3.1.77 \(\int \frac {\operatorname {PolyLog}(2,a x^2)}{(d x)^{7/2}} \, dx\) [77]

3.1.77.1 Optimal result
3.1.77.2 Mathematica [C] (verified)
3.1.77.3 Rubi [A] (verified)
3.1.77.4 Maple [A] (verified)
3.1.77.5 Fricas [C] (verification not implemented)
3.1.77.6 Sympy [F(-1)]
3.1.77.7 Maxima [A] (verification not implemented)
3.1.77.8 Giac [F]
3.1.77.9 Mupad [F(-1)]

3.1.77.1 Optimal result

Integrand size = 15, antiderivative size = 126 \[ \int \frac {\operatorname {PolyLog}\left (2,a x^2\right )}{(d x)^{7/2}} \, dx=-\frac {32 a}{25 d^3 \sqrt {d x}}-\frac {16 a^{5/4} \arctan \left (\frac {\sqrt [4]{a} \sqrt {d x}}{\sqrt {d}}\right )}{25 d^{7/2}}+\frac {16 a^{5/4} \text {arctanh}\left (\frac {\sqrt [4]{a} \sqrt {d x}}{\sqrt {d}}\right )}{25 d^{7/2}}+\frac {8 \log \left (1-a x^2\right )}{25 d (d x)^{5/2}}-\frac {2 \operatorname {PolyLog}\left (2,a x^2\right )}{5 d (d x)^{5/2}} \]

output
-16/25*a^(5/4)*arctan(a^(1/4)*(d*x)^(1/2)/d^(1/2))/d^(7/2)+16/25*a^(5/4)*a 
rctanh(a^(1/4)*(d*x)^(1/2)/d^(1/2))/d^(7/2)+8/25*ln(-a*x^2+1)/d/(d*x)^(5/2 
)-2/5*polylog(2,a*x^2)/d/(d*x)^(5/2)-32/25*a/d^3/(d*x)^(1/2)
 
3.1.77.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 0.08 (sec) , antiderivative size = 70, normalized size of antiderivative = 0.56 \[ \int \frac {\operatorname {PolyLog}\left (2,a x^2\right )}{(d x)^{7/2}} \, dx=-\frac {x \operatorname {Gamma}\left (-\frac {1}{4}\right ) \left (-48 a x^2+16 a^2 x^4 \operatorname {Hypergeometric2F1}\left (\frac {3}{4},1,\frac {7}{4},a x^2\right )+12 \log \left (1-a x^2\right )-15 \operatorname {PolyLog}\left (2,a x^2\right )\right )}{150 (d x)^{7/2} \operatorname {Gamma}\left (\frac {3}{4}\right )} \]

input
Integrate[PolyLog[2, a*x^2]/(d*x)^(7/2),x]
 
output
-1/150*(x*Gamma[-1/4]*(-48*a*x^2 + 16*a^2*x^4*Hypergeometric2F1[3/4, 1, 7/ 
4, a*x^2] + 12*Log[1 - a*x^2] - 15*PolyLog[2, a*x^2]))/((d*x)^(7/2)*Gamma[ 
3/4])
 
3.1.77.3 Rubi [A] (verified)

Time = 0.33 (sec) , antiderivative size = 144, normalized size of antiderivative = 1.14, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.667, Rules used = {7145, 25, 2905, 8, 264, 266, 27, 827, 218, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\operatorname {PolyLog}\left (2,a x^2\right )}{(d x)^{7/2}} \, dx\)

\(\Big \downarrow \) 7145

\(\displaystyle \frac {4}{5} \int -\frac {\log \left (1-a x^2\right )}{(d x)^{7/2}}dx-\frac {2 \operatorname {PolyLog}\left (2,a x^2\right )}{5 d (d x)^{5/2}}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {4}{5} \int \frac {\log \left (1-a x^2\right )}{(d x)^{7/2}}dx-\frac {2 \operatorname {PolyLog}\left (2,a x^2\right )}{5 d (d x)^{5/2}}\)

\(\Big \downarrow \) 2905

\(\displaystyle -\frac {4}{5} \left (-\frac {4 a \int \frac {x}{(d x)^{5/2} \left (1-a x^2\right )}dx}{5 d}-\frac {2 \log \left (1-a x^2\right )}{5 d (d x)^{5/2}}\right )-\frac {2 \operatorname {PolyLog}\left (2,a x^2\right )}{5 d (d x)^{5/2}}\)

