3.3.4 \(\int \frac {(c e+d e x)^4}{\sqrt {a+b \text {arcsinh}(c+d x)}} \, dx\) [204]

3.3.4.1 Optimal result
3.3.4.2 Mathematica [A] (verified)
3.3.4.3 Rubi [A] (verified)
3.3.4.4 Maple [F]
3.3.4.5 Fricas [F(-2)]
3.3.4.6 Sympy [F]
3.3.4.7 Maxima [F]
3.3.4.8 Giac [F]
3.3.4.9 Mupad [F(-1)]

3.3.4.1 Optimal result

Integrand size = 25, antiderivative size = 326 \[ \int \frac {(c e+d e x)^4}{\sqrt {a+b \text {arcsinh}(c+d x)}} \, dx=\frac {e^4 e^{a/b} \sqrt {\pi } \text {erf}\left (\frac {\sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )}{16 \sqrt {b} d}-\frac {e^4 e^{\frac {3 a}{b}} \sqrt {3 \pi } \text {erf}\left (\frac {\sqrt {3} \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )}{32 \sqrt {b} d}+\frac {e^4 e^{\frac {5 a}{b}} \sqrt {\frac {\pi }{5}} \text {erf}\left (\frac {\sqrt {5} \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )}{32 \sqrt {b} d}+\frac {e^4 e^{-\frac {a}{b}} \sqrt {\pi } \text {erfi}\left (\frac {\sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )}{16 \sqrt {b} d}-\frac {e^4 e^{-\frac {3 a}{b}} \sqrt {3 \pi } \text {erfi}\left (\frac {\sqrt {3} \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )}{32 \sqrt {b} d}+\frac {e^4 e^{-\frac {5 a}{b}} \sqrt {\frac {\pi }{5}} \text {erfi}\left (\frac {\sqrt {5} \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )}{32 \sqrt {b} d} \]

output
1/160*e^4*exp(5*a/b)*erf(5^(1/2)*(a+b*arcsinh(d*x+c))^(1/2)/b^(1/2))*5^(1/ 
2)*Pi^(1/2)/d/b^(1/2)+1/160*e^4*erfi(5^(1/2)*(a+b*arcsinh(d*x+c))^(1/2)/b^ 
(1/2))*5^(1/2)*Pi^(1/2)/d/exp(5*a/b)/b^(1/2)+1/16*e^4*exp(a/b)*erf((a+b*ar 
csinh(d*x+c))^(1/2)/b^(1/2))*Pi^(1/2)/d/b^(1/2)+1/16*e^4*erfi((a+b*arcsinh 
(d*x+c))^(1/2)/b^(1/2))*Pi^(1/2)/d/exp(a/b)/b^(1/2)-1/32*e^4*exp(3*a/b)*er 
f(3^(1/2)*(a+b*arcsinh(d*x+c))^(1/2)/b^(1/2))*3^(1/2)*Pi^(1/2)/d/b^(1/2)-1 
/32*e^4*erfi(3^(1/2)*(a+b*arcsinh(d*x+c))^(1/2)/b^(1/2))*3^(1/2)*Pi^(1/2)/ 
d/exp(3*a/b)/b^(1/2)
 
