3.1.72 \(\int \frac {(f+g x) (a+b \arcsin (c x))^2}{\sqrt {d-c^2 d x^2}} \, dx\) [72]

3.1.72.1 Optimal result
3.1.72.2 Mathematica [A] (verified)
3.1.72.3 Rubi [A] (verified)
3.1.72.4 Maple [C] (verified)
3.1.72.5 Fricas [F]
3.1.72.6 Sympy [F(-2)]
3.1.72.7 Maxima [A] (verification not implemented)
3.1.72.8 Giac [F]
3.1.72.9 Mupad [F(-1)]

3.1.72.1 Optimal result

Integrand size = 31, antiderivative size = 171 \[ \int \frac {(f+g x) (a+b \arcsin (c x))^2}{\sqrt {d-c^2 d x^2}} \, dx=\frac {2 b^2 g \left (1-c^2 x^2\right )}{c^2 \sqrt {d-c^2 d x^2}}+\frac {2 b g x \sqrt {1-c^2 x^2} (a+b \arcsin (c x))}{c \sqrt {d-c^2 d x^2}}-\frac {g \left (1-c^2 x^2\right ) (a+b \arcsin (c x))^2}{c^2 \sqrt {d-c^2 d x^2}}+\frac {f \sqrt {1-c^2 x^2} (a+b \arcsin (c x))^3}{3 b c \sqrt {d-c^2 d x^2}} \]

output
2*b^2*g*(-c^2*x^2+1)/c^2/(-c^2*d*x^2+d)^(1/2)-g*(-c^2*x^2+1)*(a+b*arcsin(c 
*x))^2/c^2/(-c^2*d*x^2+d)^(1/2)+2*b*g*x*(a+b*arcsin(c*x))*(-c^2*x^2+1)^(1/ 
2)/c/(-c^2*d*x^2+d)^(1/2)+1/3*f*(a+b*arcsin(c*x))^3*(-c^2*x^2+1)^(1/2)/b/c 
/(-c^2*d*x^2+d)^(1/2)
 
3.1.72.2 Mathematica [A] (verified)

Time = 0.68 (sec) , antiderivative size = 118, normalized size of antiderivative = 0.69 \[ \int \frac {(f+g x) (a+b \arcsin (c x))^2}{\sqrt {d-c^2 d x^2}} \, dx=\frac {\sqrt {1-c^2 x^2} \left (-\frac {g \sqrt {1-c^2 x^2} (a+b \arcsin (c x))^2}{c}+\frac {f (a+b \arcsin (c x))^3}{3 b}+\frac {2 b g \left (a c x+b \sqrt {1-c^2 x^2}+b c x \arcsin (c x)\right )}{c}\right )}{c \sqrt {d-c^2 d x^2}} \]

input
Integrate[((f + g*x)*(a + b*ArcSin[c*x])^2)/Sqrt[d - c^2*d*x^2],x]
 
output
(Sqrt[1 - c^2*x^2]*(-((g*Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x])^2)/c) + (f* 
(a + b*ArcSin[c*x])^3)/(3*b) + (2*b*g*(a*c*x + b*Sqrt[1 - c^2*x^2] + b*c*x 
*ArcSin[c*x]))/c))/(c*Sqrt[d - c^2*d*x^2])
 
3.1.72.3 Rubi [A] (verified)

Time = 0.56 (sec) , antiderivative size = 128, normalized size of antiderivative = 0.75, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.097, Rules used = {5276, 5262, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(f+g x) (a+b \arcsin (c x))^2}{\sqrt {d-c^2 d x^2}} \, dx\)

\(\Big \downarrow \) 5276

\(\displaystyle \frac {\sqrt {1-c^2 x^2} \int \frac {(f+g x) (a+b \arcsin (c x))^2}{\sqrt {1-c^2 x^2}}dx}{\sqrt {d-c^2 d x^2}}\)