\(\Big \downarrow \) 8

\(\displaystyle -\frac {4}{5} \left (-\frac {4 a \int \frac {1}{(d x)^{3/2} \left (1-a x^2\right )}dx}{5 d^2}-\frac {2 \log \left (1-a x^2\right )}{5 d (d x)^{5/2}}\right )-\frac {2 \operatorname {PolyLog}\left (2,a x^2\right )}{5 d (d x)^{5/2}}\)

\(\Big \downarrow \) 264

\(\displaystyle -\frac {4}{5} \left (-\frac {4 a \left (\frac {a \int \frac {\sqrt {d x}}{1-a x^2}dx}{d^2}-\frac {2}{d \sqrt {d x}}\right )}{5 d^2}-\frac {2 \log \left (1-a x^2\right )}{5 d (d x)^{5/2}}\right )-\frac {2 \operatorname {PolyLog}\left (2,a x^2\right )}{5 d (d x)^{5/2}}\)

\(\Big \downarrow \) 266

\(\displaystyle -\frac {4}{5} \left (-\frac {4 a \left (\frac {2 a \int \frac {d^3 x}{d^2-a d^2 x^2}d\sqrt {d x}}{d^3}-\frac {2}{d \sqrt {d x}}\right )}{5 d^2}-\frac {2 \log \left (1-a x^2\right )}{5 d (d x)^{5/2}}\right )-\frac {2 \operatorname {PolyLog}\left (2,a x^2\right )}{5 d (d x)^{5/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {4}{5} \left (-\frac {4 a \left (\frac {2 a \int \frac {d x}{d^2-a d^2 x^2}d\sqrt {d x}}{d}-\frac {2}{d \sqrt {d x}}\right )}{5 d^2}-\frac {2 \log \left (1-a x^2\right )}{5 d (d x)^{5/2}}\right )-\frac {2 \operatorname {PolyLog}\left (2,a x^2\right )}{5 d (d x)^{5/2}}\)

\(\Big \downarrow \) 827

\(\displaystyle -\frac {4}{5} \left (-\frac {4 a \left (\frac {2 a \left (\frac {\int \frac {1}{d-\sqrt {a} d x}d\sqrt {d x}}{2 \sqrt {a}}-\frac {\int \frac {1}{\sqrt {a} x d+d}d\sqrt {d x}}{2 \sqrt {a}}\right )}{d}-\frac {2}{d \sqrt {d x}}\right )}{5 d^2}-\frac {2 \log \left (1-a x^2\right )}{5 d (d x)^{5/2}}\right )-\frac {2 \operatorname {PolyLog}\left (2,a x^2\right )}{5 d (d x)^{5/2}}\)

\(\Big \downarrow \) 218

\(\displaystyle -\frac {4}{5} \left (-\frac {4 a \left (\frac {2 a \left (\frac {\int \frac {1}{d-\sqrt {a} d x}d\sqrt {d x}}{2 \sqrt {a}}-\frac {\arctan \left (\frac {\sqrt [4]{a} \sqrt {d x}}{\sqrt {d}}\right )}{2 a^{3/4} \sqrt {d}}\right )}{d}-\frac {2}{d \sqrt {d x}}\right )}{5 d^2}-\frac {2 \log \left (1-a x^2\right )}{5 d (d x)^{5/2}}\right )-\frac {2 \operatorname {PolyLog}\left (2,a x^2\right )}{5 d (d x)^{5/2}}\)

\(\Big \downarrow \) 221

\(\displaystyle -\frac {4}{5} \left (-\frac {4 a \left (\frac {2 a \left (\frac {\text {arctanh}\left (\frac {\sqrt [4]{a} \sqrt {d x}}{\sqrt {d}}\right )}{2 a^{3/4} \sqrt {d}}-\frac {\arctan \left (\frac {\sqrt [4]{a} \sqrt {d x}}{\sqrt {d}}\right )}{2 a^{3/4} \sqrt {d}}\right )}{d}-\frac {2}{d \sqrt {d x}}\right )}{5 d^2}-\frac {2 \log \left (1-a x^2\right )}{5 d (d x)^{5/2}}\right )-\frac {2 \operatorname {PolyLog}\left (2,a x^2\right )}{5 d (d x)^{5/2}}\)

