3.8.93 \(\int \frac {x^2}{\sqrt {a+8 x-8 x^2+4 x^3-x^4}} \, dx\) [793]

3.8.93.1 Optimal result
3.8.93.2 Mathematica [B] (verified)
3.8.93.3 Rubi [A] (warning: unable to verify)
3.8.93.4 Maple [B] (warning: unable to verify)
3.8.93.5 Fricas [F]
3.8.93.6 Sympy [F]
3.8.93.7 Maxima [F]
3.8.93.8 Giac [F]
3.8.93.9 Mupad [F(-1)]

3.8.93.1 Optimal result

Integrand size = 28, antiderivative size = 388 \[ \int \frac {x^2}{\sqrt {a+8 x-8 x^2+4 x^3-x^4}} \, dx=\frac {\left (1-\sqrt {4+a}\right ) \left (1+\frac {(-1+x)^2}{1-\sqrt {4+a}}\right ) (-1+x)}{\sqrt {3+a-2 (-1+x)^2-(-1+x)^4}}+\arctan \left (\frac {1+(-1+x)^2}{\sqrt {3+a-2 (-1+x)^2-(-1+x)^4}}\right )-\frac {\left (1-\sqrt {4+a}\right ) \sqrt {1+\sqrt {4+a}} \left (1+\frac {(-1+x)^2}{1-\sqrt {4+a}}\right ) E\left (\arctan \left (\frac {-1+x}{\sqrt {1+\sqrt {4+a}}}\right )|-\frac {2 \sqrt {4+a}}{1-\sqrt {4+a}}\right )}{\sqrt {\frac {1+\frac {(-1+x)^2}{1-\sqrt {4+a}}}{1+\frac {(-1+x)^2}{1+\sqrt {4+a}}}} \sqrt {3+a-2 (-1+x)^2-(-1+x)^4}}+\frac {\sqrt {1+\sqrt {4+a}} \left (1+\frac {(-1+x)^2}{1-\sqrt {4+a}}\right ) \operatorname {EllipticF}\left (\arctan \left (\frac {-1+x}{\sqrt {1+\sqrt {4+a}}}\right ),-\frac {2 \sqrt {4+a}}{1-\sqrt {4+a}}\right )}{\sqrt {\frac {1+\frac {(-1+x)^2}{1-\sqrt {4+a}}}{1+\frac {(-1+x)^2}{1+\sqrt {4+a}}}} \sqrt {3+a-2 (-1+x)^2-(-1+x)^4}} \]

output
arctan((1+(-1+x)^2)/(3+a-2*(-1+x)^2-(-1+x)^4)^(1/2))+(-1+x)*(1+(-1+x)^2/(1 
-(4+a)^(1/2)))*(1-(4+a)^(1/2))/(3+a-2*(-1+x)^2-(-1+x)^4)^(1/2)+(1/(1+(-1+x 
)^2/(1+(4+a)^(1/2))))^(1/2)*(1+(-1+x)^2/(1+(4+a)^(1/2)))^(1/2)*EllipticF(( 
-1+x)/(1+(4+a)^(1/2))^(1/2)/(1+(-1+x)^2/(1+(4+a)^(1/2)))^(1/2),(-2*(4+a)^( 
1/2)/(1-(4+a)^(1/2)))^(1/2))*(1+(-1+x)^2/(1-(4+a)^(1/2)))*(1+(4+a)^(1/2))^ 
(1/2)/(3+a-2*(-1+x)^2-(-1+x)^4)^(1/2)/((1+(-1+x)^2/(1-(4+a)^(1/2)))/(1+(-1 
+x)^2/(1+(4+a)^(1/2))))^(1/2)-(1/(1+(-1+x)^2/(1+(4+a)^(1/2))))^(1/2)*(1+(- 
1+x)^2/(1+(4+a)^(1/2)))^(1/2)*EllipticE((-1+x)/(1+(4+a)^(1/2))^(1/2)/(1+(- 
1+x)^2/(1+(4+a)^(1/2)))^(1/2),(-2*(4+a)^(1/2)/(1-(4+a)^(1/2)))^(1/2))*(1+( 
-1+x)^2/(1-(4+a)^(1/2)))*(1-(4+a)^(1/2))*(1+(4+a)^(1/2))^(1/2)/(3+a-2*(-1+ 
x)^2-(-1+x)^4)^(1/2)/((1+(-1+x)^2/(1-(4+a)^(1/2)))/(1+(-1+x)^2/(1+(4+a)^(1 
/2))))^(1/2)
 
3.8.93.2 Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(1145\) vs. \(2(388)=776\).