\(\Big \downarrow \) 5262

\(\displaystyle \frac {\sqrt {1-c^2 x^2} \int \left (\frac {f (a+b \arcsin (c x))^2}{\sqrt {1-c^2 x^2}}+\frac {g x (a+b \arcsin (c x))^2}{\sqrt {1-c^2 x^2}}\right )dx}{\sqrt {d-c^2 d x^2}}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\sqrt {1-c^2 x^2} \left (-\frac {g \sqrt {1-c^2 x^2} (a+b \arcsin (c x))^2}{c^2}+\frac {f (a+b \arcsin (c x))^3}{3 b c}+\frac {2 a b g x}{c}+\frac {2 b^2 g x \arcsin (c x)}{c}+\frac {2 b^2 g \sqrt {1-c^2 x^2}}{c^2}\right )}{\sqrt {d-c^2 d x^2}}\)

input
Int[((f + g*x)*(a + b*ArcSin[c*x])^2)/Sqrt[d - c^2*d*x^2],x]
 
output
(Sqrt[1 - c^2*x^2]*((2*a*b*g*x)/c + (2*b^2*g*Sqrt[1 - c^2*x^2])/c^2 + (2*b 
^2*g*x*ArcSin[c*x])/c - (g*Sqrt[1 - c^2*x^2]*(a + b*ArcSin[c*x])^2)/c^2 + 
(f*(a + b*ArcSin[c*x])^3)/(3*b*c)))/Sqrt[d - c^2*d*x^2]
 

3.1.72.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 5262
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_) + (g_.)*(x_))^(m_.)*((d_ 
) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Int[ExpandIntegrand[(d + e*x^2)^p*(a + 
 b*ArcSin[c*x])^n, (f + g*x)^m, x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] & 
& EqQ[c^2*d + e, 0] && IGtQ[m, 0] && IntegerQ[p + 1/2] && GtQ[d, 0] && IGtQ 
[n, 0] && (m == 1 || p > 0 || (n == 1 && p > -1) || (m == 2 && p < -2))
 

rule 5276
Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*((f_) + (g_.)*(x_))^(m_.)*((d_ 
) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[Simp[(d + e*x^2)^p/(1 - c^2*x^2)^ 
p]   Int[(f + g*x)^m*(1 - c^2*x^2)^p*(a + b*ArcSin[c*x])^n, x], x] /; FreeQ 
[{a, b, c, d, e, f, g, n}, x] && EqQ[c^2*d + e, 0] && IntegerQ[m] && Intege 
rQ[p - 1/2] &&  !GtQ[d, 0]
 
3.1.72.4 Maple [C] (verified)

Result contains complex when optimal does not.

Time = 0.64 (sec) , antiderivative size = 460, normalized size of antiderivative = 2.69

