3.1.15 \(\int \frac {1}{(3+x) \sqrt {1-x^3}} \, dx\) [15]

3.1.15.1 Optimal result
3.1.15.2 Mathematica [C] (warning: unable to verify)
3.1.15.3 Rubi [A] (warning: unable to verify)
3.1.15.4 Maple [A] (verified)
3.1.15.5 Fricas [F]
3.1.15.6 Sympy [F]
3.1.15.7 Maxima [F]
3.1.15.8 Giac [F]
3.1.15.9 Mupad [B] (verification not implemented)

3.1.15.1 Optimal result

Integrand size = 17, antiderivative size = 380 \[ \int \frac {1}{(3+x) \sqrt {1-x^3}} \, dx=-\frac {(1-x) \sqrt {\frac {1+x+x^2}{\left (1+\sqrt {3}-x\right )^2}} \text {arctanh}\left (\frac {\sqrt {7} \sqrt {\frac {1-x}{\left (1+\sqrt {3}-x\right )^2}}}{2 \sqrt {\frac {1+x+x^2}{\left (1+\sqrt {3}-x\right )^2}}}\right )}{2 \sqrt {7} \sqrt {\frac {1-x}{\left (1+\sqrt {3}-x\right )^2}} \sqrt {1-x^3}}-\frac {2 \sqrt {2+\sqrt {3}} (1-x) \sqrt {\frac {1+x+x^2}{\left (1+\sqrt {3}-x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {1-\sqrt {3}-x}{1+\sqrt {3}-x}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \left (4+\sqrt {3}\right ) \sqrt {\frac {1-x}{\left (1+\sqrt {3}-x\right )^2}} \sqrt {1-x^3}}-\frac {4 \sqrt [4]{3} \sqrt {2+\sqrt {3}} (1-x) \sqrt {\frac {1+x+x^2}{\left (1+\sqrt {3}-x\right )^2}} \operatorname {EllipticPi}\left (\frac {1}{169} \left (553+304 \sqrt {3}\right ),\arcsin \left (\frac {1-\sqrt {3}-x}{1+\sqrt {3}-x}\right ),-7-4 \sqrt {3}\right )}{13 \sqrt {\frac {1-x}{\left (1+\sqrt {3}-x\right )^2}} \sqrt {1-x^3}} \]

output
-1/14*(1-x)*arctanh(1/2*7^(1/2)*((1-x)/(1-x+3^(1/2))^2)^(1/2)/((x^2+x+1)/( 
1-x+3^(1/2))^2)^(1/2))*((x^2+x+1)/(1-x+3^(1/2))^2)^(1/2)*7^(1/2)/(-x^3+1)^ 
(1/2)/((1-x)/(1-x+3^(1/2))^2)^(1/2)+4/13*3^(1/4)*(1-x)*EllipticPi((-1+x+3^ 
(1/2))/(1-x+3^(1/2)),553/169+304/169*3^(1/2),I*3^(1/2)+2*I)*(1/2*6^(1/2)+1 
/2*2^(1/2))*((x^2+x+1)/(1-x+3^(1/2))^2)^(1/2)/(-x^3+1)^(1/2)/((1-x)/(1-x+3 
^(1/2))^2)^(1/2)-2/3*(1-x)*EllipticF((1-x-3^(1/2))/(1-x+3^(1/2)),I*3^(1/2) 
+2*I)*(1/2*6^(1/2)+1/2*2^(1/2))*((x^2+x+1)/(1-x+3^(1/2))^2)^(1/2)*3^(3/4)/ 
(4+3^(1/2))/(-x^3+1)^(1/2)/((1-x)/(1-x+3^(1/2))^2)^(1/2)
 
3.1.15.2 Mathematica [C] (warning: unable to verify)

Result contains complex when optimal does not.

