3.4.16 \(\int \frac {1}{x^2 (\frac {e (a+b x^2)}{c+d x^2})^{3/2}} \, dx\) [316]

3.4.16.1 Optimal result
3.4.16.2 Mathematica [C] (verified)
3.4.16.3 Rubi [A] (verified)
3.4.16.4 Maple [A] (verified)
3.4.16.5 Fricas [A] (verification not implemented)
3.4.16.6 Sympy [F(-1)]
3.4.16.7 Maxima [F]
3.4.16.8 Giac [F]
3.4.16.9 Mupad [F(-1)]

3.4.16.1 Optimal result

Integrand size = 26, antiderivative size = 380 \[ \int \frac {1}{x^2 \left (\frac {e \left (a+b x^2\right )}{c+d x^2}\right )^{3/2}} \, dx=\frac {b c-a d}{a b e x \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}-\frac {(2 b c-a d) \left (a+b x^2\right )}{a^2 b e x \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}+\frac {d (2 b c-a d) x \left (a+b x^2\right )}{a^2 b e \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}-\frac {\sqrt {c} \sqrt {d} (2 b c-a d) \left (a+b x^2\right ) E\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{a^2 b e \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )}+\frac {c^{3/2} \sqrt {d} \left (a+b x^2\right ) \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),1-\frac {b c}{a d}\right )}{a^2 e \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (c+d x^2\right )} \]

output
(-a*d+b*c)/a/b/e/x/(e*(b*x^2+a)/(d*x^2+c))^(1/2)-(-a*d+2*b*c)*(b*x^2+a)/a^ 
2/b/e/x/(e*(b*x^2+a)/(d*x^2+c))^(1/2)+d*(-a*d+2*b*c)*x*(b*x^2+a)/a^2/b/e/( 
d*x^2+c)/(e*(b*x^2+a)/(d*x^2+c))^(1/2)+c^(3/2)*(b*x^2+a)*(1/(1+d*x^2/c))^( 
1/2)*(1+d*x^2/c)^(1/2)*EllipticF(x*d^(1/2)/c^(1/2)/(1+d*x^2/c)^(1/2),(1-b* 
c/a/d)^(1/2))*d^(1/2)/a^2/e/(d*x^2+c)/(c*(b*x^2+a)/a/(d*x^2+c))^(1/2)/(e*( 
b*x^2+a)/(d*x^2+c))^(1/2)-(-a*d+2*b*c)*(b*x^2+a)*(1/(1+d*x^2/c))^(1/2)*(1+ 
d*x^2/c)^(1/2)*EllipticE(x*d^(1/2)/c^(1/2)/(1+d*x^2/c)^(1/2),(1-b*c/a/d)^( 
1/2))*c^(1/2)*d^(1/2)/a^2/b/e/(d*x^2+c)/(c*(b*x^2+a)/a/(d*x^2+c))^(1/2)/(e 
*(b*x^2+a)/(d*x^2+c))^(1/2)
 
3.4.16.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 5.13 (sec) , antiderivative size = 223, normalized size of antiderivative = 0.59 \[ \int \frac {1}{x^2 \left (\frac {e \left (a+b x^2\right )}{c+d x^2}\right )^{3/2}} \, dx=\frac {\sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}} \left (-\sqrt {\frac {b}{a}} \left (c+d x^2\right ) \left (a c+2 b c x^2-a d x^2\right )+i c (-2 b c+a d) x \sqrt {1+\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}} E\left (i \text {arcsinh}\left (\sqrt {\frac {b}{a}} x\right )|\frac {a d}{b c}\right )-2 i c (-b c+a d) x \sqrt {1+\frac {b x^2}{a}} \sqrt {1+\frac {d x^2}{c}} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {\frac {b}{a}} x\right ),\frac {a d}{b c}\right )\right )}{a^2 \sqrt {\frac {b}{a}} e^2 x \left (a+b x^2\right )} \]

