3.3.10 \(\int \frac {\sqrt {x}}{\text {arctanh}(\tanh (a+b x))^3} \, dx\) [210]

3.3.10.1 Optimal result
3.3.10.2 Mathematica [A] (verified)
3.3.10.3 Rubi [A] (verified)
3.3.10.4 Maple [A] (verified)
3.3.10.5 Fricas [A] (verification not implemented)
3.3.10.6 Sympy [F]
3.3.10.7 Maxima [A] (verification not implemented)
3.3.10.8 Giac [A] (verification not implemented)
3.3.10.9 Mupad [B] (verification not implemented)

3.3.10.1 Optimal result

Integrand size = 15, antiderivative size = 125 \[ \int \frac {\sqrt {x}}{\text {arctanh}(\tanh (a+b x))^3} \, dx=\frac {\text {arctanh}\left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {b x-\text {arctanh}(\tanh (a+b x))}}\right )}{4 b^{3/2} (b x-\text {arctanh}(\tanh (a+b x)))^{3/2}}-\frac {1}{4 b^2 \sqrt {x} (b x-\text {arctanh}(\tanh (a+b x)))}-\frac {\sqrt {x}}{2 b \text {arctanh}(\tanh (a+b x))^2}-\frac {1}{4 b^2 \sqrt {x} \text {arctanh}(\tanh (a+b x))} \]

output
1/4*arctanh(b^(1/2)*x^(1/2)/(b*x-arctanh(tanh(b*x+a)))^(1/2))/b^(3/2)/(b*x 
-arctanh(tanh(b*x+a)))^(3/2)-1/4/b^2/(b*x-arctanh(tanh(b*x+a)))/x^(1/2)-1/ 
4/b^2/arctanh(tanh(b*x+a))/x^(1/2)-1/2*x^(1/2)/b/arctanh(tanh(b*x+a))^2
 
3.3.10.2 Mathematica [A] (verified)

Time = 0.11 (sec) , antiderivative size = 107, normalized size of antiderivative = 0.86 \[ \int \frac {\sqrt {x}}{\text {arctanh}(\tanh (a+b x))^3} \, dx=\frac {1}{4} \left (-\frac {2 \sqrt {x}}{b \text {arctanh}(\tanh (a+b x))^2}+\frac {\arctan \left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {-b x+\text {arctanh}(\tanh (a+b x))}}\right )}{b^{3/2} (-b x+\text {arctanh}(\tanh (a+b x)))^{3/2}}+\frac {\sqrt {x}}{-b^2 x \text {arctanh}(\tanh (a+b x))+b \text {arctanh}(\tanh (a+b x))^2}\right ) \]

input
Integrate[Sqrt[x]/ArcTanh[Tanh[a + b*x]]^3,x]
 
output
((-2*Sqrt[x])/(b*ArcTanh[Tanh[a + b*x]]^2) + ArcTan[(Sqrt[b]*Sqrt[x])/Sqrt 
[-(b*x) + ArcTanh[Tanh[a + b*x]]]]/(b^(3/2)*(-(b*x) + ArcTanh[Tanh[a + b*x 
]])^(3/2)) + Sqrt[x]/(-(b^2*x*ArcTanh[Tanh[a + b*x]]) + b*ArcTanh[Tanh[a + 
 b*x]]^2))/4
 
3.3.10.3 Rubi [A] (verified)

Time = 0.32 (sec) , antiderivative size = 132, normalized size of antiderivative = 1.06, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.267, Rules used = {2599, 2599, 2594, 2593}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {x}}{\text {arctanh}(\tanh (a+b x))^3} \, dx\)

\(\Big \downarrow \) 2599

\(\displaystyle \frac {\int \frac {1}{\sqrt {x} \text {arctanh}(\tanh (a+b x))^2}dx}{4 b}-\frac {\sqrt {x}}{2 b \text {arctanh}(\tanh (a+b x))^2}\)

\(\Big \downarrow \) 2599

\(\displaystyle \frac {-\frac {\int \frac {1}{x^{3/2} \text {arctanh}(\tanh (a+b x))}dx}{2 b}-\frac {1}{b \sqrt {x} \text {arctanh}(\tanh (a+b x))}}{4 b}-\frac {\sqrt {x}}{2 b \text {arctanh}(\tanh (a+b x))^2}\)