3.3.4.2 Mathematica [A] (verified)

Time = 0.30 (sec) , antiderivative size = 320, normalized size of antiderivative = 0.98 \[ \int \frac {(c e+d e x)^4}{\sqrt {a+b \text {arcsinh}(c+d x)}} \, dx=\frac {e^4 e^{-\frac {5 a}{b}} \left (-10 e^{\frac {6 a}{b}} \sqrt {\frac {a}{b}+\text {arcsinh}(c+d x)} \Gamma \left (\frac {1}{2},\frac {a}{b}+\text {arcsinh}(c+d x)\right )+\sqrt {5} \sqrt {-\frac {a+b \text {arcsinh}(c+d x)}{b}} \Gamma \left (\frac {1}{2},-\frac {5 (a+b \text {arcsinh}(c+d x))}{b}\right )-5 \sqrt {3} e^{\frac {2 a}{b}} \sqrt {-\frac {a+b \text {arcsinh}(c+d x)}{b}} \Gamma \left (\frac {1}{2},-\frac {3 (a+b \text {arcsinh}(c+d x))}{b}\right )+10 e^{\frac {4 a}{b}} \sqrt {-\frac {a+b \text {arcsinh}(c+d x)}{b}} \Gamma \left (\frac {1}{2},-\frac {a+b \text {arcsinh}(c+d x)}{b}\right )+5 \sqrt {3} e^{\frac {8 a}{b}} \sqrt {\frac {a}{b}+\text {arcsinh}(c+d x)} \Gamma \left (\frac {1}{2},\frac {3 (a+b \text {arcsinh}(c+d x))}{b}\right )-\sqrt {5} e^{\frac {10 a}{b}} \sqrt {\frac {a}{b}+\text {arcsinh}(c+d x)} \Gamma \left (\frac {1}{2},\frac {5 (a+b \text {arcsinh}(c+d x))}{b}\right )\right )}{160 d \sqrt {a+b \text {arcsinh}(c+d x)}} \]

input
Integrate[(c*e + d*e*x)^4/Sqrt[a + b*ArcSinh[c + d*x]],x]
 
output
(e^4*(-10*E^((6*a)/b)*Sqrt[a/b + ArcSinh[c + d*x]]*Gamma[1/2, a/b + ArcSin 
h[c + d*x]] + Sqrt[5]*Sqrt[-((a + b*ArcSinh[c + d*x])/b)]*Gamma[1/2, (-5*( 
a + b*ArcSinh[c + d*x]))/b] - 5*Sqrt[3]*E^((2*a)/b)*Sqrt[-((a + b*ArcSinh[ 
c + d*x])/b)]*Gamma[1/2, (-3*(a + b*ArcSinh[c + d*x]))/b] + 10*E^((4*a)/b) 
*Sqrt[-((a + b*ArcSinh[c + d*x])/b)]*Gamma[1/2, -((a + b*ArcSinh[c + d*x]) 
/b)] + 5*Sqrt[3]*E^((8*a)/b)*Sqrt[a/b + ArcSinh[c + d*x]]*Gamma[1/2, (3*(a 
 + b*ArcSinh[c + d*x]))/b] - Sqrt[5]*E^((10*a)/b)*Sqrt[a/b + ArcSinh[c + d 
*x]]*Gamma[1/2, (5*(a + b*ArcSinh[c + d*x]))/b]))/(160*d*E^((5*a)/b)*Sqrt[ 
a + b*ArcSinh[c + d*x]])
 
3.3.4.3 Rubi [A] (verified)

Time = 0.76 (sec) , antiderivative size = 300, normalized size of antiderivative = 0.92, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {6274, 27, 6195, 5971, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(c e+d e x)^4}{\sqrt {a+b \text {arcsinh}(c+d x)}} \, dx\)

\(\Big \downarrow \) 6274

\(\displaystyle \frac {\int \frac {e^4 (c+d x)^4}{\sqrt {a+b \text {arcsinh}(c+d x)}}d(c+d x)}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {e^4 \int \frac {(c+d x)^4}{\sqrt {a+b \text {arcsinh}(c+d x)}}d(c+d x)}{d}\)

\(\Big \downarrow \) 6195

\(\displaystyle \frac {e^4 \int \frac {\cosh \left (\frac {a}{b}-\frac {a+b \text {arcsinh}(c+d x)}{b}\right ) \sinh ^4\left (\frac {a}{b}-\frac {a+b \text {arcsinh}(c+d x)}{b}\right )}{\sqrt {a+b \text {arcsinh}(c+d x)}}d(a+b \text {arcsinh}(c+d x))}{b d}\)

