3.18.98 \(\int x^6 \sqrt [3]{-x+x^3} \, dx\) [1798]

3.18.98.1 Optimal result
3.18.98.2 Mathematica [A] (verified)
3.18.98.3 Rubi [A] (warning: unable to verify)
3.18.98.4 Maple [C] (warning: unable to verify)
3.18.98.5 Fricas [A] (verification not implemented)
3.18.98.6 Sympy [F]
3.18.98.7 Maxima [F]
3.18.98.8 Giac [A] (verification not implemented)
3.18.98.9 Mupad [F(-1)]

3.18.98.1 Optimal result

Integrand size = 15, antiderivative size = 122 \[ \int x^6 \sqrt [3]{-x+x^3} \, dx=\frac {1}{648} \sqrt [3]{-x+x^3} \left (-20 x-12 x^3-9 x^5+81 x^7\right )+\frac {5 \arctan \left (\frac {\sqrt {3} x}{x+2 \sqrt [3]{-x+x^3}}\right )}{81 \sqrt {3}}+\frac {5}{243} \log \left (-x+\sqrt [3]{-x+x^3}\right )-\frac {5}{486} \log \left (x^2+x \sqrt [3]{-x+x^3}+\left (-x+x^3\right )^{2/3}\right ) \]

output
1/648*(x^3-x)^(1/3)*(81*x^7-9*x^5-12*x^3-20*x)+5/243*arctan(3^(1/2)*x/(x+2 
*(x^3-x)^(1/3)))*3^(1/2)+5/243*ln(-x+(x^3-x)^(1/3))-5/486*ln(x^2+x*(x^3-x) 
^(1/3)+(x^3-x)^(2/3))
 
3.18.98.2 Mathematica [A] (verified)

Time = 3.47 (sec) , antiderivative size = 174, normalized size of antiderivative = 1.43 \[ \int x^6 \sqrt [3]{-x+x^3} \, dx=\frac {60 x^2-24 x^4-9 x^6-270 x^8+243 x^{10}+40 \sqrt {3} x^{2/3} \left (-1+x^2\right )^{2/3} \arctan \left (\frac {\sqrt {3} x^{2/3}}{x^{2/3}+2 \sqrt [3]{-1+x^2}}\right )+40 x^{2/3} \left (-1+x^2\right )^{2/3} \log \left (-x^{2/3}+\sqrt [3]{-1+x^2}\right )-20 x^{2/3} \left (-1+x^2\right )^{2/3} \log \left (x^{4/3}+x^{2/3} \sqrt [3]{-1+x^2}+\left (-1+x^2\right )^{2/3}\right )}{1944 \left (x \left (-1+x^2\right )\right )^{2/3}} \]

input
Integrate[x^6*(-x + x^3)^(1/3),x]
 
output
(60*x^2 - 24*x^4 - 9*x^6 - 270*x^8 + 243*x^10 + 40*Sqrt[3]*x^(2/3)*(-1 + x 
^2)^(2/3)*ArcTan[(Sqrt[3]*x^(2/3))/(x^(2/3) + 2*(-1 + x^2)^(1/3))] + 40*x^ 
(2/3)*(-1 + x^2)^(2/3)*Log[-x^(2/3) + (-1 + x^2)^(1/3)] - 20*x^(2/3)*(-1 + 
 x^2)^(2/3)*Log[x^(4/3) + x^(2/3)*(-1 + x^2)^(1/3) + (-1 + x^2)^(2/3)])/(1 
944*(x*(-1 + x^2))^(2/3))
 
3.18.98.3 Rubi [A] (warning: unable to verify)

Time = 0.37 (sec) , antiderivative size = 163, normalized size of antiderivative = 1.34, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.533, Rules used = {1927, 1930, 1930, 1930, 1938, 266, 807, 853}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int x^6 \sqrt [3]{x^3-x} \, dx\)

