3.18.97 \(\int \frac {b+2 a x}{\sqrt [4]{c+b x+a x^2} (5 c+4 b x+4 a x^2)} \, dx\) [1797]

3.18.97.1 Optimal result
3.18.97.2 Mathematica [A] (verified)
3.18.97.3 Rubi [F]
3.18.97.4 Maple [A] (verified)
3.18.97.5 Fricas [C] (verification not implemented)
3.18.97.6 Sympy [F]
3.18.97.7 Maxima [F]
3.18.97.8 Giac [B] (verification not implemented)
3.18.97.9 Mupad [B] (verification not implemented)

3.18.97.1 Optimal result

Integrand size = 37, antiderivative size = 122 \[ \int \frac {b+2 a x}{\sqrt [4]{c+b x+a x^2} \left (5 c+4 b x+4 a x^2\right )} \, dx=-\frac {\arctan \left (1-\frac {2 \sqrt [4]{c+b x+a x^2}}{\sqrt [4]{c}}\right )}{2 \sqrt [4]{c}}+\frac {\arctan \left (1+\frac {2 \sqrt [4]{c+b x+a x^2}}{\sqrt [4]{c}}\right )}{2 \sqrt [4]{c}}-\frac {\text {arctanh}\left (\frac {\frac {\sqrt [4]{c}}{2}+\frac {\sqrt {c+b x+a x^2}}{\sqrt [4]{c}}}{\sqrt [4]{c+b x+a x^2}}\right )}{2 \sqrt [4]{c}} \]

output
-1/2*arctan(1-2*(a*x^2+b*x+c)^(1/4)/c^(1/4))/c^(1/4)+1/2*arctan(1+2*(a*x^2 
+b*x+c)^(1/4)/c^(1/4))/c^(1/4)-1/2*arctanh((1/2*c^(1/4)+(a*x^2+b*x+c)^(1/2 
)/c^(1/4))/(a*x^2+b*x+c)^(1/4))/c^(1/4)
 
3.18.97.2 Mathematica [A] (verified)

Time = 0.25 (sec) , antiderivative size = 102, normalized size of antiderivative = 0.84 \[ \int \frac {b+2 a x}{\sqrt [4]{c+b x+a x^2} \left (5 c+4 b x+4 a x^2\right )} \, dx=-\frac {\arctan \left (1-\frac {2 \sqrt [4]{c+x (b+a x)}}{\sqrt [4]{c}}\right )-\arctan \left (1+\frac {2 \sqrt [4]{c+x (b+a x)}}{\sqrt [4]{c}}\right )+\text {arctanh}\left (\frac {\sqrt {c}+2 \sqrt {c+x (b+a x)}}{2 \sqrt [4]{c} \sqrt [4]{c+x (b+a x)}}\right )}{2 \sqrt [4]{c}} \]

input
Integrate[(b + 2*a*x)/((c + b*x + a*x^2)^(1/4)*(5*c + 4*b*x + 4*a*x^2)),x]
 
output
-1/2*(ArcTan[1 - (2*(c + x*(b + a*x))^(1/4))/c^(1/4)] - ArcTan[1 + (2*(c + 
 x*(b + a*x))^(1/4))/c^(1/4)] + ArcTanh[(Sqrt[c] + 2*Sqrt[c + x*(b + a*x)] 
)/(2*c^(1/4)*(c + x*(b + a*x))^(1/4))])/c^(1/4)
 
3.18.97.3 Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {2 a x+b}{\sqrt [4]{a x^2+b x+c} \left (4 a x^2+4 b x+5 c\right )} \, dx\)

