3.10 Integrals 901 to 1000

\(\int \genfrac {}{}{}{}{e^{\genfrac {}{}{}{}{1}{16} (33+16 x)} (1+2 x+x^2)-2^{1+\genfrac {}{}{}{}{4}{1+x}} \log (4)}{1+2 x+x^2} \, dx\) [901]
\(\int \genfrac {}{}{}{}{-10 x \log (5) \log (e^{-x} x)+(-1+x) \log ^{\genfrac {}{}{}{}{2}{\log (5)}}(e^{-x} x)}{10 x \log (5) \log (e^{-x} x)} \, dx\) [902]
\(\int \genfrac {}{}{}{}{90 e^{53}-120 x^2}{9 e^{106}+100 x^2+4 e^2 x^2+80 x^3+16 x^4+e^{53} (60 x+12 e x+24 x^2)+e (40 x^2+16 x^3)} \, dx\) [903]
\(\int \genfrac {}{}{}{}{43+12 x-6 x^2}{6-12 x+6 x^2} \, dx\) [904]
\(\int \genfrac {}{}{}{}{1}{4} (-1+8 x) \, dx\) [905]
\(\int e^{3-e-x} (1+e^{-3+e+x} (1-2 x)) \, dx\) [906]
\(\int (-160+e (10-4 x)+64 x) \, dx\) [907]
\(\int \genfrac {}{}{}{}{e^{e^{\genfrac {}{}{}{}{-5+6 x+(-2+x) \log (2)}{3+\log (2)}}+\genfrac {}{}{}{}{-5+6 x+(-2+x) \log (2)}{3+\log (2)}} (-6-\log (2))+(3+\log (2)) \log (6)}{(3+\log (2)) \log (6)} \, dx\) [908]
\(\int \genfrac {}{}{}{}{e^{\genfrac {}{}{}{}{18+3 e+15 x}{x+3 \log ^2(-\genfrac {}{}{}{}{8}{-4+x})}} (72+e (12-3 x)-18 x+(108+18 e+90 x) \log (-\genfrac {}{}{}{}{8}{-4+x})+(-180+45 x) \log ^2(-\genfrac {}{}{}{}{8}{-4+x}))}{-4 x^2+x^3+(-24 x+6 x^2) \log ^2(-\genfrac {}{}{}{}{8}{-4+x})+(-36+9 x) \log ^4(-\genfrac {}{}{}{}{8}{-4+x})} \, dx\) [909]
\(\int \genfrac {}{}{}{}{6+(-3+20 x^3) \log (x^2)+10 x^3 \log ^2(x^2)}{45 x^2} \, dx\) [910]
\(\int \genfrac {}{}{}{}{-e^{2-2 x} x^2+e^{1-x+\genfrac {}{}{}{}{1}{4} (4+\log (4))} (-5+5 x-2 x^2)+e^{\genfrac {}{}{}{}{1}{2} (4+\log (4))} (-5-x^2)}{e^{2-2 x} x^2+e^{\genfrac {}{}{}{}{1}{2} (4+\log (4))} x^2+2 e^{1-x+\genfrac {}{}{}{}{1}{4} (4+\log (4))} x^2} \, dx\) [911]
\(\int \genfrac {}{}{}{}{3 x+e^{3+e^4+\genfrac {}{}{}{}{2}{x}+2 e^{2/x} x} (-4+2 x)}{4 x} \, dx\) [912]
\(\int -\genfrac {}{}{}{}{64 e^{4-16 \log ^2(\genfrac {}{}{}{}{2+e^4 (-4-2 x)}{3 e^4})} \log (\genfrac {}{}{}{}{2+e^4 (-4-2 x)}{3 e^4})}{-1+e^4 (2+x)} \, dx\) [913]
\(\int \genfrac {}{}{}{}{2 x-x^2+(8-6 x) \log (\genfrac {}{}{}{}{1}{4} (2 x^2-x^3))+(-4+2 x) \log ^2(\genfrac {}{}{}{}{1}{4} (2 x^2-x^3))}{-4 x^3+2 x^4} \, dx\) [914]
