3.1.14 \(\int \frac {1}{(3+x) \sqrt {1+x^3}} \, dx\) [14]

3.1.14.1 Optimal result
3.1.14.2 Mathematica [C] (warning: unable to verify)
3.1.14.3 Rubi [A] (warning: unable to verify)
3.1.14.4 Maple [A] (verified)
3.1.14.5 Fricas [F]
3.1.14.6 Sympy [F]
3.1.14.7 Maxima [F]
3.1.14.8 Giac [F]
3.1.14.9 Mupad [B] (verification not implemented)

3.1.14.1 Optimal result

Integrand size = 15, antiderivative size = 329 \[ \int \frac {1}{(3+x) \sqrt {1+x^3}} \, dx=\frac {(1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} \arctan \left (\frac {\sqrt {\frac {13}{2}} \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}}}{\sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}}}\right )}{\sqrt {26} \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}}+\frac {2 \sqrt {26+15 \sqrt {3}} (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}}-\frac {4 \sqrt [4]{3} (1+x) \sqrt {\frac {1-x+x^2}{\left (1+\sqrt {3}+x\right )^2}} \operatorname {EllipticPi}\left (97-56 \sqrt {3},\arcsin \left (\frac {1-\sqrt {3}+x}{1+\sqrt {3}+x}\right ),-7-4 \sqrt {3}\right )}{\sqrt {2-\sqrt {3}} \sqrt {\frac {1+x}{\left (1+\sqrt {3}+x\right )^2}} \sqrt {1+x^3}} \]

output
1/26*(1+x)*arctan(1/2*26^(1/2)*((1+x)/(1+x+3^(1/2))^2)^(1/2)/((x^2-x+1)/(1 
+x+3^(1/2))^2)^(1/2))*((x^2-x+1)/(1+x+3^(1/2))^2)^(1/2)*26^(1/2)/(x^3+1)^( 
1/2)/((1+x)/(1+x+3^(1/2))^2)^(1/2)+4*3^(1/4)*(1+x)*EllipticPi((-1-x+3^(1/2 
))/(1+x+3^(1/2)),97-56*3^(1/2),I*3^(1/2)+2*I)*((x^2-x+1)/(1+x+3^(1/2))^2)^ 
(1/2)/(x^3+1)^(1/2)/(1/2*6^(1/2)-1/2*2^(1/2))/((1+x)/(1+x+3^(1/2))^2)^(1/2 
)+2/3*(1+x)*EllipticF((1+x-3^(1/2))/(1+x+3^(1/2)),I*3^(1/2)+2*I)*((x^2-x+1 
)/(1+x+3^(1/2))^2)^(1/2)*(3/2*6^(1/2)+5/2*2^(1/2))*3^(3/4)/(x^3+1)^(1/2)/( 
(1+x)/(1+x+3^(1/2))^2)^(1/2)
 
3.1.14.2 Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 20.09 (sec) , antiderivative size = 128, normalized size of antiderivative = 0.39 \[ \int \frac {1}{(3+x) \sqrt {1+x^3}} \, dx=-\frac {4 \sqrt {2} \sqrt {\frac {i (1+x)}{3 i+\sqrt {3}}} \sqrt {1-x+x^2} \operatorname {EllipticPi}\left (\frac {2 \sqrt {3}}{7 i+\sqrt {3}},\arcsin \left (\frac {\sqrt {i+\sqrt {3}-2 i x}}{\sqrt {2} \sqrt [4]{3}}\right ),\frac {2 \sqrt {3}}{3 i+\sqrt {3}}\right )}{\left (7 i+\sqrt {3}\right ) \sqrt {1+x^3}} \]

input
Integrate[1/((3 + x)*Sqrt[1 + x^3]),x]
 
output
(-4*Sqrt[2]*Sqrt[(I*(1 + x))/(3*I + Sqrt[3])]*Sqrt[1 - x + x^2]*EllipticPi 
[(2*Sqrt[3])/(7*I + Sqrt[3]), ArcSin[Sqrt[I + Sqrt[3] - (2*I)*x]/(Sqrt[2]* 
3^(1/4))], (2*Sqrt[3])/(3*I + Sqrt[3])])/((7*I + Sqrt[3])*Sqrt[1 + x^3])
 
3.1.14.3 Rubi [A] (warning: unable to verify)

Time = 0.94 (sec) , antiderivative size = 321, normalized size of antiderivative = 0.98, number of steps used = 10, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.600, Rules used = {2561, 759, 2567, 25, 2538, 412, 435, 104, 217}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{(x+3) \sqrt {x^3+1}} \, dx\)

