3.29.75 \(\int \frac {1+x}{(1+2 x) \sqrt [3]{27+27 x+36 x^2+28 x^3+9 x^4+x^5}} \, dx\) [2875]

3.29.75.1 Optimal result
3.29.75.2 Mathematica [A] (verified)
3.29.75.3 Rubi [C] (verified)
3.29.75.4 Maple [C] (warning: unable to verify)
3.29.75.5 Fricas [F(-2)]
3.29.75.6 Sympy [F]
3.29.75.7 Maxima [F]
3.29.75.8 Giac [F]
3.29.75.9 Mupad [F(-1)]

3.29.75.1 Optimal result

Integrand size = 38, antiderivative size = 308 \[ \int \frac {1+x}{(1+2 x) \sqrt [3]{27+27 x+36 x^2+28 x^3+9 x^4+x^5}} \, dx=\frac {\sqrt {3} \arctan \left (\frac {5 \sqrt {3} \sqrt [3]{27+27 x+36 x^2+28 x^3+9 x^4+x^5}}{12 \sqrt [3]{10}-2 \sqrt [3]{10} x-2 \sqrt [3]{10} x^2+5 \sqrt [3]{27+27 x+36 x^2+28 x^3+9 x^4+x^5}}\right )}{5 \sqrt [3]{10}}+\frac {\log \left (-6 \sqrt [3]{10}+\sqrt [3]{10} x+\sqrt [3]{10} x^2+5 \sqrt [3]{27+27 x+36 x^2+28 x^3+9 x^4+x^5}\right )}{5 \sqrt [3]{10}}-\frac {\log \left (36\ 10^{2/3}-12\ 10^{2/3} x-11\ 10^{2/3} x^2+2\ 10^{2/3} x^3+10^{2/3} x^4+\left (30 \sqrt [3]{10}-5 \sqrt [3]{10} x-5 \sqrt [3]{10} x^2\right ) \sqrt [3]{27+27 x+36 x^2+28 x^3+9 x^4+x^5}+25 \left (27+27 x+36 x^2+28 x^3+9 x^4+x^5\right )^{2/3}\right )}{10 \sqrt [3]{10}} \]

output
1/50*3^(1/2)*arctan(5*3^(1/2)*(x^5+9*x^4+28*x^3+36*x^2+27*x+27)^(1/3)/(12* 
10^(1/3)-2*10^(1/3)*x-2*10^(1/3)*x^2+5*(x^5+9*x^4+28*x^3+36*x^2+27*x+27)^( 
1/3)))*10^(2/3)+1/50*ln(-6*10^(1/3)+10^(1/3)*x+10^(1/3)*x^2+5*(x^5+9*x^4+2 
8*x^3+36*x^2+27*x+27)^(1/3))*10^(2/3)-1/100*ln(36*10^(2/3)-12*10^(2/3)*x-1 
1*10^(2/3)*x^2+2*10^(2/3)*x^3+10^(2/3)*x^4+(30*10^(1/3)-5*10^(1/3)*x-5*10^ 
(1/3)*x^2)*(x^5+9*x^4+28*x^3+36*x^2+27*x+27)^(1/3)+25*(x^5+9*x^4+28*x^3+36 
*x^2+27*x+27)^(2/3))*10^(2/3)
 
3.29.75.2 Mathematica [A] (verified)

Time = 0.07 (sec) , antiderivative size = 175, normalized size of antiderivative = 0.57 \[ \int \frac {1+x}{(1+2 x) \sqrt [3]{27+27 x+36 x^2+28 x^3+9 x^4+x^5}} \, dx=-\frac {(3+x) \sqrt [3]{1+x^2} \left (2 \sqrt {3} \arctan \left (\frac {4 \sqrt [3]{10}-2 \sqrt [3]{10} x+5 \sqrt [3]{1+x^2}}{5 \sqrt {3} \sqrt [3]{1+x^2}}\right )-2 \log \left (-2 \sqrt [3]{10}+\sqrt [3]{10} x+5 \sqrt [3]{1+x^2}\right )+\log \left (4\ 10^{2/3}-4\ 10^{2/3} x+10^{2/3} x^2-5 \sqrt [3]{10} (-2+x) \sqrt [3]{1+x^2}+25 \left (1+x^2\right )^{2/3}\right )\right )}{10 \sqrt [3]{10} \sqrt [3]{(3+x)^3 \left (1+x^2\right )}} \]