Time = 20.09 (sec) , antiderivative size = 128, normalized size of antiderivative = 0.34 \[ \int \frac {1}{(3+x) \sqrt {1-x^3}} \, dx=-\frac {4 \sqrt {2} \sqrt {\frac {i (-1+x)}{-3 i+\sqrt {3}}} \sqrt {1+x+x^2} \operatorname {EllipticPi}\left (\frac {2 \sqrt {3}}{5 i+\sqrt {3}},\arcsin \left (\frac {\sqrt {-i+\sqrt {3}-2 i x}}{\sqrt {2} \sqrt [4]{3}}\right ),\frac {2 \sqrt {3}}{-3 i+\sqrt {3}}\right )}{\left (5 i+\sqrt {3}\right ) \sqrt {1-x^3}} \]

input
Integrate[1/((3 + x)*Sqrt[1 - x^3]),x]
 
output
(-4*Sqrt[2]*Sqrt[(I*(-1 + x))/(-3*I + Sqrt[3])]*Sqrt[1 + x + x^2]*Elliptic 
Pi[(2*Sqrt[3])/(5*I + Sqrt[3]), ArcSin[Sqrt[-I + Sqrt[3] - (2*I)*x]/(Sqrt[ 
2]*3^(1/4))], (2*Sqrt[3])/(-3*I + Sqrt[3])])/((5*I + Sqrt[3])*Sqrt[1 - x^3 
])
 
3.1.15.3 Rubi [A] (warning: unable to verify)

Time = 1.00 (sec) , antiderivative size = 371, normalized size of antiderivative = 0.98, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.471, Rules used = {2561, 759, 2567, 2538, 412, 435, 104, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{(x+3) \sqrt {1-x^3}} \, dx\)

\(\Big \downarrow \) 2561

\(\displaystyle \frac {\int \frac {1}{\sqrt {1-x^3}}dx}{4+\sqrt {3}}+\frac {\int \frac {-x+\sqrt {3}+1}{(x+3) \sqrt {1-x^3}}dx}{4+\sqrt {3}}\)

\(\Big \downarrow \) 759

\(\displaystyle \frac {\int \frac {-x+\sqrt {3}+1}{(x+3) \sqrt {1-x^3}}dx}{4+\sqrt {3}}-\frac {2 \sqrt {2+\sqrt {3}} (1-x) \sqrt {\frac {x^2+x+1}{\left (-x+\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {-x-\sqrt {3}+1}{-x+\sqrt {3}+1}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \left (4+\sqrt {3}\right ) \sqrt {\frac {1-x}{\left (-x+\sqrt {3}+1\right )^2}} \sqrt {1-x^3}}\)

\(\Big \downarrow \) 2567

\(\displaystyle \frac {4 \sqrt [4]{3} \sqrt {2-\sqrt {3}} (1-x) \sqrt {\frac {x^2+x+1}{\left (-x+\sqrt {3}+1\right )^2}} \int \frac {1}{\sqrt {1-\frac {\left (-x-\sqrt {3}+1\right )^2}{\left (-x+\sqrt {3}+1\right )^2}} \sqrt {\frac {\left (-x-\sqrt {3}+1\right )^2}{\left (-x+\sqrt {3}+1\right )^2}-4 \sqrt {3}+7} \left (-\frac {\left (4+\sqrt {3}\right ) \left (-x-\sqrt {3}+1\right )}{-x+\sqrt {3}+1}-\sqrt {3}+4\right )}d\left (-\frac {-x-\sqrt {3}+1}{-x+\sqrt {3}+1}\right )}{\left (4+\sqrt {3}\right ) \sqrt {\frac {1-x}{\left (-x+\sqrt {3}+1\right )^2}} \sqrt {1-x^3}}-\frac {2 \sqrt {2+\sqrt {3}} (1-x) \sqrt {\frac {x^2+x+1}{\left (-x+\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {-x-\sqrt {3}+1}{-x+\sqrt {3}+1}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \left (4+\sqrt {3}\right ) \sqrt {\frac {1-x}{\left (-x+\sqrt {3}+1\right )^2}} \sqrt {1-x^3}}\)