\(\Big \downarrow \) 1927

\(\displaystyle \frac {1}{8} x^7 \sqrt [3]{x^3-x}-\frac {1}{12} \int \frac {x^7}{\left (x^3-x\right )^{2/3}}dx\)

\(\Big \downarrow \) 1930

\(\displaystyle \frac {1}{12} \left (-\frac {8}{9} \int \frac {x^5}{\left (x^3-x\right )^{2/3}}dx-\frac {1}{6} \sqrt [3]{x^3-x} x^5\right )+\frac {1}{8} \sqrt [3]{x^3-x} x^7\)

\(\Big \downarrow \) 1930

\(\displaystyle \frac {1}{12} \left (-\frac {8}{9} \left (\frac {5}{6} \int \frac {x^3}{\left (x^3-x\right )^{2/3}}dx+\frac {1}{4} \sqrt [3]{x^3-x} x^3\right )-\frac {1}{6} \sqrt [3]{x^3-x} x^5\right )+\frac {1}{8} \sqrt [3]{x^3-x} x^7\)

\(\Big \downarrow \) 1930

\(\displaystyle \frac {1}{12} \left (-\frac {8}{9} \left (\frac {5}{6} \left (\frac {2}{3} \int \frac {x}{\left (x^3-x\right )^{2/3}}dx+\frac {1}{2} \sqrt [3]{x^3-x} x\right )+\frac {1}{4} \sqrt [3]{x^3-x} x^3\right )-\frac {1}{6} \sqrt [3]{x^3-x} x^5\right )+\frac {1}{8} \sqrt [3]{x^3-x} x^7\)

\(\Big \downarrow \) 1938

\(\displaystyle \frac {1}{12} \left (-\frac {8}{9} \left (\frac {5}{6} \left (\frac {2 \left (x^2-1\right )^{2/3} x^{2/3} \int \frac {\sqrt [3]{x}}{\left (x^2-1\right )^{2/3}}dx}{3 \left (x^3-x\right )^{2/3}}+\frac {1}{2} \sqrt [3]{x^3-x} x\right )+\frac {1}{4} \sqrt [3]{x^3-x} x^3\right )-\frac {1}{6} \sqrt [3]{x^3-x} x^5\right )+\frac {1}{8} \sqrt [3]{x^3-x} x^7\)

\(\Big \downarrow \) 266

\(\displaystyle \frac {1}{12} \left (-\frac {8}{9} \left (\frac {5}{6} \left (\frac {2 \left (x^2-1\right )^{2/3} x^{2/3} \int \frac {x}{\left (x^2-1\right )^{2/3}}d\sqrt [3]{x}}{\left (x^3-x\right )^{2/3}}+\frac {1}{2} \sqrt [3]{x^3-x} x\right )+\frac {1}{4} \sqrt [3]{x^3-x} x^3\right )-\frac {1}{6} \sqrt [3]{x^3-x} x^5\right )+\frac {1}{8} \sqrt [3]{x^3-x} x^7\)

\(\Big \downarrow \) 807

\(\displaystyle \frac {1}{12} \left (-\frac {8}{9} \left (\frac {5}{6} \left (\frac {\left (x^2-1\right )^{2/3} x^{2/3} \int \frac {x^{2/3}}{(x-1)^{2/3}}dx^{2/3}}{\left (x^3-x\right )^{2/3}}+\frac {1}{2} \sqrt [3]{x^3-x} x\right )+\frac {1}{4} \sqrt [3]{x^3-x} x^3\right )-\frac {1}{6} \sqrt [3]{x^3-x} x^5\right )+\frac {1}{8} \sqrt [3]{x^3-x} x^7\)