\(\int \genfrac {}{}{}{}{300 e^{10} x+216 x^3+510 x^4+300 x^5+e^5 (-510 x^2-600 x^3)+(-100 e^{10} x-72 x^3-160 x^4-100 x^5+e^5 (180 x^2+200 x^3)) \log (\genfrac {}{}{}{}{10 e^5 x-9 x^2-10 x^3}{5 e^5-4 x-5 x^2})+(100 e^{10} x+72 x^3+170 x^4+100 x^5+e^5 (-170 x^2-200 x^3)) \log ^2(\genfrac {}{}{}{}{10 e^5 x-9 x^2-10 x^3}{5 e^5-4 x-5 x^2})}{450 e^{10}+324 x^2+765 x^3+450 x^4+e^5 (-765 x-900 x^2)+(300 e^{10}+216 x^2+510 x^3+300 x^4+e^5 (-510 x-600 x^2)) \log ^2(\genfrac {}{}{}{}{10 e^5 x-9 x^2-10 x^3}{5 e^5-4 x-5 x^2})+(50 e^{10}+36 x^2+85 x^3+50 x^4+e^5 (-85 x-100 x^2)) \log ^4(\genfrac {}{}{}{}{10 e^5 x-9 x^2-10 x^3}{5 e^5-4 x-5 x^2})} \, dx\) [915]
\(\int (1+e^{8/3}+e^{\genfrac {}{}{}{}{8}{3}+x}) \, dx\) [916]
\(\int \genfrac {}{}{}{}{-15+\genfrac {}{}{}{}{3 e^{1+\genfrac {}{}{}{}{e}{5-x}}}{5-x}+33 x-6 x^2}{-5+x} \, dx\) [917]
\(\int -2 e^{\genfrac {}{}{}{}{1}{2} (-237-2 x^2+2 \log (2))} x \, dx\) [918]
\(\int \genfrac {}{}{}{}{1}{6} e^{-x} (6 e^x+e^{5 e^{\genfrac {}{}{}{}{1}{2} (e^{x^2}+x)}} (2+e^{\genfrac {}{}{}{}{1}{2} (e^{x^2}+x)} (-5-15 e^x+e^{x^2} (-10 x-30 e^x x)))) \, dx\) [919]
\(\int \genfrac {}{}{}{}{-45 x^2-3 x^3+(30 x+6 x^2) \log (2)+e^{2 x} (-15-39 x+6 x^2+(42-6 x) \log (2))+e^x (-60 x-42 x^2+6 x^3+(30+48 x-6 x^2) \log (2))}{-3125+3125 x-1250 x^2+250 x^3-25 x^4+x^5} \, dx\) [920]
\(\int \genfrac {}{}{}{}{-7500+e^{4 x}+4600 x+2600 x^2-19900 x^3+2501 x^4+2500 x^5+50 x^6+625 x^8+e^{2 x} (-300+100 x+2 x^2+50 x^4)}{2500+e^{4 x}+5000 x+2600 x^2+100 x^3+2501 x^4+2500 x^5+50 x^6+625 x^8+e^{2 x} (100+100 x+2 x^2+50 x^4)} \, dx\) [921]
\(\int \genfrac {}{}{}{}{(-2 x+x^2+(2-2 x) \log (x)) \log (3 x)-x^2 \log (x) \log (3 x) \log (\log (x))+((2 x-x^2) \log (x)+(-2 x+x^2) \log (x) \log (3 x)+((2 x^2-x^3) \log (x)+(-2 x^2+x^3) \log (x) \log (3 x)) \log (\log (x))) \log (\genfrac {}{}{}{}{-1-x \log (\log (x))}{-2 x+x^2}) \log (\log (\genfrac {}{}{}{}{-1-x \log (\log (x))}{-2 x+x^2}))+((2-x) \log (x)+(2 x-x^2) \log (x) \log (\log (x))) \log (\genfrac {}{}{}{}{-1-x \log (\log (x))}{-2 x+x^2}) \log (\log (\genfrac {}{}{}{}{-1-x \log (\log (x))}{-2 x+x^2})) \log (\log (\log (\genfrac {}{}{}{}{-1-x \log (\log (x))}{-2 x+x^2})))}{((-2 x+x^2) \log (x) \log ^2(3 x)+(-2 x^2+x^3) \log (x) \log ^2(3 x) \log (\log (x))) \log (\genfrac {}{}{}{}{-1-x \log (\log (x))}{-2 x+x^2}) \log (\log (\genfrac {}{}{}{}{-1-x \log (\log (x))}{-2 x+x^2}))} \, dx\) [922]
\(\int \genfrac {}{}{}{}{(100+80 x+40 x^2) \log (2)-20 x \log (2) \log (5)}{25-20 x^2+4 x^4} \, dx\) [923]