\(\Big \downarrow \) 2561

\(\displaystyle \frac {\int \frac {1}{\sqrt {x^3+1}}dx}{2-\sqrt {3}}-\frac {\int \frac {x+\sqrt {3}+1}{(x+3) \sqrt {x^3+1}}dx}{2-\sqrt {3}}\)

\(\Big \downarrow \) 759

\(\displaystyle \frac {2 \sqrt {2+\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \left (2-\sqrt {3}\right ) \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1}}-\frac {\int \frac {x+\sqrt {3}+1}{(x+3) \sqrt {x^3+1}}dx}{2-\sqrt {3}}\)

\(\Big \downarrow \) 2567

\(\displaystyle \frac {2 \sqrt {2+\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \left (2-\sqrt {3}\right ) \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1}}-\frac {4 \sqrt [4]{3} (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} \int -\frac {1}{\sqrt {1-\frac {\left (x-\sqrt {3}+1\right )^2}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {\frac {\left (x-\sqrt {3}+1\right )^2}{\left (x+\sqrt {3}+1\right )^2}-4 \sqrt {3}+7} \left (-\frac {\left (2-\sqrt {3}\right ) \left (x-\sqrt {3}+1\right )}{x+\sqrt {3}+1}+\sqrt {3}+2\right )}d\left (-\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right )}{\sqrt {2-\sqrt {3}} \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {4 \sqrt [4]{3} (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} \int \frac {1}{\sqrt {1-\frac {\left (x-\sqrt {3}+1\right )^2}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {\frac {\left (x-\sqrt {3}+1\right )^2}{\left (x+\sqrt {3}+1\right )^2}-4 \sqrt {3}+7} \left (-\frac {\left (2-\sqrt {3}\right ) \left (x-\sqrt {3}+1\right )}{x+\sqrt {3}+1}+\sqrt {3}+2\right )}d\left (-\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right )}{\sqrt {2-\sqrt {3}} \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1}}+\frac {2 \sqrt {2+\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \left (2-\sqrt {3}\right ) \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1}}\)

\(\Big \downarrow \) 2538

\(\displaystyle \frac {2 \sqrt {2+\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \left (2-\sqrt {3}\right ) \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1}}-\frac {4 \sqrt [4]{3} (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} \left (\left (2-\sqrt {3}\right ) \int -\frac {x-\sqrt {3}+1}{\left (x+\sqrt {3}+1\right ) \sqrt {1-\frac {\left (x-\sqrt {3}+1\right )^2}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {\frac {\left (x-\sqrt {3}+1\right )^2}{\left (x+\sqrt {3}+1\right )^2}-4 \sqrt {3}+7} \left (-\frac {\left (7-4 \sqrt {3}\right ) \left (x-\sqrt {3}+1\right )^2}{\left (x+\sqrt {3}+1\right )^2}+4 \sqrt {3}+7\right )}d\left (-\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right )-\left (2+\sqrt {3}\right ) \int \frac {1}{\sqrt {1-\frac {\left (x-\sqrt {3}+1\right )^2}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {\frac {\left (x-\sqrt {3}+1\right )^2}{\left (x+\sqrt {3}+1\right )^2}-4 \sqrt {3}+7} \left (-\frac {\left (7-4 \sqrt {3}\right ) \left (x-\sqrt {3}+1\right )^2}{\left (x+\sqrt {3}+1\right )^2}+4 \sqrt {3}+7\right )}d\left (-\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right )\right )}{\sqrt {2-\sqrt {3}} \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1}}\)

\(\Big \downarrow \) 412

\(\displaystyle \frac {2 \sqrt {2+\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \left (2-\sqrt {3}\right ) \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1}}-\frac {4 \sqrt [4]{3} (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} \left (\left (2-\sqrt {3}\right ) \int -\frac {x-\sqrt {3}+1}{\left (x+\sqrt {3}+1\right ) \sqrt {1-\frac {\left (x-\sqrt {3}+1\right )^2}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {\frac {\left (x-\sqrt {3}+1\right )^2}{\left (x+\sqrt {3}+1\right )^2}-4 \sqrt {3}+7} \left (-\frac {\left (7-4 \sqrt {3}\right ) \left (x-\sqrt {3}+1\right )^2}{\left (x+\sqrt {3}+1\right )^2}+4 \sqrt {3}+7\right )}d\left (-\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right )+\sqrt {7-4 \sqrt {3}} \left (2+\sqrt {3}\right ) \operatorname {EllipticPi}\left (97-56 \sqrt {3},\arcsin \left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right ),-7-4 \sqrt {3}\right )\right )}{\sqrt {2-\sqrt {3}} \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1}}\)