\(\Big \downarrow \) 853

\(\displaystyle \frac {1}{12} \left (-\frac {8}{9} \left (\frac {5}{6} \left (\frac {\left (x^2-1\right )^{2/3} x^{2/3} \left (-\frac {\arctan \left (\frac {\frac {2 x^{2/3}}{\sqrt [3]{x-1}}+1}{\sqrt {3}}\right )}{\sqrt {3}}-\frac {1}{2} \log \left (x^{2/3}-\sqrt [3]{x-1}\right )\right )}{\left (x^3-x\right )^{2/3}}+\frac {1}{2} \sqrt [3]{x^3-x} x\right )+\frac {1}{4} \sqrt [3]{x^3-x} x^3\right )-\frac {1}{6} \sqrt [3]{x^3-x} x^5\right )+\frac {1}{8} \sqrt [3]{x^3-x} x^7\)

input
Int[x^6*(-x + x^3)^(1/3),x]
 
output
(x^7*(-x + x^3)^(1/3))/8 + (-1/6*(x^5*(-x + x^3)^(1/3)) - (8*((x^3*(-x + x 
^3)^(1/3))/4 + (5*((x*(-x + x^3)^(1/3))/2 + (x^(2/3)*(-1 + x^2)^(2/3)*(-(A 
rcTan[(1 + (2*x^(2/3))/(-1 + x)^(1/3))/Sqrt[3]]/Sqrt[3]) - Log[-(-1 + x)^( 
1/3) + x^(2/3)]/2))/(-x + x^3)^(2/3)))/6))/9)/12
 

3.18.98.3.1 Defintions of rubi rules used

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 807
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = GCD[m 
+ 1, n]}, Simp[1/k   Subst[Int[x^((m + 1)/k - 1)*(a + b*x^(n/k))^p, x], x, 
x^k], x] /; k != 1] /; FreeQ[{a, b, p}, x] && IGtQ[n, 0] && IntegerQ[m]
 

rule 853
Int[(x_)/((a_) + (b_.)*(x_)^3)^(2/3), x_Symbol] :> With[{q = Rt[b, 3]}, Sim 
p[-ArcTan[(1 + 2*q*(x/(a + b*x^3)^(1/3)))/Sqrt[3]]/(Sqrt[3]*q^2), x] - Simp 
[Log[q*x - (a + b*x^3)^(1/3)]/(2*q^2), x]] /; FreeQ[{a, b}, x]
 

rule 1927
Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol 
] :> Simp[(c*x)^(m + 1)*((a*x^j + b*x^n)^p/(c*(m + n*p + 1))), x] + Simp[a* 
(n - j)*(p/(c^j*(m + n*p + 1)))   Int[(c*x)^(m + j)*(a*x^j + b*x^n)^(p - 1) 
, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[p] && LtQ[0, j, n] && (Int 
egersQ[j, n] || GtQ[c, 0]) && GtQ[p, 0] && NeQ[m + n*p + 1, 0]
 

rule 1930
Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol 
] :> Simp[c^(n - 1)*(c*x)^(m - n + 1)*((a*x^j + b*x^n)^(p + 1)/(b*(m + n*p 
+ 1))), x] - Simp[a*c^(n - j)*((m + j*p - n + j + 1)/(b*(m + n*p + 1)))   I 
nt[(c*x)^(m - (n - j))*(a*x^j + b*x^n)^p, x], x] /; FreeQ[{a, b, c, m, p}, 
x] &&  !IntegerQ[p] && LtQ[0, j, n] && (IntegersQ[j, n] || GtQ[c, 0]) && Gt 
Q[m + j*p - n + j + 1, 0] && NeQ[m + n*p + 1, 0]
 

rule 1938
Int[((c_.)*(x_))^(m_.)*((a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.))^(p_), x_Symbol 
] :> Simp[c^IntPart[m]*(c*x)^FracPart[m]*((a*x^j + b*x^n)^FracPart[p]/(x^(F 
racPart[m] + j*FracPart[p])*(a + b*x^(n - j))^FracPart[p]))   Int[x^(m + j* 
p)*(a + b*x^(n - j))^p, x], x] /; FreeQ[{a, b, c, j, m, n, p}, x] &&  !Inte 
gerQ[p] && NeQ[n, j] && PosQ[n - j]
 