Time = 15.19 (sec) , antiderivative size = 1145, normalized size of antiderivative = 2.95 \[ \int \frac {x^2}{\sqrt {a+8 x-8 x^2+4 x^3-x^4}} \, dx=\frac {\left (-1+\sqrt {-1-\sqrt {4+a}}+x\right ) \left (-1-\sqrt {-1+\sqrt {4+a}}+x\right ) \left (-1+\sqrt {-1+\sqrt {4+a}}+x\right )+\frac {2 \left (\sqrt {-1-\sqrt {4+a}}+\sqrt {-1+\sqrt {4+a}}\right ) \left (1+\sqrt {-1-\sqrt {4+a}}-x\right )^2 \sqrt {\frac {\sqrt {-1-\sqrt {4+a}} \left (1+\sqrt {-1+\sqrt {4+a}}-x\right )}{\left (\sqrt {-1-\sqrt {4+a}}+\sqrt {-1+\sqrt {4+a}}\right ) \left (1+\sqrt {-1-\sqrt {4+a}}-x\right )}} \sqrt {\frac {\left (\sqrt {-1-\sqrt {4+a}}-\sqrt {-1+\sqrt {4+a}}\right ) \left (-1+\sqrt {-1-\sqrt {4+a}}+x\right )}{\left (\sqrt {-1-\sqrt {4+a}}+\sqrt {-1+\sqrt {4+a}}\right ) \left (1+\sqrt {-1-\sqrt {4+a}}-x\right )}} \sqrt {-\frac {\sqrt {-1-\sqrt {4+a}} \left (-1+\sqrt {-1+\sqrt {4+a}}+x\right )}{\left (\sqrt {-1-\sqrt {4+a}}-\sqrt {-1+\sqrt {4+a}}\right ) \left (1+\sqrt {-1-\sqrt {4+a}}-x\right )}} \left (\left (1+\sqrt {-1-\sqrt {4+a}} \sqrt {-1+\sqrt {4+a}}\right ) E\left (\arcsin \left (\sqrt {\frac {\left (\sqrt {-1-\sqrt {4+a}}-\sqrt {-1+\sqrt {4+a}}\right ) \left (-1+\sqrt {-1-\sqrt {4+a}}+x\right )}{\left (\sqrt {-1-\sqrt {4+a}}+\sqrt {-1+\sqrt {4+a}}\right ) \left (1+\sqrt {-1-\sqrt {4+a}}-x\right )}}\right )|\frac {\left (\sqrt {-1-\sqrt {4+a}}+\sqrt {-1+\sqrt {4+a}}\right )^2}{\left (\sqrt {-1-\sqrt {4+a}}-\sqrt {-1+\sqrt {4+a}}\right )^2}\right )-\left (1+2 \sqrt {-1-\sqrt {4+a}}+\sqrt {-1-\sqrt {4+a}} \sqrt {-1+\sqrt {4+a}}\right ) \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\frac {\left (\sqrt {-1-\sqrt {4+a}}-\sqrt {-1+\sqrt {4+a}}\right ) \left (-1+\sqrt {-1-\sqrt {4+a}}+x\right )}{\left (\sqrt {-1-\sqrt {4+a}}+\sqrt {-1+\sqrt {4+a}}\right ) \left (1+\sqrt {-1-\sqrt {4+a}}-x\right )}}\right ),\frac {\left (\sqrt {-1-\sqrt {4+a}}+\sqrt {-1+\sqrt {4+a}}\right )^2}{\left (\sqrt {-1-\sqrt {4+a}}-\sqrt {-1+\sqrt {4+a}}\right )^2}\right )+4 \sqrt {-1-\sqrt {4+a}} \operatorname {EllipticPi}\left (\frac {\sqrt {-1-\sqrt {4+a}}+\sqrt {-1+\sqrt {4+a}}}{-\sqrt {-1-\sqrt {4+a}}+\sqrt {-1+\sqrt {4+a}}},\arcsin \left (\sqrt {\frac {\left (\sqrt {-1-\sqrt {4+a}}-\sqrt {-1+\sqrt {4+a}}\right ) \left (-1+\sqrt {-1-\sqrt {4+a}}+x\right )}{\left (\sqrt {-1-\sqrt {4+a}}+\sqrt {-1+\sqrt {4+a}}\right ) \left (1+\sqrt {-1-\sqrt {4+a}}-x\right )}}\right ),\frac {\left (\sqrt {-1-\sqrt {4+a}}+\sqrt {-1+\sqrt {4+a}}\right )^2}{\left (\sqrt {-1-\sqrt {4+a}}-\sqrt {-1+\sqrt {4+a}}\right )^2}\right )\right )}{1+\sqrt {4+a}+\sqrt {-1-\sqrt {4+a}} \sqrt {-1+\sqrt {4+a}}}}{\sqrt {a-x \left (-8+8 x-4 x^2+x^3\right )}} \]