input
Integrate[1/(x^2*((e*(a + b*x^2))/(c + d*x^2))^(3/2)),x]
 
output
(Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*(-(Sqrt[b/a]*(c + d*x^2)*(a*c + 2*b*c*x 
^2 - a*d*x^2)) + I*c*(-2*b*c + a*d)*x*Sqrt[1 + (b*x^2)/a]*Sqrt[1 + (d*x^2) 
/c]*EllipticE[I*ArcSinh[Sqrt[b/a]*x], (a*d)/(b*c)] - (2*I)*c*(-(b*c) + a*d 
)*x*Sqrt[1 + (b*x^2)/a]*Sqrt[1 + (d*x^2)/c]*EllipticF[I*ArcSinh[Sqrt[b/a]* 
x], (a*d)/(b*c)]))/(a^2*Sqrt[b/a]*e^2*x*(a + b*x^2))
 
3.4.16.3 Rubi [A] (verified)

Time = 0.55 (sec) , antiderivative size = 360, normalized size of antiderivative = 0.95, number of steps used = 11, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.423, Rules used = {2058, 370, 25, 27, 445, 25, 27, 406, 320, 388, 313}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{x^2 \left (\frac {e \left (a+b x^2\right )}{c+d x^2}\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 2058

\(\displaystyle \frac {\sqrt {a+b x^2} \int \frac {\left (d x^2+c\right )^{3/2}}{x^2 \left (b x^2+a\right )^{3/2}}dx}{e \sqrt {c+d x^2} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}\)

\(\Big \downarrow \) 370

\(\displaystyle \frac {\sqrt {a+b x^2} \left (\frac {\sqrt {c+d x^2} (b c-a d)}{a b x \sqrt {a+b x^2}}-\frac {\int -\frac {c \left (b d x^2+2 b c-a d\right )}{x^2 \sqrt {b x^2+a} \sqrt {d x^2+c}}dx}{a b}\right )}{e \sqrt {c+d x^2} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\sqrt {a+b x^2} \left (\frac {\int \frac {c \left (b d x^2+2 b c-a d\right )}{x^2 \sqrt {b x^2+a} \sqrt {d x^2+c}}dx}{a b}+\frac {\sqrt {c+d x^2} (b c-a d)}{a b x \sqrt {a+b x^2}}\right )}{e \sqrt {c+d x^2} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\sqrt {a+b x^2} \left (\frac {c \int \frac {b d x^2+2 b c-a d}{x^2 \sqrt {b x^2+a} \sqrt {d x^2+c}}dx}{a b}+\frac {\sqrt {c+d x^2} (b c-a d)}{a b x \sqrt {a+b x^2}}\right )}{e \sqrt {c+d x^2} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}\)

\(\Big \downarrow \) 445

\(\displaystyle \frac {\sqrt {a+b x^2} \left (\frac {c \left (-\frac {\int -\frac {b d \left ((2 b c-a d) x^2+a c\right )}{\sqrt {b x^2+a} \sqrt {d x^2+c}}dx}{a c}-\frac {\sqrt {a+b x^2} \sqrt {c+d x^2} (2 b c-a d)}{a c x}\right )}{a b}+\frac {\sqrt {c+d x^2} (b c-a d)}{a b x \sqrt {a+b x^2}}\right )}{e \sqrt {c+d x^2} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\sqrt {a+b x^2} \left (\frac {c \left (\frac {\int \frac {b d \left ((2 b c-a d) x^2+a c\right )}{\sqrt {b x^2+a} \sqrt {d x^2+c}}dx}{a c}-\frac {\sqrt {a+b x^2} \sqrt {c+d x^2} (2 b c-a d)}{a c x}\right )}{a b}+\frac {\sqrt {c+d x^2} (b c-a d)}{a b x \sqrt {a+b x^2}}\right )}{e \sqrt {c+d x^2} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\sqrt {a+b x^2} \left (\frac {c \left (\frac {b d \int \frac {(2 b c-a d) x^2+a c}{\sqrt {b x^2+a} \sqrt {d x^2+c}}dx}{a c}-\frac {\sqrt {a+b x^2} \sqrt {c+d x^2} (2 b c-a d)}{a c x}\right )}{a b}+\frac {\sqrt {c+d x^2} (b c-a d)}{a b x \sqrt {a+b x^2}}\right )}{e \sqrt {c+d x^2} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}\)

