3.32.19 \(\int \frac {x^2 (x^2 c_3-c_4) \sqrt [4]{\frac {x c_0+x^2 c_3+c_4}{x c_1+x^2 c_3+c_4}}}{(-x+x^2 c_3+c_4) (x+x^2 c_3+c_4) (x^2+x^4 c_3{}^2+2 x^2 c_3 c_4+c_4{}^2)} \, dx\) [3119]

3.32.19.1 Optimal result
3.32.19.2 Mathematica [F]
3.32.19.3 Rubi [F]
3.32.19.4 Maple [N/A] (verified)
3.32.19.5 Fricas [F(-1)]
3.32.19.6 Sympy [F(-1)]
3.32.19.7 Maxima [N/A]
3.32.19.8 Giac [N/A]
3.32.19.9 Mupad [N/A]

3.32.19.1 Optimal result

Integrand size = 101, antiderivative size = 685 \[ \int \frac {x^2 \left (x^2 c_3-c_4\right ) \sqrt [4]{\frac {x c_0+x^2 c_3+c_4}{x c_1+x^2 c_3+c_4}}}{\left (-x+x^2 c_3+c_4\right ) \left (x+x^2 c_3+c_4\right ) \left (x^2+x^4 c_3{}^2+2 x^2 c_3 c_4+c_4{}^2\right )} \, dx=\frac {\arctan \left (\frac {\frac {\sqrt [4]{1+c_0}}{\sqrt {2} \sqrt [4]{-1-c_1}}-\frac {\sqrt [4]{-1-c_1} \sqrt {\frac {x c_0+x^2 c_3+c_4}{x c_1+x^2 c_3+c_4}}}{\sqrt {2} \sqrt [4]{1+c_0}}}{\sqrt [4]{\frac {x c_0+x^2 c_3+c_4}{x c_1+x^2 c_3+c_4}}}\right ) \sqrt [4]{1+c_0}}{2 \sqrt {2} \sqrt [4]{-1-c_1}}-\frac {\text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{1+c_0} \sqrt [4]{-1-c_1} \sqrt [4]{\frac {x c_0+x^2 c_3+c_4}{x c_1+x^2 c_3+c_4}}}{\sqrt {1+c_0}+\sqrt {-1-c_1} \sqrt {\frac {x c_0+x^2 c_3+c_4}{x c_1+x^2 c_3+c_4}}}\right ) \sqrt [4]{1+c_0}}{2 \sqrt {2} \sqrt [4]{-1-c_1}}-\frac {\arctan \left (\frac {\frac {\sqrt [4]{-1+c_0}}{\sqrt {2} \sqrt [4]{1-c_1}}-\frac {\sqrt [4]{1-c_1} \sqrt {\frac {x c_0+x^2 c_3+c_4}{x c_1+x^2 c_3+c_4}}}{\sqrt {2} \sqrt [4]{-1+c_0}}}{\sqrt [4]{\frac {x c_0+x^2 c_3+c_4}{x c_1+x^2 c_3+c_4}}}\right ) \sqrt [4]{-1+c_0}}{2 \sqrt {2} \sqrt [4]{1-c_1}}+\frac {\text {arctanh}\left (\frac {\sqrt {2} \sqrt [4]{-1+c_0} \sqrt [4]{1-c_1} \sqrt [4]{\frac {x c_0+x^2 c_3+c_4}{x c_1+x^2 c_3+c_4}}}{\sqrt {-1+c_0}+\sqrt {1-c_1} \sqrt {\frac {x c_0+x^2 c_3+c_4}{x c_1+x^2 c_3+c_4}}}\right ) \sqrt [4]{-1+c_0}}{2 \sqrt {2} \sqrt [4]{1-c_1}}+\frac {1}{4} (c_0-c_1) \text {RootSum}\left [1+c_0{}^2-2 \text {$\#$1}^4-2 c_0 c_1 \text {$\#$1}^4+\text {$\#$1}^8+c_1{}^2 \text {$\#$1}^8\&,\frac {\log \left (\sqrt [4]{\frac {x c_0+x^2 c_3+c_4}{x c_1+x^2 c_3+c_4}}-\text {$\#$1}\right ) \text {$\#$1}}{-1-c_0 c_1+\text {$\#$1}^4+c_1{}^2 \text {$\#$1}^4}\&\right ] \]