\(\int \genfrac {}{}{}{}{e^{2 e^{\genfrac {}{}{}{}{8}{-3+3 \log (x)}} x^4+\genfrac {}{}{}{}{8}{-3+3 \log (x)}} (8 x^4-48 x^4 \log (x)+24 x^4 \log ^2(x)+e^{-\genfrac {}{}{}{}{8}{-3+3 \log (x)}} (3-6 \log (x)+3 \log ^2(x)))}{3-6 \log (x)+3 \log ^2(x)} \, dx\) [924]
\(\int \genfrac {}{}{}{}{6+e^3-x-2 \log (6+e^3-x)}{6 x+e^3 x-x^2+(6+e^3-x) \log ^2(6+e^3-x)} \, dx\) [925]
\(\int \genfrac {}{}{}{}{e^{2 e^{-\genfrac {}{}{}{}{e^4}{45+5 e+30 x+5 x^2}}-\genfrac {}{}{}{}{e^4}{45+5 e+30 x+5 x^2}} (e^9 (12+4 x)+e^4 (-12 x-4 x^2)+e^{\genfrac {}{}{}{}{e^4}{45+5 e+30 x+5 x^2}} (405+5 e^2+540 x+270 x^2+60 x^3+5 x^4+e (90+60 x+10 x^2)))}{405 x^2+5 e^2 x^2+540 x^3+270 x^4+60 x^5+5 x^6+e (90 x^2+60 x^3+10 x^4)+e^{10} (405+5 e^2+540 x+270 x^2+60 x^3+5 x^4+e (90+60 x+10 x^2))+e^5 (-810 x-10 e^2 x-1080 x^2-540 x^3-120 x^4-10 x^5+e (-180 x-120 x^2-20 x^3))} \, dx\) [926]
\(\int \genfrac {}{}{}{}{e^{e^x} (28 x+14 e^x x^2)}{18+e} \, dx\) [927]
\(\int \genfrac {}{}{}{}{13122 x^4+e (-160 x^2-6561 x^3+12800 x^4)+2 e \log (x)-2 e \log ^2(x)}{6561 e x^3} \, dx\) [928]
\(\int \genfrac {}{}{}{}{-290 x+e^{x^3} (-100-600 x+1850 x^2-300 x^3+900 x^4-150 x^5)+e^{2 x^3} (-120-340 x+2220 x^2-720 x^3+1140 x^4-360 x^5+30 x^6)}{4+4 x^2+x^4} \, dx\) [929]
\(\int \genfrac {}{}{}{}{-100-40 x-20 \log (5)}{625+1000 x+600 x^2+160 x^3+16 x^4+(500+600 x+240 x^2+32 x^3) \log (5)+(150+120 x+24 x^2) \log ^2(5)+(20+8 x) \log ^3(5)+\log ^4(5)+(-50-40 x-8 x^2+(-20-8 x) \log (5)-2 \log ^2(5)) \log ^2(\log (4))+\log ^4(\log (4))} \, dx\) [930]
\(\int \genfrac {}{}{}{}{e^{\genfrac {}{}{}{}{16}{x^4}} (-51200-6400 e^5)+2 x^5}{200 x^5+25 e^5 x^5} \, dx\) [931]
\(\int \genfrac {}{}{}{}{64+128 x+64 x^2+8 x^3+4 x^4+e^{5/4} (16+32 x+16 x^2)}{256+512 x+256 x^2-32 x^3-32 x^4+x^6+e^{5/2} (16+32 x+16 x^2)+e^{5/4} (128+256 x+128 x^2-8 x^3-8 x^4)} \, dx\) [932]
\(\int \genfrac {}{}{}{}{e^{-x^2} (e^{3+\genfrac {}{}{}{}{e^{3-x^2}}{x+x^4}} (-1-2 x^2-4 x^3-2 x^5)+e^{x+x^2} (x^2+2 x^5+x^8))}{x^2+2 x^5+x^8} \, dx\) [933]
\(\int \genfrac {}{}{}{}{e^{\genfrac {}{}{}{}{1}{16} (80+x^2)} (-32 x+8 x^2) \log (x)+(e^{\genfrac {}{}{}{}{1}{16} (80+x^2)} (-32+40 x-8 x^2) \log (-1+x)+e^{\genfrac {}{}{}{}{1}{16} (80+x^2)} (-8 x+12 x^2-5 x^3+x^4) \log (-1+x) \log (x)) \log (\log (-1+x))}{(-5 x+5 x^2) \log (-1+x) \log ^2(x)} \, dx\) [934]
\(\int \genfrac {}{}{}{}{e^{-x^5} (e^{2 e^{\genfrac {}{}{}{}{e^{-x^5} (1-2 e^{x^5} x)}{x}}+\genfrac {}{}{}{}{e^{-x^5} (1-2 e^{x^5} x)}{x}} (-2-10 x^5)+e^{e^{\genfrac {}{}{}{}{e^{-x^5} (1-2 e^{x^5} x)}{x}}+\genfrac {}{}{}{}{e^{-x^5} (1-2 e^{x^5} x)}{x}} (8+40 x^5))}{x^2} \, dx\) [935]