input
Integrate[(1 + x)/((1 + 2*x)*(27 + 27*x + 36*x^2 + 28*x^3 + 9*x^4 + x^5)^( 
1/3)),x]
 
output
-1/10*((3 + x)*(1 + x^2)^(1/3)*(2*Sqrt[3]*ArcTan[(4*10^(1/3) - 2*10^(1/3)* 
x + 5*(1 + x^2)^(1/3))/(5*Sqrt[3]*(1 + x^2)^(1/3))] - 2*Log[-2*10^(1/3) + 
10^(1/3)*x + 5*(1 + x^2)^(1/3)] + Log[4*10^(2/3) - 4*10^(2/3)*x + 10^(2/3) 
*x^2 - 5*10^(1/3)*(-2 + x)*(1 + x^2)^(1/3) + 25*(1 + x^2)^(2/3)]))/(10^(1/ 
3)*((3 + x)^3*(1 + x^2))^(1/3))
 
3.29.75.3 Rubi [C] (verified)

Result contains higher order function than in optimal. Order 6 vs. order 3 in optimal.

Time = 1.12 (sec) , antiderivative size = 266, normalized size of antiderivative = 0.86, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.105, Rules used = {7239, 7270, 7293, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x+1}{(2 x+1) \sqrt [3]{x^5+9 x^4+28 x^3+36 x^2+27 x+27}} \, dx\)

\(\Big \downarrow \) 7239

\(\displaystyle \int \frac {x+1}{(2 x+1) \sqrt [3]{(x+3)^3 \left (x^2+1\right )}}dx\)

\(\Big \downarrow \) 7270

\(\displaystyle \frac {(x+3) \sqrt [3]{x^2+1} \int \frac {x+1}{(x+3) (2 x+1) \sqrt [3]{x^2+1}}dx}{\sqrt [3]{(x+3)^3 \left (x^2+1\right )}}\)

\(\Big \downarrow \) 7293

\(\displaystyle \frac {(x+3) \sqrt [3]{x^2+1} \int \left (\frac {2}{5 (x+3) \sqrt [3]{x^2+1}}+\frac {1}{5 (2 x+1) \sqrt [3]{x^2+1}}\right )dx}{\sqrt [3]{(x+3)^3 \left (x^2+1\right )}}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {(x+3) \sqrt [3]{x^2+1} \left (\frac {2}{15} x \operatorname {AppellF1}\left (\frac {1}{2},1,\frac {1}{3},\frac {3}{2},\frac {x^2}{9},-x^2\right )+\frac {1}{5} x \operatorname {AppellF1}\left (\frac {1}{2},1,\frac {1}{3},\frac {3}{2},4 x^2,-x^2\right )+\frac {\sqrt {3} \arctan \left (\frac {2^{2/3} \sqrt [3]{x^2+1}+\sqrt [3]{5}}{\sqrt {3} \sqrt [3]{5}}\right )}{5 \sqrt [3]{10}}+\frac {\sqrt {3} \arctan \left (\frac {2\ 2^{2/3} \sqrt [3]{x^2+1}+\sqrt [3]{5}}{\sqrt {3} \sqrt [3]{5}}\right )}{10 \sqrt [3]{10}}-\frac {\log \left (1-4 x^2\right )}{20 \sqrt [3]{10}}-\frac {\log \left (9-x^2\right )}{10 \sqrt [3]{10}}+\frac {3 \log \left (\sqrt [3]{10}-2 \sqrt [3]{x^2+1}\right )}{20 \sqrt [3]{10}}+\frac {3 \log \left (\sqrt [3]{10}-\sqrt [3]{x^2+1}\right )}{10 \sqrt [3]{10}}\right )}{\sqrt [3]{(x+3)^3 \left (x^2+1\right )}}\)

input
Int[(1 + x)/((1 + 2*x)*(27 + 27*x + 36*x^2 + 28*x^3 + 9*x^4 + x^5)^(1/3)), 
x]
 