\(\Big \downarrow \) 2538

\(\displaystyle \frac {4 \sqrt [4]{3} \sqrt {2-\sqrt {3}} (1-x) \sqrt {\frac {x^2+x+1}{\left (-x+\sqrt {3}+1\right )^2}} \left (\left (4-\sqrt {3}\right ) \int \frac {1}{\sqrt {1-\frac {\left (-x-\sqrt {3}+1\right )^2}{\left (-x+\sqrt {3}+1\right )^2}} \sqrt {\frac {\left (-x-\sqrt {3}+1\right )^2}{\left (-x+\sqrt {3}+1\right )^2}-4 \sqrt {3}+7} \left (-\frac {\left (4+\sqrt {3}\right )^2 \left (-x-\sqrt {3}+1\right )^2}{\left (-x+\sqrt {3}+1\right )^2}-8 \sqrt {3}+19\right )}d\left (-\frac {-x-\sqrt {3}+1}{-x+\sqrt {3}+1}\right )-\left (4+\sqrt {3}\right ) \int -\frac {-x-\sqrt {3}+1}{\sqrt {1-\frac {\left (-x-\sqrt {3}+1\right )^2}{\left (-x+\sqrt {3}+1\right )^2}} \sqrt {\frac {\left (-x-\sqrt {3}+1\right )^2}{\left (-x+\sqrt {3}+1\right )^2}-4 \sqrt {3}+7} \left (-\frac {\left (4+\sqrt {3}\right )^2 \left (-x-\sqrt {3}+1\right )^2}{\left (-x+\sqrt {3}+1\right )^2}-8 \sqrt {3}+19\right ) \left (-x+\sqrt {3}+1\right )}d\left (-\frac {-x-\sqrt {3}+1}{-x+\sqrt {3}+1}\right )\right )}{\left (4+\sqrt {3}\right ) \sqrt {\frac {1-x}{\left (-x+\sqrt {3}+1\right )^2}} \sqrt {1-x^3}}-\frac {2 \sqrt {2+\sqrt {3}} (1-x) \sqrt {\frac {x^2+x+1}{\left (-x+\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {-x-\sqrt {3}+1}{-x+\sqrt {3}+1}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \left (4+\sqrt {3}\right ) \sqrt {\frac {1-x}{\left (-x+\sqrt {3}+1\right )^2}} \sqrt {1-x^3}}\)

\(\Big \downarrow \) 412

\(\displaystyle \frac {4 \sqrt [4]{3} \sqrt {2-\sqrt {3}} (1-x) \sqrt {\frac {x^2+x+1}{\left (-x+\sqrt {3}+1\right )^2}} \left (-\left (4+\sqrt {3}\right ) \int -\frac {-x-\sqrt {3}+1}{\sqrt {1-\frac {\left (-x-\sqrt {3}+1\right )^2}{\left (-x+\sqrt {3}+1\right )^2}} \sqrt {\frac {\left (-x-\sqrt {3}+1\right )^2}{\left (-x+\sqrt {3}+1\right )^2}-4 \sqrt {3}+7} \left (-\frac {\left (4+\sqrt {3}\right )^2 \left (-x-\sqrt {3}+1\right )^2}{\left (-x+\sqrt {3}+1\right )^2}-8 \sqrt {3}+19\right ) \left (-x+\sqrt {3}+1\right )}d\left (-\frac {-x-\sqrt {3}+1}{-x+\sqrt {3}+1}\right )-\frac {1}{169} \left (4-\sqrt {3}\right ) \sqrt {7519+4340 \sqrt {3}} \operatorname {EllipticPi}\left (\frac {1}{169} \left (553+304 \sqrt {3}\right ),\arcsin \left (\frac {-x-\sqrt {3}+1}{-x+\sqrt {3}+1}\right ),-7-4 \sqrt {3}\right )\right )}{\left (4+\sqrt {3}\right ) \sqrt {\frac {1-x}{\left (-x+\sqrt {3}+1\right )^2}} \sqrt {1-x^3}}-\frac {2 \sqrt {2+\sqrt {3}} (1-x) \sqrt {\frac {x^2+x+1}{\left (-x+\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {-x-\sqrt {3}+1}{-x+\sqrt {3}+1}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \left (4+\sqrt {3}\right ) \sqrt {\frac {1-x}{\left (-x+\sqrt {3}+1\right )^2}} \sqrt {1-x^3}}\)

