3.4.40 \(\int (a+\frac {b}{c+d x^2})^{3/2} \, dx\) [340]

3.4.40.1 Optimal result
3.4.40.2 Mathematica [C] (verified)
3.4.40.3 Rubi [A] (verified)
3.4.40.4 Maple [A] (verified)
3.4.40.5 Fricas [A] (verification not implemented)
3.4.40.6 Sympy [F]
3.4.40.7 Maxima [F]
3.4.40.8 Giac [F]
3.4.40.9 Mupad [F(-1)]

3.4.40.1 Optimal result

Integrand size = 17, antiderivative size = 260 \[ \int \left (a+\frac {b}{c+d x^2}\right )^{3/2} \, dx=\frac {b x \sqrt {\frac {b+a c+a d x^2}{c+d x^2}}}{c}-\frac {(b-a c) x \sqrt {\frac {b+a c+a d x^2}{c+d x^2}}}{c}+\frac {(b-a c) \sqrt {\frac {b+a c+a d x^2}{c+d x^2}} E\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|\frac {b}{b+a c}\right )}{\sqrt {c} \sqrt {d} \sqrt {\frac {c \left (b+a c+a d x^2\right )}{(b+a c) \left (c+d x^2\right )}}}+\frac {a \sqrt {c} \sqrt {\frac {b+a c+a d x^2}{c+d x^2}} \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),\frac {b}{b+a c}\right )}{\sqrt {d} \sqrt {\frac {c \left (b+a c+a d x^2\right )}{(b+a c) \left (c+d x^2\right )}}} \]

output
b*x*((a*d*x^2+a*c+b)/(d*x^2+c))^(1/2)/c-(-a*c+b)*x*((a*d*x^2+a*c+b)/(d*x^2 
+c))^(1/2)/c+(-a*c+b)*(1/(1+d*x^2/c))^(1/2)*(1+d*x^2/c)^(1/2)*EllipticE(x* 
d^(1/2)/c^(1/2)/(1+d*x^2/c)^(1/2),(b/(a*c+b))^(1/2))*((a*d*x^2+a*c+b)/(d*x 
^2+c))^(1/2)/c^(1/2)/d^(1/2)/(c*(a*d*x^2+a*c+b)/(a*c+b)/(d*x^2+c))^(1/2)+a 
*(1/(1+d*x^2/c))^(1/2)*(1+d*x^2/c)^(1/2)*EllipticF(x*d^(1/2)/c^(1/2)/(1+d* 
x^2/c)^(1/2),(b/(a*c+b))^(1/2))*c^(1/2)*((a*d*x^2+a*c+b)/(d*x^2+c))^(1/2)/ 
d^(1/2)/(c*(a*d*x^2+a*c+b)/(a*c+b)/(d*x^2+c))^(1/2)
 
3.4.40.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 10.42 (sec) , antiderivative size = 229, normalized size of antiderivative = 0.88 \[ \int \left (a+\frac {b}{c+d x^2}\right )^{3/2} \, dx=\frac {\sqrt {\frac {d}{c}} \sqrt {\frac {b+a c+a d x^2}{c+d x^2}} \left (b \sqrt {\frac {d}{c}} x \left (b+a \left (c+d x^2\right )\right )+i \left (b^2-a^2 c^2\right ) \sqrt {\frac {b+a c+a d x^2}{b+a c}} \sqrt {1+\frac {d x^2}{c}} E\left (i \text {arcsinh}\left (\sqrt {\frac {d}{c}} x\right )|\frac {a c}{b+a c}\right )-i b (b+a c) \sqrt {\frac {b+a c+a d x^2}{b+a c}} \sqrt {1+\frac {d x^2}{c}} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {\frac {d}{c}} x\right ),\frac {a c}{b+a c}\right )\right )}{d \left (b+a \left (c+d x^2\right )\right )} \]

input
Integrate[(a + b/(c + d*x^2))^(3/2),x]
 
output
(Sqrt[d/c]*Sqrt[(b + a*c + a*d*x^2)/(c + d*x^2)]*(b*Sqrt[d/c]*x*(b + a*(c 
+ d*x^2)) + I*(b^2 - a^2*c^2)*Sqrt[(b + a*c + a*d*x^2)/(b + a*c)]*Sqrt[1 + 
 (d*x^2)/c]*EllipticE[I*ArcSinh[Sqrt[d/c]*x], (a*c)/(b + a*c)] - I*b*(b + 
a*c)*Sqrt[(b + a*c + a*d*x^2)/(b + a*c)]*Sqrt[1 + (d*x^2)/c]*EllipticF[I*A 
rcSinh[Sqrt[d/c]*x], (a*c)/(b + a*c)]))/(d*(b + a*(c + d*x^2)))
 