input
Integrate[x^2/Sqrt[a + 8*x - 8*x^2 + 4*x^3 - x^4],x]
 
output
((-1 + Sqrt[-1 - Sqrt[4 + a]] + x)*(-1 - Sqrt[-1 + Sqrt[4 + a]] + x)*(-1 + 
 Sqrt[-1 + Sqrt[4 + a]] + x) + (2*(Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt 
[4 + a]])*(1 + Sqrt[-1 - Sqrt[4 + a]] - x)^2*Sqrt[(Sqrt[-1 - Sqrt[4 + a]]* 
(1 + Sqrt[-1 + Sqrt[4 + a]] - x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqr 
t[4 + a]])*(1 + Sqrt[-1 - Sqrt[4 + a]] - x))]*Sqrt[((Sqrt[-1 - Sqrt[4 + a] 
] - Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 - Sqrt[4 + a]] + x))/((Sqrt[-1 - 
 Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(1 + Sqrt[-1 - Sqrt[4 + a]] - x))] 
*Sqrt[-((Sqrt[-1 - Sqrt[4 + a]]*(-1 + Sqrt[-1 + Sqrt[4 + a]] + x))/((Sqrt[ 
-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(1 + Sqrt[-1 - Sqrt[4 + a]] - 
x)))]*((1 + Sqrt[-1 - Sqrt[4 + a]]*Sqrt[-1 + Sqrt[4 + a]])*EllipticE[ArcSi 
n[Sqrt[((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 - 
Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(1 + 
 Sqrt[-1 - Sqrt[4 + a]] - x))]], (Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[ 
4 + a]])^2/(Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])^2] - (1 + 2*S 
qrt[-1 - Sqrt[4 + a]] + Sqrt[-1 - Sqrt[4 + a]]*Sqrt[-1 + Sqrt[4 + a]])*Ell 
ipticF[ArcSin[Sqrt[((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 
+ Sqrt[-1 - Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 
 + a]])*(1 + Sqrt[-1 - Sqrt[4 + a]] - x))]], (Sqrt[-1 - Sqrt[4 + a]] + Sqr 
t[-1 + Sqrt[4 + a]])^2/(Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])^2 
] + 4*Sqrt[-1 - Sqrt[4 + a]]*EllipticPi[(Sqrt[-1 - Sqrt[4 + a]] + Sqrt[...
 