output
((3 + x)*(1 + x^2)^(1/3)*((2*x*AppellF1[1/2, 1, 1/3, 3/2, x^2/9, -x^2])/15 
 + (x*AppellF1[1/2, 1, 1/3, 3/2, 4*x^2, -x^2])/5 + (Sqrt[3]*ArcTan[(5^(1/3 
) + 2^(2/3)*(1 + x^2)^(1/3))/(Sqrt[3]*5^(1/3))])/(5*10^(1/3)) + (Sqrt[3]*A 
rcTan[(5^(1/3) + 2*2^(2/3)*(1 + x^2)^(1/3))/(Sqrt[3]*5^(1/3))])/(10*10^(1/ 
3)) - Log[1 - 4*x^2]/(20*10^(1/3)) - Log[9 - x^2]/(10*10^(1/3)) + (3*Log[1 
0^(1/3) - 2*(1 + x^2)^(1/3)])/(20*10^(1/3)) + (3*Log[10^(1/3) - (1 + x^2)^ 
(1/3)])/(10*10^(1/3))))/((3 + x)^3*(1 + x^2))^(1/3)
 

3.29.75.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 7239
Int[u_, x_Symbol] :> With[{v = SimplifyIntegrand[u, x]}, Int[v, x] /; Simpl 
erIntegrandQ[v, u, x]]
 

rule 7270
Int[(u_.)*((a_.)*(v_)^(m_.)*(w_)^(n_.))^(p_), x_Symbol] :> Simp[a^IntPart[p 
]*((a*v^m*w^n)^FracPart[p]/(v^(m*FracPart[p])*w^(n*FracPart[p])))   Int[u*v 
^(m*p)*w^(n*p), x], x] /; FreeQ[{a, m, n, p}, x] &&  !IntegerQ[p] &&  !Free 
Q[v, x] &&  !FreeQ[w, x]
 

rule 7293
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v] 
]
 
3.29.75.4 Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 10.52 (sec) , antiderivative size = 3732, normalized size of antiderivative = 12.12

method result size
trager \(\text {Expression too large to display}\) \(3732\)

input
int((1+x)/(1+2*x)/(x^5+9*x^4+28*x^3+36*x^2+27*x+27)^(1/3),x,method=_RETURN 
VERBOSE)
 
output
-1/50*ln(-(640746115263450*RootOf(81*RootOf(_Z^3-100)^2+450*_Z*RootOf(_Z^3 
-100)+2500*_Z^2)+21887249427900*(x^5+9*x^4+28*x^3+36*x^2+27*x+27)^(2/3)-17 
78460897600*RootOf(81*RootOf(_Z^3-100)^2+450*_Z*RootOf(_Z^3-100)+2500*_Z^2 
)*x^5-72330055488*RootOf(_Z^3-100)*x^5+9561129209820*RootOf(_Z^3-100)*x+56 
966325626250*RootOf(81*RootOf(_Z^3-100)^2+450*_Z*RootOf(_Z^3-100)+2500*_Z^ 
2)*x^4+368474867221500*RootOf(81*RootOf(_Z^3-100)^2+450*_Z*RootOf(_Z^3-100 
)+2500*_Z^2)*x^3+551878647286500*RootOf(81*RootOf(_Z^3-100)^2+450*_Z*RootO 
f(_Z^3-100)+2500*_Z^2)*x^2+235090299901500*RootOf(81*RootOf(_Z^3-100)^2+45 
0*_Z*RootOf(_Z^3-100)+2500*_Z^2)*x+2316822089850*RootOf(_Z^3-100)*x^4+1498 
5883371420*RootOf(_Z^3-100)*x^3+22444920343620*RootOf(_Z^3-100)*x^2-177752 
9944800*(x^5+9*x^4+28*x^3+36*x^2+27*x+27)^(2/3)*RootOf(81*RootOf(_Z^3-100) 
^2+450*_Z*RootOf(_Z^3-100)+2500*_Z^2)*RootOf(_Z^3-100)^2*x+1235042290000*R 
ootOf(81*RootOf(_Z^3-100)^2+450*_Z*RootOf(_Z^3-100)+2500*_Z^2)^2*RootOf(_Z 
^3-100)^2*x^4+50229205200*RootOf(81*RootOf(_Z^3-100)^2+450*_Z*RootOf(_Z^3- 
100)+2500*_Z^2)*RootOf(_Z^3-100)^3*x^4+13894225762500*RootOf(81*RootOf(_Z^ 
3-100)^2+450*_Z*RootOf(_Z^3-100)+2500*_Z^2)^2*RootOf(_Z^3-100)^2*x^2+56507 
8558500*RootOf(81*RootOf(_Z^3-100)^2+450*_Z*RootOf(_Z^3-100)+2500*_Z^2)*Ro 
otOf(_Z^3-100)^3*x^2+26059162803786*RootOf(_Z^3-100)+154380286250*RootOf(8 
1*RootOf(_Z^3-100)^2+450*_Z*RootOf(_Z^3-100)+2500*_Z^2)^2*RootOf(_Z^3-100) 
^2*x^5+6278650650*RootOf(81*RootOf(_Z^3-100)^2+450*_Z*RootOf(_Z^3-100)+...
 