3.18.98.4 Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 1.93 (sec) , antiderivative size = 33, normalized size of antiderivative = 0.27

method result size
meijerg \(\frac {3 \operatorname {signum}\left (x^{2}-1\right )^{\frac {1}{3}} x^{\frac {22}{3}} \operatorname {hypergeom}\left (\left [-\frac {1}{3}, \frac {11}{3}\right ], \left [\frac {14}{3}\right ], x^{2}\right )}{22 {\left (-\operatorname {signum}\left (x^{2}-1\right )\right )}^{\frac {1}{3}}}\) \(33\)
pseudoelliptic \(-\frac {x^{4} \left (\left (-243 x^{7}+27 x^{5}+36 x^{3}+60 x \right ) \left (x^{3}-x \right )^{\frac {1}{3}}+40 \sqrt {3}\, \arctan \left (\frac {\sqrt {3}\, \left (x +2 \left (x^{3}-x \right )^{\frac {1}{3}}\right )}{3 x}\right )+20 \ln \left (\frac {x^{2}+x \left (x^{3}-x \right )^{\frac {1}{3}}+\left (x^{3}-x \right )^{\frac {2}{3}}}{x^{2}}\right )-40 \ln \left (\frac {-x +\left (x^{3}-x \right )^{\frac {1}{3}}}{x}\right )\right )}{1944 {\left (\left (x^{3}-x \right )^{\frac {2}{3}}+x \left (x +\left (x^{3}-x \right )^{\frac {1}{3}}\right )\right )}^{4} {\left (x -\left (x^{3}-x \right )^{\frac {1}{3}}\right )}^{4}}\) \(154\)
trager \(\frac {x \left (81 x^{6}-9 x^{4}-12 x^{2}-20\right ) \left (x^{3}-x \right )^{\frac {1}{3}}}{648}+\frac {5 \ln \left (4959 \operatorname {RootOf}\left (9 \textit {\_Z}^{2}+3 \textit {\_Z} +1\right )^{2} x^{2}-6768 \operatorname {RootOf}\left (9 \textit {\_Z}^{2}+3 \textit {\_Z} +1\right ) \left (x^{3}-x \right )^{\frac {2}{3}}+22833 \left (x^{3}-x \right )^{\frac {1}{3}} \operatorname {RootOf}\left (9 \textit {\_Z}^{2}+3 \textit {\_Z} +1\right ) x -14412 \operatorname {RootOf}\left (9 \textit {\_Z}^{2}+3 \textit {\_Z} +1\right ) x^{2}-19836 \operatorname {RootOf}\left (9 \textit {\_Z}^{2}+3 \textit {\_Z} +1\right )^{2}+5355 \left (x^{3}-x \right )^{\frac {2}{3}}+2256 x \left (x^{3}-x \right )^{\frac {1}{3}}-7060 x^{2}-3513 \operatorname {RootOf}\left (9 \textit {\_Z}^{2}+3 \textit {\_Z} +1\right )+2118\right )}{243}-\frac {5 \ln \left (-6354 \operatorname {RootOf}\left (9 \textit {\_Z}^{2}+3 \textit {\_Z} +1\right )^{2} x^{2}+6768 \operatorname {RootOf}\left (9 \textit {\_Z}^{2}+3 \textit {\_Z} +1\right ) \left (x^{3}-x \right )^{\frac {2}{3}}+16065 \left (x^{3}-x \right )^{\frac {1}{3}} \operatorname {RootOf}\left (9 \textit {\_Z}^{2}+3 \textit {\_Z} +1\right ) x -24951 \operatorname {RootOf}\left (9 \textit {\_Z}^{2}+3 \textit {\_Z} +1\right ) x^{2}+25416 \operatorname {RootOf}\left (9 \textit {\_Z}^{2}+3 \textit {\_Z} +1\right )^{2}+7611 \left (x^{3}-x \right )^{\frac {2}{3}}-2256 x \left (x^{3}-x \right )^{\frac {1}{3}}-6061 x^{2}+21438 \operatorname {RootOf}\left (9 \textit {\_Z}^{2}+3 \textit {\_Z} +1\right )+3857\right )}{243}-\frac {5 \ln \left (-6354 \operatorname {RootOf}\left (9 \textit {\_Z}^{2}+3 \textit {\_Z} +1\right )^{2} x^{2}+6768 \operatorname {RootOf}\left (9 \textit {\_Z}^{2}+3 \textit {\_Z} +1\right ) \left (x^{3}-x \right )^{\frac {2}{3}}+16065 \left (x^{3}-x \right )^{\frac {1}{3}} \operatorname {RootOf}\left (9 \textit {\_Z}^{2}+3 \textit {\_Z} +1\right ) x -24951 \operatorname {RootOf}\left (9 \textit {\_Z}^{2}+3 \textit {\_Z} +1\right ) x^{2}+25416 \operatorname {RootOf}\left (9 \textit {\_Z}^{2}+3 \textit {\_Z} +1\right )^{2}+7611 \left (x^{3}-x \right )^{\frac {2}{3}}-2256 x \left (x^{3}-x \right )^{\frac {1}{3}}-6061 x^{2}+21438 \operatorname {RootOf}\left (9 \textit {\_Z}^{2}+3 \textit {\_Z} +1\right )+3857\right ) \operatorname {RootOf}\left (9 \textit {\_Z}^{2}+3 \textit {\_Z} +1\right )}{81}\) \(462\)