output
Unintegrable
 
3.32.19.2 Mathematica [F]

\[ \int \frac {x^2 \left (x^2 c_3-c_4\right ) \sqrt [4]{\frac {x c_0+x^2 c_3+c_4}{x c_1+x^2 c_3+c_4}}}{\left (-x+x^2 c_3+c_4\right ) \left (x+x^2 c_3+c_4\right ) \left (x^2+x^4 c_3{}^2+2 x^2 c_3 c_4+c_4{}^2\right )} \, dx=\int \frac {x^2 \left (x^2 c_3-c_4\right ) \sqrt [4]{\frac {x c_0+x^2 c_3+c_4}{x c_1+x^2 c_3+c_4}}}{\left (-x+x^2 c_3+c_4\right ) \left (x+x^2 c_3+c_4\right ) \left (x^2+x^4 c_3{}^2+2 x^2 c_3 c_4+c_4{}^2\right )} \, dx \]

input
Integrate[(x^2*(x^2*C[3] - C[4])*((x*C[0] + x^2*C[3] + C[4])/(x*C[1] + x^2 
*C[3] + C[4]))^(1/4))/((-x + x^2*C[3] + C[4])*(x + x^2*C[3] + C[4])*(x^2 + 
 x^4*C[3]^2 + 2*x^2*C[3]*C[4] + C[4]^2)),x]
 
output
Integrate[(x^2*(x^2*C[3] - C[4])*((x*C[0] + x^2*C[3] + C[4])/(x*C[1] + x^2 
*C[3] + C[4]))^(1/4))/((-x + x^2*C[3] + C[4])*(x + x^2*C[3] + C[4])*(x^2 + 
 x^4*C[3]^2 + 2*x^2*C[3]*C[4] + C[4]^2)), x]
 
3.32.19.3 Rubi [F]

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^2 \left (c_3 x^2-c_4\right ) \sqrt [4]{\frac {c_3 x^2+c_0 x+c_4}{c_3 x^2+c_1 x+c_4}}}{\left (c_3 x^2-x+c_4\right ) \left (c_3 x^2+x+c_4\right ) \left (c_3{}^2 x^4+x^2+2 c_3 c_4 x^2+c_4{}^2\right )} \, dx\)

\(\Big \downarrow \) 6

\(\displaystyle \int \frac {x^2 \left (c_3 x^2-c_4\right ) \sqrt [4]{\frac {c_3 x^2+c_0 x+c_4}{c_3 x^2+c_1 x+c_4}}}{\left (c_3 x^2-x+c_4\right ) \left (c_3 x^2+x+c_4\right ) \left (c_3{}^2 x^4+(1+2 c_3 c_4) x^2+c_4{}^2\right )}dx\)

\(\Big \downarrow \) 7270

\(\displaystyle \frac {\sqrt [4]{\frac {c_3 x^2+c_0 x+c_4}{c_3 x^2+c_1 x+c_4}} \sqrt [4]{c_3 x^2+c_1 x+c_4} \int -\frac {x^2 \left (x^2 c_3-c_4\right ) \sqrt [4]{c_3 x^2+c_0 x+c_4}}{\left (-c_3 x^2+x-c_4\right ) \left (c_3 x^2+x+c_4\right ) \sqrt [4]{c_3 x^2+c_1 x+c_4} \left (c_3{}^2 x^4+(2 c_3 c_4+1) x^2+c_4{}^2\right )}dx}{\sqrt [4]{c_3 x^2+c_0 x+c_4}}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {\sqrt [4]{\frac {c_3 x^2+c_0 x+c_4}{c_3 x^2+c_1 x+c_4}} \sqrt [4]{c_3 x^2+c_1 x+c_4} \int \frac {x^2 \left (x^2 c_3-c_4\right ) \sqrt [4]{c_3 x^2+c_0 x+c_4}}{\left (-c_3 x^2+x-c_4\right ) \left (c_3 x^2+x+c_4\right ) \sqrt [4]{c_3 x^2+c_1 x+c_4} \left (c_3{}^2 x^4+(2 c_3 c_4+1) x^2+c_4{}^2\right )}dx}{\sqrt [4]{c_3 x^2+c_0 x+c_4}}\)