3.8.93.3 Rubi [A] (warning: unable to verify)

Time = 0.68 (sec) , antiderivative size = 471, normalized size of antiderivative = 1.21, number of steps used = 13, number of rules used = 12, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.429, Rules used = {2459, 2006, 2202, 27, 1432, 1092, 217, 1514, 406, 320, 388, 313}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^2}{\sqrt {a-x^4+4 x^3-8 x^2+8 x}} \, dx\)

\(\Big \downarrow \) 2459

\(\displaystyle \int \frac {(x-1)^2+2 (x-1)+1}{\sqrt {a-(x-1)^4-2 (x-1)^2+3}}d(x-1)\)

\(\Big \downarrow \) 2006

\(\displaystyle \int \frac {x^2}{\sqrt {a-(x-1)^4-2 (x-1)^2+3}}d(x-1)\)

\(\Big \downarrow \) 2202

\(\displaystyle \int \frac {(x-1)^2+1}{\sqrt {-(x-1)^4-2 (x-1)^2+a+3}}d(x-1)+\int \frac {2 (x-1)}{\sqrt {-(x-1)^4-2 (x-1)^2+a+3}}d(x-1)\)

\(\Big \downarrow \) 27

\(\displaystyle \int \frac {(x-1)^2+1}{\sqrt {-(x-1)^4-2 (x-1)^2+a+3}}d(x-1)+2 \int \frac {x-1}{\sqrt {-(x-1)^4-2 (x-1)^2+a+3}}d(x-1)\)

\(\Big \downarrow \) 1432

\(\displaystyle \int \frac {1}{\sqrt {-(x-1)^4-2 (x-1)^2+a+3}}d(x-1)^2+\int \frac {(x-1)^2+1}{\sqrt {-(x-1)^4-2 (x-1)^2+a+3}}d(x-1)\)

\(\Big \downarrow \) 1092

\(\displaystyle 2 \int \frac {1}{-(x-1)^4-4}d\left (-\frac {2 x}{\sqrt {-(x-1)^4-2 (x-1)^2+a+3}}\right )+\int \frac {(x-1)^2+1}{\sqrt {-(x-1)^4-2 (x-1)^2+a+3}}d(x-1)\)

\(\Big \downarrow \) 217

\(\displaystyle \int \frac {(x-1)^2+1}{\sqrt {-(x-1)^4-2 (x-1)^2+a+3}}d(x-1)+\arctan \left (\frac {x}{\sqrt {a-(x-1)^4-2 (x-1)^2+3}}\right )\)

\(\Big \downarrow \) 1514

\(\displaystyle \frac {\sqrt {\frac {(x-1)^2}{1-\sqrt {a+4}}+1} \sqrt {\frac {(x-1)^2}{\sqrt {a+4}+1}+1} \int \frac {(x-1)^2+1}{\sqrt {\frac {(x-1)^2}{1-\sqrt {a+4}}+1} \sqrt {\frac {(x-1)^2}{\sqrt {a+4}+1}+1}}d(x-1)}{\sqrt {a-(x-1)^4-2 (x-1)^2+3}}+\arctan \left (\frac {x}{\sqrt {a-(x-1)^4-2 (x-1)^2+3}}\right )\)

\(\Big \downarrow \) 406

\(\displaystyle \frac {\sqrt {\frac {(x-1)^2}{1-\sqrt {a+4}}+1} \sqrt {\frac {(x-1)^2}{\sqrt {a+4}+1}+1} \left (\int \frac {1}{\sqrt {\frac {(x-1)^2}{1-\sqrt {a+4}}+1} \sqrt {\frac {(x-1)^2}{\sqrt {a+4}+1}+1}}d(x-1)+\int \frac {(x-1)^2}{\sqrt {\frac {(x-1)^2}{1-\sqrt {a+4}}+1} \sqrt {\frac {(x-1)^2}{\sqrt {a+4}+1}+1}}d(x-1)\right )}{\sqrt {a-(x-1)^4-2 (x-1)^2+3}}+\arctan \left (\frac {x}{\sqrt {a-(x-1)^4-2 (x-1)^2+3}}\right )\)

