3.1.28 \(\int \frac {\arctan (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}})}{x^{5/2}} \, dx\) [28]

3.1.28.1 Optimal result
3.1.28.2 Mathematica [C] (verified)
3.1.28.3 Rubi [A] (verified)
3.1.28.4 Maple [F]
3.1.28.5 Fricas [C] (verification not implemented)
3.1.28.6 Sympy [C] (verification not implemented)
3.1.28.7 Maxima [F]
3.1.28.8 Giac [F]
3.1.28.9 Mupad [F(-1)]

3.1.28.1 Optimal result

Integrand size = 27, antiderivative size = 298 \[ \int \frac {\arctan \left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right )}{x^{5/2}} \, dx=-\frac {4 \sqrt {-e} \sqrt {d+e x^2}}{3 d \sqrt {x}}+\frac {4 \sqrt {-e^2} \sqrt {x} \sqrt {d+e x^2}}{3 d \left (\sqrt {d}+\sqrt {e} x\right )}-\frac {2 \arctan \left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right )}{3 x^{3/2}}-\frac {4 \sqrt {-e} \sqrt [4]{e} \left (\sqrt {d}+\sqrt {e} x\right ) \sqrt {\frac {d+e x^2}{\left (\sqrt {d}+\sqrt {e} x\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{e} \sqrt {x}}{\sqrt [4]{d}}\right )|\frac {1}{2}\right )}{3 d^{3/4} \sqrt {d+e x^2}}+\frac {2 \sqrt {-e} \sqrt [4]{e} \left (\sqrt {d}+\sqrt {e} x\right ) \sqrt {\frac {d+e x^2}{\left (\sqrt {d}+\sqrt {e} x\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{e} \sqrt {x}}{\sqrt [4]{d}}\right ),\frac {1}{2}\right )}{3 d^{3/4} \sqrt {d+e x^2}} \]

output
-2/3*arctan(x*(-e)^(1/2)/(e*x^2+d)^(1/2))/x^(3/2)-4/3*(-e)^(1/2)*(e*x^2+d) 
^(1/2)/d/x^(1/2)+4/3*(-e^2)^(1/2)*x^(1/2)*(e*x^2+d)^(1/2)/d/(d^(1/2)+x*e^( 
1/2))-4/3*e^(1/4)*(cos(2*arctan(e^(1/4)*x^(1/2)/d^(1/4)))^2)^(1/2)/cos(2*a 
rctan(e^(1/4)*x^(1/2)/d^(1/4)))*EllipticE(sin(2*arctan(e^(1/4)*x^(1/2)/d^( 
1/4))),1/2*2^(1/2))*(-e)^(1/2)*(d^(1/2)+x*e^(1/2))*((e*x^2+d)/(d^(1/2)+x*e 
^(1/2))^2)^(1/2)/d^(3/4)/(e*x^2+d)^(1/2)+2/3*e^(1/4)*(cos(2*arctan(e^(1/4) 
*x^(1/2)/d^(1/4)))^2)^(1/2)/cos(2*arctan(e^(1/4)*x^(1/2)/d^(1/4)))*Ellipti 
cF(sin(2*arctan(e^(1/4)*x^(1/2)/d^(1/4))),1/2*2^(1/2))*(-e)^(1/2)*(d^(1/2) 
+x*e^(1/2))*((e*x^2+d)/(d^(1/2)+x*e^(1/2))^2)^(1/2)/d^(3/4)/(e*x^2+d)^(1/2 
)
 
3.1.28.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 0.10 (sec) , antiderivative size = 121, normalized size of antiderivative = 0.41 \[ \int \frac {\arctan \left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right )}{x^{5/2}} \, dx=-\frac {2 \left (6 \sqrt {-e} x \left (d+e x^2\right )+3 d \sqrt {d+e x^2} \arctan \left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right )+2 (-e)^{3/2} x^3 \sqrt {1+\frac {e x^2}{d}} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-\frac {e x^2}{d}\right )\right )}{9 d x^{3/2} \sqrt {d+e x^2}} \]

input
Integrate[ArcTan[(Sqrt[-e]*x)/Sqrt[d + e*x^2]]/x^(5/2),x]
 
output
(-2*(6*Sqrt[-e]*x*(d + e*x^2) + 3*d*Sqrt[d + e*x^2]*ArcTan[(Sqrt[-e]*x)/Sq 
rt[d + e*x^2]] + 2*(-e)^(3/2)*x^3*Sqrt[1 + (e*x^2)/d]*Hypergeometric2F1[1/ 
2, 3/4, 7/4, -((e*x^2)/d)]))/(9*d*x^(3/2)*Sqrt[d + e*x^2])
 