\(\int \genfrac {}{}{}{}{(-5+10 x-x^2-2 x^3) \log (x)+(5-x^2) \log (\genfrac {}{}{}{}{5-x^2}{x})}{-10 x+2 x^3} \, dx\) [936]
\(\int \genfrac {}{}{}{}{e^{6-x} (-12+e^5 (-12-6 x)-6 x)}{x^3} \, dx\) [937]
\(\int \genfrac {}{}{}{}{e^4 x-e^5 x+e^3 \log (2 e^{-2 x}) \log (x)+(-2 e^2 x+e^3 x) \log ^2(x)+x \log ^4(x)}{2 e^4 x-4 e^2 x \log ^2(x)+2 x \log ^4(x)} \, dx\) [938]
\(\int \genfrac {}{}{}{}{(-20 x-20 x^2-5 x^3) \log (2 x)+\log ^{\genfrac {}{}{}{}{9}{2+x}}(2 x) (216+108 x-108 x \log (2 x) \log (\log (2 x)))}{(48 x+48 x^2+12 x^3) \log (2 x)} \, dx\) [939]
\(\int (6-6 x^2+e^{x^3} (2+6 x^3)-8 x \log (\log (5))-2 \log ^2(\log (5))) \, dx\) [940]
\(\int \genfrac {}{}{}{}{3 x^2+x^3+3 x^2 \log (x)+e^{2 e^x} (3+x+3 \log (x))+e^{e^x} (6 x+2 x^2+6 x \log (x))+e^{e^x} (-3+3 e^x x) \log (x) \log (\genfrac {}{}{}{}{\log (x)}{2})+((6 x^2+2 x^3) \log (x)+3 x^2 \log ^2(x)+e^{2 e^x} ((6+2 x) \log (x)+3 \log ^2(x))+e^{e^x} ((12 x+4 x^2) \log (x)+6 x \log ^2(x))) \log (\genfrac {}{}{}{}{\log (x)}{2}) \log (\log (\genfrac {}{}{}{}{\log (x)}{2}))}{(3 e^{2 e^x} \log (x)+6 e^{e^x} x \log (x)+3 x^2 \log (x)) \log (\genfrac {}{}{}{}{\log (x)}{2})} \, dx\) [941]
\(\int \genfrac {}{}{}{}{32-96 x+36 x^2-4 x^3+3 e^{\genfrac {}{}{}{}{2}{x}-x} (32-48 x+34 x^2-10 x^3+x^4)}{16-8 x+x^2} \, dx\) [942]
\(\int \genfrac {}{}{}{}{((-5 x^2+x^3) \log (4)+(5-x) \log ^2(4) \log (5-x)+((15 x^2-3 x^3) \log (4)+x \log ^2(4)+(-5+x) \log ^2(4) \log (5-x)) \log (x)) \log (\log (2))}{-5 x^6+x^7+(10 x^4-2 x^5) \log (4) \log (5-x)+(-5 x^2+x^3) \log ^2(4) \log ^2(5-x)} \, dx\) [943]
\(\int \genfrac {}{}{}{}{1}{8} e^{\genfrac {}{}{}{}{1}{8} (-96+24 e^{5 x}-x)} (-1+120 e^{5 x}) \, dx\) [944]
\(\int \genfrac {}{}{}{}{4+x+2 x^2-2 e^{x^2} x^2}{x} \, dx\) [945]
\(\int \genfrac {}{}{}{}{1}{10} e^{-136-x} (1-2 \log (4)+(1-x) \log (x)) \, dx\) [946]
\(\int \genfrac {}{}{}{}{e^{\genfrac {}{}{}{}{3 x^2+5 x^3+2 x^4}{(4+8 x) \log (x^2)}} (-6 x^2-22 x^3-24 x^4-8 x^5+(6 x^2+21 x^3+28 x^4+12 x^5) \log (x^2)+(-8-32 x-32 x^2) \log ^2(x^2))}{(4 x^3+16 x^4+16 x^5) \log ^2(x^2)} \, dx\) [947]
\(\int \genfrac {}{}{}{}{-12+e^x (-3+x)-3 x^4 \log (100)}{x^4 \log (100)} \, dx\) [948]
\(\int \genfrac {}{}{}{}{5+4 e^8-e^8 \log (x)}{5 e^8} \, dx\) [949]