method result size
default \(\frac {a^{2} f \arctan \left (\frac {\sqrt {c^{2} d}\, x}{\sqrt {-c^{2} d \,x^{2}+d}}\right )}{\sqrt {c^{2} d}}-\frac {a^{2} g \sqrt {-c^{2} d \,x^{2}+d}}{c^{2} d}+b^{2} \left (-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \arcsin \left (c x \right )^{3} f}{3 c d \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (c^{2} x^{2}-i c x \sqrt {-c^{2} x^{2}+1}-1\right ) g \left (\arcsin \left (c x \right )^{2}-2+2 i \arcsin \left (c x \right )\right )}{2 c^{2} d \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (i c x \sqrt {-c^{2} x^{2}+1}+c^{2} x^{2}-1\right ) g \left (\arcsin \left (c x \right )^{2}-2-2 i \arcsin \left (c x \right )\right )}{2 c^{2} d \left (c^{2} x^{2}-1\right )}\right )+2 a b \left (-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \arcsin \left (c x \right )^{2} f}{2 c d \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (c^{2} x^{2}-i c x \sqrt {-c^{2} x^{2}+1}-1\right ) g \left (\arcsin \left (c x \right )+i\right )}{2 c^{2} d \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (i c x \sqrt {-c^{2} x^{2}+1}+c^{2} x^{2}-1\right ) g \left (\arcsin \left (c x \right )-i\right )}{2 c^{2} d \left (c^{2} x^{2}-1\right )}\right )\) \(460\)
parts \(\frac {a^{2} f \arctan \left (\frac {\sqrt {c^{2} d}\, x}{\sqrt {-c^{2} d \,x^{2}+d}}\right )}{\sqrt {c^{2} d}}-\frac {a^{2} g \sqrt {-c^{2} d \,x^{2}+d}}{c^{2} d}+b^{2} \left (-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \arcsin \left (c x \right )^{3} f}{3 c d \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (c^{2} x^{2}-i c x \sqrt {-c^{2} x^{2}+1}-1\right ) g \left (\arcsin \left (c x \right )^{2}-2+2 i \arcsin \left (c x \right )\right )}{2 c^{2} d \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (i c x \sqrt {-c^{2} x^{2}+1}+c^{2} x^{2}-1\right ) g \left (\arcsin \left (c x \right )^{2}-2-2 i \arcsin \left (c x \right )\right )}{2 c^{2} d \left (c^{2} x^{2}-1\right )}\right )+2 a b \left (-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \arcsin \left (c x \right )^{2} f}{2 c d \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (c^{2} x^{2}-i c x \sqrt {-c^{2} x^{2}+1}-1\right ) g \left (\arcsin \left (c x \right )+i\right )}{2 c^{2} d \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (i c x \sqrt {-c^{2} x^{2}+1}+c^{2} x^{2}-1\right ) g \left (\arcsin \left (c x \right )-i\right )}{2 c^{2} d \left (c^{2} x^{2}-1\right )}\right )\) \(460\)

input
int((g*x+f)*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(1/2),x,method=_RETURNVERBO 
SE)
 
output
a^2*f/(c^2*d)^(1/2)*arctan((c^2*d)^(1/2)*x/(-c^2*d*x^2+d)^(1/2))-a^2*g/c^2 
/d*(-c^2*d*x^2+d)^(1/2)+b^2*(-1/3*(-d*(c^2*x^2-1))^(1/2)*(-c^2*x^2+1)^(1/2 
)/c/d/(c^2*x^2-1)*arcsin(c*x)^3*f-1/2*(-d*(c^2*x^2-1))^(1/2)*(c^2*x^2-I*(- 
c^2*x^2+1)^(1/2)*x*c-1)*g*(arcsin(c*x)^2-2+2*I*arcsin(c*x))/c^2/d/(c^2*x^2 
-1)-1/2*(-d*(c^2*x^2-1))^(1/2)*(I*(-c^2*x^2+1)^(1/2)*x*c+c^2*x^2-1)*g*(arc 
sin(c*x)^2-2-2*I*arcsin(c*x))/c^2/d/(c^2*x^2-1))+2*a*b*(-1/2*(-d*(c^2*x^2- 
1))^(1/2)*(-c^2*x^2+1)^(1/2)/c/d/(c^2*x^2-1)*arcsin(c*x)^2*f-1/2*(-d*(c^2* 
x^2-1))^(1/2)*(c^2*x^2-I*(-c^2*x^2+1)^(1/2)*x*c-1)*g*(arcsin(c*x)+I)/c^2/d 
/(c^2*x^2-1)-1/2*(-d*(c^2*x^2-1))^(1/2)*(I*(-c^2*x^2+1)^(1/2)*x*c+c^2*x^2- 
1)*g*(arcsin(c*x)-I)/c^2/d/(c^2*x^2-1))
 
3.1.72.5 Fricas [F]

\[ \int \frac {(f+g x) (a+b \arcsin (c x))^2}{\sqrt {d-c^2 d x^2}} \, dx=\int { \frac {{\left (g x + f\right )} {\left (b \arcsin \left (c x\right ) + a\right )}^{2}}{\sqrt {-c^{2} d x^{2} + d}} \,d x } \]

input
integrate((g*x+f)*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(1/2),x, algorithm="f 
ricas")
 
output
integral(-sqrt(-c^2*d*x^2 + d)*(a^2*g*x + a^2*f + (b^2*g*x + b^2*f)*arcsin 
(c*x)^2 + 2*(a*b*g*x + a*b*f)*arcsin(c*x))/(c^2*d*x^2 - d), x)
 