\(\Big \downarrow \) 435

\(\displaystyle \frac {4 \sqrt [4]{3} \sqrt {2-\sqrt {3}} (1-x) \sqrt {\frac {x^2+x+1}{\left (-x+\sqrt {3}+1\right )^2}} \left (-\frac {1}{2} \left (4+\sqrt {3}\right ) \int \frac {1}{\sqrt {\frac {\left (-x-\sqrt {3}+1\right )^2}{\left (-x+\sqrt {3}+1\right )^2}-4 \sqrt {3}+7} \sqrt {\frac {-x-\sqrt {3}+1}{-x+\sqrt {3}+1}+1} \left (\frac {\left (4+\sqrt {3}\right )^2 \left (-x-\sqrt {3}+1\right )}{-x+\sqrt {3}+1}-8 \sqrt {3}+19\right )}d\frac {\left (-x-\sqrt {3}+1\right )^2}{\left (-x+\sqrt {3}+1\right )^2}-\frac {1}{169} \left (4-\sqrt {3}\right ) \sqrt {7519+4340 \sqrt {3}} \operatorname {EllipticPi}\left (\frac {1}{169} \left (553+304 \sqrt {3}\right ),\arcsin \left (\frac {-x-\sqrt {3}+1}{-x+\sqrt {3}+1}\right ),-7-4 \sqrt {3}\right )\right )}{\left (4+\sqrt {3}\right ) \sqrt {\frac {1-x}{\left (-x+\sqrt {3}+1\right )^2}} \sqrt {1-x^3}}-\frac {2 \sqrt {2+\sqrt {3}} (1-x) \sqrt {\frac {x^2+x+1}{\left (-x+\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {-x-\sqrt {3}+1}{-x+\sqrt {3}+1}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \left (4+\sqrt {3}\right ) \sqrt {\frac {1-x}{\left (-x+\sqrt {3}+1\right )^2}} \sqrt {1-x^3}}\)

\(\Big \downarrow \) 104

\(\displaystyle \frac {4 \sqrt [4]{3} \sqrt {2-\sqrt {3}} (1-x) \sqrt {\frac {x^2+x+1}{\left (-x+\sqrt {3}+1\right )^2}} \left (-\left (4+\sqrt {3}\right ) \int \frac {1}{16 \sqrt {3}-\frac {28 \left (2-\sqrt {3}\right ) \sqrt {\frac {-x-\sqrt {3}+1}{-x+\sqrt {3}+1}+1}}{\sqrt {\frac {\left (-x-\sqrt {3}+1\right )^2}{\left (-x+\sqrt {3}+1\right )^2}-4 \sqrt {3}+7}}}d\frac {\sqrt {\frac {-x-\sqrt {3}+1}{-x+\sqrt {3}+1}+1}}{\sqrt {\frac {\left (-x-\sqrt {3}+1\right )^2}{\left (-x+\sqrt {3}+1\right )^2}-4 \sqrt {3}+7}}-\frac {1}{169} \left (4-\sqrt {3}\right ) \sqrt {7519+4340 \sqrt {3}} \operatorname {EllipticPi}\left (\frac {1}{169} \left (553+304 \sqrt {3}\right ),\arcsin \left (\frac {-x-\sqrt {3}+1}{-x+\sqrt {3}+1}\right ),-7-4 \sqrt {3}\right )\right )}{\left (4+\sqrt {3}\right ) \sqrt {\frac {1-x}{\left (-x+\sqrt {3}+1\right )^2}} \sqrt {1-x^3}}-\frac {2 \sqrt {2+\sqrt {3}} (1-x) \sqrt {\frac {x^2+x+1}{\left (-x+\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {-x-\sqrt {3}+1}{-x+\sqrt {3}+1}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \left (4+\sqrt {3}\right ) \sqrt {\frac {1-x}{\left (-x+\sqrt {3}+1\right )^2}} \sqrt {1-x^3}}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {4 \sqrt [4]{3} \sqrt {2-\sqrt {3}} (1-x) \sqrt {\frac {x^2+x+1}{\left (-x+\sqrt {3}+1\right )^2}} \left (\frac {\left (4+\sqrt {3}\right ) \text {arctanh}\left (\frac {\sqrt {7 \left (2-\sqrt {3}\right )} \left (-x-\sqrt {3}+1\right )}{2 \sqrt [4]{3} \left (-x+\sqrt {3}+1\right )}\right )}{8 \sqrt [4]{3} \sqrt {7 \left (2-\sqrt {3}\right )}}-\frac {1}{169} \left (4-\sqrt {3}\right ) \sqrt {7519+4340 \sqrt {3}} \operatorname {EllipticPi}\left (\frac {1}{169} \left (553+304 \sqrt {3}\right ),\arcsin \left (\frac {-x-\sqrt {3}+1}{-x+\sqrt {3}+1}\right ),-7-4 \sqrt {3}\right )\right )}{\left (4+\sqrt {3}\right ) \sqrt {\frac {1-x}{\left (-x+\sqrt {3}+1\right )^2}} \sqrt {1-x^3}}-\frac {2 \sqrt {2+\sqrt {3}} (1-x) \sqrt {\frac {x^2+x+1}{\left (-x+\sqrt {3}+1\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {-x-\sqrt {3}+1}{-x+\sqrt {3}+1}\right ),-7-4 \sqrt {3}\right )}{\sqrt [4]{3} \left (4+\sqrt {3}\right ) \sqrt {\frac {1-x}{\left (-x+\sqrt {3}+1\right )^2}} \sqrt {1-x^3}}\)

