3.4.41 \(\int \frac {(a+\frac {b}{c+d x^2})^{3/2}}{x^2} \, dx\) [341]

3.4.41.1 Optimal result
3.4.41.2 Mathematica [C] (verified)
3.4.41.3 Rubi [A] (verified)
3.4.41.4 Maple [B] (verified)
3.4.41.5 Fricas [A] (verification not implemented)
3.4.41.6 Sympy [F]
3.4.41.7 Maxima [F]
3.4.41.8 Giac [F]
3.4.41.9 Mupad [F(-1)]

3.4.41.1 Optimal result

Integrand size = 21, antiderivative size = 312 \[ \int \frac {\left (a+\frac {b}{c+d x^2}\right )^{3/2}}{x^2} \, dx=\frac {b \sqrt {\frac {b+a c+a d x^2}{c+d x^2}}}{c x}+\frac {(2 b+a c) d x \sqrt {\frac {b+a c+a d x^2}{c+d x^2}}}{c^2}-\frac {(2 b+a c) \left (c+d x^2\right ) \sqrt {\frac {b+a c+a d x^2}{c+d x^2}}}{c^2 x}-\frac {(2 b+a c) \sqrt {d} \sqrt {\frac {b+a c+a d x^2}{c+d x^2}} E\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|\frac {b}{b+a c}\right )}{c^{3/2} \sqrt {\frac {c \left (b+a c+a d x^2\right )}{(b+a c) \left (c+d x^2\right )}}}+\frac {a \sqrt {d} \sqrt {\frac {b+a c+a d x^2}{c+d x^2}} \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),\frac {b}{b+a c}\right )}{\sqrt {c} \sqrt {\frac {c \left (b+a c+a d x^2\right )}{(b+a c) \left (c+d x^2\right )}}} \]

output
b*((a*d*x^2+a*c+b)/(d*x^2+c))^(1/2)/c/x+(a*c+2*b)*d*x*((a*d*x^2+a*c+b)/(d* 
x^2+c))^(1/2)/c^2-(a*c+2*b)*(d*x^2+c)*((a*d*x^2+a*c+b)/(d*x^2+c))^(1/2)/c^ 
2/x-(a*c+2*b)*(1/(1+d*x^2/c))^(1/2)*(1+d*x^2/c)^(1/2)*EllipticE(x*d^(1/2)/ 
c^(1/2)/(1+d*x^2/c)^(1/2),(b/(a*c+b))^(1/2))*d^(1/2)*((a*d*x^2+a*c+b)/(d*x 
^2+c))^(1/2)/c^(3/2)/(c*(a*d*x^2+a*c+b)/(a*c+b)/(d*x^2+c))^(1/2)+a*(1/(1+d 
*x^2/c))^(1/2)*(1+d*x^2/c)^(1/2)*EllipticF(x*d^(1/2)/c^(1/2)/(1+d*x^2/c)^( 
1/2),(b/(a*c+b))^(1/2))*d^(1/2)*((a*d*x^2+a*c+b)/(d*x^2+c))^(1/2)/c^(1/2)/ 
(c*(a*d*x^2+a*c+b)/(a*c+b)/(d*x^2+c))^(1/2)
 
3.4.41.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 10.45 (sec) , antiderivative size = 270, normalized size of antiderivative = 0.87 \[ \int \frac {\left (a+\frac {b}{c+d x^2}\right )^{3/2}}{x^2} \, dx=-\frac {\sqrt {\frac {b+a c+a d x^2}{c+d x^2}} \left (\sqrt {\frac {d}{c}} \left (2 a b \left (c+d x^2\right )^2+a^2 c \left (c+d x^2\right )^2+b^2 \left (c+2 d x^2\right )\right )+i \left (2 b^2+3 a b c+a^2 c^2\right ) d x \sqrt {\frac {b+a c+a d x^2}{b+a c}} \sqrt {1+\frac {d x^2}{c}} E\left (i \text {arcsinh}\left (\sqrt {\frac {d}{c}} x\right )|\frac {a c}{b+a c}\right )-2 i b (b+a c) d x \sqrt {\frac {b+a c+a d x^2}{b+a c}} \sqrt {1+\frac {d x^2}{c}} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\sqrt {\frac {d}{c}} x\right ),\frac {a c}{b+a c}\right )\right )}{c^2 \sqrt {\frac {d}{c}} x \left (b+a \left (c+d x^2\right )\right )} \]

