3.3.5 \(\int \frac {(c e+d e x)^3}{\sqrt {a+b \text {arcsinh}(c+d x)}} \, dx\) [205]

3.3.5.1 Optimal result
3.3.5.2 Mathematica [A] (verified)
3.3.5.3 Rubi [A] (verified)
3.3.5.4 Maple [F]
3.3.5.5 Fricas [F(-2)]
3.3.5.6 Sympy [F]
3.3.5.7 Maxima [F]
3.3.5.8 Giac [F]
3.3.5.9 Mupad [F(-1)]

3.3.5.1 Optimal result

Integrand size = 25, antiderivative size = 217 \[ \int \frac {(c e+d e x)^3}{\sqrt {a+b \text {arcsinh}(c+d x)}} \, dx=-\frac {e^3 e^{\frac {4 a}{b}} \sqrt {\pi } \text {erf}\left (\frac {2 \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )}{32 \sqrt {b} d}+\frac {e^3 e^{\frac {2 a}{b}} \sqrt {\frac {\pi }{2}} \text {erf}\left (\frac {\sqrt {2} \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )}{8 \sqrt {b} d}+\frac {e^3 e^{-\frac {4 a}{b}} \sqrt {\pi } \text {erfi}\left (\frac {2 \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )}{32 \sqrt {b} d}-\frac {e^3 e^{-\frac {2 a}{b}} \sqrt {\frac {\pi }{2}} \text {erfi}\left (\frac {\sqrt {2} \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )}{8 \sqrt {b} d} \]

output
1/16*e^3*exp(2*a/b)*erf(2^(1/2)*(a+b*arcsinh(d*x+c))^(1/2)/b^(1/2))*2^(1/2 
)*Pi^(1/2)/d/b^(1/2)-1/16*e^3*erfi(2^(1/2)*(a+b*arcsinh(d*x+c))^(1/2)/b^(1 
/2))*2^(1/2)*Pi^(1/2)/d/exp(2*a/b)/b^(1/2)-1/32*e^3*exp(4*a/b)*erf(2*(a+b* 
arcsinh(d*x+c))^(1/2)/b^(1/2))*Pi^(1/2)/d/b^(1/2)+1/32*e^3*erfi(2*(a+b*arc 
sinh(d*x+c))^(1/2)/b^(1/2))*Pi^(1/2)/d/exp(4*a/b)/b^(1/2)
 
3.3.5.2 Mathematica [A] (verified)

Time = 0.18 (sec) , antiderivative size = 205, normalized size of antiderivative = 0.94 \[ \int \frac {(c e+d e x)^3}{\sqrt {a+b \text {arcsinh}(c+d x)}} \, dx=\frac {e^3 e^{-\frac {4 a}{b}} \left (\sqrt {-\frac {a+b \text {arcsinh}(c+d x)}{b}} \Gamma \left (\frac {1}{2},-\frac {4 (a+b \text {arcsinh}(c+d x))}{b}\right )-2 \sqrt {2} e^{\frac {2 a}{b}} \sqrt {-\frac {a+b \text {arcsinh}(c+d x)}{b}} \Gamma \left (\frac {1}{2},-\frac {2 (a+b \text {arcsinh}(c+d x))}{b}\right )+e^{\frac {6 a}{b}} \sqrt {\frac {a}{b}+\text {arcsinh}(c+d x)} \left (-2 \sqrt {2} \Gamma \left (\frac {1}{2},\frac {2 (a+b \text {arcsinh}(c+d x))}{b}\right )+e^{\frac {2 a}{b}} \Gamma \left (\frac {1}{2},\frac {4 (a+b \text {arcsinh}(c+d x))}{b}\right )\right )\right )}{32 d \sqrt {a+b \text {arcsinh}(c+d x)}} \]

input
Integrate[(c*e + d*e*x)^3/Sqrt[a + b*ArcSinh[c + d*x]],x]
 
output
(e^3*(Sqrt[-((a + b*ArcSinh[c + d*x])/b)]*Gamma[1/2, (-4*(a + b*ArcSinh[c 
+ d*x]))/b] - 2*Sqrt[2]*E^((2*a)/b)*Sqrt[-((a + b*ArcSinh[c + d*x])/b)]*Ga 
mma[1/2, (-2*(a + b*ArcSinh[c + d*x]))/b] + E^((6*a)/b)*Sqrt[a/b + ArcSinh 
[c + d*x]]*(-2*Sqrt[2]*Gamma[1/2, (2*(a + b*ArcSinh[c + d*x]))/b] + E^((2* 
a)/b)*Gamma[1/2, (4*(a + b*ArcSinh[c + d*x]))/b])))/(32*d*E^((4*a)/b)*Sqrt 
[a + b*ArcSinh[c + d*x]])
 