3.4.40.3 Rubi [A] (verified)

Time = 0.47 (sec) , antiderivative size = 325, normalized size of antiderivative = 1.25, number of steps used = 8, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.471, Rules used = {2057, 2058, 315, 27, 406, 320, 388, 313}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \left (a+\frac {b}{c+d x^2}\right )^{3/2} \, dx\)

\(\Big \downarrow \) 2057

\(\displaystyle \int \left (\frac {a c+a d x^2+b}{c+d x^2}\right )^{3/2}dx\)

\(\Big \downarrow \) 2058

\(\displaystyle \frac {\sqrt {c+d x^2} \sqrt {\frac {a c+a d x^2+b}{c+d x^2}} \int \frac {\left (a d x^2+b+a c\right )^{3/2}}{\left (d x^2+c\right )^{3/2}}dx}{\sqrt {a c+a d x^2+b}}\)

\(\Big \downarrow \) 315

\(\displaystyle \frac {\sqrt {c+d x^2} \sqrt {\frac {a c+a d x^2+b}{c+d x^2}} \left (\frac {\int \frac {a d \left (c (b+a c)-(b-a c) d x^2\right )}{\sqrt {d x^2+c} \sqrt {a d x^2+b+a c}}dx}{c d}+\frac {b x \sqrt {a c+a d x^2+b}}{c \sqrt {c+d x^2}}\right )}{\sqrt {a c+a d x^2+b}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\sqrt {c+d x^2} \sqrt {\frac {a c+a d x^2+b}{c+d x^2}} \left (\frac {a \int \frac {c (b+a c)-(b-a c) d x^2}{\sqrt {d x^2+c} \sqrt {a d x^2+b+a c}}dx}{c}+\frac {b x \sqrt {a c+a d x^2+b}}{c \sqrt {c+d x^2}}\right )}{\sqrt {a c+a d x^2+b}}\)

\(\Big \downarrow \) 406

\(\displaystyle \frac {\sqrt {c+d x^2} \sqrt {\frac {a c+a d x^2+b}{c+d x^2}} \left (\frac {a \left (c (a c+b) \int \frac {1}{\sqrt {d x^2+c} \sqrt {a d x^2+b+a c}}dx-d (b-a c) \int \frac {x^2}{\sqrt {d x^2+c} \sqrt {a d x^2+b+a c}}dx\right )}{c}+\frac {b x \sqrt {a c+a d x^2+b}}{c \sqrt {c+d x^2}}\right )}{\sqrt {a c+a d x^2+b}}\)

\(\Big \downarrow \) 320

\(\displaystyle \frac {\sqrt {c+d x^2} \sqrt {\frac {a c+a d x^2+b}{c+d x^2}} \left (\frac {a \left (\frac {c^{3/2} \sqrt {a c+a d x^2+b} \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),\frac {b}{b+a c}\right )}{\sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a c+a d x^2+b\right )}{(a c+b) \left (c+d x^2\right )}}}-d (b-a c) \int \frac {x^2}{\sqrt {d x^2+c} \sqrt {a d x^2+b+a c}}dx\right )}{c}+\frac {b x \sqrt {a c+a d x^2+b}}{c \sqrt {c+d x^2}}\right )}{\sqrt {a c+a d x^2+b}}\)