input
Int[PolyLog[2, a*x^2]/(d*x)^(7/2),x]
 
output
(-4*((-4*a*(-2/(d*Sqrt[d*x]) + (2*a*(-1/2*ArcTan[(a^(1/4)*Sqrt[d*x])/Sqrt[ 
d]]/(a^(3/4)*Sqrt[d]) + ArcTanh[(a^(1/4)*Sqrt[d*x])/Sqrt[d]]/(2*a^(3/4)*Sq 
rt[d])))/d))/(5*d^2) - (2*Log[1 - a*x^2])/(5*d*(d*x)^(5/2))))/5 - (2*PolyL 
og[2, a*x^2])/(5*d*(d*x)^(5/2))
 

3.1.77.3.1 Defintions of rubi rules used

rule 8
Int[(u_.)*(x_)^(m_.)*((a_.)*(x_))^(p_), x_Symbol] :> Simp[1/a^m   Int[u*(a* 
x)^(m + p), x], x] /; FreeQ[{a, m, p}, x] && IntegerQ[m]
 

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 264
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(c*x)^( 
m + 1)*((a + b*x^2)^(p + 1)/(a*c*(m + 1))), x] - Simp[b*((m + 2*p + 3)/(a*c 
^2*(m + 1)))   Int[(c*x)^(m + 2)*(a + b*x^2)^p, x], x] /; FreeQ[{a, b, c, p 
}, x] && LtQ[m, -1] && IntBinomialQ[a, b, c, 2, m, p, x]
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 827
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 
 2]], s = Denominator[Rt[-a/b, 2]]}, Simp[s/(2*b)   Int[1/(r + s*x^2), x], 
x] - Simp[s/(2*b)   Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !GtQ 
[a/b, 0]
 

rule 2905
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))*((f_.)*(x_))^ 
(m_.), x_Symbol] :> Simp[(f*x)^(m + 1)*((a + b*Log[c*(d + e*x^n)^p])/(f*(m 
+ 1))), x] - Simp[b*e*n*(p/(f*(m + 1)))   Int[x^(n - 1)*((f*x)^(m + 1)/(d + 
 e*x^n)), x], x] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && NeQ[m, -1]
 

rule 7145
Int[((d_.)*(x_))^(m_.)*PolyLog[n_, (a_.)*((b_.)*(x_)^(p_.))^(q_.)], x_Symbo 
l] :> Simp[(d*x)^(m + 1)*(PolyLog[n, a*(b*x^p)^q]/(d*(m + 1))), x] - Simp[p 
*(q/(m + 1))   Int[(d*x)^m*PolyLog[n - 1, a*(b*x^p)^q], x], x] /; FreeQ[{a, 
 b, d, m, p, q}, x] && NeQ[m, -1] && GtQ[n, 0]
 
3.1.77.4 Maple [A] (verified)

Time = 0.43 (sec) , antiderivative size = 122, normalized size of antiderivative = 0.97