3.1.28.3 Rubi [A] (verified)

Time = 0.39 (sec) , antiderivative size = 285, normalized size of antiderivative = 0.96, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.259, Rules used = {5674, 264, 266, 834, 27, 761, 1510}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\arctan \left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right )}{x^{5/2}} \, dx\)

\(\Big \downarrow \) 5674

\(\displaystyle \frac {2}{3} \sqrt {-e} \int \frac {1}{x^{3/2} \sqrt {e x^2+d}}dx-\frac {2 \arctan \left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right )}{3 x^{3/2}}\)

\(\Big \downarrow \) 264

\(\displaystyle \frac {2}{3} \sqrt {-e} \left (\frac {e \int \frac {\sqrt {x}}{\sqrt {e x^2+d}}dx}{d}-\frac {2 \sqrt {d+e x^2}}{d \sqrt {x}}\right )-\frac {2 \arctan \left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right )}{3 x^{3/2}}\)

\(\Big \downarrow \) 266

\(\displaystyle \frac {2}{3} \sqrt {-e} \left (\frac {2 e \int \frac {x}{\sqrt {e x^2+d}}d\sqrt {x}}{d}-\frac {2 \sqrt {d+e x^2}}{d \sqrt {x}}\right )-\frac {2 \arctan \left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right )}{3 x^{3/2}}\)

\(\Big \downarrow \) 834

\(\displaystyle \frac {2}{3} \sqrt {-e} \left (\frac {2 e \left (\frac {\sqrt {d} \int \frac {1}{\sqrt {e x^2+d}}d\sqrt {x}}{\sqrt {e}}-\frac {\sqrt {d} \int \frac {\sqrt {d}-\sqrt {e} x}{\sqrt {d} \sqrt {e x^2+d}}d\sqrt {x}}{\sqrt {e}}\right )}{d}-\frac {2 \sqrt {d+e x^2}}{d \sqrt {x}}\right )-\frac {2 \arctan \left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right )}{3 x^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2}{3} \sqrt {-e} \left (\frac {2 e \left (\frac {\sqrt {d} \int \frac {1}{\sqrt {e x^2+d}}d\sqrt {x}}{\sqrt {e}}-\frac {\int \frac {\sqrt {d}-\sqrt {e} x}{\sqrt {e x^2+d}}d\sqrt {x}}{\sqrt {e}}\right )}{d}-\frac {2 \sqrt {d+e x^2}}{d \sqrt {x}}\right )-\frac {2 \arctan \left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right )}{3 x^{3/2}}\)

\(\Big \downarrow \) 761

\(\displaystyle \frac {2}{3} \sqrt {-e} \left (\frac {2 e \left (\frac {\sqrt [4]{d} \left (\sqrt {d}+\sqrt {e} x\right ) \sqrt {\frac {d+e x^2}{\left (\sqrt {d}+\sqrt {e} x\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{e} \sqrt {x}}{\sqrt [4]{d}}\right ),\frac {1}{2}\right )}{2 e^{3/4} \sqrt {d+e x^2}}-\frac {\int \frac {\sqrt {d}-\sqrt {e} x}{\sqrt {e x^2+d}}d\sqrt {x}}{\sqrt {e}}\right )}{d}-\frac {2 \sqrt {d+e x^2}}{d \sqrt {x}}\right )-\frac {2 \arctan \left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right )}{3 x^{3/2}}\)

