3.4.15 \(\int \frac {1}{(\frac {e (a+b x^2)}{c+d x^2})^{3/2}} \, dx\) [315]

3.4.15.1 Optimal result
3.4.15.2 Mathematica [C] (verified)
3.4.15.3 Rubi [A] (verified)
3.4.15.4 Maple [A] (verified)
3.4.15.5 Fricas [A] (verification not implemented)
3.4.15.6 Sympy [F(-1)]
3.4.15.7 Maxima [F]
3.4.15.8 Giac [F]
3.4.15.9 Mupad [F(-1)]

3.4.15.1 Optimal result

Integrand size = 22, antiderivative size = 327 \[ \int \frac {1}{\left (\frac {e \left (a+b x^2\right )}{c+d x^2}\right )^{3/2}} \, dx=\frac {(b c-a d) x}{a b e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}-\frac {d (b c-2 a d) x \left (a+b x^2\right )}{a b^2 e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}+\frac {\sqrt {c} \sqrt {d} (b c-2 a d) \left (a+b x^2\right ) E\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{a b^2 e \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}+\frac {c^{3/2} \sqrt {d} \left (a+b x^2\right ) \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),1-\frac {b c}{a d}\right )}{a b e \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )} \]

output
(-a*d+b*c)*x/a/b/e/(e*(b*x^2+a)/(d*x^2+c))^(1/2)-d*(-2*a*d+b*c)*x*(b*x^2+a 
)/a/b^2/e/(d*x^2+c)/(e*(b*x^2+a)/(d*x^2+c))^(1/2)+c^(3/2)*(b*x^2+a)*(1/(1+ 
d*x^2/c))^(1/2)*(1+d*x^2/c)^(1/2)*EllipticF(x*d^(1/2)/c^(1/2)/(1+d*x^2/c)^ 
(1/2),(1-b*c/a/d)^(1/2))*d^(1/2)/a/b/e/(d*x^2+c)/(c*(b*x^2+a)/a/(d*x^2+c)) 
^(1/2)/(e*(b*x^2+a)/(d*x^2+c))^(1/2)+(-2*a*d+b*c)*(b*x^2+a)*(1/(1+d*x^2/c) 
)^(1/2)*(1+d*x^2/c)^(1/2)*EllipticE(x*d^(1/2)/c^(1/2)/(1+d*x^2/c)^(1/2),(1 
-b*c/a/d)^(1/2))*c^(1/2)*d^(1/2)/a/b^2/e/(d*x^2+c)/(c*(b*x^2+a)/a/(d*x^2+c 
))^(1/2)/(e*(b*x^2+a)/(d*x^2+c))^(1/2)
 
3.4.15.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 1.32 (sec) , antiderivative size = 203, normalized size of antiderivative = 0.62 \[ \int \frac {1}{\left (\frac {e \left (a+b x^2\right )}{c+d x^2}\right )^{3/2}} \, dx=\frac {\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (-i c (-b c+2 a d) \sqrt {1+\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}} E\left (i \text {arcsinh}\left (\sqrt {\frac {b}{a}} x\right )|\frac {a d}{b c}\right )+(b c-a d) \left (\sqrt {\frac {b}{a}} x \left (c+d x^2\right )-i c \sqrt {1+\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {\frac {b}{a}} x\right ),\frac {a d}{b c}\right )\right )\right )}{a^2 \left (\frac {b}{a}\right )^{3/2} e^2 \left (a+b x^2\right )} \]

input
Integrate[((e*(a + b*x^2))/(c + d*x^2))^(-3/2),x]
 
output
(Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*((-I)*c*(-(b*c) + 2*a*d)*Sqrt[1 + (b*x^ 
2)/a]*Sqrt[1 + (d*x^2)/c]*EllipticE[I*ArcSinh[Sqrt[b/a]*x], (a*d)/(b*c)] + 
 (b*c - a*d)*(Sqrt[b/a]*x*(c + d*x^2) - I*c*Sqrt[1 + (b*x^2)/a]*Sqrt[1 + ( 
d*x^2)/c]*EllipticF[I*ArcSinh[Sqrt[b/a]*x], (a*d)/(b*c)])))/(a^2*(b/a)^(3/ 
2)*e^2*(a + b*x^2))
 
3.4.15.3 Rubi [A] (verified)

Time = 0.41 (sec) , antiderivative size = 306, normalized size of antiderivative = 0.94, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.318, Rules used = {2058, 315, 27, 406, 320, 388, 313}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\left (\frac {e \left (a+b x^2\right )}{c+d x^2}\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 2058

