)^q*(a + b*ArcTanh[c*x])^(p + 1), x], x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IntegerQ[m] &
& LtQ[q, -1] && LtQ[p, -1] && NeQ[m + 2*q + 2, 0]
-
Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^(p_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Simp[x^m*(d
+ e*x^2)^(q + 1)*((a + b*ArcCoth[c*x])^(p + 1)/(b*c*d*(p + 1))), x] + (Simp[c*((m + 2*q + 2)/(b*(p + 1))) In
t[x^(m + 1)*(d + e*x^2)^q*(a + b*ArcCoth[c*x])^(p + 1), x], x] - Simp[m/(b*c*(p + 1)) Int[x^(m - 1)*(d + e*x
^2)^q*(a + b*ArcCoth[c*x])^(p + 1), x], x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && IntegerQ[m] &
& LtQ[q, -1] && LtQ[p, -1] && NeQ[m + 2*q + 2, 0]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Simp[d^q/c^(
m + 1) Subst[Int[(a + b*x)^p*(Sinh[x]^m/Cosh[x]^(m + 2*(q + 1))), x], x, ArcTanh[c*x]], x] /; FreeQ[{a, b, c
, d, e, p}, x] && EqQ[c^2*d + e, 0] && IGtQ[m, 0] && ILtQ[m + 2*q + 1, 0] && (IntegerQ[q] || GtQ[d, 0])
-
Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Simp[d^(q +
1/2)*(Sqrt[1 - c^2*x^2]/Sqrt[d + e*x^2]) Int[x^m*(1 - c^2*x^2)^q*(a + b*ArcTanh[c*x])^p, x], x] /; FreeQ[{a,
b, c, d, e, p}, x] && EqQ[c^2*d + e, 0] && IGtQ[m, 0] && ILtQ[m + 2*q + 1, 0] && !(IntegerQ[q] || GtQ[d, 0])
-
Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^(p_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Simp[-(-d)^q
/c^(m + 1) Subst[Int[(a + b*x)^p*(Cosh[x]^m/Sinh[x]^(m + 2*(q + 1))), x], x, ArcCoth[c*x]], x] /; FreeQ[{a,
b, c, d, e, p}, x] && EqQ[c^2*d + e, 0] && IGtQ[m, 0] && ILtQ[m + 2*q + 1, 0] && IntegerQ[q]
-
Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^(p_.)*(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_), x_Symbol] :> Simp[(-(-d)^
(q + 1/2))*x*(Sqrt[(c^2*x^2 - 1)/(c^2*x^2)]/(c^m*Sqrt[d + e*x^2])) Subst[Int[(a + b*x)^p*(Cosh[x]^m/Sinh[x]^
(m + 2*(q + 1))), x], x, ArcCoth[c*x]], x] /; FreeQ[{a, b, c, d, e, p}, x] && EqQ[c^2*d + e, 0] && IGtQ[m, 0]
&& ILtQ[m + 2*q + 1, 0] && !IntegerQ[q]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))*(x_)*((d_.) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Simp[(d + e*x^2)^(q +
1)*((a + b*ArcTanh[c*x])/(2*e*(q + 1))), x] - Simp[b*(c/(2*e*(q + 1))) Int[(d + e*x^2)^(q + 1)/(1 - c^2*x^2)
, x], x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[q, -1]
-
Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))*(x_)*((d_.) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Simp[(d + e*x^2)^(q +
1)*((a + b*ArcCoth[c*x])/(2*e*(q + 1))), x] - Simp[b*(c/(2*e*(q + 1))) Int[(d + e*x^2)^(q + 1)/(1 - c^2*x^2)
, x], x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[q, -1]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_.)*((d_.) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> With[{u
= IntHide[(f*x)^m*(d + e*x^2)^q, x]}, Simp[(a + b*ArcTanh[c*x]) u, x] - Simp[b*c Int[SimplifyIntegrand[u/(
1 - c^2*x^2), x], x], x]] /; FreeQ[{a, b, c, d, e, f, m, q}, x] && ((IGtQ[q, 0] && !(ILtQ[(m - 1)/2, 0] && Gt
Q[m + 2*q + 3, 0])) || (IGtQ[(m + 1)/2, 0] && !(ILtQ[q, 0] && GtQ[m + 2*q + 3, 0])) || (ILtQ[(m + 2*q + 1)/2,
0] && !ILtQ[(m - 1)/2, 0]))
-
Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_.)*((d_.) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> With[{u
= IntHide[(f*x)^m*(d + e*x^2)^q, x]}, Simp[(a + b*ArcCoth[c*x]) u, x] - Simp[b*c Int[SimplifyIntegrand[u/(
1 - c^2*x^2), x], x], x]] /; FreeQ[{a, b, c, d, e, f, m, q}, x] && ((IGtQ[q, 0] && !(ILtQ[(m - 1)/2, 0] && Gt
Q[m + 2*q + 3, 0])) || (IGtQ[(m + 1)/2, 0] && !(ILtQ[q, 0] && GtQ[m + 2*q + 3, 0])) || (ILtQ[(m + 2*q + 1)/2,
0] && !ILtQ[(m - 1)/2, 0]))
-
Int[(((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*(x_))/((d_) + (e_.)*(x_)^2)^2, x_Symbol] :> Simp[1/(4*d^2*Rt[-e
/d, 2]) Int[(a + b*ArcTanh[c*x])^p/(1 - Rt[-e/d, 2]*x)^2, x], x] - Simp[1/(4*d^2*Rt[-e/d, 2]) Int[(a + b*A
rcTanh[c*x])^p/(1 + Rt[-e/d, 2]*x)^2, x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0]
-
Int[(((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^(p_.)*(x_))/((d_) + (e_.)*(x_)^2)^2, x_Symbol] :> Simp[1/(4*d^2*Rt[-e
/d, 2]) Int[(a + b*ArcCoth[c*x])^p/(1 - Rt[-e/d, 2]*x)^2, x], x] - Simp[1/(4*d^2*Rt[-e/d, 2]) Int[(a + b*A
rcCoth[c*x])^p/(1 + Rt[-e/d, 2]*x)^2, x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Wit
h[{u = ExpandIntegrand[(a + b*ArcTanh[c*x])^p, (f*x)^m*(d + e*x^2)^q, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a,
b, c, d, e, f, m}, x] && IntegerQ[q] && IGtQ[p, 0] && (GtQ[q, 0] || IntegerQ[m])
-
Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Wit
h[{u = ExpandIntegrand[(a + b*ArcCoth[c*x])^p, (f*x)^m*(d + e*x^2)^q, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a,
b, c, d, e, f, m}, x] && IntegerQ[q] && IGtQ[p, 0] && (GtQ[q, 0] || IntegerQ[m])
-
Int[(ArcTanh[(c_.)*(x_)]*(b_.) + (a_))*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Simp[a I
nt[(f*x)^m*(d + e*x^2)^q, x], x] + Simp[b Int[(f*x)^m*(d + e*x^2)^q*ArcTanh[c*x], x], x] /; FreeQ[{a, b, c,
d, e, f, m, q}, x]
-
Int[(ArcCoth[(c_.)*(x_)]*(b_.) + (a_))*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.), x_Symbol] :> Simp[a I
nt[(f*x)^m*(d + e*x^2)^q, x], x] + Simp[b Int[(f*x)^m*(d + e*x^2)^q*ArcCoth[c*x], x], x] /; FreeQ[{a, b, c,
d, e, f, m, q}, x]
-
Int[(((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*((f_) + (g_.)*(x_))^(m_.))/((d_) + (e_.)*(x_)^2), x_Symbol] :>
Int[ExpandIntegrand[(a + b*ArcTanh[c*x])^p/(d + e*x^2), (f + g*x)^m, x], x] /; FreeQ[{a, b, c, d, e, f, g}, x]
&& IGtQ[p, 0] && EqQ[c^2*d + e, 0] && IGtQ[m, 0]
-
Int[(((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^(p_.)*((f_) + (g_.)*(x_))^(m_.))/((d_) + (e_.)*(x_)^2), x_Symbol] :>
Int[ExpandIntegrand[(a + b*ArcCoth[c*x])^p/(d + e*x^2), (f + g*x)^m, x], x] /; FreeQ[{a, b, c, d, e, f, g}, x]
&& IGtQ[p, 0] && EqQ[c^2*d + e, 0] && IGtQ[m, 0]
-
Int[(ArcTanh[u_]*((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[1/2 Int
[Log[1 + u]*((a + b*ArcTanh[c*x])^p/(d + e*x^2)), x], x] - Simp[1/2 Int[Log[1 - u]*((a + b*ArcTanh[c*x])^p/(
d + e*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d + e, 0] && EqQ[u^2 - (1 - 2/(1 + c
*x))^2, 0]
-
Int[(ArcCoth[u_]*((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^(p_.))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[1/2 Int
[Log[SimplifyIntegrand[1 + 1/u, x]]*((a + b*ArcCoth[c*x])^p/(d + e*x^2)), x], x] - Simp[1/2 Int[Log[Simplify
Integrand[1 - 1/u, x]]*((a + b*ArcCoth[c*x])^p/(d + e*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0]
&& EqQ[c^2*d + e, 0] && EqQ[u^2 - (1 - 2/(1 + c*x))^2, 0]
-
Int[(ArcTanh[u_]*((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[1/2 Int
[Log[1 + u]*((a + b*ArcTanh[c*x])^p/(d + e*x^2)), x], x] - Simp[1/2 Int[Log[1 - u]*((a + b*ArcTanh[c*x])^p/(
d + e*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d + e, 0] && EqQ[u^2 - (1 - 2/(1 - c
*x))^2, 0]
-
Int[(ArcCoth[u_]*((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^(p_.))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[1/2 Int
[Log[SimplifyIntegrand[1 + 1/u, x]]*((a + b*ArcCoth[c*x])^p/(d + e*x^2)), x], x] - Simp[1/2 Int[Log[Simplify
Integrand[1 - 1/u, x]]*((a + b*ArcCoth[c*x])^p/(d + e*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0]
&& EqQ[c^2*d + e, 0] && EqQ[u^2 - (1 - 2/(1 - c*x))^2, 0]
-
Int[(Log[(f_) + (g_.)*(x_)]*((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Sim
p[(a + b*ArcTanh[c*x])^(p + 1)*(Log[f + g*x]/(b*c*d*(p + 1))), x] - Simp[g/(b*c*d*(p + 1)) Int[(a + b*ArcTan
h[c*x])^(p + 1)/(f + g*x), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && IGtQ[p, 0] && EqQ[c^2*d + e, 0] && EqQ
[c^2*f^2 - g^2, 0]
-
Int[(Log[(f_) + (g_.)*(x_)]*((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^(p_.))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Sim
p[(a + b*ArcCoth[c*x])^(p + 1)*(Log[f + g*x]/(b*c*d*(p + 1))), x] - Simp[g/(b*c*d*(p + 1)) Int[(a + b*ArcCot
h[c*x])^(p + 1)/(f + g*x), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && IGtQ[p, 0] && EqQ[c^2*d + e, 0] && EqQ
[c^2*f^2 - g^2, 0]
-
Int[(Log[u_]*((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(a + b*ArcTan
h[c*x])^p*(PolyLog[2, 1 - u]/(2*c*d)), x] - Simp[b*(p/2) Int[(a + b*ArcTanh[c*x])^(p - 1)*(PolyLog[2, 1 - u]
/(d + e*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d + e, 0] && EqQ[(1 - u)^2 - (1 -
2/(1 + c*x))^2, 0]
-
Int[(Log[u_]*((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^(p_.))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(a + b*ArcCot
h[c*x])^p*(PolyLog[2, 1 - u]/(2*c*d)), x] - Simp[b*(p/2) Int[(a + b*ArcCoth[c*x])^(p - 1)*(PolyLog[2, 1 - u]
/(d + e*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d + e, 0] && EqQ[(1 - u)^2 - (1 -
2/(1 + c*x))^2, 0]
-
Int[(Log[u_]*((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(-(a + b*ArcT
anh[c*x])^p)*(PolyLog[2, 1 - u]/(2*c*d)), x] + Simp[b*(p/2) Int[(a + b*ArcTanh[c*x])^(p - 1)*(PolyLog[2, 1 -
u]/(d + e*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d + e, 0] && EqQ[(1 - u)^2 - (1
- 2/(1 - c*x))^2, 0]
-
Int[(Log[u_]*((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^(p_.))/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(-(a + b*ArcC
oth[c*x])^p)*(PolyLog[2, 1 - u]/(2*c*d)), x] + Simp[b*(p/2) Int[(a + b*ArcCoth[c*x])^(p - 1)*(PolyLog[2, 1 -
u]/(d + e*x^2)), x], x] /; FreeQ[{a, b, c, d, e}, x] && IGtQ[p, 0] && EqQ[c^2*d + e, 0] && EqQ[(1 - u)^2 - (1
- 2/(1 - c*x))^2, 0]
-
Int[(((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*PolyLog[k_, u_])/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(-(a
+ b*ArcTanh[c*x])^p)*(PolyLog[k + 1, u]/(2*c*d)), x] + Simp[b*(p/2) Int[(a + b*ArcTanh[c*x])^(p - 1)*(PolyLo
g[k + 1, u]/(d + e*x^2)), x], x] /; FreeQ[{a, b, c, d, e, k}, x] && IGtQ[p, 0] && EqQ[c^2*d + e, 0] && EqQ[u^2
- (1 - 2/(1 + c*x))^2, 0]
-
Int[(((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^(p_.)*PolyLog[k_, u_])/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(-(a
+ b*ArcCoth[c*x])^p)*(PolyLog[k + 1, u]/(2*c*d)), x] + Simp[b*(p/2) Int[(a + b*ArcCoth[c*x])^(p - 1)*(PolyLo
g[k + 1, u]/(d + e*x^2)), x], x] /; FreeQ[{a, b, c, d, e, k}, x] && IGtQ[p, 0] && EqQ[c^2*d + e, 0] && EqQ[u^2
- (1 - 2/(1 + c*x))^2, 0]
-
Int[(((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*PolyLog[k_, u_])/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(a +
b*ArcTanh[c*x])^p*(PolyLog[k + 1, u]/(2*c*d)), x] - Simp[b*(p/2) Int[(a + b*ArcTanh[c*x])^(p - 1)*(PolyLog[k
+ 1, u]/(d + e*x^2)), x], x] /; FreeQ[{a, b, c, d, e, k}, x] && IGtQ[p, 0] && EqQ[c^2*d + e, 0] && EqQ[u^2 -
(1 - 2/(1 - c*x))^2, 0]
-
Int[(((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^(p_.)*PolyLog[k_, u_])/((d_) + (e_.)*(x_)^2), x_Symbol] :> Simp[(a +
b*ArcCoth[c*x])^p*(PolyLog[k + 1, u]/(2*c*d)), x] - Simp[b*(p/2) Int[(a + b*ArcCoth[c*x])^(p - 1)*(PolyLog[k
+ 1, u]/(d + e*x^2)), x], x] /; FreeQ[{a, b, c, d, e, k}, x] && IGtQ[p, 0] && EqQ[c^2*d + e, 0] && EqQ[u^2 -
(1 - 2/(1 - c*x))^2, 0]
-
Int[1/(((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))*((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))*((d_) + (e_.)*(x_)^2)), x_Symbo
l] :> Simp[(-Log[a + b*ArcCoth[c*x]] + Log[a + b*ArcTanh[c*x]])/(b^2*c*d*(ArcCoth[c*x] - ArcTanh[c*x])), x] /;
FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0]
-
Int[(((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^(m_.)*((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.))/((d_) + (e_.)*(x_)^2
), x_Symbol] :> Simp[(a + b*ArcCoth[c*x])^(m + 1)*((a + b*ArcTanh[c*x])^p/(b*c*d*(m + 1))), x] - Simp[p/(m + 1
) Int[(a + b*ArcCoth[c*x])^(m + 1)*((a + b*ArcTanh[c*x])^(p - 1)/(d + e*x^2)), x], x] /; FreeQ[{a, b, c, d,
e}, x] && EqQ[c^2*d + e, 0] && IGtQ[p, 0] && IGeQ[m, p]
-
Int[(((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^(p_.)*((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(m_.))/((d_) + (e_.)*(x_)^2
), x_Symbol] :> Simp[(a + b*ArcTanh[c*x])^(m + 1)*((a + b*ArcCoth[c*x])^p/(b*c*d*(m + 1))), x] - Simp[p/(m + 1
) Int[(a + b*ArcTanh[c*x])^(m + 1)*((a + b*ArcCoth[c*x])^(p - 1)/(d + e*x^2)), x], x] /; FreeQ[{a, b, c, d,
e}, x] && EqQ[c^2*d + e, 0] && IGtQ[p, 0] && IGtQ[m, p]
-
Int[ArcTanh[(a_.)*(x_)]/((c_) + (d_.)*(x_)^(n_.)), x_Symbol] :> Simp[1/2 Int[Log[1 + a*x]/(c + d*x^n), x], x
] - Simp[1/2 Int[Log[1 - a*x]/(c + d*x^n), x], x] /; FreeQ[{a, c, d}, x] && IntegerQ[n] && !(EqQ[n, 2] && E
qQ[a^2*c + d, 0])
-
Int[ArcCoth[(a_.)*(x_)]/((c_) + (d_.)*(x_)^(n_.)), x_Symbol] :> Simp[1/2 Int[Log[1 + 1/(a*x)]/(c + d*x^n), x
], x] - Simp[1/2 Int[Log[1 - 1/(a*x)]/(c + d*x^n), x], x] /; FreeQ[{a, c, d}, x] && IntegerQ[n] && !(EqQ[n,
2] && EqQ[a^2*c + d, 0])
-
Int[(ArcTanh[(c_.)*(x_)^(n_.)]*Log[(d_.)*(x_)^(m_.)])/(x_), x_Symbol] :> Simp[1/2 Int[Log[d*x^m]*(Log[1 + c*
x^n]/x), x], x] - Simp[1/2 Int[Log[d*x^m]*(Log[1 - c*x^n]/x), x], x] /; FreeQ[{c, d, m, n}, x]
-
Int[(ArcCoth[(c_.)*(x_)^(n_.)]*Log[(d_.)*(x_)^(m_.)])/(x_), x_Symbol] :> Simp[1/2 Int[Log[d*x^m]*(Log[1 + 1/
(c*x^n)]/x), x], x] - Simp[1/2 Int[Log[d*x^m]*(Log[1 - 1/(c*x^n)]/x), x], x] /; FreeQ[{c, d, m, n}, x]
-
Int[(Log[(d_.)*(x_)^(m_.)]*(ArcTanh[(c_.)*(x_)^(n_.)]*(b_.) + (a_)))/(x_), x_Symbol] :> Simp[a Int[Log[d*x^m
]/x, x], x] + Simp[b Int[(Log[d*x^m]*ArcTanh[c*x^n])/x, x], x] /; FreeQ[{a, b, c, d, m, n}, x]
-
Int[(Log[(d_.)*(x_)^(m_.)]*(ArcCoth[(c_.)*(x_)^(n_.)]*(b_.) + (a_)))/(x_), x_Symbol] :> Simp[a Int[Log[d*x^m
]/x, x], x] + Simp[b Int[(Log[d*x^m]*ArcCoth[c*x^n])/x, x], x] /; FreeQ[{a, b, c, d, m, n}, x]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))*((d_.) + Log[(f_.) + (g_.)*(x_)^2]*(e_.)), x_Symbol] :> Simp[x*(d + e*
Log[f + g*x^2])*(a + b*ArcTanh[c*x]), x] + (-Simp[b*c Int[x*((d + e*Log[f + g*x^2])/(1 - c^2*x^2)), x], x] -
Simp[2*e*g Int[x^2*((a + b*ArcTanh[c*x])/(f + g*x^2)), x], x]) /; FreeQ[{a, b, c, d, e, f, g}, x]
-
Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))*((d_.) + Log[(f_.) + (g_.)*(x_)^2]*(e_.)), x_Symbol] :> Simp[x*(d + e*
Log[f + g*x^2])*(a + b*ArcCoth[c*x]), x] + (-Simp[b*c Int[x*((d + e*Log[f + g*x^2])/(1 - c^2*x^2)), x], x] -
Simp[2*e*g Int[x^2*((a + b*ArcCoth[c*x])/(f + g*x^2)), x], x]) /; FreeQ[{a, b, c, d, e, f, g}, x]
-
Int[(ArcTanh[(c_.)*(x_)]*Log[(f_.) + (g_.)*(x_)^2])/(x_), x_Symbol] :> Simp[(Log[f + g*x^2] - Log[1 - c*x] - L
og[1 + c*x]) Int[ArcTanh[c*x]/x, x], x] + (-Simp[1/2 Int[Log[1 - c*x]^2/x, x], x] + Simp[1/2 Int[Log[1 +
c*x]^2/x, x], x]) /; FreeQ[{c, f, g}, x] && EqQ[c^2*f + g, 0]
-
Int[(ArcCoth[(c_.)*(x_)]*Log[(f_.) + (g_.)*(x_)^2])/(x_), x_Symbol] :> Simp[(Log[f + g*x^2] - Log[(-c^2)*x^2]
- Log[1 - 1/(c*x)] - Log[1 + 1/(c*x)]) Int[ArcCoth[c*x]/x, x], x] + (Int[Log[(-c^2)*x^2]*(ArcCoth[c*x]/x), x
] + Simp[1/2 Int[Log[1 + 1/(c*x)]^2/x, x], x] - Simp[1/2 Int[Log[1 - 1/(c*x)]^2/x, x], x]) /; FreeQ[{c, f,
g}, x] && EqQ[c^2*f + g, 0]
-
Int[(Log[(f_.) + (g_.)*(x_)^2]*(ArcTanh[(c_.)*(x_)]*(b_.) + (a_)))/(x_), x_Symbol] :> Simp[a Int[Log[f + g*x
^2]/x, x], x] + Simp[b Int[Log[f + g*x^2]*(ArcTanh[c*x]/x), x], x] /; FreeQ[{a, b, c, f, g}, x]
-
Int[(Log[(f_.) + (g_.)*(x_)^2]*(ArcCoth[(c_.)*(x_)]*(b_.) + (a_)))/(x_), x_Symbol] :> Simp[a Int[Log[f + g*x
^2]/x, x], x] + Simp[b Int[Log[f + g*x^2]*(ArcCoth[c*x]/x), x], x] /; FreeQ[{a, b, c, f, g}, x]
-
Int[(((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))*(Log[(f_.) + (g_.)*(x_)^2]*(e_.) + (d_)))/(x_), x_Symbol] :> Simp[d
Int[(a + b*ArcTanh[c*x])/x, x], x] + Simp[e Int[Log[f + g*x^2]*((a + b*ArcTanh[c*x])/x), x], x] /; FreeQ[{a
, b, c, d, e, f, g}, x]
-
Int[(((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))*(Log[(f_.) + (g_.)*(x_)^2]*(e_.) + (d_)))/(x_), x_Symbol] :> Simp[d
Int[(a + b*ArcCoth[c*x])/x, x], x] + Simp[e Int[Log[f + g*x^2]*((a + b*ArcCoth[c*x])/x), x], x] /; FreeQ[{a
, b, c, d, e, f, g}, x]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))*((d_.) + Log[(f_.) + (g_.)*(x_)^2]*(e_.))*(x_)^(m_.), x_Symbol] :> Sim
p[x^(m + 1)*(d + e*Log[f + g*x^2])*((a + b*ArcTanh[c*x])/(m + 1)), x] + (-Simp[b*(c/(m + 1)) Int[x^(m + 1)*(
(d + e*Log[f + g*x^2])/(1 - c^2*x^2)), x], x] - Simp[2*e*(g/(m + 1)) Int[x^(m + 2)*((a + b*ArcTanh[c*x])/(f
+ g*x^2)), x], x]) /; FreeQ[{a, b, c, d, e, f, g}, x] && ILtQ[m/2, 0]
-
Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))*((d_.) + Log[(f_.) + (g_.)*(x_)^2]*(e_.))*(x_)^(m_.), x_Symbol] :> Sim
p[x^(m + 1)*(d + e*Log[f + g*x^2])*((a + b*ArcCoth[c*x])/(m + 1)), x] + (-Simp[b*(c/(m + 1)) Int[x^(m + 1)*(
(d + e*Log[f + g*x^2])/(1 - c^2*x^2)), x], x] - Simp[2*e*(g/(m + 1)) Int[x^(m + 2)*((a + b*ArcCoth[c*x])/(f
+ g*x^2)), x], x]) /; FreeQ[{a, b, c, d, e, f, g}, x] && ILtQ[m/2, 0]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))*((d_.) + Log[(f_.) + (g_.)*(x_)^2]*(e_.))*(x_)^(m_.), x_Symbol] :> Wit
h[{u = IntHide[x^m*(d + e*Log[f + g*x^2]), x]}, Simp[(a + b*ArcTanh[c*x]) u, x] - Simp[b*c Int[ExpandInteg
rand[u/(1 - c^2*x^2), x], x], x]] /; FreeQ[{a, b, c, d, e, f, g}, x] && IGtQ[(m + 1)/2, 0]
-
Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))*((d_.) + Log[(f_.) + (g_.)*(x_)^2]*(e_.))*(x_)^(m_.), x_Symbol] :> Wit
h[{u = IntHide[x^m*(d + e*Log[f + g*x^2]), x]}, Simp[(a + b*ArcCoth[c*x]) u, x] - Simp[b*c Int[ExpandInteg
rand[u/(1 - c^2*x^2), x], x], x]] /; FreeQ[{a, b, c, d, e, f, g}, x] && IGtQ[(m + 1)/2, 0]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))*((d_.) + Log[(f_.) + (g_.)*(x_)^2]*(e_.))*(x_)^(m_.), x_Symbol] :> Wit
h[{u = IntHide[x^m*(a + b*ArcTanh[c*x]), x]}, Simp[(d + e*Log[f + g*x^2]) u, x] - Simp[2*e*g Int[ExpandInt
egrand[x*(u/(f + g*x^2)), x], x], x]] /; FreeQ[{a, b, c, d, e, f, g}, x] && IntegerQ[m] && NeQ[m, -1]
-
Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))*((d_.) + Log[(f_.) + (g_.)*(x_)^2]*(e_.))*(x_)^(m_.), x_Symbol] :> Wit
h[{u = IntHide[x^m*(a + b*ArcCoth[c*x]), x]}, Simp[(d + e*Log[f + g*x^2]) u, x] - Simp[2*e*g Int[ExpandInt
egrand[x*(u/(f + g*x^2)), x], x], x]] /; FreeQ[{a, b, c, d, e, f, g}, x] && IntegerQ[m] && NeQ[m, -1]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^2*((d_.) + Log[(f_) + (g_.)*(x_)^2]*(e_.))*(x_), x_Symbol] :> Simp[(f
+ g*x^2)*(d + e*Log[f + g*x^2])*((a + b*ArcTanh[c*x])^2/(2*g)), x] + (-Simp[e*x^2*((a + b*ArcTanh[c*x])^2/2),
x] + Simp[b/c Int[(d + e*Log[f + g*x^2])*(a + b*ArcTanh[c*x]), x], x] + Simp[b*c*e Int[x^2*((a + b*ArcTanh
[c*x])/(1 - c^2*x^2)), x], x]) /; FreeQ[{a, b, c, d, e, f, g}, x] && EqQ[c^2*f + g, 0]
-
Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^2*((d_.) + Log[(f_) + (g_.)*(x_)^2]*(e_.))*(x_), x_Symbol] :> Simp[(f
+ g*x^2)*(d + e*Log[f + g*x^2])*((a + b*ArcCoth[c*x])^2/(2*g)), x] + (-Simp[e*x^2*((a + b*ArcCoth[c*x])^2/2),
x] + Simp[b/c Int[(d + e*Log[f + g*x^2])*(a + b*ArcCoth[c*x]), x], x] + Simp[b*c*e Int[x^2*((a + b*ArcCoth
[c*x])/(1 - c^2*x^2)), x], x]) /; FreeQ[{a, b, c, d, e, f, g}, x] && EqQ[c^2*f + g, 0]
-
Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*(u_.), x_Symbol] :> Unintegrable[u*(a + b*ArcTanh[c*x])^p, x] /;
FreeQ[{a, b, c, p}, x] && (EqQ[u, 1] || MatchQ[u, ((d_.) + (e_.)*x)^(q_.) /; FreeQ[{d, e, q}, x]] || MatchQ[u
, ((f_.)*x)^(m_.)*((d_.) + (e_.)*x)^(q_.) /; FreeQ[{d, e, f, m, q}, x]] || MatchQ[u, ((d_.) + (e_.)*x^2)^(q_.)
/; FreeQ[{d, e, q}, x]] || MatchQ[u, ((f_.)*x)^(m_.)*((d_.) + (e_.)*x^2)^(q_.) /; FreeQ[{d, e, f, m, q}, x]])
-
Int[((a_.) + ArcCoth[(c_.)*(x_)]*(b_.))^(p_.)*(u_.), x_Symbol] :> Unintegrable[u*(a + b*ArcCoth[c*x])^p, x] /;
FreeQ[{a, b, c, p}, x] && (EqQ[u, 1] || MatchQ[u, ((d_.) + (e_.)*x)^(q_.) /; FreeQ[{d, e, q}, x]] || MatchQ[u
, ((f_.)*x)^(m_.)*((d_.) + (e_.)*x)^(q_.) /; FreeQ[{d, e, f, m, q}, x]] || MatchQ[u, ((d_.) + (e_.)*x^2)^(q_.)