\(\Big \downarrow \) 1375

\(\displaystyle \int \frac {2 a x+b}{\sqrt [4]{a x^2+b x+c} \left (4 a x^2+4 b x+5 c\right )}dx\)

input
Int[(b + 2*a*x)/((c + b*x + a*x^2)^(1/4)*(5*c + 4*b*x + 4*a*x^2)),x]
 
output
$Aborted
 

3.18.97.3.1 Defintions of rubi rules used

rule 1375
Int[((g_.) + (h_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)*((d_.) + 
(e_.)*(x_) + (f_.)*(x_)^2)^(q_), x_Symbol] :> Unintegrable[(g + h*x)*(a + b 
*x + c*x^2)^p*(d + e*x + f*x^2)^q, x] /; FreeQ[{a, b, c, d, e, f, g, h, p, 
q}, x]
 
3.18.97.4 Maple [A] (verified)

Time = 1.14 (sec) , antiderivative size = 131, normalized size of antiderivative = 1.07

method result size
pseudoelliptic \(\frac {\ln \left (\frac {-2 c^{\frac {1}{4}} \left (a \,x^{2}+b x +c \right )^{\frac {1}{4}}+\sqrt {c}+2 \sqrt {a \,x^{2}+b x +c}}{2 c^{\frac {1}{4}} \left (a \,x^{2}+b x +c \right )^{\frac {1}{4}}+\sqrt {c}+2 \sqrt {a \,x^{2}+b x +c}}\right )+2 \arctan \left (\frac {c^{\frac {1}{4}}+2 \left (a \,x^{2}+b x +c \right )^{\frac {1}{4}}}{c^{\frac {1}{4}}}\right )-2 \arctan \left (\frac {c^{\frac {1}{4}}-2 \left (a \,x^{2}+b x +c \right )^{\frac {1}{4}}}{c^{\frac {1}{4}}}\right )}{4 c^{\frac {1}{4}}}\) \(131\)

input
int((2*a*x+b)/(a*x^2+b*x+c)^(1/4)/(4*a*x^2+4*b*x+5*c),x,method=_RETURNVERB 
OSE)
 
output
1/4/c^(1/4)*(ln((-2*c^(1/4)*(a*x^2+b*x+c)^(1/4)+c^(1/2)+2*(a*x^2+b*x+c)^(1 
/2))/(2*c^(1/4)*(a*x^2+b*x+c)^(1/4)+c^(1/2)+2*(a*x^2+b*x+c)^(1/2)))+2*arct 
an((c^(1/4)+2*(a*x^2+b*x+c)^(1/4))/c^(1/4))-2*arctan((c^(1/4)-2*(a*x^2+b*x 
+c)^(1/4))/c^(1/4)))
 
3.18.97.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.29 (sec) , antiderivative size = 157, normalized size of antiderivative = 1.29 \[ \int \frac {b+2 a x}{\sqrt [4]{c+b x+a x^2} \left (5 c+4 b x+4 a x^2\right )} \, dx=\frac {1}{2} \, \left (\frac {1}{4}\right )^{\frac {1}{4}} \left (-\frac {1}{c}\right )^{\frac {1}{4}} \log \left (2 \, \left (\frac {1}{4}\right )^{\frac {3}{4}} c \left (-\frac {1}{c}\right )^{\frac {3}{4}} + {\left (a x^{2} + b x + c\right )}^{\frac {1}{4}}\right ) - \frac {1}{2} i \, \left (\frac {1}{4}\right )^{\frac {1}{4}} \left (-\frac {1}{c}\right )^{\frac {1}{4}} \log \left (2 i \, \left (\frac {1}{4}\right )^{\frac {3}{4}} c \left (-\frac {1}{c}\right )^{\frac {3}{4}} + {\left (a x^{2} + b x + c\right )}^{\frac {1}{4}}\right ) + \frac {1}{2} i \, \left (\frac {1}{4}\right )^{\frac {1}{4}} \left (-\frac {1}{c}\right )^{\frac {1}{4}} \log \left (-2 i \, \left (\frac {1}{4}\right )^{\frac {3}{4}} c \left (-\frac {1}{c}\right )^{\frac {3}{4}} + {\left (a x^{2} + b x + c\right )}^{\frac {1}{4}}\right ) - \frac {1}{2} \, \left (\frac {1}{4}\right )^{\frac {1}{4}} \left (-\frac {1}{c}\right )^{\frac {1}{4}} \log \left (-2 \, \left (\frac {1}{4}\right )^{\frac {3}{4}} c \left (-\frac {1}{c}\right )^{\frac {3}{4}} + {\left (a x^{2} + b x + c\right )}^{\frac {1}{4}}\right ) \]