\(\displaystyle \frac {\sqrt {a+b x^2} \int \frac {\left (d x^2+c\right )^{3/2}}{\left (b x^2+a\right )^{3/2}}dx}{e \sqrt {c+d x^2} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}\)

\(\Big \downarrow \) 315

\(\displaystyle \frac {\sqrt {a+b x^2} \left (\frac {\int \frac {d \left (a c-(b c-2 a d) x^2\right )}{\sqrt {b x^2+a} \sqrt {d x^2+c}}dx}{a b}+\frac {x \sqrt {c+d x^2} (b c-a d)}{a b \sqrt {a+b x^2}}\right )}{e \sqrt {c+d x^2} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\sqrt {a+b x^2} \left (\frac {d \int \frac {a c-(b c-2 a d) x^2}{\sqrt {b x^2+a} \sqrt {d x^2+c}}dx}{a b}+\frac {x \sqrt {c+d x^2} (b c-a d)}{a b \sqrt {a+b x^2}}\right )}{e \sqrt {c+d x^2} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}\)

\(\Big \downarrow \) 406

\(\displaystyle \frac {\sqrt {a+b x^2} \left (\frac {d \left (a c \int \frac {1}{\sqrt {b x^2+a} \sqrt {d x^2+c}}dx-(b c-2 a d) \int \frac {x^2}{\sqrt {b x^2+a} \sqrt {d x^2+c}}dx\right )}{a b}+\frac {x \sqrt {c+d x^2} (b c-a d)}{a b \sqrt {a+b x^2}}\right )}{e \sqrt {c+d x^2} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}\)

\(\Big \downarrow \) 320

\(\displaystyle \frac {\sqrt {a+b x^2} \left (\frac {d \left (\frac {c^{3/2} \sqrt {a+b x^2} \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),1-\frac {b c}{a d}\right )}{\sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}-(b c-2 a d) \int \frac {x^2}{\sqrt {b x^2+a} \sqrt {d x^2+c}}dx\right )}{a b}+\frac {x \sqrt {c+d x^2} (b c-a d)}{a b \sqrt {a+b x^2}}\right )}{e \sqrt {c+d x^2} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}\)

\(\Big \downarrow \) 388

\(\displaystyle \frac {\sqrt {a+b x^2} \left (\frac {d \left (\frac {c^{3/2} \sqrt {a+b x^2} \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),1-\frac {b c}{a d}\right )}{\sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}-(b c-2 a d) \left (\frac {x \sqrt {a+b x^2}}{b \sqrt {c+d x^2}}-\frac {c \int \frac {\sqrt {b x^2+a}}{\left (d x^2+c\right )^{3/2}}dx}{b}\right )\right )}{a b}+\frac {x \sqrt {c+d x^2} (b c-a d)}{a b \sqrt {a+b x^2}}\right )}{e \sqrt {c+d x^2} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}\)

\(\Big \downarrow \) 313

\(\displaystyle \frac {\sqrt {a+b x^2} \left (\frac {d \left (\frac {c^{3/2} \sqrt {a+b x^2} \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),1-\frac {b c}{a d}\right )}{\sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}-(b c-2 a d) \left (\frac {x \sqrt {a+b x^2}}{b \sqrt {c+d x^2}}-\frac {\sqrt {c} \sqrt {a+b x^2} E\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{b \sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}\right )\right )}{a b}+\frac {x \sqrt {c+d x^2} (b c-a d)}{a b \sqrt {a+b x^2}}\right )}{e \sqrt {c+d x^2} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}\)

input
Int[((e*(a + b*x^2))/(c + d*x^2))^(-3/2),x]
 
output
(Sqrt[a + b*x^2]*(((b*c - a*d)*x*Sqrt[c + d*x^2])/(a*b*Sqrt[a + b*x^2]) + 
(d*(-((b*c - 2*a*d)*((x*Sqrt[a + b*x^2])/(b*Sqrt[c + d*x^2]) - (Sqrt[c]*Sq 
rt[a + b*x^2]*EllipticE[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(b* 
Sqrt[d]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]*Sqrt[c + d*x^2]))) + (c^(3/2 
)*Sqrt[a + b*x^2]*EllipticF[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)]) 
/(Sqrt[d]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]*Sqrt[c + d*x^2])))/(a*b))) 
/(e*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*Sqrt[c + d*x^2])
 