input
Integrate[(a + b/(c + d*x^2))^(3/2)/x^2,x]
 
output
-((Sqrt[(b + a*c + a*d*x^2)/(c + d*x^2)]*(Sqrt[d/c]*(2*a*b*(c + d*x^2)^2 + 
 a^2*c*(c + d*x^2)^2 + b^2*(c + 2*d*x^2)) + I*(2*b^2 + 3*a*b*c + a^2*c^2)* 
d*x*Sqrt[(b + a*c + a*d*x^2)/(b + a*c)]*Sqrt[1 + (d*x^2)/c]*EllipticE[I*Ar 
cSinh[Sqrt[d/c]*x], (a*c)/(b + a*c)] - (2*I)*b*(b + a*c)*d*x*Sqrt[(b + a*c 
 + a*d*x^2)/(b + a*c)]*Sqrt[1 + (d*x^2)/c]*EllipticF[I*ArcSinh[Sqrt[d/c]*x 
], (a*c)/(b + a*c)]))/(c^2*Sqrt[d/c]*x*(b + a*(c + d*x^2))))
 
3.4.41.3 Rubi [A] (verified)

Time = 0.65 (sec) , antiderivative size = 393, normalized size of antiderivative = 1.26, number of steps used = 12, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.571, Rules used = {2057, 2058, 370, 25, 27, 445, 25, 27, 406, 320, 388, 313}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (a+\frac {b}{c+d x^2}\right )^{3/2}}{x^2} \, dx\)

\(\Big \downarrow \) 2057

\(\displaystyle \int \frac {\left (\frac {a c+a d x^2+b}{c+d x^2}\right )^{3/2}}{x^2}dx\)

\(\Big \downarrow \) 2058

\(\displaystyle \frac {\sqrt {c+d x^2} \sqrt {\frac {a c+a d x^2+b}{c+d x^2}} \int \frac {\left (a d x^2+b+a c\right )^{3/2}}{x^2 \left (d x^2+c\right )^{3/2}}dx}{\sqrt {a c+a d x^2+b}}\)

\(\Big \downarrow \) 370

\(\displaystyle \frac {\sqrt {c+d x^2} \sqrt {\frac {a c+a d x^2+b}{c+d x^2}} \left (\frac {b \sqrt {a c+a d x^2+b}}{c x \sqrt {c+d x^2}}-\frac {\int -\frac {(b+a c) d \left (a d x^2+2 b+a c\right )}{x^2 \sqrt {d x^2+c} \sqrt {a d x^2+b+a c}}dx}{c d}\right )}{\sqrt {a c+a d x^2+b}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\sqrt {c+d x^2} \sqrt {\frac {a c+a d x^2+b}{c+d x^2}} \left (\frac {\int \frac {(b+a c) d \left (a d x^2+2 b+a c\right )}{x^2 \sqrt {d x^2+c} \sqrt {a d x^2+b+a c}}dx}{c d}+\frac {b \sqrt {a c+a d x^2+b}}{c x \sqrt {c+d x^2}}\right )}{\sqrt {a c+a d x^2+b}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\sqrt {c+d x^2} \sqrt {\frac {a c+a d x^2+b}{c+d x^2}} \left (\frac {(a c+b) \int \frac {a d x^2+2 b+a c}{x^2 \sqrt {d x^2+c} \sqrt {a d x^2+b+a c}}dx}{c}+\frac {b \sqrt {a c+a d x^2+b}}{c x \sqrt {c+d x^2}}\right )}{\sqrt {a c+a d x^2+b}}\)