\(\Big \downarrow \) 7279

\(\displaystyle -\frac {\sqrt [4]{\frac {c_3 x^2+c_0 x+c_4}{c_3 x^2+c_1 x+c_4}} \sqrt [4]{c_3 x^2+c_1 x+c_4} \int \left (\frac {\sqrt [4]{c_3 x^2+c_0 x+c_4} (1-2 x c_3)}{4 \left (c_3 x^2-x+c_4\right ) \sqrt [4]{c_3 x^2+c_1 x+c_4}}+\frac {(2 x c_3+1) \sqrt [4]{c_3 x^2+c_0 x+c_4}}{4 \left (c_3 x^2+x+c_4\right ) \sqrt [4]{c_3 x^2+c_1 x+c_4}}+\frac {\left (x^2 c_3-c_4\right ) \sqrt [4]{c_3 x^2+c_0 x+c_4}}{2 \sqrt [4]{c_3 x^2+c_1 x+c_4} \left (c_3{}^2 x^4+(2 c_3 c_4+1) x^2+c_4{}^2\right )}\right )dx}{\sqrt [4]{c_3 x^2+c_0 x+c_4}}\)

\(\Big \downarrow \) 2009

\(\displaystyle -\frac {\sqrt [4]{\frac {c_3 x^2+c_0 x+c_4}{c_3 x^2+c_1 x+c_4}} \sqrt [4]{c_3 x^2+c_1 x+c_4} \left (-\frac {1}{2} c_3 \int \frac {\sqrt [4]{c_3 x^2+c_0 x+c_4}}{\sqrt [4]{c_3 x^2+c_1 x+c_4} \left (2 x c_3-\sqrt {1-4 c_3 c_4}-1\right )}dx+\frac {1}{2} c_3 \int \frac {\sqrt [4]{c_3 x^2+c_0 x+c_4}}{\sqrt [4]{c_3 x^2+c_1 x+c_4} \left (2 x c_3-\sqrt {1-4 c_3 c_4}+1\right )}dx-\frac {1}{2} c_3 \int \frac {\sqrt [4]{c_3 x^2+c_0 x+c_4}}{\sqrt [4]{c_3 x^2+c_1 x+c_4} \left (2 x c_3+\sqrt {1-4 c_3 c_4}-1\right )}dx+\frac {1}{2} c_3 \int \frac {\sqrt [4]{c_3 x^2+c_0 x+c_4}}{\sqrt [4]{c_3 x^2+c_1 x+c_4} \left (2 x c_3+\sqrt {1-4 c_3 c_4}+1\right )}dx-\frac {c_3 \left (\sqrt {4 c_3 c_4+1}+1\right ) \int \frac {\sqrt [4]{c_3 x^2+c_0 x+c_4}}{\sqrt [4]{c_3 x^2+c_1 x+c_4} \left (\sqrt {-2 c_3 c_4-\sqrt {4 c_3 c_4+1}-1}-\sqrt {2} x c_3\right )}dx}{4 \sqrt {-2 c_3 c_4-\sqrt {4 c_3 c_4+1}-1}}-\frac {c_3 \left (\sqrt {4 c_3 c_4+1}+1\right ) \int \frac {\sqrt [4]{c_3 x^2+c_0 x+c_4}}{\sqrt [4]{c_3 x^2+c_1 x+c_4} \left (\sqrt {2} x c_3+\sqrt {-2 c_3 c_4-\sqrt {4 c_3 c_4+1}-1}\right )}dx}{4 \sqrt {-2 c_3 c_4-\sqrt {4 c_3 c_4+1}-1}}-\frac {c_3 \left (1-\sqrt {4 c_3 c_4+1}\right ) \int \frac {\sqrt [4]{c_3 x^2+c_0 x+c_4}}{\sqrt [4]{c_3 x^2+c_1 x+c_4} \left (\sqrt {-2 c_3 c_4+\sqrt {4 c_3 c_4+1}-1}-\sqrt {2} x c_3\right )}dx}{4 \sqrt {-2 c_3 c_4+\sqrt {4 c_3 c_4+1}-1}}-\frac {c_3 \left (1-\sqrt {4 c_3 c_4+1}\right ) \int \frac {\sqrt [4]{c_3 x^2+c_0 x+c_4}}{\sqrt [4]{c_3 x^2+c_1 x+c_4} \left (\sqrt {2} x c_3+\sqrt {-2 c_3 c_4+\sqrt {4 c_3 c_4+1}-1}\right )}dx}{4 \sqrt {-2 c_3 c_4+\sqrt {4 c_3 c_4+1}-1}}\right )}{\sqrt [4]{c_3 x^2+c_0 x+c_4}}\)

input
Int[(x^2*(x^2*C[3] - C[4])*((x*C[0] + x^2*C[3] + C[4])/(x*C[1] + x^2*C[3] 
+ C[4]))^(1/4))/((-x + x^2*C[3] + C[4])*(x + x^2*C[3] + C[4])*(x^2 + x^4*C 
[3]^2 + 2*x^2*C[3]*C[4] + C[4]^2)),x]
 
output
$Aborted
 

3.32.19.3.1 Defintions of rubi rules used

rule 6
Int[(u_.)*((v_.) + (a_.)*(Fx_) + (b_.)*(Fx_))^(p_.), x_Symbol] :> Int[u*(v 
+ (a + b)*Fx)^p, x] /; FreeQ[{a, b}, x] &&  !FreeQ[Fx, x]
 