\(\Big \downarrow \) 320

\(\displaystyle \frac {\sqrt {\frac {(x-1)^2}{1-\sqrt {a+4}}+1} \sqrt {\frac {(x-1)^2}{\sqrt {a+4}+1}+1} \left (\int \frac {(x-1)^2}{\sqrt {\frac {(x-1)^2}{1-\sqrt {a+4}}+1} \sqrt {\frac {(x-1)^2}{\sqrt {a+4}+1}+1}}d(x-1)+\frac {\sqrt {\sqrt {a+4}+1} \sqrt {\frac {(x-1)^2}{1-\sqrt {a+4}}+1} \operatorname {EllipticF}\left (\arctan \left (\frac {x-1}{\sqrt {\sqrt {a+4}+1}}\right ),-\frac {2 \sqrt {a+4}}{1-\sqrt {a+4}}\right )}{\sqrt {\frac {\frac {(x-1)^2}{1-\sqrt {a+4}}+1}{\frac {(x-1)^2}{\sqrt {a+4}+1}+1}} \sqrt {\frac {(x-1)^2}{\sqrt {a+4}+1}+1}}\right )}{\sqrt {a-(x-1)^4-2 (x-1)^2+3}}+\arctan \left (\frac {x}{\sqrt {a-(x-1)^4-2 (x-1)^2+3}}\right )\)

\(\Big \downarrow \) 388

\(\displaystyle \frac {\sqrt {\frac {(x-1)^2}{1-\sqrt {a+4}}+1} \sqrt {\frac {(x-1)^2}{\sqrt {a+4}+1}+1} \left (-\left (1-\sqrt {a+4}\right ) \int \frac {\sqrt {\frac {(x-1)^2}{1-\sqrt {a+4}}+1}}{\left (\frac {(x-1)^2}{\sqrt {a+4}+1}+1\right )^{3/2}}d(x-1)+\frac {\sqrt {\sqrt {a+4}+1} \sqrt {\frac {(x-1)^2}{1-\sqrt {a+4}}+1} \operatorname {EllipticF}\left (\arctan \left (\frac {x-1}{\sqrt {\sqrt {a+4}+1}}\right ),-\frac {2 \sqrt {a+4}}{1-\sqrt {a+4}}\right )}{\sqrt {\frac {\frac {(x-1)^2}{1-\sqrt {a+4}}+1}{\frac {(x-1)^2}{\sqrt {a+4}+1}+1}} \sqrt {\frac {(x-1)^2}{\sqrt {a+4}+1}+1}}+\frac {\left (1-\sqrt {a+4}\right ) (x-1) \sqrt {\frac {(x-1)^2}{1-\sqrt {a+4}}+1}}{\sqrt {\frac {(x-1)^2}{\sqrt {a+4}+1}+1}}\right )}{\sqrt {a-(x-1)^4-2 (x-1)^2+3}}+\arctan \left (\frac {x}{\sqrt {a-(x-1)^4-2 (x-1)^2+3}}\right )\)

\(\Big \downarrow \) 313

\(\displaystyle \arctan \left (\frac {x}{\sqrt {a-(x-1)^4-2 (x-1)^2+3}}\right )+\frac {\sqrt {\frac {(x-1)^2}{1-\sqrt {a+4}}+1} \sqrt {\frac {(x-1)^2}{\sqrt {a+4}+1}+1} \left (\frac {\sqrt {\sqrt {a+4}+1} \sqrt {\frac {(x-1)^2}{1-\sqrt {a+4}}+1} \operatorname {EllipticF}\left (\arctan \left (\frac {x-1}{\sqrt {\sqrt {a+4}+1}}\right ),-\frac {2 \sqrt {a+4}}{1-\sqrt {a+4}}\right )}{\sqrt {\frac {\frac {(x-1)^2}{1-\sqrt {a+4}}+1}{\frac {(x-1)^2}{\sqrt {a+4}+1}+1}} \sqrt {\frac {(x-1)^2}{\sqrt {a+4}+1}+1}}-\frac {\left (1-\sqrt {a+4}\right ) \sqrt {\sqrt {a+4}+1} \sqrt {\frac {(x-1)^2}{1-\sqrt {a+4}}+1} E\left (\arctan \left (\frac {x-1}{\sqrt {\sqrt {a+4}+1}}\right )|-\frac {2 \sqrt {a+4}}{1-\sqrt {a+4}}\right )}{\sqrt {\frac {\frac {(x-1)^2}{1-\sqrt {a+4}}+1}{\frac {(x-1)^2}{\sqrt {a+4}+1}+1}} \sqrt {\frac {(x-1)^2}{\sqrt {a+4}+1}+1}}+\frac {\left (1-\sqrt {a+4}\right ) (x-1) \sqrt {\frac {(x-1)^2}{1-\sqrt {a+4}}+1}}{\sqrt {\frac {(x-1)^2}{\sqrt {a+4}+1}+1}}\right )}{\sqrt {a-(x-1)^4-2 (x-1)^2+3}}\)