\(\Big \downarrow \) 445

\(\displaystyle \frac {\sqrt {c+d x^2} \sqrt {\frac {a c+a d x^2+b}{c+d x^2}} \left (\frac {(a c+b) \left (-\frac {\int -\frac {a d \left ((2 b+a c) d x^2+c (b+a c)\right )}{\sqrt {d x^2+c} \sqrt {a d x^2+b+a c}}dx}{c (a c+b)}-\frac {(a c+2 b) \sqrt {c+d x^2} \sqrt {a c+a d x^2+b}}{c x (a c+b)}\right )}{c}+\frac {b \sqrt {a c+a d x^2+b}}{c x \sqrt {c+d x^2}}\right )}{\sqrt {a c+a d x^2+b}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\sqrt {c+d x^2} \sqrt {\frac {a c+a d x^2+b}{c+d x^2}} \left (\frac {(a c+b) \left (\frac {\int \frac {a d \left ((2 b+a c) d x^2+c (b+a c)\right )}{\sqrt {d x^2+c} \sqrt {a d x^2+b+a c}}dx}{c (a c+b)}-\frac {(a c+2 b) \sqrt {c+d x^2} \sqrt {a c+a d x^2+b}}{c x (a c+b)}\right )}{c}+\frac {b \sqrt {a c+a d x^2+b}}{c x \sqrt {c+d x^2}}\right )}{\sqrt {a c+a d x^2+b}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\sqrt {c+d x^2} \sqrt {\frac {a c+a d x^2+b}{c+d x^2}} \left (\frac {(a c+b) \left (\frac {a d \int \frac {(2 b+a c) d x^2+c (b+a c)}{\sqrt {d x^2+c} \sqrt {a d x^2+b+a c}}dx}{c (a c+b)}-\frac {(a c+2 b) \sqrt {c+d x^2} \sqrt {a c+a d x^2+b}}{c x (a c+b)}\right )}{c}+\frac {b \sqrt {a c+a d x^2+b}}{c x \sqrt {c+d x^2}}\right )}{\sqrt {a c+a d x^2+b}}\)

\(\Big \downarrow \) 406

\(\displaystyle \frac {\sqrt {c+d x^2} \sqrt {\frac {a c+a d x^2+b}{c+d x^2}} \left (\frac {(a c+b) \left (\frac {a d \left (c (a c+b) \int \frac {1}{\sqrt {d x^2+c} \sqrt {a d x^2+b+a c}}dx+d (a c+2 b) \int \frac {x^2}{\sqrt {d x^2+c} \sqrt {a d x^2+b+a c}}dx\right )}{c (a c+b)}-\frac {(a c+2 b) \sqrt {c+d x^2} \sqrt {a c+a d x^2+b}}{c x (a c+b)}\right )}{c}+\frac {b \sqrt {a c+a d x^2+b}}{c x \sqrt {c+d x^2}}\right )}{\sqrt {a c+a d x^2+b}}\)

\(\Big \downarrow \) 320

\(\displaystyle \frac {\sqrt {c+d x^2} \sqrt {\frac {a c+a d x^2+b}{c+d x^2}} \left (\frac {(a c+b) \left (\frac {a d \left (d (a c+2 b) \int \frac {x^2}{\sqrt {d x^2+c} \sqrt {a d x^2+b+a c}}dx+\frac {c^{3/2} \sqrt {a c+a d x^2+b} \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),\frac {b}{b+a c}\right )}{\sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a c+a d x^2+b\right )}{(a c+b) \left (c+d x^2\right )}}}\right )}{c (a c+b)}-\frac {(a c+2 b) \sqrt {c+d x^2} \sqrt {a c+a d x^2+b}}{c x (a c+b)}\right )}{c}+\frac {b \sqrt {a c+a d x^2+b}}{c x \sqrt {c+d x^2}}\right )}{\sqrt {a c+a d x^2+b}}\)

\(\Big \downarrow \) 388

\(\displaystyle \frac {\sqrt {c+d x^2} \sqrt {\frac {a c+a d x^2+b}{c+d x^2}} \left (\frac {(a c+b) \left (\frac {a d \left (d (a c+2 b) \left (\frac {x \sqrt {a c+a d x^2+b}}{a d \sqrt {c+d x^2}}-\frac {c \int \frac {\sqrt {a d x^2+b+a c}}{\left (d x^2+c\right )^{3/2}}dx}{a d}\right )+\frac {c^{3/2} \sqrt {a c+a d x^2+b} \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),\frac {b}{b+a c}\right )}{\sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a c+a d x^2+b\right )}{(a c+b) \left (c+d x^2\right )}}}\right )}{c (a c+b)}-\frac {(a c+2 b) \sqrt {c+d x^2} \sqrt {a c+a d x^2+b}}{c x (a c+b)}\right )}{c}+\frac {b \sqrt {a c+a d x^2+b}}{c x \sqrt {c+d x^2}}\right )}{\sqrt {a c+a d x^2+b}}\)