risch \(\frac {x \left (81 x^{6}-9 x^{4}-12 x^{2}-20\right ) {\left (x \left (x^{2}-1\right )\right )}^{\frac {1}{3}}}{648}+\frac {\left (\frac {5 \ln \left (-\frac {-35 \operatorname {RootOf}\left (\textit {\_Z}^{2}+6 \textit {\_Z} +36\right )^{2} x^{4}-1956 \operatorname {RootOf}\left (\textit {\_Z}^{2}+6 \textit {\_Z} +36\right ) x^{4}-4104 \operatorname {RootOf}\left (\textit {\_Z}^{2}+6 \textit {\_Z} +36\right ) \left (x^{6}-2 x^{4}+x^{2}\right )^{\frac {1}{3}} x^{2}+175 \operatorname {RootOf}\left (\textit {\_Z}^{2}+6 \textit {\_Z} +36\right )^{2} x^{2}+23364 x^{4}+5850 \operatorname {RootOf}\left (\textit {\_Z}^{2}+6 \textit {\_Z} +36\right ) \left (x^{6}-2 x^{4}+x^{2}\right )^{\frac {2}{3}}-35100 \left (x^{6}-2 x^{4}+x^{2}\right )^{\frac {1}{3}} x^{2}+2010 \operatorname {RootOf}\left (\textit {\_Z}^{2}+6 \textit {\_Z} +36\right ) x^{2}+10476 \left (x^{6}-2 x^{4}+x^{2}\right )^{\frac {2}{3}}+4104 \operatorname {RootOf}\left (\textit {\_Z}^{2}+6 \textit {\_Z} +36\right ) \left (x^{6}-2 x^{4}+x^{2}\right )^{\frac {1}{3}}-140 \operatorname {RootOf}\left (\textit {\_Z}^{2}+6 \textit {\_Z} +36\right )^{2}-38232 x^{2}+35100 \left (x^{6}-2 x^{4}+x^{2}\right )^{\frac {1}{3}}-54 \operatorname {RootOf}\left (\textit {\_Z}^{2}+6 \textit {\_Z} +36\right )+14868}{\left (1+x \right ) \left (-1+x \right )}\right )}{243}+\frac {5 \operatorname {RootOf}\left (\textit {\_Z}^{2}+6 \textit {\_Z} +36\right ) \ln \left (\frac {59 \operatorname {RootOf}\left (\textit {\_Z}^{2}+6 \textit {\_Z} +36\right )^{2} x^{4}-3750 \operatorname {RootOf}\left (\textit {\_Z}^{2}+6 \textit {\_Z} +36\right ) x^{4}-295 \operatorname {RootOf}\left (\textit {\_Z}^{2}+6 \textit {\_Z} +36\right )^{2} x^{2}-1746 \operatorname {RootOf}\left (\textit {\_Z}^{2}+6 \textit {\_Z} +36\right ) \left (x^{6}-2 x^{4}+x^{2}\right )^{\frac {1}{3}} x^{2}+12600 x^{4}+5850 \operatorname {RootOf}\left (\textit {\_Z}^{2}+6 \textit {\_Z} +36\right ) \left (x^{6}-2 x^{4}+x^{2}\right )^{\frac {2}{3}}+5652 \operatorname {RootOf}\left (\textit {\_Z}^{2}+6 \textit {\_Z} +36\right ) x^{2}-35100 \left (x^{6}-2 x^{4}+x^{2}\right )^{\frac {1}{3}} x^{2}+236 \operatorname {RootOf}\left (\textit {\_Z}^{2}+6 \textit {\_Z} +36\right )^{2}+1746 \operatorname {RootOf}\left (\textit {\_Z}^{2}+6 \textit {\_Z} +36\right ) \left (x^{6}-2 x^{4}+x^{2}\right )^{\frac {1}{3}}+24624 \left (x^{6}-2 x^{4}+x^{2}\right )^{\frac {2}{3}}-16380 x^{2}-1902 \operatorname {RootOf}\left (\textit {\_Z}^{2}+6 \textit {\_Z} +36\right )+35100 \left (x^{6}-2 x^{4}+x^{2}\right )^{\frac {1}{3}}+3780}{\left (-1+x \right ) \left (1+x \right )}\right )}{1458}\right ) {\left (x \left (x^{2}-1\right )\right )}^{\frac {1}{3}} \left (x^{2} \left (x^{2}-1\right )^{2}\right )^{\frac {1}{3}}}{x \left (x^{2}-1\right )}\) \(553\)

