3.3.9 \(\int \frac {x^{3/2}}{\text {arctanh}(\tanh (a+b x))^3} \, dx\) [209]

3.3.9.1 Optimal result
3.3.9.2 Mathematica [A] (verified)
3.3.9.3 Rubi [A] (verified)
3.3.9.4 Maple [A] (verified)
3.3.9.5 Fricas [A] (verification not implemented)
3.3.9.6 Sympy [F]
3.3.9.7 Maxima [A] (verification not implemented)
3.3.9.8 Giac [A] (verification not implemented)
3.3.9.9 Mupad [B] (verification not implemented)

3.3.9.1 Optimal result

Integrand size = 15, antiderivative size = 98 \[ \int \frac {x^{3/2}}{\text {arctanh}(\tanh (a+b x))^3} \, dx=-\frac {3 \text {arctanh}\left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {b x-\text {arctanh}(\tanh (a+b x))}}\right )}{4 b^{5/2} \sqrt {b x-\text {arctanh}(\tanh (a+b x))}}-\frac {x^{3/2}}{2 b \text {arctanh}(\tanh (a+b x))^2}-\frac {3 \sqrt {x}}{4 b^2 \text {arctanh}(\tanh (a+b x))} \]

output
-1/2*x^(3/2)/b/arctanh(tanh(b*x+a))^2-3/4*x^(1/2)/b^2/arctanh(tanh(b*x+a)) 
-3/4*arctanh(b^(1/2)*x^(1/2)/(b*x-arctanh(tanh(b*x+a)))^(1/2))/b^(5/2)/(b* 
x-arctanh(tanh(b*x+a)))^(1/2)
 
3.3.9.2 Mathematica [A] (verified)

Time = 0.06 (sec) , antiderivative size = 96, normalized size of antiderivative = 0.98 \[ \int \frac {x^{3/2}}{\text {arctanh}(\tanh (a+b x))^3} \, dx=-\frac {x^{3/2}}{2 b \text {arctanh}(\tanh (a+b x))^2}-\frac {3 \sqrt {x}}{4 b^2 \text {arctanh}(\tanh (a+b x))}+\frac {3 \arctan \left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {-b x+\text {arctanh}(\tanh (a+b x))}}\right )}{4 b^{5/2} \sqrt {-b x+\text {arctanh}(\tanh (a+b x))}} \]

input
Integrate[x^(3/2)/ArcTanh[Tanh[a + b*x]]^3,x]
 
output
-1/2*x^(3/2)/(b*ArcTanh[Tanh[a + b*x]]^2) - (3*Sqrt[x])/(4*b^2*ArcTanh[Tan 
h[a + b*x]]) + (3*ArcTan[(Sqrt[b]*Sqrt[x])/Sqrt[-(b*x) + ArcTanh[Tanh[a + 
b*x]]]])/(4*b^(5/2)*Sqrt[-(b*x) + ArcTanh[Tanh[a + b*x]]])
 
3.3.9.3 Rubi [A] (verified)

Time = 0.27 (sec) , antiderivative size = 102, normalized size of antiderivative = 1.04, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {2599, 2599, 2593}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^{3/2}}{\text {arctanh}(\tanh (a+b x))^3} \, dx\)

\(\Big \downarrow \) 2599

\(\displaystyle \frac {3 \int \frac {\sqrt {x}}{\text {arctanh}(\tanh (a+b x))^2}dx}{4 b}-\frac {x^{3/2}}{2 b \text {arctanh}(\tanh (a+b x))^2}\)

\(\Big \downarrow \) 2599

\(\displaystyle \frac {3 \left (\frac {\int \frac {1}{\sqrt {x} \text {arctanh}(\tanh (a+b x))}dx}{2 b}-\frac {\sqrt {x}}{b \text {arctanh}(\tanh (a+b x))}\right )}{4 b}-\frac {x^{3/2}}{2 b \text {arctanh}(\tanh (a+b x))^2}\)

\(\Big \downarrow \) 2593

\(\displaystyle \frac {3 \left (-\frac {\text {arctanh}\left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {b x-\text {arctanh}(\tanh (a+b x))}}\right )}{b^{3/2} \sqrt {b x-\text {arctanh}(\tanh (a+b x))}}-\frac {\sqrt {x}}{b \text {arctanh}(\tanh (a+b x))}\right )}{4 b}-\frac {x^{3/2}}{2 b \text {arctanh}(\tanh (a+b x))^2}\)

input
Int[x^(3/2)/ArcTanh[Tanh[a + b*x]]^3,x]
 
output
(3*(-(ArcTanh[(Sqrt[b]*Sqrt[x])/Sqrt[b*x - ArcTanh[Tanh[a + b*x]]]]/(b^(3/ 
2)*Sqrt[b*x - ArcTanh[Tanh[a + b*x]]])) - Sqrt[x]/(b*ArcTanh[Tanh[a + b*x] 
])))/(4*b) - x^(3/2)/(2*b*ArcTanh[Tanh[a + b*x]]^2)
 