/; FreeQ[{d, e, q}, x]] || MatchQ[u, ((f_.)*x)^(m_.)*((d_.) + (e_.)*x^2)^(q_.) /; FreeQ[{d, e, f, m, q}, x]])
-
Int[((a_.) + ArcTanh[(c_) + (d_.)*(x_)]*(b_.))^(p_.), x_Symbol] :> Simp[1/d Subst[Int[(a + b*ArcTanh[x])^p,
x], x, c + d*x], x] /; FreeQ[{a, b, c, d}, x] && IGtQ[p, 0]
-
Int[((a_.) + ArcCoth[(c_) + (d_.)*(x_)]*(b_.))^(p_.), x_Symbol] :> Simp[1/d Subst[Int[(a + b*ArcCoth[x])^p,
x], x, c + d*x], x] /; FreeQ[{a, b, c, d}, x] && IGtQ[p, 0]
-
Int[((a_.) + ArcTanh[(c_) + (d_.)*(x_)]*(b_.))^(p_), x_Symbol] :> Unintegrable[(a + b*ArcTanh[c + d*x])^p, x]
/; FreeQ[{a, b, c, d, p}, x] && !IGtQ[p, 0]
-
Int[((a_.) + ArcCoth[(c_) + (d_.)*(x_)]*(b_.))^(p_), x_Symbol] :> Unintegrable[(a + b*ArcCoth[c + d*x])^p, x]
/; FreeQ[{a, b, c, d, p}, x] && !IGtQ[p, 0]
-
Int[((a_.) + ArcTanh[(c_) + (d_.)*(x_)]*(b_.))^(p_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[1/d Subst
[Int[(f*(x/d))^m*(a + b*ArcTanh[x])^p, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[d*e - c*f
, 0] && IGtQ[p, 0]
-
Int[((a_.) + ArcCoth[(c_) + (d_.)*(x_)]*(b_.))^(p_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[1/d Subst
[Int[(f*(x/d))^m*(a + b*ArcCoth[x])^p, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[d*e - c*f
, 0] && IGtQ[p, 0]
-
Int[((a_.) + ArcTanh[(c_) + (d_.)*(x_)]*(b_.))^(p_.)*((e_.) + (f_.)*(x_))^(m_), x_Symbol] :> Simp[(e + f*x)^(m
+ 1)*((a + b*ArcTanh[c + d*x])^p/(f*(m + 1))), x] - Simp[b*d*(p/(f*(m + 1))) Int[(e + f*x)^(m + 1)*((a + b*
ArcTanh[c + d*x])^(p - 1)/(1 - (c + d*x)^2)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[p, 0] && ILtQ[m,
-1]
-
Int[((a_.) + ArcCoth[(c_) + (d_.)*(x_)]*(b_.))^(p_.)*((e_.) + (f_.)*(x_))^(m_), x_Symbol] :> Simp[(e + f*x)^(m
+ 1)*((a + b*ArcCoth[c + d*x])^p/(f*(m + 1))), x] - Simp[b*d*(p/(f*(m + 1))) Int[(e + f*x)^(m + 1)*((a + b*
ArcCoth[c + d*x])^(p - 1)/(1 - (c + d*x)^2)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[p, 0] && ILtQ[m,
-1]
-
Int[((a_.) + ArcTanh[(c_) + (d_.)*(x_)]*(b_.))^(p_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[1/d Subst
[Int[((d*e - c*f)/d + f*(x/d))^m*(a + b*ArcTanh[x])^p, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m}, x]
&& IGtQ[p, 0]
-
Int[((a_.) + ArcCoth[(c_) + (d_.)*(x_)]*(b_.))^(p_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[1/d Subst
[Int[((d*e - c*f)/d + f*(x/d))^m*(a + b*ArcCoth[x])^p, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m}, x]
&& IGtQ[p, 0]
-
Int[((a_.) + ArcTanh[(c_) + (d_.)*(x_)]*(b_.))^(p_)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Unintegrable[(e +
f*x)^m*(a + b*ArcTanh[c + d*x])^p, x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && !IGtQ[p, 0]
-
Int[((a_.) + ArcCoth[(c_) + (d_.)*(x_)]*(b_.))^(p_)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Unintegrable[(e +
f*x)^m*(a + b*ArcCoth[c + d*x])^p, x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && !IGtQ[p, 0]
-
Int[ArcTanh[(c_) + (d_.)*(x_)]/((e_) + (f_.)*(x_)^(n_.)), x_Symbol] :> Simp[1/2 Int[Log[1 + c + d*x]/(e + f*
x^n), x], x] - Simp[1/2 Int[Log[1 - c - d*x]/(e + f*x^n), x], x] /; FreeQ[{c, d, e, f}, x] && RationalQ[n]
-
Int[ArcCoth[(c_) + (d_.)*(x_)]/((e_) + (f_.)*(x_)^(n_.)), x_Symbol] :> Simp[1/2 Int[Log[(1 + c + d*x)/(c + d
*x)]/(e + f*x^n), x], x] - Simp[1/2 Int[Log[(-1 + c + d*x)/(c + d*x)]/(e + f*x^n), x], x] /; FreeQ[{c, d, e,
f}, x] && RationalQ[n]
-
Int[ArcTanh[(c_) + (d_.)*(x_)]/((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Unintegrable[ArcTanh[c + d*x]/(e + f*x^n
), x] /; FreeQ[{c, d, e, f, n}, x] && !RationalQ[n]
-
Int[ArcCoth[(c_) + (d_.)*(x_)]/((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Unintegrable[ArcCoth[c + d*x]/(e + f*x^n
), x] /; FreeQ[{c, d, e, f, n}, x] && !RationalQ[n]
-
Int[((a_.) + ArcTanh[(c_) + (d_.)*(x_)]*(b_.))^(p_.)*((A_.) + (B_.)*(x_) + (C_.)*(x_)^2)^(q_.), x_Symbol] :> S
imp[1/d Subst[Int[(-C/d^2 + (C/d^2)*x^2)^q*(a + b*ArcTanh[x])^p, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, A
, B, C, p, q}, x] && EqQ[B*(1 - c^2) + 2*A*c*d, 0] && EqQ[2*c*C - B*d, 0]
-
Int[((a_.) + ArcCoth[(c_) + (d_.)*(x_)]*(b_.))^(p_.)*((A_.) + (B_.)*(x_) + (C_.)*(x_)^2)^(q_.), x_Symbol] :> S
imp[1/d Subst[Int[(C/d^2 + (C/d^2)*x^2)^q*(a + b*ArcCoth[x])^p, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, A,
B, C, p, q}, x] && EqQ[B*(1 - c^2) + 2*A*c*d, 0] && EqQ[2*c*C - B*d, 0]
-
Int[((a_.) + ArcTanh[(c_) + (d_.)*(x_)]*(b_.))^(p_.)*((e_.) + (f_.)*(x_))^(m_.)*((A_.) + (B_.)*(x_) + (C_.)*(x
_)^2)^(q_.), x_Symbol] :> Simp[1/d Subst[Int[((d*e - c*f)/d + f*(x/d))^m*(-C/d^2 + (C/d^2)*x^2)^q*(a + b*Arc
Tanh[x])^p, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m, p, q}, x] && EqQ[B*(1 - c^2) + 2*A*c*d
, 0] && EqQ[2*c*C - B*d, 0]
-
Int[((a_.) + ArcCoth[(c_) + (d_.)*(x_)]*(b_.))^(p_.)*((e_.) + (f_.)*(x_))^(m_.)*((A_.) + (B_.)*(x_) + (C_.)*(x
_)^2)^(q_.), x_Symbol] :> Simp[1/d Subst[Int[((d*e - c*f)/d + f*(x/d))^m*(-C/d^2 + (C/d^2)*x^2)^q*(a + b*Arc
Coth[x])^p, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m, p, q}, x] && EqQ[B*(1 - c^2) + 2*A*c*d
, 0] && EqQ[2*c*C - B*d, 0]
-
Int[E^(ArcTanh[(a_.)*(x_)]*(n_.)), x_Symbol] :> Int[(1 + a*x)^((n + 1)/2)/((1 - a*x)^((n - 1)/2)*Sqrt[1 - a^2*
x^2]), x] /; FreeQ[a, x] && IntegerQ[(n - 1)/2]
-
Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*((c_.)*(x_))^(m_.), x_Symbol] :> Int[(c*x)^m*((1 + a*x)^((n + 1)/2)/((1 - a*
x)^((n - 1)/2)*Sqrt[1 - a^2*x^2])), x] /; FreeQ[{a, c, m}, x] && IntegerQ[(n - 1)/2]
-
Int[E^(ArcTanh[(a_.)*(x_)]*(n_)), x_Symbol] :> Int[(1 + a*x)^(n/2)/(1 - a*x)^(n/2), x] /; FreeQ[{a, n}, x] &&
!IntegerQ[(n - 1)/2]
-
Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*((c_.)*(x_))^(m_.), x_Symbol] :> Int[(c*x)^m*((1 + a*x)^(n/2)/(1 - a*x)^(n/2)
), x] /; FreeQ[{a, c, m, n}, x] && !IntegerQ[(n - 1)/2]
-
Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_))^(p_.), x_Symbol] :> Simp[c^n Int[(c + d*x)^(p - n)*(1
- a^2*x^2)^(n/2), x], x] /; FreeQ[{a, c, d, p}, x] && EqQ[a*c + d, 0] && IntegerQ[(n - 1)/2] && IntegerQ[2*p]
-
Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_))^(p_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[c^n
Int[(e + f*x)^m*(c + d*x)^(p - n)*(1 - a^2*x^2)^(n/2), x], x] /; FreeQ[{a, c, d, e, f, m, p}, x] && EqQ[a*c
+ d, 0] && IntegerQ[(n - 1)/2] && (IntegerQ[p] || EqQ[p, n/2] || EqQ[p - n/2 - 1, 0]) && IntegerQ[2*p]
-
Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_))^(p_.), x_Symbol] :> Simp[c^p Int[u*(1 + d*(x/c))
^p*((1 + a*x)^(n/2)/(1 - a*x)^(n/2)), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c^2 - d^2, 0] && (Integer
Q[p] || GtQ[c, 0])
-
Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_))^(p_.), x_Symbol] :> Int[u*(c + d*x)^p*((1 + a*x)^(
n/2)/(1 - a*x)^(n/2)), x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c^2 - d^2, 0] && !(IntegerQ[p] || GtQ[c, 0]
)
-
Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)/(x_))^(p_.), x_Symbol] :> Simp[d^p Int[u*(1 + c*(x/d))
^p*(E^(n*ArcTanh[a*x])/x^p), x], x] /; FreeQ[{a, c, d, n}, x] && EqQ[c^2 - a^2*d^2, 0] && IntegerQ[p]
-
Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*(u_.)*((c_) + (d_.)/(x_))^(p_), x_Symbol] :> Simp[(-1)^(n/2)*c^p Int[u*(1 +
d/(c*x))^p*((1 + 1/(a*x))^(n/2)/(1 - 1/(a*x))^(n/2)), x], x] /; FreeQ[{a, c, d, p}, x] && EqQ[c^2 - a^2*d^2,
0] && !IntegerQ[p] && IntegerQ[n/2] && GtQ[c, 0]
-
Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*(u_.)*((c_) + (d_.)/(x_))^(p_), x_Symbol] :> Int[u*(c + d/x)^p*((1 + a*x)^(n/
2)/(1 - a*x)^(n/2)), x] /; FreeQ[{a, c, d, p}, x] && EqQ[c^2 - a^2*d^2, 0] && !IntegerQ[p] && IntegerQ[n/2] &
& !GtQ[c, 0]
-
Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)/(x_))^(p_), x_Symbol] :> Simp[x^p*((c + d/x)^p/(1 + c*(x
/d))^p) Int[u*(1 + c*(x/d))^p*(E^(n*ArcTanh[a*x])/x^p), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c^2 - a^2
*d^2, 0] && !IntegerQ[p]
-
Int[E^(ArcTanh[(a_.)*(x_)]*(n_))/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(n - a*x)*(E^(n*ArcTanh[a*x])/
(a*c*(n^2 - 1)*Sqrt[c + d*x^2])), x] /; FreeQ[{a, c, d, n}, x] && EqQ[a^2*c + d, 0] && !IntegerQ[n]
-
Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(n + 2*a*(p + 1)*x)*(c + d*x^2)
^(p + 1)*(E^(n*ArcTanh[a*x])/(a*c*(n^2 - 4*(p + 1)^2))), x] - Simp[2*(p + 1)*((2*p + 3)/(c*(n^2 - 4*(p + 1)^2)
)) Int[(c + d*x^2)^(p + 1)*E^(n*ArcTanh[a*x]), x], x] /; FreeQ[{a, c, d, n}, x] && EqQ[a^2*c + d, 0] && LtQ[
p, -1] && !IntegerQ[n] && NeQ[n^2 - 4*(p + 1)^2, 0] && IntegerQ[2*p]
-
Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))/((c_) + (d_.)*(x_)^2), x_Symbol] :> Simp[E^(n*ArcTanh[a*x])/(a*c*n), x] /; F
reeQ[{a, c, d, n}, x] && EqQ[a^2*c + d, 0] && !IntegerQ[n/2]
-
Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[c^p Int[(1 - a^2*x^2)^(p -
n/2)*(1 + a*x)^n, x], x] /; FreeQ[{a, c, d, p}, x] && EqQ[a^2*c + d, 0] && IntegerQ[p] && IGtQ[(n + 1)/2, 0] &
& !IntegerQ[p - n/2]
-
Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[c^p Int[(1 - a^2*x^2)^(p + n
/2)/(1 - a*x)^n, x], x] /; FreeQ[{a, c, d, p}, x] && EqQ[a^2*c + d, 0] && IntegerQ[p] && ILtQ[(n - 1)/2, 0] &&
!IntegerQ[p - n/2]
-
Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[c^p Int[(1 - a*x)^(p - n/2)
*(1 + a*x)^(p + n/2), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c + d, 0] && (IntegerQ[p] || GtQ[c, 0])
-
Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[c^(n/2) Int[(c + d*x^2)^(p -
n/2)*(1 + a*x)^n, x], x] /; FreeQ[{a, c, d, p}, x] && EqQ[a^2*c + d, 0] && !(IntegerQ[p] || GtQ[c, 0]) && IG
tQ[n/2, 0]
-
Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[1/c^(n/2) Int[(c + d*x^2)^(p
+ n/2)/(1 - a*x)^n, x], x] /; FreeQ[{a, c, d, p}, x] && EqQ[a^2*c + d, 0] && !(IntegerQ[p] || GtQ[c, 0]) &&
ILtQ[n/2, 0]
-
Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Simp[c^IntPart[p]*((c + d*x^2)^Frac
Part[p]/(1 - a^2*x^2)^FracPart[p]) Int[(1 - a^2*x^2)^p*E^(n*ArcTanh[a*x]), x], x] /; FreeQ[{a, c, d, n, p},
x] && EqQ[a^2*c + d, 0] && !(IntegerQ[p] || GtQ[c, 0])
-
Int[(E^(ArcTanh[(a_.)*(x_)]*(n_))*(x_))/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(1 - a*n*x)*(E^(n*ArcTa
nh[a*x])/(d*(n^2 - 1)*Sqrt[c + d*x^2])), x] /; FreeQ[{a, c, d, n}, x] && EqQ[a^2*c + d, 0] && !IntegerQ[n]
-
Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*(x_)*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(c + d*x^2)^(p + 1)*(E^(n*
ArcTanh[a*x])/(2*d*(p + 1))), x] - Simp[a*c*(n/(2*d*(p + 1))) Int[(c + d*x^2)^p*E^(n*ArcTanh[a*x]), x], x] /
; FreeQ[{a, c, d, n}, x] && EqQ[a^2*c + d, 0] && LtQ[p, -1] && !IntegerQ[n] && IntegerQ[2*p]
-
Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*(x_)^2*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(1 - a*n*x)*(c + d*x^2)
^(p + 1)*(E^(n*ArcTanh[a*x])/(a*d*n*(n^2 - 1))), x] /; FreeQ[{a, c, d, n}, x] && EqQ[a^2*c + d, 0] && EqQ[n^2
+ 2*(p + 1), 0] && !IntegerQ[n]
-
Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*(x_)^2*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-(n + 2*(p + 1)*a*x))*(
c + d*x^2)^(p + 1)*(E^(n*ArcTanh[a*x])/(a*d*(n^2 - 4*(p + 1)^2))), x] + Simp[(n^2 + 2*(p + 1))/(d*(n^2 - 4*(p
+ 1)^2)) Int[(c + d*x^2)^(p + 1)*E^(n*ArcTanh[a*x]), x], x] /; FreeQ[{a, c, d, n}, x] && EqQ[a^2*c + d, 0] &
& LtQ[p, -1] && !IntegerQ[n] && NeQ[n^2 - 4*(p + 1)^2, 0] && IntegerQ[2*p]
-
Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[c^p Int[x^m*(1 -
a^2*x^2)^(p - n/2)*(1 + a*x)^n, x], x] /; FreeQ[{a, c, d, m, p}, x] && EqQ[a^2*c + d, 0] && (IntegerQ[p] || G
tQ[c, 0]) && IGtQ[(n + 1)/2, 0] && !IntegerQ[p - n/2]
-
Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[c^p Int[x^m*((1 -
a^2*x^2)^(p + n/2)/(1 - a*x)^n), x], x] /; FreeQ[{a, c, d, m, p}, x] && EqQ[a^2*c + d, 0] && (IntegerQ[p] ||
GtQ[c, 0]) && ILtQ[(n - 1)/2, 0] && !IntegerQ[p - n/2]
-
Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[c^p Int[x^m*(1 -
a*x)^(p - n/2)*(1 + a*x)^(p + n/2), x], x] /; FreeQ[{a, c, d, m, n, p}, x] && EqQ[a^2*c + d, 0] && (IntegerQ[
p] || GtQ[c, 0])
-
Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[c^(n/2) Int[x^m*(
c + d*x^2)^(p - n/2)*(1 + a*x)^n, x], x] /; FreeQ[{a, c, d, m, p}, x] && EqQ[a^2*c + d, 0] && !(IntegerQ[p] |
| GtQ[c, 0]) && IGtQ[n/2, 0]
-
Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[1/c^(n/2) Int[x^m
*((c + d*x^2)^(p + n/2)/(1 - a*x)^n), x], x] /; FreeQ[{a, c, d, m, p}, x] && EqQ[a^2*c + d, 0] && !(IntegerQ[
p] || GtQ[c, 0]) && ILtQ[n/2, 0]
-
Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Simp[c^IntPart[p]*((c +
d*x^2)^FracPart[p]/(1 - a^2*x^2)^FracPart[p]) Int[x^m*(1 - a^2*x^2)^p*E^(n*ArcTanh[a*x]), x], x] /; FreeQ[{a
, c, d, m, n, p}, x] && EqQ[a^2*c + d, 0] && !(IntegerQ[p] || GtQ[c, 0]) && !IntegerQ[n/2]
-
Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(u_)*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[c^p Int[u*(1 - a*x)^(p
- n/2)*(1 + a*x)^(p + n/2), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c + d, 0] && (IntegerQ[p] || GtQ[c
, 0])
-
Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*(u_)*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Simp[c^IntPart[p]*((c + d*x^2)^
FracPart[p]/((1 - a*x)^FracPart[p]*(1 + a*x)^FracPart[p])) Int[u*(1 - a*x)^(p - n/2)*(1 + a*x)^(p + n/2), x]
, x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c + d, 0] && !(IntegerQ[p] || GtQ[c, 0]) && IntegerQ[n/2]
-
Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(u_)*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Simp[c^IntPart[p]*((c + d*x^2)
^FracPart[p]/(1 - a^2*x^2)^FracPart[p]) Int[u*(1 - a^2*x^2)^p*E^(n*ArcTanh[a*x]), x], x] /; FreeQ[{a, c, d,
n, p}, x] && EqQ[a^2*c + d, 0] && !(IntegerQ[p] || GtQ[c, 0]) && !IntegerQ[n/2]
-
Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)/(x_)^2)^(p_.), x_Symbol] :> Simp[d^p Int[(u/x^(2*p))*(
1 - a^2*x^2)^p*E^(n*ArcTanh[a*x]), x], x] /; FreeQ[{a, c, d, n}, x] && EqQ[c + a^2*d, 0] && IntegerQ[p]
-
Int[E^(ArcTanh[(a_.)*(x_)]*(n_))*(u_.)*((c_) + (d_.)/(x_)^2)^(p_), x_Symbol] :> Simp[c^p Int[u*(1 - 1/(a*x))
^p*(1 + 1/(a*x))^p*E^(n*ArcTanh[a*x]), x], x] /; FreeQ[{a, c, d, p}, x] && EqQ[c + a^2*d, 0] && !IntegerQ[p]
&& IntegerQ[n/2] && GtQ[c, 0]
-
Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)/(x_)^2)^(p_), x_Symbol] :> Simp[x^(2*p)*((c + d/x^2)^p/(
1 - a^2*x^2)^p) Int[u*((1 + a*x)^n/(x^(2*p)*(1 - a^2*x^2)^(n/2 - p))), x], x] /; FreeQ[{a, c, d, p}, x] && E
qQ[c + a^2*d, 0] && !IntegerQ[p] && IntegerQ[n/2] && !GtQ[c, 0]
-
Int[E^(ArcTanh[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)/(x_)^2)^(p_), x_Symbol] :> Simp[x^(2*p)*((c + d/x^2)^p/(
1 - a^2*x^2)^p) Int[(u/x^(2*p))*(1 - a^2*x^2)^p*E^(n*ArcTanh[a*x]), x], x] /; FreeQ[{a, c, d, n, p}, x] && E
qQ[c + a^2*d, 0] && !IntegerQ[p] && !IntegerQ[n/2]
-
Int[E^(ArcTanh[(c_.)*((a_) + (b_.)*(x_))]*(n_.)), x_Symbol] :> Int[(1 + a*c + b*c*x)^(n/2)/(1 - a*c - b*c*x)^(
n/2), x] /; FreeQ[{a, b, c, n}, x]
-
Int[E^(ArcTanh[(c_.)*((a_) + (b_.)*(x_))]*(n_))*(x_)^(m_), x_Symbol] :> Simp[4/(n*b^(m + 1)*c^(m + 1)) Subst
[Int[x^(2/n)*((-1 - a*c + (1 - a*c)*x^(2/n))^m/(1 + x^(2/n))^(m + 2)), x], x, (1 + c*(a + b*x))^(n/2)/(1 - c*(
a + b*x))^(n/2)], x] /; FreeQ[{a, b, c}, x] && ILtQ[m, 0] && LtQ[-1, n, 1]
-
Int[E^(ArcTanh[(c_.)*((a_) + (b_.)*(x_))]*(n_.))*((d_.) + (e_.)*(x_))^(m_.), x_Symbol] :> Int[(d + e*x)^m*((1
+ a*c + b*c*x)^(n/2)/(1 - a*c - b*c*x)^(n/2)), x] /; FreeQ[{a, b, c, d, e, m, n}, x]
-
Int[E^(ArcTanh[(a_) + (b_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(c/
(1 - a^2))^p Int[u*(1 - a - b*x)^(p - n/2)*(1 + a + b*x)^(p + n/2), x], x] /; FreeQ[{a, b, c, d, e, n, p}, x
] && EqQ[b*d - 2*a*e, 0] && EqQ[b^2*c + e*(1 - a^2), 0] && (IntegerQ[p] || GtQ[c/(1 - a^2), 0])
-
Int[E^(ArcTanh[(a_) + (b_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(c
+ d*x + e*x^2)^p/(1 - a^2 - 2*a*b*x - b^2*x^2)^p Int[u*(1 - a^2 - 2*a*b*x - b^2*x^2)^p*E^(n*ArcTanh[a*x]), x
], x] /; FreeQ[{a, b, c, d, e, n, p}, x] && EqQ[b*d - 2*a*e, 0] && EqQ[b^2*c + e*(1 - a^2), 0] && !(IntegerQ[
p] || GtQ[c/(1 - a^2), 0])
-
Int[E^(ArcTanh[(c_.)/((a_.) + (b_.)*(x_))]*(n_.))*(u_.), x_Symbol] :> Int[u*E^(n*ArcCoth[a/c + b*(x/c)]), x] /
; FreeQ[{a, b, c, n}, x]
-
Int[E^(ArcCoth[(a_.)*(x_)]*(n_))*(u_.), x_Symbol] :> Simp[(-1)^(n/2) Int[u*E^(n*ArcTanh[a*x]), x], x] /; Fre
eQ[a, x] && IntegerQ[n/2]
-
Int[E^(ArcCoth[(a_.)*(x_)]*(n_.)), x_Symbol] :> -Subst[Int[(1 + x/a)^((n + 1)/2)/(x^2*(1 - x/a)^((n - 1)/2)*Sq
rt[1 - x^2/a^2]), x], x, 1/x] /; FreeQ[a, x] && IntegerQ[(n - 1)/2]
-
Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(x_)^(m_.), x_Symbol] :> -Subst[Int[(1 + x/a)^((n + 1)/2)/(x^(m + 2)*(1 - x/
a)^((n - 1)/2)*Sqrt[1 - x^2/a^2]), x], x, 1/x] /; FreeQ[a, x] && IntegerQ[(n - 1)/2] && IntegerQ[m]
-
Int[E^(ArcCoth[(a_.)*(x_)]*(n_)), x_Symbol] :> -Subst[Int[(1 + x/a)^(n/2)/(x^2*(1 - x/a)^(n/2)), x], x, 1/x] /
; FreeQ[{a, n}, x] && !IntegerQ[n]
-
Int[E^(ArcCoth[(a_.)*(x_)]*(n_))*(x_)^(m_.), x_Symbol] :> -Subst[Int[(1 + x/a)^(n/2)/(x^(m + 2)*(1 - x/a)^(n/2
)), x], x, 1/x] /; FreeQ[{a, n}, x] && !IntegerQ[n] && IntegerQ[m]
-
Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((c_.)*(x_))^(m_), x_Symbol] :> Simp[(-(c*x)^m)*(1/x)^m Subst[Int[(1 + x/a
)^((n + 1)/2)/(x^(m + 2)*(1 - x/a)^((n - 1)/2)*Sqrt[1 - x^2/a^2]), x], x, 1/x], x] /; FreeQ[{a, c, m}, x] && I
ntegerQ[(n - 1)/2] && !IntegerQ[m]
-
Int[E^(ArcCoth[(a_.)*(x_)]*(n_))*((c_.)*(x_))^(m_), x_Symbol] :> Simp[(-(c*x)^m)*(1/x)^m Subst[Int[(1 + x/a)
^(n/2)/(x^(m + 2)*(1 - x/a)^(n/2)), x], x, 1/x], x] /; FreeQ[{a, c, m, n}, x] && !IntegerQ[n] && !IntegerQ[m
]
-
Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_))^(p_.), x_Symbol] :> Simp[-d^n Subst[Int[(d + c*x)^(p -
n)*((1 - x^2/a^2)^(n/2)/x^(p + 2)), x], x, 1/x], x] /; FreeQ[{a, c, d}, x] && EqQ[a*c + d, 0] && IntegerQ[p]
&& IntegerQ[n]
-
Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_))^(p_.), x_Symbol] :> Simp[-d^p Subst[Int[((1 + c*(x/d))
^p*((1 + x/a)^(n/2)/x^(p + 2)))/(1 - x/a)^(n/2), x], x, 1/x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a^2*c^2 -
d^2, 0] && IntegerQ[p]
-
Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_))^(p_.), x_Symbol] :> Simp[(1 + a*x)*(c + d*x)^p*(E^(n*Arc
Coth[a*x])/(a*(p + 1))), x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[a*c + d, 0] && !IntegerQ[p] && EqQ[p, n/2]
-
Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_))^(p_), x_Symbol] :> Simp[(-(1/x)^p)*((c + d*x)^p/(1 + c/(
d*x))^p) Subst[Int[((1 + c*(x/d))^p*((1 + x/a)^(n/2)/x^(p + 2)))/(1 - x/a)^(n/2), x], x, 1/x], x] /; FreeQ[{
a, c, d, n, p}, x] && EqQ[a^2*c^2 - d^2, 0] && !IntegerQ[p]
-
Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(x_)^(m_.)*((c_) + (d_.)*(x_))^(p_.), x_Symbol] :> Simp[-d^n Subst[Int[(d
+ c*x)^(p - n)*((1 - x^2/a^2)^(n/2)/x^(m + p + 2)), x], x, 1/x], x] /; FreeQ[{a, c, d}, x] && EqQ[a*c + d, 0]
&& IntegerQ[p] && IntegerQ[n] && IntegerQ[m]
-
Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((e_.)*(x_))^(m_.)*((c_) + (d_.)*(x_))^(p_.), x_Symbol] :> Simp[(-d^p)*(e*x)
^m*(1/x)^m Subst[Int[((1 + c*(x/d))^p*((1 + x/a)^(n/2)/x^(m + p + 2)))/(1 - x/a)^(n/2), x], x, 1/x], x] /; F
reeQ[{a, c, d, e, m, n}, x] && EqQ[a^2*c^2 - d^2, 0] && IntegerQ[p]
-
Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((e_.)*(x_))^(m_.)*((c_) + (d_.)*(x_))^(p_), x_Symbol] :> Simp[(-(e*x)^m)*(1
/x)^(m + p)*((c + d*x)^p/(1 + c/(d*x))^p) Subst[Int[((1 + c*(x/d))^p*((1 + x/a)^(n/2)/x^(m + p + 2)))/(1 - x
/a)^(n/2), x], x, 1/x], x] /; FreeQ[{a, c, d, e, m, n, p}, x] && EqQ[a^2*c^2 - d^2, 0] && !IntegerQ[p]
-
Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((c_) + (d_.)/(x_))^(p_.), x_Symbol] :> Simp[-c^n Subst[Int[(c + d*x)^(p -
n)*((1 - x^2/a^2)^(n/2)/x^2), x], x, 1/x], x] /; FreeQ[{a, c, d, p}, x] && EqQ[c + a*d, 0] && IntegerQ[(n - 1
)/2] && IntegerQ[2*p]
-
Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((c_) + (d_.)/(x_))^(p_.), x_Symbol] :> Simp[-c^p Subst[Int[(1 + d*(x/c))^
p*((1 + x/a)^(n/2)/(x^2*(1 - x/a)^(n/2))), x], x, 1/x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c^2 - a^2*d^2,
0] && !IntegerQ[n/2] && (IntegerQ[p] || GtQ[c, 0])
-
Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((c_) + (d_.)/(x_))^(p_.)*(x_)^(m_.), x_Symbol] :> Simp[-c^n Subst[Int[(c
+ d*x)^(p - n)*((1 - x^2/a^2)^(n/2)/x^(m + 2)), x], x, 1/x], x] /; FreeQ[{a, c, d, p}, x] && EqQ[c + a*d, 0] &
& IntegerQ[(n - 1)/2] && IntegerQ[m] && IntegerQ[2*p]
-
Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((c_) + (d_.)/(x_))^(p_.)*(x_)^(m_.), x_Symbol] :> Simp[-c^p Subst[Int[(1
+ d*(x/c))^p*((1 + x/a)^(n/2)/(x^(m + 2)*(1 - x/a)^(n/2))), x], x, 1/x], x] /; FreeQ[{a, c, d, n, p}, x] && Eq
Q[c^2 - a^2*d^2, 0] && !IntegerQ[n/2] && (IntegerQ[p] || GtQ[c, 0]) && IntegerQ[m]
-
Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((c_) + (d_.)/(x_))^(p_.)*(x_)^(m_), x_Symbol] :> Simp[(-c^p)*x^m*(1/x)^m
Subst[Int[(1 + d*(x/c))^p*((1 + x/a)^(n/2)/(x^(m + 2)*(1 - x/a)^(n/2))), x], x, 1/x], x] /; FreeQ[{a, c, d, m,
n, p}, x] && EqQ[c^2 - a^2*d^2, 0] && !IntegerQ[n/2] && (IntegerQ[p] || GtQ[c, 0]) && !IntegerQ[m]
-
Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)/(x_))^(p_), x_Symbol] :> Simp[(c + d/x)^p/(1 + d/(c*x))^
p Int[u*(1 + d/(c*x))^p*E^(n*ArcCoth[a*x]), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c^2 - a^2*d^2, 0] &&
!IntegerQ[n/2] && !(IntegerQ[p] || GtQ[c, 0])
-
Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))/((c_) + (d_.)*(x_)^2), x_Symbol] :> Simp[E^(n*ArcCoth[a*x])/(a*c*n), x] /; F
reeQ[{a, c, d, n}, x] && EqQ[a^2*c + d, 0] && !IntegerQ[n/2]
-
Int[E^(ArcCoth[(a_.)*(x_)]*(n_))/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(n - a*x)*(E^(n*ArcCoth[a*x])/
(a*c*(n^2 - 1)*Sqrt[c + d*x^2])), x] /; FreeQ[{a, c, d, n}, x] && EqQ[a^2*c + d, 0] && !IntegerQ[n]
-
Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(n + 2*a*(p + 1)*x)*(c + d*x^2
)^(p + 1)*(E^(n*ArcCoth[a*x])/(a*c*(n^2 - 4*(p + 1)^2))), x] - Simp[2*(p + 1)*((2*p + 3)/(c*(n^2 - 4*(p + 1)^2
))) Int[(c + d*x^2)^(p + 1)*E^(n*ArcCoth[a*x]), x], x] /; FreeQ[{a, c, d, n}, x] && EqQ[a^2*c + d, 0] && !I
ntegerQ[n/2] && LtQ[p, -1] && NeQ[p, -3/2] && NeQ[n^2 - 4*(p + 1)^2, 0] && (IntegerQ[p] || !IntegerQ[n])
-
Int[(E^(ArcCoth[(a_.)*(x_)]*(n_))*(x_))/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(-(1 - a*n*x))*(E^(n*Ar
cCoth[a*x])/(a^2*c*(n^2 - 1)*Sqrt[c + d*x^2])), x] /; FreeQ[{a, c, d, n}, x] && EqQ[a^2*c + d, 0] && !Integer
Q[n]
-
Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(x_)*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(2*(p + 1) + a*n*x)*(c +
d*x^2)^(p + 1)*(E^(n*ArcCoth[a*x])/(a^2*c*(n^2 - 4*(p + 1)^2))), x] - Simp[n*((2*p + 3)/(a*c*(n^2 - 4*(p + 1)^
2))) Int[(c + d*x^2)^(p + 1)*E^(n*ArcCoth[a*x]), x], x] /; FreeQ[{a, c, d, n}, x] && EqQ[a^2*c + d, 0] && !
IntegerQ[n/2] && LeQ[p, -1] && NeQ[p, -3/2] && NeQ[n^2 - 4*(p + 1)^2, 0] && (IntegerQ[p] || !IntegerQ[n])
-
Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(x_)^2*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(-(n + 2*(p + 1)*a*x))
*(c + d*x^2)^(p + 1)*(E^(n*ArcCoth[a*x])/(a^3*c*n^2*(n^2 - 1))), x] /; FreeQ[{a, c, d, n}, x] && EqQ[a^2*c + d
, 0] && !IntegerQ[n/2] && EqQ[n^2 + 2*(p + 1), 0] && NeQ[n^2, 1]
-
Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(x_)^2*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(n + 2*(p + 1)*a*x)*(c
+ d*x^2)^(p + 1)*(E^(n*ArcCoth[a*x])/(a^3*c*(n^2 - 4*(p + 1)^2))), x] - Simp[(n^2 + 2*(p + 1))/(a^2*c*(n^2 - 4
*(p + 1)^2)) Int[(c + d*x^2)^(p + 1)*E^(n*ArcCoth[a*x]), x], x] /; FreeQ[{a, c, d, n}, x] && EqQ[a^2*c + d,