input
int(x^6*(x^3-x)^(1/3),x,method=_RETURNVERBOSE)
 
output
3/22*signum(x^2-1)^(1/3)/(-signum(x^2-1))^(1/3)*x^(22/3)*hypergeom([-1/3,1 
1/3],[14/3],x^2)
 
3.18.98.5 Fricas [A] (verification not implemented)

Time = 0.39 (sec) , antiderivative size = 117, normalized size of antiderivative = 0.96 \[ \int x^6 \sqrt [3]{-x+x^3} \, dx=\frac {5}{243} \, \sqrt {3} \arctan \left (-\frac {44032959556 \, \sqrt {3} {\left (x^{3} - x\right )}^{\frac {1}{3}} x + \sqrt {3} {\left (16754327161 \, x^{2} - 2707204793\right )} - 10524305234 \, \sqrt {3} {\left (x^{3} - x\right )}^{\frac {2}{3}}}{81835897185 \, x^{2} - 1102302937}\right ) + \frac {1}{648} \, {\left (81 \, x^{7} - 9 \, x^{5} - 12 \, x^{3} - 20 \, x\right )} {\left (x^{3} - x\right )}^{\frac {1}{3}} + \frac {5}{486} \, \log \left (-3 \, {\left (x^{3} - x\right )}^{\frac {1}{3}} x + 3 \, {\left (x^{3} - x\right )}^{\frac {2}{3}} + 1\right ) \]

input
integrate(x^6*(x^3-x)^(1/3),x, algorithm="fricas")
 
output
5/243*sqrt(3)*arctan(-(44032959556*sqrt(3)*(x^3 - x)^(1/3)*x + sqrt(3)*(16 
754327161*x^2 - 2707204793) - 10524305234*sqrt(3)*(x^3 - x)^(2/3))/(818358 
97185*x^2 - 1102302937)) + 1/648*(81*x^7 - 9*x^5 - 12*x^3 - 20*x)*(x^3 - x 
)^(1/3) + 5/486*log(-3*(x^3 - x)^(1/3)*x + 3*(x^3 - x)^(2/3) + 1)
 