\(\Big \downarrow \) 435

\(\displaystyle \frac {2 \sqrt {2+\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \left (2-\sqrt {3}\right ) \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1}}-\frac {4 \sqrt [4]{3} (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} \left (\frac {1}{2} \left (2-\sqrt {3}\right ) \int \frac {1}{\sqrt {\frac {\left (x-\sqrt {3}+1\right )^2}{\left (x+\sqrt {3}+1\right )^2}-4 \sqrt {3}+7} \sqrt {\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}+1} \left (\frac {\left (7-4 \sqrt {3}\right ) \left (x-\sqrt {3}+1\right )}{x+\sqrt {3}+1}+4 \sqrt {3}+7\right )}d\frac {\left (x-\sqrt {3}+1\right )^2}{\left (x+\sqrt {3}+1\right )^2}+\sqrt {7-4 \sqrt {3}} \left (2+\sqrt {3}\right ) \operatorname {EllipticPi}\left (97-56 \sqrt {3},\arcsin \left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right ),-7-4 \sqrt {3}\right )\right )}{\sqrt {2-\sqrt {3}} \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1}}\)

\(\Big \downarrow \) 104

\(\displaystyle \frac {2 \sqrt {2+\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \left (2-\sqrt {3}\right ) \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1}}-\frac {4 \sqrt [4]{3} (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} \left (\left (2-\sqrt {3}\right ) \int \frac {1}{-\frac {52 \left (2-\sqrt {3}\right ) \sqrt {\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}+1}}{\sqrt {\frac {\left (x-\sqrt {3}+1\right )^2}{\left (x+\sqrt {3}+1\right )^2}-4 \sqrt {3}+7}}-8 \sqrt {3}}d\frac {\sqrt {\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}+1}}{\sqrt {\frac {\left (x-\sqrt {3}+1\right )^2}{\left (x+\sqrt {3}+1\right )^2}-4 \sqrt {3}+7}}+\sqrt {7-4 \sqrt {3}} \left (2+\sqrt {3}\right ) \operatorname {EllipticPi}\left (97-56 \sqrt {3},\arcsin \left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right ),-7-4 \sqrt {3}\right )\right )}{\sqrt {2-\sqrt {3}} \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1}}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {2 \sqrt {2+\sqrt {3}} (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \left (2-\sqrt {3}\right ) \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1}}-\frac {4 \sqrt [4]{3} (x+1) \sqrt {\frac {x^2-x+1}{\left (x+\sqrt {3}+1\right )^2}} \left (\sqrt {7-4 \sqrt {3}} \left (2+\sqrt {3}\right ) \operatorname {EllipticPi}\left (97-56 \sqrt {3},\arcsin \left (\frac {x-\sqrt {3}+1}{x+\sqrt {3}+1}\right ),-7-4 \sqrt {3}\right )+\frac {\sqrt {\frac {1}{26} \left (2-\sqrt {3}\right )} \arctan \left (\frac {\sqrt {\frac {13}{2} \left (2-\sqrt {3}\right )} \left (x-\sqrt {3}+1\right )}{\sqrt [4]{3} \left (x+\sqrt {3}+1\right )}\right )}{4 \sqrt [4]{3}}\right )}{\sqrt {2-\sqrt {3}} \sqrt {\frac {x+1}{\left (x+\sqrt {3}+1\right )^2}} \sqrt {x^3+1}}\)

input
Int[1/((3 + x)*Sqrt[1 + x^3]),x]
 
output
(2*Sqrt[2 + Sqrt[3]]*(1 + x)*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*Ellip 
ticF[ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3]])/(3^(1/4 
)*(2 - Sqrt[3])*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2]*Sqrt[1 + x^3]) - (4*3^(1 
/4)*(1 + x)*Sqrt[(1 - x + x^2)/(1 + Sqrt[3] + x)^2]*((Sqrt[(2 - Sqrt[3])/2 
6]*ArcTan[(Sqrt[(13*(2 - Sqrt[3]))/2]*(1 - Sqrt[3] + x))/(3^(1/4)*(1 + Sqr 
t[3] + x))])/(4*3^(1/4)) + Sqrt[7 - 4*Sqrt[3]]*(2 + Sqrt[3])*EllipticPi[97 
 - 56*Sqrt[3], ArcSin[(1 - Sqrt[3] + x)/(1 + Sqrt[3] + x)], -7 - 4*Sqrt[3] 
]))/(Sqrt[2 - Sqrt[3]]*Sqrt[(1 + x)/(1 + Sqrt[3] + x)^2]*Sqrt[1 + x^3])
 