\(\Big \downarrow \) 313

\(\displaystyle \frac {\sqrt {c+d x^2} \sqrt {\frac {a c+a d x^2+b}{c+d x^2}} \left (\frac {(a c+b) \left (\frac {a d \left (\frac {c^{3/2} \sqrt {a c+a d x^2+b} \operatorname {EllipticF}\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right ),\frac {b}{b+a c}\right )}{\sqrt {d} \sqrt {c+d x^2} \sqrt {\frac {c \left (a c+a d x^2+b\right )}{(a c+b) \left (c+d x^2\right )}}}+d (a c+2 b) \left (\frac {x \sqrt {a c+a d x^2+b}}{a d \sqrt {c+d x^2}}-\frac {\sqrt {c} \sqrt {a c+a d x^2+b} E\left (\arctan \left (\frac {\sqrt {d} x}{\sqrt {c}}\right )|\frac {b}{b+a c}\right )}{a d^{3/2} \sqrt {c+d x^2} \sqrt {\frac {c \left (a c+a d x^2+b\right )}{(a c+b) \left (c+d x^2\right )}}}\right )\right )}{c (a c+b)}-\frac {(a c+2 b) \sqrt {c+d x^2} \sqrt {a c+a d x^2+b}}{c x (a c+b)}\right )}{c}+\frac {b \sqrt {a c+a d x^2+b}}{c x \sqrt {c+d x^2}}\right )}{\sqrt {a c+a d x^2+b}}\)

input
Int[(a + b/(c + d*x^2))^(3/2)/x^2,x]
 
output
(Sqrt[c + d*x^2]*Sqrt[(b + a*c + a*d*x^2)/(c + d*x^2)]*((b*Sqrt[b + a*c + 
a*d*x^2])/(c*x*Sqrt[c + d*x^2]) + ((b + a*c)*(-(((2*b + a*c)*Sqrt[c + d*x^ 
2]*Sqrt[b + a*c + a*d*x^2])/(c*(b + a*c)*x)) + (a*d*((2*b + a*c)*d*((x*Sqr 
t[b + a*c + a*d*x^2])/(a*d*Sqrt[c + d*x^2]) - (Sqrt[c]*Sqrt[b + a*c + a*d* 
x^2]*EllipticE[ArcTan[(Sqrt[d]*x)/Sqrt[c]], b/(b + a*c)])/(a*d^(3/2)*Sqrt[ 
c + d*x^2]*Sqrt[(c*(b + a*c + a*d*x^2))/((b + a*c)*(c + d*x^2))])) + (c^(3 
/2)*Sqrt[b + a*c + a*d*x^2]*EllipticF[ArcTan[(Sqrt[d]*x)/Sqrt[c]], b/(b + 
a*c)])/(Sqrt[d]*Sqrt[c + d*x^2]*Sqrt[(c*(b + a*c + a*d*x^2))/((b + a*c)*(c 
 + d*x^2))])))/(c*(b + a*c))))/c))/Sqrt[b + a*c + a*d*x^2]
 

3.4.41.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 313
Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Sim 
p[(Sqrt[a + b*x^2]/(c*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c 
+ d*x^2)))]))*EllipticE[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /; FreeQ 
[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]
 

rule 320
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S 
imp[(Sqrt[a + b*x^2]/(a*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*( 
c + d*x^2)))]))*EllipticF[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /; Fre 
eQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]
 

rule 370
Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2)^(q_ 
), x_Symbol] :> Simp[(-(b*c - a*d))*(e*x)^(m + 1)*(a + b*x^2)^(p + 1)*((c + 
 d*x^2)^(q - 1)/(a*b*e*2*(p + 1))), x] + Simp[1/(a*b*2*(p + 1))   Int[(e*x) 
^m*(a + b*x^2)^(p + 1)*(c + d*x^2)^(q - 2)*Simp[c*(b*c*2*(p + 1) + (b*c - a 
*d)*(m + 1)) + d*(b*c*2*(p + 1) + (b*c - a*d)*(m + 2*(q - 1) + 1))*x^2, x], 
 x], x] /; FreeQ[{a, b, c, d, e, m}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] 
&& GtQ[q, 1] && IntBinomialQ[a, b, c, d, e, m, 2, p, q, x]
 

rule 388
Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] 
 :> Simp[x*(Sqrt[a + b*x^2]/(b*Sqrt[c + d*x^2])), x] - Simp[c/b   Int[Sqrt[ 
a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - 
 a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]
 