\(\Big \downarrow \) 388

\(\displaystyle \frac {\sqrt {c+d x^2} \sqrt {\frac {a c+a d x^2+b}{c+d x^2}} \left (\frac {a \left (\frac {c^{3/2} \sqrt {a c+a d x^2+b} \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),\frac {b}{b+a c}\right )}{\sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a c+a d x^2+b\right )}{(a c+b) \left (c+d x^2\right )}}}-d (b-a c) \left (\frac {x \sqrt {a c+a d x^2+b}}{a d \sqrt {c+d x^2}}-\frac {c \int \frac {\sqrt {a d x^2+b+a c}}{\left (d x^2+c\right )^{3/2}}dx}{a d}\right )\right )}{c}+\frac {b x \sqrt {a c+a d x^2+b}}{c \sqrt {c+d x^2}}\right )}{\sqrt {a c+a d x^2+b}}\)

\(\Big \downarrow \) 313

\(\displaystyle \frac {\sqrt {c+d x^2} \sqrt {\frac {a c+a d x^2+b}{c+d x^2}} \left (\frac {a \left (\frac {c^{3/2} \sqrt {a c+a d x^2+b} \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),\frac {b}{b+a c}\right )}{\sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a c+a d x^2+b\right )}{(a c+b) \left (c+d x^2\right )}}}-d (b-a c) \left (\frac {x \sqrt {a c+a d x^2+b}}{a d \sqrt {c+d x^2}}-\frac {\sqrt {c} \sqrt {a c+a d x^2+b} E\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|\frac {b}{b+a c}\right )}{a d^{3/2} \sqrt {c+d x^2} \sqrt {\frac {c \left (a c+a d x^2+b\right )}{(a c+b) \left (c+d x^2\right )}}}\right )\right )}{c}+\frac {b x \sqrt {a c+a d x^2+b}}{c \sqrt {c+d x^2}}\right )}{\sqrt {a c+a d x^2+b}}\)

input
Int[(a + b/(c + d*x^2))^(3/2),x]
 
output
(Sqrt[c + d*x^2]*Sqrt[(b + a*c + a*d*x^2)/(c + d*x^2)]*((b*x*Sqrt[b + a*c 
+ a*d*x^2])/(c*Sqrt[c + d*x^2]) + (a*(-((b - a*c)*d*((x*Sqrt[b + a*c + a*d 
*x^2])/(a*d*Sqrt[c + d*x^2]) - (Sqrt[c]*Sqrt[b + a*c + a*d*x^2]*EllipticE[ 
ArcTan[(Sqrt[d]*x)/Sqrt[c]], b/(b + a*c)])/(a*d^(3/2)*Sqrt[c + d*x^2]*Sqrt 
[(c*(b + a*c + a*d*x^2))/((b + a*c)*(c + d*x^2))]))) + (c^(3/2)*Sqrt[b + a 
*c + a*d*x^2]*EllipticF[ArcTan[(Sqrt[d]*x)/Sqrt[c]], b/(b + a*c)])/(Sqrt[d 
]*Sqrt[c + d*x^2]*Sqrt[(c*(b + a*c + a*d*x^2))/((b + a*c)*(c + d*x^2))]))) 
/c))/Sqrt[b + a*c + a*d*x^2]
 

3.4.40.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 313
Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Sim 
p[(Sqrt[a + b*x^2]/(c*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c 
+ d*x^2)))]))*EllipticE[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /; FreeQ 
[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]
 

rule 315
Int[((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_), x_Symbol] :> Sim 
p[(a*d - c*b)*x*(a + b*x^2)^(p + 1)*((c + d*x^2)^(q - 1)/(2*a*b*(p + 1))), 
x] - Simp[1/(2*a*b*(p + 1))   Int[(a + b*x^2)^(p + 1)*(c + d*x^2)^(q - 2)*S 
imp[c*(a*d - c*b*(2*p + 3)) + d*(a*d*(2*(q - 1) + 1) - b*c*(2*(p + q) + 1)) 
*x^2, x], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && LtQ[p, - 
1] && GtQ[q, 1] && IntBinomialQ[a, b, c, d, 2, p, q, x]
 

rule 320
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S 
imp[(Sqrt[a + b*x^2]/(a*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*( 
c + d*x^2)))]))*EllipticF[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /; Fre 
eQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]
 

rule 388
Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] 
 :> Simp[x*(Sqrt[a + b*x^2]/(b*Sqrt[c + d*x^2])), x] - Simp[c/b   Int[Sqrt[ 
a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - 
 a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]
 

