3.8.94 \(\int \frac {x^2}{(a+8 x-8 x^2+4 x^3-x^4)^{3/2}} \, dx\) [794]

3.8.94.1 Optimal result
3.8.94.2 Mathematica [B] (verified)
3.8.94.3 Rubi [A] (warning: unable to verify)
3.8.94.4 Maple [B] (warning: unable to verify)
3.8.94.5 Fricas [F]
3.8.94.6 Sympy [F]
3.8.94.7 Maxima [F]
3.8.94.8 Giac [F]
3.8.94.9 Mupad [F(-1)]

3.8.94.1 Optimal result

Integrand size = 28, antiderivative size = 311 \[ \int \frac {x^2}{\left (a+8 x-8 x^2+4 x^3-x^4\right )^{3/2}} \, dx=\frac {1+(-1+x)^2}{(4+a) \sqrt {3+a-2 (-1+x)^2-(-1+x)^4}}+\frac {(4+a) \left (2+(-1+x)^2\right ) (-1+x)}{2 \left (12+7 a+a^2\right ) \sqrt {3+a-2 (-1+x)^2-(-1+x)^4}}-\frac {\left (1-\sqrt {4+a}\right ) \left (1+\frac {(-1+x)^2}{1-\sqrt {4+a}}\right ) (-1+x)}{2 (3+a) \sqrt {3+a-2 (-1+x)^2-(-1+x)^4}}+\frac {\left (1-\sqrt {4+a}\right ) \sqrt {1+\sqrt {4+a}} \left (1+\frac {(-1+x)^2}{1-\sqrt {4+a}}\right ) E\left (\arctan \left (\frac {-1+x}{\sqrt {1+\sqrt {4+a}}}\right )|-\frac {2 \sqrt {4+a}}{1-\sqrt {4+a}}\right )}{2 (3+a) \sqrt {\frac {1+\frac {(-1+x)^2}{1-\sqrt {4+a}}}{1+\frac {(-1+x)^2}{1+\sqrt {4+a}}}} \sqrt {3+a-2 (-1+x)^2-(-1+x)^4}} \]

output
(1+(-1+x)^2)/(4+a)/(3+a-2*(-1+x)^2-(-1+x)^4)^(1/2)+1/2*(4+a)*(2+(-1+x)^2)* 
(-1+x)/(a^2+7*a+12)/(3+a-2*(-1+x)^2-(-1+x)^4)^(1/2)-1/2*(-1+x)*(1+(-1+x)^2 
/(1-(4+a)^(1/2)))*(1-(4+a)^(1/2))/(3+a)/(3+a-2*(-1+x)^2-(-1+x)^4)^(1/2)+1/ 
2*(1/(1+(-1+x)^2/(1+(4+a)^(1/2))))^(1/2)*(1+(-1+x)^2/(1+(4+a)^(1/2)))^(1/2 
)*EllipticE((-1+x)/(1+(4+a)^(1/2))^(1/2)/(1+(-1+x)^2/(1+(4+a)^(1/2)))^(1/2 
),(-2*(4+a)^(1/2)/(1-(4+a)^(1/2)))^(1/2))*(1+(-1+x)^2/(1-(4+a)^(1/2)))*(1- 
(4+a)^(1/2))*(1+(4+a)^(1/2))^(1/2)/(3+a)/(3+a-2*(-1+x)^2-(-1+x)^4)^(1/2)/( 
(1+(-1+x)^2/(1-(4+a)^(1/2)))/(1+(-1+x)^2/(1+(4+a)^(1/2))))^(1/2)
 
3.8.94.2 Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(2941\) vs. \(2(311)=622\).