3.3.5.3 Rubi [A] (verified)

Time = 0.64 (sec) , antiderivative size = 203, normalized size of antiderivative = 0.94, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.240, Rules used = {6274, 27, 6195, 25, 5971, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(c e+d e x)^3}{\sqrt {a+b \text {arcsinh}(c+d x)}} \, dx\)

\(\Big \downarrow \) 6274

\(\displaystyle \frac {\int \frac {e^3 (c+d x)^3}{\sqrt {a+b \text {arcsinh}(c+d x)}}d(c+d x)}{d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {e^3 \int \frac {(c+d x)^3}{\sqrt {a+b \text {arcsinh}(c+d x)}}d(c+d x)}{d}\)

\(\Big \downarrow \) 6195

\(\displaystyle \frac {e^3 \int -\frac {\cosh \left (\frac {a}{b}-\frac {a+b \text {arcsinh}(c+d x)}{b}\right ) \sinh ^3\left (\frac {a}{b}-\frac {a+b \text {arcsinh}(c+d x)}{b}\right )}{\sqrt {a+b \text {arcsinh}(c+d x)}}d(a+b \text {arcsinh}(c+d x))}{b d}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {e^3 \int \frac {\cosh \left (\frac {a}{b}-\frac {a+b \text {arcsinh}(c+d x)}{b}\right ) \sinh ^3\left (\frac {a}{b}-\frac {a+b \text {arcsinh}(c+d x)}{b}\right )}{\sqrt {a+b \text {arcsinh}(c+d x)}}d(a+b \text {arcsinh}(c+d x))}{b d}\)

\(\Big \downarrow \) 5971

\(\displaystyle -\frac {e^3 \int \left (\frac {\sinh \left (\frac {4 a}{b}-\frac {4 (a+b \text {arcsinh}(c+d x))}{b}\right )}{8 \sqrt {a+b \text {arcsinh}(c+d x)}}-\frac {\sinh \left (\frac {2 a}{b}-\frac {2 (a+b \text {arcsinh}(c+d x))}{b}\right )}{4 \sqrt {a+b \text {arcsinh}(c+d x)}}\right )d(a+b \text {arcsinh}(c+d x))}{b d}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {e^3 \left (-\frac {1}{32} \sqrt {\pi } \sqrt {b} e^{\frac {4 a}{b}} \text {erf}\left (\frac {2 \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )+\frac {1}{8} \sqrt {\frac {\pi }{2}} \sqrt {b} e^{\frac {2 a}{b}} \text {erf}\left (\frac {\sqrt {2} \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )+\frac {1}{32} \sqrt {\pi } \sqrt {b} e^{-\frac {4 a}{b}} \text {erfi}\left (\frac {2 \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )-\frac {1}{8} \sqrt {\frac {\pi }{2}} \sqrt {b} e^{-\frac {2 a}{b}} \text {erfi}\left (\frac {\sqrt {2} \sqrt {a+b \text {arcsinh}(c+d x)}}{\sqrt {b}}\right )\right )}{b d}\)

input
Int[(c*e + d*e*x)^3/Sqrt[a + b*ArcSinh[c + d*x]],x]
 
output
(e^3*(-1/32*(Sqrt[b]*E^((4*a)/b)*Sqrt[Pi]*Erf[(2*Sqrt[a + b*ArcSinh[c + d* 
x]])/Sqrt[b]]) + (Sqrt[b]*E^((2*a)/b)*Sqrt[Pi/2]*Erf[(Sqrt[2]*Sqrt[a + b*A 
rcSinh[c + d*x]])/Sqrt[b]])/8 + (Sqrt[b]*Sqrt[Pi]*Erfi[(2*Sqrt[a + b*ArcSi 
nh[c + d*x]])/Sqrt[b]])/(32*E^((4*a)/b)) - (Sqrt[b]*Sqrt[Pi/2]*Erfi[(Sqrt[ 
2]*Sqrt[a + b*ArcSinh[c + d*x]])/Sqrt[b]])/(8*E^((2*a)/b))))/(b*d)
 