\(\Big \downarrow \) 2594

\(\displaystyle \frac {-\frac {\frac {b \int \frac {1}{\sqrt {x} \text {arctanh}(\tanh (a+b x))}dx}{b x-\text {arctanh}(\tanh (a+b x))}+\frac {2}{\sqrt {x} (b x-\text {arctanh}(\tanh (a+b x)))}}{2 b}-\frac {1}{b \sqrt {x} \text {arctanh}(\tanh (a+b x))}}{4 b}-\frac {\sqrt {x}}{2 b \text {arctanh}(\tanh (a+b x))^2}\)

\(\Big \downarrow \) 2593

\(\displaystyle \frac {-\frac {\frac {2}{\sqrt {x} (b x-\text {arctanh}(\tanh (a+b x)))}-\frac {2 \sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \sqrt {x}}{\sqrt {b x-\text {arctanh}(\tanh (a+b x))}}\right )}{(b x-\text {arctanh}(\tanh (a+b x)))^{3/2}}}{2 b}-\frac {1}{b \sqrt {x} \text {arctanh}(\tanh (a+b x))}}{4 b}-\frac {\sqrt {x}}{2 b \text {arctanh}(\tanh (a+b x))^2}\)

input
Int[Sqrt[x]/ArcTanh[Tanh[a + b*x]]^3,x]
 
output
(-1/2*((-2*Sqrt[b]*ArcTanh[(Sqrt[b]*Sqrt[x])/Sqrt[b*x - ArcTanh[Tanh[a + b 
*x]]]])/(b*x - ArcTanh[Tanh[a + b*x]])^(3/2) + 2/(Sqrt[x]*(b*x - ArcTanh[T 
anh[a + b*x]])))/b - 1/(b*Sqrt[x]*ArcTanh[Tanh[a + b*x]]))/(4*b) - Sqrt[x] 
/(2*b*ArcTanh[Tanh[a + b*x]]^2)
 

3.3.10.3.1 Defintions of rubi rules used

rule 2593
Int[1/((u_)*Sqrt[v_]), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simpli 
fy[D[v, x]]}, Simp[-2*(ArcTanh[Sqrt[v]/Rt[-(b*u - a*v)/a, 2]]/(a*Rt[-(b*u - 
 a*v)/a, 2])), x] /; NeQ[b*u - a*v, 0] && NegQ[(b*u - a*v)/a]] /; Piecewise 
LinearQ[u, v, x]
 

rule 2594
Int[(v_)^(n_)/(u_), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Simplify[ 
D[v, x]]}, Simp[v^(n + 1)/((n + 1)*(b*u - a*v)), x] - Simp[a*((n + 1)/((n + 
 1)*(b*u - a*v)))   Int[v^(n + 1)/u, x], x] /; NeQ[b*u - a*v, 0]] /; Piecew 
iseLinearQ[u, v, x] && LtQ[n, -1]
 

rule 2599
Int[(u_)^(m_)*(v_)^(n_.), x_Symbol] :> With[{a = Simplify[D[u, x]], b = Sim 
plify[D[v, x]]}, Simp[u^(m + 1)*(v^n/(a*(m + 1))), x] - Simp[b*(n/(a*(m + 1 
)))   Int[u^(m + 1)*v^(n - 1), x], x] /; NeQ[b*u - a*v, 0]] /; FreeQ[{m, n} 
, x] && PiecewiseLinearQ[u, v, x] && NeQ[m, -1] && ((LtQ[m, -1] && GtQ[n, 0 
] &&  !(ILtQ[m + n, -2] && (FractionQ[m] || GeQ[2*n + m + 1, 0]))) || (IGtQ 
[n, 0] && IGtQ[m, 0] && LeQ[n, m]) || (IGtQ[n, 0] &&  !IntegerQ[m]) || (ILt 
Q[m, 0] &&  !IntegerQ[n]))
 
3.3.10.4 Maple [A] (verified)

Time = 0.58 (sec) , antiderivative size = 98, normalized size of antiderivative = 0.78