input
Int[x^2/Sqrt[a + 8*x - 8*x^2 + 4*x^3 - x^4],x]
 
output
ArcTan[x/Sqrt[3 + a - 2*(-1 + x)^2 - (-1 + x)^4]] + (Sqrt[1 + (-1 + x)^2/( 
1 - Sqrt[4 + a])]*Sqrt[1 + (-1 + x)^2/(1 + Sqrt[4 + a])]*(((1 - Sqrt[4 + a 
])*Sqrt[1 + (-1 + x)^2/(1 - Sqrt[4 + a])]*(-1 + x))/Sqrt[1 + (-1 + x)^2/(1 
 + Sqrt[4 + a])] - ((1 - Sqrt[4 + a])*Sqrt[1 + Sqrt[4 + a]]*Sqrt[1 + (-1 + 
 x)^2/(1 - Sqrt[4 + a])]*EllipticE[ArcTan[(-1 + x)/Sqrt[1 + Sqrt[4 + a]]], 
 (-2*Sqrt[4 + a])/(1 - Sqrt[4 + a])])/(Sqrt[(1 + (-1 + x)^2/(1 - Sqrt[4 + 
a]))/(1 + (-1 + x)^2/(1 + Sqrt[4 + a]))]*Sqrt[1 + (-1 + x)^2/(1 + Sqrt[4 + 
 a])]) + (Sqrt[1 + Sqrt[4 + a]]*Sqrt[1 + (-1 + x)^2/(1 - Sqrt[4 + a])]*Ell 
ipticF[ArcTan[(-1 + x)/Sqrt[1 + Sqrt[4 + a]]], (-2*Sqrt[4 + a])/(1 - Sqrt[ 
4 + a])])/(Sqrt[(1 + (-1 + x)^2/(1 - Sqrt[4 + a]))/(1 + (-1 + x)^2/(1 + Sq 
rt[4 + a]))]*Sqrt[1 + (-1 + x)^2/(1 + Sqrt[4 + a])])))/Sqrt[3 + a - 2*(-1 
+ x)^2 - (-1 + x)^4]
 

3.8.93.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 313
Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Sim 
p[(Sqrt[a + b*x^2]/(c*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c 
+ d*x^2)))]))*EllipticE[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /; FreeQ 
[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]
 

rule 320
Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> S 
imp[(Sqrt[a + b*x^2]/(a*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*( 
c + d*x^2)))]))*EllipticF[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /; Fre 
eQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]
 

rule 388
Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] 
 :> Simp[x*(Sqrt[a + b*x^2]/(b*Sqrt[c + d*x^2])), x] - Simp[c/b   Int[Sqrt[ 
a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - 
 a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]
 

rule 406
Int[((a_) + (b_.)*(x_)^2)^(p_.)*((c_) + (d_.)*(x_)^2)^(q_.)*((e_) + (f_.)*( 
x_)^2), x_Symbol] :> Simp[e   Int[(a + b*x^2)^p*(c + d*x^2)^q, x], x] + Sim 
p[f   Int[x^2*(a + b*x^2)^p*(c + d*x^2)^q, x], x] /; FreeQ[{a, b, c, d, e, 
f, p, q}, x]
 

rule 1092
Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Simp[2   Subst[I 
nt[1/(4*c - x^2), x], x, (b + 2*c*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a 
, b, c}, x]
 

rule 1432
Int[(x_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[1/2 
 Subst[Int[(a + b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, p}, x]
 