\(\Big \downarrow \) 5971

\(\displaystyle \frac {e^4 \int \left (\frac {\cosh \left (\frac {5 a}{b}-\frac {5 (a+b \text {arcsinh}(c+d x))}{b}\right )}{16 \sqrt {a+b \text {arcsinh}(c+d x)}}-\frac {3 \cosh \left (\frac {3 a}{b}-\frac {3 (a+b \text {arcsinh}(c+d x))}{b}\right )}{16 \sqrt {a+b \text {arcsinh}(c+d x)}}+\frac {\cosh \left (\frac {a}{b}-\frac {a+b \text {arcsinh}(c+d x)}{b}\right )}{8 \sqrt {a+b \text {arcsinh}(c+d x)}}\right )d(a+b \text {arcsinh}(c+d x))}{b d}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {e^4 \left (\frac {1}{16} \sqrt {\pi } \sqrt {b} e^{a/b} \text {erf}\left (\frac {\sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )-\frac {1}{32} \sqrt {3 \pi } \sqrt {b} e^{\frac {3 a}{b}} \text {erf}\left (\frac {\sqrt {3} \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )+\frac {1}{32} \sqrt {\frac {\pi }{5}} \sqrt {b} e^{\frac {5 a}{b}} \text {erf}\left (\frac {\sqrt {5} \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )+\frac {1}{16} \sqrt {\pi } \sqrt {b} e^{-\frac {a}{b}} \text {erfi}\left (\frac {\sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )-\frac {1}{32} \sqrt {3 \pi } \sqrt {b} e^{-\frac {3 a}{b}} \text {erfi}\left (\frac {\sqrt {3} \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )+\frac {1}{32} \sqrt {\frac {\pi }{5}} \sqrt {b} e^{-\frac {5 a}{b}} \text {erfi}\left (\frac {\sqrt {5} \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )\right )}{b d}\)

input
Int[(c*e + d*e*x)^4/Sqrt[a + b*ArcSinh[c + d*x]],x]
 
output
(e^4*((Sqrt[b]*E^(a/b)*Sqrt[Pi]*Erf[Sqrt[a + b*ArcSinh[c + d*x]]/Sqrt[b]]) 
/16 - (Sqrt[b]*E^((3*a)/b)*Sqrt[3*Pi]*Erf[(Sqrt[3]*Sqrt[a + b*ArcSinh[c + 
d*x]])/Sqrt[b]])/32 + (Sqrt[b]*E^((5*a)/b)*Sqrt[Pi/5]*Erf[(Sqrt[5]*Sqrt[a 
+ b*ArcSinh[c + d*x]])/Sqrt[b]])/32 + (Sqrt[b]*Sqrt[Pi]*Erfi[Sqrt[a + b*Ar 
cSinh[c + d*x]]/Sqrt[b]])/(16*E^(a/b)) - (Sqrt[b]*Sqrt[3*Pi]*Erfi[(Sqrt[3] 
*Sqrt[a + b*ArcSinh[c + d*x]])/Sqrt[b]])/(32*E^((3*a)/b)) + (Sqrt[b]*Sqrt[ 
Pi/5]*Erfi[(Sqrt[5]*Sqrt[a + b*ArcSinh[c + d*x]])/Sqrt[b]])/(32*E^((5*a)/b 
))))/(b*d)
 

3.3.4.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 5971
Int[Cosh[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sinh[(a_.) + 
(b_.)*(x_)]^(n_.), x_Symbol] :> Int[ExpandTrigReduce[(c + d*x)^m, Sinh[a + 
b*x]^n*Cosh[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] & 
& IGtQ[p, 0]
 

rule 6195
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[ 
1/(b*c^(m + 1))   Subst[Int[x^n*Sinh[-a/b + x/b]^m*Cosh[-a/b + x/b], x], x, 
 a + b*ArcSinh[c*x]], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[m, 0]
 

rule 6274
Int[((a_.) + ArcSinh[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^( 
m_.), x_Symbol] :> Simp[1/d   Subst[Int[((d*e - c*f)/d + f*(x/d))^m*(a + b* 
ArcSinh[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]
 