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 7270
Int[(u_.)*((a_.)*(v_)^(m_.)*(w_)^(n_.))^(p_), x_Symbol] :> Simp[a^IntPart[p 
]*((a*v^m*w^n)^FracPart[p]/(v^(m*FracPart[p])*w^(n*FracPart[p])))   Int[u*v 
^(m*p)*w^(n*p), x], x] /; FreeQ[{a, m, n, p}, x] &&  !IntegerQ[p] &&  !Free 
Q[v, x] &&  !FreeQ[w, x]
 

rule 7279
Int[(u_)/((a_.) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.)), x_Symbol] :> With[ 
{v = RationalFunctionExpand[u/(a + b*x^n + c*x^(2*n)), x]}, Int[v, x] /; Su 
mQ[v]] /; FreeQ[{a, b, c}, x] && EqQ[n2, 2*n] && IGtQ[n, 0]
 
3.32.19.4 Maple [N/A] (verified)

Not integrable

Time = 0.06 (sec) , antiderivative size = 83, normalized size of antiderivative = 0.12

\[\int \frac {x^{2} \left (\textit {\_C3} \,x^{2}-\textit {\_C4} \right ) \left (\frac {\textit {\_C3} \,x^{2}+\textit {\_C0} x +\textit {\_C4}}{\textit {\_C3} \,x^{2}+\textit {\_C1} x +\textit {\_C4}}\right )^{\frac {1}{4}}}{\left (\textit {\_C3} \,x^{2}+\textit {\_C4} -x \right ) \left (\textit {\_C3} \,x^{2}+\textit {\_C4} +x \right ) \left (\textit {\_C3}^{2} x^{4}+2 \textit {\_C3} \textit {\_C4} \,x^{2}+\textit {\_C4}^{2}+x^{2}\right )}d x\]

input
int(x^2*(_C3*x^2-_C4)*((_C3*x^2+_C0*x+_C4)/(_C3*x^2+_C1*x+_C4))^(1/4)/(_C3 
*x^2+_C4-x)/(_C3*x^2+_C4+x)/(_C3^2*x^4+2*_C3*_C4*x^2+_C4^2+x^2),x)
 
output
int(x^2*(_C3*x^2-_C4)*((_C3*x^2+_C0*x+_C4)/(_C3*x^2+_C1*x+_C4))^(1/4)/(_C3 
*x^2+_C4-x)/(_C3*x^2+_C4+x)/(_C3^2*x^4+2*_C3*_C4*x^2+_C4^2+x^2),x)
 
3.32.19.5 Fricas [F(-1)]

Timed out. \[ \int \frac {x^2 \left (x^2 c_3-c_4\right ) \sqrt [4]{\frac {x c_0+x^2 c_3+c_4}{x c_1+x^2 c_3+c_4}}}{\left (-x+x^2 c_3+c_4\right ) \left (x+x^2 c_3+c_4\right ) \left (x^2+x^4 c_3{}^2+2 x^2 c_3 c_4+c_4{}^2\right )} \, dx=\text {Timed out} \]

input
integrate(x^2*(_C3*x^2-_C4)*((_C3*x^2+_C0*x+_C4)/(_C3*x^2+_C1*x+_C4))^(1/4 
)/(_C3*x^2+_C4-x)/(_C3*x^2+_C4+x)/(_C3^2*x^4+2*_C3*_C4*x^2+_C4^2+x^2),x, a 
lgorithm="fricas")
 
output
Timed out
 
3.32.19.6 Sympy [F(-1)]

Timed out. \[ \int \frac {x^2 \left (x^2 c_3-c_4\right ) \sqrt [4]{\frac {x c_0+x^2 c_3+c_4}{x c_1+x^2 c_3+c_4}}}{\left (-x+x^2 c_3+c_4\right ) \left (x+x^2 c_3+c_4\right ) \left (x^2+x^4 c_3{}^2+2 x^2 c_3 c_4+c_4{}^2\right )} \, dx=\text {Timed out} \]