rule 406
Int[((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.)*((e_) + (f_.)*( 
x_)^2), x_Symbol] :> Simp[e   Int[(a + b*x^2)^p*(c + d*x^2)^q, x], x] + Sim 
p[f   Int[x^2*(a + b*x^2)^p*(c + d*x^2)^q, x], x] /; FreeQ[{a, b, c, d, e, 
f, p, q}, x]
 

rule 445
Int[((g_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_ 
.)*((e_) + (f_.)*(x_)^2), x_Symbol] :> Simp[e*(g*x)^(m + 1)*(a + b*x^2)^(p 
+ 1)*((c + d*x^2)^(q + 1)/(a*c*g*(m + 1))), x] + Simp[1/(a*c*g^2*(m + 1)) 
 Int[(g*x)^(m + 2)*(a + b*x^2)^p*(c + d*x^2)^q*Simp[a*f*c*(m + 1) - e*(b*c 
+ a*d)*(m + 2 + 1) - e*2*(b*c*p + a*d*q) - b*e*d*(m + 2*(p + q + 2) + 1)*x^ 
2, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p, q}, x] && LtQ[m, -1]
 

rule 2057
Int[(u_.)*((a_) + (b_.)/((c_) + (d_.)*(x_)^(n_)))^(p_), x_Symbol] :> Int[u* 
((b + a*c + a*d*x^n)/(c + d*x^n))^p, x] /; FreeQ[{a, b, c, d, n, p}, x]
 

rule 2058
Int[(u_.)*((e_.)*((a_.) + (b_.)*(x_)^(n_.))^(q_.)*((c_) + (d_.)*(x_)^(n_))^ 
(r_.))^(p_), x_Symbol] :> Simp[Simp[(e*(a + b*x^n)^q*(c + d*x^n)^r)^p/((a + 
 b*x^n)^(p*q)*(c + d*x^n)^(p*r))]   Int[u*(a + b*x^n)^(p*q)*(c + d*x^n)^(p* 
r), x], x] /; FreeQ[{a, b, c, d, e, n, p, q, r}, x]
 
3.4.41.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(872\) vs. \(2(360)=720\).

Time = 9.40 (sec) , antiderivative size = 873, normalized size of antiderivative = 2.80