3.1.14.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 104
Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x 
_)), x_] :> With[{q = Denominator[m]}, Simp[q   Subst[Int[x^(q*(m + 1) - 1) 
/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^(1/q)], x] 
] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && L 
tQ[-1, m, 0] && SimplerQ[a + b*x, c + d*x]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 412
Int[1/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x 
_)^2]), x_Symbol] :> Simp[(1/(a*Sqrt[c]*Sqrt[e]*Rt[-d/c, 2]))*EllipticPi[b* 
(c/(a*d)), ArcSin[Rt[-d/c, 2]*x], c*(f/(d*e))], x] /; FreeQ[{a, b, c, d, e, 
 f}, x] &&  !GtQ[d/c, 0] && GtQ[c, 0] && GtQ[e, 0] &&  !( !GtQ[f/e, 0] && S 
implerSqrtQ[-f/e, -d/c])
 

rule 435
Int[(x_)^(m_.)*((a_.) + (b_.)*(x_)^2)^(p_.)*((c_.) + (d_.)*(x_)^2)^(q_.)*(( 
e_.) + (f_.)*(x_)^2)^(r_.), x_Symbol] :> Simp[1/2   Subst[Int[x^((m - 1)/2) 
*(a + b*x)^p*(c + d*x)^q*(e + f*x)^r, x], x, x^2], x] /; FreeQ[{a, b, c, d, 
 e, f, p, q, r}, x] && IntegerQ[(m - 1)/2]
 

rule 759
Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], 
s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt[2 + Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s 
*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[s* 
((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 - Sqrt[3])*s 
+ r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] & 
& PosQ[a]
 

rule 2538
Int[1/(((a_) + (b_.)*(x_))*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_) 
^2]), x_Symbol] :> Simp[a   Int[1/((a^2 - b^2*x^2)*Sqrt[c + d*x^2]*Sqrt[e + 
 f*x^2]), x], x] - Simp[b   Int[x/((a^2 - b^2*x^2)*Sqrt[c + d*x^2]*Sqrt[e + 
 f*x^2]), x], x] /; FreeQ[{a, b, c, d, e, f}, x]
 

rule 2561
Int[1/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_Symbol] :> With[{q 
 = Rt[b/a, 3]}, Simp[-q/((1 + Sqrt[3])*d - c*q)   Int[1/Sqrt[a + b*x^3], x] 
, x] + Simp[d/((1 + Sqrt[3])*d - c*q)   Int[(1 + Sqrt[3] + q*x)/((c + d*x)* 
Sqrt[a + b*x^3]), x], x]] /; FreeQ[{a, b, c, d}, x] && NeQ[b^2*c^6 - 20*a*b 
*c^3*d^3 - 8*a^2*d^6, 0]
 

rule 2567
Int[((e_) + (f_.)*(x_))/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_ 
Symbol] :> With[{q = Simplify[(1 + Sqrt[3])*(f/e)]}, Simp[4*3^(1/4)*Sqrt[2 
- Sqrt[3]]*f*(1 + q*x)*(Sqrt[(1 - q*x + q^2*x^2)/(1 + Sqrt[3] + q*x)^2]/(q* 
Sqrt[a + b*x^3]*Sqrt[(1 + q*x)/(1 + Sqrt[3] + q*x)^2]))   Subst[Int[1/(((1 
- Sqrt[3])*d - c*q + ((1 + Sqrt[3])*d - c*q)*x)*Sqrt[1 - x^2]*Sqrt[7 - 4*Sq 
rt[3] + x^2]), x], x, (-1 + Sqrt[3] - q*x)/(1 + Sqrt[3] + q*x)], x]] /; Fre 
eQ[{a, b, c, d, e, f}, x] && NeQ[d*e - c*f, 0] && EqQ[b*e^3 - 2*(5 + 3*Sqrt 
[3])*a*f^3, 0] && NeQ[b*c^3 - 2*(5 - 3*Sqrt[3])*a*d^3, 0]
 