Time = 14.51 (sec) , antiderivative size = 2941, normalized size of antiderivative = 9.46 \[ \int \frac {x^2}{\left (a+8 x-8 x^2+4 x^3-x^4\right )^{3/2}} \, dx=\text {Result too large to show} \]

input
Integrate[x^2/(a + 8*x - 8*x^2 + 4*x^3 - x^4)^(3/2),x]
 
output
((-a - 8*x - a*x + 6*x^2 + a*x^2 - 4*x^3 - a*x^3)*(a + 8*x - 8*x^2 + 4*x^3 
 - x^4)^2)/(2*(3 + a)*(4 + a)*(-a - 8*x + 8*x^2 - 4*x^3 + x^4)*(a - x*(-8 
+ 8*x - 4*x^2 + x^3))^(3/2)) - ((a + 8*x - 8*x^2 + 4*x^3 - x^4)^(3/2)*((2* 
(-Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 
+ a]] + x)^2*Sqrt[((-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 
+ Sqrt[-1 - Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 
 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x))]*Sqrt[(Sqrt[-1 - Sqrt[4 + a]]*( 
-1 - Sqrt[-1 + Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqr 
t[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x))]*Sqrt[(Sqrt[-1 - Sqrt[4 + a] 
]*(-1 + Sqrt[-1 + Sqrt[4 + a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + 
Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x))]*EllipticF[ArcSin[Sqrt[(( 
-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 - Sqrt[4 + 
 a]] + x))/((Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[- 
1 - Sqrt[4 + a]] + x))]], ((-Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a 
]])*(Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[4 + a]]))/((Sqrt[-1 - Sqrt[4 
+ a]] - Sqrt[-1 + Sqrt[4 + a]])*(-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + Sqrt[ 
4 + a]]))])/(Sqrt[-1 - Sqrt[4 + a]]*(-Sqrt[-1 - Sqrt[4 + a]] + Sqrt[-1 + S 
qrt[4 + a]])*Sqrt[a + 8*x - 8*x^2 + 4*x^3 - x^4]) - (4*(-Sqrt[-1 - Sqrt[4 
+ a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 - Sqrt[-1 - Sqrt[4 + a]] + x)^2*Sqrt[( 
(Sqrt[-1 - Sqrt[4 + a]] - Sqrt[-1 + Sqrt[4 + a]])*(-1 + Sqrt[-1 - Sqrt[...
 
3.8.94.3 Rubi [A] (warning: unable to verify)

Time = 0.59 (sec) , antiderivative size = 389, normalized size of antiderivative = 1.25, number of steps used = 12, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.393, Rules used = {2459, 2006, 2202, 27, 1432, 1088, 1492, 27, 1460, 388, 313}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^2}{\left (a-x^4+4 x^3-8 x^2+8 x\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 2459

\(\displaystyle \int \frac {(x-1)^2+2 (x-1)+1}{\left (a-(x-1)^4-2 (x-1)^2+3\right )^{3/2}}d(x-1)\)

\(\Big \downarrow \) 2006

\(\displaystyle \int \frac {x^2}{\left (a-(x-1)^4-2 (x-1)^2+3\right )^{3/2}}d(x-1)\)

\(\Big \downarrow \) 2202

\(\displaystyle \int \frac {(x-1)^2+1}{\left (-(x-1)^4-2 (x-1)^2+a+3\right )^{3/2}}d(x-1)+\int \frac {2 (x-1)}{\left (-(x-1)^4-2 (x-1)^2+a+3\right )^{3/2}}d(x-1)\)

\(\Big \downarrow \) 27

\(\displaystyle \int \frac {(x-1)^2+1}{\left (-(x-1)^4-2 (x-1)^2+a+3\right )^{3/2}}d(x-1)+2 \int \frac {x-1}{\left (-(x-1)^4-2 (x-1)^2+a+3\right )^{3/2}}d(x-1)\)

\(\Big \downarrow \) 1432

\(\displaystyle \int \frac {1}{\left (-(x-1)^4-2 (x-1)^2+a+3\right )^{3/2}}d(x-1)^2+\int \frac {(x-1)^2+1}{\left (-(x-1)^4-2 (x-1)^2+a+3\right )^{3/2}}d(x-1)\)

\(\Big \downarrow \) 1088

\(\displaystyle \int \frac {(x-1)^2+1}{\left (-(x-1)^4-2 (x-1)^2+a+3\right )^{3/2}}d(x-1)+\frac {x}{(a+4) \sqrt {a-(x-1)^4-2 (x-1)^2+3}}\)