\(\Big \downarrow \) 406

\(\displaystyle \frac {\sqrt {a+b x^2} \left (\frac {c \left (\frac {b d \left (a c \int \frac {1}{\sqrt {b x^2+a} \sqrt {d x^2+c}}dx+(2 b c-a d) \int \frac {x^2}{\sqrt {b x^2+a} \sqrt {d x^2+c}}dx\right )}{a c}-\frac {\sqrt {a+b x^2} \sqrt {c+d x^2} (2 b c-a d)}{a c x}\right )}{a b}+\frac {\sqrt {c+d x^2} (b c-a d)}{a b x \sqrt {a+b x^2}}\right )}{e \sqrt {c+d x^2} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}\)

\(\Big \downarrow \) 320

\(\displaystyle \frac {\sqrt {a+b x^2} \left (\frac {c \left (\frac {b d \left ((2 b c-a d) \int \frac {x^2}{\sqrt {b x^2+a} \sqrt {d x^2+c}}dx+\frac {c^{3/2} \sqrt {a+b x^2} \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),1-\frac {b c}{a d}\right )}{\sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}\right )}{a c}-\frac {\sqrt {a+b x^2} \sqrt {c+d x^2} (2 b c-a d)}{a c x}\right )}{a b}+\frac {\sqrt {c+d x^2} (b c-a d)}{a b x \sqrt {a+b x^2}}\right )}{e \sqrt {c+d x^2} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}\)

\(\Big \downarrow \) 388

\(\displaystyle \frac {\sqrt {a+b x^2} \left (\frac {c \left (\frac {b d \left ((2 b c-a d) \left (\frac {x \sqrt {a+b x^2}}{b \sqrt {c+d x^2}}-\frac {c \int \frac {\sqrt {b x^2+a}}{\left (d x^2+c\right )^{3/2}}dx}{b}\right )+\frac {c^{3/2} \sqrt {a+b x^2} \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),1-\frac {b c}{a d}\right )}{\sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}\right )}{a c}-\frac {\sqrt {a+b x^2} \sqrt {c+d x^2} (2 b c-a d)}{a c x}\right )}{a b}+\frac {\sqrt {c+d x^2} (b c-a d)}{a b x \sqrt {a+b x^2}}\right )}{e \sqrt {c+d x^2} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}\)

\(\Big \downarrow \) 313

\(\displaystyle \frac {\sqrt {a+b x^2} \left (\frac {c \left (\frac {b d \left (\frac {c^{3/2} \sqrt {a+b x^2} \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),1-\frac {b c}{a d}\right )}{\sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}+(2 b c-a d) \left (\frac {x \sqrt {a+b x^2}}{b \sqrt {c+d x^2}}-\frac {\sqrt {c} \sqrt {a+b x^2} E\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|1-\frac {b c}{a d}\right )}{b \sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a+b x^2\right )}{a \left (c+d x^2\right )}}}\right )\right )}{a c}-\frac {\sqrt {a+b x^2} \sqrt {c+d x^2} (2 b c-a d)}{a c x}\right )}{a b}+\frac {\sqrt {c+d x^2} (b c-a d)}{a b x \sqrt {a+b x^2}}\right )}{e \sqrt {c+d x^2} \sqrt {\frac {e \left (a+b x^2\right )}{c+d x^2}}}\)

