3.29.74 \(\int \frac {\sqrt {c+\sqrt {b+a x}}}{x-\sqrt {b+a x}} \, dx\) [2874]

3.29.74.1 Optimal result
3.29.74.2 Mathematica [A] (verified)
3.29.74.3 Rubi [A] (verified)
3.29.74.4 Maple [A] (verified)
3.29.74.5 Fricas [B] (verification not implemented)
3.29.74.6 Sympy [F]
3.29.74.7 Maxima [F]
3.29.74.8 Giac [A] (verification not implemented)
3.29.74.9 Mupad [F(-1)]

3.29.74.1 Optimal result

Integrand size = 31, antiderivative size = 306 \[ \int \frac {\sqrt {c+\sqrt {b+a x}}}{x-\sqrt {b+a x}} \, dx=4 \sqrt {c+\sqrt {b+a x}}+\frac {2 \left (\sqrt {2} a^2+2 \sqrt {2} b+\sqrt {2} a \sqrt {a^2+4 b}+\sqrt {2} a c+\sqrt {2} \sqrt {a^2+4 b} c\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c+\sqrt {b+a x}}}{\sqrt {-a-\sqrt {a^2+4 b}-2 c}}\right )}{\sqrt {a^2+4 b} \sqrt {-a-\sqrt {a^2+4 b}-2 c}}+\frac {2 \left (-\sqrt {2} a^2-2 \sqrt {2} b+\sqrt {2} a \sqrt {a^2+4 b}-\sqrt {2} a c+\sqrt {2} \sqrt {a^2+4 b} c\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c+\sqrt {b+a x}}}{\sqrt {-a+\sqrt {a^2+4 b}-2 c}}\right )}{\sqrt {a^2+4 b} \sqrt {-a+\sqrt {a^2+4 b}-2 c}} \]

output
4*(c+(a*x+b)^(1/2))^(1/2)+2*(2^(1/2)*a^2+2*2^(1/2)*b+2^(1/2)*a*(a^2+4*b)^( 
1/2)+2^(1/2)*a*c+2^(1/2)*(a^2+4*b)^(1/2)*c)*arctan(2^(1/2)*(c+(a*x+b)^(1/2 
))^(1/2)/(-a-(a^2+4*b)^(1/2)-2*c)^(1/2))/(a^2+4*b)^(1/2)/(-a-(a^2+4*b)^(1/ 
2)-2*c)^(1/2)+2*(-2^(1/2)*a^2-2*2^(1/2)*b+2^(1/2)*a*(a^2+4*b)^(1/2)-2^(1/2 
)*a*c+2^(1/2)*(a^2+4*b)^(1/2)*c)*arctan(2^(1/2)*(c+(a*x+b)^(1/2))^(1/2)/(- 
a+(a^2+4*b)^(1/2)-2*c)^(1/2))/(a^2+4*b)^(1/2)/(-a+(a^2+4*b)^(1/2)-2*c)^(1/ 
2)
 
3.29.74.2 Mathematica [A] (verified)

Time = 0.52 (sec) , antiderivative size = 265, normalized size of antiderivative = 0.87 \[ \int \frac {\sqrt {c+\sqrt {b+a x}}}{x-\sqrt {b+a x}} \, dx=4 \sqrt {c+\sqrt {b+a x}}+\frac {2 \sqrt {2} \left (a^2+2 b+a \sqrt {a^2+4 b}+a c+\sqrt {a^2+4 b} c\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c+\sqrt {b+a x}}}{\sqrt {-a-\sqrt {a^2+4 b}-2 c}}\right )}{\sqrt {a^2+4 b} \sqrt {-a-\sqrt {a^2+4 b}-2 c}}+\frac {2 \sqrt {2} \left (-a^2-2 b+a \sqrt {a^2+4 b}-a c+\sqrt {a^2+4 b} c\right ) \arctan \left (\frac {\sqrt {2} \sqrt {c+\sqrt {b+a x}}}{\sqrt {-a+\sqrt {a^2+4 b}-2 c}}\right )}{\sqrt {a^2+4 b} \sqrt {-a+\sqrt {a^2+4 b}-2 c}} \]

input
Integrate[Sqrt[c + Sqrt[b + a*x]]/(x - Sqrt[b + a*x]),x]
 