input
Int[1/((3 + x)*Sqrt[1 - x^3]),x]
 
output
(-2*Sqrt[2 + Sqrt[3]]*(1 - x)*Sqrt[(1 + x + x^2)/(1 + Sqrt[3] - x)^2]*Elli 
pticF[ArcSin[(1 - Sqrt[3] - x)/(1 + Sqrt[3] - x)], -7 - 4*Sqrt[3]])/(3^(1/ 
4)*(4 + Sqrt[3])*Sqrt[(1 - x)/(1 + Sqrt[3] - x)^2]*Sqrt[1 - x^3]) + (4*3^( 
1/4)*Sqrt[2 - Sqrt[3]]*(1 - x)*Sqrt[(1 + x + x^2)/(1 + Sqrt[3] - x)^2]*((( 
4 + Sqrt[3])*ArcTanh[(Sqrt[7*(2 - Sqrt[3])]*(1 - Sqrt[3] - x))/(2*3^(1/4)* 
(1 + Sqrt[3] - x))])/(8*3^(1/4)*Sqrt[7*(2 - Sqrt[3])]) - ((4 - Sqrt[3])*Sq 
rt[7519 + 4340*Sqrt[3]]*EllipticPi[(553 + 304*Sqrt[3])/169, ArcSin[(1 - Sq 
rt[3] - x)/(1 + Sqrt[3] - x)], -7 - 4*Sqrt[3]])/169))/((4 + Sqrt[3])*Sqrt[ 
(1 - x)/(1 + Sqrt[3] - x)^2]*Sqrt[1 - x^3])
 

3.1.15.3.1 Defintions of rubi rules used

rule 104
Int[(((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_))/((e_.) + (f_.)*(x 
_)), x_] :> With[{q = Denominator[m]}, Simp[q   Subst[Int[x^(q*(m + 1) - 1) 
/(b*e - a*f - (d*e - c*f)*x^q), x], x, (a + b*x)^(1/q)/(c + d*x)^(1/q)], x] 
] /; FreeQ[{a, b, c, d, e, f}, x] && EqQ[m + n + 1, 0] && RationalQ[n] && L 
tQ[-1, m, 0] && SimplerQ[a + b*x, c + d*x]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 412
Int[1/(((a_) + (b_.)*(x_)^2)*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x 
_)^2]), x_Symbol] :> Simp[(1/(a*Sqrt[c]*Sqrt[e]*Rt[-d/c, 2]))*EllipticPi[b* 
(c/(a*d)), ArcSin[Rt[-d/c, 2]*x], c*(f/(d*e))], x] /; FreeQ[{a, b, c, d, e, 
 f}, x] &&  !GtQ[d/c, 0] && GtQ[c, 0] && GtQ[e, 0] &&  !( !GtQ[f/e, 0] && S 
implerSqrtQ[-f/e, -d/c])
 

rule 435
Int[(x_)^(m_.)*((a_.) + (b_.)*(x_)^2)^(p_.)*((c_.) + (d_.)*(x_)^2)^(q_.)*(( 
e_.) + (f_.)*(x_)^2)^(r_.), x_Symbol] :> Simp[1/2   Subst[Int[x^((m - 1)/2) 
*(a + b*x)^p*(c + d*x)^q*(e + f*x)^r, x], x, x^2], x] /; FreeQ[{a, b, c, d, 
 e, f, p, q, r}, x] && IntegerQ[(m - 1)/2]
 

rule 759
Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], 
s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt[2 + Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s 
*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[s* 
((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 - Sqrt[3])*s 
+ r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] & 
& PosQ[a]
 