input
Int[1/(x^2*((e*(a + b*x^2))/(c + d*x^2))^(3/2)),x]
 
output
(Sqrt[a + b*x^2]*(((b*c - a*d)*Sqrt[c + d*x^2])/(a*b*x*Sqrt[a + b*x^2]) + 
(c*(-(((2*b*c - a*d)*Sqrt[a + b*x^2]*Sqrt[c + d*x^2])/(a*c*x)) + (b*d*((2* 
b*c - a*d)*((x*Sqrt[a + b*x^2])/(b*Sqrt[c + d*x^2]) - (Sqrt[c]*Sqrt[a + b* 
x^2]*EllipticE[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(b*Sqrt[d]*S 
qrt[(c*(a + b*x^2))/(a*(c + d*x^2))]*Sqrt[c + d*x^2])) + (c^(3/2)*Sqrt[a + 
 b*x^2]*EllipticF[ArcTan[(Sqrt[d]*x)/Sqrt[c]], 1 - (b*c)/(a*d)])/(Sqrt[d]* 
Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]*Sqrt[c + d*x^2])))/(a*c)))/(a*b)))/( 
e*Sqrt[(e*(a + b*x^2))/(c + d*x^2)]*Sqrt[c + d*x^2])
 

3.4.16.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 313
Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Sim 
p[(Sqrt[a + b*x^2]/(c*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c 
+ d*x^2)))]))*EllipticE[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /; FreeQ 
[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]
 

rule 320
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S 
imp[(Sqrt[a + b*x^2]/(a*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*( 
c + d*x^2)))]))*EllipticF[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /; Fre 
eQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]
 

rule 370
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
), x_Symbol] :> Simp[(-(b*c - a*d))*(e*x)^(m + 1)*(a + b*x^2)^(p + 1)*((c + 
 d*x^2)^(q - 1)/(a*b*e*2*(p + 1))), x] + Simp[1/(a*b*2*(p + 1))   Int[(e*x) 
^m*(a + b*x^2)^(p + 1)*(c + d*x^2)^(q - 2)*Simp[c*(b*c*2*(p + 1) + (b*c - a 
*d)*(m + 1)) + d*(b*c*2*(p + 1) + (b*c - a*d)*(m + 2*(q - 1) + 1))*x^2, x], 
 x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] 
&& GtQ[q, 1] && IntBinomialQ[a, b, c, d, e, m, 2, p, q, x]
 

rule 388
Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] 
 :> Simp[x*(Sqrt[a + b*x^2]/(b*Sqrt[c + d*x^2])), x] - Simp[c/b   Int[Sqrt[ 
a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - 
 a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]
 

rule 406
Int[((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.)*((e_) + (f_.)*( 
x_)^2), x_Symbol] :> Simp[e   Int[(a + b*x^2)^p*(c + d*x^2)^q, x], x] + Sim 
p[f   Int[x^2*(a + b*x^2)^p*(c + d*x^2)^q, x], x] /; FreeQ[{a, b, c, d, e, 
f, p, q}, x]
 

rule 445
Int[((g_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_ 
.)*((e_) + (f_.)*(x_)^2), x_Symbol] :> Simp[e*(g*x)^(m + 1)*(a + b*x^2)^(p 
+ 1)*((c + d*x^2)^(q + 1)/(a*c*g*(m + 1))), x] + Simp[1/(a*c*g^2*(m + 1)) 
 Int[(g*x)^(m + 2)*(a + b*x^2)^p*(c + d*x^2)^q*Simp[a*f*c*(m + 1) - e*(b*c 
+ a*d)*(m + 2 + 1) - e*2*(b*c*p + a*d*q) - b*e*d*(m + 2*(p + q + 2) + 1)*x^ 
2, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p, q}, x] && LtQ[m, -1]
 

rule 2058
Int[(u_.)*((e_.)*((a_.) + (b_.)*(x_)^(n_.))^(q_.)*((c_) + (d_.)*(x_)^(n_))^ 
(r_.))^(p_), x_Symbol] :> Simp[Simp[(e*(a + b*x^n)^q*(c + d*x^n)^r)^p/((a + 
 b*x^n)^(p*q)*(c + d*x^n)^(p*r))]   Int[u*(a + b*x^n)^(p*q)*(c + d*x^n)^(p* 
r), x], x] /; FreeQ[{a, b, c, d, e, n, p, q, r}, x]
 