3.3.4.4 Maple [F]

\[\int \frac {\left (d e x +c e \right )^{4}}{\sqrt {a +b \,\operatorname {arcsinh}\left (d x +c \right )}}d x\]

input
int((d*e*x+c*e)^4/(a+b*arcsinh(d*x+c))^(1/2),x)
 
output
int((d*e*x+c*e)^4/(a+b*arcsinh(d*x+c))^(1/2),x)
 
3.3.4.5 Fricas [F(-2)]

Exception generated. \[ \int \frac {(c e+d e x)^4}{\sqrt {a+b \text {arcsinh}(c+d x)}} \, dx=\text {Exception raised: TypeError} \]

input
integrate((d*e*x+c*e)^4/(a+b*arcsinh(d*x+c))^(1/2),x, algorithm="fricas")
 
output
Exception raised: TypeError >>  Error detected within library code:   inte 
grate: implementation incomplete (constant residues)
 
3.3.4.6 Sympy [F]

\[ \int \frac {(c e+d e x)^4}{\sqrt {a+b \text {arcsinh}(c+d x)}} \, dx=e^{4} \left (\int \frac {c^{4}}{\sqrt {a + b \operatorname {asinh}{\left (c + d x \right )}}}\, dx + \int \frac {d^{4} x^{4}}{\sqrt {a + b \operatorname {asinh}{\left (c + d x \right )}}}\, dx + \int \frac {4 c d^{3} x^{3}}{\sqrt {a + b \operatorname {asinh}{\left (c + d x \right )}}}\, dx + \int \frac {6 c^{2} d^{2} x^{2}}{\sqrt {a + b \operatorname {asinh}{\left (c + d x \right )}}}\, dx + \int \frac {4 c^{3} d x}{\sqrt {a + b \operatorname {asinh}{\left (c + d x \right )}}}\, dx\right ) \]

input
integrate((d*e*x+c*e)**4/(a+b*asinh(d*x+c))**(1/2),x)
 
output
e**4*(Integral(c**4/sqrt(a + b*asinh(c + d*x)), x) + Integral(d**4*x**4/sq 
rt(a + b*asinh(c + d*x)), x) + Integral(4*c*d**3*x**3/sqrt(a + b*asinh(c + 
 d*x)), x) + Integral(6*c**2*d**2*x**2/sqrt(a + b*asinh(c + d*x)), x) + In 
tegral(4*c**3*d*x/sqrt(a + b*asinh(c + d*x)), x))
 
3.3.4.7 Maxima [F]

\[ \int \frac {(c e+d e x)^4}{\sqrt {a+b \text {arcsinh}(c+d x)}} \, dx=\int { \frac {{\left (d e x + c e\right )}^{4}}{\sqrt {b \operatorname {arsinh}\left (d x + c\right ) + a}} \,d x } \]

input
integrate((d*e*x+c*e)^4/(a+b*arcsinh(d*x+c))^(1/2),x, algorithm="maxima")
 
output
integrate((d*e*x + c*e)^4/sqrt(b*arcsinh(d*x + c) + a), x)
 
3.3.4.8 Giac [F]

\[ \int \frac {(c e+d e x)^4}{\sqrt {a+b \text {arcsinh}(c+d x)}} \, dx=\int { \frac {{\left (d e x + c e\right )}^{4}}{\sqrt {b \operatorname {arsinh}\left (d x + c\right ) + a}} \,d x } \]

input
integrate((d*e*x+c*e)^4/(a+b*arcsinh(d*x+c))^(1/2),x, algorithm="giac")
 
output
integrate((d*e*x + c*e)^4/sqrt(b*arcsinh(d*x + c) + a), x)
 
3.3.4.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(c e+d e x)^4}{\sqrt {a+b \text {arcsinh}(c+d x)}} \, dx=\int \frac {{\left (c\,e+d\,e\,x\right )}^4}{\sqrt {a+b\,\mathrm {asinh}\left (c+d\,x\right )}} \,d x \]

input
int((c*e + d*e*x)^4/(a + b*asinh(c + d*x))^(1/2),x)
 
output
int((c*e + d*e*x)^4/(a + b*asinh(c + d*x))^(1/2), x)