0] && !IntegerQ[n/2] && LeQ[p, -1] && NeQ[n^2 + 2*(p + 1), 0] && NeQ[n^2 - 4*(p + 1)^2, 0] && (IntegerQ[p] ||
!IntegerQ[n])
-
Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(x_)^(m_.)*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Simp[-(-c)^p/a^(m + 1)
Subst[Int[E^(n*x)*(Coth[x]^(m + 2*(p + 1))/Cosh[x]^(2*(p + 1))), x], x, ArcCoth[a*x]], x] /; FreeQ[{a, c, d,
n}, x] && EqQ[a^2*c + d, 0] && !IntegerQ[n/2] && IntegerQ[m] && LeQ[3, m, -2*(p + 1)] && IntegerQ[p]
-
Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[d^p Int[u*x^(2*p)*(1
- 1/(a^2*x^2))^p*E^(n*ArcCoth[a*x]), x], x] /; FreeQ[{a, c, d, n}, x] && EqQ[a^2*c + d, 0] && !IntegerQ[n/2]
&& IntegerQ[p]
-
Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(c + d*x^2)^p/(x^(2*p)*(
1 - 1/(a^2*x^2))^p) Int[u*x^(2*p)*(1 - 1/(a^2*x^2))^p*E^(n*ArcCoth[a*x]), x], x] /; FreeQ[{a, c, d, n, p}, x
] && EqQ[a^2*c + d, 0] && !IntegerQ[n/2] && !IntegerQ[p]
-
Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)/(x_)^2)^(p_.), x_Symbol] :> Simp[c^p/a^(2*p) Int[(u/x^
(2*p))*(-1 + a*x)^(p - n/2)*(1 + a*x)^(p + n/2), x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c + a^2*d, 0] &&
!IntegerQ[n/2] && (IntegerQ[p] || GtQ[c, 0]) && IntegersQ[2*p, p + n/2]
-
Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((c_) + (d_.)/(x_)^2)^(p_.), x_Symbol] :> Simp[-c^p Subst[Int[(1 - x/a)^(p
- n/2)*((1 + x/a)^(p + n/2)/x^2), x], x, 1/x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c + a^2*d, 0] && !Inte
gerQ[n/2] && (IntegerQ[p] || GtQ[c, 0]) && !IntegersQ[2*p, p + n/2]
-
Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((c_) + (d_.)/(x_)^2)^(p_.)*(x_)^(m_.), x_Symbol] :> Simp[-c^p Subst[Int[(
1 - x/a)^(p - n/2)*((1 + x/a)^(p + n/2)/x^(m + 2)), x], x, 1/x], x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[c + a^
2*d, 0] && !IntegerQ[n/2] && (IntegerQ[p] || GtQ[c, 0]) && !IntegersQ[2*p, p + n/2] && IntegerQ[m]
-
Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*((c_) + (d_.)/(x_)^2)^(p_.)*(x_)^(m_), x_Symbol] :> Simp[(-c^p)*x^m*(1/x)^m
Subst[Int[(1 - x/a)^(p - n/2)*((1 + x/a)^(p + n/2)/x^(m + 2)), x], x, 1/x], x] /; FreeQ[{a, c, d, m, n, p},
x] && EqQ[c + a^2*d, 0] && !IntegerQ[n/2] && (IntegerQ[p] || GtQ[c, 0]) && !IntegersQ[2*p, p + n/2] && !Int
egerQ[m]
-
Int[E^(ArcCoth[(a_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)/(x_)^2)^(p_), x_Symbol] :> Simp[c^IntPart[p]*((c + d/x^2
)^FracPart[p]/(1 - 1/(a^2*x^2))^FracPart[p]) Int[u*(1 - 1/(a^2*x^2))^p*E^(n*ArcCoth[a*x]), x], x] /; FreeQ[{
a, c, d, n, p}, x] && EqQ[c + a^2*d, 0] && !IntegerQ[n/2] && !(IntegerQ[p] || GtQ[c, 0])
-
Int[E^(ArcCoth[(c_.)*((a_) + (b_.)*(x_))]*(n_))*(u_.), x_Symbol] :> Simp[(-1)^(n/2) Int[u*E^(n*ArcTanh[c*(a
+ b*x)]), x], x] /; FreeQ[{a, b, c}, x] && IntegerQ[n/2]
-
Int[E^(ArcCoth[(c_.)*((a_) + (b_.)*(x_))]*(n_.)), x_Symbol] :> Simp[(c*(a + b*x))^(n/2)*((1 + 1/(c*(a + b*x)))
^(n/2)/(1 + a*c + b*c*x)^(n/2)) Int[(1 + a*c + b*c*x)^(n/2)/(-1 + a*c + b*c*x)^(n/2), x], x] /; FreeQ[{a, b,
c, n}, x] && !IntegerQ[n/2]
-
Int[E^(ArcCoth[(c_.)*((a_) + (b_.)*(x_))]*(n_))*(x_)^(m_), x_Symbol] :> Simp[-4/(n*b^(m + 1)*c^(m + 1)) Subs
t[Int[x^(2/n)*((1 + a*c + (1 - a*c)*x^(2/n))^m/(-1 + x^(2/n))^(m + 2)), x], x, (1 + 1/(c*(a + b*x)))^(n/2)/(1
- 1/(c*(a + b*x)))^(n/2)], x] /; FreeQ[{a, b, c}, x] && ILtQ[m, 0] && LtQ[-1, n, 1]
-
Int[E^(ArcCoth[(c_.)*((a_) + (b_.)*(x_))]*(n_.))*((d_.) + (e_.)*(x_))^(m_.), x_Symbol] :> Simp[(c*(a + b*x))^(
n/2)*((1 + 1/(c*(a + b*x)))^(n/2)/(1 + a*c + b*c*x)^(n/2)) Int[(d + e*x)^m*((1 + a*c + b*c*x)^(n/2)/(-1 + a*
c + b*c*x)^(n/2)), x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && !IntegerQ[n/2]
-
Int[E^(ArcCoth[(a_) + (b_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(c/
(1 - a^2))^p*((a + b*x)/(1 + a + b*x))^(n/2)*((1 + a + b*x)/(a + b*x))^(n/2)*((1 - a - b*x)^(n/2)/(-1 + a + b*
x)^(n/2)) Int[u*(1 - a - b*x)^(p - n/2)*(1 + a + b*x)^(p + n/2), x], x] /; FreeQ[{a, b, c, d, e, n, p}, x] &
& !IntegerQ[n/2] && EqQ[b*d - 2*a*e, 0] && EqQ[b^2*c + e*(1 - a^2), 0] && (IntegerQ[p] || GtQ[c/(1 - a^2), 0]
)
-
Int[E^(ArcCoth[(a_) + (b_.)*(x_)]*(n_.))*(u_.)*((c_) + (d_.)*(x_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(c
+ d*x + e*x^2)^p/(1 - a^2 - 2*a*b*x - b^2*x^2)^p Int[u*(1 - a^2 - 2*a*b*x - b^2*x^2)^p*E^(n*ArcCoth[a*x]), x
], x] /; FreeQ[{a, b, c, d, e, n, p}, x] && !IntegerQ[n/2] && EqQ[b*d - 2*a*e, 0] && EqQ[b^2*c + e*(1 - a^2),
0] && !(IntegerQ[p] || GtQ[c/(1 - a^2), 0])
-
Int[E^(ArcCoth[(c_.)/((a_.) + (b_.)*(x_))]*(n_.))*(u_.), x_Symbol] :> Int[u*E^(n*ArcTanh[a/c + b*(x/c)]), x] /
; FreeQ[{a, b, c, n}, x]
-
Int[ArcTanh[(a_) + (b_.)*(x_)^(n_)], x_Symbol] :> Simp[x*ArcTanh[a + b*x^n], x] - Simp[b*n Int[x^n/(1 - a^2
- 2*a*b*x^n - b^2*x^(2*n)), x], x] /; FreeQ[{a, b, n}, x]
-
Int[ArcCoth[(a_) + (b_.)*(x_)^(n_)], x_Symbol] :> Simp[x*ArcCoth[a + b*x^n], x] - Simp[b*n Int[x^n/(1 - a^2
- 2*a*b*x^n - b^2*x^(2*n)), x], x] /; FreeQ[{a, b, n}, x]
-
Int[ArcTanh[(a_.) + (b_.)*(x_)^(n_.)]/(x_), x_Symbol] :> Simp[1/2 Int[Log[1 + a + b*x^n]/x, x], x] - Simp[1/
2 Int[Log[1 - a - b*x^n]/x, x], x] /; FreeQ[{a, b, n}, x]
-
Int[ArcCoth[(a_.) + (b_.)*(x_)^(n_.)]/(x_), x_Symbol] :> Simp[1/2 Int[Log[1 + 1/(a + b*x^n)]/x, x], x] - Sim
p[1/2 Int[Log[1 - 1/(a + b*x^n)]/x, x], x] /; FreeQ[{a, b, n}, x]
-
Int[ArcTanh[(a_) + (b_.)*(x_)^(n_)]*(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)*(ArcTanh[a + b*x^n]/(m + 1)), x] -
Simp[b*(n/(m + 1)) Int[x^(m + n)/(1 - a^2 - 2*a*b*x^n - b^2*x^(2*n)), x], x] /; FreeQ[{a, b}, x] && Rationa
lQ[m, n] && NeQ[m, -1] && NeQ[m + 1, n]
-
Int[ArcCoth[(a_) + (b_.)*(x_)^(n_)]*(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)*(ArcCoth[a + b*x^n]/(m + 1)), x] -
Simp[b*(n/(m + 1)) Int[x^(m + n)/(1 - a^2 - 2*a*b*x^n - b^2*x^(2*n)), x], x] /; FreeQ[{a, b}, x] && Rationa
lQ[m, n] && NeQ[m, -1] && NeQ[m + 1, n]
-
Int[ArcTanh[(a_.) + (b_.)*(f_)^((c_.) + (d_.)*(x_))], x_Symbol] :> Simp[1/2 Int[Log[1 + a + b*f^(c + d*x)],
x], x] - Simp[1/2 Int[Log[1 - a - b*f^(c + d*x)], x], x] /; FreeQ[{a, b, c, d, f}, x]
-
Int[ArcCoth[(a_.) + (b_.)*(f_)^((c_.) + (d_.)*(x_))], x_Symbol] :> Simp[1/2 Int[Log[1 + 1/(a + b*f^(c + d*x)
)], x], x] - Simp[1/2 Int[Log[1 - 1/(a + b*f^(c + d*x))], x], x] /; FreeQ[{a, b, c, d, f}, x]
-
Int[ArcTanh[(a_.) + (b_.)*(f_)^((c_.) + (d_.)*(x_))]*(x_)^(m_.), x_Symbol] :> Simp[1/2 Int[x^m*Log[1 + a + b
*f^(c + d*x)], x], x] - Simp[1/2 Int[x^m*Log[1 - a - b*f^(c + d*x)], x], x] /; FreeQ[{a, b, c, d, f}, x] &&
IGtQ[m, 0]
-
Int[ArcCoth[(a_.) + (b_.)*(f_)^((c_.) + (d_.)*(x_))]*(x_)^(m_.), x_Symbol] :> Simp[1/2 Int[x^m*Log[1 + 1/(a
+ b*f^(c + d*x))], x], x] - Simp[1/2 Int[x^m*Log[1 - 1/(a + b*f^(c + d*x))], x], x] /; FreeQ[{a, b, c, d, f}
, x] && IGtQ[m, 0]
-
Int[ArcTanh[(c_.)/((a_.) + (b_.)*(x_)^(n_.))]^(m_.)*(u_.), x_Symbol] :> Int[u*ArcCoth[a/c + b*(x^n/c)]^m, x] /
; FreeQ[{a, b, c, n, m}, x]
-
Int[ArcCoth[(c_.)/((a_.) + (b_.)*(x_)^(n_.))]^(m_.)*(u_.), x_Symbol] :> Int[u*ArcTanh[a/c + b*(x^n/c)]^m, x] /
; FreeQ[{a, b, c, n, m}, x]
-
Int[ArcTanh[((c_.)*(x_))/Sqrt[(a_.) + (b_.)*(x_)^2]], x_Symbol] :> Simp[x*ArcTanh[(c*x)/Sqrt[a + b*x^2]], x] -
Simp[c Int[x/Sqrt[a + b*x^2], x], x] /; FreeQ[{a, b, c}, x] && EqQ[b, c^2]
-
Int[ArcCoth[((c_.)*(x_))/Sqrt[(a_.) + (b_.)*(x_)^2]], x_Symbol] :> Simp[x*ArcCoth[(c*x)/Sqrt[a + b*x^2]], x] -
Simp[c Int[x/Sqrt[a + b*x^2], x], x] /; FreeQ[{a, b, c}, x] && EqQ[b, c^2]
-
Int[ArcTanh[((c_.)*(x_))/Sqrt[(a_.) + (b_.)*(x_)^2]]/(x_), x_Symbol] :> Simp[ArcTanh[c*(x/Sqrt[a + b*x^2])]*Lo
g[x], x] - Simp[c Int[Log[x]/Sqrt[a + b*x^2], x], x] /; FreeQ[{a, b, c}, x] && EqQ[b, c^2]
-
Int[ArcCoth[((c_.)*(x_))/Sqrt[(a_.) + (b_.)*(x_)^2]]/(x_), x_Symbol] :> Simp[ArcCoth[c*(x/Sqrt[a + b*x^2])]*Lo
g[x], x] - Simp[c Int[Log[x]/Sqrt[a + b*x^2], x], x] /; FreeQ[{a, b, c}, x] && EqQ[b, c^2]
-
Int[ArcTanh[((c_.)*(x_))/Sqrt[(a_.) + (b_.)*(x_)^2]]*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(d*x)^(m + 1)*(ArcT
anh[(c*x)/Sqrt[a + b*x^2]]/(d*(m + 1))), x] - Simp[c/(d*(m + 1)) Int[(d*x)^(m + 1)/Sqrt[a + b*x^2], x], x] /
; FreeQ[{a, b, c, d, m}, x] && EqQ[b, c^2] && NeQ[m, -1]
-
Int[ArcCoth[((c_.)*(x_))/Sqrt[(a_.) + (b_.)*(x_)^2]]*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(d*x)^(m + 1)*(ArcC
oth[(c*x)/Sqrt[a + b*x^2]]/(d*(m + 1))), x] - Simp[c/(d*(m + 1)) Int[(d*x)^(m + 1)/Sqrt[a + b*x^2], x], x] /
; FreeQ[{a, b, c, d, m}, x] && EqQ[b, c^2] && NeQ[m, -1]
-
Int[1/(ArcTanh[((c_.)*(x_))/Sqrt[(a_.) + (b_.)*(x_)^2]]*Sqrt[(a_.) + (b_.)*(x_)^2]), x_Symbol] :> Simp[(1/c)*L
og[ArcTanh[c*(x/Sqrt[a + b*x^2])]], x] /; FreeQ[{a, b, c}, x] && EqQ[b, c^2]
-
Int[1/(ArcCoth[((c_.)*(x_))/Sqrt[(a_.) + (b_.)*(x_)^2]]*Sqrt[(a_.) + (b_.)*(x_)^2]), x_Symbol] :> Simp[(-c^(-1
))*Log[ArcCoth[c*(x/Sqrt[a + b*x^2])]], x] /; FreeQ[{a, b, c}, x] && EqQ[b, c^2]
-
Int[ArcTanh[((c_.)*(x_))/Sqrt[(a_.) + (b_.)*(x_)^2]]^(m_.)/Sqrt[(a_.) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcTa
nh[c*(x/Sqrt[a + b*x^2])]^(m + 1)/(c*(m + 1)), x] /; FreeQ[{a, b, c, m}, x] && EqQ[b, c^2] && NeQ[m, -1]
-
Int[ArcCoth[((c_.)*(x_))/Sqrt[(a_.) + (b_.)*(x_)^2]]^(m_.)/Sqrt[(a_.) + (b_.)*(x_)^2], x_Symbol] :> Simp[-ArcC
oth[c*(x/Sqrt[a + b*x^2])]^(m + 1)/(c*(m + 1)), x] /; FreeQ[{a, b, c, m}, x] && EqQ[b, c^2] && NeQ[m, -1]
-
Int[ArcTanh[((c_.)*(x_))/Sqrt[(a_.) + (b_.)*(x_)^2]]^(m_.)/Sqrt[(d_.) + (e_.)*(x_)^2], x_Symbol] :> Simp[Sqrt[
a + b*x^2]/Sqrt[d + e*x^2] Int[ArcTanh[c*(x/Sqrt[a + b*x^2])]^m/Sqrt[a + b*x^2], x], x] /; FreeQ[{a, b, c, d
, e, m}, x] && EqQ[b, c^2] && EqQ[b*d - a*e, 0]
-
Int[ArcCoth[((c_.)*(x_))/Sqrt[(a_.) + (b_.)*(x_)^2]]^(m_.)/Sqrt[(d_.) + (e_.)*(x_)^2], x_Symbol] :> Simp[Sqrt[
a + b*x^2]/Sqrt[d + e*x^2] Int[ArcCoth[c*(x/Sqrt[a + b*x^2])]^m/Sqrt[a + b*x^2], x], x] /; FreeQ[{a, b, c, d
, e, m}, x] && EqQ[b, c^2] && EqQ[b*d - a*e, 0]
-
Int[(u_)*(v_)^(n_.), x_Symbol] :> With[{tmp = InverseFunctionOfLinear[u, x]}, Simp[((-Discriminant[v, x]/(4*Co
efficient[v, x, 2]))^n/Coefficient[tmp[[1]], x, 1])*Subst[Int[SimplifyIntegrand[SubstForInverseFunction[u, tmp
, x]*Sech[x]^(2*(n + 1)), x], x], x, tmp], x] /; !FalseQ[tmp] && EqQ[Head[tmp], ArcTanh] && EqQ[Discriminant[
v, x]*tmp[[1]]^2 - D[v, x]^2, 0]] /; QuadraticQ[v, x] && ILtQ[n, 0] && PosQ[Discriminant[v, x]] && MatchQ[u, (
r_.)*(f_)^(w_) /; FreeQ[f, x]]
-
Int[(u_)*(v_)^(n_.), x_Symbol] :> With[{tmp = InverseFunctionOfLinear[u, x]}, Simp[((-Discriminant[v, x]/(4*Co
efficient[v, x, 2]))^n/Coefficient[tmp[[1]], x, 1])*Subst[Int[SimplifyIntegrand[SubstForInverseFunction[u, tmp
, x]*(-Csch[x]^2)^(n + 1), x], x], x, tmp], x] /; !FalseQ[tmp] && EqQ[Head[tmp], ArcCoth] && EqQ[Discriminant
[v, x]*tmp[[1]]^2 - D[v, x]^2, 0]] /; QuadraticQ[v, x] && ILtQ[n, 0] && PosQ[Discriminant[v, x]] && MatchQ[u,
(r_.)*(f_)^(w_) /; FreeQ[f, x]]
-
Int[ArcTanh[(c_.) + (d_.)*Tanh[(a_.) + (b_.)*(x_)]], x_Symbol] :> Simp[x*ArcTanh[c + d*Tanh[a + b*x]], x] + Si
mp[b Int[x/(c - d + c*E^(2*a + 2*b*x)), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[(c - d)^2, 1]
-
Int[ArcCoth[(c_.) + (d_.)*Tanh[(a_.) + (b_.)*(x_)]], x_Symbol] :> Simp[x*ArcCoth[c + d*Tanh[a + b*x]], x] + Si
mp[b Int[x/(c - d + c*E^(2*a + 2*b*x)), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[(c - d)^2, 1]
-
Int[ArcTanh[(c_.) + Coth[(a_.) + (b_.)*(x_)]*(d_.)], x_Symbol] :> Simp[x*ArcTanh[c + d*Coth[a + b*x]], x] + Si
mp[b Int[x/(c - d - c*E^(2*a + 2*b*x)), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[(c - d)^2, 1]
-
Int[ArcCoth[(c_.) + Coth[(a_.) + (b_.)*(x_)]*(d_.)], x_Symbol] :> Simp[x*ArcCoth[c + d*Coth[a + b*x]], x] + Si
mp[b Int[x/(c - d - c*E^(2*a + 2*b*x)), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[(c - d)^2, 1]
-
Int[ArcTanh[(c_.) + (d_.)*Tanh[(a_.) + (b_.)*(x_)]], x_Symbol] :> Simp[x*ArcTanh[c + d*Tanh[a + b*x]], x] + (S
imp[b*(1 - c - d) Int[x*(E^(2*a + 2*b*x)/(1 - c + d + (1 - c - d)*E^(2*a + 2*b*x))), x], x] - Simp[b*(1 + c
+ d) Int[x*(E^(2*a + 2*b*x)/(1 + c - d + (1 + c + d)*E^(2*a + 2*b*x))), x], x]) /; FreeQ[{a, b, c, d}, x] &&
NeQ[(c - d)^2, 1]
-
Int[ArcCoth[(c_.) + (d_.)*Tanh[(a_.) + (b_.)*(x_)]], x_Symbol] :> Simp[x*ArcCoth[c + d*Tanh[a + b*x]], x] + (S
imp[b*(1 - c - d) Int[x*(E^(2*a + 2*b*x)/(1 - c + d + (1 - c - d)*E^(2*a + 2*b*x))), x], x] - Simp[b*(1 + c
+ d) Int[x*(E^(2*a + 2*b*x)/(1 + c - d + (1 + c + d)*E^(2*a + 2*b*x))), x], x]) /; FreeQ[{a, b, c, d}, x] &&
NeQ[(c - d)^2, 1]
-
Int[ArcTanh[(c_.) + Coth[(a_.) + (b_.)*(x_)]*(d_.)], x_Symbol] :> Simp[x*ArcTanh[c + d*Coth[a + b*x]], x] + (-
Simp[b*(1 - c - d) Int[x*(E^(2*a + 2*b*x)/(1 - c + d - (1 - c - d)*E^(2*a + 2*b*x))), x], x] + Simp[b*(1 + c
+ d) Int[x*(E^(2*a + 2*b*x)/(1 + c - d - (1 + c + d)*E^(2*a + 2*b*x))), x], x]) /; FreeQ[{a, b, c, d}, x] &
& NeQ[(c - d)^2, 1]
-
Int[ArcCoth[(c_.) + Coth[(a_.) + (b_.)*(x_)]*(d_.)], x_Symbol] :> Simp[x*ArcCoth[c + d*Coth[a + b*x]], x] + (-
Simp[b*(1 - c - d) Int[x*(E^(2*a + 2*b*x)/(1 - c + d - (1 - c - d)*E^(2*a + 2*b*x))), x], x] + Simp[b*(1 + c
+ d) Int[x*(E^(2*a + 2*b*x)/(1 + c - d - (1 + c + d)*E^(2*a + 2*b*x))), x], x]) /; FreeQ[{a, b, c, d}, x] &
& NeQ[(c - d)^2, 1]
-
Int[ArcTanh[(c_.) + (d_.)*Tanh[(a_.) + (b_.)*(x_)]]*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[(e + f*x)^(m
+ 1)*(ArcTanh[c + d*Tanh[a + b*x]]/(f*(m + 1))), x] + Simp[b/(f*(m + 1)) Int[(e + f*x)^(m + 1)/(c - d + c*E
^(2*a + 2*b*x)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && EqQ[(c - d)^2, 1]
-
Int[ArcCoth[(c_.) + (d_.)*Tanh[(a_.) + (b_.)*(x_)]]*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[(e + f*x)^(m
+ 1)*(ArcCoth[c + d*Tanh[a + b*x]]/(f*(m + 1))), x] + Simp[b/(f*(m + 1)) Int[(e + f*x)^(m + 1)/(c - d + c*E
^(2*a + 2*b*x)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && EqQ[(c - d)^2, 1]
-
Int[ArcTanh[(c_.) + Coth[(a_.) + (b_.)*(x_)]*(d_.)]*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[(e + f*x)^(m
+ 1)*(ArcTanh[c + d*Coth[a + b*x]]/(f*(m + 1))), x] + Simp[b/(f*(m + 1)) Int[(e + f*x)^(m + 1)/(c - d - c*E
^(2*a + 2*b*x)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && EqQ[(c - d)^2, 1]
-
Int[ArcCoth[(c_.) + Coth[(a_.) + (b_.)*(x_)]*(d_.)]*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[(e + f*x)^(m
+ 1)*(ArcCoth[c + d*Coth[a + b*x]]/(f*(m + 1))), x] + Simp[b/(f*(m + 1)) Int[(e + f*x)^(m + 1)/(c - d - c*E
^(2*a + 2*b*x)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && EqQ[(c - d)^2, 1]
-
Int[ArcTanh[(c_.) + (d_.)*Tanh[(a_.) + (b_.)*(x_)]]*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[(e + f*x)^(m
+ 1)*(ArcTanh[c + d*Tanh[a + b*x]]/(f*(m + 1))), x] + (Simp[b*((1 - c - d)/(f*(m + 1))) Int[(e + f*x)^(m +
1)*(E^(2*a + 2*b*x)/(1 - c + d + (1 - c - d)*E^(2*a + 2*b*x))), x], x] - Simp[b*((1 + c + d)/(f*(m + 1))) In
t[(e + f*x)^(m + 1)*(E^(2*a + 2*b*x)/(1 + c - d + (1 + c + d)*E^(2*a + 2*b*x))), x], x]) /; FreeQ[{a, b, c, d,
e, f}, x] && IGtQ[m, 0] && NeQ[(c - d)^2, 1]
-
Int[ArcCoth[(c_.) + (d_.)*Tanh[(a_.) + (b_.)*(x_)]]*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[(e + f*x)^(m
+ 1)*(ArcCoth[c + d*Tanh[a + b*x]]/(f*(m + 1))), x] + (Simp[b*((1 - c - d)/(f*(m + 1))) Int[(e + f*x)^(m +
1)*(E^(2*a + 2*b*x)/(1 - c + d + (1 - c - d)*E^(2*a + 2*b*x))), x], x] - Simp[b*((1 + c + d)/(f*(m + 1))) In
t[(e + f*x)^(m + 1)*(E^(2*a + 2*b*x)/(1 + c - d + (1 + c + d)*E^(2*a + 2*b*x))), x], x]) /; FreeQ[{a, b, c, d,
e, f}, x] && IGtQ[m, 0] && NeQ[(c - d)^2, 1]
-
Int[ArcTanh[(c_.) + Coth[(a_.) + (b_.)*(x_)]*(d_.)]*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[(e + f*x)^(m
+ 1)*(ArcTanh[c + d*Coth[a + b*x]]/(f*(m + 1))), x] + (-Simp[b*((1 - c - d)/(f*(m + 1))) Int[(e + f*x)^(m +
1)*(E^(2*a + 2*b*x)/(1 - c + d - (1 - c - d)*E^(2*a + 2*b*x))), x], x] + Simp[b*((1 + c + d)/(f*(m + 1))) I
nt[(e + f*x)^(m + 1)*(E^(2*a + 2*b*x)/(1 + c - d - (1 + c + d)*E^(2*a + 2*b*x))), x], x]) /; FreeQ[{a, b, c, d
, e, f}, x] && IGtQ[m, 0] && NeQ[(c - d)^2, 1]
-
Int[ArcCoth[(c_.) + Coth[(a_.) + (b_.)*(x_)]*(d_.)]*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[(e + f*x)^(m
+ 1)*(ArcCoth[c + d*Coth[a + b*x]]/(f*(m + 1))), x] + (-Simp[b*((1 - c - d)/(f*(m + 1))) Int[(e + f*x)^(m +
1)*(E^(2*a + 2*b*x)/(1 - c + d - (1 - c - d)*E^(2*a + 2*b*x))), x], x] + Simp[b*((1 + c + d)/(f*(m + 1))) I
nt[(e + f*x)^(m + 1)*(E^(2*a + 2*b*x)/(1 + c - d - (1 + c + d)*E^(2*a + 2*b*x))), x], x]) /; FreeQ[{a, b, c, d
, e, f}, x] && IGtQ[m, 0] && NeQ[(c - d)^2, 1]
-
Int[ArcTanh[Tan[(a_.) + (b_.)*(x_)]], x_Symbol] :> Simp[x*ArcTanh[Tan[a + b*x]], x] - Simp[b Int[x*Sec[2*a +
2*b*x], x], x] /; FreeQ[{a, b}, x]
-
Int[ArcCoth[Tan[(a_.) + (b_.)*(x_)]], x_Symbol] :> Simp[x*ArcCoth[Tan[a + b*x]], x] - Simp[b Int[x*Sec[2*a +
2*b*x], x], x] /; FreeQ[{a, b}, x]
-
Int[ArcTanh[Cot[(a_.) + (b_.)*(x_)]], x_Symbol] :> Simp[x*ArcTanh[Cot[a + b*x]], x] - Simp[b Int[x*Sec[2*a +
2*b*x], x], x] /; FreeQ[{a, b}, x]
-
Int[ArcCoth[Cot[(a_.) + (b_.)*(x_)]], x_Symbol] :> Simp[x*ArcCoth[Cot[a + b*x]], x] - Simp[b Int[x*Sec[2*a +
2*b*x], x], x] /; FreeQ[{a, b}, x]
-
Int[ArcTanh[Tan[(a_.) + (b_.)*(x_)]]*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[(e + f*x)^(m + 1)*(ArcTanh[
Tan[a + b*x]]/(f*(m + 1))), x] - Simp[b/(f*(m + 1)) Int[(e + f*x)^(m + 1)*Sec[2*a + 2*b*x], x], x] /; FreeQ[
{a, b, e, f}, x] && IGtQ[m, 0]
-
Int[ArcCoth[Tan[(a_.) + (b_.)*(x_)]]*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[(e + f*x)^(m + 1)*(ArcCoth[
Tan[a + b*x]]/(f*(m + 1))), x] - Simp[b/(f*(m + 1)) Int[(e + f*x)^(m + 1)*Sec[2*a + 2*b*x], x], x] /; FreeQ[
{a, b, e, f}, x] && IGtQ[m, 0]
-
Int[ArcTanh[Cot[(a_.) + (b_.)*(x_)]]*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[(e + f*x)^(m + 1)*(ArcTanh[
Cot[a + b*x]]/(f*(m + 1))), x] - Simp[b/(f*(m + 1)) Int[(e + f*x)^(m + 1)*Sec[2*a + 2*b*x], x], x] /; FreeQ[
{a, b, e, f}, x] && IGtQ[m, 0]
-
Int[ArcCoth[Cot[(a_.) + (b_.)*(x_)]]*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[(e + f*x)^(m + 1)*(ArcCoth[
Cot[a + b*x]]/(f*(m + 1))), x] - Simp[b/(f*(m + 1)) Int[(e + f*x)^(m + 1)*Sec[2*a + 2*b*x], x], x] /; FreeQ[
{a, b, e, f}, x] && IGtQ[m, 0]
-
Int[ArcTanh[(c_.) + (d_.)*Tan[(a_.) + (b_.)*(x_)]], x_Symbol] :> Simp[x*ArcTanh[c + d*Tan[a + b*x]], x] + Simp
[I*b Int[x/(c + I*d + c*E^(2*I*a + 2*I*b*x)), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[(c + I*d)^2, 1]
-
Int[ArcCoth[(c_.) + (d_.)*Tan[(a_.) + (b_.)*(x_)]], x_Symbol] :> Simp[x*ArcCoth[c + d*Tan[a + b*x]], x] + Simp
[I*b Int[x/(c + I*d + c*E^(2*I*a + 2*I*b*x)), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[(c + I*d)^2, 1]
-
Int[ArcTanh[(c_.) + Cot[(a_.) + (b_.)*(x_)]*(d_.)], x_Symbol] :> Simp[x*ArcTanh[c + d*Cot[a + b*x]], x] + Simp
[I*b Int[x/(c - I*d - c*E^(2*I*a + 2*I*b*x)), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[(c - I*d)^2, 1]
-
Int[ArcCoth[(c_.) + Cot[(a_.) + (b_.)*(x_)]*(d_.)], x_Symbol] :> Simp[x*ArcCoth[c + d*Cot[a + b*x]], x] + Simp
[I*b Int[x/(c - I*d - c*E^(2*I*a + 2*I*b*x)), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[(c - I*d)^2, 1]
-
Int[ArcTanh[(c_.) + (d_.)*Tan[(a_.) + (b_.)*(x_)]], x_Symbol] :> Simp[x*ArcTanh[c + d*Tan[a + b*x]], x] + (-Si
mp[I*b*(1 + c - I*d) Int[x*(E^(2*I*a + 2*I*b*x)/(1 + c + I*d + (1 + c - I*d)*E^(2*I*a + 2*I*b*x))), x], x] +
Simp[I*b*(1 - c + I*d) Int[x*(E^(2*I*a + 2*I*b*x)/(1 - c - I*d + (1 - c + I*d)*E^(2*I*a + 2*I*b*x))), x], x
]) /; FreeQ[{a, b, c, d}, x] && NeQ[(c + I*d)^2, 1]
-
Int[ArcCoth[(c_.) + (d_.)*Tan[(a_.) + (b_.)*(x_)]], x_Symbol] :> Simp[x*ArcCoth[c + d*Tan[a + b*x]], x] + (-Si
mp[I*b*(1 + c - I*d) Int[x*(E^(2*I*a + 2*I*b*x)/(1 + c + I*d + (1 + c - I*d)*E^(2*I*a + 2*I*b*x))), x], x] +
Simp[I*b*(1 - c + I*d) Int[x*(E^(2*I*a + 2*I*b*x)/(1 - c - I*d + (1 - c + I*d)*E^(2*I*a + 2*I*b*x))), x], x
]) /; FreeQ[{a, b, c, d}, x] && NeQ[(c + I*d)^2, 1]
-
Int[ArcTanh[(c_.) + Cot[(a_.) + (b_.)*(x_)]*(d_.)], x_Symbol] :> Simp[x*ArcTanh[c + d*Cot[a + b*x]], x] + (-Si
mp[I*b*(1 - c - I*d) Int[x*(E^(2*I*a + 2*I*b*x)/(1 - c + I*d - (1 - c - I*d)*E^(2*I*a + 2*I*b*x))), x], x] +
Simp[I*b*(1 + c + I*d) Int[x*(E^(2*I*a + 2*I*b*x)/(1 + c - I*d - (1 + c + I*d)*E^(2*I*a + 2*I*b*x))), x], x
]) /; FreeQ[{a, b, c, d}, x] && NeQ[(c - I*d)^2, 1]
-
Int[ArcCoth[(c_.) + Cot[(a_.) + (b_.)*(x_)]*(d_.)], x_Symbol] :> Simp[x*ArcCoth[c + d*Cot[a + b*x]], x] + (-Si
mp[I*b*(1 - c - I*d) Int[x*(E^(2*I*a + 2*I*b*x)/(1 - c + I*d - (1 - c - I*d)*E^(2*I*a + 2*I*b*x))), x], x] +
Simp[I*b*(1 + c + I*d) Int[x*(E^(2*I*a + 2*I*b*x)/(1 + c - I*d - (1 + c + I*d)*E^(2*I*a + 2*I*b*x))), x], x
]) /; FreeQ[{a, b, c, d}, x] && NeQ[(c - I*d)^2, 1]
-
Int[ArcTanh[(c_.) + (d_.)*Tan[(a_.) + (b_.)*(x_)]]*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[(e + f*x)^(m
+ 1)*(ArcTanh[c + d*Tan[a + b*x]]/(f*(m + 1))), x] + Simp[I*(b/(f*(m + 1))) Int[(e + f*x)^(m + 1)/(c + I*d +
c*E^(2*I*a + 2*I*b*x)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && EqQ[(c + I*d)^2, 1]
-
Int[ArcCoth[(c_.) + (d_.)*Tan[(a_.) + (b_.)*(x_)]]*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[(e + f*x)^(m
+ 1)*(ArcCoth[c + d*Tan[a + b*x]]/(f*(m + 1))), x] + Simp[I*(b/(f*(m + 1))) Int[(e + f*x)^(m + 1)/(c + I*d +
c*E^(2*I*a + 2*I*b*x)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && EqQ[(c + I*d)^2, 1]
-
Int[ArcTanh[(c_.) + Cot[(a_.) + (b_.)*(x_)]*(d_.)]*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[(e + f*x)^(m
+ 1)*(ArcTanh[c + d*Cot[a + b*x]]/(f*(m + 1))), x] + Simp[I*(b/(f*(m + 1))) Int[(e + f*x)^(m + 1)/(c - I*d -
c*E^(2*I*a + 2*I*b*x)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && EqQ[(c - I*d)^2, 1]
-
Int[ArcCoth[(c_.) + Cot[(a_.) + (b_.)*(x_)]*(d_.)]*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[(e + f*x)^(m
+ 1)*(ArcCoth[c + d*Cot[a + b*x]]/(f*(m + 1))), x] + Simp[I*(b/(f*(m + 1))) Int[(e + f*x)^(m + 1)/(c - I*d -
c*E^(2*I*a + 2*I*b*x)), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && EqQ[(c - I*d)^2, 1]
-
Int[ArcTanh[(c_.) + (d_.)*Tan[(a_.) + (b_.)*(x_)]]*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[(e + f*x)^(m
+ 1)*(ArcTanh[c + d*Tan[a + b*x]]/(f*(m + 1))), x] + (-Simp[I*b*((1 + c - I*d)/(f*(m + 1))) Int[(e + f*x)^(m
+ 1)*(E^(2*I*a + 2*I*b*x)/(1 + c + I*d + (1 + c - I*d)*E^(2*I*a + 2*I*b*x))), x], x] + Simp[I*b*((1 - c + I*d
)/(f*(m + 1))) Int[(e + f*x)^(m + 1)*(E^(2*I*a + 2*I*b*x)/(1 - c - I*d + (1 - c + I*d)*E^(2*I*a + 2*I*b*x)))
, x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && NeQ[(c + I*d)^2, 1]
-
Int[ArcCoth[(c_.) + (d_.)*Tan[(a_.) + (b_.)*(x_)]]*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[(e + f*x)^(m
+ 1)*(ArcCoth[c + d*Tan[a + b*x]]/(f*(m + 1))), x] + (-Simp[I*b*((1 + c - I*d)/(f*(m + 1))) Int[(e + f*x)^(m
+ 1)*(E^(2*I*a + 2*I*b*x)/(1 + c + I*d + (1 + c - I*d)*E^(2*I*a + 2*I*b*x))), x], x] + Simp[I*b*((1 - c + I*d
)/(f*(m + 1))) Int[(e + f*x)^(m + 1)*(E^(2*I*a + 2*I*b*x)/(1 - c - I*d + (1 - c + I*d)*E^(2*I*a + 2*I*b*x)))
, x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && NeQ[(c + I*d)^2, 1]
-
Int[ArcTanh[(c_.) + Cot[(a_.) + (b_.)*(x_)]*(d_.)]*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[(e + f*x)^(m
+ 1)*(ArcTanh[c + d*Cot[a + b*x]]/(f*(m + 1))), x] + (-Simp[I*b*((1 - c - I*d)/(f*(m + 1))) Int[(e + f*x)^(m
+ 1)*(E^(2*I*a + 2*I*b*x)/(1 - c + I*d - (1 - c - I*d)*E^(2*I*a + 2*I*b*x))), x], x] + Simp[I*b*((1 + c + I*d
)/(f*(m + 1))) Int[(e + f*x)^(m + 1)*(E^(2*I*a + 2*I*b*x)/(1 + c - I*d - (1 + c + I*d)*E^(2*I*a + 2*I*b*x)))
, x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && NeQ[(c - I*d)^2, 1]
-
Int[ArcCoth[(c_.) + Cot[(a_.) + (b_.)*(x_)]*(d_.)]*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[(e + f*x)^(m
+ 1)*(ArcCoth[c + d*Cot[a + b*x]]/(f*(m + 1))), x] + (-Simp[I*b*((1 - c - I*d)/(f*(m + 1))) Int[(e + f*x)^(m