output
4*Sqrt[c + Sqrt[b + a*x]] + (2*Sqrt[2]*(a^2 + 2*b + a*Sqrt[a^2 + 4*b] + a* 
c + Sqrt[a^2 + 4*b]*c)*ArcTan[(Sqrt[2]*Sqrt[c + Sqrt[b + a*x]])/Sqrt[-a - 
Sqrt[a^2 + 4*b] - 2*c]])/(Sqrt[a^2 + 4*b]*Sqrt[-a - Sqrt[a^2 + 4*b] - 2*c] 
) + (2*Sqrt[2]*(-a^2 - 2*b + a*Sqrt[a^2 + 4*b] - a*c + Sqrt[a^2 + 4*b]*c)* 
ArcTan[(Sqrt[2]*Sqrt[c + Sqrt[b + a*x]])/Sqrt[-a + Sqrt[a^2 + 4*b] - 2*c]] 
)/(Sqrt[a^2 + 4*b]*Sqrt[-a + Sqrt[a^2 + 4*b] - 2*c])
 
3.29.74.3 Rubi [A] (verified)

Time = 0.66 (sec) , antiderivative size = 214, normalized size of antiderivative = 0.70, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.194, Rules used = {7267, 1196, 25, 1197, 1480, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {\sqrt {a x+b}+c}}{x-\sqrt {a x+b}} \, dx\)

\(\Big \downarrow \) 7267

\(\displaystyle -2 \int \frac {\sqrt {b+a x} \sqrt {c+\sqrt {b+a x}}}{a \sqrt {b+a x}-a x}d\sqrt {b+a x}\)

\(\Big \downarrow \) 1196

\(\displaystyle -2 \left (-\int -\frac {b+(a+c) \sqrt {b+a x}}{\sqrt {c+\sqrt {b+a x}} \left (a \sqrt {b+a x}-a x\right )}d\sqrt {b+a x}-2 \sqrt {\sqrt {a x+b}+c}\right )\)

\(\Big \downarrow \) 25

\(\displaystyle -2 \left (\int \frac {b+(a+c) \sqrt {b+a x}}{\sqrt {c+\sqrt {b+a x}} \left (a \sqrt {b+a x}-a x\right )}d\sqrt {b+a x}-2 \sqrt {\sqrt {a x+b}+c}\right )\)

\(\Big \downarrow \) 1197

\(\displaystyle -2 \left (2 \int \frac {b-c (a+c)+(a+c) (b+a x)}{-(b+a x)^2+(a+2 c) (b+a x)+b-c (a+c)}d\sqrt {c+\sqrt {b+a x}}-2 \sqrt {\sqrt {a x+b}+c}\right )\)

\(\Big \downarrow \) 1480

\(\displaystyle -2 \left (2 \left (\frac {1}{2} \left (-\frac {a^2+a c+2 b}{\sqrt {a^2+4 b}}+a+c\right ) \int \frac {1}{-b+\frac {1}{2} \left (a+2 c-\sqrt {a^2+4 b}\right )-a x}d\sqrt {c+\sqrt {b+a x}}+\frac {1}{2} \left (\frac {a^2+a c+2 b}{\sqrt {a^2+4 b}}+a+c\right ) \int \frac {1}{-b+\frac {1}{2} \left (a+2 c+\sqrt {a^2+4 b}\right )-a x}d\sqrt {c+\sqrt {b+a x}}\right )-2 \sqrt {\sqrt {a x+b}+c}\right )\)

\(\Big \downarrow \) 219

\(\displaystyle -2 \left (2 \left (\frac {\left (-\frac {a^2+a c+2 b}{\sqrt {a^2+4 b}}+a+c\right ) \text {arctanh}\left (\frac {\sqrt {2} \sqrt {\sqrt {a x+b}+c}}{\sqrt {-\sqrt {a^2+4 b}+a+2 c}}\right )}{\sqrt {2} \sqrt {-\sqrt {a^2+4 b}+a+2 c}}+\frac {\left (\frac {a^2+a c+2 b}{\sqrt {a^2+4 b}}+a+c\right ) \text {arctanh}\left (\frac {\sqrt {2} \sqrt {\sqrt {a x+b}+c}}{\sqrt {\sqrt {a^2+4 b}+a+2 c}}\right )}{\sqrt {2} \sqrt {\sqrt {a^2+4 b}+a+2 c}}\right )-2 \sqrt {\sqrt {a x+b}+c}\right )\)

input
Int[Sqrt[c + Sqrt[b + a*x]]/(x - Sqrt[b + a*x]),x]
 
output
-2*(-2*Sqrt[c + Sqrt[b + a*x]] + 2*(((a + c - (a^2 + 2*b + a*c)/Sqrt[a^2 + 
 4*b])*ArcTanh[(Sqrt[2]*Sqrt[c + Sqrt[b + a*x]])/Sqrt[a - Sqrt[a^2 + 4*b] 
+ 2*c]])/(Sqrt[2]*Sqrt[a - Sqrt[a^2 + 4*b] + 2*c]) + ((a + c + (a^2 + 2*b 
+ a*c)/Sqrt[a^2 + 4*b])*ArcTanh[(Sqrt[2]*Sqrt[c + Sqrt[b + a*x]])/Sqrt[a + 
 Sqrt[a^2 + 4*b] + 2*c]])/(Sqrt[2]*Sqrt[a + Sqrt[a^2 + 4*b] + 2*c])))
 