3.4.16.4 Maple [A] (verified)

Time = 8.12 (sec) , antiderivative size = 650, normalized size of antiderivative = 1.71

method result size
default \(-\frac {\left (b \,x^{2}+a \right ) \left (\sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, \sqrt {-\frac {b}{a}}\, b c d \,x^{4}-\sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}\, \sqrt {-\frac {b}{a}}\, a \,d^{2} x^{4}+\sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}\, \sqrt {-\frac {b}{a}}\, b c d \,x^{4}-2 \sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, F\left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) a c d x +2 \sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, F\left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) b \,c^{2} x +\sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, E\left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) a c d x -2 c^{2} b \sqrt {\frac {b \,x^{2}+a}{a}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, E\left (x \sqrt {-\frac {b}{a}}, \sqrt {\frac {a d}{b c}}\right ) x \sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}+\sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, \sqrt {-\frac {b}{a}}\, a c d \,x^{2}+\sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, \sqrt {-\frac {b}{a}}\, b \,c^{2} x^{2}-\sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}\, \sqrt {-\frac {b}{a}}\, a c d \,x^{2}+\sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}\, \sqrt {-\frac {b}{a}}\, b \,c^{2} x^{2}+\sqrt {\left (d \,x^{2}+c \right ) \left (b \,x^{2}+a \right )}\, \sqrt {-\frac {b}{a}}\, a \,c^{2}\right )}{{\left (\frac {e \left (b \,x^{2}+a \right )}{d \,x^{2}+c}\right )}^{\frac {3}{2}} \left (d \,x^{2}+c \right )^{2} a^{2} x \sqrt {-\frac {b}{a}}\, \sqrt {b d \,x^{4}+a d \,x^{2}+b c \,x^{2}+a c}}\) \(650\)
risch \(-\frac {c \left (b \,x^{2}+a \right )}{a^{2} x e \sqrt {\frac {e \left (b \,x^{2}+a \right )}{d \,x^{2}+c}}}+\frac {\left (\frac {a^{2} d^{2} \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, F\left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {e d a +e b c}{c b e}}\right )}{b \sqrt {-\frac {b}{a}}\, \sqrt {b d e \,x^{4}+a d e \,x^{2}+b c e \,x^{2}+a c e}}-\frac {2 b \,c^{2} d a e \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \left (F\left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {e d a +e b c}{c b e}}\right )-E\left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {e d a +e b c}{c b e}}\right )\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {b d e \,x^{4}+a d e \,x^{2}+b c e \,x^{2}+a c e}\, \left (e d a +e b c +e \left (a d -b c \right )\right )}-\frac {a \left (a^{2} d^{2}-2 a b c d +b^{2} c^{2}\right ) \left (-\frac {\left (b d e \,x^{2}+e b c \right ) x}{a \left (a d -b c \right ) e \sqrt {\left (x^{2}+\frac {a}{b}\right ) \left (b d e \,x^{2}+e b c \right )}}+\frac {\left (\frac {1}{a}+\frac {b c}{a \left (a d -b c \right )}\right ) \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, F\left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {e d a +e b c}{c b e}}\right )}{\sqrt {-\frac {b}{a}}\, \sqrt {b d e \,x^{4}+a d e \,x^{2}+b c e \,x^{2}+a c e}}-\frac {2 d b c e \sqrt {1+\frac {b \,x^{2}}{a}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \left (F\left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {e d a +e b c}{c b e}}\right )-E\left (x \sqrt {-\frac {b}{a}}, \sqrt {-1+\frac {e d a +e b c}{c b e}}\right )\right )}{\left (a d -b c \right ) \sqrt {-\frac {b}{a}}\, \sqrt {b d e \,x^{4}+a d e \,x^{2}+b c e \,x^{2}+a c e}\, \left (e d a +e b c +e \left (a d -b c \right )\right )}\right )}{b}\right ) \sqrt {\left (d \,x^{2}+c \right ) e \left (b \,x^{2}+a \right )}}{a^{2} e \sqrt {\frac {e \left (b \,x^{2}+a \right )}{d \,x^{2}+c}}\, \left (d \,x^{2}+c \right )}\) \(727\)