method result size
meijerg \(-\frac {x^{\frac {7}{2}} \left (-a \right )^{\frac {5}{4}} \left (-\frac {64}{25 \sqrt {x}\, \left (-a \right )^{\frac {1}{4}}}-\frac {16 x^{\frac {3}{2}} a \left (\ln \left (1-\left (a \,x^{2}\right )^{\frac {1}{4}}\right )-\ln \left (1+\left (a \,x^{2}\right )^{\frac {1}{4}}\right )+2 \arctan \left (\left (a \,x^{2}\right )^{\frac {1}{4}}\right )\right )}{25 \left (-a \right )^{\frac {1}{4}} \left (a \,x^{2}\right )^{\frac {3}{4}}}+\frac {16 \ln \left (-a \,x^{2}+1\right )}{25 x^{\frac {5}{2}} \left (-a \right )^{\frac {1}{4}} a}-\frac {4 \operatorname {polylog}\left (2, a \,x^{2}\right )}{5 x^{\frac {5}{2}} \left (-a \right )^{\frac {1}{4}} a}\right )}{2 \left (d x \right )^{\frac {7}{2}}}\) \(122\)
derivativedivides \(\frac {-\frac {2 \operatorname {polylog}\left (2, a \,x^{2}\right )}{5 \left (d x \right )^{\frac {5}{2}}}+\frac {8 \ln \left (\frac {-a \,d^{2} x^{2}+d^{2}}{d^{2}}\right )}{25 \left (d x \right )^{\frac {5}{2}}}+\frac {32 a \left (-\frac {2 \arctan \left (\frac {\sqrt {d x}}{\left (\frac {d^{2}}{a}\right )^{\frac {1}{4}}}\right )-\ln \left (\frac {\sqrt {d x}+\left (\frac {d^{2}}{a}\right )^{\frac {1}{4}}}{\sqrt {d x}-\left (\frac {d^{2}}{a}\right )^{\frac {1}{4}}}\right )}{4 d^{2} \left (\frac {d^{2}}{a}\right )^{\frac {1}{4}}}-\frac {1}{d^{2} \sqrt {d x}}\right )}{25}}{d}\) \(131\)
default \(\frac {-\frac {2 \operatorname {polylog}\left (2, a \,x^{2}\right )}{5 \left (d x \right )^{\frac {5}{2}}}+\frac {8 \ln \left (\frac {-a \,d^{2} x^{2}+d^{2}}{d^{2}}\right )}{25 \left (d x \right )^{\frac {5}{2}}}+\frac {32 a \left (-\frac {2 \arctan \left (\frac {\sqrt {d x}}{\left (\frac {d^{2}}{a}\right )^{\frac {1}{4}}}\right )-\ln \left (\frac {\sqrt {d x}+\left (\frac {d^{2}}{a}\right )^{\frac {1}{4}}}{\sqrt {d x}-\left (\frac {d^{2}}{a}\right )^{\frac {1}{4}}}\right )}{4 d^{2} \left (\frac {d^{2}}{a}\right )^{\frac {1}{4}}}-\frac {1}{d^{2} \sqrt {d x}}\right )}{25}}{d}\) \(131\)

input
int(polylog(2,a*x^2)/(d*x)^(7/2),x,method=_RETURNVERBOSE)
 
output
-1/2/(d*x)^(7/2)*x^(7/2)*(-a)^(5/4)*(-64/25/x^(1/2)/(-a)^(1/4)-16/25*x^(3/ 
2)/(-a)^(1/4)*a/(a*x^2)^(3/4)*(ln(1-(a*x^2)^(1/4))-ln(1+(a*x^2)^(1/4))+2*a 
rctan((a*x^2)^(1/4)))+16/25/x^(5/2)/(-a)^(1/4)*ln(-a*x^2+1)/a-4/5/x^(5/2)/ 
(-a)^(1/4)/a*polylog(2,a*x^2))
 
3.1.77.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.28 (sec) , antiderivative size = 214, normalized size of antiderivative = 1.70 \[ \int \frac {\operatorname {PolyLog}\left (2,a x^2\right )}{(d x)^{7/2}} \, dx=\frac {2 \, {\left (4 \, d^{4} x^{3} \left (\frac {a^{5}}{d^{14}}\right )^{\frac {1}{4}} \log \left (512 \, d^{11} \left (\frac {a^{5}}{d^{14}}\right )^{\frac {3}{4}} + 512 \, \sqrt {d x} a^{4}\right ) - 4 i \, d^{4} x^{3} \left (\frac {a^{5}}{d^{14}}\right )^{\frac {1}{4}} \log \left (512 i \, d^{11} \left (\frac {a^{5}}{d^{14}}\right )^{\frac {3}{4}} + 512 \, \sqrt {d x} a^{4}\right ) + 4 i \, d^{4} x^{3} \left (\frac {a^{5}}{d^{14}}\right )^{\frac {1}{4}} \log \left (-512 i \, d^{11} \left (\frac {a^{5}}{d^{14}}\right )^{\frac {3}{4}} + 512 \, \sqrt {d x} a^{4}\right ) - 4 \, d^{4} x^{3} \left (\frac {a^{5}}{d^{14}}\right )^{\frac {1}{4}} \log \left (-512 \, d^{11} \left (\frac {a^{5}}{d^{14}}\right )^{\frac {3}{4}} + 512 \, \sqrt {d x} a^{4}\right ) - {\left (16 \, a x^{2} + 5 \, {\rm Li}_2\left (a x^{2}\right ) - 4 \, \log \left (-a x^{2} + 1\right )\right )} \sqrt {d x}\right )}}{25 \, d^{4} x^{3}} \]