3.3.9.3.1 Defintions of rubi rules used

rule 2593
Int[1/((u_)*Sqrt[v_]), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simpli 
fy[D[v, x]]}, Simp[-2*(ArcTanh[Sqrt[v]/Rt[-(b*u - a*v)/a, 2]]/(a*Rt[-(b*u - 
 a*v)/a, 2])), x] /; NeQ[b*u - a*v, 0] && NegQ[(b*u - a*v)/a]] /; Piecewise 
LinearQ[u, v, x]
 

rule 2599
Int[(u_)^(m_)*(v_)^(n_.), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Sim 
plify[D[v, x]]}, Simp[u^(m + 1)*(v^n/(a*(m + 1))), x] - Simp[b*(n/(a*(m + 1 
)))   Int[u^(m + 1)*v^(n - 1), x], x] /; NeQ[b*u - a*v, 0]] /; FreeQ[{m, n} 
, x] && PiecewiseLinearQ[u, v, x] && NeQ[m, -1] && ((LtQ[m, -1] && GtQ[n, 0 
] &&  !(ILtQ[m + n, -2] && (FractionQ[m] || GeQ[2*n + m + 1, 0]))) || (IGtQ 
[n, 0] && IGtQ[m, 0] && LeQ[n, m]) || (IGtQ[n, 0] &&  !IntegerQ[m]) || (ILt 
Q[m, 0] &&  !IntegerQ[n]))
 
3.3.9.4 Maple [A] (verified)

Time = 0.50 (sec) , antiderivative size = 85, normalized size of antiderivative = 0.87

method result size
derivativedivides \(\frac {-\frac {5 x^{\frac {3}{2}}}{4 b}-\frac {3 \left (\operatorname {arctanh}\left (\tanh \left (b x +a \right )\right )-b x \right ) \sqrt {x}}{4 b^{2}}}{\operatorname {arctanh}\left (\tanh \left (b x +a \right )\right )^{2}}+\frac {3 \arctan \left (\frac {b \sqrt {x}}{\sqrt {\left (\operatorname {arctanh}\left (\tanh \left (b x +a \right )\right )-b x \right ) b}}\right )}{4 b^{2} \sqrt {\left (\operatorname {arctanh}\left (\tanh \left (b x +a \right )\right )-b x \right ) b}}\) \(85\)
default \(\frac {-\frac {5 x^{\frac {3}{2}}}{4 b}-\frac {3 \left (\operatorname {arctanh}\left (\tanh \left (b x +a \right )\right )-b x \right ) \sqrt {x}}{4 b^{2}}}{\operatorname {arctanh}\left (\tanh \left (b x +a \right )\right )^{2}}+\frac {3 \arctan \left (\frac {b \sqrt {x}}{\sqrt {\left (\operatorname {arctanh}\left (\tanh \left (b x +a \right )\right )-b x \right ) b}}\right )}{4 b^{2} \sqrt {\left (\operatorname {arctanh}\left (\tanh \left (b x +a \right )\right )-b x \right ) b}}\) \(85\)
risch \(\text {Expression too large to display}\) \(1075\)

input
int(x^(3/2)/arctanh(tanh(b*x+a))^3,x,method=_RETURNVERBOSE)
 
output
2*(-5/8*x^(3/2)/b-3/8*(arctanh(tanh(b*x+a))-b*x)/b^2*x^(1/2))/arctanh(tanh 
(b*x+a))^2+3/4/b^2/((arctanh(tanh(b*x+a))-b*x)*b)^(1/2)*arctan(b*x^(1/2)/( 
(arctanh(tanh(b*x+a))-b*x)*b)^(1/2))
 
3.3.9.5 Fricas [A] (verification not implemented)

Time = 0.26 (sec) , antiderivative size = 185, normalized size of antiderivative = 1.89 \[ \int \frac {x^{3/2}}{\text {arctanh}(\tanh (a+b x))^3} \, dx=\left [-\frac {3 \, {\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )} \sqrt {-a b} \log \left (\frac {b x - a - 2 \, \sqrt {-a b} \sqrt {x}}{b x + a}\right ) + 2 \, {\left (5 \, a b^{2} x + 3 \, a^{2} b\right )} \sqrt {x}}{8 \, {\left (a b^{5} x^{2} + 2 \, a^{2} b^{4} x + a^{3} b^{3}\right )}}, -\frac {3 \, {\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )} \sqrt {a b} \arctan \left (\frac {\sqrt {a b}}{b \sqrt {x}}\right ) + {\left (5 \, a b^{2} x + 3 \, a^{2} b\right )} \sqrt {x}}{4 \, {\left (a b^{5} x^{2} + 2 \, a^{2} b^{4} x + a^{3} b^{3}\right )}}\right ] \]

input
integrate(x^(3/2)/arctanh(tanh(b*x+a))^3,x, algorithm="fricas")
 
output
[-1/8*(3*(b^2*x^2 + 2*a*b*x + a^2)*sqrt(-a*b)*log((b*x - a - 2*sqrt(-a*b)* 
sqrt(x))/(b*x + a)) + 2*(5*a*b^2*x + 3*a^2*b)*sqrt(x))/(a*b^5*x^2 + 2*a^2* 
b^4*x + a^3*b^3), -1/4*(3*(b^2*x^2 + 2*a*b*x + a^2)*sqrt(a*b)*arctan(sqrt( 
a*b)/(b*sqrt(x))) + (5*a*b^2*x + 3*a^2*b)*sqrt(x))/(a*b^5*x^2 + 2*a^2*b^4* 
x + a^3*b^3)]
 