\(\int \genfrac {}{}{}{}{1}{4} e^{1-e^x+x} x (8+4 x-4 e^x x) \, dx\) [950]
\(\int \genfrac {}{}{}{}{e^{-x^2 \log (x^2)+2 x \log (x^2) \log (4+20 x+25 x^2)-\log (x^2) \log ^2(4+20 x+25 x^2)} (-2-5 x-4 x^2-10 x^3+(16 x^2-10 x^3) \log (x^2)+(8 x+20 x^2+(-16 x+10 x^2) \log (x^2)) \log (4+20 x+25 x^2)+(-4-10 x) \log ^2(4+20 x+25 x^2))}{2 x^2+5 x^3} \, dx\) [951]
\(\int \genfrac {}{}{}{}{11 x+10 x^2+(10+10 x) \log (-3 x)}{x} \, dx\) [952]
\(\int \genfrac {}{}{}{}{e^{-\genfrac {}{}{}{}{x^2+(16 x+4 x^2) \log ^2(x)+(64+36 x+4 x^2) \log ^4(x)}{4 \log ^4(x)}} (e^5 (-2 x^2+2 x^3) \log (x-x^2)+e^5 (x^2-x^3) \log (x) \log (x-x^2)+e^5 (-16 x+12 x^2+4 x^3) \log ^2(x) \log (x-x^2)+e^5 (8 x-4 x^2-4 x^3) \log ^3(x) \log (x-x^2)+\log ^5(x) (e^5 (-2+4 x)+e^5 (18 x-14 x^2-4 x^3) \log (x-x^2)))}{(-2 x+2 x^2) \log ^5(x)} \, dx\) [953]
\(\int \genfrac {}{}{}{}{-10 x-10 x \log (\genfrac {}{}{}{}{100}{2401 x^2}) \log (5 \log (\genfrac {}{}{}{}{100}{2401 x^2}))+30 x \log (\genfrac {}{}{}{}{100}{2401 x^2}) \log ^2(5 \log (\genfrac {}{}{}{}{100}{2401 x^2}))}{\log (\genfrac {}{}{}{}{100}{2401 x^2}) \log ^2(5 \log (\genfrac {}{}{}{}{100}{2401 x^2}))} \, dx\) [954]
\(\int \genfrac {}{}{}{}{-108-72 x-48 x^2-24 x^3-4 x^4+e^5 (11 x^2+6 x^3+x^4)}{9 x^2+6 x^3+x^4} \, dx\) [955]
\(\int \genfrac {}{}{}{}{e^5 (-4-x)-40 x+19 x^2+2 x^3+e^5 \log (2)}{-e^5 x-5 x^2+2 x^3+e^5 \log (2)} \, dx\) [956]
\(\int \genfrac {}{}{}{}{14 e^5+63 x+42 x^2+(-63 x-84 x^2) \log (x)-6 e^5 x \log ^2(x)}{7 e^5 x \log ^2(x)} \, dx\) [957]
\(\int \genfrac {}{}{}{}{-18 x^2-6 x^3+e^2 (-18 x-6 x^2)+e^2 (-18 x-6 x^2) \log (x)-15 x \log ^2(x)+(90+30 x) \log ^2(x) \log (3+x)+e^{e^x} (-3 x \log ^2(x)+(18+6 x+e^x (-9 x-3 x^2)) \log ^2(x) \log (3+x))}{(3 x^3+x^4) \log ^2(x)} \, dx\) [958]
\(\int \genfrac {}{}{}{}{32 x+160 \log (3)-32 \log ^2(3)}{-x^4-9 x^3 \log (3)-27 x^2 \log ^2(3)-27 x \log ^3(3)+(-15 x^3 \log (3)+(-90 x^2+3 x^3) \log ^2(3)+(-135 x+18 x^2) \log ^3(3)+27 x \log ^4(3)) \log (x)+(-75 x^2 \log ^2(3)+(-225 x+30 x^2) \log ^3(3)+(90 x-3 x^2) \log ^4(3)-9 x \log ^5(3)) \log ^2(x)+(-125 x \log ^3(3)+75 x \log ^4(3)-15 x \log ^5(3)+x \log ^6(3)) \log ^3(x)} \, dx\) [959]
\(\int \genfrac {}{}{}{}{35 x+8 e^2 x+7 x^2+26 x^3+(-5 x-e^2 x-2 x^2-3 x^3) \log (x)+e^3 x (5-17 x+2 x \log (x))}{x} \, dx\) [960]