+ 1)*(E^(2*I*a + 2*I*b*x)/(1 - c + I*d - (1 - c - I*d)*E^(2*I*a + 2*I*b*x))), x], x] + Simp[I*b*((1 + c + I*d
)/(f*(m + 1))) Int[(e + f*x)^(m + 1)*(E^(2*I*a + 2*I*b*x)/(1 + c - I*d - (1 + c + I*d)*E^(2*I*a + 2*I*b*x)))
, x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0] && NeQ[(c - I*d)^2, 1]
-
Int[ArcTanh[u_], x_Symbol] :> Simp[x*ArcTanh[u], x] - Int[SimplifyIntegrand[x*(D[u, x]/(1 - u^2)), x], x] /; I
nverseFunctionFreeQ[u, x]
-
Int[ArcCoth[u_], x_Symbol] :> Simp[x*ArcCoth[u], x] - Int[SimplifyIntegrand[x*(D[u, x]/(1 - u^2)), x], x] /; I
nverseFunctionFreeQ[u, x]
-
Int[((a_.) + ArcTanh[u_]*(b_.))*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(c + d*x)^(m + 1)*((a + b*ArcTan
h[u])/(d*(m + 1))), x] - Simp[b/(d*(m + 1)) Int[SimplifyIntegrand[(c + d*x)^(m + 1)*(D[u, x]/(1 - u^2)), x],
x], x] /; FreeQ[{a, b, c, d, m}, x] && NeQ[m, -1] && InverseFunctionFreeQ[u, x] && !FunctionOfQ[(c + d*x)^(m
+ 1), u, x] && FalseQ[PowerVariableExpn[u, m + 1, x]]
-
Int[((a_.) + ArcCoth[u_]*(b_.))*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(c + d*x)^(m + 1)*((a + b*ArcCot
h[u])/(d*(m + 1))), x] - Simp[b/(d*(m + 1)) Int[SimplifyIntegrand[(c + d*x)^(m + 1)*(D[u, x]/(1 - u^2)), x],
x], x] /; FreeQ[{a, b, c, d, m}, x] && NeQ[m, -1] && InverseFunctionFreeQ[u, x] && !FunctionOfQ[(c + d*x)^(m
+ 1), u, x] && FalseQ[PowerVariableExpn[u, m + 1, x]]
-
Int[((a_.) + ArcTanh[u_]*(b_.))*(v_), x_Symbol] :> With[{w = IntHide[v, x]}, Simp[(a + b*ArcTanh[u]) w, x] -
Simp[b Int[SimplifyIntegrand[w*(D[u, x]/(1 - u^2)), x], x], x] /; InverseFunctionFreeQ[w, x]] /; FreeQ[{a,
b}, x] && InverseFunctionFreeQ[u, x] && !MatchQ[v, ((c_.) + (d_.)*x)^(m_.) /; FreeQ[{c, d, m}, x]] && FalseQ[
FunctionOfLinear[v*(a + b*ArcTanh[u]), x]]
-
Int[((a_.) + ArcCoth[u_]*(b_.))*(v_), x_Symbol] :> With[{w = IntHide[v, x]}, Simp[(a + b*ArcCoth[u]) w, x] -
Simp[b Int[SimplifyIntegrand[w*(D[u, x]/(1 - u^2)), x], x], x] /; InverseFunctionFreeQ[w, x]] /; FreeQ[{a,
b}, x] && InverseFunctionFreeQ[u, x] && !MatchQ[v, ((c_.) + (d_.)*x)^(m_.) /; FreeQ[{c, d, m}, x]] && FalseQ[
FunctionOfLinear[v*(a + b*ArcCoth[u]), x]]
-
Int[ArcSech[(c_.)*(x_)], x_Symbol] :> Simp[x*ArcSech[c*x], x] + Simp[Sqrt[1 + c*x]*Sqrt[1/(1 + c*x)] Int[1/S
qrt[1 - c^2*x^2], x], x] /; FreeQ[c, x]
-
Int[ArcCsch[(c_.)*(x_)], x_Symbol] :> Simp[x*ArcCsch[c*x], x] + Simp[1/c Int[1/(x*Sqrt[1 + 1/(c^2*x^2)]), x]
, x] /; FreeQ[c, x]
-
Int[((a_.) + ArcSech[(c_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[-c^(-1) Subst[Int[(a + b*x)^n*Sech[x]*Tanh[x
], x], x, ArcSech[c*x]], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[n, 0]
-
Int[((a_.) + ArcCsch[(c_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[-c^(-1) Subst[Int[(a + b*x)^n*Csch[x]*Coth[x
], x], x, ArcCsch[c*x]], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[n, 0]
-
Int[((a_.) + ArcSech[(c_.)*(x_)]*(b_.))/(x_), x_Symbol] :> -Subst[Int[(a + b*ArcCosh[x/c])/x, x], x, 1/x] /; F
reeQ[{a, b, c}, x]
-
Int[((a_.) + ArcCsch[(c_.)*(x_)]*(b_.))/(x_), x_Symbol] :> -Subst[Int[(a + b*ArcSinh[x/c])/x, x], x, 1/x] /; F
reeQ[{a, b, c}, x]
-
Int[((a_.) + ArcSech[(c_.)*(x_)]*(b_.))*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(d*x)^(m + 1)*((a + b*ArcSech[c*
x])/(d*(m + 1))), x] + Simp[b*(Sqrt[1 + c*x]/(m + 1))*Sqrt[1/(1 + c*x)] Int[(d*x)^m/(Sqrt[1 - c*x]*Sqrt[1 +
c*x]), x], x] /; FreeQ[{a, b, c, d, m}, x] && NeQ[m, -1]
-
Int[((a_.) + ArcCsch[(c_.)*(x_)]*(b_.))*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(d*x)^(m + 1)*((a + b*ArcCsch[c*
x])/(d*(m + 1))), x] + Simp[b*(d/(c*(m + 1))) Int[(d*x)^(m - 1)/Sqrt[1 + 1/(c^2*x^2)], x], x] /; FreeQ[{a, b
, c, d, m}, x] && NeQ[m, -1]
-
Int[((a_.) + ArcSech[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[-(c^(m + 1))^(-1) Subst[Int[(a +
b*x)^n*Sech[x]^(m + 1)*Tanh[x], x], x, ArcSech[c*x]], x] /; FreeQ[{a, b, c}, x] && IntegerQ[n] && IntegerQ[m]
&& (GtQ[n, 0] || LtQ[m, -1])
-
Int[((a_.) + ArcCsch[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[-(c^(m + 1))^(-1) Subst[Int[(a +
b*x)^n*Csch[x]^(m + 1)*Coth[x], x], x, ArcCsch[c*x]], x] /; FreeQ[{a, b, c}, x] && IntegerQ[n] && IntegerQ[m]
&& (GtQ[n, 0] || LtQ[m, -1])
-
Int[((a_.) + ArcSech[(c_.)*(x_)]*(b_.))/((d_.) + (e_.)*(x_)), x_Symbol] :> Simp[(a + b*ArcSech[c*x])*(Log[1 +
(e - Sqrt[(-c^2)*d^2 + e^2])/(c*d*E^ArcSech[c*x])]/e), x] + (Simp[(a + b*ArcSech[c*x])*(Log[1 + (e + Sqrt[(-c^
2)*d^2 + e^2])/(c*d*E^ArcSech[c*x])]/e), x] - Simp[(a + b*ArcSech[c*x])*(Log[1 + 1/E^(2*ArcSech[c*x])]/e), x]
+ Simp[b/e Int[(Sqrt[(1 - c*x)/(1 + c*x)]*Log[1 + (e - Sqrt[(-c^2)*d^2 + e^2])/(c*d*E^ArcSech[c*x])])/(x*(1
- c*x)), x], x] + Simp[b/e Int[(Sqrt[(1 - c*x)/(1 + c*x)]*Log[1 + (e + Sqrt[(-c^2)*d^2 + e^2])/(c*d*E^ArcSec
h[c*x])])/(x*(1 - c*x)), x], x] - Simp[b/e Int[(Sqrt[(1 - c*x)/(1 + c*x)]*Log[1 + 1/E^(2*ArcSech[c*x])])/(x*
(1 - c*x)), x], x]) /; FreeQ[{a, b, c, d, e}, x]
-
Int[((a_.) + ArcSech[(c_.)*(x_)]*(b_.))*((d_.) + (e_.)*(x_))^(m_.), x_Symbol] :> Simp[(d + e*x)^(m + 1)*((a +
b*ArcSech[c*x])/(e*(m + 1))), x] + Simp[b*(Sqrt[1 + c*x]/(e*(m + 1)))*Sqrt[1/(1 + c*x)] Int[(d + e*x)^(m + 1
)/(x*Sqrt[1 - c^2*x^2]), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[m, -1]
-
Int[((a_.) + ArcCsch[(c_.)*(x_)]*(b_.))/((d_.) + (e_.)*(x_)), x_Symbol] :> Simp[(a + b*ArcCsch[c*x])*(Log[1 -
(e - Sqrt[c^2*d^2 + e^2])*(E^ArcCsch[c*x]/(c*d))]/e), x] + (Simp[(a + b*ArcCsch[c*x])*(Log[1 - (e + Sqrt[c^2*d
^2 + e^2])*(E^ArcCsch[c*x]/(c*d))]/e), x] - Simp[(a + b*ArcCsch[c*x])*(Log[1 - E^(2*ArcCsch[c*x])]/e), x] + Si
mp[b/(c*e) Int[Log[1 - (e - Sqrt[c^2*d^2 + e^2])*(E^ArcCsch[c*x]/(c*d))]/(x^2*Sqrt[1 + 1/(c^2*x^2)]), x], x]
+ Simp[b/(c*e) Int[Log[1 - (e + Sqrt[c^2*d^2 + e^2])*(E^ArcCsch[c*x]/(c*d))]/(x^2*Sqrt[1 + 1/(c^2*x^2)]), x
], x] - Simp[b/(c*e) Int[Log[1 - E^(2*ArcCsch[c*x])]/(x^2*Sqrt[1 + 1/(c^2*x^2)]), x], x]) /; FreeQ[{a, b, c,
d, e}, x]
-
Int[((a_.) + ArcCsch[(c_.)*(x_)]*(b_.))*((d_.) + (e_.)*(x_))^(m_.), x_Symbol] :> Simp[(d + e*x)^(m + 1)*((a +
b*ArcCsch[c*x])/(e*(m + 1))), x] + Simp[b/(c*e*(m + 1)) Int[(d + e*x)^(m + 1)/(x^2*Sqrt[1 + 1/(c^2*x^2)]), x
], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[m, -1]
-
Int[((a_.) + ArcSech[(c_.)*(x_)]*(b_.))*((d_.) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> With[{u = IntHide[(d + e*x^
2)^p, x]}, Simp[(a + b*ArcSech[c*x]) u, x] + Simp[b*Sqrt[1 + c*x]*Sqrt[1/(1 + c*x)] Int[SimplifyIntegrand[
u/(x*Sqrt[1 - c*x]*Sqrt[1 + c*x]), x], x], x]] /; FreeQ[{a, b, c, d, e}, x] && (IGtQ[p, 0] || ILtQ[p + 1/2, 0]
)
-
Int[((a_.) + ArcCsch[(c_.)*(x_)]*(b_.))*((d_.) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> With[{u = IntHide[(d + e*x^
2)^p, x]}, Simp[(a + b*ArcCsch[c*x]) u, x] - Simp[b*c*(x/Sqrt[(-c^2)*x^2]) Int[SimplifyIntegrand[u/(x*Sqrt
[-1 - c^2*x^2]), x], x], x]] /; FreeQ[{a, b, c, d, e}, x] && (IGtQ[p, 0] || ILtQ[p + 1/2, 0])
-
Int[((a_.) + ArcSech[(c_.)*(x_)]*(b_.))^(n_.)*((d_.) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> -Subst[Int[(e + d*x^2
)^p*((a + b*ArcCosh[x/c])^n/x^(2*(p + 1))), x], x, 1/x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[n, 0] && Integ
erQ[p]
-
Int[((a_.) + ArcCsch[(c_.)*(x_)]*(b_.))^(n_.)*((d_.) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> -Subst[Int[(e + d*x^2
)^p*((a + b*ArcSinh[x/c])^n/x^(2*(p + 1))), x], x, 1/x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[n, 0] && Integ
erQ[p]
-
Int[((a_.) + ArcSech[(c_.)*(x_)]*(b_.))^(n_.)*((d_.) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[-Sqrt[x^2]/x Su
bst[Int[(e + d*x^2)^p*((a + b*ArcCosh[x/c])^n/x^(2*(p + 1))), x], x, 1/x], x] /; FreeQ[{a, b, c, d, e, n}, x]
&& IGtQ[n, 0] && EqQ[c^2*d + e, 0] && IntegerQ[p + 1/2] && GtQ[e, 0] && LtQ[d, 0]
-
Int[((a_.) + ArcCsch[(c_.)*(x_)]*(b_.))^(n_.)*((d_.) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[-Sqrt[x^2]/x Su
bst[Int[(e + d*x^2)^p*((a + b*ArcSinh[x/c])^n/x^(2*(p + 1))), x], x, 1/x], x] /; FreeQ[{a, b, c, d, e, n}, x]
&& IGtQ[n, 0] && EqQ[e - c^2*d, 0] && IntegerQ[p + 1/2] && GtQ[e, 0] && LtQ[d, 0]
-
Int[((a_.) + ArcSech[(c_.)*(x_)]*(b_.))^(n_.)*((d_.) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[-Sqrt[d + e*x^2]/
(x*Sqrt[e + d/x^2]) Subst[Int[(e + d*x^2)^p*((a + b*ArcCosh[x/c])^n/x^(2*(p + 1))), x], x, 1/x], x] /; FreeQ
[{a, b, c, d, e, n}, x] && IGtQ[n, 0] && EqQ[c^2*d + e, 0] && IntegerQ[p + 1/2] && !(GtQ[e, 0] && LtQ[d, 0])
-
Int[((a_.) + ArcCsch[(c_.)*(x_)]*(b_.))^(n_.)*((d_.) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[-Sqrt[d + e*x^2]/
(x*Sqrt[e + d/x^2]) Subst[Int[(e + d*x^2)^p*((a + b*ArcSinh[x/c])^n/x^(2*(p + 1))), x], x, 1/x], x] /; FreeQ
[{a, b, c, d, e, n}, x] && IGtQ[n, 0] && EqQ[e - c^2*d, 0] && IntegerQ[p + 1/2] && !(GtQ[e, 0] && LtQ[d, 0])
-
Int[((a_.) + ArcSech[(c_.)*(x_)]*(b_.))*(x_)*((d_.) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x^2)^(p +
1)*((a + b*ArcSech[c*x])/(2*e*(p + 1))), x] + Simp[b*(Sqrt[1 + c*x]/(2*e*(p + 1)))*Sqrt[1/(1 + c*x)] Int[(d
+ e*x^2)^(p + 1)/(x*Sqrt[1 - c*x]*Sqrt[1 + c*x]), x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[p, -1]
-
Int[((a_.) + ArcCsch[(c_.)*(x_)]*(b_.))*(x_)*((d_.) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x^2)^(p +
1)*((a + b*ArcCsch[c*x])/(2*e*(p + 1))), x] - Simp[b*c*(x/(2*e*(p + 1)*Sqrt[(-c^2)*x^2])) Int[(d + e*x^2)^(p
+ 1)/(x*Sqrt[-1 - c^2*x^2]), x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[p, -1]
-
Int[((a_.) + ArcSech[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_.)*((d_.) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> With[{u
= IntHide[(f*x)^m*(d + e*x^2)^p, x]}, Simp[(a + b*ArcSech[c*x]) u, x] + Simp[b*Sqrt[1 + c*x]*Sqrt[1/(1 + c*x
)] Int[SimplifyIntegrand[u/(x*Sqrt[1 - c*x]*Sqrt[1 + c*x]), x], x], x]] /; FreeQ[{a, b, c, d, e, f, m, p}, x
] && ((IGtQ[p, 0] && !(ILtQ[(m - 1)/2, 0] && GtQ[m + 2*p + 3, 0])) || (IGtQ[(m + 1)/2, 0] && !(ILtQ[p, 0] &&
GtQ[m + 2*p + 3, 0])) || (ILtQ[(m + 2*p + 1)/2, 0] && !ILtQ[(m - 1)/2, 0]))
-
Int[((a_.) + ArcCsch[(c_.)*(x_)]*(b_.))*((f_.)*(x_))^(m_.)*((d_.) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> With[{u
= IntHide[(f*x)^m*(d + e*x^2)^p, x]}, Simp[(a + b*ArcCsch[c*x]) u, x] - Simp[b*c*(x/Sqrt[(-c^2)*x^2]) Int[
SimplifyIntegrand[u/(x*Sqrt[-1 - c^2*x^2]), x], x], x]] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && ((IGtQ[p, 0]
&& !(ILtQ[(m - 1)/2, 0] && GtQ[m + 2*p + 3, 0])) || (IGtQ[(m + 1)/2, 0] && !(ILtQ[p, 0] && GtQ[m + 2*p + 3,
0])) || (ILtQ[(m + 2*p + 1)/2, 0] && !ILtQ[(m - 1)/2, 0]))
-
Int[((a_.) + ArcSech[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_.) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> -Subst[Int
[(e + d*x^2)^p*((a + b*ArcCosh[x/c])^n/x^(m + 2*(p + 1))), x], x, 1/x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ
[n, 0] && IntegersQ[m, p]
-
Int[((a_.) + ArcCsch[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_.) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> -Subst[Int
[(e + d*x^2)^p*((a + b*ArcSinh[x/c])^n/x^(m + 2*(p + 1))), x], x, 1/x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ
[n, 0] && IntegersQ[m, p]
-
Int[((a_.) + ArcSech[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_.) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[-Sqrt[
x^2]/x Subst[Int[(e + d*x^2)^p*((a + b*ArcCosh[x/c])^n/x^(m + 2*(p + 1))), x], x, 1/x], x] /; FreeQ[{a, b, c
, d, e, n}, x] && IGtQ[n, 0] && EqQ[c^2*d + e, 0] && IntegerQ[m] && IntegerQ[p + 1/2] && GtQ[e, 0] && LtQ[d, 0
]
-
Int[((a_.) + ArcCsch[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_.) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[-Sqrt[
x^2]/x Subst[Int[(e + d*x^2)^p*((a + b*ArcSinh[x/c])^n/x^(m + 2*(p + 1))), x], x, 1/x], x] /; FreeQ[{a, b, c
, d, e, n}, x] && IGtQ[n, 0] && EqQ[e - c^2*d, 0] && IntegerQ[m] && IntegerQ[p + 1/2] && GtQ[e, 0] && LtQ[d, 0
]
-
Int[((a_.) + ArcSech[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_.) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[-Sqrt[
d + e*x^2]/(x*Sqrt[e + d/x^2]) Subst[Int[(e + d*x^2)^p*((a + b*ArcCosh[x/c])^n/x^(m + 2*(p + 1))), x], x, 1/
x], x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[n, 0] && EqQ[c^2*d + e, 0] && IntegerQ[m] && IntegerQ[p + 1/2]
&& !(GtQ[e, 0] && LtQ[d, 0])
-
Int[((a_.) + ArcCsch[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_.) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[-Sqrt[
d + e*x^2]/(x*Sqrt[e + d/x^2]) Subst[Int[(e + d*x^2)^p*((a + b*ArcSinh[x/c])^n/x^(m + 2*(p + 1))), x], x, 1/
x], x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[n, 0] && EqQ[e - c^2*d, 0] && IntegerQ[m] && IntegerQ[p + 1/2]
&& !(GtQ[e, 0] && LtQ[d, 0])
-
Int[((a_.) + ArcSech[(c_.)*(x_)]*(b_.))*(u_), x_Symbol] :> With[{v = IntHide[u, x]}, Simp[(a + b*ArcSech[c*x])
v, x] + Simp[b*(Sqrt[1 - c^2*x^2]/(c*x*Sqrt[-1 + 1/(c*x)]*Sqrt[1 + 1/(c*x)])) Int[SimplifyIntegrand[v/(x*
Sqrt[1 - c^2*x^2]), x], x], x] /; InverseFunctionFreeQ[v, x]] /; FreeQ[{a, b, c}, x]
-
Int[((a_.) + ArcCsch[(c_.)*(x_)]*(b_.))*(u_), x_Symbol] :> With[{v = IntHide[u, x]}, Simp[(a + b*ArcCsch[c*x])
v, x] + Simp[b/c Int[SimplifyIntegrand[v/(x^2*Sqrt[1 + 1/(c^2*x^2)]), x], x], x] /; InverseFunctionFreeQ[
v, x]] /; FreeQ[{a, b, c}, x]
-
Int[((a_.) + ArcSech[(c_.)*(x_)]*(b_.))^(n_.)*(u_.), x_Symbol] :> Unintegrable[u*(a + b*ArcSech[c*x])^n, x] /;
FreeQ[{a, b, c, n}, x]
-
Int[((a_.) + ArcCsch[(c_.)*(x_)]*(b_.))^(n_.)*(u_.), x_Symbol] :> Unintegrable[u*(a + b*ArcCsch[c*x])^n, x] /;
FreeQ[{a, b, c, n}, x]
-
Int[ArcSech[(c_) + (d_.)*(x_)], x_Symbol] :> Simp[(c + d*x)*(ArcSech[c + d*x]/d), x] + Int[Sqrt[(1 - c - d*x)/
(1 + c + d*x)]/(1 - c - d*x), x] /; FreeQ[{c, d}, x]
-
Int[ArcCsch[(c_) + (d_.)*(x_)], x_Symbol] :> Simp[(c + d*x)*(ArcCsch[c + d*x]/d), x] + Int[1/((c + d*x)*Sqrt[1
+ 1/(c + d*x)^2]), x] /; FreeQ[{c, d}, x]
-
Int[((a_.) + ArcSech[(c_) + (d_.)*(x_)]*(b_.))^(p_.), x_Symbol] :> Simp[1/d Subst[Int[(a + b*ArcSech[x])^p,
x], x, c + d*x], x] /; FreeQ[{a, b, c, d}, x] && IGtQ[p, 0]
-
Int[((a_.) + ArcCsch[(c_) + (d_.)*(x_)]*(b_.))^(p_.), x_Symbol] :> Simp[1/d Subst[Int[(a + b*ArcCsch[x])^p,
x], x, c + d*x], x] /; FreeQ[{a, b, c, d}, x] && IGtQ[p, 0]
-
Int[((a_.) + ArcSech[(c_) + (d_.)*(x_)]*(b_.))^(p_), x_Symbol] :> Unintegrable[(a + b*ArcSech[c + d*x])^p, x]
/; FreeQ[{a, b, c, d, p}, x] && !IGtQ[p, 0]
-
Int[((a_.) + ArcCsch[(c_) + (d_.)*(x_)]*(b_.))^(p_), x_Symbol] :> Unintegrable[(a + b*ArcCsch[c + d*x])^p, x]
/; FreeQ[{a, b, c, d, p}, x] && !IGtQ[p, 0]
-
Int[((a_.) + ArcSech[(c_) + (d_.)*(x_)]*(b_.))^(p_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[1/d Subst
[Int[(f*(x/d))^m*(a + b*ArcSech[x])^p, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[d*e - c*f
, 0] && IGtQ[p, 0]
-
Int[((a_.) + ArcCsch[(c_) + (d_.)*(x_)]*(b_.))^(p_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[1/d Subst
[Int[(f*(x/d))^m*(a + b*ArcCsch[x])^p, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && EqQ[d*e - c*f
, 0] && IGtQ[p, 0]
-
Int[((a_.) + ArcSech[(c_) + (d_.)*(x_)]*(b_.))^(p_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[-(d^(m + 1)
)^(-1) Subst[Int[(a + b*x)^p*Sech[x]*Tanh[x]*(d*e - c*f + f*Sech[x])^m, x], x, ArcSech[c + d*x]], x] /; Free
Q[{a, b, c, d, e, f}, x] && IGtQ[p, 0] && IntegerQ[m]
-
Int[((a_.) + ArcCsch[(c_) + (d_.)*(x_)]*(b_.))^(p_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[-(d^(m + 1)
)^(-1) Subst[Int[(a + b*x)^p*Csch[x]*Coth[x]*(d*e - c*f + f*Csch[x])^m, x], x, ArcCsch[c + d*x]], x] /; Free
Q[{a, b, c, d, e, f}, x] && IGtQ[p, 0] && IntegerQ[m]
-
Int[((a_.) + ArcSech[(c_) + (d_.)*(x_)]*(b_.))^(p_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[1/d Subst
[Int[((d*e - c*f)/d + f*(x/d))^m*(a + b*ArcSech[x])^p, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m}, x]
&& IGtQ[p, 0]
-
Int[((a_.) + ArcCsch[(c_) + (d_.)*(x_)]*(b_.))^(p_.)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[1/d Subst
[Int[((d*e - c*f)/d + f*(x/d))^m*(a + b*ArcCsch[x])^p, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m}, x]
&& IGtQ[p, 0]
-
Int[((a_.) + ArcSech[(c_) + (d_.)*(x_)]*(b_.))^(p_)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Unintegrable[(e +
f*x)^m*(a + b*ArcSech[c + d*x])^p, x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && !IGtQ[p, 0]
-
Int[((a_.) + ArcCsch[(c_) + (d_.)*(x_)]*(b_.))^(p_)*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Unintegrable[(e +
f*x)^m*(a + b*ArcCsch[c + d*x])^p, x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && !IGtQ[p, 0]
-
Int[ArcSech[(c_.)/((a_.) + (b_.)*(x_)^(n_.))]^(m_.)*(u_.), x_Symbol] :> Int[u*ArcCosh[a/c + b*(x^n/c)]^m, x] /
; FreeQ[{a, b, c, n, m}, x]
-
Int[ArcCsch[(c_.)/((a_.) + (b_.)*(x_)^(n_.))]^(m_.)*(u_.), x_Symbol] :> Int[u*ArcSinh[a/c + b*(x^n/c)]^m, x] /
; FreeQ[{a, b, c, n, m}, x]
-
Int[E^ArcSech[(a_.)*(x_)], x_Symbol] :> Simp[x*E^ArcSech[a*x], x] + (Simp[Log[x]/a, x] + Simp[1/a Int[(1/(x*
(1 - a*x)))*Sqrt[(1 - a*x)/(1 + a*x)], x], x]) /; FreeQ[a, x]
-
Int[E^ArcSech[(a_.)*(x_)^(p_)], x_Symbol] :> Simp[x*E^ArcSech[a*x^p], x] + (Simp[p/a Int[1/x^p, x], x] + Sim
p[p*(Sqrt[1 + a*x^p]/a)*Sqrt[1/(1 + a*x^p)] Int[1/(x^p*Sqrt[1 + a*x^p]*Sqrt[1 - a*x^p]), x], x]) /; FreeQ[{a
, p}, x]
-
Int[E^ArcCsch[(a_.)*(x_)^(p_.)], x_Symbol] :> Simp[1/a Int[1/x^p, x], x] + Int[Sqrt[1 + 1/(a^2*x^(2*p))], x]
/; FreeQ[{a, p}, x]
-
Int[E^(ArcSech[u_]*(n_.)), x_Symbol] :> Int[(1/u + Sqrt[(1 - u)/(1 + u)] + (1/u)*Sqrt[(1 - u)/(1 + u)])^n, x]
/; IntegerQ[n]
-
Int[E^(ArcCsch[u_]*(n_.)), x_Symbol] :> Int[(1/u + Sqrt[1 + 1/u^2])^n, x] /; IntegerQ[n]
-
Int[E^ArcSech[(a_.)*(x_)^(p_.)]/(x_), x_Symbol] :> -Simp[(a*p*x^p)^(-1), x] + Simp[(Sqrt[1 + a*x^p]/a)*Sqrt[1/
(1 + a*x^p)] Int[Sqrt[1 + a*x^p]*(Sqrt[1 - a*x^p]/x^(p + 1)), x], x] /; FreeQ[{a, p}, x]
-
Int[E^ArcSech[(a_.)*(x_)^(p_.)]*(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)*(E^ArcSech[a*x^p]/(m + 1)), x] + (Simp
[p/(a*(m + 1)) Int[x^(m - p), x], x] + Simp[p*(Sqrt[1 + a*x^p]/(a*(m + 1)))*Sqrt[1/(1 + a*x^p)] Int[x^(m -
p)/(Sqrt[1 + a*x^p]*Sqrt[1 - a*x^p]), x], x]) /; FreeQ[{a, m, p}, x] && NeQ[m, -1]
-
Int[E^ArcCsch[(a_.)*(x_)^(p_.)]*(x_)^(m_.), x_Symbol] :> Simp[1/a Int[x^(m - p), x], x] + Int[x^m*Sqrt[1 + 1
/(a^2*x^(2*p))], x] /; FreeQ[{a, m, p}, x]
-
Int[E^(ArcSech[u_]*(n_.))*(x_)^(m_.), x_Symbol] :> Int[x^m*(1/u + Sqrt[(1 - u)/(1 + u)] + (1/u)*Sqrt[(1 - u)/(
1 + u)])^n, x] /; FreeQ[m, x] && IntegerQ[n]
-
Int[E^(ArcCsch[u_]*(n_.))*(x_)^(m_.), x_Symbol] :> Int[x^m*(1/u + Sqrt[1 + 1/u^2])^n, x] /; FreeQ[m, x] && Int
egerQ[n]
-
Int[E^ArcSech[(c_.)*(x_)]/((a_) + (b_.)*(x_)^2), x_Symbol] :> Simp[1/(a*c) Int[Sqrt[1/(1 + c*x)]/(x*Sqrt[1 -
c*x]), x], x] + Simp[1/c Int[1/(x*(a + b*x^2)), x], x] /; FreeQ[{a, b, c}, x] && EqQ[b + a*c^2, 0]
-
Int[E^ArcCsch[(c_.)*(x_)]/((a_) + (b_.)*(x_)^2), x_Symbol] :> Simp[1/(a*c^2) Int[1/(x^2*Sqrt[1 + 1/(c^2*x^2)
]), x], x] + Simp[1/c Int[1/(x*(a + b*x^2)), x], x] /; FreeQ[{a, b, c}, x] && EqQ[b - a*c^2, 0]
-
Int[(E^ArcSech[(c_.)*(x_)]*((d_.)*(x_))^(m_.))/((a_) + (b_.)*(x_)^2), x_Symbol] :> Simp[d/(a*c) Int[(d*x)^(m
- 1)*(Sqrt[1/(1 + c*x)]/Sqrt[1 - c*x]), x], x] + Simp[d/c Int[(d*x)^(m - 1)/(a + b*x^2), x], x] /; FreeQ[{a
, b, c, d, m}, x] && EqQ[b + a*c^2, 0]
-
Int[(E^ArcCsch[(c_.)*(x_)]*((d_.)*(x_))^(m_.))/((a_) + (b_.)*(x_)^2), x_Symbol] :> Simp[d^2/(a*c^2) Int[(d*x
)^(m - 2)/Sqrt[1 + 1/(c^2*x^2)], x], x] + Simp[d/c Int[(d*x)^(m - 1)/(a + b*x^2), x], x] /; FreeQ[{a, b, c,
d, m}, x] && EqQ[b - a*c^2, 0]
-
Int[ArcSech[u_], x_Symbol] :> Simp[x*ArcSech[u], x] + Simp[Sqrt[1 - u^2]/(u*Sqrt[-1 + 1/u]*Sqrt[1 + 1/u]) In
t[SimplifyIntegrand[x*(D[u, x]/(u*Sqrt[1 - u^2])), x], x], x] /; InverseFunctionFreeQ[u, x] && !FunctionOfExp
onentialQ[u, x]
-
Int[ArcCsch[u_], x_Symbol] :> Simp[x*ArcCsch[u], x] - Simp[u/Sqrt[-u^2] Int[SimplifyIntegrand[x*(D[u, x]/(u*
Sqrt[-1 - u^2])), x], x], x] /; InverseFunctionFreeQ[u, x] && !FunctionOfExponentialQ[u, x]
-
Int[((a_.) + ArcSech[u_]*(b_.))*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(c + d*x)^(m + 1)*((a + b*ArcSec
h[u])/(d*(m + 1))), x] + Simp[b*(Sqrt[1 - u^2]/(d*(m + 1)*u*Sqrt[-1 + 1/u]*Sqrt[1 + 1/u])) Int[SimplifyInteg
rand[(c + d*x)^(m + 1)*(D[u, x]/(u*Sqrt[1 - u^2])), x], x], x] /; FreeQ[{a, b, c, d, m}, x] && NeQ[m, -1] && I
nverseFunctionFreeQ[u, x] && !FunctionOfQ[(c + d*x)^(m + 1), u, x] && !FunctionOfExponentialQ[u, x]
-
Int[((a_.) + ArcCsch[u_]*(b_.))*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(c + d*x)^(m + 1)*((a + b*ArcCsc
h[u])/(d*(m + 1))), x] - Simp[b*(u/(d*(m + 1)*Sqrt[-u^2])) Int[SimplifyIntegrand[(c + d*x)^(m + 1)*(D[u, x]/
(u*Sqrt[-1 - u^2])), x], x], x] /; FreeQ[{a, b, c, d, m}, x] && NeQ[m, -1] && InverseFunctionFreeQ[u, x] && !
FunctionOfQ[(c + d*x)^(m + 1), u, x] && !FunctionOfExponentialQ[u, x]
-
Int[((a_.) + ArcSech[u_]*(b_.))*(v_), x_Symbol] :> With[{w = IntHide[v, x]}, Simp[(a + b*ArcSech[u]) w, x] +
Simp[b*(Sqrt[1 - u^2]/(u*Sqrt[-1 + 1/u]*Sqrt[1 + 1/u])) Int[SimplifyIntegrand[w*(D[u, x]/(u*Sqrt[1 - u^2]))
, x], x], x] /; InverseFunctionFreeQ[w, x]] /; FreeQ[{a, b}, x] && InverseFunctionFreeQ[u, x] && !MatchQ[v, (
(c_.) + (d_.)*x)^(m_.) /; FreeQ[{c, d, m}, x]]
-
Int[((a_.) + ArcCsch[u_]*(b_.))*(v_), x_Symbol] :> With[{w = IntHide[v, x]}, Simp[(a + b*ArcCsch[u]) w, x] -
Simp[b*(u/Sqrt[-u^2]) Int[SimplifyIntegrand[w*(D[u, x]/(u*Sqrt[-1 - u^2])), x], x], x] /; InverseFunctionFr
eeQ[w, x]] /; FreeQ[{a, b}, x] && InverseFunctionFreeQ[u, x] && !MatchQ[v, ((c_.) + (d_.)*x)^(m_.) /; FreeQ[{
c, d, m}, x]]
-
Int[Erf[(a_.) + (b_.)*(x_)], x_Symbol] :> Simp[(a + b*x)*(Erf[a + b*x]/b), x] + Simp[1/(b*Sqrt[Pi]*E^(a + b*x)
^2), x] /; FreeQ[{a, b}, x]
-
Int[Erfc[(a_.) + (b_.)*(x_)], x_Symbol] :> Simp[(a + b*x)*(Erfc[a + b*x]/b), x] - Simp[1/(b*Sqrt[Pi]*E^(a + b*
x)^2), x] /; FreeQ[{a, b}, x]
-
Int[Erfi[(a_.) + (b_.)*(x_)], x_Symbol] :> Simp[(a + b*x)*(Erfi[a + b*x]/b), x] - Simp[E^(a + b*x)^2/(b*Sqrt[P
i]), x] /; FreeQ[{a, b}, x]
-
Int[Erf[(a_.) + (b_.)*(x_)]^2, x_Symbol] :> Simp[(a + b*x)*(Erf[a + b*x]^2/b), x] - Simp[4/Sqrt[Pi] Int[(a +
b*x)*(Erf[a + b*x]/E^(a + b*x)^2), x], x] /; FreeQ[{a, b}, x]
-
Int[Erfc[(a_.) + (b_.)*(x_)]^2, x_Symbol] :> Simp[(a + b*x)*(Erfc[a + b*x]^2/b), x] + Simp[4/Sqrt[Pi] Int[(a
+ b*x)*(Erfc[a + b*x]/E^(a + b*x)^2), x], x] /; FreeQ[{a, b}, x]
-
Int[Erfi[(a_.) + (b_.)*(x_)]^2, x_Symbol] :> Simp[(a + b*x)*(Erfi[a + b*x]^2/b), x] - Simp[4/Sqrt[Pi] Int[(a
+ b*x)*E^(a + b*x)^2*Erfi[a + b*x], x], x] /; FreeQ[{a, b}, x]
-
Int[Erf[(a_.) + (b_.)*(x_)]^(n_), x_Symbol] :> Unintegrable[Erf[a + b*x]^n, x] /; FreeQ[{a, b, n}, x] && NeQ[n
, 1] && NeQ[n, 2]
-
Int[Erfc[(a_.) + (b_.)*(x_)]^(n_), x_Symbol] :> Unintegrable[Erfc[a + b*x]^n, x] /; FreeQ[{a, b, n}, x] && NeQ
[n, 1] && NeQ[n, 2]
-
Int[Erfi[(a_.) + (b_.)*(x_)]^(n_), x_Symbol] :> Unintegrable[Erfi[a + b*x]^n, x] /; FreeQ[{a, b, n}, x] && NeQ
[n, 1] && NeQ[n, 2]
-
Int[Erf[(b_.)*(x_)]/(x_), x_Symbol] :> Simp[2*b*(x/Sqrt[Pi])*HypergeometricPFQ[{1/2, 1/2}, {3/2, 3/2}, (-b^2)*
x^2], x] /; FreeQ[b, x]
-
Int[Erfc[(b_.)*(x_)]/(x_), x_Symbol] :> Simp[Log[x], x] - Int[Erf[b*x]/x, x] /; FreeQ[b, x]
-
Int[Erfi[(b_.)*(x_)]/(x_), x_Symbol] :> Simp[2*b*(x/Sqrt[Pi])*HypergeometricPFQ[{1/2, 1/2}, {3/2, 3/2}, b^2*x^
2], x] /; FreeQ[b, x]
-
Int[Erf[(a_.) + (b_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(c + d*x)^(m + 1)*(Erf[a + b*x]/(d*(
m + 1))), x] - Simp[2*(b/(Sqrt[Pi]*d*(m + 1))) Int[(c + d*x)^(m + 1)/E^(a + b*x)^2, x], x] /; FreeQ[{a, b, c
, d, m}, x] && NeQ[m, -1]
-
Int[Erfc[(a_.) + (b_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(c + d*x)^(m + 1)*(Erfc[a + b*x]/(d