\(\Big \downarrow \) 1510

\(\displaystyle \frac {2}{3} \sqrt {-e} \left (\frac {2 e \left (\frac {\sqrt [4]{d} \left (\sqrt {d}+\sqrt {e} x\right ) \sqrt {\frac {d+e x^2}{\left (\sqrt {d}+\sqrt {e} x\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{e} \sqrt {x}}{\sqrt [4]{d}}\right ),\frac {1}{2}\right )}{2 e^{3/4} \sqrt {d+e x^2}}-\frac {\frac {\sqrt [4]{d} \left (\sqrt {d}+\sqrt {e} x\right ) \sqrt {\frac {d+e x^2}{\left (\sqrt {d}+\sqrt {e} x\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{e} \sqrt {x}}{\sqrt [4]{d}}\right )|\frac {1}{2}\right )}{\sqrt [4]{e} \sqrt {d+e x^2}}-\frac {\sqrt {x} \sqrt {d+e x^2}}{\sqrt {d}+\sqrt {e} x}}{\sqrt {e}}\right )}{d}-\frac {2 \sqrt {d+e x^2}}{d \sqrt {x}}\right )-\frac {2 \arctan \left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right )}{3 x^{3/2}}\)

input
Int[ArcTan[(Sqrt[-e]*x)/Sqrt[d + e*x^2]]/x^(5/2),x]
 
output
(-2*ArcTan[(Sqrt[-e]*x)/Sqrt[d + e*x^2]])/(3*x^(3/2)) + (2*Sqrt[-e]*((-2*S 
qrt[d + e*x^2])/(d*Sqrt[x]) + (2*e*(-((-((Sqrt[x]*Sqrt[d + e*x^2])/(Sqrt[d 
] + Sqrt[e]*x)) + (d^(1/4)*(Sqrt[d] + Sqrt[e]*x)*Sqrt[(d + e*x^2)/(Sqrt[d] 
 + Sqrt[e]*x)^2]*EllipticE[2*ArcTan[(e^(1/4)*Sqrt[x])/d^(1/4)], 1/2])/(e^( 
1/4)*Sqrt[d + e*x^2]))/Sqrt[e]) + (d^(1/4)*(Sqrt[d] + Sqrt[e]*x)*Sqrt[(d + 
 e*x^2)/(Sqrt[d] + Sqrt[e]*x)^2]*EllipticF[2*ArcTan[(e^(1/4)*Sqrt[x])/d^(1 
/4)], 1/2])/(2*e^(3/4)*Sqrt[d + e*x^2])))/d))/3
 

3.1.28.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 264
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(c*x)^( 
m + 1)*((a + b*x^2)^(p + 1)/(a*c*(m + 1))), x] - Simp[b*((m + 2*p + 3)/(a*c 
^2*(m + 1)))   Int[(c*x)^(m + 2)*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, p 
}, x] && LtQ[m, -1] && IntBinomialQ[a, b, c, 2, m, p, x]
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 761
Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[( 
1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))* 
EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]
 

rule 834
Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 2]}, S 
imp[1/q   Int[1/Sqrt[a + b*x^4], x], x] - Simp[1/q   Int[(1 - q*x^2)/Sqrt[a 
 + b*x^4], x], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]
 

rule 1510
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = 
 Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a + c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d* 
(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]/(q*Sqrt[a + c*x^4]))*E 
llipticE[2*ArcTan[q*x], 1/2], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e 
}, x] && PosQ[c/a]
 

rule 5674
Int[ArcTan[((c_.)*(x_))/Sqrt[(a_.) + (b_.)*(x_)^2]]*((d_.)*(x_))^(m_.), x_S 
ymbol] :> Simp[(d*x)^(m + 1)*(ArcTan[(c*x)/Sqrt[a + b*x^2]]/(d*(m + 1))), x 
] - Simp[c/(d*(m + 1))   Int[(d*x)^(m + 1)/Sqrt[a + b*x^2], x], x] /; FreeQ 
[{a, b, c, d, m}, x] && EqQ[b + c^2, 0] && NeQ[m, -1]
 
3.1.28.4 Maple [F]

\[\int \frac {\arctan \left (\frac {x \sqrt {-e}}{\sqrt {e \,x^{2}+d}}\right )}{x^{\frac {5}{2}}}d x\]

input
int(arctan(x*(-e)^(1/2)/(e*x^2+d)^(1/2))/x^(5/2),x)
 
output
int(arctan(x*(-e)^(1/2)/(e*x^2+d)^(1/2))/x^(5/2),x)
 