input
integrate(x**2*(_C3*x**2-_C4)*((_C3*x**2+_C0*x+_C4)/(_C3*x**2+_C1*x+_C4))* 
*(1/4)/(_C3*x**2+_C4-x)/(_C3*x**2+_C4+x)/(_C3**2*x**4+2*_C3*_C4*x**2+_C4** 
2+x**2),x)
 
output
Timed out
 
3.32.19.7 Maxima [N/A]

Not integrable

Time = 0.38 (sec) , antiderivative size = 85, normalized size of antiderivative = 0.12 \[ \text {Unable to display latex} \]

input
integrate(x^2*(_C3*x^2-_C4)*((_C3*x^2+_C0*x+_C4)/(_C3*x^2+_C1*x+_C4))^(1/4 
)/(_C3*x^2+_C4-x)/(_C3*x^2+_C4+x)/(_C3^2*x^4+2*_C3*_C4*x^2+_C4^2+x^2),x, a 
lgorithm="maxima")
 
output
integrate((_C3*x^2 - _C4)*x^2*((_C3*x^2 + _C0*x + _C4)/(_C3*x^2 + _C1*x + 
_C4))^(1/4)/((_C3^2*x^4 + 2*_C3*_C4*x^2 + _C4^2 + x^2)*(_C3*x^2 + _C4 + x) 
*(_C3*x^2 + _C4 - x)), x)
 
3.32.19.8 Giac [N/A]

Not integrable

Time = 0.70 (sec) , antiderivative size = 85, normalized size of antiderivative = 0.12 \[ \text {Unable to display latex} \]

input
integrate(x^2*(_C3*x^2-_C4)*((_C3*x^2+_C0*x+_C4)/(_C3*x^2+_C1*x+_C4))^(1/4 
)/(_C3*x^2+_C4-x)/(_C3*x^2+_C4+x)/(_C3^2*x^4+2*_C3*_C4*x^2+_C4^2+x^2),x, a 
lgorithm="giac")
 
output
integrate((_C3*x^2 - _C4)*x^2*((_C3*x^2 + _C0*x + _C4)/(_C3*x^2 + _C1*x + 
_C4))^(1/4)/((_C3^2*x^4 + 2*_C3*_C4*x^2 + _C4^2 + x^2)*(_C3*x^2 + _C4 + x) 
*(_C3*x^2 + _C4 - x)), x)
 
3.32.19.9 Mupad [N/A]

Not integrable

Time = 9.44 (sec) , antiderivative size = 85, normalized size of antiderivative = 0.12 \[ \int \frac {x^2 \left (x^2 c_3-c_4\right ) \sqrt [4]{\frac {x c_0+x^2 c_3+c_4}{x c_1+x^2 c_3+c_4}}}{\left (-x+x^2 c_3+c_4\right ) \left (x+x^2 c_3+c_4\right ) \left (x^2+x^4 c_3{}^2+2 x^2 c_3 c_4+c_4{}^2\right )} \, dx=\int -\frac {x^2\,\left (_{\mathrm {C4}}-_{\mathrm {C3}}\,x^2\right )\,{\left (\frac {_{\mathrm {C3}}\,x^2+_{\mathrm {C0}}\,x+_{\mathrm {C4}}}{_{\mathrm {C3}}\,x^2+_{\mathrm {C1}}\,x+_{\mathrm {C4}}}\right )}^{1/4}}{\left (_{\mathrm {C3}}\,x^2-x+_{\mathrm {C4}}\right )\,\left (_{\mathrm {C3}}\,x^2+x+_{\mathrm {C4}}\right )\,\left ({_{\mathrm {C3}}}^2\,x^4+2\,_{\mathrm {C3}}\,_{\mathrm {C4}}\,x^2+{_{\mathrm {C4}}}^2+x^2\right )} \,d x \]

input
int(-(x^2*(_C4 - _C3*x^2)*((_C4 + _C0*x + _C3*x^2)/(_C4 + _C1*x + _C3*x^2) 
)^(1/4))/((_C4 - x + _C3*x^2)*(_C4 + x + _C3*x^2)*(_C4^2 + x^2 + _C3^2*x^4 
 + 2*_C3*_C4*x^2)),x)
 
output
int(-(x^2*(_C4 - _C3*x^2)*((_C4 + _C0*x + _C3*x^2)/(_C4 + _C1*x + _C3*x^2) 
)^(1/4))/((_C4 - x + _C3*x^2)*(_C4 + x + _C3*x^2)*(_C4^2 + x^2 + _C3^2*x^4 
 + 2*_C3*_C4*x^2)), x)