\(\Big \downarrow \) 1492

\(\displaystyle -\frac {\int \frac {2 (a+4) (x-1)^2}{\sqrt {-(x-1)^4-2 (x-1)^2+a+3}}d(x-1)}{4 \left (a^2+7 a+12\right )}+\frac {(a+4) \left ((x-1)^2+2\right ) (x-1)}{2 \left (a^2+7 a+12\right ) \sqrt {a-(x-1)^4-2 (x-1)^2+3}}+\frac {x}{(a+4) \sqrt {a-(x-1)^4-2 (x-1)^2+3}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {(a+4) \int \frac {(x-1)^2}{\sqrt {-(x-1)^4-2 (x-1)^2+a+3}}d(x-1)}{2 \left (a^2+7 a+12\right )}+\frac {(a+4) \left ((x-1)^2+2\right ) (x-1)}{2 \left (a^2+7 a+12\right ) \sqrt {a-(x-1)^4-2 (x-1)^2+3}}+\frac {x}{(a+4) \sqrt {a-(x-1)^4-2 (x-1)^2+3}}\)

\(\Big \downarrow \) 1460

\(\displaystyle -\frac {(a+4) \sqrt {\frac {(x-1)^2}{1-\sqrt {a+4}}+1} \sqrt {\frac {(x-1)^2}{\sqrt {a+4}+1}+1} \int \frac {(x-1)^2}{\sqrt {\frac {(x-1)^2}{1-\sqrt {a+4}}+1} \sqrt {\frac {(x-1)^2}{\sqrt {a+4}+1}+1}}d(x-1)}{2 \left (a^2+7 a+12\right ) \sqrt {a-(x-1)^4-2 (x-1)^2+3}}+\frac {(a+4) \left ((x-1)^2+2\right ) (x-1)}{2 \left (a^2+7 a+12\right ) \sqrt {a-(x-1)^4-2 (x-1)^2+3}}+\frac {x}{(a+4) \sqrt {a-(x-1)^4-2 (x-1)^2+3}}\)

\(\Big \downarrow \) 388

\(\displaystyle -\frac {(a+4) \sqrt {\frac {(x-1)^2}{1-\sqrt {a+4}}+1} \sqrt {\frac {(x-1)^2}{\sqrt {a+4}+1}+1} \left (\frac {\left (1-\sqrt {a+4}\right ) (x-1) \sqrt {\frac {(x-1)^2}{1-\sqrt {a+4}}+1}}{\sqrt {\frac {(x-1)^2}{\sqrt {a+4}+1}+1}}-\left (1-\sqrt {a+4}\right ) \int \frac {\sqrt {\frac {(x-1)^2}{1-\sqrt {a+4}}+1}}{\left (\frac {(x-1)^2}{\sqrt {a+4}+1}+1\right )^{3/2}}d(x-1)\right )}{2 \left (a^2+7 a+12\right ) \sqrt {a-(x-1)^4-2 (x-1)^2+3}}+\frac {(a+4) \left ((x-1)^2+2\right ) (x-1)}{2 \left (a^2+7 a+12\right ) \sqrt {a-(x-1)^4-2 (x-1)^2+3}}+\frac {x}{(a+4) \sqrt {a-(x-1)^4-2 (x-1)^2+3}}\)

\(\Big \downarrow \) 313

\(\displaystyle -\frac {(a+4) \sqrt {\frac {(x-1)^2}{1-\sqrt {a+4}}+1} \sqrt {\frac {(x-1)^2}{\sqrt {a+4}+1}+1} \left (\frac {\left (1-\sqrt {a+4}\right ) (x-1) \sqrt {\frac {(x-1)^2}{1-\sqrt {a+4}}+1}}{\sqrt {\frac {(x-1)^2}{\sqrt {a+4}+1}+1}}-\frac {\left (1-\sqrt {a+4}\right ) \sqrt {\sqrt {a+4}+1} \sqrt {\frac {(x-1)^2}{1-\sqrt {a+4}}+1} E\left (\arctan \left (\frac {x-1}{\sqrt {\sqrt {a+4}+1}}\right )|-\frac {2 \sqrt {a+4}}{1-\sqrt {a+4}}\right )}{\sqrt {\frac {\frac {(x-1)^2}{1-\sqrt {a+4}}+1}{\frac {(x-1)^2}{\sqrt {a+4}+1}+1}} \sqrt {\frac {(x-1)^2}{\sqrt {a+4}+1}+1}}\right )}{2 \left (a^2+7 a+12\right ) \sqrt {a-(x-1)^4-2 (x-1)^2+3}}+\frac {(a+4) \left ((x-1)^2+2\right ) (x-1)}{2 \left (a^2+7 a+12\right ) \sqrt {a-(x-1)^4-2 (x-1)^2+3}}+\frac {x}{(a+4) \sqrt {a-(x-1)^4-2 (x-1)^2+3}}\)