method result size
derivativedivides \(\frac {\frac {2 x^{\frac {3}{2}}}{8 \,\operatorname {arctanh}\left (\tanh \left (b x +a \right )\right )-8 b x}-\frac {\sqrt {x}}{4 b}}{\operatorname {arctanh}\left (\tanh \left (b x +a \right )\right )^{2}}+\frac {\arctan \left (\frac {b \sqrt {x}}{\sqrt {\left (\operatorname {arctanh}\left (\tanh \left (b x +a \right )\right )-b x \right ) b}}\right )}{4 \left (\operatorname {arctanh}\left (\tanh \left (b x +a \right )\right )-b x \right ) b \sqrt {\left (\operatorname {arctanh}\left (\tanh \left (b x +a \right )\right )-b x \right ) b}}\) \(98\)
default \(\frac {\frac {2 x^{\frac {3}{2}}}{8 \,\operatorname {arctanh}\left (\tanh \left (b x +a \right )\right )-8 b x}-\frac {\sqrt {x}}{4 b}}{\operatorname {arctanh}\left (\tanh \left (b x +a \right )\right )^{2}}+\frac {\arctan \left (\frac {b \sqrt {x}}{\sqrt {\left (\operatorname {arctanh}\left (\tanh \left (b x +a \right )\right )-b x \right ) b}}\right )}{4 \left (\operatorname {arctanh}\left (\tanh \left (b x +a \right )\right )-b x \right ) b \sqrt {\left (\operatorname {arctanh}\left (\tanh \left (b x +a \right )\right )-b x \right ) b}}\) \(98\)
risch \(\text {Expression too large to display}\) \(1595\)

input
int(x^(1/2)/arctanh(tanh(b*x+a))^3,x,method=_RETURNVERBOSE)
 
output
2*(1/8/(arctanh(tanh(b*x+a))-b*x)*x^(3/2)-1/8*x^(1/2)/b)/arctanh(tanh(b*x+ 
a))^2+1/4/(arctanh(tanh(b*x+a))-b*x)/b/((arctanh(tanh(b*x+a))-b*x)*b)^(1/2 
)*arctan(b*x^(1/2)/((arctanh(tanh(b*x+a))-b*x)*b)^(1/2))
 
3.3.10.5 Fricas [A] (verification not implemented)

Time = 0.25 (sec) , antiderivative size = 186, normalized size of antiderivative = 1.49 \[ \int \frac {\sqrt {x}}{\text {arctanh}(\tanh (a+b x))^3} \, dx=\left [-\frac {{\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )} \sqrt {-a b} \log \left (\frac {b x - a - 2 \, \sqrt {-a b} \sqrt {x}}{b x + a}\right ) - 2 \, {\left (a b^{2} x - a^{2} b\right )} \sqrt {x}}{8 \, {\left (a^{2} b^{4} x^{2} + 2 \, a^{3} b^{3} x + a^{4} b^{2}\right )}}, -\frac {{\left (b^{2} x^{2} + 2 \, a b x + a^{2}\right )} \sqrt {a b} \arctan \left (\frac {\sqrt {a b}}{b \sqrt {x}}\right ) - {\left (a b^{2} x - a^{2} b\right )} \sqrt {x}}{4 \, {\left (a^{2} b^{4} x^{2} + 2 \, a^{3} b^{3} x + a^{4} b^{2}\right )}}\right ] \]

input
integrate(x^(1/2)/arctanh(tanh(b*x+a))^3,x, algorithm="fricas")
 
output
[-1/8*((b^2*x^2 + 2*a*b*x + a^2)*sqrt(-a*b)*log((b*x - a - 2*sqrt(-a*b)*sq 
rt(x))/(b*x + a)) - 2*(a*b^2*x - a^2*b)*sqrt(x))/(a^2*b^4*x^2 + 2*a^3*b^3* 
x + a^4*b^2), -1/4*((b^2*x^2 + 2*a*b*x + a^2)*sqrt(a*b)*arctan(sqrt(a*b)/( 
b*sqrt(x))) - (a*b^2*x - a^2*b)*sqrt(x))/(a^2*b^4*x^2 + 2*a^3*b^3*x + a^4* 
b^2)]
 
3.3.10.6 Sympy [F]

\[ \int \frac {\sqrt {x}}{\text {arctanh}(\tanh (a+b x))^3} \, dx=\int \frac {\sqrt {x}}{\operatorname {atanh}^{3}{\left (\tanh {\left (a + b x \right )} \right )}}\, dx \]

input
integrate(x**(1/2)/atanh(tanh(b*x+a))**3,x)
 
output
Integral(sqrt(x)/atanh(tanh(a + b*x))**3, x)
 