3.29.75.5 Fricas [F(-2)]

Exception generated. \[ \int \frac {1+x}{(1+2 x) \sqrt [3]{27+27 x+36 x^2+28 x^3+9 x^4+x^5}} \, dx=\text {Exception raised: TypeError} \]

input
integrate((1+x)/(1+2*x)/(x^5+9*x^4+28*x^3+36*x^2+27*x+27)^(1/3),x, algorit 
hm="fricas")
 
output
Exception raised: TypeError >>  Error detected within library code:   inte 
grate: implementation incomplete (residue poly has multiple non-linear fac 
tors)
 
3.29.75.6 Sympy [F]

\[ \int \frac {1+x}{(1+2 x) \sqrt [3]{27+27 x+36 x^2+28 x^3+9 x^4+x^5}} \, dx=\int \frac {x + 1}{\sqrt [3]{\left (x + 3\right )^{3} \left (x^{2} + 1\right )} \left (2 x + 1\right )}\, dx \]

input
integrate((1+x)/(1+2*x)/(x**5+9*x**4+28*x**3+36*x**2+27*x+27)**(1/3),x)
 
output
Integral((x + 1)/(((x + 3)**3*(x**2 + 1))**(1/3)*(2*x + 1)), x)
 
3.29.75.7 Maxima [F]

\[ \int \frac {1+x}{(1+2 x) \sqrt [3]{27+27 x+36 x^2+28 x^3+9 x^4+x^5}} \, dx=\int { \frac {x + 1}{{\left (x^{5} + 9 \, x^{4} + 28 \, x^{3} + 36 \, x^{2} + 27 \, x + 27\right )}^{\frac {1}{3}} {\left (2 \, x + 1\right )}} \,d x } \]

input
integrate((1+x)/(1+2*x)/(x^5+9*x^4+28*x^3+36*x^2+27*x+27)^(1/3),x, algorit 
hm="maxima")
 
output
integrate((x + 1)/((x^5 + 9*x^4 + 28*x^3 + 36*x^2 + 27*x + 27)^(1/3)*(2*x 
+ 1)), x)
 
3.29.75.8 Giac [F]

\[ \int \frac {1+x}{(1+2 x) \sqrt [3]{27+27 x+36 x^2+28 x^3+9 x^4+x^5}} \, dx=\int { \frac {x + 1}{{\left (x^{5} + 9 \, x^{4} + 28 \, x^{3} + 36 \, x^{2} + 27 \, x + 27\right )}^{\frac {1}{3}} {\left (2 \, x + 1\right )}} \,d x } \]

input
integrate((1+x)/(1+2*x)/(x^5+9*x^4+28*x^3+36*x^2+27*x+27)^(1/3),x, algorit 
hm="giac")
 
output
integrate((x + 1)/((x^5 + 9*x^4 + 28*x^3 + 36*x^2 + 27*x + 27)^(1/3)*(2*x 
+ 1)), x)
 
3.29.75.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1+x}{(1+2 x) \sqrt [3]{27+27 x+36 x^2+28 x^3+9 x^4+x^5}} \, dx=\int \frac {x+1}{\left (2\,x+1\right )\,{\left (x^5+9\,x^4+28\,x^3+36\,x^2+27\,x+27\right )}^{1/3}} \,d x \]

input
int((x + 1)/((2*x + 1)*(27*x + 36*x^2 + 28*x^3 + 9*x^4 + x^5 + 27)^(1/3)), 
x)
 
output
int((x + 1)/((2*x + 1)*(27*x + 36*x^2 + 28*x^3 + 9*x^4 + x^5 + 27)^(1/3)), 
 x)