*(m + 1))), x] + Simp[2*(b/(Sqrt[Pi]*d*(m + 1))) Int[(c + d*x)^(m + 1)/E^(a + b*x)^2, x], x] /; FreeQ[{a, b,
c, d, m}, x] && NeQ[m, -1]
-
Int[Erfi[(a_.) + (b_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(c + d*x)^(m + 1)*(Erfi[a + b*x]/(d
*(m + 1))), x] - Simp[2*(b/(Sqrt[Pi]*d*(m + 1))) Int[(c + d*x)^(m + 1)*E^(a + b*x)^2, x], x] /; FreeQ[{a, b,
c, d, m}, x] && NeQ[m, -1]
-
Int[Erf[(b_.)*(x_)]^2*(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)*(Erf[b*x]^2/(m + 1)), x] - Simp[4*(b/(Sqrt[Pi]*(
m + 1))) Int[(x^(m + 1)*Erf[b*x])/E^(b^2*x^2), x], x] /; FreeQ[b, x] && (IGtQ[m, 0] || ILtQ[(m + 1)/2, 0])
-
Int[Erfc[(b_.)*(x_)]^2*(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)*(Erfc[b*x]^2/(m + 1)), x] + Simp[4*(b/(Sqrt[Pi]
*(m + 1))) Int[(x^(m + 1)*Erfc[b*x])/E^(b^2*x^2), x], x] /; FreeQ[b, x] && (IGtQ[m, 0] || ILtQ[(m + 1)/2, 0]
)
-
Int[Erfi[(b_.)*(x_)]^2*(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)*(Erfi[b*x]^2/(m + 1)), x] - Simp[4*(b/(Sqrt[Pi]
*(m + 1))) Int[x^(m + 1)*E^(b^2*x^2)*Erfi[b*x], x], x] /; FreeQ[b, x] && (IGtQ[m, 0] || ILtQ[(m + 1)/2, 0])
-
Int[Erf[(a_) + (b_.)*(x_)]^2*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[1/b^(m + 1) Subst[Int[ExpandInteg
rand[Erf[x]^2, (b*c - a*d + d*x)^m, x], x], x, a + b*x], x] /; FreeQ[{a, b, c, d}, x] && IGtQ[m, 0]
-
Int[Erfc[(a_) + (b_.)*(x_)]^2*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[1/b^(m + 1) Subst[Int[ExpandInte
grand[Erfc[x]^2, (b*c - a*d + d*x)^m, x], x], x, a + b*x], x] /; FreeQ[{a, b, c, d}, x] && IGtQ[m, 0]
-
Int[Erfi[(a_) + (b_.)*(x_)]^2*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[1/b^(m + 1) Subst[Int[ExpandInte
grand[Erfi[x]^2, (b*c - a*d + d*x)^m, x], x], x, a + b*x], x] /; FreeQ[{a, b, c, d}, x] && IGtQ[m, 0]
-
Int[Erf[(a_.) + (b_.)*(x_)]^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Unintegrable[(c + d*x)^m*Erf[a + b*
x]^n, x] /; FreeQ[{a, b, c, d, m, n}, x]
-
Int[Erfc[(a_.) + (b_.)*(x_)]^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Unintegrable[(c + d*x)^m*Erfc[a +
b*x]^n, x] /; FreeQ[{a, b, c, d, m, n}, x]
-
Int[Erfi[(a_.) + (b_.)*(x_)]^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Unintegrable[(c + d*x)^m*Erfi[a +
b*x]^n, x] /; FreeQ[{a, b, c, d, m, n}, x]
-
Int[E^((c_.) + (d_.)*(x_)^2)*Erf[(b_.)*(x_)]^(n_.), x_Symbol] :> Simp[E^c*(Sqrt[Pi]/(2*b)) Subst[Int[x^n, x]
, x, Erf[b*x]], x] /; FreeQ[{b, c, d, n}, x] && EqQ[d, -b^2]
-
Int[E^((c_.) + (d_.)*(x_)^2)*Erfc[(b_.)*(x_)]^(n_.), x_Symbol] :> Simp[(-E^c)*(Sqrt[Pi]/(2*b)) Subst[Int[x^n
, x], x, Erfc[b*x]], x] /; FreeQ[{b, c, d, n}, x] && EqQ[d, -b^2]
-
Int[E^((c_.) + (d_.)*(x_)^2)*Erfi[(b_.)*(x_)]^(n_.), x_Symbol] :> Simp[E^c*(Sqrt[Pi]/(2*b)) Subst[Int[x^n, x
], x, Erfi[b*x]], x] /; FreeQ[{b, c, d, n}, x] && EqQ[d, b^2]
-
Int[E^((c_.) + (d_.)*(x_)^2)*Erf[(b_.)*(x_)], x_Symbol] :> Simp[b*E^c*(x^2/Sqrt[Pi])*HypergeometricPFQ[{1, 1},
{3/2, 2}, b^2*x^2], x] /; FreeQ[{b, c, d}, x] && EqQ[d, b^2]
-
Int[E^((c_.) + (d_.)*(x_)^2)*Erfc[(b_.)*(x_)], x_Symbol] :> Int[E^(c + d*x^2), x] - Int[E^(c + d*x^2)*Erf[b*x]
, x] /; FreeQ[{b, c, d}, x] && EqQ[d, b^2]
-
Int[E^((c_.) + (d_.)*(x_)^2)*Erfi[(b_.)*(x_)], x_Symbol] :> Simp[b*E^c*(x^2/Sqrt[Pi])*HypergeometricPFQ[{1, 1}
, {3/2, 2}, (-b^2)*x^2], x] /; FreeQ[{b, c, d}, x] && EqQ[d, -b^2]
-
Int[E^((c_.) + (d_.)*(x_)^2)*Erf[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Unintegrable[E^(c + d*x^2)*Erf[a + b*
x]^n, x] /; FreeQ[{a, b, c, d, n}, x]
-
Int[E^((c_.) + (d_.)*(x_)^2)*Erfc[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Unintegrable[E^(c + d*x^2)*Erfc[a +
b*x]^n, x] /; FreeQ[{a, b, c, d, n}, x]
-
Int[E^((c_.) + (d_.)*(x_)^2)*Erfi[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Unintegrable[E^(c + d*x^2)*Erfi[a +
b*x]^n, x] /; FreeQ[{a, b, c, d, n}, x]
-
Int[E^((c_.) + (d_.)*(x_)^2)*Erf[(a_.) + (b_.)*(x_)]*(x_), x_Symbol] :> Simp[E^(c + d*x^2)*(Erf[a + b*x]/(2*d)
), x] - Simp[b/(d*Sqrt[Pi]) Int[E^(-a^2 + c - 2*a*b*x - (b^2 - d)*x^2), x], x] /; FreeQ[{a, b, c, d}, x]
-
Int[E^((c_.) + (d_.)*(x_)^2)*Erfc[(a_.) + (b_.)*(x_)]*(x_), x_Symbol] :> Simp[E^(c + d*x^2)*(Erfc[a + b*x]/(2*
d)), x] + Simp[b/(d*Sqrt[Pi]) Int[E^(-a^2 + c - 2*a*b*x - (b^2 - d)*x^2), x], x] /; FreeQ[{a, b, c, d}, x]
-
Int[E^((c_.) + (d_.)*(x_)^2)*Erfi[(a_.) + (b_.)*(x_)]*(x_), x_Symbol] :> Simp[E^(c + d*x^2)*(Erfi[a + b*x]/(2*
d)), x] - Simp[b/(d*Sqrt[Pi]) Int[E^(a^2 + c + 2*a*b*x + (b^2 + d)*x^2), x], x] /; FreeQ[{a, b, c, d}, x]
-
Int[E^((c_.) + (d_.)*(x_)^2)*Erf[(a_.) + (b_.)*(x_)]*(x_)^(m_), x_Symbol] :> Simp[x^(m - 1)*E^(c + d*x^2)*(Erf
[a + b*x]/(2*d)), x] + (-Simp[(m - 1)/(2*d) Int[x^(m - 2)*E^(c + d*x^2)*Erf[a + b*x], x], x] - Simp[b/(d*Sqr
t[Pi]) Int[x^(m - 1)*E^(-a^2 + c - 2*a*b*x - (b^2 - d)*x^2), x], x]) /; FreeQ[{a, b, c, d}, x] && IGtQ[m, 1]
-
Int[E^((c_.) + (d_.)*(x_)^2)*Erfc[(a_.) + (b_.)*(x_)]*(x_)^(m_), x_Symbol] :> Simp[x^(m - 1)*E^(c + d*x^2)*(Er
fc[a + b*x]/(2*d)), x] + (-Simp[(m - 1)/(2*d) Int[x^(m - 2)*E^(c + d*x^2)*Erfc[a + b*x], x], x] + Simp[b/(d*
Sqrt[Pi]) Int[x^(m - 1)*E^(-a^2 + c - 2*a*b*x - (b^2 - d)*x^2), x], x]) /; FreeQ[{a, b, c, d}, x] && IGtQ[m,
1]
-
Int[E^((c_.) + (d_.)*(x_)^2)*Erfi[(a_.) + (b_.)*(x_)]*(x_)^(m_), x_Symbol] :> Simp[x^(m - 1)*E^(c + d*x^2)*(Er
fi[a + b*x]/(2*d)), x] + (-Simp[(m - 1)/(2*d) Int[x^(m - 2)*E^(c + d*x^2)*Erfi[a + b*x], x], x] - Simp[b/(d*
Sqrt[Pi]) Int[x^(m - 1)*E^(a^2 + c + 2*a*b*x + (b^2 + d)*x^2), x], x]) /; FreeQ[{a, b, c, d}, x] && IGtQ[m,
1]
-
Int[(E^((c_.) + (d_.)*(x_)^2)*Erf[(b_.)*(x_)])/(x_), x_Symbol] :> Simp[2*b*E^c*(x/Sqrt[Pi])*HypergeometricPFQ[
{1/2, 1}, {3/2, 3/2}, b^2*x^2], x] /; FreeQ[{b, c, d}, x] && EqQ[d, b^2]
-
Int[(E^((c_.) + (d_.)*(x_)^2)*Erfc[(b_.)*(x_)])/(x_), x_Symbol] :> Int[E^(c + d*x^2)/x, x] - Int[E^(c + d*x^2)
*(Erf[b*x]/x), x] /; FreeQ[{b, c, d}, x] && EqQ[d, b^2]
-
Int[(E^((c_.) + (d_.)*(x_)^2)*Erfi[(b_.)*(x_)])/(x_), x_Symbol] :> Simp[2*b*E^c*(x/Sqrt[Pi])*HypergeometricPFQ
[{1/2, 1}, {3/2, 3/2}, (-b^2)*x^2], x] /; FreeQ[{b, c, d}, x] && EqQ[d, -b^2]
-
Int[E^((c_.) + (d_.)*(x_)^2)*Erf[(a_.) + (b_.)*(x_)]*(x_)^(m_), x_Symbol] :> Simp[x^(m + 1)*E^(c + d*x^2)*(Erf
[a + b*x]/(m + 1)), x] + (-Simp[2*(d/(m + 1)) Int[x^(m + 2)*E^(c + d*x^2)*Erf[a + b*x], x], x] - Simp[2*(b/(
(m + 1)*Sqrt[Pi])) Int[x^(m + 1)*E^(-a^2 + c - 2*a*b*x - (b^2 - d)*x^2), x], x]) /; FreeQ[{a, b, c, d}, x] &
& ILtQ[m, -1]
-
Int[E^((c_.) + (d_.)*(x_)^2)*Erfc[(a_.) + (b_.)*(x_)]*(x_)^(m_), x_Symbol] :> Simp[x^(m + 1)*E^(c + d*x^2)*(Er
fc[a + b*x]/(m + 1)), x] + (-Simp[2*(d/(m + 1)) Int[x^(m + 2)*E^(c + d*x^2)*Erfc[a + b*x], x], x] + Simp[2*(
b/((m + 1)*Sqrt[Pi])) Int[x^(m + 1)*E^(-a^2 + c - 2*a*b*x - (b^2 - d)*x^2), x], x]) /; FreeQ[{a, b, c, d}, x
] && ILtQ[m, -1]
-
Int[E^((c_.) + (d_.)*(x_)^2)*Erfi[(a_.) + (b_.)*(x_)]*(x_)^(m_), x_Symbol] :> Simp[x^(m + 1)*E^(c + d*x^2)*(Er
fi[a + b*x]/(m + 1)), x] + (-Simp[2*(d/(m + 1)) Int[x^(m + 2)*E^(c + d*x^2)*Erfi[a + b*x], x], x] - Simp[2*(
b/((m + 1)*Sqrt[Pi])) Int[x^(m + 1)*E^(a^2 + c + 2*a*b*x + (b^2 + d)*x^2), x], x]) /; FreeQ[{a, b, c, d}, x]
&& ILtQ[m, -1]
-
Int[E^((c_.) + (d_.)*(x_)^2)*Erf[(a_.) + (b_.)*(x_)]^(n_.)*((e_.)*(x_))^(m_.), x_Symbol] :> Unintegrable[E^(c
+ d*x^2)*(e*x)^m*Erf[a + b*x]^n, x] /; FreeQ[{a, b, c, d, e, m, n}, x]
-
Int[E^((c_.) + (d_.)*(x_)^2)*Erfc[(a_.) + (b_.)*(x_)]^(n_.)*((e_.)*(x_))^(m_.), x_Symbol] :> Unintegrable[E^(c
+ d*x^2)*(e*x)^m*Erfc[a + b*x]^n, x] /; FreeQ[{a, b, c, d, e, m, n}, x]
-
Int[E^((c_.) + (d_.)*(x_)^2)*Erfi[(a_.) + (b_.)*(x_)]^(n_.)*((e_.)*(x_))^(m_.), x_Symbol] :> Unintegrable[E^(c
+ d*x^2)*(e*x)^m*Erfi[a + b*x]^n, x] /; FreeQ[{a, b, c, d, e, m, n}, x]
-
Int[Erf[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)], x_Symbol] :> Simp[x*Erf[d*(a + b*Log[c*x^n])], x] - Simp
[2*b*d*(n/Sqrt[Pi]) Int[1/E^(d*(a + b*Log[c*x^n]))^2, x], x] /; FreeQ[{a, b, c, d, n}, x]
-
Int[Erfc[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)], x_Symbol] :> Simp[x*Erfc[d*(a + b*Log[c*x^n])], x] + Si
mp[2*b*d*(n/Sqrt[Pi]) Int[1/E^(d*(a + b*Log[c*x^n]))^2, x], x] /; FreeQ[{a, b, c, d, n}, x]
-
Int[Erfi[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)], x_Symbol] :> Simp[x*Erfi[d*(a + b*Log[c*x^n])], x] - Si
mp[2*b*d*(n/Sqrt[Pi]) Int[E^(d*(a + b*Log[c*x^n]))^2, x], x] /; FreeQ[{a, b, c, d, n}, x]
-
Int[(F_)[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]/(x_), x_Symbol] :> Simp[1/n Subst[F[d*(a + b*x)], x, L
og[c*x^n]], x] /; FreeQ[{a, b, c, d, n}, x] && MemberQ[{Erf, Erfc, Erfi}, F]
-
Int[Erf[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]*((e_.)*(x_))^(m_.), x_Symbol] :> Simp[(e*x)^(m + 1)*(Erf[
d*(a + b*Log[c*x^n])]/(e*(m + 1))), x] - Simp[2*b*d*(n/(Sqrt[Pi]*(m + 1))) Int[(e*x)^m/E^(d*(a + b*Log[c*x^n
]))^2, x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && NeQ[m, -1]
-
Int[Erfc[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]*((e_.)*(x_))^(m_.), x_Symbol] :> Simp[(e*x)^(m + 1)*(Erf
c[d*(a + b*Log[c*x^n])]/(e*(m + 1))), x] + Simp[2*b*d*(n/(Sqrt[Pi]*(m + 1))) Int[(e*x)^m/E^(d*(a + b*Log[c*x
^n]))^2, x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && NeQ[m, -1]
-
Int[Erfi[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]*((e_.)*(x_))^(m_.), x_Symbol] :> Simp[(e*x)^(m + 1)*(Erf
i[d*(a + b*Log[c*x^n])]/(e*(m + 1))), x] - Simp[2*b*d*(n/(Sqrt[Pi]*(m + 1))) Int[(e*x)^m*E^(d*(a + b*Log[c*x
^n]))^2, x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && NeQ[m, -1]
-
Int[Erf[(b_.)*(x_)]*Sin[(c_.) + (d_.)*(x_)^2], x_Symbol] :> Simp[I/2 Int[E^((-I)*c - I*d*x^2)*Erf[b*x], x],
x] - Simp[I/2 Int[E^(I*c + I*d*x^2)*Erf[b*x], x], x] /; FreeQ[{b, c, d}, x] && EqQ[d^2, -b^4]
-
Int[Erfc[(b_.)*(x_)]*Sin[(c_.) + (d_.)*(x_)^2], x_Symbol] :> Simp[I/2 Int[E^((-I)*c - I*d*x^2)*Erfc[b*x], x]
, x] - Simp[I/2 Int[E^(I*c + I*d*x^2)*Erfc[b*x], x], x] /; FreeQ[{b, c, d}, x] && EqQ[d^2, -b^4]
-
Int[Erfi[(b_.)*(x_)]*Sin[(c_.) + (d_.)*(x_)^2], x_Symbol] :> Simp[I/2 Int[E^((-I)*c - I*d*x^2)*Erfi[b*x], x]
, x] - Simp[I/2 Int[E^(I*c + I*d*x^2)*Erfi[b*x], x], x] /; FreeQ[{b, c, d}, x] && EqQ[d^2, -b^4]
-
Int[Cos[(c_.) + (d_.)*(x_)^2]*Erf[(b_.)*(x_)], x_Symbol] :> Simp[1/2 Int[E^((-I)*c - I*d*x^2)*Erf[b*x], x],
x] + Simp[1/2 Int[E^(I*c + I*d*x^2)*Erf[b*x], x], x] /; FreeQ[{b, c, d}, x] && EqQ[d^2, -b^4]
-
Int[Cos[(c_.) + (d_.)*(x_)^2]*Erfc[(b_.)*(x_)], x_Symbol] :> Simp[1/2 Int[E^((-I)*c - I*d*x^2)*Erfc[b*x], x]
, x] + Simp[1/2 Int[E^(I*c + I*d*x^2)*Erfc[b*x], x], x] /; FreeQ[{b, c, d}, x] && EqQ[d^2, -b^4]
-
Int[Cos[(c_.) + (d_.)*(x_)^2]*Erfi[(b_.)*(x_)], x_Symbol] :> Simp[1/2 Int[E^((-I)*c - I*d*x^2)*Erfi[b*x], x]
, x] + Simp[1/2 Int[E^(I*c + I*d*x^2)*Erfi[b*x], x], x] /; FreeQ[{b, c, d}, x] && EqQ[d^2, -b^4]
-
Int[Erf[(b_.)*(x_)]*Sinh[(c_.) + (d_.)*(x_)^2], x_Symbol] :> Simp[1/2 Int[E^(c + d*x^2)*Erf[b*x], x], x] - S
imp[1/2 Int[E^(-c - d*x^2)*Erf[b*x], x], x] /; FreeQ[{b, c, d}, x] && EqQ[d^2, b^4]
-
Int[Erfc[(b_.)*(x_)]*Sinh[(c_.) + (d_.)*(x_)^2], x_Symbol] :> Simp[1/2 Int[E^(c + d*x^2)*Erfc[b*x], x], x] -
Simp[1/2 Int[E^(-c - d*x^2)*Erfc[b*x], x], x] /; FreeQ[{b, c, d}, x] && EqQ[d^2, b^4]
-
Int[Erfi[(b_.)*(x_)]*Sinh[(c_.) + (d_.)*(x_)^2], x_Symbol] :> Simp[1/2 Int[E^(c + d*x^2)*Erfi[b*x], x], x] -
Simp[1/2 Int[E^(-c - d*x^2)*Erfi[b*x], x], x] /; FreeQ[{b, c, d}, x] && EqQ[d^2, b^4]
-
Int[Cosh[(c_.) + (d_.)*(x_)^2]*Erf[(b_.)*(x_)], x_Symbol] :> Simp[1/2 Int[E^(c + d*x^2)*Erf[b*x], x], x] + S
imp[1/2 Int[E^(-c - d*x^2)*Erf[b*x], x], x] /; FreeQ[{b, c, d}, x] && EqQ[d^2, b^4]
-
Int[Cosh[(c_.) + (d_.)*(x_)^2]*Erfc[(b_.)*(x_)], x_Symbol] :> Simp[1/2 Int[E^(c + d*x^2)*Erfc[b*x], x], x] +
Simp[1/2 Int[E^(-c - d*x^2)*Erfc[b*x], x], x] /; FreeQ[{b, c, d}, x] && EqQ[d^2, b^4]
-
Int[Cosh[(c_.) + (d_.)*(x_)^2]*Erfi[(b_.)*(x_)], x_Symbol] :> Simp[1/2 Int[E^(c + d*x^2)*Erfi[b*x], x], x] +
Simp[1/2 Int[E^(-c - d*x^2)*Erfi[b*x], x], x] /; FreeQ[{b, c, d}, x] && EqQ[d^2, b^4]
-
Int[(F_)[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))*(f_.)], x_Symbol] :> Simp[1/e Subst[Int[F[f*(a
+ b*Log[c*x^n])], x], x, d + e*x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && MemberQ[{Erf, Erfc, Erfi, Fresnel
S, FresnelC, ExpIntegralEi, SinIntegral, CosIntegral, SinhIntegral, CoshIntegral}, F]
-
Int[((g_) + (h_.)*(x_))^(m_.)*(F_)[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))*(f_.)], x_Symbol] :> S
imp[1/e Subst[Int[(g*(x/d))^m*F[f*(a + b*Log[c*x^n])], x], x, d + e*x], x] /; FreeQ[{a, b, c, d, e, f, g, m,
n}, x] && EqQ[e*f - d*g, 0] && MemberQ[{Erf, Erfc, Erfi, FresnelS, FresnelC, ExpIntegralEi, SinIntegral, CosI
ntegral, SinhIntegral, CoshIntegral}, F]
-
Int[FresnelS[(a_.) + (b_.)*(x_)], x_Symbol] :> Simp[(a + b*x)*(FresnelS[a + b*x]/b), x] + Simp[Cos[(Pi/2)*(a +
b*x)^2]/(b*Pi), x] /; FreeQ[{a, b}, x]
-
Int[FresnelC[(a_.) + (b_.)*(x_)], x_Symbol] :> Simp[(a + b*x)*(FresnelC[a + b*x]/b), x] - Simp[Sin[(Pi/2)*(a +
b*x)^2]/(b*Pi), x] /; FreeQ[{a, b}, x]
-
Int[FresnelS[(a_.) + (b_.)*(x_)]^2, x_Symbol] :> Simp[(a + b*x)*(FresnelS[a + b*x]^2/b), x] - Simp[2 Int[(a
+ b*x)*Sin[(Pi/2)*(a + b*x)^2]*FresnelS[a + b*x], x], x] /; FreeQ[{a, b}, x]
-
Int[FresnelC[(a_.) + (b_.)*(x_)]^2, x_Symbol] :> Simp[(a + b*x)*(FresnelC[a + b*x]^2/b), x] - Simp[2 Int[(a
+ b*x)*Cos[(Pi/2)*(a + b*x)^2]*FresnelC[a + b*x], x], x] /; FreeQ[{a, b}, x]
-
Int[FresnelS[(a_.) + (b_.)*(x_)]^(n_), x_Symbol] :> Unintegrable[FresnelS[a + b*x]^n, x] /; FreeQ[{a, b, n}, x
] && NeQ[n, 1] && NeQ[n, 2]
-
Int[FresnelC[(a_.) + (b_.)*(x_)]^(n_), x_Symbol] :> Unintegrable[FresnelC[a + b*x]^n, x] /; FreeQ[{a, b, n}, x
] && NeQ[n, 1] && NeQ[n, 2]
-
Int[FresnelS[(b_.)*(x_)]/(x_), x_Symbol] :> Simp[(1 + I)/4 Int[Erf[(Sqrt[Pi]/2)*(1 + I)*b*x]/x, x], x] + Sim
p[(1 - I)/4 Int[Erf[(Sqrt[Pi]/2)*(1 - I)*b*x]/x, x], x] /; FreeQ[b, x]
-
Int[FresnelC[(b_.)*(x_)]/(x_), x_Symbol] :> Simp[(1 - I)/4 Int[Erf[(Sqrt[Pi]/2)*(1 + I)*b*x]/x, x], x] + Sim
p[(1 + I)/4 Int[Erf[(Sqrt[Pi]/2)*(1 - I)*b*x]/x, x], x] /; FreeQ[b, x]
-
Int[FresnelS[(b_.)*(x_)]*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(d*x)^(m + 1)*(FresnelS[b*x]/(d*(m + 1))), x] -
Simp[b/(d*(m + 1)) Int[(d*x)^(m + 1)*Sin[(Pi/2)*b^2*x^2], x], x] /; FreeQ[{b, d, m}, x] && NeQ[m, -1]
-
Int[FresnelC[(b_.)*(x_)]*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(d*x)^(m + 1)*(FresnelC[b*x]/(d*(m + 1))), x] -
Simp[b/(d*(m + 1)) Int[(d*x)^(m + 1)*Cos[(Pi/2)*b^2*x^2], x], x] /; FreeQ[{b, d, m}, x] && NeQ[m, -1]
-
Int[FresnelS[(a_.) + (b_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(c + d*x)^(m + 1)*(FresnelS[a +
b*x]/(d*(m + 1))), x] - Simp[b/(d*(m + 1)) Int[(c + d*x)^(m + 1)*Sin[(Pi/2)*(a + b*x)^2], x], x] /; FreeQ[{
a, b, c, d}, x] && IGtQ[m, 0]
-
Int[FresnelC[(a_.) + (b_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(c + d*x)^(m + 1)*(FresnelC[a +
b*x]/(d*(m + 1))), x] - Simp[b/(d*(m + 1)) Int[(c + d*x)^(m + 1)*Cos[(Pi/2)*(a + b*x)^2], x], x] /; FreeQ[{
a, b, c, d}, x] && IGtQ[m, 0]
-
Int[FresnelS[(b_.)*(x_)]^2*(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)*(FresnelS[b*x]^2/(m + 1)), x] - Simp[2*(b/(
m + 1)) Int[x^(m + 1)*Sin[(Pi/2)*b^2*x^2]*FresnelS[b*x], x], x] /; FreeQ[b, x] && IntegerQ[m] && NeQ[m, -1]
-
Int[FresnelC[(b_.)*(x_)]^2*(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)*(FresnelC[b*x]^2/(m + 1)), x] - Simp[2*(b/(
m + 1)) Int[x^(m + 1)*Cos[(Pi/2)*b^2*x^2]*FresnelC[b*x], x], x] /; FreeQ[b, x] && IntegerQ[m] && NeQ[m, -1]
-
Int[FresnelS[(a_) + (b_.)*(x_)]^2*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[1/b^(m + 1) Subst[Int[Expand
Integrand[FresnelS[x]^2, (b*c - a*d + d*x)^m, x], x], x, a + b*x], x] /; FreeQ[{a, b, c, d}, x] && IGtQ[m, 0]
-
Int[FresnelC[(a_) + (b_.)*(x_)]^2*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[1/b^(m + 1) Subst[Int[Expand
Integrand[FresnelC[x]^2, (b*c - a*d + d*x)^m, x], x], x, a + b*x], x] /; FreeQ[{a, b, c, d}, x] && IGtQ[m, 0]
-
Int[FresnelS[(a_.) + (b_.)*(x_)]^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Unintegrable[(c + d*x)^m*Fresn
elS[a + b*x]^n, x] /; FreeQ[{a, b, c, d, m, n}, x]
-
Int[FresnelC[(a_.) + (b_.)*(x_)]^(n_.)*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Unintegrable[(c + d*x)^m*Fresn
elC[a + b*x]^n, x] /; FreeQ[{a, b, c, d, m, n}, x]
-
Int[E^((c_.) + (d_.)*(x_)^2)*FresnelS[(b_.)*(x_)], x_Symbol] :> Simp[(1 + I)/4 Int[E^(c + d*x^2)*Erf[(Sqrt[P
i]/2)*(1 + I)*b*x], x], x] + Simp[(1 - I)/4 Int[E^(c + d*x^2)*Erf[(Sqrt[Pi]/2)*(1 - I)*b*x], x], x] /; FreeQ
[{b, c, d}, x] && EqQ[d^2, (-Pi^2/4)*b^4]
-
Int[E^((c_.) + (d_.)*(x_)^2)*FresnelC[(b_.)*(x_)], x_Symbol] :> Simp[(1 - I)/4 Int[E^(c + d*x^2)*Erf[(Sqrt[P
i]/2)*(1 + I)*b*x], x], x] + Simp[(1 + I)/4 Int[E^(c + d*x^2)*Erf[(Sqrt[Pi]/2)*(1 - I)*b*x], x], x] /; FreeQ
[{b, c, d}, x] && EqQ[d^2, (-Pi^2/4)*b^4]
-
Int[E^((c_.) + (d_.)*(x_)^2)*FresnelS[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Unintegrable[E^(c + d*x^2)*Fresn
elS[a + b*x]^n, x] /; FreeQ[{a, b, c, d, n}, x]
-
Int[E^((c_.) + (d_.)*(x_)^2)*FresnelC[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Unintegrable[E^(c + d*x^2)*Fresn
elC[a + b*x]^n, x] /; FreeQ[{a, b, c, d, n}, x]
-
Int[FresnelS[(b_.)*(x_)]^(n_.)*Sin[(d_.)*(x_)^2], x_Symbol] :> Simp[Pi*(b/(2*d)) Subst[Int[x^n, x], x, Fresn
elS[b*x]], x] /; FreeQ[{b, d, n}, x] && EqQ[d^2, (Pi^2/4)*b^4]
-
Int[Cos[(d_.)*(x_)^2]*FresnelC[(b_.)*(x_)]^(n_.), x_Symbol] :> Simp[Pi*(b/(2*d)) Subst[Int[x^n, x], x, Fresn
elC[b*x]], x] /; FreeQ[{b, d, n}, x] && EqQ[d^2, (Pi^2/4)*b^4]
-
Int[FresnelS[(b_.)*(x_)]*Sin[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[Sin[c] Int[Cos[d*x^2]*FresnelS[b*x], x]
, x] + Simp[Cos[c] Int[Sin[d*x^2]*FresnelS[b*x], x], x] /; FreeQ[{b, c, d}, x] && EqQ[d^2, (Pi^2/4)*b^4]
-
Int[Cos[(c_) + (d_.)*(x_)^2]*FresnelC[(b_.)*(x_)], x_Symbol] :> Simp[Cos[c] Int[Cos[d*x^2]*FresnelC[b*x], x]
, x] - Simp[Sin[c] Int[Sin[d*x^2]*FresnelC[b*x], x], x] /; FreeQ[{b, c, d}, x] && EqQ[d^2, (Pi^2/4)*b^4]
-
Int[FresnelS[(a_.) + (b_.)*(x_)]^(n_.)*Sin[(c_.) + (d_.)*(x_)^2], x_Symbol] :> Unintegrable[FresnelS[a + b*x]^
n*Sin[c + d*x^2], x] /; FreeQ[{a, b, c, d, n}, x]
-
Int[Cos[(c_.) + (d_.)*(x_)^2]*FresnelC[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Unintegrable[Cos[c + d*x^2]*Fre
snelC[a + b*x]^n, x] /; FreeQ[{a, b, c, d, n}, x]
-
Int[Cos[(d_.)*(x_)^2]*FresnelS[(b_.)*(x_)], x_Symbol] :> Simp[FresnelC[b*x]*(FresnelS[b*x]/(2*b)), x] + (-Simp
[(1/8)*I*b*x^2*HypergeometricPFQ[{1, 1}, {3/2, 2}, (-2^(-1))*I*b^2*Pi*x^2], x] + Simp[(1/8)*I*b*x^2*Hypergeome
tricPFQ[{1, 1}, {3/2, 2}, (1/2)*I*b^2*Pi*x^2], x]) /; FreeQ[{b, d}, x] && EqQ[d^2, (Pi^2/4)*b^4]
-
Int[FresnelC[(b_.)*(x_)]*Sin[(d_.)*(x_)^2], x_Symbol] :> Simp[b*Pi*FresnelC[b*x]*(FresnelS[b*x]/(4*d)), x] + (
Simp[(1/8)*I*b*x^2*HypergeometricPFQ[{1, 1}, {3/2, 2}, (-I)*d*x^2], x] - Simp[(1/8)*I*b*x^2*HypergeometricPFQ[
{1, 1}, {3/2, 2}, I*d*x^2], x]) /; FreeQ[{b, d}, x] && EqQ[d^2, (Pi^2/4)*b^4]
-
Int[Cos[(c_) + (d_.)*(x_)^2]*FresnelS[(b_.)*(x_)], x_Symbol] :> Simp[Cos[c] Int[Cos[d*x^2]*FresnelS[b*x], x]
, x] - Simp[Sin[c] Int[Sin[d*x^2]*FresnelS[b*x], x], x] /; FreeQ[{b, c, d}, x] && EqQ[d^2, (Pi^2/4)*b^4]
-
Int[FresnelC[(b_.)*(x_)]*Sin[(c_) + (d_.)*(x_)^2], x_Symbol] :> Simp[Sin[c] Int[Cos[d*x^2]*FresnelC[b*x], x]
, x] + Simp[Cos[c] Int[Sin[d*x^2]*FresnelC[b*x], x], x] /; FreeQ[{b, c, d}, x] && EqQ[d^2, (Pi^2/4)*b^4]
-
Int[Cos[(c_.) + (d_.)*(x_)^2]*FresnelS[(a_.) + (b_.)*(x_)]^(n_.), x_Symbol] :> Unintegrable[Cos[c + d*x^2]*Fre
snelS[a + b*x]^n, x] /; FreeQ[{a, b, c, d, n}, x]
-
Int[FresnelC[(a_.) + (b_.)*(x_)]^(n_.)*Sin[(c_.) + (d_.)*(x_)^2], x_Symbol] :> Unintegrable[FresnelC[a + b*x]^
n*Sin[c + d*x^2], x] /; FreeQ[{a, b, c, d, n}, x]
-
Int[FresnelS[(b_.)*(x_)]*(x_)*Sin[(d_.)*(x_)^2], x_Symbol] :> Simp[(-Cos[d*x^2])*(FresnelS[b*x]/(2*d)), x] + S
imp[1/(2*b*Pi) Int[Sin[2*d*x^2], x], x] /; FreeQ[{b, d}, x] && EqQ[d^2, (Pi^2/4)*b^4]
-
Int[Cos[(d_.)*(x_)^2]*FresnelC[(b_.)*(x_)]*(x_), x_Symbol] :> Simp[Sin[d*x^2]*(FresnelC[b*x]/(2*d)), x] - Simp
[b/(4*d) Int[Sin[2*d*x^2], x], x] /; FreeQ[{b, d}, x] && EqQ[d^2, (Pi^2/4)*b^4]
-
Int[FresnelS[(b_.)*(x_)]*(x_)^(m_)*Sin[(d_.)*(x_)^2], x_Symbol] :> Simp[(-x^(m - 1))*Cos[d*x^2]*(FresnelS[b*x]
/(2*d)), x] + (Simp[(m - 1)/(2*d) Int[x^(m - 2)*Cos[d*x^2]*FresnelS[b*x], x], x] + Simp[1/(2*b*Pi) Int[x^(
m - 1)*Sin[2*d*x^2], x], x]) /; FreeQ[{b, d}, x] && EqQ[d^2, (Pi^2/4)*b^4] && IGtQ[m, 1]
-
Int[Cos[(d_.)*(x_)^2]*FresnelC[(b_.)*(x_)]*(x_)^(m_), x_Symbol] :> Simp[x^(m - 1)*Sin[d*x^2]*(FresnelC[b*x]/(2
*d)), x] + (-Simp[(m - 1)/(2*d) Int[x^(m - 2)*Sin[d*x^2]*FresnelC[b*x], x], x] - Simp[b/(4*d) Int[x^(m - 1
)*Sin[2*d*x^2], x], x]) /; FreeQ[{b, d}, x] && EqQ[d^2, (Pi^2/4)*b^4] && IGtQ[m, 1]
-
Int[FresnelS[(b_.)*(x_)]*(x_)^(m_)*Sin[(d_.)*(x_)^2], x_Symbol] :> Simp[x^(m + 1)*Sin[d*x^2]*(FresnelS[b*x]/(m
+ 1)), x] + (-Simp[d*(x^(m + 2)/(Pi*b*(m + 1)*(m + 2))), x] - Simp[2*(d/(m + 1)) Int[x^(m + 2)*Cos[d*x^2]*F
resnelS[b*x], x], x] + Simp[d/(Pi*b*(m + 1)) Int[x^(m + 1)*Cos[2*d*x^2], x], x]) /; FreeQ[{b, d}, x] && EqQ[
d^2, (Pi^2/4)*b^4] && ILtQ[m, -2]
-
Int[Cos[(d_.)*(x_)^2]*FresnelC[(b_.)*(x_)]*(x_)^(m_), x_Symbol] :> Simp[x^(m + 1)*Cos[d*x^2]*(FresnelC[b*x]/(m
+ 1)), x] + (-Simp[b*(x^(m + 2)/(2*(m + 1)*(m + 2))), x] + Simp[2*(d/(m + 1)) Int[x^(m + 2)*Sin[d*x^2]*Fres
nelC[b*x], x], x] - Simp[b/(2*(m + 1)) Int[x^(m + 1)*Cos[2*d*x^2], x], x]) /; FreeQ[{b, d}, x] && EqQ[d^2, (
Pi^2/4)*b^4] && ILtQ[m, -2]
-
Int[FresnelS[(a_.) + (b_.)*(x_)]^(n_.)*((e_.)*(x_))^(m_.)*Sin[(c_.) + (d_.)*(x_)^2], x_Symbol] :> Unintegrable
[(e*x)^m*FresnelS[a + b*x]^n*Sin[c + d*x^2], x] /; FreeQ[{a, b, c, d, e, m, n}, x]
-
Int[Cos[(c_.) + (d_.)*(x_)^2]*FresnelC[(a_.) + (b_.)*(x_)]^(n_.)*((e_.)*(x_))^(m_.), x_Symbol] :> Unintegrable
[(e*x)^m*Cos[c + d*x^2]*FresnelC[a + b*x]^n, x] /; FreeQ[{a, b, c, d, e, m, n}, x]
-
Int[Cos[(d_.)*(x_)^2]*FresnelS[(b_.)*(x_)]*(x_), x_Symbol] :> Simp[Sin[d*x^2]*(FresnelS[b*x]/(2*d)), x] - Simp
[1/(Pi*b) Int[Sin[d*x^2]^2, x], x] /; FreeQ[{b, d}, x] && EqQ[d^2, (Pi^2/4)*b^4]
-
Int[FresnelC[(b_.)*(x_)]*(x_)*Sin[(d_.)*(x_)^2], x_Symbol] :> Simp[(-Cos[d*x^2])*(FresnelC[b*x]/(2*d)), x] + S
imp[b/(2*d) Int[Cos[d*x^2]^2, x], x] /; FreeQ[{b, d}, x] && EqQ[d^2, (Pi^2/4)*b^4]
-
Int[Cos[(d_.)*(x_)^2]*FresnelS[(b_.)*(x_)]*(x_)^(m_), x_Symbol] :> Simp[x^(m - 1)*Sin[d*x^2]*(FresnelS[b*x]/(2
*d)), x] + (-Simp[1/(Pi*b) Int[x^(m - 1)*Sin[d*x^2]^2, x], x] - Simp[(m - 1)/(2*d) Int[x^(m - 2)*Sin[d*x^2
]*FresnelS[b*x], x], x]) /; FreeQ[{b, d}, x] && EqQ[d^2, (Pi^2/4)*b^4] && IGtQ[m, 1]
-
Int[FresnelC[(b_.)*(x_)]*(x_)^(m_)*Sin[(d_.)*(x_)^2], x_Symbol] :> Simp[(-x^(m - 1))*Cos[d*x^2]*(FresnelC[b*x]
/(2*d)), x] + (Simp[(m - 1)/(2*d) Int[x^(m - 2)*Cos[d*x^2]*FresnelC[b*x], x], x] + Simp[b/(2*d) Int[x^(m -
1)*Cos[d*x^2]^2, x], x]) /; FreeQ[{b, d}, x] && EqQ[d^2, (Pi^2/4)*b^4] && IGtQ[m, 1]
-
Int[Cos[(d_.)*(x_)^2]*FresnelS[(b_.)*(x_)]*(x_)^(m_), x_Symbol] :> Simp[x^(m + 1)*Cos[d*x^2]*(FresnelS[b*x]/(m
+ 1)), x] + (Simp[2*(d/(m + 1)) Int[x^(m + 2)*Sin[d*x^2]*FresnelS[b*x], x], x] - Simp[d/(Pi*b*(m + 1)) In
t[x^(m + 1)*Sin[2*d*x^2], x], x]) /; FreeQ[{b, d}, x] && EqQ[d^2, (Pi^2/4)*b^4] && ILtQ[m, -1]
-
Int[FresnelC[(b_.)*(x_)]*(x_)^(m_)*Sin[(d_.)*(x_)^2], x_Symbol] :> Simp[x^(m + 1)*Sin[d*x^2]*(FresnelC[b*x]/(m
+ 1)), x] + (-Simp[2*(d/(m + 1)) Int[x^(m + 2)*Cos[d*x^2]*FresnelC[b*x], x], x] - Simp[b/(2*(m + 1)) Int[
x^(m + 1)*Sin[2*d*x^2], x], x]) /; FreeQ[{b, d}, x] && EqQ[d^2, (Pi^2/4)*b^4] && ILtQ[m, -1]
-
Int[Cos[(c_.) + (d_.)*(x_)^2]*FresnelS[(a_.) + (b_.)*(x_)]^(n_.)*((e_.)*(x_))^(m_.), x_Symbol] :> Unintegrable
[(e*x)^m*Cos[c + d*x^2]*FresnelS[a + b*x]^n, x] /; FreeQ[{a, b, c, d, e, m, n}, x]