rule 1514
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbo 
l] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[Sqrt[1 + 2*c*(x^2/(b - q))]*(Sqrt 
[1 + 2*c*(x^2/(b + q))]/Sqrt[a + b*x^2 + c*x^4])   Int[(d + e*x^2)/(Sqrt[1 
+ 2*c*(x^2/(b - q))]*Sqrt[1 + 2*c*(x^2/(b + q))]), x], x]] /; FreeQ[{a, b, 
c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NegQ[c/a]
 

rule 2006
Int[(u_.)*(Px_), x_Symbol] :> With[{a = Rt[Coeff[Px, x, 0], Expon[Px, x]], 
b = Rt[Coeff[Px, x, Expon[Px, x]], Expon[Px, x]]}, Int[u*(a + b*x)^Expon[Px 
, x], x] /; EqQ[Px, (a + b*x)^Expon[Px, x]]] /; PolyQ[Px, x] && GtQ[Expon[P 
x, x], 1] && NeQ[Coeff[Px, x, 0], 0] &&  !MatchQ[Px, (a_.)*(v_)^Expon[Px, x 
] /; FreeQ[a, x] && LinearQ[v, x]]
 

rule 2202
Int[(Pn_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Module[{n 
 = Expon[Pn, x], k}, Int[Sum[Coeff[Pn, x, 2*k]*x^(2*k), {k, 0, n/2}]*(a + b 
*x^2 + c*x^4)^p, x] + Int[x*Sum[Coeff[Pn, x, 2*k + 1]*x^(2*k), {k, 0, (n - 
1)/2}]*(a + b*x^2 + c*x^4)^p, x]] /; FreeQ[{a, b, c, p}, x] && PolyQ[Pn, x] 
 &&  !PolyQ[Pn, x^2]
 

rule 2459
Int[(Pn_)^(p_.)*(Qx_), x_Symbol] :> With[{S = Coeff[Pn, x, Expon[Pn, x] - 1 
]/(Expon[Pn, x]*Coeff[Pn, x, Expon[Pn, x]])}, Subst[Int[ExpandToSum[Pn /. x 
 -> x - S, x]^p*ExpandToSum[Qx /. x -> x - S, x], x], x, x + S] /; Binomial 
Q[Pn /. x -> x - S, x] || (IntegerQ[Expon[Pn, x]/2] && TrinomialQ[Pn /. x - 
> x - S, x])] /; FreeQ[p, x] && PolyQ[Pn, x] && GtQ[Expon[Pn, x], 2] && NeQ 
[Coeff[Pn, x, Expon[Pn, x] - 1], 0] && PolyQ[Qx, x] &&  !(MonomialQ[Qx, x] 
&& IGtQ[p, 0])
 
3.8.93.4 Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(1146\) vs. \(2(454)=908\).

Time = 1.44 (sec) , antiderivative size = 1147, normalized size of antiderivative = 2.96

method result size
default \(\text {Expression too large to display}\) \(1147\)
elliptic \(\text {Expression too large to display}\) \(1147\)

input
int(x^2/(-x^4+4*x^3-8*x^2+a+8*x)^(1/2),x,method=_RETURNVERBOSE)
 