3.4.15.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 313
Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Sim 
p[(Sqrt[a + b*x^2]/(c*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c 
+ d*x^2)))]))*EllipticE[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /; FreeQ 
[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]
 

rule 315
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Sim 
p[(a*d - c*b)*x*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q - 1)/(2*a*b*(p + 1))), 
x] - Simp[1/(2*a*b*(p + 1))   Int[(a + b*x^2)^(p + 1)*(c + d*x^2)^(q - 2)*S 
imp[c*(a*d - c*b*(2*p + 3)) + d*(a*d*(2*(q - 1) + 1) - b*c*(2*(p + q) + 1)) 
*x^2, x], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && LtQ[p, - 
1] && GtQ[q, 1] && IntBinomialQ[a, b, c, d, 2, p, q, x]
 

rule 320
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S 
imp[(Sqrt[a + b*x^2]/(a*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*( 
c + d*x^2)))]))*EllipticF[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /; Fre 
eQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]
 

rule 388
Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] 
 :> Simp[x*(Sqrt[a + b*x^2]/(b*Sqrt[c + d*x^2])), x] - Simp[c/b   Int[Sqrt[ 
a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - 
 a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]
 

rule 406
Int[((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.)*((e_) + (f_.)*( 
x_)^2), x_Symbol] :> Simp[e   Int[(a + b*x^2)^p*(c + d*x^2)^q, x], x] + Sim 
p[f   Int[x^2*(a + b*x^2)^p*(c + d*x^2)^q, x], x] /; FreeQ[{a, b, c, d, e, 
f, p, q}, x]
 

rule 2058
Int[(u_.)*((e_.)*((a_.) + (b_.)*(x_)^(n_.))^(q_.)*((c_) + (d_.)*(x_)^(n_))^ 
(r_.))^(p_), x_Symbol] :> Simp[Simp[(e*(a + b*x^n)^q*(c + d*x^n)^r)^p/((a + 
 b*x^n)^(p*q)*(c + d*x^n)^(p*r))]   Int[u*(a + b*x^n)^(p*q)*(c + d*x^n)^(p* 
r), x], x] /; FreeQ[{a, b, c, d, e, n, p, q, r}, x]
 
3.4.15.4 Maple [A] (verified)

Time = 3.38 (sec) , antiderivative size = 514, normalized size of antiderivative = 1.57

method result size
default \(-\frac {\left (b \,x^{2}+a \right ) \left (\sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}\, \sqrt {-\frac {b}{a}}\, a \,d^{2} x^{3}-\sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}\, \sqrt {-\frac {b}{a}}\, b c d \,x^{3}+\sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, F\left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) a c d -\sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, F\left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) b \,c^{2}-2 \sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, E\left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) a c d +\sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, E\left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) b \,c^{2}+\sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}\, \sqrt {-\frac {b}{a}}\, a c d x -\sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}\, \sqrt {-\frac {b}{a}}\, b \,c^{2} x \right )}{b {\left (\frac {e \left (b \,x^{2}+a \right )}{d \,x^{2}+c}\right )}^{\frac {3}{2}} \left (d \,x^{2}+c \right )^{2} a \sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}}\) \(514\)

input
int(1/(e*(b*x^2+a)/(d*x^2+c))^(3/2),x,method=_RETURNVERBOSE)
 
output
-(b*x^2+a)/b*((b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*(-b/a)^(1/2)*a*d^2*x^3-( 
b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*(-b/a)^(1/2)*b*c*d*x^3+((d*x^2+c)*(b*x^ 
2+a))^(1/2)*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticF(x*(-b/a)^(1/ 
2),(a*d/b/c)^(1/2))*a*c*d-((d*x^2+c)*(b*x^2+a))^(1/2)*((b*x^2+a)/a)^(1/2)* 
((d*x^2+c)/c)^(1/2)*EllipticF(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*b*c^2-2*((d* 
x^2+c)*(b*x^2+a))^(1/2)*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticE( 
x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*a*c*d+((d*x^2+c)*(b*x^2+a))^(1/2)*((b*x^2+ 
a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticE(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))* 
b*c^2+(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*(-b/a)^(1/2)*a*c*d*x-(b*d*x^4+a* 
d*x^2+b*c*x^2+a*c)^(1/2)*(-b/a)^(1/2)*b*c^2*x)/(e*(b*x^2+a)/(d*x^2+c))^(3/ 
2)/(d*x^2+c)^2/a/(-b/a)^(1/2)/(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)
 