input
integrate((2*a*x+b)/(a*x^2+b*x+c)^(1/4)/(4*a*x^2+4*b*x+5*c),x, algorithm=" 
fricas")
 
output
1/2*(1/4)^(1/4)*(-1/c)^(1/4)*log(2*(1/4)^(3/4)*c*(-1/c)^(3/4) + (a*x^2 + b 
*x + c)^(1/4)) - 1/2*I*(1/4)^(1/4)*(-1/c)^(1/4)*log(2*I*(1/4)^(3/4)*c*(-1/ 
c)^(3/4) + (a*x^2 + b*x + c)^(1/4)) + 1/2*I*(1/4)^(1/4)*(-1/c)^(1/4)*log(- 
2*I*(1/4)^(3/4)*c*(-1/c)^(3/4) + (a*x^2 + b*x + c)^(1/4)) - 1/2*(1/4)^(1/4 
)*(-1/c)^(1/4)*log(-2*(1/4)^(3/4)*c*(-1/c)^(3/4) + (a*x^2 + b*x + c)^(1/4) 
)
 
3.18.97.6 Sympy [F]

\[ \int \frac {b+2 a x}{\sqrt [4]{c+b x+a x^2} \left (5 c+4 b x+4 a x^2\right )} \, dx=\int \frac {2 a x + b}{\sqrt [4]{a x^{2} + b x + c} \left (4 a x^{2} + 4 b x + 5 c\right )}\, dx \]

input
integrate((2*a*x+b)/(a*x**2+b*x+c)**(1/4)/(4*a*x**2+4*b*x+5*c),x)
 
output
Integral((2*a*x + b)/((a*x**2 + b*x + c)**(1/4)*(4*a*x**2 + 4*b*x + 5*c)), 
 x)
 
3.18.97.7 Maxima [F]

\[ \int \frac {b+2 a x}{\sqrt [4]{c+b x+a x^2} \left (5 c+4 b x+4 a x^2\right )} \, dx=\int { \frac {2 \, a x + b}{{\left (4 \, a x^{2} + 4 \, b x + 5 \, c\right )} {\left (a x^{2} + b x + c\right )}^{\frac {1}{4}}} \,d x } \]

input
integrate((2*a*x+b)/(a*x^2+b*x+c)^(1/4)/(4*a*x^2+4*b*x+5*c),x, algorithm=" 
maxima")
 
output
integrate((2*a*x + b)/((4*a*x^2 + 4*b*x + 5*c)*(a*x^2 + b*x + c)^(1/4)), x 
)
 
3.18.97.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 202 vs. \(2 (92) = 184\).