rule 2538
Int[1/(((a_) + (b_.)*(x_))*Sqrt[(c_) + (d_.)*(x_)^2]*Sqrt[(e_) + (f_.)*(x_) 
^2]), x_Symbol] :> Simp[a   Int[1/((a^2 - b^2*x^2)*Sqrt[c + d*x^2]*Sqrt[e + 
 f*x^2]), x], x] - Simp[b   Int[x/((a^2 - b^2*x^2)*Sqrt[c + d*x^2]*Sqrt[e + 
 f*x^2]), x], x] /; FreeQ[{a, b, c, d, e, f}, x]
 

rule 2561
Int[1/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_Symbol] :> With[{q 
 = Rt[b/a, 3]}, Simp[-q/((1 + Sqrt[3])*d - c*q)   Int[1/Sqrt[a + b*x^3], x] 
, x] + Simp[d/((1 + Sqrt[3])*d - c*q)   Int[(1 + Sqrt[3] + q*x)/((c + d*x)* 
Sqrt[a + b*x^3]), x], x]] /; FreeQ[{a, b, c, d}, x] && NeQ[b^2*c^6 - 20*a*b 
*c^3*d^3 - 8*a^2*d^6, 0]
 

rule 2567
Int[((e_) + (f_.)*(x_))/(((c_) + (d_.)*(x_))*Sqrt[(a_) + (b_.)*(x_)^3]), x_ 
Symbol] :> With[{q = Simplify[(1 + Sqrt[3])*(f/e)]}, Simp[4*3^(1/4)*Sqrt[2 
- Sqrt[3]]*f*(1 + q*x)*(Sqrt[(1 - q*x + q^2*x^2)/(1 + Sqrt[3] + q*x)^2]/(q* 
Sqrt[a + b*x^3]*Sqrt[(1 + q*x)/(1 + Sqrt[3] + q*x)^2]))   Subst[Int[1/(((1 
- Sqrt[3])*d - c*q + ((1 + Sqrt[3])*d - c*q)*x)*Sqrt[1 - x^2]*Sqrt[7 - 4*Sq 
rt[3] + x^2]), x], x, (-1 + Sqrt[3] - q*x)/(1 + Sqrt[3] + q*x)], x]] /; Fre 
eQ[{a, b, c, d, e, f}, x] && NeQ[d*e - c*f, 0] && EqQ[b*e^3 - 2*(5 + 3*Sqrt 
[3])*a*f^3, 0] && NeQ[b*c^3 - 2*(5 - 3*Sqrt[3])*a*d^3, 0]
 
3.1.15.4 Maple [A] (verified)

Time = 1.07 (sec) , antiderivative size = 133, normalized size of antiderivative = 0.35

method result size
default \(-\frac {2 i \sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \sqrt {\frac {x -1}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {-i \left (x +\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \Pi \left (\frac {\sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \frac {i \sqrt {3}}{\frac {5}{2}+\frac {i \sqrt {3}}{2}}, \sqrt {\frac {i \sqrt {3}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )}{3 \sqrt {-x^{3}+1}\, \left (\frac {5}{2}+\frac {i \sqrt {3}}{2}\right )}\) \(133\)
elliptic \(-\frac {2 i \sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \sqrt {\frac {x -1}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\, \sqrt {-i \left (x +\frac {1}{2}+\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}\, \Pi \left (\frac {\sqrt {3}\, \sqrt {i \left (x +\frac {1}{2}-\frac {i \sqrt {3}}{2}\right ) \sqrt {3}}}{3}, \frac {i \sqrt {3}}{\frac {5}{2}+\frac {i \sqrt {3}}{2}}, \sqrt {\frac {i \sqrt {3}}{-\frac {3}{2}+\frac {i \sqrt {3}}{2}}}\right )}{3 \sqrt {-x^{3}+1}\, \left (\frac {5}{2}+\frac {i \sqrt {3}}{2}\right )}\) \(133\)

input
int(1/(3+x)/(-x^3+1)^(1/2),x,method=_RETURNVERBOSE)
 
output
-2/3*I*3^(1/2)*(I*(x+1/2-1/2*I*3^(1/2))*3^(1/2))^(1/2)*((x-1)/(-3/2+1/2*I* 
3^(1/2)))^(1/2)*(-I*(x+1/2+1/2*I*3^(1/2))*3^(1/2))^(1/2)/(-x^3+1)^(1/2)/(5 
/2+1/2*I*3^(1/2))*EllipticPi(1/3*3^(1/2)*(I*(x+1/2-1/2*I*3^(1/2))*3^(1/2)) 
^(1/2),I*3^(1/2)/(5/2+1/2*I*3^(1/2)),(I*3^(1/2)/(-3/2+1/2*I*3^(1/2)))^(1/2 
))
 