3.4.15.5 Fricas [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 251, normalized size of antiderivative = 0.77 \[ \int \frac {1}{\left (\frac {e \left (a+b x^2\right )}{c+d x^2}\right )^{3/2}} \, dx=\frac {{\left ({\left (b^{2} c^{2} - 2 \, a b c d\right )} x^{3} + {\left (a b c^{2} - 2 \, a^{2} c d\right )} x\right )} \sqrt {\frac {b e}{d}} \sqrt {-\frac {c}{d}} E(\arcsin \left (\frac {\sqrt {-\frac {c}{d}}}{x}\right )\,|\,\frac {a d}{b c}) - {\left ({\left (b^{2} c^{2} - 2 \, a b c d - a b d^{2}\right )} x^{3} + {\left (a b c^{2} - 2 \, a^{2} c d - a^{2} d^{2}\right )} x\right )} \sqrt {\frac {b e}{d}} \sqrt {-\frac {c}{d}} F(\arcsin \left (\frac {\sqrt {-\frac {c}{d}}}{x}\right )\,|\,\frac {a d}{b c}) + {\left (a b d^{2} x^{4} + 2 \, a^{2} d^{2} x^{2} - a b c^{2} + 2 \, a^{2} c d\right )} \sqrt {\frac {b e x^{2} + a e}{d x^{2} + c}}}{a b^{3} e^{2} x^{3} + a^{2} b^{2} e^{2} x} \]

input
integrate(1/(e*(b*x^2+a)/(d*x^2+c))^(3/2),x, algorithm="fricas")
 
output
(((b^2*c^2 - 2*a*b*c*d)*x^3 + (a*b*c^2 - 2*a^2*c*d)*x)*sqrt(b*e/d)*sqrt(-c 
/d)*elliptic_e(arcsin(sqrt(-c/d)/x), a*d/(b*c)) - ((b^2*c^2 - 2*a*b*c*d - 
a*b*d^2)*x^3 + (a*b*c^2 - 2*a^2*c*d - a^2*d^2)*x)*sqrt(b*e/d)*sqrt(-c/d)*e 
lliptic_f(arcsin(sqrt(-c/d)/x), a*d/(b*c)) + (a*b*d^2*x^4 + 2*a^2*d^2*x^2 
- a*b*c^2 + 2*a^2*c*d)*sqrt((b*e*x^2 + a*e)/(d*x^2 + c)))/(a*b^3*e^2*x^3 + 
 a^2*b^2*e^2*x)
 
3.4.15.6 Sympy [F(-1)]

Timed out. \[ \int \frac {1}{\left (\frac {e \left (a+b x^2\right )}{c+d x^2}\right )^{3/2}} \, dx=\text {Timed out} \]

input
integrate(1/(e*(b*x**2+a)/(d*x**2+c))**(3/2),x)
 
output
Timed out
 
3.4.15.7 Maxima [F]

\[ \int \frac {1}{\left (\frac {e \left (a+b x^2\right )}{c+d x^2}\right )^{3/2}} \, dx=\int { \frac {1}{\left (\frac {{\left (b x^{2} + a\right )} e}{d x^{2} + c}\right )^{\frac {3}{2}}} \,d x } \]

input
integrate(1/(e*(b*x^2+a)/(d*x^2+c))^(3/2),x, algorithm="maxima")
 
output
integrate(((b*x^2 + a)*e/(d*x^2 + c))^(-3/2), x)
 
3.4.15.8 Giac [F]

\[ \int \frac {1}{\left (\frac {e \left (a+b x^2\right )}{c+d x^2}\right )^{3/2}} \, dx=\int { \frac {1}{\left (\frac {{\left (b x^{2} + a\right )} e}{d x^{2} + c}\right )^{\frac {3}{2}}} \,d x } \]

input
integrate(1/(e*(b*x^2+a)/(d*x^2+c))^(3/2),x, algorithm="giac")
 
output
integrate(((b*x^2 + a)*e/(d*x^2 + c))^(-3/2), x)
 
3.4.15.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\left (\frac {e \left (a+b x^2\right )}{c+d x^2}\right )^{3/2}} \, dx=\int \frac {1}{{\left (\frac {e\,\left (b\,x^2+a\right )}{d\,x^2+c}\right )}^{3/2}} \,d x \]

input
int(1/((e*(a + b*x^2))/(c + d*x^2))^(3/2),x)
 
output
int(1/((e*(a + b*x^2))/(c + d*x^2))^(3/2), x)