3.29.74.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 1196
Int[(((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_)))/((a_.) + (b_.)*(x_) + 
(c_.)*(x_)^2), x_Symbol] :> Simp[g*((d + e*x)^m/(c*m)), x] + Simp[1/c   Int 
[(d + e*x)^(m - 1)*(Simp[c*d*f - a*e*g + (g*c*d - b*e*g + c*e*f)*x, x]/(a + 
 b*x + c*x^2)), x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] && FractionQ[m] & 
& GtQ[m, 0]
 

rule 1197
Int[((f_.) + (g_.)*(x_))/(Sqrt[(d_.) + (e_.)*(x_)]*((a_.) + (b_.)*(x_) + (c 
_.)*(x_)^2)), x_Symbol] :> Simp[2   Subst[Int[(e*f - d*g + g*x^2)/(c*d^2 - 
b*d*e + a*e^2 - (2*c*d - b*e)*x^2 + c*x^4), x], x, Sqrt[d + e*x]], x] /; Fr 
eeQ[{a, b, c, d, e, f, g}, x]
 

rule 1480
Int[((d_) + (e_.)*(x_)^2)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] : 
> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(e/2 + (2*c*d - b*e)/(2*q))   Int[1/( 
b/2 - q/2 + c*x^2), x], x] + Simp[(e/2 - (2*c*d - b*e)/(2*q))   Int[1/(b/2 
+ q/2 + c*x^2), x], x]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] 
 && NeQ[c*d^2 - a*e^2, 0] && PosQ[b^2 - 4*a*c]
 

rule 7267
Int[u_, x_Symbol] :> With[{lst = SubstForFractionalPowerOfLinear[u, x]}, Si 
mp[lst[[2]]*lst[[4]]   Subst[Int[lst[[1]], x], x, lst[[3]]^(1/lst[[2]])], x 
] /;  !FalseQ[lst] && SubstForFractionalPowerQ[u, lst[[3]], x]]
 
3.29.74.4 Maple [A] (verified)

Time = 0.13 (sec) , antiderivative size = 216, normalized size of antiderivative = 0.71

method result size
derivativedivides \(4 \sqrt {c +\sqrt {a x +b}}-\frac {4 \left (-a \sqrt {a^{2}+4 b}-c \sqrt {a^{2}+4 b}+a^{2}+a c +2 b \right ) \arctan \left (\frac {2 \sqrt {c +\sqrt {a x +b}}}{\sqrt {2 \sqrt {a^{2}+4 b}-2 a -4 c}}\right )}{\sqrt {a^{2}+4 b}\, \sqrt {2 \sqrt {a^{2}+4 b}-2 a -4 c}}-\frac {4 \left (-a \sqrt {a^{2}+4 b}-c \sqrt {a^{2}+4 b}-a^{2}-a c -2 b \right ) \arctan \left (\frac {2 \sqrt {c +\sqrt {a x +b}}}{\sqrt {-2 \sqrt {a^{2}+4 b}-2 a -4 c}}\right )}{\sqrt {a^{2}+4 b}\, \sqrt {-2 \sqrt {a^{2}+4 b}-2 a -4 c}}\) \(216\)
default \(4 \sqrt {c +\sqrt {a x +b}}-\frac {4 \left (-a \sqrt {a^{2}+4 b}-c \sqrt {a^{2}+4 b}+a^{2}+a c +2 b \right ) \arctan \left (\frac {2 \sqrt {c +\sqrt {a x +b}}}{\sqrt {2 \sqrt {a^{2}+4 b}-2 a -4 c}}\right )}{\sqrt {a^{2}+4 b}\, \sqrt {2 \sqrt {a^{2}+4 b}-2 a -4 c}}-\frac {4 \left (-a \sqrt {a^{2}+4 b}-c \sqrt {a^{2}+4 b}-a^{2}-a c -2 b \right ) \arctan \left (\frac {2 \sqrt {c +\sqrt {a x +b}}}{\sqrt {-2 \sqrt {a^{2}+4 b}-2 a -4 c}}\right )}{\sqrt {a^{2}+4 b}\, \sqrt {-2 \sqrt {a^{2}+4 b}-2 a -4 c}}\) \(216\)