-
Int[FresnelC[(a_.) + (b_.)*(x_)]^(n_.)*((e_.)*(x_))^(m_.)*Sin[(c_.) + (d_.)*(x_)^2], x_Symbol] :> Unintegrable
[(e*x)^m*FresnelC[a + b*x]^n*Sin[c + d*x^2], x] /; FreeQ[{a, b, c, d, e, m, n}, x]
-
Int[FresnelS[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)], x_Symbol] :> Simp[x*FresnelS[d*(a + b*Log[c*x^n])],
x] - Simp[b*d*n Int[Sin[(Pi/2)*(d*(a + b*Log[c*x^n]))^2], x], x] /; FreeQ[{a, b, c, d, n}, x]
-
Int[FresnelC[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)], x_Symbol] :> Simp[x*FresnelC[d*(a + b*Log[c*x^n])],
x] - Simp[b*d*n Int[Cos[(Pi/2)*(d*(a + b*Log[c*x^n]))^2], x], x] /; FreeQ[{a, b, c, d, n}, x]
-
Int[(F_)[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]/(x_), x_Symbol] :> Simp[1/n Subst[F[d*(a + b*x)], x, L
og[c*x^n]], x] /; FreeQ[{a, b, c, d, n}, x] && MemberQ[{FresnelS, FresnelC}, F]
-
Int[FresnelS[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]*((e_.)*(x_))^(m_.), x_Symbol] :> Simp[(e*x)^(m + 1)*
(FresnelS[d*(a + b*Log[c*x^n])]/(e*(m + 1))), x] - Simp[b*d*(n/(m + 1)) Int[(e*x)^m*Sin[(Pi/2)*(d*(a + b*Log
[c*x^n]))^2], x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && NeQ[m, -1]
-
Int[FresnelC[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]*((e_.)*(x_))^(m_.), x_Symbol] :> Simp[(e*x)^(m + 1)*
(FresnelC[d*(a + b*Log[c*x^n])]/(e*(m + 1))), x] - Simp[b*d*(n/(m + 1)) Int[(e*x)^m*Cos[(Pi/2)*(d*(a + b*Log
[c*x^n]))^2], x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && NeQ[m, -1]
-
Int[ExpIntegralE[n_, (a_.) + (b_.)*(x_)], x_Symbol] :> Simp[-ExpIntegralE[n + 1, a + b*x]/b, x] /; FreeQ[{a, b
, n}, x]
-
Int[ExpIntegralE[n_, (b_.)*(x_)]*(x_)^(m_.), x_Symbol] :> Simp[(-x^m)*(ExpIntegralE[n + 1, b*x]/b), x] + Simp[
m/b Int[x^(m - 1)*ExpIntegralE[n + 1, b*x], x], x] /; FreeQ[b, x] && EqQ[m + n, 0] && IGtQ[m, 0]
-
Int[ExpIntegralE[1, (b_.)*(x_)]/(x_), x_Symbol] :> Simp[b*x*HypergeometricPFQ[{1, 1, 1}, {2, 2, 2}, (-b)*x], x
] + (-Simp[EulerGamma*Log[x], x] - Simp[(1/2)*Log[b*x]^2, x]) /; FreeQ[b, x]
-
Int[ExpIntegralE[n_, (b_.)*(x_)]*(x_)^(m_), x_Symbol] :> Simp[x^(m + 1)*(ExpIntegralE[n, b*x]/(m + 1)), x] + S
imp[b/(m + 1) Int[x^(m + 1)*ExpIntegralE[n - 1, b*x], x], x] /; FreeQ[b, x] && EqQ[m + n, 0] && ILtQ[m, -1]
-
Int[ExpIntegralE[n_, (b_.)*(x_)]*((d_.)*(x_))^(m_), x_Symbol] :> Simp[(d*x)^m*Gamma[m + 1]*(Log[x]/(b*(b*x)^m)
), x] - Simp[(d*x)^(m + 1)*(HypergeometricPFQ[{m + 1, m + 1}, {m + 2, m + 2}, (-b)*x]/(d*(m + 1)^2)), x] /; Fr
eeQ[{b, d, m, n}, x] && EqQ[m + n, 0] && !IntegerQ[m]
-
Int[ExpIntegralE[n_, (b_.)*(x_)]*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(d*x)^(m + 1)*(ExpIntegralE[n, b*x]/(d*
(m + n))), x] - Simp[(d*x)^(m + 1)*(ExpIntegralE[-m, b*x]/(d*(m + n))), x] /; FreeQ[{b, d, m, n}, x] && NeQ[m
+ n, 0]
-
Int[ExpIntegralE[n_, (a_) + (b_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(-(c + d*x)^m)*(ExpInteg
ralE[n + 1, a + b*x]/b), x] + Simp[d*(m/b) Int[(c + d*x)^(m - 1)*ExpIntegralE[n + 1, a + b*x], x], x] /; Fre
eQ[{a, b, c, d, m, n}, x] && (IGtQ[m, 0] || ILtQ[n, 0] || (GtQ[m, 0] && LtQ[n, -1]))
-
Int[ExpIntegralE[n_, (a_) + (b_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(c + d*x)^(m + 1)*(ExpIn
tegralE[n, a + b*x]/(d*(m + 1))), x] + Simp[b/(d*(m + 1)) Int[(c + d*x)^(m + 1)*ExpIntegralE[n - 1, a + b*x]
, x], x] /; FreeQ[{a, b, c, d, m, n}, x] && (IGtQ[n, 0] || (LtQ[m, -1] && GtQ[n, 0])) && NeQ[m, -1]
-
Int[ExpIntegralE[n_, (a_) + (b_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Unintegrable[(c + d*x)^m*ExpI
ntegralE[n, a + b*x], x] /; FreeQ[{a, b, c, d, m, n}, x]
-
Int[ExpIntegralEi[(a_.) + (b_.)*(x_)], x_Symbol] :> Simp[(a + b*x)*(ExpIntegralEi[a + b*x]/b), x] - Simp[E^(a
+ b*x)/b, x] /; FreeQ[{a, b}, x]
-
Int[ExpIntegralEi[(b_.)*(x_)]/(x_), x_Symbol] :> Simp[Log[x]*(ExpIntegralEi[b*x] + ExpIntegralE[1, (-b)*x]), x
] - Int[ExpIntegralE[1, (-b)*x]/x, x] /; FreeQ[b, x]
-
Int[ExpIntegralEi[(a_.) + (b_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Unintegrable[ExpIntegralEi[a + b*x]/(
c + d*x), x] /; FreeQ[{a, b, c, d}, x]
-
Int[ExpIntegralEi[(a_.) + (b_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(c + d*x)^(m + 1)*(ExpInte
gralEi[a + b*x]/(d*(m + 1))), x] - Simp[b/(d*(m + 1)) Int[(c + d*x)^(m + 1)*(E^(a + b*x)/(a + b*x)), x], x]
/; FreeQ[{a, b, c, d, m}, x] && NeQ[m, -1]
-
Int[ExpIntegralEi[(a_.) + (b_.)*(x_)]^2, x_Symbol] :> Simp[(a + b*x)*(ExpIntegralEi[a + b*x]^2/b), x] - Simp[2
Int[E^(a + b*x)*ExpIntegralEi[a + b*x], x], x] /; FreeQ[{a, b}, x]
-
Int[ExpIntegralEi[(b_.)*(x_)]^2*(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)*(ExpIntegralEi[b*x]^2/(m + 1)), x] - S
imp[2/(m + 1) Int[x^m*E^(b*x)*ExpIntegralEi[b*x], x], x] /; FreeQ[b, x] && IGtQ[m, 0]
-
Int[ExpIntegralEi[(a_) + (b_.)*(x_)]^2*(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)*(ExpIntegralEi[a + b*x]^2/(m +
1)), x] + (Simp[a*x^m*(ExpIntegralEi[a + b*x]^2/(b*(m + 1))), x] - Simp[2/(m + 1) Int[x^m*E^(a + b*x)*ExpInt
egralEi[a + b*x], x], x] - Simp[a*(m/(b*(m + 1))) Int[x^(m - 1)*ExpIntegralEi[a + b*x]^2, x], x]) /; FreeQ[{
a, b}, x] && IGtQ[m, 0]
-
Int[E^((a_.) + (b_.)*(x_))*ExpIntegralEi[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[E^(a + b*x)*(ExpIntegralEi[c +
d*x]/b), x] - Simp[d/b Int[E^(a + c + (b + d)*x)/(c + d*x), x], x] /; FreeQ[{a, b, c, d}, x]
-
Int[E^((a_.) + (b_.)*(x_))*ExpIntegralEi[(c_.) + (d_.)*(x_)]*(x_)^(m_.), x_Symbol] :> Simp[x^m*E^(a + b*x)*(Ex
pIntegralEi[c + d*x]/b), x] + (-Simp[d/b Int[x^m*(E^(a + c + (b + d)*x)/(c + d*x)), x], x] - Simp[m/b Int[
x^(m - 1)*E^(a + b*x)*ExpIntegralEi[c + d*x], x], x]) /; FreeQ[{a, b, c, d}, x] && IGtQ[m, 0]
-
Int[E^((a_.) + (b_.)*(x_))*ExpIntegralEi[(c_.) + (d_.)*(x_)]*(x_)^(m_), x_Symbol] :> Simp[x^(m + 1)*E^(a + b*x
)*(ExpIntegralEi[c + d*x]/(m + 1)), x] + (-Simp[b/(m + 1) Int[x^(m + 1)*E^(a + b*x)*ExpIntegralEi[c + d*x],
x], x] - Simp[d/(m + 1) Int[x^(m + 1)*(E^(a + c + (b + d)*x)/(c + d*x)), x], x]) /; FreeQ[{a, b, c, d}, x] &
& ILtQ[m, -1]
-
Int[ExpIntegralEi[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)], x_Symbol] :> Simp[x*ExpIntegralEi[d*(a + b*Log
[c*x^n])], x] - Simp[b*n*E^(a*d) Int[(c*x^n)^(b*d)/(a + b*Log[c*x^n]), x], x] /; FreeQ[{a, b, c, d, n}, x]
-
Int[ExpIntegralEi[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]/(x_), x_Symbol] :> Simp[1/n Subst[ExpIntegral
Ei[d*(a + b*x)], x, Log[c*x^n]], x] /; FreeQ[{a, b, c, d, n}, x]
-
Int[ExpIntegralEi[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]*((e_.)*(x_))^(m_.), x_Symbol] :> Simp[(e*x)^(m
+ 1)*(ExpIntegralEi[d*(a + b*Log[c*x^n])]/(e*(m + 1))), x] - Simp[b*n*E^(a*d)*((c*x^n)^(b*d)/((m + 1)*(e*x)^(b
*d*n))) Int[(e*x)^(m + b*d*n)/(a + b*Log[c*x^n]), x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && NeQ[m, -1]
-
Int[LogIntegral[(a_.) + (b_.)*(x_)], x_Symbol] :> Simp[(a + b*x)*(LogIntegral[a + b*x]/b), x] - Simp[ExpIntegr
alEi[2*Log[a + b*x]]/b, x] /; FreeQ[{a, b}, x]
-
Int[LogIntegral[(b_.)*(x_)]/(x_), x_Symbol] :> Simp[(-b)*x, x] + Simp[Log[b*x]*LogIntegral[b*x], x] /; FreeQ[b
, x]
-
Int[LogIntegral[(a_.) + (b_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Unintegrable[LogIntegral[a + b*x]/(c +
d*x), x] /; FreeQ[{a, b, c, d}, x]
-
Int[LogIntegral[(a_.) + (b_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(c + d*x)^(m + 1)*(LogIntegr
al[a + b*x]/(d*(m + 1))), x] - Simp[b/(d*(m + 1)) Int[(c + d*x)^(m + 1)/Log[a + b*x], x], x] /; FreeQ[{a, b,
c, d, m}, x] && NeQ[m, -1]
-
Int[SinIntegral[(a_.) + (b_.)*(x_)], x_Symbol] :> Simp[(a + b*x)*(SinIntegral[a + b*x]/b), x] + Simp[Cos[a + b
*x]/b, x] /; FreeQ[{a, b}, x]
-
Int[CosIntegral[(a_.) + (b_.)*(x_)], x_Symbol] :> Simp[(a + b*x)*(CosIntegral[a + b*x]/b), x] - Simp[Sin[a + b
*x]/b, x] /; FreeQ[{a, b}, x]
-
Int[SinIntegral[(b_.)*(x_)]/(x_), x_Symbol] :> Simp[(1/2)*b*x*HypergeometricPFQ[{1, 1, 1}, {2, 2, 2}, (-I)*b*x
], x] + Simp[(1/2)*b*x*HypergeometricPFQ[{1, 1, 1}, {2, 2, 2}, I*b*x], x] /; FreeQ[b, x]
-
Int[CosIntegral[(b_.)*(x_)]/(x_), x_Symbol] :> Simp[(-2^(-1))*I*b*x*HypergeometricPFQ[{1, 1, 1}, {2, 2, 2}, (-
I)*b*x], x] + (Simp[(1/2)*I*b*x*HypergeometricPFQ[{1, 1, 1}, {2, 2, 2}, I*b*x], x] + Simp[EulerGamma*Log[x], x
] + Simp[(1/2)*Log[b*x]^2, x]) /; FreeQ[b, x]
-
Int[((c_.) + (d_.)*(x_))^(m_.)*SinIntegral[(a_.) + (b_.)*(x_)], x_Symbol] :> Simp[(c + d*x)^(m + 1)*(SinIntegr
al[a + b*x]/(d*(m + 1))), x] - Simp[b/(d*(m + 1)) Int[(c + d*x)^(m + 1)*(Sin[a + b*x]/(a + b*x)), x], x] /;
FreeQ[{a, b, c, d, m}, x] && NeQ[m, -1]
-
Int[CosIntegral[(a_.) + (b_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(c + d*x)^(m + 1)*(CosIntegr
al[a + b*x]/(d*(m + 1))), x] - Simp[b/(d*(m + 1)) Int[(c + d*x)^(m + 1)*(Cos[a + b*x]/(a + b*x)), x], x] /;
FreeQ[{a, b, c, d, m}, x] && NeQ[m, -1]
-
Int[SinIntegral[(a_.) + (b_.)*(x_)]^2, x_Symbol] :> Simp[(a + b*x)*(SinIntegral[a + b*x]^2/b), x] - Simp[2 I
nt[Sin[a + b*x]*SinIntegral[a + b*x], x], x] /; FreeQ[{a, b}, x]
-
Int[CosIntegral[(a_.) + (b_.)*(x_)]^2, x_Symbol] :> Simp[(a + b*x)*(CosIntegral[a + b*x]^2/b), x] - Simp[2 I
nt[Cos[a + b*x]*CosIntegral[a + b*x], x], x] /; FreeQ[{a, b}, x]
-
Int[(x_)^(m_.)*SinIntegral[(b_.)*(x_)]^2, x_Symbol] :> Simp[x^(m + 1)*(SinIntegral[b*x]^2/(m + 1)), x] - Simp[
2/(m + 1) Int[x^m*Sin[b*x]*SinIntegral[b*x], x], x] /; FreeQ[b, x] && IGtQ[m, 0]
-
Int[CosIntegral[(b_.)*(x_)]^2*(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)*(CosIntegral[b*x]^2/(m + 1)), x] - Simp[
2/(m + 1) Int[x^m*Cos[b*x]*CosIntegral[b*x], x], x] /; FreeQ[b, x] && IGtQ[m, 0]
-
Int[((c_.) + (d_.)*(x_))^(m_.)*SinIntegral[(a_) + (b_.)*(x_)]^2, x_Symbol] :> Simp[(a + b*x)*(c + d*x)^m*(SinI
ntegral[a + b*x]^2/(b*(m + 1))), x] + (-Simp[2/(m + 1) Int[(c + d*x)^m*Sin[a + b*x]*SinIntegral[a + b*x], x]
, x] + Simp[(b*c - a*d)*(m/(b*(m + 1))) Int[(c + d*x)^(m - 1)*SinIntegral[a + b*x]^2, x], x]) /; FreeQ[{a, b
, c, d}, x] && IGtQ[m, 0]
-
Int[CosIntegral[(a_) + (b_.)*(x_)]^2*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(a + b*x)*(c + d*x)^m*(CosI
ntegral[a + b*x]^2/(b*(m + 1))), x] + (-Simp[2/(m + 1) Int[(c + d*x)^m*Cos[a + b*x]*CosIntegral[a + b*x], x]
, x] + Simp[(b*c - a*d)*(m/(b*(m + 1))) Int[(c + d*x)^(m - 1)*CosIntegral[a + b*x]^2, x], x]) /; FreeQ[{a, b
, c, d}, x] && IGtQ[m, 0]
-
Int[Sin[(a_.) + (b_.)*(x_)]*SinIntegral[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[(-Cos[a + b*x])*(SinIntegral[c
+ d*x]/b), x] + Simp[d/b Int[Cos[a + b*x]*(Sin[c + d*x]/(c + d*x)), x], x] /; FreeQ[{a, b, c, d}, x]
-
Int[Cos[(a_.) + (b_.)*(x_)]*CosIntegral[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[Sin[a + b*x]*(CosIntegral[c + d
*x]/b), x] - Simp[d/b Int[Sin[a + b*x]*(Cos[c + d*x]/(c + d*x)), x], x] /; FreeQ[{a, b, c, d}, x]
-
Int[((e_.) + (f_.)*(x_))^(m_.)*Sin[(a_.) + (b_.)*(x_)]*SinIntegral[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[(-(e
+ f*x)^m)*Cos[a + b*x]*(SinIntegral[c + d*x]/b), x] + (Simp[d/b Int[(e + f*x)^m*Cos[a + b*x]*(Sin[c + d*x]/
(c + d*x)), x], x] + Simp[f*(m/b) Int[(e + f*x)^(m - 1)*Cos[a + b*x]*SinIntegral[c + d*x], x], x]) /; FreeQ[
{a, b, c, d, e, f}, x] && IGtQ[m, 0]
-
Int[Cos[(a_.) + (b_.)*(x_)]*CosIntegral[(c_.) + (d_.)*(x_)]*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[(e +
f*x)^m*Sin[a + b*x]*(CosIntegral[c + d*x]/b), x] + (-Simp[d/b Int[(e + f*x)^m*Sin[a + b*x]*(Cos[c + d*x]/(c
+ d*x)), x], x] - Simp[f*(m/b) Int[(e + f*x)^(m - 1)*Sin[a + b*x]*CosIntegral[c + d*x], x], x]) /; FreeQ[{a
, b, c, d, e, f}, x] && IGtQ[m, 0]
-
Int[((e_.) + (f_.)*(x_))^(m_)*Sin[(a_.) + (b_.)*(x_)]*SinIntegral[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[(e +
f*x)^(m + 1)*Sin[a + b*x]*(SinIntegral[c + d*x]/(f*(m + 1))), x] + (-Simp[b/(f*(m + 1)) Int[(e + f*x)^(m + 1
)*Cos[a + b*x]*SinIntegral[c + d*x], x], x] - Simp[d/(f*(m + 1)) Int[(e + f*x)^(m + 1)*Sin[a + b*x]*(Sin[c +
d*x]/(c + d*x)), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && ILtQ[m, -1]
-
Int[Cos[(a_.) + (b_.)*(x_)]*CosIntegral[(c_.) + (d_.)*(x_)]*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[(e +
f*x)^(m + 1)*Cos[a + b*x]*(CosIntegral[c + d*x]/(f*(m + 1))), x] + (Simp[b/(f*(m + 1)) Int[(e + f*x)^(m + 1
)*Sin[a + b*x]*CosIntegral[c + d*x], x], x] - Simp[d/(f*(m + 1)) Int[(e + f*x)^(m + 1)*Cos[a + b*x]*(Cos[c +
d*x]/(c + d*x)), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && ILtQ[m, -1]
-
Int[Cos[(a_.) + (b_.)*(x_)]*SinIntegral[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[Sin[a + b*x]*(SinIntegral[c + d
*x]/b), x] - Simp[d/b Int[Sin[a + b*x]*(Sin[c + d*x]/(c + d*x)), x], x] /; FreeQ[{a, b, c, d}, x]
-
Int[CosIntegral[(c_.) + (d_.)*(x_)]*Sin[(a_.) + (b_.)*(x_)], x_Symbol] :> Simp[(-Cos[a + b*x])*(CosIntegral[c
+ d*x]/b), x] + Simp[d/b Int[Cos[a + b*x]*(Cos[c + d*x]/(c + d*x)), x], x] /; FreeQ[{a, b, c, d}, x]
-
Int[Cos[(a_.) + (b_.)*(x_)]*((e_.) + (f_.)*(x_))^(m_.)*SinIntegral[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[(e +
f*x)^m*Sin[a + b*x]*(SinIntegral[c + d*x]/b), x] + (-Simp[d/b Int[(e + f*x)^m*Sin[a + b*x]*(Sin[c + d*x]/(c
+ d*x)), x], x] - Simp[f*(m/b) Int[(e + f*x)^(m - 1)*Sin[a + b*x]*SinIntegral[c + d*x], x], x]) /; FreeQ[{a
, b, c, d, e, f}, x] && IGtQ[m, 0]
-
Int[CosIntegral[(c_.) + (d_.)*(x_)]*((e_.) + (f_.)*(x_))^(m_.)*Sin[(a_.) + (b_.)*(x_)], x_Symbol] :> Simp[(-(e
+ f*x)^m)*Cos[a + b*x]*(CosIntegral[c + d*x]/b), x] + (Simp[d/b Int[(e + f*x)^m*Cos[a + b*x]*(Cos[c + d*x]/
(c + d*x)), x], x] + Simp[f*(m/b) Int[(e + f*x)^(m - 1)*Cos[a + b*x]*CosIntegral[c + d*x], x], x]) /; FreeQ[
{a, b, c, d, e, f}, x] && IGtQ[m, 0]
-
Int[Cos[(a_.) + (b_.)*(x_)]*((e_.) + (f_.)*(x_))^(m_.)*SinIntegral[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[(e +
f*x)^(m + 1)*Cos[a + b*x]*(SinIntegral[c + d*x]/(f*(m + 1))), x] + (Simp[b/(f*(m + 1)) Int[(e + f*x)^(m + 1
)*Sin[a + b*x]*SinIntegral[c + d*x], x], x] - Simp[d/(f*(m + 1)) Int[(e + f*x)^(m + 1)*Cos[a + b*x]*(Sin[c +
d*x]/(c + d*x)), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && ILtQ[m, -1]
-
Int[CosIntegral[(c_.) + (d_.)*(x_)]*((e_.) + (f_.)*(x_))^(m_)*Sin[(a_.) + (b_.)*(x_)], x_Symbol] :> Simp[(e +
f*x)^(m + 1)*Sin[a + b*x]*(CosIntegral[c + d*x]/(f*(m + 1))), x] + (-Simp[b/(f*(m + 1)) Int[(e + f*x)^(m + 1
)*Cos[a + b*x]*CosIntegral[c + d*x], x], x] - Simp[d/(f*(m + 1)) Int[(e + f*x)^(m + 1)*Sin[a + b*x]*(Cos[c +
d*x]/(c + d*x)), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && ILtQ[m, -1]
-
Int[SinIntegral[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)], x_Symbol] :> Simp[x*SinIntegral[d*(a + b*Log[c*x
^n])], x] - Simp[b*d*n Int[Sin[d*(a + b*Log[c*x^n])]/(d*(a + b*Log[c*x^n])), x], x] /; FreeQ[{a, b, c, d, n}
, x]
-
Int[CosIntegral[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)], x_Symbol] :> Simp[x*CosIntegral[d*(a + b*Log[c*x
^n])], x] - Simp[b*d*n Int[Cos[d*(a + b*Log[c*x^n])]/(d*(a + b*Log[c*x^n])), x], x] /; FreeQ[{a, b, c, d, n}
, x]
-
Int[(F_)[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]/(x_), x_Symbol] :> Simp[1/n Subst[F[d*(a + b*x)], x, L
og[c*x^n]], x] /; FreeQ[{a, b, c, d, n}, x] && MemberQ[{SinIntegral, CosIntegral}, x]
-
Int[((e_.)*(x_))^(m_.)*SinIntegral[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)], x_Symbol] :> Simp[(e*x)^(m +
1)*(SinIntegral[d*(a + b*Log[c*x^n])]/(e*(m + 1))), x] - Simp[b*d*(n/(m + 1)) Int[(e*x)^m*(Sin[d*(a + b*Log[
c*x^n])]/(d*(a + b*Log[c*x^n]))), x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && NeQ[m, -1]
-
Int[CosIntegral[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]*((e_.)*(x_))^(m_.), x_Symbol] :> Simp[(e*x)^(m +
1)*(CosIntegral[d*(a + b*Log[c*x^n])]/(e*(m + 1))), x] - Simp[b*d*(n/(m + 1)) Int[(e*x)^m*(Cos[d*(a + b*Log[
c*x^n])]/(d*(a + b*Log[c*x^n]))), x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && NeQ[m, -1]
-
Int[SinhIntegral[(a_.) + (b_.)*(x_)], x_Symbol] :> Simp[(a + b*x)*(SinhIntegral[a + b*x]/b), x] - Simp[Cosh[a
+ b*x]/b, x] /; FreeQ[{a, b}, x]
-
Int[CoshIntegral[(a_.) + (b_.)*(x_)], x_Symbol] :> Simp[(a + b*x)*(CoshIntegral[a + b*x]/b), x] - Simp[Sinh[a
+ b*x]/b, x] /; FreeQ[{a, b}, x]
-
Int[SinhIntegral[(b_.)*(x_)]/(x_), x_Symbol] :> Simp[(1/2)*b*x*HypergeometricPFQ[{1, 1, 1}, {2, 2, 2}, (-b)*x]
, x] + Simp[(1/2)*b*x*HypergeometricPFQ[{1, 1, 1}, {2, 2, 2}, b*x], x] /; FreeQ[b, x]
-
Int[CoshIntegral[(b_.)*(x_)]/(x_), x_Symbol] :> Simp[(-2^(-1))*b*x*HypergeometricPFQ[{1, 1, 1}, {2, 2, 2}, (-b
)*x], x] + (Simp[(1/2)*b*x*HypergeometricPFQ[{1, 1, 1}, {2, 2, 2}, b*x], x] + Simp[EulerGamma*Log[x], x] + Sim
p[(1/2)*Log[b*x]^2, x]) /; FreeQ[b, x]
-
Int[((c_.) + (d_.)*(x_))^(m_.)*SinhIntegral[(a_.) + (b_.)*(x_)], x_Symbol] :> Simp[(c + d*x)^(m + 1)*(SinhInte
gral[a + b*x]/(d*(m + 1))), x] - Simp[b/(d*(m + 1)) Int[(c + d*x)^(m + 1)*(Sinh[a + b*x]/(a + b*x)), x], x]
/; FreeQ[{a, b, c, d, m}, x] && NeQ[m, -1]
-
Int[CoshIntegral[(a_.) + (b_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(c + d*x)^(m + 1)*(CoshInte
gral[a + b*x]/(d*(m + 1))), x] - Simp[b/(d*(m + 1)) Int[(c + d*x)^(m + 1)*(Cosh[a + b*x]/(a + b*x)), x], x]
/; FreeQ[{a, b, c, d, m}, x] && NeQ[m, -1]
-
Int[SinhIntegral[(a_.) + (b_.)*(x_)]^2, x_Symbol] :> Simp[(a + b*x)*(SinhIntegral[a + b*x]^2/b), x] - Simp[2
Int[Sinh[a + b*x]*SinhIntegral[a + b*x], x], x] /; FreeQ[{a, b}, x]
-
Int[CoshIntegral[(a_.) + (b_.)*(x_)]^2, x_Symbol] :> Simp[(a + b*x)*(CoshIntegral[a + b*x]^2/b), x] - Simp[2
Int[Cosh[a + b*x]*CoshIntegral[a + b*x], x], x] /; FreeQ[{a, b}, x]
-
Int[(x_)^(m_.)*SinhIntegral[(b_.)*(x_)]^2, x_Symbol] :> Simp[x^(m + 1)*(SinhIntegral[b*x]^2/(m + 1)), x] - Sim
p[2/(m + 1) Int[x^m*Sinh[b*x]*SinhIntegral[b*x], x], x] /; FreeQ[b, x] && IGtQ[m, 0]
-
Int[CoshIntegral[(b_.)*(x_)]^2*(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)*(CoshIntegral[b*x]^2/(m + 1)), x] - Sim
p[2/(m + 1) Int[x^m*Cosh[b*x]*CoshIntegral[b*x], x], x] /; FreeQ[b, x] && IGtQ[m, 0]
-
Int[((c_.) + (d_.)*(x_))^(m_.)*SinhIntegral[(a_) + (b_.)*(x_)]^2, x_Symbol] :> Simp[(a + b*x)*(c + d*x)^m*(Sin
hIntegral[a + b*x]^2/(b*(m + 1))), x] + (-Simp[2/(m + 1) Int[(c + d*x)^m*Sinh[a + b*x]*SinhIntegral[a + b*x]
, x], x] + Simp[(b*c - a*d)*(m/(b*(m + 1))) Int[(c + d*x)^(m - 1)*SinhIntegral[a + b*x]^2, x], x]) /; FreeQ[
{a, b, c, d}, x] && IGtQ[m, 0]
-
Int[CoshIntegral[(a_) + (b_.)*(x_)]^2*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(a + b*x)*(c + d*x)^m*(Cos
hIntegral[a + b*x]^2/(b*(m + 1))), x] + (-Simp[2/(m + 1) Int[(c + d*x)^m*Cosh[a + b*x]*CoshIntegral[a + b*x]
, x], x] + Simp[(b*c - a*d)*(m/(b*(m + 1))) Int[(c + d*x)^(m - 1)*CoshIntegral[a + b*x]^2, x], x]) /; FreeQ[
{a, b, c, d}, x] && IGtQ[m, 0]
-
Int[Sinh[(a_.) + (b_.)*(x_)]*SinhIntegral[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[Cosh[a + b*x]*(SinhIntegral[c
+ d*x]/b), x] - Simp[d/b Int[Cosh[a + b*x]*(Sinh[c + d*x]/(c + d*x)), x], x] /; FreeQ[{a, b, c, d}, x]
-
Int[Cosh[(a_.) + (b_.)*(x_)]*CoshIntegral[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[Sinh[a + b*x]*(CoshIntegral[c
+ d*x]/b), x] - Simp[d/b Int[Sinh[a + b*x]*(Cosh[c + d*x]/(c + d*x)), x], x] /; FreeQ[{a, b, c, d}, x]
-
Int[((e_.) + (f_.)*(x_))^(m_.)*Sinh[(a_.) + (b_.)*(x_)]*SinhIntegral[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[(e
+ f*x)^m*Cosh[a + b*x]*(SinhIntegral[c + d*x]/b), x] + (-Simp[d/b Int[(e + f*x)^m*Cosh[a + b*x]*(Sinh[c + d
*x]/(c + d*x)), x], x] - Simp[f*(m/b) Int[(e + f*x)^(m - 1)*Cosh[a + b*x]*SinhIntegral[c + d*x], x], x]) /;
FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0]
-
Int[Cosh[(a_.) + (b_.)*(x_)]*CoshIntegral[(c_.) + (d_.)*(x_)]*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[(e
+ f*x)^m*Sinh[a + b*x]*(CoshIntegral[c + d*x]/b), x] + (-Simp[d/b Int[(e + f*x)^m*Sinh[a + b*x]*(Cosh[c + d
*x]/(c + d*x)), x], x] - Simp[f*(m/b) Int[(e + f*x)^(m - 1)*Sinh[a + b*x]*CoshIntegral[c + d*x], x], x]) /;
FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0]
-
Int[((e_.) + (f_.)*(x_))^(m_)*Sinh[(a_.) + (b_.)*(x_)]*SinhIntegral[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[(e
+ f*x)^(m + 1)*Sinh[a + b*x]*(SinhIntegral[c + d*x]/(f*(m + 1))), x] + (-Simp[b/(f*(m + 1)) Int[(e + f*x)^(m
+ 1)*Cosh[a + b*x]*SinhIntegral[c + d*x], x], x] - Simp[d/(f*(m + 1)) Int[(e + f*x)^(m + 1)*Sinh[a + b*x]*(
Sinh[c + d*x]/(c + d*x)), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && ILtQ[m, -1]
-
Int[Cosh[(a_.) + (b_.)*(x_)]*CoshIntegral[(c_.) + (d_.)*(x_)]*((e_.) + (f_.)*(x_))^(m_.), x_Symbol] :> Simp[(e
+ f*x)^(m + 1)*Cosh[a + b*x]*(CoshIntegral[c + d*x]/(f*(m + 1))), x] + (-Simp[b/(f*(m + 1)) Int[(e + f*x)^(
m + 1)*Sinh[a + b*x]*CoshIntegral[c + d*x], x], x] - Simp[d/(f*(m + 1)) Int[(e + f*x)^(m + 1)*Cosh[a + b*x]*
(Cosh[c + d*x]/(c + d*x)), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && ILtQ[m, -1]
-
Int[Cosh[(a_.) + (b_.)*(x_)]*SinhIntegral[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[Sinh[a + b*x]*(SinhIntegral[c
+ d*x]/b), x] - Simp[d/b Int[Sinh[a + b*x]*(Sinh[c + d*x]/(c + d*x)), x], x] /; FreeQ[{a, b, c, d}, x]
-
Int[CoshIntegral[(c_.) + (d_.)*(x_)]*Sinh[(a_.) + (b_.)*(x_)], x_Symbol] :> Simp[Cosh[a + b*x]*(CoshIntegral[c
+ d*x]/b), x] - Simp[d/b Int[Cosh[a + b*x]*(Cosh[c + d*x]/(c + d*x)), x], x] /; FreeQ[{a, b, c, d}, x]
-
Int[Cosh[(a_.) + (b_.)*(x_)]*((e_.) + (f_.)*(x_))^(m_.)*SinhIntegral[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[(e
+ f*x)^m*Sinh[a + b*x]*(SinhIntegral[c + d*x]/b), x] + (-Simp[d/b Int[(e + f*x)^m*Sinh[a + b*x]*(Sinh[c + d
*x]/(c + d*x)), x], x] - Simp[f*(m/b) Int[(e + f*x)^(m - 1)*Sinh[a + b*x]*SinhIntegral[c + d*x], x], x]) /;
FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0]
-
Int[CoshIntegral[(c_.) + (d_.)*(x_)]*((e_.) + (f_.)*(x_))^(m_.)*Sinh[(a_.) + (b_.)*(x_)], x_Symbol] :> Simp[(e
+ f*x)^m*Cosh[a + b*x]*(CoshIntegral[c + d*x]/b), x] + (-Simp[d/b Int[(e + f*x)^m*Cosh[a + b*x]*(Cosh[c + d
*x]/(c + d*x)), x], x] - Simp[f*(m/b) Int[(e + f*x)^(m - 1)*Cosh[a + b*x]*CoshIntegral[c + d*x], x], x]) /;
FreeQ[{a, b, c, d, e, f}, x] && IGtQ[m, 0]
-
Int[Cosh[(a_.) + (b_.)*(x_)]*((e_.) + (f_.)*(x_))^(m_.)*SinhIntegral[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[(e
+ f*x)^(m + 1)*Cosh[a + b*x]*(SinhIntegral[c + d*x]/(f*(m + 1))), x] + (-Simp[b/(f*(m + 1)) Int[(e + f*x)^(
m + 1)*Sinh[a + b*x]*SinhIntegral[c + d*x], x], x] - Simp[d/(f*(m + 1)) Int[(e + f*x)^(m + 1)*Cosh[a + b*x]*
(Sinh[c + d*x]/(c + d*x)), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && ILtQ[m, -1]
-
Int[CoshIntegral[(c_.) + (d_.)*(x_)]*((e_.) + (f_.)*(x_))^(m_)*Sinh[(a_.) + (b_.)*(x_)], x_Symbol] :> Simp[(e
+ f*x)^(m + 1)*Sinh[a + b*x]*(CoshIntegral[c + d*x]/(f*(m + 1))), x] + (-Simp[b/(f*(m + 1)) Int[(e + f*x)^(m
+ 1)*Cosh[a + b*x]*CoshIntegral[c + d*x], x], x] - Simp[d/(f*(m + 1)) Int[(e + f*x)^(m + 1)*Sinh[a + b*x]*(
Cosh[c + d*x]/(c + d*x)), x], x]) /; FreeQ[{a, b, c, d, e, f}, x] && ILtQ[m, -1]
-
Int[SinhIntegral[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)], x_Symbol] :> Simp[x*SinhIntegral[d*(a + b*Log[c
*x^n])], x] - Simp[b*d*n Int[Sinh[d*(a + b*Log[c*x^n])]/(d*(a + b*Log[c*x^n])), x], x] /; FreeQ[{a, b, c, d,
n}, x]
-
Int[CoshIntegral[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)], x_Symbol] :> Simp[x*CoshIntegral[d*(a + b*Log[c
*x^n])], x] - Simp[b*d*n Int[Cosh[d*(a + b*Log[c*x^n])]/(d*(a + b*Log[c*x^n])), x], x] /; FreeQ[{a, b, c, d,
n}, x]
-
Int[(F_)[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]/(x_), x_Symbol] :> Simp[1/n Subst[F[d*(a + b*x)], x, L
og[c*x^n]], x] /; FreeQ[{a, b, c, d, n}, x] && MemberQ[{SinhIntegral, CoshIntegral}, x]
-
Int[((e_.)*(x_))^(m_.)*SinhIntegral[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)], x_Symbol] :> Simp[(e*x)^(m +