\(\int \genfrac {}{}{}{}{-4+4 e^3-4 e^{e^x} x^4+e^{e^x} (40 x^3+10 e^x x^4) \log (1-e^3+e^{e^x} x^4)}{5-5 e^3+5 e^{e^x} x^4} \, dx\) [961]
\(\int \genfrac {}{}{}{}{10 x+2 x^2+2 \sqrt [3]{e} x^2+4 e^{2/3} x^2+(-10 x-x^2+\sqrt [3]{e} (-20 x-4 x^2)) \log (x^2)+(25+10 x+x^2) \log ^2(x^2)}{4 e^{2/3} x^2+\sqrt [3]{e} (-20 x-4 x^2) \log (x^2)+(25+10 x+x^2) \log ^2(x^2)} \, dx\) [962]
\(\int \genfrac {}{}{}{}{-50 x+10 e^3 x+32000 x^4-38400 x^5+16800 x^6-3200 x^7+225 x^8}{e^3} \, dx\) [963]
\(\int \genfrac {}{}{}{}{e^{2 x} (-16-24 x-12 x^2+4 x^3)}{128+128 x+8 x^2-20 x^3-2 x^4+x^5} \, dx\) [964]
\(\int (36-24 e^5+18 x+(72+32 e^{10}+e^5 (-96-80 x)+120 x+36 x^2) \log (4)+(72 x+32 e^{10} x+72 x^2+16 x^3+e^5 (-96 x-48 x^2)) \log ^2(4)+e^{2 x} (2 e^{10}+e^{10} (2+4 x) \log (4)+e^{10} (2 x+2 x^2) \log ^2(4))+e^x (8 e^{10}+e^5 (-18-6 x)+(e^{10} (16+16 x)+e^5 (-24-44 x-10 x^2)) \log (4)+(e^{10} (16 x+8 x^2)+e^5 (-24 x-24 x^2-4 x^3)) \log ^2(4))) \, dx\) [965]
\(\int \genfrac {}{}{}{}{(-4 e^x x+e^{x+x^2} (4 x+8 x^2)) \log ^3(e^x-e^{x+x^2})+(4 e^x-4 e^{x+x^2}) \log ^4(e^x-e^{x+x^2})}{-e^x x^5+e^{x+x^2} x^5} \, dx\) [966]
\(\int \genfrac {}{}{}{}{-120+e^{2 x} (-100-80 x-16 x^2)+e^x (220+116 x+8 x^2)}{36-60 x+25 x^2+e^x (-60+86 x-6 x^2-20 x^3)+e^{2 x} (25-30 x-11 x^2+12 x^3+4 x^4)} \, dx\) [967]
\(\int \genfrac {}{}{}{}{1}{25} (10 x+16 x^3+e^{4 x} (6 x^5+4 x^6)+12 x^2 \log (2)+2 x \log ^2(2)+e^{2 x} (-20 x^4-8 x^5+(-8 x^3-4 x^4) \log (2))) \, dx\) [968]
\(\int \genfrac {}{}{}{}{e^x (2+6 x-x^2)+2 e^x x \log (x)}{2 e^3 x} \, dx\) [969]
\(\int \genfrac {}{}{}{}{-4 x^2+4900 x^5-125 x^6+(196-8 x+6125 x^4-150 x^5) \log (5)}{x^2+2 x \log (5)+\log ^2(5)} \, dx\) [970]
\(\int (131+44 x+2 e^{\genfrac {}{}{}{}{1}{3} (1+3 x^2)} x+3 x^2) \, dx\) [971]
\(\int \genfrac {}{}{}{}{15-15 x+30 x^2+e^{2 x} (-3-3 x-6 x^2+6 x^3)}{1+x-2 x^2-2 x^3+x^4+x^5} \, dx\) [972]
\(\int \genfrac {}{}{}{}{8+e^{21 x} (-16 x-152 x^2+336 x^3)}{1-4 x+4 x^2} \, dx\) [973]
\(\int \genfrac {}{}{}{}{-17-10 x+9 x^2}{9-17 x-5 x^2+3 x^3} \, dx\) [974]
\(\int e^e (2+e^4) \, dx\) [975]
\(\int \genfrac {}{}{}{}{-24+8 e^6+e^{2 x}+2 x-x^2}{24-8 e^6+e^{2 x}+x^2} \, dx\) [976]
\(\int \genfrac {}{}{}{}{6+6 x^3-6 \log (x)}{x^2} \, dx\) [977]
\(\int \genfrac {}{}{}{}{80+16 x^2+e^{2 x} x^4+e^x (40 x+22 x^2+10 x^3)}{16 x^2+8 e^x x^3+e^{2 x} x^4} \, dx\) [978]