3.3.5.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 5971
Int[Cosh[(a_.) + (b_.)*(x_)]^(p_.)*((c_.) + (d_.)*(x_))^(m_.)*Sinh[(a_.) + 
(b_.)*(x_)]^(n_.), x_Symbol] :> Int[ExpandTrigReduce[(c + d*x)^m, Sinh[a + 
b*x]^n*Cosh[a + b*x]^p, x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] & 
& IGtQ[p, 0]
 

rule 6195
Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_)*(x_)^(m_.), x_Symbol] :> Simp[ 
1/(b*c^(m + 1))   Subst[Int[x^n*Sinh[-a/b + x/b]^m*Cosh[-a/b + x/b], x], x, 
 a + b*ArcSinh[c*x]], x] /; FreeQ[{a, b, c, n}, x] && IGtQ[m, 0]
 

rule 6274
Int[((a_.) + ArcSinh[(c_) + (d_.)*(x_)]*(b_.))^(n_.)*((e_.) + (f_.)*(x_))^( 
m_.), x_Symbol] :> Simp[1/d   Subst[Int[((d*e - c*f)/d + f*(x/d))^m*(a + b* 
ArcSinh[x])^n, x], x, c + d*x], x] /; FreeQ[{a, b, c, d, e, f, m, n}, x]
 
3.3.5.4 Maple [F]

\[\int \frac {\left (d e x +c e \right )^{3}}{\sqrt {a +b \,\operatorname {arcsinh}\left (d x +c \right )}}d x\]

input
int((d*e*x+c*e)^3/(a+b*arcsinh(d*x+c))^(1/2),x)
 
output
int((d*e*x+c*e)^3/(a+b*arcsinh(d*x+c))^(1/2),x)
 
3.3.5.5 Fricas [F(-2)]

Exception generated. \[ \int \frac {(c e+d e x)^3}{\sqrt {a+b \text {arcsinh}(c+d x)}} \, dx=\text {Exception raised: TypeError} \]

input
integrate((d*e*x+c*e)^3/(a+b*arcsinh(d*x+c))^(1/2),x, algorithm="fricas")
 
output
Exception raised: TypeError >>  Error detected within library code:   inte 
grate: implementation incomplete (constant residues)
 
3.3.5.6 Sympy [F]

\[ \int \frac {(c e+d e x)^3}{\sqrt {a+b \text {arcsinh}(c+d x)}} \, dx=e^{3} \left (\int \frac {c^{3}}{\sqrt {a + b \operatorname {asinh}{\left (c + d x \right )}}}\, dx + \int \frac {d^{3} x^{3}}{\sqrt {a + b \operatorname {asinh}{\left (c + d x \right )}}}\, dx + \int \frac {3 c d^{2} x^{2}}{\sqrt {a + b \operatorname {asinh}{\left (c + d x \right )}}}\, dx + \int \frac {3 c^{2} d x}{\sqrt {a + b \operatorname {asinh}{\left (c + d x \right )}}}\, dx\right ) \]

input
integrate((d*e*x+c*e)**3/(a+b*asinh(d*x+c))**(1/2),x)
 
output
e**3*(Integral(c**3/sqrt(a + b*asinh(c + d*x)), x) + Integral(d**3*x**3/sq 
rt(a + b*asinh(c + d*x)), x) + Integral(3*c*d**2*x**2/sqrt(a + b*asinh(c + 
 d*x)), x) + Integral(3*c**2*d*x/sqrt(a + b*asinh(c + d*x)), x))
 
3.3.5.7 Maxima [F]

\[ \int \frac {(c e+d e x)^3}{\sqrt {a+b \text {arcsinh}(c+d x)}} \, dx=\int { \frac {{\left (d e x + c e\right )}^{3}}{\sqrt {b \operatorname {arsinh}\left (d x + c\right ) + a}} \,d x } \]

input
integrate((d*e*x+c*e)^3/(a+b*arcsinh(d*x+c))^(1/2),x, algorithm="maxima")
 
output
integrate((d*e*x + c*e)^3/sqrt(b*arcsinh(d*x + c) + a), x)
 
3.3.5.8 Giac [F]

\[ \int \frac {(c e+d e x)^3}{\sqrt {a+b \text {arcsinh}(c+d x)}} \, dx=\int { \frac {{\left (d e x + c e\right )}^{3}}{\sqrt {b \operatorname {arsinh}\left (d x + c\right ) + a}} \,d x } \]

input
integrate((d*e*x+c*e)^3/(a+b*arcsinh(d*x+c))^(1/2),x, algorithm="giac")
 
output
integrate((d*e*x + c*e)^3/sqrt(b*arcsinh(d*x + c) + a), x)
 
3.3.5.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(c e+d e x)^3}{\sqrt {a+b \text {arcsinh}(c+d x)}} \, dx=\int \frac {{\left (c\,e+d\,e\,x\right )}^3}{\sqrt {a+b\,\mathrm {asinh}\left (c+d\,x\right )}} \,d x \]

input
int((c*e + d*e*x)^3/(a + b*asinh(c + d*x))^(1/2),x)
 
output
int((c*e + d*e*x)^3/(a + b*asinh(c + d*x))^(1/2), x)