input
Int[x^2/(a + 8*x - 8*x^2 + 4*x^3 - x^4)^(3/2),x]
 
output
((4 + a)*(2 + (-1 + x)^2)*(-1 + x))/(2*(12 + 7*a + a^2)*Sqrt[3 + a - 2*(-1 
 + x)^2 - (-1 + x)^4]) + x/((4 + a)*Sqrt[3 + a - 2*(-1 + x)^2 - (-1 + x)^4 
]) - ((4 + a)*Sqrt[1 + (-1 + x)^2/(1 - Sqrt[4 + a])]*Sqrt[1 + (-1 + x)^2/( 
1 + Sqrt[4 + a])]*(((1 - Sqrt[4 + a])*Sqrt[1 + (-1 + x)^2/(1 - Sqrt[4 + a] 
)]*(-1 + x))/Sqrt[1 + (-1 + x)^2/(1 + Sqrt[4 + a])] - ((1 - Sqrt[4 + a])*S 
qrt[1 + Sqrt[4 + a]]*Sqrt[1 + (-1 + x)^2/(1 - Sqrt[4 + a])]*EllipticE[ArcT 
an[(-1 + x)/Sqrt[1 + Sqrt[4 + a]]], (-2*Sqrt[4 + a])/(1 - Sqrt[4 + a])])/( 
Sqrt[(1 + (-1 + x)^2/(1 - Sqrt[4 + a]))/(1 + (-1 + x)^2/(1 + Sqrt[4 + a])) 
]*Sqrt[1 + (-1 + x)^2/(1 + Sqrt[4 + a])])))/(2*(12 + 7*a + a^2)*Sqrt[3 + a 
 - 2*(-1 + x)^2 - (-1 + x)^4])
 

3.8.94.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 313
Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Sim 
p[(Sqrt[a + b*x^2]/(c*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c 
+ d*x^2)))]))*EllipticE[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /; FreeQ 
[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]
 

rule 388
Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] 
 :> Simp[x*(Sqrt[a + b*x^2]/(b*Sqrt[c + d*x^2])), x] - Simp[c/b   Int[Sqrt[ 
a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - 
 a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]
 

rule 1088
Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-3/2), x_Symbol] :> Simp[-2*((b + 
2*c*x)/((b^2 - 4*a*c)*Sqrt[a + b*x + c*x^2])), x] /; FreeQ[{a, b, c}, x] && 
 NeQ[b^2 - 4*a*c, 0]
 

rule 1432
Int[(x_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[1/2 
 Subst[Int[(a + b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, p}, x]
 

rule 1460
Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = 
 Rt[b^2 - 4*a*c, 2]}, Simp[Sqrt[1 + 2*c*(x^2/(b - q))]*(Sqrt[1 + 2*c*(x^2/( 
b + q))]/Sqrt[a + b*x^2 + c*x^4])   Int[x^2/(Sqrt[1 + 2*c*(x^2/(b - q))]*Sq 
rt[1 + 2*c*(x^2/(b + q))]), x], x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a 
*c, 0] && NegQ[c/a]
 

rule 1492
Int[((d_) + (e_.)*(x_)^2)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symb 
ol] :> Simp[x*(a*b*e - d*(b^2 - 2*a*c) - c*(b*d - 2*a*e)*x^2)*((a + b*x^2 + 
 c*x^4)^(p + 1)/(2*a*(p + 1)*(b^2 - 4*a*c))), x] + Simp[1/(2*a*(p + 1)*(b^2 
 - 4*a*c))   Int[Simp[(2*p + 3)*d*b^2 - a*b*e - 2*a*c*d*(4*p + 5) + (4*p + 
7)*(d*b - 2*a*e)*c*x^2, x]*(a + b*x^2 + c*x^4)^(p + 1), x], x] /; FreeQ[{a, 
 b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && 
 LtQ[p, -1] && IntegerQ[2*p]
 