\(\int \genfrac {}{}{}{}{5+20 x+19 x^2+6 x^3+e (-1-4 x-2 x^2)}{-5 x-8 x^2-3 x^3+e (x+x^2)} \, dx\) [979]
\(\int \genfrac {}{}{}{}{-4 x \log (x)+(e^2+x) \log (\genfrac {}{}{}{}{3}{e^4+2 e^2 x+x^2})}{(e^2 x+x^2) \log (x) \log (\genfrac {}{}{}{}{3}{e^4+2 e^2 x+x^2}) \log (\genfrac {}{}{}{}{1}{5} \log (x) \log ^2(\genfrac {}{}{}{}{3}{e^4+2 e^2 x+x^2}))} \, dx\) [980]
\(\int \genfrac {}{}{}{}{-400+24920 x+4996 x^2+250 x^3+(80-4992 x-500 x^2) \log (4)+(-4+250 x) \log ^2(4)+e^x (-10+490 x+274 x^2+25 x^3+(1-49 x-25 x^2) \log (4))}{100+20 x+x^2+(-20-2 x) \log (4)+\log ^2(4)} \, dx\) [981]
\(\int \genfrac {}{}{}{}{-31500 x-11520 x^2-900 x^3+(10800 x+1800 x^2) \log (3)-900 x \log ^2(3)+e^x (11250 x-1350 x^3-180 x^4+(-4500 x+900 x^2+360 x^3) \log (3)+(450 x-180 x^2) \log ^2(3))+(11250 x+4500 x^2+450 x^3+(-4500 x-900 x^2) \log (3)+450 x \log ^2(3)) \log (5)+(12600 x+4464 x^2+360 x^3+(-4320 x-720 x^2) \log (3)+360 x \log ^2(3)+e^x (-4500 x-900 x^2+180 x^3+36 x^4+(1800 x-72 x^3) \log (3)+(-180 x+36 x^2) \log ^2(3))+(-4500 x-1800 x^2-180 x^3+(1800 x+360 x^2) \log (3)-180 x \log ^2(3)) \log (5)) \log (\genfrac {}{}{}{}{196+56 x+4 x^2+(-56-8 x) \log (3)+4 \log ^2(3)+e^{2 x} (25+10 x+x^2+(-10-2 x) \log (3)+\log ^2(3))+(-140-48 x-4 x^2+(48+8 x) \log (3)-4 \log ^2(3)) \log (5)+(25+10 x+x^2+(-10-2 x) \log (3)+\log ^2(3)) \log ^2(5)+e^x (-140-48 x-4 x^2+(48+8 x) \log (3)-4 \log ^2(3)+(50+20 x+2 x^2+(-20-4 x) \log (3)+2 \log ^2(3)) \log (5))}{25+10 x+x^2+(-10-2 x) \log (3)+\log ^2(3)})+(-1260 x-432 x^2-36 x^3+(432 x+72 x^2) \log (3)-36 x \log ^2(3)+e^x (450 x+180 x^2+18 x^3+(-180 x-36 x^2) \log (3)+18 x \log ^2(3))+(450 x+180 x^2+18 x^3+(-180 x-36 x^2) \log (3)+18 x \log ^2(3)) \log (5)) \log ^2(\genfrac {}{}{}{}{196+56 x+4 x^2+(-56-8 x) \log (3)+4 \log ^2(3)+e^{2 x} (25+10 x+x^2+(-10-2 x) \log (3)+\log ^2(3))+(-140-48 x-4 x^2+(48+8 x) \log (3)-4 \log ^2(3)) \log (5)+(25+10 x+x^2+(-10-2 x) \log (3)+\log ^2(3)) \log ^2(5)+e^x (-140-48 x-4 x^2+(48+8 x) \log (3)-4 \log ^2(3)+(50+20 x+2 x^2+(-20-4 x) \log (3)+2 \log ^2(3)) \log (5))}{25+10 x+x^2+(-10-2 x) \log (3)+\log ^2(3)})}{-70-24 x-2 x^2+(24+4 x) \log (3)-2 \log ^2(3)+e^x (25+10 x+x^2+(-10-2 x) \log (3)+\log ^2(3))+(25+10 x+x^2+(-10-2 x) \log (3)+\log ^2(3)) \log (5)} \, dx\) [982]
\(\int \genfrac {}{}{}{}{-1+4 x+x^2-x \log (x)}{-9 x^3-3 x^4+3 x^3 \log (x)+(-18 x^2-6 x^3+6 x^2 \log (x)) \log (\genfrac {}{}{}{}{1}{5} (3+x-\log (x)))+(-9 x-3 x^2+3 x \log (x)) \log ^2(\genfrac {}{}{}{}{1}{5} (3+x-\log (x)))} \, dx\) [983]