3.1.28.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.10 (sec) , antiderivative size = 80, normalized size of antiderivative = 0.27 \[ \int \frac {\arctan \left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right )}{x^{5/2}} \, dx=-\frac {2 \, {\left (2 \, \sqrt {-e} \sqrt {e} x^{2} {\rm weierstrassZeta}\left (-\frac {4 \, d}{e}, 0, {\rm weierstrassPInverse}\left (-\frac {4 \, d}{e}, 0, x\right )\right ) + 2 \, \sqrt {e x^{2} + d} \sqrt {-e} x^{\frac {3}{2}} + d \sqrt {x} \arctan \left (\frac {\sqrt {-e} x}{\sqrt {e x^{2} + d}}\right )\right )}}{3 \, d x^{2}} \]

input
integrate(arctan(x*(-e)^(1/2)/(e*x^2+d)^(1/2))/x^(5/2),x, algorithm="frica 
s")
 
output
-2/3*(2*sqrt(-e)*sqrt(e)*x^2*weierstrassZeta(-4*d/e, 0, weierstrassPInvers 
e(-4*d/e, 0, x)) + 2*sqrt(e*x^2 + d)*sqrt(-e)*x^(3/2) + d*sqrt(x)*arctan(s 
qrt(-e)*x/sqrt(e*x^2 + d)))/(d*x^2)
 
3.1.28.6 Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 10.11 (sec) , antiderivative size = 78, normalized size of antiderivative = 0.26 \[ \int \frac {\arctan \left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right )}{x^{5/2}} \, dx=- \frac {2 \operatorname {atan}{\left (\frac {x \sqrt {- e}}{\sqrt {d + e x^{2}}} \right )}}{3 x^{\frac {3}{2}}} + \frac {\sqrt {- e} \Gamma \left (- \frac {1}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{4}, \frac {1}{2} \\ \frac {3}{4} \end {matrix}\middle | {\frac {e x^{2} e^{i \pi }}{d}} \right )}}{3 \sqrt {d} \sqrt {x} \Gamma \left (\frac {3}{4}\right )} \]

input
integrate(atan(x*(-e)**(1/2)/(e*x**2+d)**(1/2))/x**(5/2),x)
 
output
-2*atan(x*sqrt(-e)/sqrt(d + e*x**2))/(3*x**(3/2)) + sqrt(-e)*gamma(-1/4)*h 
yper((-1/4, 1/2), (3/4,), e*x**2*exp_polar(I*pi)/d)/(3*sqrt(d)*sqrt(x)*gam 
ma(3/4))
 
3.1.28.7 Maxima [F]

\[ \int \frac {\arctan \left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right )}{x^{5/2}} \, dx=\int { \frac {\arctan \left (\frac {\sqrt {-e} x}{\sqrt {e x^{2} + d}}\right )}{x^{\frac {5}{2}}} \,d x } \]

input
integrate(arctan(x*(-e)^(1/2)/(e*x^2+d)^(1/2))/x^(5/2),x, algorithm="maxim 
a")
 
output
2/3*(3*d*sqrt(-e)*x^(3/2)*integrate(-1/3*sqrt(e*x^2 + d)*x/((e^2*x^4 + d*e 
*x^2)*x^(5/2) - (e*x^2 + d)*e^(log(e*x^2 + d) + 5/2*log(x))), x) - arctan2 
(sqrt(-e)*x, sqrt(e*x^2 + d)))/x^(3/2)
 
3.1.28.8 Giac [F]

\[ \int \frac {\arctan \left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right )}{x^{5/2}} \, dx=\int { \frac {\arctan \left (\frac {\sqrt {-e} x}{\sqrt {e x^{2} + d}}\right )}{x^{\frac {5}{2}}} \,d x } \]

input
integrate(arctan(x*(-e)^(1/2)/(e*x^2+d)^(1/2))/x^(5/2),x, algorithm="giac" 
)
 
output
integrate(arctan(sqrt(-e)*x/sqrt(e*x^2 + d))/x^(5/2), x)
 
3.1.28.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\arctan \left (\frac {\sqrt {-e} x}{\sqrt {d+e x^2}}\right )}{x^{5/2}} \, dx=\int \frac {\mathrm {atan}\left (\frac {\sqrt {-e}\,x}{\sqrt {e\,x^2+d}}\right )}{x^{5/2}} \,d x \]

input
int(atan(((-e)^(1/2)*x)/(d + e*x^2)^(1/2))/x^(5/2),x)
 
output
int(atan(((-e)^(1/2)*x)/(d + e*x^2)^(1/2))/x^(5/2), x)