3.1.72.6 Sympy [F(-2)]

Exception generated. \[ \int \frac {(f+g x) (a+b \arcsin (c x))^2}{\sqrt {d-c^2 d x^2}} \, dx=\text {Exception raised: TypeError} \]

input
integrate((g*x+f)*(a+b*asin(c*x))**2/(-c**2*d*x**2+d)**(1/2),x)
 
output
Exception raised: TypeError >> Invalid comparison of non-real zoo
 
3.1.72.7 Maxima [A] (verification not implemented)

Time = 0.31 (sec) , antiderivative size = 184, normalized size of antiderivative = 1.08 \[ \int \frac {(f+g x) (a+b \arcsin (c x))^2}{\sqrt {d-c^2 d x^2}} \, dx=\frac {b^{2} f \arcsin \left (c x\right )^{3}}{3 \, c \sqrt {d}} + 2 \, b^{2} g {\left (\frac {x \arcsin \left (c x\right )}{c \sqrt {d}} + \frac {\sqrt {-c^{2} x^{2} + 1}}{c^{2} \sqrt {d}}\right )} + \frac {a b f \arcsin \left (c x\right )^{2}}{c \sqrt {d}} + \frac {2 \, a b g x}{c \sqrt {d}} + \frac {a^{2} f \arcsin \left (c x\right )}{c \sqrt {d}} - \frac {\sqrt {-c^{2} d x^{2} + d} b^{2} g \arcsin \left (c x\right )^{2}}{c^{2} d} - \frac {2 \, \sqrt {-c^{2} d x^{2} + d} a b g \arcsin \left (c x\right )}{c^{2} d} - \frac {\sqrt {-c^{2} d x^{2} + d} a^{2} g}{c^{2} d} \]

input
integrate((g*x+f)*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(1/2),x, algorithm="m 
axima")
 
output
1/3*b^2*f*arcsin(c*x)^3/(c*sqrt(d)) + 2*b^2*g*(x*arcsin(c*x)/(c*sqrt(d)) + 
 sqrt(-c^2*x^2 + 1)/(c^2*sqrt(d))) + a*b*f*arcsin(c*x)^2/(c*sqrt(d)) + 2*a 
*b*g*x/(c*sqrt(d)) + a^2*f*arcsin(c*x)/(c*sqrt(d)) - sqrt(-c^2*d*x^2 + d)* 
b^2*g*arcsin(c*x)^2/(c^2*d) - 2*sqrt(-c^2*d*x^2 + d)*a*b*g*arcsin(c*x)/(c^ 
2*d) - sqrt(-c^2*d*x^2 + d)*a^2*g/(c^2*d)
 
3.1.72.8 Giac [F]

\[ \int \frac {(f+g x) (a+b \arcsin (c x))^2}{\sqrt {d-c^2 d x^2}} \, dx=\int { \frac {{\left (g x + f\right )} {\left (b \arcsin \left (c x\right ) + a\right )}^{2}}{\sqrt {-c^{2} d x^{2} + d}} \,d x } \]

input
integrate((g*x+f)*(a+b*arcsin(c*x))^2/(-c^2*d*x^2+d)^(1/2),x, algorithm="g 
iac")
 
output
integrate((g*x + f)*(b*arcsin(c*x) + a)^2/sqrt(-c^2*d*x^2 + d), x)
 
3.1.72.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(f+g x) (a+b \arcsin (c x))^2}{\sqrt {d-c^2 d x^2}} \, dx=\int \frac {\left (f+g\,x\right )\,{\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )}^2}{\sqrt {d-c^2\,d\,x^2}} \,d x \]

input
int(((f + g*x)*(a + b*asin(c*x))^2)/(d - c^2*d*x^2)^(1/2),x)
 
output
int(((f + g*x)*(a + b*asin(c*x))^2)/(d - c^2*d*x^2)^(1/2), x)