method result size
default \(-\frac {\left (\sqrt {\left (a d \,x^{2}+a c +b \right ) \left (d \,x^{2}+c \right )}\, \sqrt {-\frac {a d}{a c +b}}\, a^{2} c \,d^{2} x^{4}+\sqrt {\left (a d \,x^{2}+a c +b \right ) \left (d \,x^{2}+c \right )}\, \sqrt {-\frac {a d}{a c +b}}\, a b \,d^{2} x^{4}-\sqrt {\left (a d \,x^{2}+a c +b \right ) \left (d \,x^{2}+c \right )}\, \sqrt {\frac {a d \,x^{2}+a c +b}{a c +b}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, E\left (x \sqrt {-\frac {a d}{a c +b}}, \sqrt {\frac {a c +b}{a c}}\right ) a^{2} c^{2} d x +\sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+a \,c^{2}+b c}\, \sqrt {-\frac {a d}{a c +b}}\, a b \,d^{2} x^{4}+2 \sqrt {\left (a d \,x^{2}+a c +b \right ) \left (d \,x^{2}+c \right )}\, \sqrt {-\frac {a d}{a c +b}}\, a^{2} c^{2} d \,x^{2}+\sqrt {\left (a d \,x^{2}+a c +b \right ) \left (d \,x^{2}+c \right )}\, \sqrt {\frac {a d \,x^{2}+a c +b}{a c +b}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, F\left (x \sqrt {-\frac {a d}{a c +b}}, \sqrt {\frac {a c +b}{a c}}\right ) a b c d x -2 \sqrt {\left (a d \,x^{2}+a c +b \right ) \left (d \,x^{2}+c \right )}\, \sqrt {\frac {a d \,x^{2}+a c +b}{a c +b}}\, \sqrt {\frac {d \,x^{2}+c}{c}}\, E\left (x \sqrt {-\frac {a d}{a c +b}}, \sqrt {\frac {a c +b}{a c}}\right ) a b c d x +3 \sqrt {\left (a d \,x^{2}+a c +b \right ) \left (d \,x^{2}+c \right )}\, \sqrt {-\frac {a d}{a c +b}}\, a b c d \,x^{2}+\sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+a \,c^{2}+b c}\, \sqrt {-\frac {a d}{a c +b}}\, a b c d \,x^{2}+\sqrt {\left (a d \,x^{2}+a c +b \right ) \left (d \,x^{2}+c \right )}\, \sqrt {-\frac {a d}{a c +b}}\, a^{2} c^{3}+\sqrt {\left (a d \,x^{2}+a c +b \right ) \left (d \,x^{2}+c \right )}\, \sqrt {-\frac {a d}{a c +b}}\, b^{2} d \,x^{2}+\sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+a \,c^{2}+b c}\, \sqrt {-\frac {a d}{a c +b}}\, b^{2} d \,x^{2}+2 \sqrt {\left (a d \,x^{2}+a c +b \right ) \left (d \,x^{2}+c \right )}\, \sqrt {-\frac {a d}{a c +b}}\, a b \,c^{2}+\sqrt {\left (a d \,x^{2}+a c +b \right ) \left (d \,x^{2}+c \right )}\, \sqrt {-\frac {a d}{a c +b}}\, b^{2} c \right ) \sqrt {\frac {a d \,x^{2}+a c +b}{d \,x^{2}+c}}}{\sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+a \,c^{2}+b c}\, \sqrt {-\frac {a d}{a c +b}}\, x \,c^{2} \left (a d \,x^{2}+a c +b \right )}\) \(873\)
risch \(-\frac {\left (a c +b \right ) \left (d \,x^{2}+c \right ) \sqrt {\frac {a d \,x^{2}+a c +b}{d \,x^{2}+c}}}{c^{2} x}+\frac {d \left (\frac {a^{2} c^{2} \sqrt {1+\frac {a d \,x^{2}}{a c +b}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, F\left (x \sqrt {-\frac {a d}{a c +b}}, \sqrt {-1+\frac {2 a c d +b d}{d c a}}\right )}{\sqrt {-\frac {a d}{a c +b}}\, \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+a \,c^{2}+b c}}-\frac {2 a^{2} c d \left (a \,c^{2}+b c \right ) \sqrt {1+\frac {a d \,x^{2}}{a c +b}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \left (F\left (x \sqrt {-\frac {a d}{a c +b}}, \sqrt {-1+\frac {2 a c d +b d}{d c a}}\right )-E\left (x \sqrt {-\frac {a d}{a c +b}}, \sqrt {-1+\frac {2 a c d +b d}{d c a}}\right )\right )}{\sqrt {-\frac {a d}{a c +b}}\, \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+a \,c^{2}+b c}\, \left (2 a c d +2 b d \right )}-\frac {2 d a b \left (a \,c^{2}+b c \right ) \sqrt {1+\frac {a d \,x^{2}}{a c +b}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \left (F\left (x \sqrt {-\frac {a d}{a c +b}}, \sqrt {-1+\frac {2 a c d +b d}{d c a}}\right )-E\left (x \sqrt {-\frac {a d}{a c +b}}, \sqrt {-1+\frac {2 a c d +b d}{d c a}}\right )\right )}{\sqrt {-\frac {a d}{a c +b}}\, \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+a \,c^{2}+b c}\, \left (2 a c d +2 b d \right )}-b^{2} c \left (\frac {\left (a \,d^{2} x^{2}+a c d +b d \right ) x}{c b d \sqrt {\left (x^{2}+\frac {c}{d}\right ) \left (a \,d^{2} x^{2}+a c d +b d \right )}}+\frac {\left (\frac {1}{c}-\frac {a c d +b d}{c b d}\right ) \sqrt {1+\frac {a d \,x^{2}}{a c +b}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, F\left (x \sqrt {-\frac {a d}{a c +b}}, \sqrt {-1+\frac {2 a c d +b d}{d c a}}\right )}{\sqrt {-\frac {a d}{a c +b}}\, \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+a \,c^{2}+b c}}+\frac {2 a d \left (a \,c^{2}+b c \right ) \sqrt {1+\frac {a d \,x^{2}}{a c +b}}\, \sqrt {1+\frac {d \,x^{2}}{c}}\, \left (F\left (x \sqrt {-\frac {a d}{a c +b}}, \sqrt {-1+\frac {2 a c d +b d}{d c a}}\right )-E\left (x \sqrt {-\frac {a d}{a c +b}}, \sqrt {-1+\frac {2 a c d +b d}{d c a}}\right )\right )}{b c \sqrt {-\frac {a d}{a c +b}}\, \sqrt {a \,d^{2} x^{4}+2 a c d \,x^{2}+b d \,x^{2}+a \,c^{2}+b c}\, \left (2 a c d +2 b d \right )}\right )\right ) \sqrt {\frac {a d \,x^{2}+a c +b}{d \,x^{2}+c}}\, \sqrt {\left (a d \,x^{2}+a c +b \right ) \left (d \,x^{2}+c \right )}}{c^{2} \left (a d \,x^{2}+a c +b \right )}\) \(982\)