1)*(SinhIntegral[d*(a + b*Log[c*x^n])]/(e*(m + 1))), x] - Simp[b*d*(n/(m + 1)) Int[(e*x)^m*(Sinh[d*(a + b*L
og[c*x^n])]/(d*(a + b*Log[c*x^n]))), x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && NeQ[m, -1]
-
Int[CoshIntegral[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]*((e_.)*(x_))^(m_.), x_Symbol] :> Simp[(e*x)^(m +
1)*(CoshIntegral[d*(a + b*Log[c*x^n])]/(e*(m + 1))), x] - Simp[b*d*(n/(m + 1)) Int[(e*x)^m*(Cosh[d*(a + b*L
og[c*x^n])]/(d*(a + b*Log[c*x^n]))), x], x] /; FreeQ[{a, b, c, d, e, m, n}, x] && NeQ[m, -1]
-
Int[Gamma[n_, (a_.) + (b_.)*(x_)], x_Symbol] :> Simp[(a + b*x)*(Gamma[n, a + b*x]/b), x] - Simp[Gamma[n + 1, a
+ b*x]/b, x] /; FreeQ[{a, b, n}, x]
-
Int[Gamma[0, (b_.)*(x_)]/(x_), x_Symbol] :> Simp[b*x*HypergeometricPFQ[{1, 1, 1}, {2, 2, 2}, (-b)*x], x] + (-S
imp[EulerGamma*Log[x], x] - Simp[(1/2)*Log[b*x]^2, x]) /; FreeQ[b, x]
-
Int[Gamma[n_, (b_.)*(x_)]/(x_), x_Symbol] :> -Simp[Gamma[n - 1, b*x], x] + Simp[(n - 1) Int[Gamma[n - 1, b*x
]/x, x], x] /; FreeQ[b, x] && IGtQ[n, 1]
-
Int[Gamma[n_, (b_.)*(x_)]/(x_), x_Symbol] :> Simp[Gamma[n, b*x]/n, x] + Simp[1/n Int[Gamma[n + 1, b*x]/x, x]
, x] /; FreeQ[b, x] && ILtQ[n, 0]
-
Int[Gamma[n_, (b_.)*(x_)]/(x_), x_Symbol] :> Simp[Gamma[n]*Log[x], x] - Simp[((b*x)^n/n^2)*HypergeometricPFQ[{
n, n}, {1 + n, 1 + n}, (-b)*x], x] /; FreeQ[{b, n}, x] && !IntegerQ[n]
-
Int[Gamma[n_, (b_.)*(x_)]*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(d*x)^(m + 1)*(Gamma[n, b*x]/(d*(m + 1))), x]
- Simp[(d*x)^m*(Gamma[m + n + 1, b*x]/(b*(m + 1)*(b*x)^m)), x] /; FreeQ[{b, d, m, n}, x] && NeQ[m, -1]
-
Int[Gamma[n_, (a_) + (b_.)*(x_)]*((c_) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[1/b Subst[Int[(d*(x/b))^m*Gamm
a[n, x], x], x, a + b*x], x] /; FreeQ[{a, b, c, d, m, n}, x] && EqQ[b*c - a*d, 0]
-
Int[Gamma[n_, (a_.) + (b_.)*(x_)]/((c_.) + (d_.)*(x_)), x_Symbol] :> Int[(a + b*x)^(n - 1)/((c + d*x)*E^(a + b
*x)), x] + Simp[(n - 1) Int[Gamma[n - 1, a + b*x]/(c + d*x), x], x] /; FreeQ[{a, b, c, d}, x] && IGtQ[n, 1]
-
Int[Gamma[n_, (a_.) + (b_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Block[{$UseGamma = True}, Simp[(c +
d*x)^(m + 1)*(Gamma[n, a + b*x]/(d*(m + 1))), x] + Simp[b/(d*(m + 1)) Int[(c + d*x)^(m + 1)*((a + b*x)^(n -
1)/E^(a + b*x)), x], x]] /; FreeQ[{a, b, c, d, m, n}, x] && (IGtQ[m, 0] || IGtQ[n, 0] || IntegersQ[m, n]) &&
NeQ[m, -1]
-
Int[Gamma[n_, (a_.) + (b_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Unintegrable[(c + d*x)^m*Gamma[n, a
+ b*x], x] /; FreeQ[{a, b, c, d, m, n}, x]
-
Int[LogGamma[(a_.) + (b_.)*(x_)], x_Symbol] :> Simp[PolyGamma[-2, a + b*x]/b, x] /; FreeQ[{a, b}, x]
-
Int[LogGamma[(a_.) + (b_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(c + d*x)^m*(PolyGamma[-2, a +
b*x]/b), x] - Simp[d*(m/b) Int[(c + d*x)^(m - 1)*PolyGamma[-2, a + b*x], x], x] /; FreeQ[{a, b, c, d}, x] &&
IGtQ[m, 0]
-
Int[LogGamma[(a_.) + (b_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Unintegrable[(c + d*x)^m*LogGamma[a
+ b*x], x] /; FreeQ[{a, b, c, d, m}, x]
-
Int[PolyGamma[n_, (a_.) + (b_.)*(x_)], x_Symbol] :> Simp[PolyGamma[n - 1, a + b*x]/b, x] /; FreeQ[{a, b, n}, x
]
-
Int[((c_.) + (d_.)*(x_))^(m_.)*PolyGamma[n_, (a_.) + (b_.)*(x_)], x_Symbol] :> Simp[(c + d*x)^m*(PolyGamma[n -
1, a + b*x]/b), x] - Simp[d*(m/b) Int[(c + d*x)^(m - 1)*PolyGamma[n - 1, a + b*x], x], x] /; FreeQ[{a, b, c
, d, n}, x] && GtQ[m, 0]
-
Int[((c_.) + (d_.)*(x_))^(m_.)*PolyGamma[n_, (a_.) + (b_.)*(x_)], x_Symbol] :> Simp[(c + d*x)^(m + 1)*(PolyGam
ma[n, a + b*x]/(d*(m + 1))), x] - Simp[b/(d*(m + 1)) Int[(c + d*x)^(m + 1)*PolyGamma[n + 1, a + b*x], x], x]
/; FreeQ[{a, b, c, d, n}, x] && LtQ[m, -1]
-
Int[((c_.) + (d_.)*(x_))^(m_.)*PolyGamma[n_, (a_.) + (b_.)*(x_)], x_Symbol] :> Unintegrable[(c + d*x)^m*PolyGa
mma[n, a + b*x], x] /; FreeQ[{a, b, c, d, m, n}, x]
-
Int[Gamma[(a_.) + (b_.)*(x_)]^(n_.)*PolyGamma[0, (a_.) + (b_.)*(x_)], x_Symbol] :> Simp[Gamma[a + b*x]^n/(b*n)
, x] /; FreeQ[{a, b, n}, x]
-
Int[((a_.) + (b_.)*(x_))!^(n_.)*PolyGamma[0, (c_.) + (b_.)*(x_)], x_Symbol] :> Simp[(a + b*x)!^n/(b*n), x] /;
FreeQ[{a, b, c, n}, x] && EqQ[c, a + 1]
-
Int[Gamma[p_, ((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)], x_Symbol] :> Simp[x*Gamma[p, d*(a + b*Log[c*x^n])]
, x] + Simp[(b*d*n)/E^(a*d) Int[(d*(a + b*Log[c*x^n]))^(p - 1)/(c*x^n)^(b*d), x], x] /; FreeQ[{a, b, c, d, n
, p}, x]
-
Int[Gamma[p_, ((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]/(x_), x_Symbol] :> Simp[1/n Subst[Gamma[p, d*(a +
b*x)], x, Log[c*x^n]], x] /; FreeQ[{a, b, c, d, n, p}, x]
-
Int[Gamma[p_, ((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]*((e_.)*(x_))^(m_.), x_Symbol] :> Simp[(e*x)^(m + 1)
*(Gamma[p, d*(a + b*Log[c*x^n])]/(e*(m + 1))), x] + Simp[(b*d*n*((e*x)^(b*d*n)/((m + 1)*(c*x^n)^(b*d))))/E^(a*
d) Int[(e*x)^(m - b*d*n)*(d*(a + b*Log[c*x^n]))^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, m, n, p}, x] && NeQ
[m, -1]
-
Int[Gamma[p_, ((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))*(f_.)], x_Symbol] :> Simp[1/e Subst[Int[G
amma[p, f*(a + b*Log[c*x^n])], x], x, d + e*x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x]
-
Int[Gamma[p_, ((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))*(f_.)]*((g_) + (h_.)*(x_))^(m_.), x_Symbol]
:> Simp[1/e Subst[Int[(g*(x/d))^m*Gamma[p, f*(a + b*Log[c*x^n])], x], x, d + e*x], x] /; FreeQ[{a, b, c, d,
e, f, g, h, m, n, p}, x] && EqQ[e*g - d*h, 0]
-
Int[Zeta[2, (a_.) + (b_.)*(x_)], x_Symbol] :> Int[PolyGamma[1, a + b*x], x] /; FreeQ[{a, b}, x]
-
Int[Zeta[s_, (a_.) + (b_.)*(x_)], x_Symbol] :> Simp[-Zeta[s - 1, a + b*x]/(b*(s - 1)), x] /; FreeQ[{a, b, s},
x] && NeQ[s, 1] && NeQ[s, 2]
-
Int[((c_.) + (d_.)*(x_))^(m_.)*Zeta[2, (a_.) + (b_.)*(x_)], x_Symbol] :> Int[(c + d*x)^m*PolyGamma[1, a + b*x]
, x] /; FreeQ[{a, b, c, d}, x] && RationalQ[m]
-
Int[((c_.) + (d_.)*(x_))^(m_.)*Zeta[s_, (a_.) + (b_.)*(x_)], x_Symbol] :> Simp[(-(c + d*x)^m)*(Zeta[s - 1, a +
b*x]/(b*(s - 1))), x] + Simp[d*(m/(b*(s - 1))) Int[(c + d*x)^(m - 1)*Zeta[s - 1, a + b*x], x], x] /; FreeQ[
{a, b, c, d, s}, x] && NeQ[s, 1] && NeQ[s, 2] && GtQ[m, 0]
-
Int[((c_.) + (d_.)*(x_))^(m_.)*Zeta[s_, (a_.) + (b_.)*(x_)], x_Symbol] :> Simp[(c + d*x)^(m + 1)*(Zeta[s, a +
b*x]/(d*(m + 1))), x] + Simp[b*(s/(d*(m + 1))) Int[(c + d*x)^(m + 1)*Zeta[s + 1, a + b*x], x], x] /; FreeQ[{
a, b, c, d, s}, x] && NeQ[s, 1] && NeQ[s, 2] && LtQ[m, -1]
-
Int[PolyLog[n_, (a_.)*((b_.)*(x_)^(p_.))^(q_.)], x_Symbol] :> Simp[x*PolyLog[n, a*(b*x^p)^q], x] - Simp[p*q
Int[PolyLog[n - 1, a*(b*x^p)^q], x], x] /; FreeQ[{a, b, p, q}, x] && GtQ[n, 0]
-
Int[PolyLog[n_, (a_.)*((b_.)*(x_)^(p_.))^(q_.)], x_Symbol] :> Simp[x*(PolyLog[n + 1, a*(b*x^p)^q]/(p*q)), x] -
Simp[1/(p*q) Int[PolyLog[n + 1, a*(b*x^p)^q], x], x] /; FreeQ[{a, b, p, q}, x] && LtQ[n, -1]
-
Int[PolyLog[n_, (a_.)*((b_.)*(x_)^(p_.))^(q_.)], x_Symbol] :> Unintegrable[PolyLog[n, a*(b*x^p)^q], x] /; Free
Q[{a, b, n, p, q}, x]
-
Int[PolyLog[n_, (c_.)*((a_.) + (b_.)*(x_))^(p_.)]/((d_.) + (e_.)*(x_)), x_Symbol] :> Simp[PolyLog[n + 1, c*(a
+ b*x)^p]/(e*p), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && EqQ[b*d, a*e]
-
Int[PolyLog[n_, (a_.)*((b_.)*(x_)^(p_.))^(q_.)]/(x_), x_Symbol] :> Simp[PolyLog[n + 1, a*(b*x^p)^q]/(p*q), x]
/; FreeQ[{a, b, n, p, q}, x]
-
Int[((d_.)*(x_))^(m_.)*PolyLog[n_, (a_.)*((b_.)*(x_)^(p_.))^(q_.)], x_Symbol] :> Simp[(d*x)^(m + 1)*(PolyLog[n
, a*(b*x^p)^q]/(d*(m + 1))), x] - Simp[p*(q/(m + 1)) Int[(d*x)^m*PolyLog[n - 1, a*(b*x^p)^q], x], x] /; Free
Q[{a, b, d, m, p, q}, x] && NeQ[m, -1] && GtQ[n, 0]
-
Int[((d_.)*(x_))^(m_.)*PolyLog[n_, (a_.)*((b_.)*(x_)^(p_.))^(q_.)], x_Symbol] :> Simp[(d*x)^(m + 1)*(PolyLog[n
+ 1, a*(b*x^p)^q]/(d*p*q)), x] - Simp[(m + 1)/(p*q) Int[(d*x)^m*PolyLog[n + 1, a*(b*x^p)^q], x], x] /; Free
Q[{a, b, d, m, p, q}, x] && NeQ[m, -1] && LtQ[n, -1]
-
Int[((d_.)*(x_))^(m_.)*PolyLog[n_, (a_.)*((b_.)*(x_)^(p_.))^(q_.)], x_Symbol] :> Unintegrable[(d*x)^m*PolyLog[
n, a*(b*x^p)^q], x] /; FreeQ[{a, b, d, m, n, p, q}, x]
-
Int[(Log[(c_.)*(x_)^(m_.)]^(r_.)*PolyLog[n_, (a_.)*((b_.)*(x_)^(p_.))^(q_.)])/(x_), x_Symbol] :> Simp[Log[c*x^
m]^r*(PolyLog[n + 1, a*(b*x^p)^q]/(p*q)), x] - Simp[m*(r/(p*q)) Int[Log[c*x^m]^(r - 1)*(PolyLog[n + 1, a*(b*
x^p)^q]/x), x], x] /; FreeQ[{a, b, c, m, n, q, r}, x] && GtQ[r, 0]
-
Int[PolyLog[n_, (c_.)*((a_.) + (b_.)*(x_))^(p_.)], x_Symbol] :> Simp[x*PolyLog[n, c*(a + b*x)^p], x] + (-Simp[
p Int[PolyLog[n - 1, c*(a + b*x)^p], x], x] + Simp[a*p Int[PolyLog[n - 1, c*(a + b*x)^p]/(a + b*x), x], x]
) /; FreeQ[{a, b, c, p}, x] && GtQ[n, 0]
-
Int[PolyLog[2, (c_.)*((a_.) + (b_.)*(x_))]/((d_.) + (e_.)*(x_)), x_Symbol] :> Simp[Log[1 - a*c - b*c*x]*(PolyL
og[2, c*(a + b*x)]/e), x] + Simp[b/e Int[Log[1 - a*c - b*c*x]^2/(a + b*x), x], x] /; FreeQ[{a, b, c, d, e},
x] && EqQ[c*(b*d - a*e) + e, 0]
-
Int[PolyLog[2, (c_.)*((a_.) + (b_.)*(x_))]/((d_.) + (e_.)*(x_)), x_Symbol] :> Simp[Log[d + e*x]*(PolyLog[2, c*
(a + b*x)]/e), x] + Simp[b/e Int[Log[d + e*x]*(Log[1 - a*c - b*c*x]/(a + b*x)), x], x] /; FreeQ[{a, b, c, d,
e}, x] && NeQ[c*(b*d - a*e) + e, 0]
-
Int[((d_.) + (e_.)*(x_))^(m_.)*PolyLog[2, (c_.)*((a_.) + (b_.)*(x_))], x_Symbol] :> Simp[(d + e*x)^(m + 1)*(Po
lyLog[2, c*(a + b*x)]/(e*(m + 1))), x] + Simp[b/(e*(m + 1)) Int[(d + e*x)^(m + 1)*(Log[1 - a*c - b*c*x]/(a +
b*x)), x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[m, -1]
-
Int[(x_)^(m_.)*PolyLog[n_, (c_.)*((a_.) + (b_.)*(x_))^(p_.)], x_Symbol] :> Simp[(-(a^(m + 1) - b^(m + 1)*x^(m
+ 1)))*(PolyLog[n, c*(a + b*x)^p]/((m + 1)*b^(m + 1))), x] + Simp[p/((m + 1)*b^m) Int[ExpandIntegrand[PolyLo
g[n - 1, c*(a + b*x)^p], (a^(m + 1) - b^(m + 1)*x^(m + 1))/(a + b*x), x], x], x] /; FreeQ[{a, b, c, p}, x] &&
GtQ[n, 0] && IntegerQ[m] && NeQ[m, -1]
-
Int[((g_.) + Log[(f_.)*((d_.) + (e_.)*(x_))^(n_.)]*(h_.))*PolyLog[2, (c_.)*((a_.) + (b_.)*(x_))], x_Symbol] :>
Simp[x*(g + h*Log[f*(d + e*x)^n])*PolyLog[2, c*(a + b*x)], x] + (Simp[b Int[(g + h*Log[f*(d + e*x)^n])*Log[
1 - a*c - b*c*x]*ExpandIntegrand[x/(a + b*x), x], x], x] - Simp[e*h*n Int[PolyLog[2, c*(a + b*x)]*ExpandInte
grand[x/(d + e*x), x], x], x]) /; FreeQ[{a, b, c, d, e, f, g, h, n}, x]
-
Int[(Log[1 + (e_.)*(x_)]*PolyLog[2, (c_.)*(x_)])/(x_), x_Symbol] :> Simp[-PolyLog[2, c*x]^2/2, x] /; FreeQ[{c,
e}, x] && EqQ[c + e, 0]
-
Int[((Log[1 + (e_.)*(x_)]*(h_.) + (g_))*PolyLog[2, (c_.)*(x_)])/(x_), x_Symbol] :> Simp[g Int[PolyLog[2, c*x
]/x, x], x] + Simp[h Int[(Log[1 + e*x]*PolyLog[2, c*x])/x, x], x] /; FreeQ[{c, e, g, h}, x] && EqQ[c + e, 0]
-
Int[((g_.) + Log[(f_.)*((d_.) + (e_.)*(x_))^(n_.)]*(h_.))*(x_)^(m_.)*PolyLog[2, (c_.)*((a_.) + (b_.)*(x_))], x
_Symbol] :> Simp[x^(m + 1)*(g + h*Log[f*(d + e*x)^n])*(PolyLog[2, c*(a + b*x)]/(m + 1)), x] + (Simp[b/(m + 1)
Int[ExpandIntegrand[(g + h*Log[f*(d + e*x)^n])*Log[1 - a*c - b*c*x], x^(m + 1)/(a + b*x), x], x], x] - Simp[
e*h*(n/(m + 1)) Int[ExpandIntegrand[PolyLog[2, c*(a + b*x)], x^(m + 1)/(d + e*x), x], x], x]) /; FreeQ[{a, b
, c, d, e, f, g, h, n}, x] && IntegerQ[m] && NeQ[m, -1]
-
Int[((g_.) + Log[(f_.)*((d_.) + (e_.)*(x_))^(n_.)]*(h_.))*(Px_)*PolyLog[2, (c_.)*((a_.) + (b_.)*(x_))], x_Symb
ol] :> With[{u = IntHide[Px, x]}, Simp[u*(g + h*Log[f*(d + e*x)^n])*PolyLog[2, c*(a + b*x)], x] + (Simp[b In
t[ExpandIntegrand[(g + h*Log[f*(d + e*x)^n])*Log[1 - a*c - b*c*x], u/(a + b*x), x], x], x] - Simp[e*h*n Int[
ExpandIntegrand[PolyLog[2, c*(a + b*x)], u/(d + e*x), x], x], x])] /; FreeQ[{a, b, c, d, e, f, g, h, n}, x] &&
PolyQ[Px, x]
-
Int[((g_.) + Log[1 + (e_.)*(x_)]*(h_.))*(Px_)*(x_)^(m_)*PolyLog[2, (c_.)*(x_)], x_Symbol] :> Simp[Coeff[Px, x,
-m - 1] Int[(g + h*Log[1 + e*x])*(PolyLog[2, c*x]/x), x], x] + Int[x^m*(Px - Coeff[Px, x, -m - 1]*x^(-m - 1
))*(g + h*Log[1 + e*x])*PolyLog[2, c*x], x] /; FreeQ[{c, e, g, h}, x] && PolyQ[Px, x] && ILtQ[m, 0] && EqQ[c +
e, 0] && NeQ[Coeff[Px, x, -m - 1], 0]
-
Int[((g_.) + Log[(f_.)*((d_.) + (e_.)*(x_))^(n_.)]*(h_.))*(Px_)*(x_)^(m_.)*PolyLog[2, (c_.)*((a_.) + (b_.)*(x_
))], x_Symbol] :> With[{u = IntHide[x^m*Px, x]}, Simp[u*(g + h*Log[f*(d + e*x)^n])*PolyLog[2, c*(a + b*x)], x]
+ (Simp[b Int[ExpandIntegrand[(g + h*Log[f*(d + e*x)^n])*Log[1 - a*c - b*c*x], u/(a + b*x), x], x], x] - Si
mp[e*h*n Int[ExpandIntegrand[PolyLog[2, c*(a + b*x)], u/(d + e*x), x], x], x])] /; FreeQ[{a, b, c, d, e, f,
g, h, n}, x] && PolyQ[Px, x] && IntegerQ[m]
-
Int[((g_.) + Log[(f_.)*((d_.) + (e_.)*(x_))^(n_.)]*(h_.))*(Px_.)*(x_)^(m_)*PolyLog[2, (c_.)*((a_.) + (b_.)*(x_
))], x_Symbol] :> Unintegrable[Px*x^m*(g + h*Log[f*(d + e*x)^n])*PolyLog[2, c*(a + b*x)], x] /; FreeQ[{a, b, c
, d, e, f, g, h, m, n}, x] && PolyQ[Px, x]
-
Int[PolyLog[n_, (d_.)*((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(p_.)], x_Symbol] :> Simp[PolyLog[n + 1, d*(F^(c*(a
+ b*x)))^p]/(b*c*p*Log[F]), x] /; FreeQ[{F, a, b, c, d, n, p}, x]
-
Int[((e_.) + (f_.)*(x_))^(m_.)*PolyLog[n_, (d_.)*((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(p_.)], x_Symbol] :> Simp
[(e + f*x)^m*(PolyLog[n + 1, d*(F^(c*(a + b*x)))^p]/(b*c*p*Log[F])), x] - Simp[f*(m/(b*c*p*Log[F])) Int[(e +
f*x)^(m - 1)*PolyLog[n + 1, d*(F^(c*(a + b*x)))^p], x], x] /; FreeQ[{F, a, b, c, d, e, f, n, p}, x] && GtQ[m,
0]
-
Int[(u_)*PolyLog[n_, v_], x_Symbol] :> With[{w = DerivativeDivides[v, u*v, x]}, Simp[w*PolyLog[n + 1, v], x] /
; !FalseQ[w]] /; FreeQ[n, x]
-
Int[Log[w_]*(u_)*PolyLog[n_, v_], x_Symbol] :> With[{z = DerivativeDivides[v, u*v, x]}, Simp[z*Log[w]*PolyLog[
n + 1, v], x] - Int[SimplifyIntegrand[z*D[w, x]*(PolyLog[n + 1, v]/w), x], x] /; !FalseQ[z]] /; FreeQ[n, x] &
& InverseFunctionFreeQ[w, x]
-
Int[((c_.)*ProductLog[(a_.) + (b_.)*(x_)])^(p_), x_Symbol] :> Simp[(a + b*x)*((c*ProductLog[a + b*x])^p/(b*(p
+ 1))), x] + Simp[p/(c*(p + 1)) Int[(c*ProductLog[a + b*x])^(p + 1)/(1 + ProductLog[a + b*x]), x], x] /; Fre
eQ[{a, b, c}, x] && LtQ[p, -1]
-
Int[((c_.)*ProductLog[(a_.) + (b_.)*(x_)])^(p_.), x_Symbol] :> Simp[(a + b*x)*((c*ProductLog[a + b*x])^p/b), x
] - Simp[p Int[(c*ProductLog[a + b*x])^p/(1 + ProductLog[a + b*x]), x], x] /; FreeQ[{a, b, c}, x] && !LtQ[p
, -1]
-
Int[((e_.) + (f_.)*(x_))^(m_.)*((c_.)*ProductLog[(a_) + (b_.)*(x_)])^(p_.), x_Symbol] :> Simp[1/b^(m + 1) Su
bst[Int[ExpandIntegrand[(c*ProductLog[x])^p, (b*e - a*f + f*x)^m, x], x], x, a + b*x], x] /; FreeQ[{a, b, c, e
, f, p}, x] && IGtQ[m, 0]
-
Int[((c_.)*ProductLog[(a_.)*(x_)^(n_)])^(p_.), x_Symbol] :> Simp[x*(c*ProductLog[a*x^n])^p, x] - Simp[n*p In
t[(c*ProductLog[a*x^n])^p/(1 + ProductLog[a*x^n]), x], x] /; FreeQ[{a, c, n, p}, x] && (EqQ[n*(p - 1), -1] ||
(IntegerQ[p - 1/2] && EqQ[n*(p - 1/2), -1]))
-
Int[((c_.)*ProductLog[(a_.)*(x_)^(n_)])^(p_.), x_Symbol] :> Simp[x*((c*ProductLog[a*x^n])^p/(n*p + 1)), x] + S
imp[n*(p/(c*(n*p + 1))) Int[(c*ProductLog[a*x^n])^(p + 1)/(1 + ProductLog[a*x^n]), x], x] /; FreeQ[{a, c, n}
, x] && ((IntegerQ[p] && EqQ[n*(p + 1), -1]) || (IntegerQ[p - 1/2] && EqQ[n*(p + 1/2), -1]))
-
Int[((c_.)*ProductLog[(a_.)*(x_)^(n_)])^(p_.), x_Symbol] :> -Subst[Int[(c*ProductLog[a/x^n])^p/x^2, x], x, 1/x
] /; FreeQ[{a, c, p}, x] && ILtQ[n, 0]
-
Int[(x_)^(m_.)*((c_.)*ProductLog[(a_.)*(x_)^(n_.)])^(p_.), x_Symbol] :> Simp[x^(m + 1)*((c*ProductLog[a*x^n])^
p/(m + 1)), x] - Simp[n*(p/(m + 1)) Int[x^m*((c*ProductLog[a*x^n])^p/(1 + ProductLog[a*x^n])), x], x] /; Fre
eQ[{a, c, m, n, p}, x] && NeQ[m, -1] && ((IntegerQ[p - 1/2] && IGtQ[2*Simplify[p + (m + 1)/n], 0]) || ( !Integ
erQ[p - 1/2] && IGtQ[Simplify[p + (m + 1)/n] + 1, 0]))
-
Int[(x_)^(m_.)*((c_.)*ProductLog[(a_.)*(x_)^(n_.)])^(p_.), x_Symbol] :> Simp[x^(m + 1)*((c*ProductLog[a*x^n])^
p/(m + n*p + 1)), x] + Simp[n*(p/(c*(m + n*p + 1))) Int[x^m*((c*ProductLog[a*x^n])^(p + 1)/(1 + ProductLog[a
*x^n])), x], x] /; FreeQ[{a, c, m, n, p}, x] && (EqQ[m, -1] || (IntegerQ[p - 1/2] && ILtQ[Simplify[p + (m + 1)
/n] - 1/2, 0]) || ( !IntegerQ[p - 1/2] && ILtQ[Simplify[p + (m + 1)/n], 0]))
-
Int[(x_)^(m_.)*((c_.)*ProductLog[(a_.)*(x_)])^(p_.), x_Symbol] :> Int[x^m*((c*ProductLog[a*x])^p/(1 + ProductL
og[a*x])), x] + Simp[1/c Int[x^m*((c*ProductLog[a*x])^(p + 1)/(1 + ProductLog[a*x])), x], x] /; FreeQ[{a, c,
m}, x]
-
Int[(x_)^(m_.)*((c_.)*ProductLog[(a_.)*(x_)^(n_)])^(p_.), x_Symbol] :> -Subst[Int[(c*ProductLog[a/x^n])^p/x^(m
+ 2), x], x, 1/x] /; FreeQ[{a, c, p}, x] && ILtQ[n, 0] && IntegerQ[m] && NeQ[m, -1]
-
Int[((d_) + (d_.)*ProductLog[(a_.) + (b_.)*(x_)])^(-1), x_Symbol] :> Simp[(a + b*x)/(b*d*ProductLog[a + b*x]),
x] /; FreeQ[{a, b, d}, x]
-
Int[ProductLog[(a_.) + (b_.)*(x_)]/((d_) + (d_.)*ProductLog[(a_.) + (b_.)*(x_)]), x_Symbol] :> Simp[d*x, x] -
Int[1/(d + d*ProductLog[a + b*x]), x] /; FreeQ[{a, b, d}, x]
-
Int[((c_.)*ProductLog[(a_.) + (b_.)*(x_)])^(p_)/((d_) + (d_.)*ProductLog[(a_.) + (b_.)*(x_)]), x_Symbol] :> Si
mp[c*(a + b*x)*((c*ProductLog[a + b*x])^(p - 1)/(b*d)), x] - Simp[c*p Int[(c*ProductLog[a + b*x])^(p - 1)/(d
+ d*ProductLog[a + b*x]), x], x] /; FreeQ[{a, b, c, d}, x] && GtQ[p, 0]
-
Int[1/(ProductLog[(a_.) + (b_.)*(x_)]*((d_) + (d_.)*ProductLog[(a_.) + (b_.)*(x_)])), x_Symbol] :> Simp[ExpInt
egralEi[ProductLog[a + b*x]]/(b*d), x] /; FreeQ[{a, b, d}, x]
-
Int[1/(Sqrt[(c_.)*ProductLog[(a_.) + (b_.)*(x_)]]*((d_) + (d_.)*ProductLog[(a_.) + (b_.)*(x_)])), x_Symbol] :>
Simp[Rt[Pi*c, 2]*(Erfi[Sqrt[c*ProductLog[a + b*x]]/Rt[c, 2]]/(b*c*d)), x] /; FreeQ[{a, b, c, d}, x] && PosQ[c
]
-
Int[1/(Sqrt[(c_.)*ProductLog[(a_.) + (b_.)*(x_)]]*((d_) + (d_.)*ProductLog[(a_.) + (b_.)*(x_)])), x_Symbol] :>
Simp[Rt[(-Pi)*c, 2]*(Erf[Sqrt[c*ProductLog[a + b*x]]/Rt[-c, 2]]/(b*c*d)), x] /; FreeQ[{a, b, c, d}, x] && Neg
Q[c]
-
Int[((c_.)*ProductLog[(a_.) + (b_.)*(x_)])^(p_)/((d_) + (d_.)*ProductLog[(a_.) + (b_.)*(x_)]), x_Symbol] :> Si
mp[(a + b*x)*((c*ProductLog[a + b*x])^p/(b*d*(p + 1))), x] - Simp[1/(c*(p + 1)) Int[(c*ProductLog[a + b*x])^
(p + 1)/(d + d*ProductLog[a + b*x]), x], x] /; FreeQ[{a, b, c, d}, x] && LtQ[p, -1]
-
Int[((c_.)*ProductLog[(a_.) + (b_.)*(x_)])^(p_.)/((d_) + (d_.)*ProductLog[(a_.) + (b_.)*(x_)]), x_Symbol] :> S
imp[Gamma[p + 1, -ProductLog[a + b*x]]*((c*ProductLog[a + b*x])^p/(b*d*(-ProductLog[a + b*x])^p)), x] /; FreeQ
[{a, b, c, d, p}, x]
-
Int[((e_.) + (f_.)*(x_))^(m_.)/((d_) + (d_.)*ProductLog[(a_) + (b_.)*(x_)]), x_Symbol] :> Simp[1/b^(m + 1) S
ubst[Int[ExpandIntegrand[1/(d + d*ProductLog[x]), (b*e - a*f + f*x)^m, x], x], x, a + b*x], x] /; FreeQ[{a, b,
d, e, f}, x] && IGtQ[m, 0]
-
Int[(((e_.) + (f_.)*(x_))^(m_.)*((c_.)*ProductLog[(a_) + (b_.)*(x_)])^(p_.))/((d_) + (d_.)*ProductLog[(a_) + (
b_.)*(x_)]), x_Symbol] :> Simp[1/b^(m + 1) Subst[Int[ExpandIntegrand[(c*ProductLog[x])^p/(d + d*ProductLog[x
]), (b*e - a*f + f*x)^m, x], x], x, a + b*x], x] /; FreeQ[{a, b, c, d, e, f, p}, x] && IGtQ[m, 0]
-
Int[((d_) + (d_.)*ProductLog[(a_.)*(x_)^(n_)])^(-1), x_Symbol] :> -Subst[Int[1/(x^2*(d + d*ProductLog[a/x^n]))
, x], x, 1/x] /; FreeQ[{a, d}, x] && ILtQ[n, 0]
-
Int[((c_.)*ProductLog[(a_.)*(x_)^(n_.)])^(p_.)/((d_) + (d_.)*ProductLog[(a_.)*(x_)^(n_.)]), x_Symbol] :> Simp[
c*x*((c*ProductLog[a*x^n])^(p - 1)/d), x] /; FreeQ[{a, c, d, n, p}, x] && EqQ[n*(p - 1), -1]
-
Int[ProductLog[(a_.)*(x_)^(n_.)]^(p_.)/((d_) + (d_.)*ProductLog[(a_.)*(x_)^(n_.)]), x_Symbol] :> Simp[a^p*(Exp
IntegralEi[(-p)*ProductLog[a*x^n]]/(d*n)), x] /; FreeQ[{a, d}, x] && IntegerQ[p] && EqQ[n*p, -1]
-
Int[((c_.)*ProductLog[(a_.)*(x_)^(n_.)])^(p_)/((d_) + (d_.)*ProductLog[(a_.)*(x_)^(n_.)]), x_Symbol] :> Simp[(
Rt[Pi*c*n, 2]/(d*n*a^(1/n)*c^(1/n)))*Erfi[Sqrt[c*ProductLog[a*x^n]]/Rt[c*n, 2]], x] /; FreeQ[{a, c, d}, x] &&
IntegerQ[1/n] && EqQ[p, 1/2 - 1/n] && PosQ[c*n]
-
Int[((c_.)*ProductLog[(a_.)*(x_)^(n_.)])^(p_)/((d_) + (d_.)*ProductLog[(a_.)*(x_)^(n_.)]), x_Symbol] :> Simp[(
Rt[(-Pi)*c*n, 2]/(d*n*a^(1/n)*c^(1/n)))*Erf[Sqrt[c*ProductLog[a*x^n]]/Rt[(-c)*n, 2]], x] /; FreeQ[{a, c, d}, x
] && IntegerQ[1/n] && EqQ[p, 1/2 - 1/n] && NegQ[c*n]
-
Int[((c_.)*ProductLog[(a_.)*(x_)^(n_.)])^(p_.)/((d_) + (d_.)*ProductLog[(a_.)*(x_)^(n_.)]), x_Symbol] :> Simp[
c*x*((c*ProductLog[a*x^n])^(p - 1)/d), x] - Simp[c*(n*(p - 1) + 1) Int[(c*ProductLog[a*x^n])^(p - 1)/(d + d*
ProductLog[a*x^n]), x], x] /; FreeQ[{a, c, d}, x] && GtQ[n, 0] && GtQ[n*(p - 1) + 1, 0]
-
Int[((c_.)*ProductLog[(a_.)*(x_)^(n_.)])^(p_.)/((d_) + (d_.)*ProductLog[(a_.)*(x_)^(n_.)]), x_Symbol] :> Simp[
x*((c*ProductLog[a*x^n])^p/(d*(n*p + 1))), x] - Simp[1/(c*(n*p + 1)) Int[(c*ProductLog[a*x^n])^(p + 1)/(d +
d*ProductLog[a*x^n]), x], x] /; FreeQ[{a, c, d}, x] && GtQ[n, 0] && LtQ[n*p + 1, 0]
-
Int[((c_.)*ProductLog[(a_.)*(x_)^(n_)])^(p_.)/((d_) + (d_.)*ProductLog[(a_.)*(x_)^(n_)]), x_Symbol] :> -Subst[
Int[(c*ProductLog[a/x^n])^p/(x^2*(d + d*ProductLog[a/x^n])), x], x, 1/x] /; FreeQ[{a, c, d, p}, x] && ILtQ[n,
0]
-
Int[(x_)^(m_.)/((d_) + (d_.)*ProductLog[(a_.)*(x_)]), x_Symbol] :> Simp[x^(m + 1)/(d*(m + 1)*ProductLog[a*x]),
x] - Simp[m/(m + 1) Int[x^m/(ProductLog[a*x]*(d + d*ProductLog[a*x])), x], x] /; FreeQ[{a, d}, x] && GtQ[m,
0]
-
Int[1/((x_)*((d_) + (d_.)*ProductLog[(a_.)*(x_)])), x_Symbol] :> Simp[Log[ProductLog[a*x]]/d, x] /; FreeQ[{a,
d}, x]
-
Int[(x_)^(m_.)/((d_) + (d_.)*ProductLog[(a_.)*(x_)]), x_Symbol] :> Simp[x^(m + 1)/(d*(m + 1)), x] - Int[x^m*(P
roductLog[a*x]/(d + d*ProductLog[a*x])), x] /; FreeQ[{a, d}, x] && LtQ[m, -1]
-
Int[(x_)^(m_.)/((d_) + (d_.)*ProductLog[(a_.)*(x_)]), x_Symbol] :> Simp[x^m*(Gamma[m + 1, (-(m + 1))*ProductLo
g[a*x]]/(a*d*(m + 1)*E^(m*ProductLog[a*x])*((-(m + 1))*ProductLog[a*x])^m)), x] /; FreeQ[{a, d, m}, x] && !In
tegerQ[m]
-
Int[1/((x_)*((d_) + (d_.)*ProductLog[(a_.)*(x_)^(n_.)])), x_Symbol] :> Simp[Log[ProductLog[a*x^n]]/(d*n), x] /
; FreeQ[{a, d, n}, x]
-
Int[(x_)^(m_.)/((d_) + (d_.)*ProductLog[(a_.)*(x_)^(n_)]), x_Symbol] :> -Subst[Int[1/(x^(m + 2)*(d + d*Product
Log[a/x^n])), x], x, 1/x] /; FreeQ[{a, d}, x] && IntegerQ[m] && ILtQ[n, 0] && NeQ[m, -1]
-
Int[((c_.)*ProductLog[(a_.)*(x_)^(n_.)])^(p_.)/((x_)*((d_) + (d_.)*ProductLog[(a_.)*(x_)^(n_.)])), x_Symbol] :
> Simp[(c*ProductLog[a*x^n])^p/(d*n*p), x] /; FreeQ[{a, c, d, n, p}, x]
-
Int[((x_)^(m_.)*((c_.)*ProductLog[(a_.)*(x_)^(n_.)])^(p_.))/((d_) + (d_.)*ProductLog[(a_.)*(x_)^(n_.)]), x_Sym
bol] :> Simp[c*x^(m + 1)*((c*ProductLog[a*x^n])^(p - 1)/(d*(m + 1))), x] /; FreeQ[{a, c, d, m, n, p}, x] && Ne
Q[m, -1] && EqQ[m + n*(p - 1), -1]
-
Int[((x_)^(m_.)*ProductLog[(a_.)*(x_)^(n_.)]^(p_.))/((d_) + (d_.)*ProductLog[(a_.)*(x_)^(n_.)]), x_Symbol] :>
Simp[a^p*(ExpIntegralEi[(-p)*ProductLog[a*x^n]]/(d*n)), x] /; FreeQ[{a, d, m, n}, x] && IntegerQ[p] && EqQ[m +
n*p, -1]
-
Int[((x_)^(m_.)*((c_.)*ProductLog[(a_.)*(x_)^(n_.)])^(p_))/((d_) + (d_.)*ProductLog[(a_.)*(x_)^(n_.)]), x_Symb
ol] :> Simp[a^(p - 1/2)*c^(p - 1/2)*Rt[Pi*(c/(p - 1/2)), 2]*(Erf[Sqrt[c*ProductLog[a*x^n]]/Rt[c/(p - 1/2), 2]]
/(d*n)), x] /; FreeQ[{a, c, d, m, n}, x] && NeQ[m, -1] && IntegerQ[p - 1/2] && EqQ[m + n*(p - 1/2), -1] && Pos
Q[c/(p - 1/2)]
-
Int[((x_)^(m_.)*((c_.)*ProductLog[(a_.)*(x_)^(n_.)])^(p_))/((d_) + (d_.)*ProductLog[(a_.)*(x_)^(n_.)]), x_Symb
ol] :> Simp[a^(p - 1/2)*c^(p - 1/2)*Rt[(-Pi)*(c/(p - 1/2)), 2]*(Erfi[Sqrt[c*ProductLog[a*x^n]]/Rt[-c/(p - 1/2)
, 2]]/(d*n)), x] /; FreeQ[{a, c, d, m, n}, x] && NeQ[m, -1] && IntegerQ[p - 1/2] && EqQ[m + n*(p - 1/2), -1] &
& NegQ[c/(p - 1/2)]
-
Int[((x_)^(m_.)*((c_.)*ProductLog[(a_.)*(x_)^(n_.)])^(p_.))/((d_) + (d_.)*ProductLog[(a_.)*(x_)^(n_.)]), x_Sym
bol] :> Simp[c*x^(m + 1)*((c*ProductLog[a*x^n])^(p - 1)/(d*(m + 1))), x] - Simp[c*((m + n*(p - 1) + 1)/(m + 1)
) Int[x^m*((c*ProductLog[a*x^n])^(p - 1)/(d + d*ProductLog[a*x^n])), x], x] /; FreeQ[{a, c, d, m, n, p}, x]