\(\int (18+2 x+e^3 (-18-42 x-6 x^2)+e^6 (4 x+10 x^2+4 x^3)+(e^3 (18+4 x)+e^6 (-6 x-6 x^2)) \log (x)+2 e^6 x \log ^2(x)) \, dx\) [984]
\(\int (98-196 x+e^{4 x^2} (98+784 x^2)) \, dx\) [985]
\(\int -\genfrac {}{}{}{}{2 e^{\genfrac {}{}{}{}{2 x}{e^{10} (25+5 x)+e^5 (-50-10 x) \log (4)+(25+5 x) \log ^2(4)}}}{e^{10} (25+10 x+x^2)+e^5 (-50-20 x-2 x^2) \log (4)+(25+10 x+x^2) \log ^2(4)} \, dx\) [986]
\(\int \genfrac {}{}{}{}{-8 x^4-2 x^5+(x+x^2) \log (1+x)+(-2-3 x-x^2) \log ^2(1+x)}{2 x^5} \, dx\) [987]
\(\int e^{-x-3 x^3+3 x \log (x)+2 x \log (3 x)-x \log ^2(3 x)} (4-9 x^2+3 \log (x)-\log ^2(3 x)) \, dx\) [988]
\(\int \genfrac {}{}{}{}{e^{-x} (2048 x-128 x^2+(1920 x^2-128 x^3) \log (x)+(8192+7168 x-256 x^2-288 x^3+33 x^4-x^5) \log ^2(x))}{(256 x^2-32 x^3+x^4) \log ^2(x)} \, dx\) [989]
\(\int \genfrac {}{}{}{}{\genfrac {}{}{}{}{48}{e}+12 e^3 x+9 x^5}{4 x^3} \, dx\) [990]
\(\int \genfrac {}{}{}{}{e^{\genfrac {}{}{}{}{-1+25 x+16 x^3+10 e^x x^3+100 x^4}{10 x^3+5 e^x x^3}} (6-100 x+200 x^4+e^x (3-49 x-25 x^2+104 x^4-100 x^5))}{20 x^4+20 e^x x^4+5 e^{2 x} x^4} \, dx\) [991]
\(\int 3 e^x \, dx\) [992]
\(\int \genfrac {}{}{}{}{-2+25 i \pi }{-1+25 i \pi } \, dx\) [993]
\(\int (-20-e-10 x) \, dx\) [994]
\(\int (3 e^x-8 x^7) \, dx\) [995]
\(\int \genfrac {}{}{}{}{1}{25} (25-15 e x^2-24 x^3) \, dx\) [996]
\(\int \genfrac {}{}{}{}{-6-12 e^{2 x}+x+e^{e^2+x} (-5+12 e^{2 x}+x)}{-5+12 e^{2 x}+x} \, dx\) [997]
\(\int \genfrac {}{}{}{}{e^x (-16+32 x-18 x^2)+e^x (32 x-32 x^2) \log (\genfrac {}{}{}{}{x}{5})+(e^x x^3+e^x (16 x-32 x^2+16 x^3) \log (\genfrac {}{}{}{}{x}{5})) \log (\genfrac {}{}{}{}{1}{16} (x^2+(16-32 x+16 x^2) \log (\genfrac {}{}{}{}{x}{5})))}{(x^3+(16 x-32 x^2+16 x^3) \log (\genfrac {}{}{}{}{x}{5})) \log ^2(\genfrac {}{}{}{}{1}{16} (x^2+(16-32 x+16 x^2) \log (\genfrac {}{}{}{}{x}{5})))} \, dx\) [998]
\(\int \genfrac {}{}{}{}{-5+(8 e x-8 x^2) \log (x)+(8 e x-12 x^2) \log ^2(x)}{-5 x+(4 e x^2-4 x^3) \log ^2(x)} \, dx\) [999]
\(\int \genfrac {}{}{}{}{e^{\genfrac {}{}{}{}{16 \log ^4(2)+24 \log ^2(2) \log ^2(x)+9 \log ^4(x)}{\log ^4(x)}} (-320 x \log ^4(2)-240 x \log ^2(2) \log ^2(x)+5 x \log ^5(x)+(-64 \log ^4(2)-48 \log ^2(2) \log ^2(x)) \log (\log (5)))}{2 x \log ^5(x)} \, dx\) [1000]