3.1.15.5 Fricas [F]

\[ \int \frac {1}{(3+x) \sqrt {1-x^3}} \, dx=\int { \frac {1}{\sqrt {-x^{3} + 1} {\left (x + 3\right )}} \,d x } \]

input
integrate(1/(3+x)/(-x^3+1)^(1/2),x, algorithm="fricas")
 
output
integral(-sqrt(-x^3 + 1)/(x^4 + 3*x^3 - x - 3), x)
 
3.1.15.6 Sympy [F]

\[ \int \frac {1}{(3+x) \sqrt {1-x^3}} \, dx=\int \frac {1}{\sqrt {- \left (x - 1\right ) \left (x^{2} + x + 1\right )} \left (x + 3\right )}\, dx \]

input
integrate(1/(3+x)/(-x**3+1)**(1/2),x)
 
output
Integral(1/(sqrt(-(x - 1)*(x**2 + x + 1))*(x + 3)), x)
 
3.1.15.7 Maxima [F]

\[ \int \frac {1}{(3+x) \sqrt {1-x^3}} \, dx=\int { \frac {1}{\sqrt {-x^{3} + 1} {\left (x + 3\right )}} \,d x } \]

input
integrate(1/(3+x)/(-x^3+1)^(1/2),x, algorithm="maxima")
 
output
integrate(1/(sqrt(-x^3 + 1)*(x + 3)), x)
 
3.1.15.8 Giac [F]

\[ \int \frac {1}{(3+x) \sqrt {1-x^3}} \, dx=\int { \frac {1}{\sqrt {-x^{3} + 1} {\left (x + 3\right )}} \,d x } \]

input
integrate(1/(3+x)/(-x^3+1)^(1/2),x, algorithm="giac")
 
output
integrate(1/(sqrt(-x^3 + 1)*(x + 3)), x)
 
3.1.15.9 Mupad [B] (verification not implemented)

Time = 9.15 (sec) , antiderivative size = 180, normalized size of antiderivative = 0.47 \[ \int \frac {1}{(3+x) \sqrt {1-x^3}} \, dx=-\frac {\left (\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\sqrt {x^3-1}\,\sqrt {-\frac {x+\frac {1}{2}-\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {\frac {x+\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\sqrt {-\frac {x-1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\,\Pi \left (\frac {3}{8}+\frac {\sqrt {3}\,1{}\mathrm {i}}{8};\mathrm {asin}\left (\sqrt {-\frac {x-1}{\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}}\right )\middle |-\frac {\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}{-\frac {3}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}}\right )}{2\,\sqrt {1-x^3}\,\sqrt {x^3+\left (-\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )-1\right )\,x+\left (-\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )\,\left (\frac {1}{2}+\frac {\sqrt {3}\,1{}\mathrm {i}}{2}\right )}} \]

input
int(1/((1 - x^3)^(1/2)*(x + 3)),x)
 
output
-(((3^(1/2)*1i)/2 + 3/2)*(x^3 - 1)^(1/2)*(-(x - (3^(1/2)*1i)/2 + 1/2)/((3^ 
(1/2)*1i)/2 - 3/2))^(1/2)*((x + (3^(1/2)*1i)/2 + 1/2)/((3^(1/2)*1i)/2 + 3/ 
2))^(1/2)*(-(x - 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)*ellipticPi((3^(1/2)*1i)/ 
8 + 3/8, asin((-(x - 1)/((3^(1/2)*1i)/2 + 3/2))^(1/2)), -((3^(1/2)*1i)/2 + 
 3/2)/((3^(1/2)*1i)/2 - 3/2)))/(2*(1 - x^3)^(1/2)*(((3^(1/2)*1i)/2 - 1/2)* 
((3^(1/2)*1i)/2 + 1/2) - x*(((3^(1/2)*1i)/2 - 1/2)*((3^(1/2)*1i)/2 + 1/2) 
+ 1) + x^3)^(1/2))