&& NeQ[m, -1] && GtQ[Simplify[p + (m + 1)/n], 1]
-
Int[((x_)^(m_.)*((c_.)*ProductLog[(a_.)*(x_)^(n_.)])^(p_.))/((d_) + (d_.)*ProductLog[(a_.)*(x_)^(n_.)]), x_Sym
bol] :> Simp[x^(m + 1)*((c*ProductLog[a*x^n])^p/(d*(m + n*p + 1))), x] - Simp[(m + 1)/(c*(m + n*p + 1)) Int[
x^m*((c*ProductLog[a*x^n])^(p + 1)/(d + d*ProductLog[a*x^n])), x], x] /; FreeQ[{a, c, d, m, n, p}, x] && NeQ[m
, -1] && LtQ[Simplify[p + (m + 1)/n], 0]
-
Int[((x_)^(m_.)*((c_.)*ProductLog[(a_.)*(x_)])^(p_.))/((d_) + (d_.)*ProductLog[(a_.)*(x_)]), x_Symbol] :> Simp
[x^m*Gamma[m + p + 1, (-(m + 1))*ProductLog[a*x]]*((c*ProductLog[a*x])^p/(a*d*(m + 1)*E^(m*ProductLog[a*x])*((
-(m + 1))*ProductLog[a*x])^(m + p))), x] /; FreeQ[{a, c, d, m, p}, x] && NeQ[m, -1]
-
Int[((x_)^(m_.)*((c_.)*ProductLog[(a_.)*(x_)^(n_.)])^(p_.))/((d_) + (d_.)*ProductLog[(a_.)*(x_)^(n_.)]), x_Sym
bol] :> -Subst[Int[(c*ProductLog[a/x^n])^p/(x^(m + 2)*(d + d*ProductLog[a/x^n])), x], x, 1/x] /; FreeQ[{a, c,
d, p}, x] && NeQ[m, -1] && IntegerQ[m] && LtQ[n, 0]
-
Int[u_, x_Symbol] :> Subst[Int[SimplifyIntegrand[(x + 1)*E^x*SubstFor[ProductLog[x], u, x], x], x], x, Product
Log[x]] /; FunctionOfQ[ProductLog[x], u, x]
-
Int[Derivative[n_][f_][x_], x_Symbol] :> Simp[Derivative[n - 1][f][x], x] /; FreeQ[{f, n}, x]
-
Int[((c_.)*(F_)^((a_.) + (b_.)*(x_)))^(p_.)*Derivative[n_][f_][x_], x_Symbol] :> Simp[(c*F^(a + b*x))^p*Deriva
tive[n - 1][f][x], x] - Simp[b*p*Log[F] Int[(c*F^(a + b*x))^p*Derivative[n - 1][f][x], x], x] /; FreeQ[{a, b
, c, f, F, p}, x] && IGtQ[n, 0]
-
Int[((c_.)*(F_)^((a_.) + (b_.)*(x_)))^(p_.)*Derivative[n_][f_][x_], x_Symbol] :> Simp[(c*F^(a + b*x))^p*(Deriv
ative[n][f][x]/(b*p*Log[F])), x] - Simp[1/(b*p*Log[F]) Int[(c*F^(a + b*x))^p*Derivative[n + 1][f][x], x], x]
/; FreeQ[{a, b, c, f, F, p}, x] && ILtQ[n, 0]
-
Int[Sin[(a_.) + (b_.)*(x_)]*Derivative[n_][f_][x_], x_Symbol] :> Simp[Sin[a + b*x]*Derivative[n - 1][f][x], x]
- Simp[b Int[Cos[a + b*x]*Derivative[n - 1][f][x], x], x] /; FreeQ[{a, b, f}, x] && IGtQ[n, 0]
-
Int[Cos[(a_.) + (b_.)*(x_)]*Derivative[n_][f_][x_], x_Symbol] :> Simp[Cos[a + b*x]*Derivative[n - 1][f][x], x]
+ Simp[b Int[Sin[a + b*x]*Derivative[n - 1][f][x], x], x] /; FreeQ[{a, b, f}, x] && IGtQ[n, 0]
-
Int[Sin[(a_.) + (b_.)*(x_)]*Derivative[n_][f_][x_], x_Symbol] :> Simp[(-Cos[a + b*x])*(Derivative[n][f][x]/b),
x] + Simp[1/b Int[Cos[a + b*x]*Derivative[n + 1][f][x], x], x] /; FreeQ[{a, b, f}, x] && ILtQ[n, 0]
-
Int[Cos[(a_.) + (b_.)*(x_)]*Derivative[n_][f_][x_], x_Symbol] :> Simp[Sin[a + b*x]*(Derivative[n][f][x]/b), x]
- Simp[1/b Int[Sin[a + b*x]*Derivative[n + 1][f][x], x], x] /; FreeQ[{a, b, f}, x] && ILtQ[n, 0]
-
Int[(u_)*Derivative[n_][f_][x_], x_Symbol] :> Subst[Int[SimplifyIntegrand[SubstFor[Derivative[n - 1][f][x], u,
x], x], x], x, Derivative[n - 1][f][x]] /; FreeQ[{f, n}, x] && FunctionOfQ[Derivative[n - 1][f][x], u, x]
-
Int[(u_)*((a_.)*(g_)[x_]*Derivative[1][f_][x_] + (a_.)*(f_)[x_]*Derivative[1][g_][x_]), x_Symbol] :> Simp[a
Subst[Int[SimplifyIntegrand[SubstFor[f[x]*g[x], u, x], x], x], x, f[x]*g[x]], x] /; FreeQ[{a, f, g}, x] && Fun
ctionOfQ[f[x]*g[x], u, x]
-
Int[(u_)*((a_.)*(g_)[x_]*Derivative[m_][f_][x_] + (a_.)*Derivative[1][g_][x_]*Derivative[m1_][f_][x_]), x_Symb
ol] :> Simp[a Subst[Int[SimplifyIntegrand[SubstFor[Derivative[m - 1][f][x]*g[x], u, x], x], x], x, Derivativ
e[m - 1][f][x]*g[x]], x] /; FreeQ[{a, f, g, m}, x] && EqQ[m1, m - 1] && FunctionOfQ[Derivative[m - 1][f][x]*g[
x], u, x]
-
Int[(u_)*((a_.)*Derivative[m1_][f_][x_]*Derivative[n_][g_][x_] + (a_.)*Derivative[m_][f_][x_]*Derivative[n1_][
g_][x_]), x_Symbol] :> Simp[a Subst[Int[SimplifyIntegrand[SubstFor[Derivative[m - 1][f][x]*Derivative[n - 1]
[g][x], u, x], x], x], x, Derivative[m - 1][f][x]*Derivative[n - 1][g][x]], x] /; FreeQ[{a, f, g, m, n}, x] &&
EqQ[m1, m - 1] && EqQ[n1, n - 1] && FunctionOfQ[Derivative[m - 1][f][x]*Derivative[n - 1][g][x], u, x]
-
Int[(u_)*(f_)[x_]^(p_.)*((a_.)*(g_)[x_]*Derivative[1][f_][x_] + (b_.)*(f_)[x_]*Derivative[1][g_][x_]), x_Symbo
l] :> Simp[b Subst[Int[SimplifyIntegrand[SubstFor[f[x]^(p + 1)*g[x], u, x], x], x], x, f[x]^(p + 1)*g[x]], x
] /; FreeQ[{a, b, f, g, p}, x] && EqQ[a, b*(p + 1)] && FunctionOfQ[f[x]^(p + 1)*g[x], u, x]
-
Int[(u_)*Derivative[m1_][f_][x_]^(p_.)*((a_.)*(g_)[x_]*Derivative[m_][f_][x_] + (b_.)*Derivative[1][g_][x_]*De
rivative[m1_][f_][x_]), x_Symbol] :> Simp[b Subst[Int[SimplifyIntegrand[SubstFor[Derivative[m - 1][f][x]^(p
+ 1)*g[x], u, x], x], x], x, Derivative[m - 1][f][x]^(p + 1)*g[x]], x] /; FreeQ[{a, b, f, g, m, p}, x] && EqQ[
m1, m - 1] && EqQ[a, b*(p + 1)] && FunctionOfQ[Derivative[m - 1][f][x]^(p + 1)*g[x], u, x]
-
Int[(u_)*(g_)[x_]^(q_.)*((a_.)*(g_)[x_]*Derivative[m_][f_][x_] + (b_.)*Derivative[1][g_][x_]*Derivative[m1_][f
_][x_]), x_Symbol] :> Simp[a Subst[Int[SimplifyIntegrand[SubstFor[Derivative[m - 1][f][x]*g[x]^(q + 1), u, x
], x], x], x, Derivative[m - 1][f][x]*g[x]^(q + 1)], x] /; FreeQ[{a, b, f, g, m, q}, x] && EqQ[m1, m - 1] && E
qQ[a*(q + 1), b] && FunctionOfQ[Derivative[m - 1][f][x]*g[x]^(q + 1), u, x]
-
Int[(u_)*Derivative[m1_][f_][x_]^(p_.)*((b_.)*Derivative[m1_][f_][x_]*Derivative[n_][g_][x_] + (a_.)*Derivativ
e[m_][f_][x_]*Derivative[n1_][g_][x_]), x_Symbol] :> Simp[b Subst[Int[SimplifyIntegrand[SubstFor[Derivative[
m - 1][f][x]^(p + 1)*Derivative[n - 1][g][x], u, x], x], x], x, Derivative[m - 1][f][x]^(p + 1)*Derivative[n -
1][g][x]], x] /; FreeQ[{a, b, f, g, m, n, p}, x] && EqQ[m1, m - 1] && EqQ[n1, n - 1] && EqQ[a, b*(p + 1)] &&
FunctionOfQ[Derivative[m - 1][f][x]^(p + 1)*Derivative[n - 1][g][x], u, x]
-
Int[(u_)*(f_)[x_]^(p_.)*(g_)[x_]^(q_.)*((a_.)*(g_)[x_]*Derivative[1][f_][x_] + (b_.)*(f_)[x_]*Derivative[1][g_
][x_]), x_Symbol] :> Simp[a/(p + 1) Subst[Int[SimplifyIntegrand[SubstFor[f[x]^(p + 1)*g[x]^(q + 1), u, x], x
], x], x, f[x]^(p + 1)*g[x]^(q + 1)], x] /; FreeQ[{a, b, f, g, p, q}, x] && EqQ[a*(q + 1), b*(p + 1)] && Funct
ionOfQ[f[x]^(p + 1)*g[x]^(q + 1), u, x]
-
Int[(u_)*(g_)[x_]^(q_.)*Derivative[m1_][f_][x_]^(p_.)*((a_.)*(g_)[x_]*Derivative[m_][f_][x_] + (b_.)*Derivativ
e[1][g_][x_]*Derivative[m1_][f_][x_]), x_Symbol] :> Simp[a/(p + 1) Subst[Int[SimplifyIntegrand[SubstFor[Deri
vative[m - 1][f][x]^(p + 1)*g[x]^(q + 1), u, x], x], x], x, Derivative[m - 1][f][x]^(p + 1)*g[x]^(q + 1)], x]
/; FreeQ[{a, b, f, g, m, p, q}, x] && EqQ[m1, m - 1] && EqQ[a*(q + 1), b*(p + 1)] && FunctionOfQ[Derivative[m
- 1][f][x]^(p + 1)*g[x]^(q + 1), u, x]
-
Int[(u_)*Derivative[m1_][f_][x_]^(p_.)*Derivative[n1_][g_][x_]^(q_.)*((b_.)*Derivative[m1_][f_][x_]*Derivative
[n_][g_][x_] + (a_.)*Derivative[m_][f_][x_]*Derivative[n1_][g_][x_]), x_Symbol] :> Simp[a/(p + 1) Subst[Int[
SimplifyIntegrand[SubstFor[Derivative[m - 1][f][x]^(p + 1)*Derivative[n - 1][g][x]^(q + 1), u, x], x], x], x,
Derivative[m - 1][f][x]^(p + 1)*Derivative[n - 1][g][x]^(q + 1)], x] /; FreeQ[{a, b, f, g, m, n, p, q}, x] &&
EqQ[m1, m - 1] && EqQ[n1, n - 1] && EqQ[a*(q + 1), b*(p + 1)] && FunctionOfQ[Derivative[m - 1][f][x]^(p + 1)*D
erivative[n - 1][g][x]^(q + 1), u, x]
-
Int[(g_)[x_]*Derivative[1][f_][x_] + (f_)[x_]*Derivative[1][g_][x_], x_Symbol] :> Simp[f[x]*g[x], x] /; FreeQ[
{f, g}, x]
-
Int[((g_)[x_]*Derivative[1][f_][x_] - (f_)[x_]*Derivative[1][g_][x_])/(g_)[x_]^2, x_Symbol] :> Simp[f[x]/g[x],
x] /; FreeQ[{f, g}, x]
-
Int[((g_)[x_]*Derivative[1][f_][x_] - (f_)[x_]*Derivative[1][g_][x_])/((f_)[x_]*(g_)[x_]), x_Symbol] :> Simp[L
og[f[x]/g[x]], x] /; FreeQ[{f, g}, x]
-
Int[((a_.) + (b_.)*(F_)[((c_.)*Sqrt[(d_.) + (e_.)*(x_)])/Sqrt[(f_.) + (g_.)*(x_)]])^(n_.)/((A_.) + (B_.)*(x_)
+ (C_.)*(x_)^2), x_Symbol] :> Simp[2*e*(g/(C*(e*f - d*g))) Subst[Int[(a + b*F[c*x])^n/x, x], x, Sqrt[d + e*x
]/Sqrt[f + g*x]], x] /; FreeQ[{a, b, c, d, e, f, g, A, B, C, F}, x] && EqQ[C*d*f - A*e*g, 0] && EqQ[B*e*g - C*
(e*f + d*g), 0] && IGtQ[n, 0]
-
Int[((a_.) + (b_.)*(F_)[((c_.)*Sqrt[(d_.) + (e_.)*(x_)])/Sqrt[(f_.) + (g_.)*(x_)]])^(n_.)/((A_.) + (C_.)*(x_)^
2), x_Symbol] :> Simp[2*e*(g/(C*(e*f - d*g))) Subst[Int[(a + b*F[c*x])^n/x, x], x, Sqrt[d + e*x]/Sqrt[f + g*
x]], x] /; FreeQ[{a, b, c, d, e, f, g, A, C, F}, x] && EqQ[C*d*f - A*e*g, 0] && EqQ[e*f + d*g, 0] && IGtQ[n, 0
]
-
Int[((a_.) + (b_.)*(F_)[((c_.)*Sqrt[(d_.) + (e_.)*(x_)])/Sqrt[(f_.) + (g_.)*(x_)]])^(n_)/((A_.) + (B_.)*(x_) +
(C_.)*(x_)^2), x_Symbol] :> Unintegrable[(a + b*F[(c*Sqrt[d + e*x])/Sqrt[f + g*x]])^n/(A + B*x + C*x^2), x] /
; FreeQ[{a, b, c, d, e, f, g, A, B, C, F, n}, x] && EqQ[C*d*f - A*e*g, 0] && EqQ[B*e*g - C*(e*f + d*g), 0] &&
!IGtQ[n, 0]
-
Int[((a_.) + (b_.)*(F_)[((c_.)*Sqrt[(d_.) + (e_.)*(x_)])/Sqrt[(f_.) + (g_.)*(x_)]])^(n_)/((A_) + (C_.)*(x_)^2)
, x_Symbol] :> Unintegrable[(a + b*F[(c*Sqrt[d + e*x])/Sqrt[f + g*x]])^n/(A + C*x^2), x] /; FreeQ[{a, b, c, d,
e, f, g, A, C, F, n}, x] && EqQ[C*d*f - A*e*g, 0] && EqQ[e*f + d*g, 0] && !IGtQ[n, 0]
-
Int[(u_)/(y_), x_Symbol] :> With[{q = DerivativeDivides[y, u, x]}, Simp[q*Log[RemoveContent[y, x]], x] /; !Fa
lseQ[q]]
-
Int[(u_)/((w_)*(y_)), x_Symbol] :> With[{q = DerivativeDivides[y*w, u, x]}, Simp[q*Log[RemoveContent[y*w, x]],
x] /; !FalseQ[q]]
-
Int[(u_)*(y_)^(m_.), x_Symbol] :> With[{q = DerivativeDivides[y, u, x]}, Simp[q*(y^(m + 1)/(m + 1)), x] /; !F
alseQ[q]] /; FreeQ[m, x] && NeQ[m, -1]
-
Int[(u_)*(y_)^(m_.)*(z_)^(n_.), x_Symbol] :> With[{q = DerivativeDivides[y*z, u*z^(n - m), x]}, Simp[q*y^(m +
1)*(z^(m + 1)/(m + 1)), x] /; !FalseQ[q]] /; FreeQ[{m, n}, x] && NeQ[m, -1]
-
Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; SimplerIntegrandQ[v, u, x]]
-
Int[(u_.)*((e_.)*Sqrt[(a_.) + (b_.)*(x_)^(n_.)] + (f_.)*Sqrt[(c_.) + (d_.)*(x_)^(n_.)])^(m_), x_Symbol] :> Sim
p[(a*e^2 - c*f^2)^m Int[ExpandIntegrand[u/(e*Sqrt[a + b*x^n] - f*Sqrt[c + d*x^n])^m, x], x], x] /; FreeQ[{a,
b, c, d, e, f, n}, x] && ILtQ[m, 0] && EqQ[b*e^2 - d*f^2, 0]
-
Int[(u_.)*((e_.)*Sqrt[(a_.) + (b_.)*(x_)^(n_.)] + (f_.)*Sqrt[(c_.) + (d_.)*(x_)^(n_.)])^(m_), x_Symbol] :> Sim
p[(b*e^2 - d*f^2)^m Int[ExpandIntegrand[(u*x^(m*n))/(e*Sqrt[a + b*x^n] - f*Sqrt[c + d*x^n])^m, x], x], x] /;
FreeQ[{a, b, c, d, e, f, n}, x] && ILtQ[m, 0] && EqQ[a*e^2 - c*f^2, 0]
-
Int[(u_)^(m_.)*((a_.)*(u_)^(n_) + (v_))^(p_.)*(w_), x_Symbol] :> Int[u^(m + n*p)*(a + v/u^n)^p*w, x] /; FreeQ[
{a, m, n}, x] && IntegerQ[p] && !GtQ[n, 0] && !FreeQ[v, x]
-
Int[(u_)*((c_.) + (d_.)*(v_))^(n_.)*((a_.) + (b_.)*(y_))^(m_.), x_Symbol] :> With[{q = DerivativeDivides[y, u,
x]}, Simp[q Subst[Int[(a + b*x)^m*(c + d*x)^n, x], x, y], x] /; !FalseQ[q]] /; FreeQ[{a, b, c, d, m, n}, x
] && EqQ[v, y]
-
Int[(u_)*((c_.) + (d_.)*(v_))^(n_.)*((e_.) + (f_.)*(w_))^(p_.)*((a_.) + (b_.)*(y_))^(m_.), x_Symbol] :> With[{
q = DerivativeDivides[y, u, x]}, Simp[q Subst[Int[(a + b*x)^m*(c + d*x)^n*(e + f*x)^p, x], x, y], x] /; !Fa
lseQ[q]] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && EqQ[v, y] && EqQ[w, y]
-
Int[(u_)*((c_.) + (d_.)*(v_))^(n_.)*((e_.) + (f_.)*(w_))^(p_.)*((a_.) + (b_.)*(y_))^(m_.)*((g_.) + (h_.)*(z_))
^(q_.), x_Symbol] :> With[{r = DerivativeDivides[y, u, x]}, Simp[r Subst[Int[(a + b*x)^m*(c + d*x)^n*(e + f*
x)^p*(g + h*x)^q, x], x, y], x] /; !FalseQ[r]] /; FreeQ[{a, b, c, d, e, f, g, h, m, n, p, q}, x] && EqQ[v, y]
&& EqQ[w, y] && EqQ[z, y]
-
Int[(u_.)*((a_) + (b_.)*(y_)^(n_)), x_Symbol] :> With[{q = DerivativeDivides[y, u, x]}, Simp[a Int[u, x], x]
+ Simp[b*q Subst[Int[x^n, x], x, y], x] /; !FalseQ[q]] /; FreeQ[{a, b, n}, x]
-
Int[(u_.)*((a_.) + (b_.)*(y_)^(n_))^(p_), x_Symbol] :> With[{q = DerivativeDivides[y, u, x]}, Simp[q Subst[I
nt[(a + b*x^n)^p, x], x, y], x] /; !FalseQ[q]] /; FreeQ[{a, b, n, p}, x]
-
Int[(u_.)*(v_)^(m_.)*((a_.) + (b_.)*(y_)^(n_))^(p_.), x_Symbol] :> Module[{q, r}, Simp[q*r Subst[Int[x^m*(a
+ b*x^n)^p, x], x, y], x] /; !FalseQ[r = Divides[y^m, v^m, x]] && !FalseQ[q = DerivativeDivides[y, u, x]]] /
; FreeQ[{a, b, m, n, p}, x]
-
Int[(u_.)*((a_.) + (c_.)*(v_)^(n2_.) + (b_.)*(y_)^(n_))^(p_), x_Symbol] :> With[{q = DerivativeDivides[y, u, x
]}, Simp[q Subst[Int[(a + b*x^n + c*x^(2*n))^p, x], x, y], x] /; !FalseQ[q]] /; FreeQ[{a, b, c, n, p}, x] &
& EqQ[n2, 2*n] && EqQ[v, y]
-
Int[(u_.)*((a_.) + (b_.)*(v_)^(n_) + (c_.)*(w_)^(n2_.))^(p_.)*((A_) + (B_.)*(y_)^(n_)), x_Symbol] :> With[{q =
DerivativeDivides[y, u, x]}, Simp[q Subst[Int[(A + B*x^n)*(a + b*x^n + c*x^(2*n))^p, x], x, y], x] /; !Fal
seQ[q]] /; FreeQ[{a, b, c, A, B, n, p}, x] && EqQ[n2, 2*n] && EqQ[v, y] && EqQ[w, y]
-
Int[(u_.)*((a_.) + (c_.)*(w_)^(n2_.))^(p_.)*((A_) + (B_.)*(y_)^(n_)), x_Symbol] :> With[{q = DerivativeDivides
[y, u, x]}, Simp[q Subst[Int[(A + B*x^n)*(a + c*x^(2*n))^p, x], x, y], x] /; !FalseQ[q]] /; FreeQ[{a, c, A,
B, n, p}, x] && EqQ[n2, 2*n] && EqQ[w, y]
-
Int[(u_.)*(v_)^(m_.)*((a_.) + (c_.)*(w_)^(n2_.) + (b_.)*(y_)^(n_))^(p_.), x_Symbol] :> Module[{q, r}, Simp[q*r
Subst[Int[x^m*(a + b*x^n + c*x^(2*n))^p, x], x, y], x] /; !FalseQ[r = Divides[y^m, v^m, x]] && !FalseQ[q
= DerivativeDivides[y, u, x]]] /; FreeQ[{a, b, c, m, n, p}, x] && EqQ[n2, 2*n] && EqQ[w, y]
-
Int[(u_.)*((a_.) + (b_.)*(v_)^(n_) + (c_.)*(w_)^(n2_.))^(p_.)*((A_) + (B_.)*(y_)^(n_))*(z_)^(m_.), x_Symbol] :
> Module[{q, r}, Simp[q*r Subst[Int[x^m*(A + B*x^n)*(a + b*x^n + c*x^(2*n))^p, x], x, y], x] /; !FalseQ[r =
Divides[y^m, z^m, x]] && !FalseQ[q = DerivativeDivides[y, u, x]]] /; FreeQ[{a, b, c, A, B, m, n, p}, x] && E
qQ[n2, 2*n] && EqQ[v, y] && EqQ[w, y]
-
Int[(u_.)*((a_.) + (c_.)*(w_)^(n2_.))^(p_.)*((A_) + (B_.)*(y_)^(n_))*(z_)^(m_.), x_Symbol] :> Module[{q, r}, S
imp[q*r Subst[Int[x^m*(A + B*x^n)*(a + c*x^(2*n))^p, x], x, y], x] /; !FalseQ[r = Divides[y^m, z^m, x]] &&
!FalseQ[q = DerivativeDivides[y, u, x]]] /; FreeQ[{a, c, A, B, m, n, p}, x] && EqQ[n2, 2*n] && EqQ[w, y]
-
Int[(u_.)*((c_.) + (d_.)*(v_)^(n_))^(p_.)*((a_.) + (b_.)*(y_)^(n_))^(m_.), x_Symbol] :> With[{q = DerivativeDi
vides[y, u, x]}, Simp[q Subst[Int[(a + b*x^n)^m*(c + d*x^n)^p, x], x, y], x] /; !FalseQ[q]] /; FreeQ[{a, b,
c, d, m, n, p}, x] && EqQ[v, y]
-
Int[(u_.)*((c_.) + (d_.)*(v_)^(n_))^(p_.)*((e_.) + (f_.)*(w_)^(n_))^(q_.)*((a_.) + (b_.)*(y_)^(n_))^(m_.), x_S
ymbol] :> With[{r = DerivativeDivides[y, u, x]}, Simp[r Subst[Int[(a + b*x^n)^m*(c + d*x^n)^p*(e + f*x^n)^q,
x], x, y], x] /; !FalseQ[r]] /; FreeQ[{a, b, c, d, e, f, m, n, p, q}, x] && EqQ[v, y] && EqQ[w, y]
-
Int[(F_)^(v_)*(u_), x_Symbol] :> With[{q = DerivativeDivides[v, u, x]}, Simp[q*(F^v/Log[F]), x] /; !FalseQ[q]
] /; FreeQ[F, x]
-
Int[(F_)^(v_)*(u_)*(w_)^(m_.), x_Symbol] :> With[{q = DerivativeDivides[v, u, x]}, Simp[q Subst[Int[x^m*F^x,
x], x, v], x] /; !FalseQ[q]] /; FreeQ[{F, m}, x] && EqQ[w, v]
-
Int[(u_)*((a_) + (b_.)*(v_)^(p_.)*(w_)^(p_.))^(m_.), x_Symbol] :> With[{c = Simplify[u/(w*D[v, x] + v*D[w, x])
]}, Simp[c Subst[Int[(a + b*x^p)^m, x], x, v*w], x] /; FreeQ[c, x]] /; FreeQ[{a, b, m, p}, x] && IntegerQ[p]
-
Int[(u_)*(v_)^(r_.)*((a_) + (b_.)*(v_)^(p_.)*(w_)^(q_.))^(m_.), x_Symbol] :> With[{c = Simplify[u/(p*w*D[v, x]
+ q*v*D[w, x])]}, Simp[c*(p/(r + 1)) Subst[Int[(a + b*x^(p/(r + 1)))^m, x], x, v^(r + 1)*w], x] /; FreeQ[c,
x]] /; FreeQ[{a, b, m, p, q, r}, x] && EqQ[p, q*(r + 1)] && NeQ[r, -1] && IntegerQ[p/(r + 1)]
-
Int[(u_)*(v_)^(r_.)*(w_)^(s_.)*((a_) + (b_.)*(v_)^(p_.)*(w_)^(q_.))^(m_.), x_Symbol] :> With[{c = Simplify[u/(
p*w*D[v, x] + q*v*D[w, x])]}, Simp[c*(p/(r + 1)) Subst[Int[(a + b*x^(p/(r + 1)))^m, x], x, v^(r + 1)*w^(s +
1)], x] /; FreeQ[c, x]] /; FreeQ[{a, b, m, p, q, r, s}, x] && EqQ[p*(s + 1), q*(r + 1)] && NeQ[r, -1] && Integ
erQ[p/(r + 1)]
-
Int[(u_)*((a_.)*(v_)^(p_.) + (b_.)*(w_)^(q_.))^(m_.), x_Symbol] :> With[{c = Simplify[u/(p*w*D[v, x] - q*v*D[w
, x])]}, Simp[c*p Subst[Int[(b + a*x^p)^m, x], x, v*w^(m*q + 1)], x] /; FreeQ[c, x]] /; FreeQ[{a, b, m, p, q
}, x] && EqQ[p + q*(m*p + 1), 0] && IntegerQ[p] && IntegerQ[m]
-
Int[(u_)*(v_)^(r_.)*((a_.)*(v_)^(p_.) + (b_.)*(w_)^(q_.))^(m_.), x_Symbol] :> With[{c = Simplify[u/(p*w*D[v, x
] - q*v*D[w, x])]}, Simp[(-c)*q Subst[Int[(a + b*x^q)^m, x], x, v^(m*p + r + 1)*w], x] /; FreeQ[c, x]] /; Fr
eeQ[{a, b, m, p, q, r}, x] && EqQ[p + q*(m*p + r + 1), 0] && IntegerQ[q] && IntegerQ[m]
-
Int[(u_)*(w_)^(s_.)*((a_.)*(v_)^(p_.) + (b_.)*(w_)^(q_.))^(m_.), x_Symbol] :> With[{c = Simplify[u/(p*w*D[v, x
] - q*v*D[w, x])]}, Simp[(-c)*(q/(s + 1)) Subst[Int[(a + b*x^(q/(s + 1)))^m, x], x, v^(m*p + 1)*w^(s + 1)],
x] /; FreeQ[c, x]] /; FreeQ[{a, b, m, p, q, s}, x] && EqQ[p*(s + 1) + q*(m*p + 1), 0] && NeQ[s, -1] && Integer
Q[q/(s + 1)] && IntegerQ[m]
-
Int[(u_)*(v_)^(r_.)*(w_)^(s_.)*((a_.)*(v_)^(p_.) + (b_.)*(w_)^(q_.))^(m_.), x_Symbol] :> With[{c = Simplify[u/
(p*w*D[v, x] - q*v*D[w, x])]}, Simp[(-c)*(q/(s + 1)) Subst[Int[(a + b*x^(q/(s + 1)))^m, x], x, v^(m*p + r +
1)*w^(s + 1)], x] /; FreeQ[c, x]] /; FreeQ[{a, b, m, p, q, r, s}, x] && EqQ[p*(s + 1) + q*(m*p + r + 1), 0] &&
NeQ[s, -1] && IntegerQ[q/(s + 1)] && IntegerQ[m]
-
Int[(u_)*(x_)^(m_.), x_Symbol] :> Simp[1/(m + 1) Subst[Int[SubstFor[x^(m + 1), u, x], x], x, x^(m + 1)], x]
/; FreeQ[m, x] && NeQ[m, -1] && FunctionOfQ[x^(m + 1), u, x]
-
Int[u_, x_Symbol] :> With[{lst = SubstForFractionalPowerOfLinear[u, x]}, Simp[lst[[2]]*lst[[4]] Subst[Int[ls
t[[1]], x], x, lst[[3]]^(1/lst[[2]])], x] /; !FalseQ[lst] && SubstForFractionalPowerQ[u, lst[[3]], x]]
-
Int[u_, x_Symbol] :> With[{lst = SubstForFractionalPowerOfQuotientOfLinears[u, x]}, Simp[lst[[2]]*lst[[4]] S
ubst[Int[lst[[1]], x], x, lst[[3]]^(1/lst[[2]])], x] /; !FalseQ[lst]]
-
Int[(u_.)*((a_.)*(v_)^(m_.)*(w_)^(n_.)*(z_)^(q_.))^(p_), x_Symbol] :> Simp[a^IntPart[p]*((a*v^m*w^n*z^q)^FracP
art[p]/(v^(m*FracPart[p])*w^(n*FracPart[p])*z^(q*FracPart[p]))) Int[u*v^(m*p)*w^(n*p)*z^(p*q), x], x] /; Fre
eQ[{a, m, n, p, q}, x] && !IntegerQ[p] && !FreeQ[v, x] && !FreeQ[w, x] && !FreeQ[z, x]
-
Int[(u_.)*((a_.)*(v_)^(m_.)*(w_)^(n_.))^(p_), x_Symbol] :> Simp[a^IntPart[p]*((a*v^m*w^n)^FracPart[p]/(v^(m*Fr
acPart[p])*w^(n*FracPart[p]))) Int[u*v^(m*p)*w^(n*p), x], x] /; FreeQ[{a, m, n, p}, x] && !IntegerQ[p] &&
!FreeQ[v, x] && !FreeQ[w, x]
-
Int[(u_.)*((a_.)*(v_)^(m_.))^(p_), x_Symbol] :> Simp[a^IntPart[p]*((a*v^m)^FracPart[p]/v^(m*FracPart[p])) In
t[u*v^(m*p), x], x] /; FreeQ[{a, m, p}, x] && !IntegerQ[p] && !FreeQ[v, x] && !(EqQ[a, 1] && EqQ[m, 1]) &&
!(EqQ[v, x] && EqQ[m, 1])
-
Int[(u_.)*((a_.) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[b^IntPart[p]*((a + b*x^n)^FracPart[p]/(x^(n*FracPa
rt[p])*(1 + a*(1/(x^n*b)))^FracPart[p])) Int[u*x^(n*p)*(1 + a*(1/(x^n*b)))^p, x], x] /; FreeQ[{a, b, p}, x]
&& !IntegerQ[p] && ILtQ[n, 0] && !RationalFunctionQ[u, x] && IntegerQ[p + 1/2]
-
Int[(u_.)*((a_.) + (b_.)*(v_)^(n_))^(p_), x_Symbol] :> Simp[(a + b*v^n)^FracPart[p]/(v^(n*FracPart[p])*(b + a/
v^n)^FracPart[p]) Int[u*v^(n*p)*(b + a/v^n)^p, x], x] /; FreeQ[{a, b, p}, x] && !IntegerQ[p] && ILtQ[n, 0]
&& BinomialQ[v, x] && !LinearQ[v, x]
-
Int[(u_.)*((a_.) + (b_.)*(v_)^(n_)*(x_)^(m_.))^(p_), x_Symbol] :> Simp[(a + b*x^m*v^n)^FracPart[p]/(v^(n*FracP
art[p])*(b*x^m + a/v^n)^FracPart[p]) Int[u*v^(n*p)*(b*x^m + a/v^n)^p, x], x] /; FreeQ[{a, b, m, p}, x] && !
IntegerQ[p] && ILtQ[n, 0] && BinomialQ[v, x]
-
Int[(u_.)*((a_.)*(x_)^(r_.) + (b_.)*(x_)^(s_.))^(m_), x_Symbol] :> With[{v = (a*x^r + b*x^s)^FracPart[m]/(x^(r
*FracPart[m])*(a + b*x^(s - r))^FracPart[m])}, Simp[v Int[u*x^(m*r)*(a + b*x^(s - r))^m, x], x] /; NeQ[Simpl
ify[v], 1]] /; FreeQ[{a, b, m, r, s}, x] && !IntegerQ[m] && PosQ[s - r]
-
Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a + b*x^n), x]}, Int[v, x]
/; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ[n, 0]
-
Int[(u_)*((a_.) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.))^(p_.), x_Symbol] :> Simp[1/(4^p*c^p) Int[u*(b + 2*c*
x^n)^(2*p), x], x] /; FreeQ[{a, b, c, n}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p] && !Algebr
aicFunctionQ[u, x]
-
Int[(u_)*((a_.) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.))^(p_), x_Symbol] :> Simp[(a + b*x^n + c*x^(2*n))^p/(b +
2*c*x^n)^(2*p) Int[u*(b + 2*c*x^n)^(2*p), x], x] /; FreeQ[{a, b, c, n, p}, x] && EqQ[n2, 2*n] && EqQ[b^2 -
4*a*c, 0] && !IntegerQ[p] && !AlgebraicFunctionQ[u, x]
-
Int[(u_)/((a_.) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a +
b*x^n + c*x^(2*n)), x]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b, c}, x] && EqQ[n2, 2*n] && IGtQ[n, 0]
-
Int[(u_.)/((a_.)*(x_)^(m_.) + (b_.)*Sqrt[(c_.)*(x_)^(n_)]), x_Symbol] :> Int[u*((a*x^m - b*Sqrt[c*x^n])/(a^2*x
^(2*m) - b^2*c*x^n)), x] /; FreeQ[{a, b, c, m, n}, x]
-
Int[u_, x_Symbol] :> With[{lst = FunctionOfLinear[u, x]}, Simp[1/lst[[3]] Subst[Int[lst[[1]], x], x, lst[[2]
] + lst[[3]]*x], x] /; !FalseQ[lst]]
-
Int[(u_)/(x_), x_Symbol] :> With[{lst = PowerVariableExpn[u, 0, x]}, Simp[1/lst[[2]] Subst[Int[NormalizeInte
grand[Simplify[lst[[1]]/x], x], x], x, (lst[[3]]*x)^lst[[2]]], x] /; !FalseQ[lst] && NeQ[lst[[2]], 0]] /; Non
sumQ[u] && !RationalFunctionQ[u, x]
-
Int[(u_)*(x_)^(m_.), x_Symbol] :> With[{lst = PowerVariableExpn[u, m + 1, x]}, Simp[1/lst[[2]] Subst[Int[Nor
malizeIntegrand[Simplify[lst[[1]]/x], x], x], x, (lst[[3]]*x)^lst[[2]]], x] /; !FalseQ[lst] && NeQ[lst[[2]],
m + 1]] /; IntegerQ[m] && NeQ[m, -1] && NonsumQ[u] && (GtQ[m, 0] || !AlgebraicFunctionQ[u, x])
-
Int[(Fx_)*(x_)^(m_), x_Symbol] :> With[{k = Denominator[m]}, Simp[k Subst[Int[x^(k*(m + 1) - 1)*SubstPower[F
x, x, k], x], x, x^(1/k)], x]] /; FractionQ[m]
-
Int[u_, x_Symbol] :> With[{lst = FunctionOfSquareRootOfQuadratic[u, x]}, Simp[2 Subst[Int[lst[[1]], x], x, l
st[[2]]], x] /; !FalseQ[lst] && EqQ[lst[[3]], 1]] /; EulerIntegrandQ[u, x]
-
Int[u_, x_Symbol] :> With[{lst = FunctionOfSquareRootOfQuadratic[u, x]}, Simp[2 Subst[Int[lst[[1]], x], x, l
st[[2]]], x] /; !FalseQ[lst] && EqQ[lst[[3]], 2]] /; EulerIntegrandQ[u, x]
-
Int[u_, x_Symbol] :> With[{lst = FunctionOfSquareRootOfQuadratic[u, x]}, Simp[2 Subst[Int[lst[[1]], x], x, l
st[[2]]], x] /; !FalseQ[lst] && EqQ[lst[[3]], 3]] /; EulerIntegrandQ[u, x]
-
Int[((a_) + (b_.)*(v_)^2)^(-1), x_Symbol] :> Simp[1/(2*a) Int[Together[1/(1 - v/Rt[-a/b, 2])], x], x] + Simp
[1/(2*a) Int[Together[1/(1 + v/Rt[-a/b, 2])], x], x] /; FreeQ[{a, b}, x]
-
Int[((a_) + (b_.)*(v_)^(n_))^(-1), x_Symbol] :> Simp[2/(a*n) Sum[Int[Together[1/(1 - v^2/((-1)^(4*(k/n))*Rt[
-a/b, n/2]))], x], {k, 1, n/2}], x] /; FreeQ[{a, b}, x] && IGtQ[n/2, 1]
-
Int[((a_) + (b_.)*(v_)^(n_))^(-1), x_Symbol] :> Simp[1/(a*n) Sum[Int[Together[1/(1 - v/((-1)^(2*(k/n))*Rt[-a
/b, n]))], x], {k, 1, n}], x] /; FreeQ[{a, b}, x] && IGtQ[(n - 1)/2, 0]
-
Int[(v_)/((a_) + (b_.)*(u_)^(n_.)), x_Symbol] :> Int[ExpandIntegrand[PolynomialInSubst[v, u, x]/(a + b*x^n), x
] /. x -> u, x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && PolynomialInQ[v, u, x]
-
Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =!= u]
-
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]
-
Int[(u_.)*((a_.) + (b_.)*(x_)^(m_.))^(p_.)*((c_.) + (d_.)*(x_)^(n_.))^(q_.), x_Symbol] :> Simp[(a + b*x^m)^p*(
(c + d*x^n)^q/x^(m*p)) Int[u*x^(m*p), x], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] && EqQ[a + d, 0] && EqQ[b
+ c, 0] && EqQ[m + n, 0] && EqQ[p + q, 0]
-
Int[(u_)*((a_) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.))^(p_), x_Symbol] :> Simp[Sqrt[a + b*x^n + c*x^(2*n)]/((4
*c)^(p - 1/2)*(b + 2*c*x^n)) Int[u*(b + 2*c*x^n)^(2*p), x], x] /; FreeQ[{a, b, c, n, p}, x] && EqQ[n2, 2*n]
&& EqQ[b^2 - 4*a*c, 0] && IntegerQ[p - 1/2]
-
Int[u_, x_Symbol] :> With[{lst = SubstForFractionalPowerOfLinear[u, x]}, Simp[lst[[2]]*lst[[4]] Subst[Int[ls
t[[1]], x], x, lst[[3]]^(1/lst[[2]])], x] /; !FalseQ[lst]]
-
Int[u_, {x_Symbol, a_, b_}] :> With[{result = Int[u, x]}, Limit[result, x -> b] - Limit[result, x -> a]]