input
integrate(polylog(2,a*x^2)/(d*x)^(7/2),x, algorithm="fricas")
 
output
2/25*(4*d^4*x^3*(a^5/d^14)^(1/4)*log(512*d^11*(a^5/d^14)^(3/4) + 512*sqrt( 
d*x)*a^4) - 4*I*d^4*x^3*(a^5/d^14)^(1/4)*log(512*I*d^11*(a^5/d^14)^(3/4) + 
 512*sqrt(d*x)*a^4) + 4*I*d^4*x^3*(a^5/d^14)^(1/4)*log(-512*I*d^11*(a^5/d^ 
14)^(3/4) + 512*sqrt(d*x)*a^4) - 4*d^4*x^3*(a^5/d^14)^(1/4)*log(-512*d^11* 
(a^5/d^14)^(3/4) + 512*sqrt(d*x)*a^4) - (16*a*x^2 + 5*dilog(a*x^2) - 4*log 
(-a*x^2 + 1))*sqrt(d*x))/(d^4*x^3)
 
3.1.77.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\operatorname {PolyLog}\left (2,a x^2\right )}{(d x)^{7/2}} \, dx=\text {Timed out} \]

input
integrate(polylog(2,a*x**2)/(d*x)**(7/2),x)
 
output
Timed out
 
3.1.77.7 Maxima [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 151, normalized size of antiderivative = 1.20 \[ \int \frac {\operatorname {PolyLog}\left (2,a x^2\right )}{(d x)^{7/2}} \, dx=-\frac {2 \, {\left (\frac {4 \, a^{2} {\left (\frac {2 \, \arctan \left (\frac {\sqrt {d x} \sqrt {a}}{\sqrt {\sqrt {a} d}}\right )}{\sqrt {\sqrt {a} d} \sqrt {a}} + \frac {\log \left (\frac {\sqrt {d x} \sqrt {a} - \sqrt {\sqrt {a} d}}{\sqrt {d x} \sqrt {a} + \sqrt {\sqrt {a} d}}\right )}{\sqrt {\sqrt {a} d} \sqrt {a}}\right )}}{d^{2}} + \frac {16 \, a d^{2} x^{2} + 5 \, d^{2} {\rm Li}_2\left (a x^{2}\right ) - 4 \, d^{2} \log \left (-a d^{2} x^{2} + d^{2}\right ) + 8 \, d^{2} \log \left (d\right )}{\left (d x\right )^{\frac {5}{2}} d^{2}}\right )}}{25 \, d} \]

input
integrate(polylog(2,a*x^2)/(d*x)^(7/2),x, algorithm="maxima")
 
output
-2/25*(4*a^2*(2*arctan(sqrt(d*x)*sqrt(a)/sqrt(sqrt(a)*d))/(sqrt(sqrt(a)*d) 
*sqrt(a)) + log((sqrt(d*x)*sqrt(a) - sqrt(sqrt(a)*d))/(sqrt(d*x)*sqrt(a) + 
 sqrt(sqrt(a)*d)))/(sqrt(sqrt(a)*d)*sqrt(a)))/d^2 + (16*a*d^2*x^2 + 5*d^2* 
dilog(a*x^2) - 4*d^2*log(-a*d^2*x^2 + d^2) + 8*d^2*log(d))/((d*x)^(5/2)*d^ 
2))/d
 
3.1.77.8 Giac [F]

\[ \int \frac {\operatorname {PolyLog}\left (2,a x^2\right )}{(d x)^{7/2}} \, dx=\int { \frac {{\rm Li}_2\left (a x^{2}\right )}{\left (d x\right )^{\frac {7}{2}}} \,d x } \]

input
integrate(polylog(2,a*x^2)/(d*x)^(7/2),x, algorithm="giac")
 
output
integrate(dilog(a*x^2)/(d*x)^(7/2), x)
 
3.1.77.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\operatorname {PolyLog}\left (2,a x^2\right )}{(d x)^{7/2}} \, dx=\int \frac {\mathrm {polylog}\left (2,a\,x^2\right )}{{\left (d\,x\right )}^{7/2}} \,d x \]

input
int(polylog(2, a*x^2)/(d*x)^(7/2),x)
 
output
int(polylog(2, a*x^2)/(d*x)^(7/2), x)