rule 406
Int[((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.)*((e_) + (f_.)*( 
x_)^2), x_Symbol] :> Simp[e   Int[(a + b*x^2)^p*(c + d*x^2)^q, x], x] + Sim 
p[f   Int[x^2*(a + b*x^2)^p*(c + d*x^2)^q, x], x] /; FreeQ[{a, b, c, d, e, 
f, p, q}, x]
 

rule 2057
Int[(u_.)*((a_) + (b_.)/((c_) + (d_.)*(x_)^(n_)))^(p_), x_Symbol] :> Int[u* 
((b + a*c + a*d*x^n)/(c + d*x^n))^p, x] /; FreeQ[{a, b, c, d, n, p}, x]
 

rule 2058
Int[(u_.)*((e_.)*((a_.) + (b_.)*(x_)^(n_.))^(q_.)*((c_) + (d_.)*(x_)^(n_))^ 
(r_.))^(p_), x_Symbol] :> Simp[Simp[(e*(a + b*x^n)^q*(c + d*x^n)^r)^p/((a + 
 b*x^n)^(p*q)*(c + d*x^n)^(p*r))]   Int[u*(a + b*x^n)^(p*q)*(c + d*x^n)^(p* 
r), x], x] /; FreeQ[{a, b, c, d, e, n, p, q, r}, x]
 
3.4.40.4 Maple [A] (verified)

Time = 3.37 (sec) , antiderivative size = 515, normalized size of antiderivative = 1.98

method result size
default \(\frac {\left (\sqrt {\left (a d \,x^{2}+a c +b \right ) \left (d \,x^{2}+c \right )}\, \sqrt {\frac {a d \,x^{2}+a c +b}{a c +b}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, E\left (x \sqrt {-\frac {a d}{a c +b}}, \sqrt {\frac {a c +b}{a c}}\right ) a^{2} c^{2}+\sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+a \,c^{2}+b c}\, \sqrt {-\frac {a d}{a c +b}}\, a b d \,x^{3}+2 \sqrt {\left (a d \,x^{2}+a c +b \right ) \left (d \,x^{2}+c \right )}\, \sqrt {\frac {a d \,x^{2}+a c +b}{a c +b}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, F\left (x \sqrt {-\frac {a d}{a c +b}}, \sqrt {\frac {a c +b}{a c}}\right ) a b c -\sqrt {\left (a d \,x^{2}+a c +b \right ) \left (d \,x^{2}+c \right )}\, \sqrt {\frac {a d \,x^{2}+a c +b}{a c +b}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, E\left (x \sqrt {-\frac {a d}{a c +b}}, \sqrt {\frac {a c +b}{a c}}\right ) a b c +\sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+a \,c^{2}+b c}\, \sqrt {-\frac {a d}{a c +b}}\, a b c x +\sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+a \,c^{2}+b c}\, \sqrt {-\frac {a d}{a c +b}}\, b^{2} x \right ) \sqrt {\frac {a d \,x^{2}+a c +b}{d \,x^{2}+c}}}{\sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+a \,c^{2}+b c}\, \sqrt {-\frac {a d}{a c +b}}\, c \left (a d \,x^{2}+a c +b \right )}\) \(515\)

input
int((a+b/(d*x^2+c))^(3/2),x,method=_RETURNVERBOSE)
 