input
int(1/x^2/(e*(b*x^2+a)/(d*x^2+c))^(3/2),x,method=_RETURNVERBOSE)
 
output
-(b*x^2+a)*(((d*x^2+c)*(b*x^2+a))^(1/2)*(-b/a)^(1/2)*b*c*d*x^4-(b*d*x^4+a* 
d*x^2+b*c*x^2+a*c)^(1/2)*(-b/a)^(1/2)*a*d^2*x^4+(b*d*x^4+a*d*x^2+b*c*x^2+a 
*c)^(1/2)*(-b/a)^(1/2)*b*c*d*x^4-2*((d*x^2+c)*(b*x^2+a))^(1/2)*((b*x^2+a)/ 
a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticF(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*a*c 
*d*x+2*((d*x^2+c)*(b*x^2+a))^(1/2)*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2) 
*EllipticF(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*b*c^2*x+((d*x^2+c)*(b*x^2+a))^( 
1/2)*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*EllipticE(x*(-b/a)^(1/2),(a*d 
/b/c)^(1/2))*a*c*d*x-2*c^2*b*((b*x^2+a)/a)^(1/2)*((d*x^2+c)/c)^(1/2)*Ellip 
ticE(x*(-b/a)^(1/2),(a*d/b/c)^(1/2))*x*((d*x^2+c)*(b*x^2+a))^(1/2)+((d*x^2 
+c)*(b*x^2+a))^(1/2)*(-b/a)^(1/2)*a*c*d*x^2+((d*x^2+c)*(b*x^2+a))^(1/2)*(- 
b/a)^(1/2)*b*c^2*x^2-(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*(-b/a)^(1/2)*a*c* 
d*x^2+(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)*(-b/a)^(1/2)*b*c^2*x^2+((d*x^2+c 
)*(b*x^2+a))^(1/2)*(-b/a)^(1/2)*a*c^2)/(e*(b*x^2+a)/(d*x^2+c))^(3/2)/(d*x^ 
2+c)^2/a^2/x/(-b/a)^(1/2)/(b*d*x^4+a*d*x^2+b*c*x^2+a*c)^(1/2)
 
3.4.16.5 Fricas [A] (verification not implemented)

Time = 0.10 (sec) , antiderivative size = 269, normalized size of antiderivative = 0.71 \[ \int \frac {1}{x^2 \left (\frac {e \left (a+b x^2\right )}{c+d x^2}\right )^{3/2}} \, dx=\frac {{\left ({\left (2 \, b^{3} c d - a b^{2} d^{2}\right )} x^{3} + {\left (2 \, a b^{2} c d - a^{2} b d^{2}\right )} x\right )} \sqrt {\frac {a c e}{d^{2}}} \sqrt {-\frac {b}{a}} E(\arcsin \left (x \sqrt {-\frac {b}{a}}\right )\,|\,\frac {a d}{b c}) - {\left ({\left (2 \, b^{3} c d + {\left (a^{2} b - a b^{2}\right )} d^{2}\right )} x^{3} + {\left (2 \, a b^{2} c d + {\left (a^{3} - a^{2} b\right )} d^{2}\right )} x\right )} \sqrt {\frac {a c e}{d^{2}}} \sqrt {-\frac {b}{a}} F(\arcsin \left (x \sqrt {-\frac {b}{a}}\right )\,|\,\frac {a d}{b c}) - {\left (2 \, a b^{2} c^{2} x^{2} + a^{2} b c^{2} + {\left (2 \, a b^{2} c d - a^{2} b d^{2}\right )} x^{4}\right )} \sqrt {\frac {b e x^{2} + a e}{d x^{2} + c}}}{a^{3} b^{2} e^{2} x^{3} + a^{4} b e^{2} x} \]