3.3.10.7 Maxima [A] (verification not implemented)

Time = 0.32 (sec) , antiderivative size = 64, normalized size of antiderivative = 0.51 \[ \int \frac {\sqrt {x}}{\text {arctanh}(\tanh (a+b x))^3} \, dx=\frac {b x^{\frac {3}{2}} - a \sqrt {x}}{4 \, {\left (a b^{3} x^{2} + 2 \, a^{2} b^{2} x + a^{3} b\right )}} + \frac {\arctan \left (\frac {b \sqrt {x}}{\sqrt {a b}}\right )}{4 \, \sqrt {a b} a b} \]

input
integrate(x^(1/2)/arctanh(tanh(b*x+a))^3,x, algorithm="maxima")
 
output
1/4*(b*x^(3/2) - a*sqrt(x))/(a*b^3*x^2 + 2*a^2*b^2*x + a^3*b) + 1/4*arctan 
(b*sqrt(x)/sqrt(a*b))/(sqrt(a*b)*a*b)
 
3.3.10.8 Giac [A] (verification not implemented)

Time = 0.27 (sec) , antiderivative size = 52, normalized size of antiderivative = 0.42 \[ \int \frac {\sqrt {x}}{\text {arctanh}(\tanh (a+b x))^3} \, dx=\frac {\arctan \left (\frac {b \sqrt {x}}{\sqrt {a b}}\right )}{4 \, \sqrt {a b} a b} + \frac {b x^{\frac {3}{2}} - a \sqrt {x}}{4 \, {\left (b x + a\right )}^{2} a b} \]

input
integrate(x^(1/2)/arctanh(tanh(b*x+a))^3,x, algorithm="giac")
 
output
1/4*arctan(b*sqrt(x)/sqrt(a*b))/(sqrt(a*b)*a*b) + 1/4*(b*x^(3/2) - a*sqrt( 
x))/((b*x + a)^2*a*b)
 
3.3.10.9 Mupad [B] (verification not implemented)

Time = 4.68 (sec) , antiderivative size = 580, normalized size of antiderivative = 4.64 \[ \int \frac {\sqrt {x}}{\text {arctanh}(\tanh (a+b x))^3} \, dx=\frac {\sqrt {2}\,\ln \left (-\frac {4\,\sqrt {b}\,\sqrt {\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x}\,\left (\sqrt {2}\,\left (\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )+4\,\sqrt {b}\,\sqrt {x}\,\sqrt {\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x}+2\,\sqrt {2}\,b\,x\right )\,\left (b^3\,{\left (2\,a-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )}^2+4\,a^2\,b^3-4\,a\,b^3\,\left (2\,a-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )\right )}{\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )}\right )}{4\,b^{3/2}\,{\left (\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )}^{3/2}}-\frac {2\,\sqrt {x}}{b\,{\left (\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )\right )}^2}-\frac {\sqrt {x}}{b\,\left (\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )\right )\,\left (\ln \left (\frac {2}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )-\ln \left (\frac {2\,{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}}{{\mathrm {e}}^{2\,a}\,{\mathrm {e}}^{2\,b\,x}+1}\right )+2\,b\,x\right )} \]

input
int(x^(1/2)/atanh(tanh(a + b*x))^3,x)
 
output
(2^(1/2)*log(-(4*b^(1/2)*(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2* 
a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)^(1/2)*(2^(1/2)*(log(2/( 
exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b* 
x) + 1)) + 2*b*x) + 4*b^(1/2)*x^(1/2)*(log(2/(exp(2*a)*exp(2*b*x) + 1)) - 
log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)^(1/2) + 2* 
2^(1/2)*b*x)*(b^3*(2*a - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) 
+ 1)) + log(2/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x)^2 + 4*a^2*b^3 - 4*a*b^3* 
(2*a - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + log(2/(exp 
(2*a)*exp(2*b*x) + 1)) + 2*b*x)))/(log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*e 
xp(2*b*x) + 1)) - log(2/(exp(2*a)*exp(2*b*x) + 1)))))/(4*b^(3/2)*(log(2/(e 
xp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x 
) + 1)) + 2*b*x)^(3/2)) - (2*x^(1/2))/(b*(log((2*exp(2*a)*exp(2*b*x))/(exp 
(2*a)*exp(2*b*x) + 1)) - log(2/(exp(2*a)*exp(2*b*x) + 1)))^2) - x^(1/2)/(b 
*(log((2*exp(2*a)*exp(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) - log(2/(exp(2*a) 
*exp(2*b*x) + 1)))*(log(2/(exp(2*a)*exp(2*b*x) + 1)) - log((2*exp(2*a)*exp 
(2*b*x))/(exp(2*a)*exp(2*b*x) + 1)) + 2*b*x))