output
(((a*d*x^2+a*c+b)*(d*x^2+c))^(1/2)*((a*d*x^2+a*c+b)/(a*c+b))^(1/2)*((d*x^2 
+c)/c)^(1/2)*EllipticE(x*(-a*d/(a*c+b))^(1/2),((a*c+b)/a/c)^(1/2))*a^2*c^2 
+(a*d^2*x^4+2*a*c*d*x^2+b*d*x^2+a*c^2+b*c)^(1/2)*(-a*d/(a*c+b))^(1/2)*a*b* 
d*x^3+2*((a*d*x^2+a*c+b)*(d*x^2+c))^(1/2)*((a*d*x^2+a*c+b)/(a*c+b))^(1/2)* 
((d*x^2+c)/c)^(1/2)*EllipticF(x*(-a*d/(a*c+b))^(1/2),((a*c+b)/a/c)^(1/2))* 
a*b*c-((a*d*x^2+a*c+b)*(d*x^2+c))^(1/2)*((a*d*x^2+a*c+b)/(a*c+b))^(1/2)*(( 
d*x^2+c)/c)^(1/2)*EllipticE(x*(-a*d/(a*c+b))^(1/2),((a*c+b)/a/c)^(1/2))*a* 
b*c+(a*d^2*x^4+2*a*c*d*x^2+b*d*x^2+a*c^2+b*c)^(1/2)*(-a*d/(a*c+b))^(1/2)*a 
*b*c*x+(a*d^2*x^4+2*a*c*d*x^2+b*d*x^2+a*c^2+b*c)^(1/2)*(-a*d/(a*c+b))^(1/2 
)*b^2*x)*((a*d*x^2+a*c+b)/(d*x^2+c))^(1/2)/(a*d^2*x^4+2*a*c*d*x^2+b*d*x^2+ 
a*c^2+b*c)^(1/2)/(-a*d/(a*c+b))^(1/2)/c/(a*d*x^2+a*c+b)
 
3.4.40.5 Fricas [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 160, normalized size of antiderivative = 0.62 \[ \int \left (a+\frac {b}{c+d x^2}\right )^{3/2} \, dx=-\frac {{\left (a c^{2} - b c\right )} \sqrt {a} x \sqrt {-\frac {c}{d}} E(\arcsin \left (\frac {\sqrt {-\frac {c}{d}}}{x}\right )\,|\,\frac {a c + b}{a c}) - {\left (a c^{2} - b c + {\left (a c + b\right )} d\right )} \sqrt {a} x \sqrt {-\frac {c}{d}} F(\arcsin \left (\frac {\sqrt {-\frac {c}{d}}}{x}\right )\,|\,\frac {a c + b}{a c}) - {\left (a c d x^{2} + a c^{2} - b c\right )} \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}}}{c d x} \]

input
integrate((a+b/(d*x^2+c))^(3/2),x, algorithm="fricas")
 
output
-((a*c^2 - b*c)*sqrt(a)*x*sqrt(-c/d)*elliptic_e(arcsin(sqrt(-c/d)/x), (a*c 
 + b)/(a*c)) - (a*c^2 - b*c + (a*c + b)*d)*sqrt(a)*x*sqrt(-c/d)*elliptic_f 
(arcsin(sqrt(-c/d)/x), (a*c + b)/(a*c)) - (a*c*d*x^2 + a*c^2 - b*c)*sqrt(( 
a*d*x^2 + a*c + b)/(d*x^2 + c)))/(c*d*x)
 
3.4.40.6 Sympy [F]

\[ \int \left (a+\frac {b}{c+d x^2}\right )^{3/2} \, dx=\int \left (a + \frac {b}{c + d x^{2}}\right )^{\frac {3}{2}}\, dx \]

input
integrate((a+b/(d*x**2+c))**(3/2),x)
 
output
Integral((a + b/(c + d*x**2))**(3/2), x)
 
3.4.40.7 Maxima [F]

\[ \int \left (a+\frac {b}{c+d x^2}\right )^{3/2} \, dx=\int { {\left (a + \frac {b}{d x^{2} + c}\right )}^{\frac {3}{2}} \,d x } \]

input
integrate((a+b/(d*x^2+c))^(3/2),x, algorithm="maxima")
 
output
integrate((a + b/(d*x^2 + c))^(3/2), x)
 
3.4.40.8 Giac [F]

\[ \int \left (a+\frac {b}{c+d x^2}\right )^{3/2} \, dx=\int { {\left (a + \frac {b}{d x^{2} + c}\right )}^{\frac {3}{2}} \,d x } \]

input
integrate((a+b/(d*x^2+c))^(3/2),x, algorithm="giac")
 
output
integrate((a + b/(d*x^2 + c))^(3/2), x)
 
3.4.40.9 Mupad [F(-1)]

Timed out. \[ \int \left (a+\frac {b}{c+d x^2}\right )^{3/2} \, dx=\int {\left (a+\frac {b}{d\,x^2+c}\right )}^{3/2} \,d x \]

input
int((a + b/(c + d*x^2))^(3/2),x)
 
output
int((a + b/(c + d*x^2))^(3/2), x)