input
integrate(1/x^2/(e*(b*x^2+a)/(d*x^2+c))^(3/2),x, algorithm="fricas")
 
output
(((2*b^3*c*d - a*b^2*d^2)*x^3 + (2*a*b^2*c*d - a^2*b*d^2)*x)*sqrt(a*c*e/d^ 
2)*sqrt(-b/a)*elliptic_e(arcsin(x*sqrt(-b/a)), a*d/(b*c)) - ((2*b^3*c*d + 
(a^2*b - a*b^2)*d^2)*x^3 + (2*a*b^2*c*d + (a^3 - a^2*b)*d^2)*x)*sqrt(a*c*e 
/d^2)*sqrt(-b/a)*elliptic_f(arcsin(x*sqrt(-b/a)), a*d/(b*c)) - (2*a*b^2*c^ 
2*x^2 + a^2*b*c^2 + (2*a*b^2*c*d - a^2*b*d^2)*x^4)*sqrt((b*e*x^2 + a*e)/(d 
*x^2 + c)))/(a^3*b^2*e^2*x^3 + a^4*b*e^2*x)
 
3.4.16.6 Sympy [F(-1)]

Timed out. \[ \int \frac {1}{x^2 \left (\frac {e \left (a+b x^2\right )}{c+d x^2}\right )^{3/2}} \, dx=\text {Timed out} \]

input
integrate(1/x**2/(e*(b*x**2+a)/(d*x**2+c))**(3/2),x)
 
output
Timed out
 
3.4.16.7 Maxima [F]

\[ \int \frac {1}{x^2 \left (\frac {e \left (a+b x^2\right )}{c+d x^2}\right )^{3/2}} \, dx=\int { \frac {1}{\left (\frac {{\left (b x^{2} + a\right )} e}{d x^{2} + c}\right )^{\frac {3}{2}} x^{2}} \,d x } \]

input
integrate(1/x^2/(e*(b*x^2+a)/(d*x^2+c))^(3/2),x, algorithm="maxima")
 
output
integrate(1/(((b*x^2 + a)*e/(d*x^2 + c))^(3/2)*x^2), x)
 
3.4.16.8 Giac [F]

\[ \int \frac {1}{x^2 \left (\frac {e \left (a+b x^2\right )}{c+d x^2}\right )^{3/2}} \, dx=\int { \frac {1}{\left (\frac {{\left (b x^{2} + a\right )} e}{d x^{2} + c}\right )^{\frac {3}{2}} x^{2}} \,d x } \]

input
integrate(1/x^2/(e*(b*x^2+a)/(d*x^2+c))^(3/2),x, algorithm="giac")
 
output
integrate(1/(((b*x^2 + a)*e/(d*x^2 + c))^(3/2)*x^2), x)
 
3.4.16.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{x^2 \left (\frac {e \left (a+b x^2\right )}{c+d x^2}\right )^{3/2}} \, dx=\int \frac {1}{x^2\,{\left (\frac {e\,\left (b\,x^2+a\right )}{d\,x^2+c}\right )}^{3/2}} \,d x \]

input
int(1/(x^2*((e*(a + b*x^2))/(c + d*x^2))^(3/2)),x)
 
output
int(1/(x^2*((e*(a + b*x^2))/(c + d*x^2))^(3/2)), x)