rule 2006
Int[(u_.)*(Px_), x_Symbol] :> With[{a = Rt[Coeff[Px, x, 0], Expon[Px, x]], 
b = Rt[Coeff[Px, x, Expon[Px, x]], Expon[Px, x]]}, Int[u*(a + b*x)^Expon[Px 
, x], x] /; EqQ[Px, (a + b*x)^Expon[Px, x]]] /; PolyQ[Px, x] && GtQ[Expon[P 
x, x], 1] && NeQ[Coeff[Px, x, 0], 0] &&  !MatchQ[Px, (a_.)*(v_)^Expon[Px, x 
] /; FreeQ[a, x] && LinearQ[v, x]]
 

rule 2202
Int[(Pn_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] :> Module[{n 
 = Expon[Pn, x], k}, Int[Sum[Coeff[Pn, x, 2*k]*x^(2*k), {k, 0, n/2}]*(a + b 
*x^2 + c*x^4)^p, x] + Int[x*Sum[Coeff[Pn, x, 2*k + 1]*x^(2*k), {k, 0, (n - 
1)/2}]*(a + b*x^2 + c*x^4)^p, x]] /; FreeQ[{a, b, c, p}, x] && PolyQ[Pn, x] 
 &&  !PolyQ[Pn, x^2]
 

rule 2459
Int[(Pn_)^(p_.)*(Qx_), x_Symbol] :> With[{S = Coeff[Pn, x, Expon[Pn, x] - 1 
]/(Expon[Pn, x]*Coeff[Pn, x, Expon[Pn, x]])}, Subst[Int[ExpandToSum[Pn /. x 
 -> x - S, x]^p*ExpandToSum[Qx /. x -> x - S, x], x], x, x + S] /; Binomial 
Q[Pn /. x -> x - S, x] || (IntegerQ[Expon[Pn, x]/2] && TrinomialQ[Pn /. x - 
> x - S, x])] /; FreeQ[p, x] && PolyQ[Pn, x] && GtQ[Expon[Pn, x], 2] && NeQ 
[Coeff[Pn, x, Expon[Pn, x] - 1], 0] && PolyQ[Qx, x] &&  !(MonomialQ[Qx, x] 
&& IGtQ[p, 0])
 
3.8.94.4 Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(2606\) vs. \(2(331)=662\).

Time = 1.28 (sec) , antiderivative size = 2607, normalized size of antiderivative = 8.38

method result size
default \(\text {Expression too large to display}\) \(2607\)
elliptic \(\text {Expression too large to display}\) \(2607\)

input
int(x^2/(-x^4+4*x^3-8*x^2+a+8*x)^(3/2),x,method=_RETURNVERBOSE)
 
output
2*(1/4/(3+a)*x^3-1/4*(6+a)/(a^2+7*a+12)*x^2+1/4*(a+8)/(a^2+7*a+12)*x+1/4/( 
a^2+7*a+12)*a)/(-x^4+4*x^3-8*x^2+a+8*x)^(1/2)-(2/(a^2+7*a+12)-1/2*(a+8)/(a 
^2+7*a+12))*((-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))*((-(-1-(a+4)^( 
1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))*(x-1-(-1+(a+4)^(1/2))^(1/2))/(-(-1-(a+ 
4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2))/(x-1+(-1+(a+4)^(1/2))^(1/2)))^(1/2 
)*(x-1+(-1+(a+4)^(1/2))^(1/2))^2*(-2*(-1+(a+4)^(1/2))^(1/2)*(x-1-(-1-(a+4) 
^(1/2))^(1/2))/((-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2))/(x-1+(-1+(a 
+4)^(1/2))^(1/2)))^(1/2)*(-2*(-1+(a+4)^(1/2))^(1/2)*(x-1+(-1-(a+4)^(1/2))^ 
(1/2))/(-(-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2))/(x-1+(-1+(a+4)^(1/ 
2))^(1/2)))^(1/2)/(-(-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))/(-1+(a+ 
4)^(1/2))^(1/2)/(-(x-1-(-1+(a+4)^(1/2))^(1/2))*(x-1+(-1+(a+4)^(1/2))^(1/2) 
)*(x-1-(-1-(a+4)^(1/2))^(1/2))*(x-1+(-1-(a+4)^(1/2))^(1/2)))^(1/2)*Ellipti 
cF(((-(-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))*(x-1-(-1+(a+4)^(1/2)) 
^(1/2))/(-(-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2))/(x-1+(-1+(a+4)^(1 
/2))^(1/2)))^(1/2),((-(-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2))*((-1- 
(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))/(-(-1-(a+4)^(1/2))^(1/2)+(-1+(a 
+4)^(1/2))^(1/2))/((-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2)))^(1/2))- 
(-2/(a^2+7*a+12)+(6+a)/(a^2+7*a+12))*((-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/ 
2))^(1/2))*((-(-1-(a+4)^(1/2))^(1/2)+(-1+(a+4)^(1/2))^(1/2))*(x-1-(-1+(a+4 
)^(1/2))^(1/2))/(-(-1-(a+4)^(1/2))^(1/2)-(-1+(a+4)^(1/2))^(1/2))/(x-1+(...
 