Time = 0.29 (sec) , antiderivative size = 202, normalized size of antiderivative = 1.66 \[ \int \frac {b+2 a x}{\sqrt [4]{c+b x+a x^2} \left (5 c+4 b x+4 a x^2\right )} \, dx=\frac {4^{\frac {3}{4}} \sqrt {2} \arctan \left (\frac {2 \, \sqrt {2} \left (\frac {1}{4}\right )^{\frac {3}{4}} {\left (\sqrt {2} \left (\frac {1}{4}\right )^{\frac {1}{4}} c^{\frac {1}{4}} + 2 \, {\left (a x^{2} + b x + c\right )}^{\frac {1}{4}}\right )}}{c^{\frac {1}{4}}}\right )}{8 \, c^{\frac {1}{4}}} + \frac {4^{\frac {3}{4}} \sqrt {2} \arctan \left (-\frac {2 \, \sqrt {2} \left (\frac {1}{4}\right )^{\frac {3}{4}} {\left (\sqrt {2} \left (\frac {1}{4}\right )^{\frac {1}{4}} c^{\frac {1}{4}} - 2 \, {\left (a x^{2} + b x + c\right )}^{\frac {1}{4}}\right )}}{c^{\frac {1}{4}}}\right )}{8 \, c^{\frac {1}{4}}} - \frac {4^{\frac {3}{4}} \sqrt {2} \log \left (\sqrt {2} \left (\frac {1}{4}\right )^{\frac {1}{4}} {\left (a x^{2} + b x + c\right )}^{\frac {1}{4}} c^{\frac {1}{4}} + \sqrt {a x^{2} + b x + c} + \frac {1}{2} \, \sqrt {c}\right )}{16 \, c^{\frac {1}{4}}} + \frac {4^{\frac {3}{4}} \sqrt {2} \log \left (-\sqrt {2} \left (\frac {1}{4}\right )^{\frac {1}{4}} {\left (a x^{2} + b x + c\right )}^{\frac {1}{4}} c^{\frac {1}{4}} + \sqrt {a x^{2} + b x + c} + \frac {1}{2} \, \sqrt {c}\right )}{16 \, c^{\frac {1}{4}}} \]

input
integrate((2*a*x+b)/(a*x^2+b*x+c)^(1/4)/(4*a*x^2+4*b*x+5*c),x, algorithm=" 
giac")
 
output
1/8*4^(3/4)*sqrt(2)*arctan(2*sqrt(2)*(1/4)^(3/4)*(sqrt(2)*(1/4)^(1/4)*c^(1 
/4) + 2*(a*x^2 + b*x + c)^(1/4))/c^(1/4))/c^(1/4) + 1/8*4^(3/4)*sqrt(2)*ar 
ctan(-2*sqrt(2)*(1/4)^(3/4)*(sqrt(2)*(1/4)^(1/4)*c^(1/4) - 2*(a*x^2 + b*x 
+ c)^(1/4))/c^(1/4))/c^(1/4) - 1/16*4^(3/4)*sqrt(2)*log(sqrt(2)*(1/4)^(1/4 
)*(a*x^2 + b*x + c)^(1/4)*c^(1/4) + sqrt(a*x^2 + b*x + c) + 1/2*sqrt(c))/c 
^(1/4) + 1/16*4^(3/4)*sqrt(2)*log(-sqrt(2)*(1/4)^(1/4)*(a*x^2 + b*x + c)^( 
1/4)*c^(1/4) + sqrt(a*x^2 + b*x + c) + 1/2*sqrt(c))/c^(1/4)
 
3.18.97.9 Mupad [B] (verification not implemented)

Time = 6.34 (sec) , antiderivative size = 57, normalized size of antiderivative = 0.47 \[ \int \frac {b+2 a x}{\sqrt [4]{c+b x+a x^2} \left (5 c+4 b x+4 a x^2\right )} \, dx=\frac {\sqrt {2}\,\left (\mathrm {atan}\left (\frac {\sqrt {2}\,{\left (a\,x^2+b\,x+c\right )}^{1/4}}{{\left (-c\right )}^{1/4}}\right )-\mathrm {atanh}\left (\frac {\sqrt {2}\,{\left (a\,x^2+b\,x+c\right )}^{1/4}}{{\left (-c\right )}^{1/4}}\right )\right )}{2\,{\left (-c\right )}^{1/4}} \]

input
int((b + 2*a*x)/((c + b*x + a*x^2)^(1/4)*(5*c + 4*b*x + 4*a*x^2)),x)
 
output
(2^(1/2)*(atan((2^(1/2)*(c + b*x + a*x^2)^(1/4))/(-c)^(1/4)) - atanh((2^(1 
/2)*(c + b*x + a*x^2)^(1/4))/(-c)^(1/4))))/(2*(-c)^(1/4))