3.1.14.4 Maple [A] (verified)

Time = 1.25 (sec) , antiderivative size = 123, normalized size of antiderivative = 0.37

method result size
default \(\frac {\left (\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \Pi \left (\sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, -\frac {3}{4}+\frac {i \sqrt {3}}{4}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{\sqrt {x^{3}+1}}\) \(123\)
elliptic \(\frac {\left (\frac {3}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}-\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\, \sqrt {\frac {x -\frac {1}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \Pi \left (\sqrt {\frac {x +1}{\frac {3}{2}-\frac {i \sqrt {3}}{2}}}, -\frac {3}{4}+\frac {i \sqrt {3}}{4}, \sqrt {\frac {-\frac {3}{2}+\frac {i \sqrt {3}}{2}}{-\frac {3}{2}-\frac {i \sqrt {3}}{2}}}\right )}{\sqrt {x^{3}+1}}\) \(123\)

input
int(1/(3+x)/(x^3+1)^(1/2),x,method=_RETURNVERBOSE)
 
output
(3/2-1/2*I*3^(1/2))*((x+1)/(3/2-1/2*I*3^(1/2)))^(1/2)*((x-1/2-1/2*I*3^(1/2 
))/(-3/2-1/2*I*3^(1/2)))^(1/2)*((x-1/2+1/2*I*3^(1/2))/(-3/2+1/2*I*3^(1/2)) 
)^(1/2)/(x^3+1)^(1/2)*EllipticPi(((x+1)/(3/2-1/2*I*3^(1/2)))^(1/2),-3/4+1/ 
4*I*3^(1/2),((-3/2+1/2*I*3^(1/2))/(-3/2-1/2*I*3^(1/2)))^(1/2))
 
3.1.14.5 Fricas [F]

\[ \int \frac {1}{(3+x) \sqrt {1+x^3}} \, dx=\int { \frac {1}{\sqrt {x^{3} + 1} {\left (x + 3\right )}} \,d x } \]

input
integrate(1/(3+x)/(x^3+1)^(1/2),x, algorithm="fricas")
 
output
integral(sqrt(x^3 + 1)/(x^4 + 3*x^3 + x + 3), x)
 
3.1.14.6 Sympy [F]

\[ \int \frac {1}{(3+x) \sqrt {1+x^3}} \, dx=\int \frac {1}{\sqrt {\left (x + 1\right ) \left (x^{2} - x + 1\right )} \left (x + 3\right )}\, dx \]

input
integrate(1/(3+x)/(x**3+1)**(1/2),x)
 
output
Integral(1/(sqrt((x + 1)*(x**2 - x + 1))*(x + 3)), x)
 
3.1.14.7 Maxima [F]

\[ \int \frac {1}{(3+x) \sqrt {1+x^3}} \, dx=\int { \frac {1}{\sqrt {x^{3} + 1} {\left (x + 3\right )}} \,d x } \]

input
integrate(1/(3+x)/(x^3+1)^(1/2),x, algorithm="maxima")
 
output
integrate(1/(sqrt(x^3 + 1)*(x + 3)), x)
 
3.1.14.8 Giac [F]

\[ \int \frac {1}{(3+x) \sqrt {1+x^3}} \, dx=\int { \frac {1}{\sqrt {x^{3} + 1} {\left (x + 3\right )}} \,d x } \]

input
integrate(1/(3+x)/(x^3+1)^(1/2),x, algorithm="giac")
 
output
integrate(1/(sqrt(x^3 + 1)*(x + 3)), x)
 
3.1.14.9 Mupad [B] (verification not implemented)

Time = 9.15 (sec) , antiderivative size = 164, normalized size of antiderivative = 0.50 \[ \int \frac {1}{(3+x) \sqrt {1+x^3}} \, dx=\frac {\left (3+\sqrt {3}\,1{}\mathrm {i}\right )\,\sqrt {\frac {x-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {x+1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {\frac {1}{2}-x+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\Pi \left (-\frac {3}{4}-\frac {\sqrt {3}\,1{}\mathrm {i}}{4};\mathrm {asin}\left (\sqrt {\frac {x+1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )}{2\,\sqrt {x^3+\left (-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )-1\right )\,x-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}} \]

input
int(1/((x^3 + 1)^(1/2)*(x + 3)),x)
 
output
((3^(1/2)*1i + 3)*((x + (3^(1/2)*1i)/2 - 1/2)/((3^(1/2)*1i)/2 - 3/2))^(1/2 
)*((x + 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*(((3^(1/2)*1i)/2 - x + 1/2)/((3^( 
1/2)*1i)/2 + 3/2))^(1/2)*ellipticPi(- (3^(1/2)*1i)/4 - 3/4, asin(((x + 1)/ 
((3^(1/2)*1i)/2 + 3/2))^(1/2)), -((3^(1/2)*1i)/2 + 3/2)/((3^(1/2)*1i)/2 - 
3/2)))/(2*(x^3 - x*(((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2) + 1) - ( 
(3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2))^(1/2))