3.8.94.5 Fricas [F]

\[ \int \frac {x^2}{\left (a+8 x-8 x^2+4 x^3-x^4\right )^{3/2}} \, dx=\int { \frac {x^{2}}{{\left (-x^{4} + 4 \, x^{3} - 8 \, x^{2} + a + 8 \, x\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(x^2/(-x^4+4*x^3-8*x^2+a+8*x)^(3/2),x, algorithm="fricas")
 
output
integral(sqrt(-x^4 + 4*x^3 - 8*x^2 + a + 8*x)*x^2/(x^8 - 8*x^7 + 32*x^6 - 
2*(a - 64)*x^4 - 80*x^5 + 8*(a - 16)*x^3 - 16*(a - 4)*x^2 + a^2 + 16*a*x), 
 x)
 
3.8.94.6 Sympy [F]

\[ \int \frac {x^2}{\left (a+8 x-8 x^2+4 x^3-x^4\right )^{3/2}} \, dx=\int \frac {x^{2}}{\left (a - x^{4} + 4 x^{3} - 8 x^{2} + 8 x\right )^{\frac {3}{2}}}\, dx \]

input
integrate(x**2/(-x**4+4*x**3-8*x**2+a+8*x)**(3/2),x)
 
output
Integral(x**2/(a - x**4 + 4*x**3 - 8*x**2 + 8*x)**(3/2), x)
 
3.8.94.7 Maxima [F]

\[ \int \frac {x^2}{\left (a+8 x-8 x^2+4 x^3-x^4\right )^{3/2}} \, dx=\int { \frac {x^{2}}{{\left (-x^{4} + 4 \, x^{3} - 8 \, x^{2} + a + 8 \, x\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(x^2/(-x^4+4*x^3-8*x^2+a+8*x)^(3/2),x, algorithm="maxima")
 
output
integrate(x^2/(-x^4 + 4*x^3 - 8*x^2 + a + 8*x)^(3/2), x)
 
3.8.94.8 Giac [F]

\[ \int \frac {x^2}{\left (a+8 x-8 x^2+4 x^3-x^4\right )^{3/2}} \, dx=\int { \frac {x^{2}}{{\left (-x^{4} + 4 \, x^{3} - 8 \, x^{2} + a + 8 \, x\right )}^{\frac {3}{2}}} \,d x } \]

input
integrate(x^2/(-x^4+4*x^3-8*x^2+a+8*x)^(3/2),x, algorithm="giac")
 
output
integrate(x^2/(-x^4 + 4*x^3 - 8*x^2 + a + 8*x)^(3/2), x)
 
3.8.94.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^2}{\left (a+8 x-8 x^2+4 x^3-x^4\right )^{3/2}} \, dx=\int \frac {x^2}{{\left (-x^4+4\,x^3-8\,x^2+8\,x+a\right )}^{3/2}} \,d x \]

input
int(x^2/(a + 8*x - 8*x^2 + 4*x^3 - x^4)^(3/2),x)
 
output
int(x^2/(a + 8*x - 8*x^2 + 4*x^3 - x^4)^(3/2), x)