input
int((c+(a*x+b)^(1/2))^(1/2)/(x-(a*x+b)^(1/2)),x,method=_RETURNVERBOSE)
 
output
4*(c+(a*x+b)^(1/2))^(1/2)-4*(-a*(a^2+4*b)^(1/2)-c*(a^2+4*b)^(1/2)+a^2+a*c+ 
2*b)/(a^2+4*b)^(1/2)/(2*(a^2+4*b)^(1/2)-2*a-4*c)^(1/2)*arctan(2*(c+(a*x+b) 
^(1/2))^(1/2)/(2*(a^2+4*b)^(1/2)-2*a-4*c)^(1/2))-4*(-a*(a^2+4*b)^(1/2)-c*( 
a^2+4*b)^(1/2)-a^2-a*c-2*b)/(a^2+4*b)^(1/2)/(-2*(a^2+4*b)^(1/2)-2*a-4*c)^( 
1/2)*arctan(2*(c+(a*x+b)^(1/2))^(1/2)/(-2*(a^2+4*b)^(1/2)-2*a-4*c)^(1/2))
 
3.29.74.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1106 vs. \(2 (242) = 484\).

Time = 0.31 (sec) , antiderivative size = 1106, normalized size of antiderivative = 3.61 \[ \int \frac {\sqrt {c+\sqrt {b+a x}}}{x-\sqrt {b+a x}} \, dx=\text {Too large to display} \]

input
integrate((c+(a*x+b)^(1/2))^(1/2)/(x-(a*x+b)^(1/2)),x, algorithm="fricas")
 
output
-sqrt(2)*sqrt((a^3 + 3*a*b + (a^2 + 2*b)*c + (a^2 + 4*b)*sqrt((a^4 + a^2*c 
^2 + 2*a^2*b + b^2 + 2*(a^3 + a*b)*c)/(a^2 + 4*b)))/(a^2 + 4*b))*log(8*sqr 
t(2)*(a^4 + 5*a^2*b + 4*b^2 + (a^3 + 4*a*b)*c - (a^3 + 4*a*b)*sqrt((a^4 + 
a^2*c^2 + 2*a^2*b + b^2 + 2*(a^3 + a*b)*c)/(a^2 + 4*b)))*sqrt((a^3 + 3*a*b 
 + (a^2 + 2*b)*c + (a^2 + 4*b)*sqrt((a^4 + a^2*c^2 + 2*a^2*b + b^2 + 2*(a^ 
3 + a*b)*c)/(a^2 + 4*b)))/(a^2 + 4*b)) + 32*(a^2*b + a*b*c + b^2)*sqrt(c + 
 sqrt(a*x + b))) + sqrt(2)*sqrt((a^3 + 3*a*b + (a^2 + 2*b)*c + (a^2 + 4*b) 
*sqrt((a^4 + a^2*c^2 + 2*a^2*b + b^2 + 2*(a^3 + a*b)*c)/(a^2 + 4*b)))/(a^2 
 + 4*b))*log(-8*sqrt(2)*(a^4 + 5*a^2*b + 4*b^2 + (a^3 + 4*a*b)*c - (a^3 + 
4*a*b)*sqrt((a^4 + a^2*c^2 + 2*a^2*b + b^2 + 2*(a^3 + a*b)*c)/(a^2 + 4*b)) 
)*sqrt((a^3 + 3*a*b + (a^2 + 2*b)*c + (a^2 + 4*b)*sqrt((a^4 + a^2*c^2 + 2* 
a^2*b + b^2 + 2*(a^3 + a*b)*c)/(a^2 + 4*b)))/(a^2 + 4*b)) + 32*(a^2*b + a* 
b*c + b^2)*sqrt(c + sqrt(a*x + b))) - sqrt(2)*sqrt((a^3 + 3*a*b + (a^2 + 2 
*b)*c - (a^2 + 4*b)*sqrt((a^4 + a^2*c^2 + 2*a^2*b + b^2 + 2*(a^3 + a*b)*c) 
/(a^2 + 4*b)))/(a^2 + 4*b))*log(8*sqrt(2)*(a^4 + 5*a^2*b + 4*b^2 + (a^3 + 
4*a*b)*c + (a^3 + 4*a*b)*sqrt((a^4 + a^2*c^2 + 2*a^2*b + b^2 + 2*(a^3 + a* 
b)*c)/(a^2 + 4*b)))*sqrt((a^3 + 3*a*b + (a^2 + 2*b)*c - (a^2 + 4*b)*sqrt(( 
a^4 + a^2*c^2 + 2*a^2*b + b^2 + 2*(a^3 + a*b)*c)/(a^2 + 4*b)))/(a^2 + 4*b) 
) + 32*(a^2*b + a*b*c + b^2)*sqrt(c + sqrt(a*x + b))) + sqrt(2)*sqrt((a^3 
+ 3*a*b + (a^2 + 2*b)*c - (a^2 + 4*b)*sqrt((a^4 + a^2*c^2 + 2*a^2*b + b...
 