input
int((a+b/(d*x^2+c))^(3/2)/x^2,x,method=_RETURNVERBOSE)
 
output
-(((a*d*x^2+a*c+b)*(d*x^2+c))^(1/2)*(-a*d/(a*c+b))^(1/2)*a^2*c*d^2*x^4+((a 
*d*x^2+a*c+b)*(d*x^2+c))^(1/2)*(-a*d/(a*c+b))^(1/2)*a*b*d^2*x^4-((a*d*x^2+ 
a*c+b)*(d*x^2+c))^(1/2)*((a*d*x^2+a*c+b)/(a*c+b))^(1/2)*((d*x^2+c)/c)^(1/2 
)*EllipticE(x*(-a*d/(a*c+b))^(1/2),((a*c+b)/a/c)^(1/2))*a^2*c^2*d*x+(a*d^2 
*x^4+2*a*c*d*x^2+b*d*x^2+a*c^2+b*c)^(1/2)*(-a*d/(a*c+b))^(1/2)*a*b*d^2*x^4 
+2*((a*d*x^2+a*c+b)*(d*x^2+c))^(1/2)*(-a*d/(a*c+b))^(1/2)*a^2*c^2*d*x^2+(( 
a*d*x^2+a*c+b)*(d*x^2+c))^(1/2)*((a*d*x^2+a*c+b)/(a*c+b))^(1/2)*((d*x^2+c) 
/c)^(1/2)*EllipticF(x*(-a*d/(a*c+b))^(1/2),((a*c+b)/a/c)^(1/2))*a*b*c*d*x- 
2*((a*d*x^2+a*c+b)*(d*x^2+c))^(1/2)*((a*d*x^2+a*c+b)/(a*c+b))^(1/2)*((d*x^ 
2+c)/c)^(1/2)*EllipticE(x*(-a*d/(a*c+b))^(1/2),((a*c+b)/a/c)^(1/2))*a*b*c* 
d*x+3*((a*d*x^2+a*c+b)*(d*x^2+c))^(1/2)*(-a*d/(a*c+b))^(1/2)*a*b*c*d*x^2+( 
a*d^2*x^4+2*a*c*d*x^2+b*d*x^2+a*c^2+b*c)^(1/2)*(-a*d/(a*c+b))^(1/2)*a*b*c* 
d*x^2+((a*d*x^2+a*c+b)*(d*x^2+c))^(1/2)*(-a*d/(a*c+b))^(1/2)*a^2*c^3+((a*d 
*x^2+a*c+b)*(d*x^2+c))^(1/2)*(-a*d/(a*c+b))^(1/2)*b^2*d*x^2+(a*d^2*x^4+2*a 
*c*d*x^2+b*d*x^2+a*c^2+b*c)^(1/2)*(-a*d/(a*c+b))^(1/2)*b^2*d*x^2+2*((a*d*x 
^2+a*c+b)*(d*x^2+c))^(1/2)*(-a*d/(a*c+b))^(1/2)*a*b*c^2+((a*d*x^2+a*c+b)*( 
d*x^2+c))^(1/2)*(-a*d/(a*c+b))^(1/2)*b^2*c)*((a*d*x^2+a*c+b)/(d*x^2+c))^(1 
/2)/(a*d^2*x^4+2*a*c*d*x^2+b*d*x^2+a*c^2+b*c)^(1/2)/(-a*d/(a*c+b))^(1/2)/x 
/c^2/(a*d*x^2+a*c+b)
 