3.3.9.6 Sympy [F]

\[ \int \frac {x^{3/2}}{\text {arctanh}(\tanh (a+b x))^3} \, dx=\int \frac {x^{\frac {3}{2}}}{\operatorname {atanh}^{3}{\left (\tanh {\left (a + b x \right )} \right )}}\, dx \]

input
integrate(x**(3/2)/atanh(tanh(b*x+a))**3,x)
 
output
Integral(x**(3/2)/atanh(tanh(a + b*x))**3, x)
 
3.3.9.7 Maxima [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 61, normalized size of antiderivative = 0.62 \[ \int \frac {x^{3/2}}{\text {arctanh}(\tanh (a+b x))^3} \, dx=-\frac {5 \, b x^{\frac {3}{2}} + 3 \, a \sqrt {x}}{4 \, {\left (b^{4} x^{2} + 2 \, a b^{3} x + a^{2} b^{2}\right )}} + \frac {3 \, \arctan \left (\frac {b \sqrt {x}}{\sqrt {a b}}\right )}{4 \, \sqrt {a b} b^{2}} \]

input
integrate(x^(3/2)/arctanh(tanh(b*x+a))^3,x, algorithm="maxima")
 
output
-1/4*(5*b*x^(3/2) + 3*a*sqrt(x))/(b^4*x^2 + 2*a*b^3*x + a^2*b^2) + 3/4*arc 
tan(b*sqrt(x)/sqrt(a*b))/(sqrt(a*b)*b^2)
 
3.3.9.8 Giac [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 47, normalized size of antiderivative = 0.48 \[ \int \frac {x^{3/2}}{\text {arctanh}(\tanh (a+b x))^3} \, dx=\frac {3 \, \arctan \left (\frac {b \sqrt {x}}{\sqrt {a b}}\right )}{4 \, \sqrt {a b} b^{2}} - \frac {5 \, b x^{\frac {3}{2}} + 3 \, a \sqrt {x}}{4 \, {\left (b x + a\right )}^{2} b^{2}} \]

input
integrate(x^(3/2)/arctanh(tanh(b*x+a))^3,x, algorithm="giac")
 
output
3/4*arctan(b*sqrt(x)/sqrt(a*b))/(sqrt(a*b)*b^2) - 1/4*(5*b*x^(3/2) + 3*a*s 
qrt(x))/((b*x + a)^2*b^2)
 
3.3.9.9 Mupad [B] (verification not implemented)

Time = 4.79 (sec) , antiderivative size = 667, normalized size of antiderivative = 6.81 \[ \int \frac {x^{3/2}}{\text {arctanh}(\tanh (a+b x))^3} \, dx=\frac {3\,\sqrt {2}\,\ln \left (\frac {16\,b^{11/2}\,\sqrt {\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x}\,\left (\sqrt {2}\,\left (\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )-4\,\sqrt {b}\,\sqrt {x}\,\sqrt {\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x}+2\,\sqrt {2}\,b\,x\right )}{\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )}\right )}{8\,b^{5/2}\,\sqrt {\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x}}-\frac {\sqrt {x}\,\left (\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )}{b^2\,{\left (\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )\right )}^2}-\frac {\sqrt {x}\,\left (\frac {1}{b\,\left (\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )}+\frac {8\,\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-8\,\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+16\,b\,x}{2\,b\,{\left (\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )}^2}\right )\,\left (\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )}{2\,b\,\left (\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )\right )} \]

input
int(x^(3/2)/atanh(tanh(a + b*x))^3,x)
 
output
(3*2^(1/2)*log((16*b^(11/2)*(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp 
(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)^(1/2)*(2^(1/2)*(log( 
2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2 
*b*x) + 1)) + 2*b*x) - 4*b^(1/2)*x^(1/2)*(log(2/(exp(2*a)*exp(2*b*x) + 1)) 
 - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)^(1/2) + 
 2*2^(1/2)*b*x))/(log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) - 
 log(2/(exp(2*a)*exp(2*b*x) + 1)))))/(8*b^(5/2)*(log(2/(exp(2*a)*exp(2*b*x 
) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)^ 
(1/2)) - (x^(1/2)*(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp( 
2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x))/(b^2*(log((2*exp(2*a)*exp(2*b 
*x))/(exp(2*a)*exp(2*b*x) + 1)) - log(2/(exp(2*a)*exp(2*b*x) + 1)))^2) - ( 
x^(1/2)*(1/(b*(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b* 
x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)) + (8*log(2/(exp(2*a)*exp(2*b*x) + 
 1)) - 8*log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 16*b*x)/ 
(2*b*(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp( 
2*a)*exp(2*b*x) + 1)) + 2*b*x)^2))*(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log 
((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x))/(2*b*(log((2 
*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) - log(2/(exp(2*a)*exp(2*b 
*x) + 1))))