3.29.74.6 Sympy [F]

\[ \int \frac {\sqrt {c+\sqrt {b+a x}}}{x-\sqrt {b+a x}} \, dx=\int \frac {\sqrt {c + \sqrt {a x + b}}}{x - \sqrt {a x + b}}\, dx \]

input
integrate((c+(a*x+b)**(1/2))**(1/2)/(x-(a*x+b)**(1/2)),x)
 
output
Integral(sqrt(c + sqrt(a*x + b))/(x - sqrt(a*x + b)), x)
 
3.29.74.7 Maxima [F]

\[ \int \frac {\sqrt {c+\sqrt {b+a x}}}{x-\sqrt {b+a x}} \, dx=\int { \frac {\sqrt {c + \sqrt {a x + b}}}{x - \sqrt {a x + b}} \,d x } \]

input
integrate((c+(a*x+b)^(1/2))^(1/2)/(x-(a*x+b)^(1/2)),x, algorithm="maxima")
 
output
integrate(sqrt(c + sqrt(a*x + b))/(x - sqrt(a*x + b)), x)
 
3.29.74.8 Giac [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 210, normalized size of antiderivative = 0.69 \[ \int \frac {\sqrt {c+\sqrt {b+a x}}}{x-\sqrt {b+a x}} \, dx=-\frac {4 \, \sqrt {a^{2} + 4 \, b} \sqrt {-2 \, a - 4 \, c + 2 \, \sqrt {a^{2} + 4 \, b}} b \arctan \left (\frac {\sqrt {c + \sqrt {a x + b}}}{\sqrt {-\frac {1}{2} \, a - c + \frac {1}{2} \, \sqrt {{\left (a + 2 \, c\right )}^{2} - 4 \, a c - 4 \, c^{2} + 4 \, b}}}\right )}{a^{3} + 4 \, a b + {\left (a^{2} + 4 \, b\right )}^{\frac {3}{2}}} + \frac {4 \, \sqrt {a^{2} + 4 \, b} \sqrt {-2 \, a - 4 \, c - 2 \, \sqrt {a^{2} + 4 \, b}} b \arctan \left (\frac {\sqrt {c + \sqrt {a x + b}}}{\sqrt {-\frac {1}{2} \, a - c - \frac {1}{2} \, \sqrt {{\left (a + 2 \, c\right )}^{2} - 4 \, a c - 4 \, c^{2} + 4 \, b}}}\right )}{a^{3} + 4 \, a b - {\left (a^{2} + 4 \, b\right )}^{\frac {3}{2}}} + 4 \, \sqrt {c + \sqrt {a x + b}} \]

input
integrate((c+(a*x+b)^(1/2))^(1/2)/(x-(a*x+b)^(1/2)),x, algorithm="giac")
 
output
-4*sqrt(a^2 + 4*b)*sqrt(-2*a - 4*c + 2*sqrt(a^2 + 4*b))*b*arctan(sqrt(c + 
sqrt(a*x + b))/sqrt(-1/2*a - c + 1/2*sqrt((a + 2*c)^2 - 4*a*c - 4*c^2 + 4* 
b)))/(a^3 + 4*a*b + (a^2 + 4*b)^(3/2)) + 4*sqrt(a^2 + 4*b)*sqrt(-2*a - 4*c 
 - 2*sqrt(a^2 + 4*b))*b*arctan(sqrt(c + sqrt(a*x + b))/sqrt(-1/2*a - c - 1 
/2*sqrt((a + 2*c)^2 - 4*a*c - 4*c^2 + 4*b)))/(a^3 + 4*a*b - (a^2 + 4*b)^(3 
/2)) + 4*sqrt(c + sqrt(a*x + b))
 
3.29.74.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {c+\sqrt {b+a x}}}{x-\sqrt {b+a x}} \, dx=\int \frac {\sqrt {c+\sqrt {b+a\,x}}}{x-\sqrt {b+a\,x}} \,d x \]

input
int((c + (b + a*x)^(1/2))^(1/2)/(x - (b + a*x)^(1/2)),x)
 
output
int((c + (b + a*x)^(1/2))^(1/2)/(x - (b + a*x)^(1/2)), x)