3.4.41.5 Fricas [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 251, normalized size of antiderivative = 0.80 \[ \int \frac {\left (a+\frac {b}{c+d x^2}\right )^{3/2}}{x^2} \, dx=\frac {{\left (a^{2} c + 2 \, a b\right )} \sqrt {-\frac {a d}{a c + b}} d^{2} x \sqrt {\frac {a c^{2} + b c}{d^{2}}} E(\arcsin \left (\sqrt {-\frac {a d}{a c + b}} x\right )\,|\,\frac {a c + b}{a c}) - {\left ({\left (a^{2} c + 2 \, a b\right )} d^{2} + {\left (a^{2} c^{2} + 2 \, a b c + b^{2}\right )} d\right )} \sqrt {-\frac {a d}{a c + b}} x \sqrt {\frac {a c^{2} + b c}{d^{2}}} F(\arcsin \left (\sqrt {-\frac {a d}{a c + b}} x\right )\,|\,\frac {a c + b}{a c}) - {\left (a^{2} c^{3} + 2 \, a b c^{2} + {\left (a^{2} c^{2} + 3 \, a b c + 2 \, b^{2}\right )} d x^{2} + b^{2} c\right )} \sqrt {\frac {a d x^{2} + a c + b}{d x^{2} + c}}}{{\left (a c^{3} + b c^{2}\right )} x} \]

input
integrate((a+b/(d*x^2+c))^(3/2)/x^2,x, algorithm="fricas")
 
output
((a^2*c + 2*a*b)*sqrt(-a*d/(a*c + b))*d^2*x*sqrt((a*c^2 + b*c)/d^2)*ellipt 
ic_e(arcsin(sqrt(-a*d/(a*c + b))*x), (a*c + b)/(a*c)) - ((a^2*c + 2*a*b)*d 
^2 + (a^2*c^2 + 2*a*b*c + b^2)*d)*sqrt(-a*d/(a*c + b))*x*sqrt((a*c^2 + b*c 
)/d^2)*elliptic_f(arcsin(sqrt(-a*d/(a*c + b))*x), (a*c + b)/(a*c)) - (a^2* 
c^3 + 2*a*b*c^2 + (a^2*c^2 + 3*a*b*c + 2*b^2)*d*x^2 + b^2*c)*sqrt((a*d*x^2 
 + a*c + b)/(d*x^2 + c)))/((a*c^3 + b*c^2)*x)
 
3.4.41.6 Sympy [F]

\[ \int \frac {\left (a+\frac {b}{c+d x^2}\right )^{3/2}}{x^2} \, dx=\int \frac {\left (\frac {a c + a d x^{2} + b}{c + d x^{2}}\right )^{\frac {3}{2}}}{x^{2}}\, dx \]

input
integrate((a+b/(d*x**2+c))**(3/2)/x**2,x)
 
output
Integral(((a*c + a*d*x**2 + b)/(c + d*x**2))**(3/2)/x**2, x)
 
3.4.41.7 Maxima [F]

\[ \int \frac {\left (a+\frac {b}{c+d x^2}\right )^{3/2}}{x^2} \, dx=\int { \frac {{\left (a + \frac {b}{d x^{2} + c}\right )}^{\frac {3}{2}}}{x^{2}} \,d x } \]

input
integrate((a+b/(d*x^2+c))^(3/2)/x^2,x, algorithm="maxima")
 
output
integrate((a + b/(d*x^2 + c))^(3/2)/x^2, x)
 
3.4.41.8 Giac [F]

\[ \int \frac {\left (a+\frac {b}{c+d x^2}\right )^{3/2}}{x^2} \, dx=\int { \frac {{\left (a + \frac {b}{d x^{2} + c}\right )}^{\frac {3}{2}}}{x^{2}} \,d x } \]

input
integrate((a+b/(d*x^2+c))^(3/2)/x^2,x, algorithm="giac")
 
output
integrate((a + b/(d*x^2 + c))^(3/2)/x^2, x)
 
3.4.41.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\left (a+\frac {b}{c+d x^2}\right )^{3/2}}{x^2} \, dx=\int \frac {{\left (a+\frac {b}{d\,x^2+c}\right )}^{3/2}}{x^2} \,d x \]

input
int((a + b/(c + d*x^2))^(3/2)/x^2,x)
 
output
int((a + b/(c + d*x^2))^(3/2)/x^2, x)