3.18.98.6 Sympy [F]

\[ \int x^6 \sqrt [3]{-x+x^3} \, dx=\int x^{6} \sqrt [3]{x \left (x - 1\right ) \left (x + 1\right )}\, dx \]

input
integrate(x**6*(x**3-x)**(1/3),x)
 
output
Integral(x**6*(x*(x - 1)*(x + 1))**(1/3), x)
 
3.18.98.7 Maxima [F]

\[ \int x^6 \sqrt [3]{-x+x^3} \, dx=\int { {\left (x^{3} - x\right )}^{\frac {1}{3}} x^{6} \,d x } \]

input
integrate(x^6*(x^3-x)^(1/3),x, algorithm="maxima")
 
output
integrate((x^3 - x)^(1/3)*x^6, x)
 
3.18.98.8 Giac [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 127, normalized size of antiderivative = 1.04 \[ \int x^6 \sqrt [3]{-x+x^3} \, dx=-\frac {1}{648} \, {\left (20 \, {\left (\frac {1}{x^{2}} - 1\right )}^{3} {\left (-\frac {1}{x^{2}} + 1\right )}^{\frac {1}{3}} + 72 \, {\left (\frac {1}{x^{2}} - 1\right )}^{2} {\left (-\frac {1}{x^{2}} + 1\right )}^{\frac {1}{3}} - 93 \, {\left (-\frac {1}{x^{2}} + 1\right )}^{\frac {4}{3}} - 40 \, {\left (-\frac {1}{x^{2}} + 1\right )}^{\frac {1}{3}}\right )} x^{8} - \frac {5}{243} \, \sqrt {3} \arctan \left (\frac {1}{3} \, \sqrt {3} {\left (2 \, {\left (-\frac {1}{x^{2}} + 1\right )}^{\frac {1}{3}} + 1\right )}\right ) - \frac {5}{486} \, \log \left ({\left (-\frac {1}{x^{2}} + 1\right )}^{\frac {2}{3}} + {\left (-\frac {1}{x^{2}} + 1\right )}^{\frac {1}{3}} + 1\right ) + \frac {5}{243} \, \log \left ({\left | {\left (-\frac {1}{x^{2}} + 1\right )}^{\frac {1}{3}} - 1 \right |}\right ) \]

input
integrate(x^6*(x^3-x)^(1/3),x, algorithm="giac")
 
output
-1/648*(20*(1/x^2 - 1)^3*(-1/x^2 + 1)^(1/3) + 72*(1/x^2 - 1)^2*(-1/x^2 + 1 
)^(1/3) - 93*(-1/x^2 + 1)^(4/3) - 40*(-1/x^2 + 1)^(1/3))*x^8 - 5/243*sqrt( 
3)*arctan(1/3*sqrt(3)*(2*(-1/x^2 + 1)^(1/3) + 1)) - 5/486*log((-1/x^2 + 1) 
^(2/3) + (-1/x^2 + 1)^(1/3) + 1) + 5/243*log(abs((-1/x^2 + 1)^(1/3) - 1))
 
3.18.98.9 Mupad [F(-1)]

Timed out. \[ \int x^6 \sqrt [3]{-x+x^3} \, dx=\int x^6\,{\left (x^3-x\right )}^{1/3} \,d x \]

input
int(x^6*(x^3 - x)^(1/3),x)
 
output
int(x^6*(x^3 - x)^(1/3), x)