output
((x-1-(-1+(a+4)^(1/2))^(1/2))*(x-1-(-1-(a+4)^(1/2))^(1/2))*(x-1+(-1-(a+4)^ 
(1/2))^(1/2))+((-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))*((-(-1-(a+4) 
^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))*(x-1-(-1+(a+4)^(1/2))^(1/2))/(-(-1-( 
a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2))/(x-1+(-1+(a+4)^(1/2))^(1/2)))^(1 
/2)*(x-1+(-1+(a+4)^(1/2))^(1/2))^2*(-2*(-1+(a+4)^(1/2))^(1/2)*(x-1-(-1-(a+ 
4)^(1/2))^(1/2))/((-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2))/(x-1+(-1+ 
(a+4)^(1/2))^(1/2)))^(1/2)*(-2*(-1+(a+4)^(1/2))^(1/2)*(x-1+(-1-(a+4)^(1/2) 
)^(1/2))/(-(-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2))/(x-1+(-1+(a+4)^( 
1/2))^(1/2)))^(1/2)*(-1/2*((1-(-1+(a+4)^(1/2))^(1/2))*(1+(-1+(a+4)^(1/2))^ 
(1/2))-(1-(-1-(a+4)^(1/2))^(1/2))*(1+(-1+(a+4)^(1/2))^(1/2))+(1-(-1-(a+4)^ 
(1/2))^(1/2))*(1-(-1+(a+4)^(1/2))^(1/2))+(1-(-1+(a+4)^(1/2))^(1/2))^2)/(-( 
-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))/(-1+(a+4)^(1/2))^(1/2)*Ellip 
ticF(((-(-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))*(x-1-(-1+(a+4)^(1/2 
))^(1/2))/(-(-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2))/(x-1+(-1+(a+4)^ 
(1/2))^(1/2)))^(1/2),((-(-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2))*((- 
1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))/(-(-1-(a+4)^(1/2))^(1/2)+(-1+ 
(a+4)^(1/2))^(1/2))/((-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2)))^(1/2) 
)-1/2*(-(-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))*EllipticE(((-(-1-(a 
+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))*(x-1-(-1+(a+4)^(1/2))^(1/2))/(-(- 
1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2))/(x-1+(-1+(a+4)^(1/2))^(1/2...
 
3.8.93.5 Fricas [F]

\[ \int \frac {x^2}{\sqrt {a+8 x-8 x^2+4 x^3-x^4}} \, dx=\int { \frac {x^{2}}{\sqrt {-x^{4} + 4 \, x^{3} - 8 \, x^{2} + a + 8 \, x}} \,d x } \]

input
integrate(x^2/(-x^4+4*x^3-8*x^2+a+8*x)^(1/2),x, algorithm="fricas")
 
output
integral(-sqrt(-x^4 + 4*x^3 - 8*x^2 + a + 8*x)*x^2/(x^4 - 4*x^3 + 8*x^2 - 
a - 8*x), x)
 
3.8.93.6 Sympy [F]

\[ \int \frac {x^2}{\sqrt {a+8 x-8 x^2+4 x^3-x^4}} \, dx=\int \frac {x^{2}}{\sqrt {a - x^{4} + 4 x^{3} - 8 x^{2} + 8 x}}\, dx \]

input
integrate(x**2/(-x**4+4*x**3-8*x**2+a+8*x)**(1/2),x)
 
output
Integral(x**2/sqrt(a - x**4 + 4*x**3 - 8*x**2 + 8*x), x)
 
3.8.93.7 Maxima [F]

\[ \int \frac {x^2}{\sqrt {a+8 x-8 x^2+4 x^3-x^4}} \, dx=\int { \frac {x^{2}}{\sqrt {-x^{4} + 4 \, x^{3} - 8 \, x^{2} + a + 8 \, x}} \,d x } \]

input
integrate(x^2/(-x^4+4*x^3-8*x^2+a+8*x)^(1/2),x, algorithm="maxima")
 
output
integrate(x^2/sqrt(-x^4 + 4*x^3 - 8*x^2 + a + 8*x), x)
 
3.8.93.8 Giac [F]

\[ \int \frac {x^2}{\sqrt {a+8 x-8 x^2+4 x^3-x^4}} \, dx=\int { \frac {x^{2}}{\sqrt {-x^{4} + 4 \, x^{3} - 8 \, x^{2} + a + 8 \, x}} \,d x } \]

input
integrate(x^2/(-x^4+4*x^3-8*x^2+a+8*x)^(1/2),x, algorithm="giac")
 
output
integrate(x^2/sqrt(-x^4 + 4*x^3 - 8*x^2 + a + 8*x), x)
 
3.8.93.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^2}{\sqrt {a+8 x-8 x^2+4 x^3-x^4}} \, dx=\int \frac {x^2}{\sqrt {-x^4+4\,x^3-8\,x^2+8\,x+a}} \,d x \]

input
int(x^2/(a + 8*x - 8*x^2 + 4*x^3 - x^4)^(1/2),x)
 
output
int(x^2/(a + 8*x - 8*x^2 + 4*x^3 - x^4)^(1/2), x)