\(\int \frac {1}{a^5+x^5} \, dx\) [136]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [C] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 9, antiderivative size = 201 \[ \int \frac {1}{a^5+x^5} \, dx=-\frac {\sqrt {\frac {1}{2} \left (5+\sqrt {5}\right )} \arctan \left (\frac {\left (1-\sqrt {5}\right ) a-4 x}{\sqrt {2 \left (5+\sqrt {5}\right )} a}\right )}{5 a^4}-\frac {\sqrt {\frac {1}{2} \left (5-\sqrt {5}\right )} \arctan \left (\frac {\sqrt {\frac {1}{10} \left (5+\sqrt {5}\right )} \left (\left (1+\sqrt {5}\right ) a-4 x\right )}{2 a}\right )}{5 a^4}+\frac {\log (a+x)}{5 a^4}-\frac {\left (1-\sqrt {5}\right ) \log \left (a^2-\frac {1}{2} \left (1-\sqrt {5}\right ) a x+x^2\right )}{20 a^4}-\frac {\left (1+\sqrt {5}\right ) \log \left (a^2-\frac {1}{2} \left (1+\sqrt {5}\right ) a x+x^2\right )}{20 a^4} \] Output:

1/5*ln(a+x)/a^4-1/20*ln(a^2+x^2-1/2*a*x*(-5^(1/2)+1))*(-5^(1/2)+1)/a^4-1/2 
0*ln(a^2+x^2-1/2*a*x*(5^(1/2)+1))*(5^(1/2)+1)/a^4-1/10*arctan(1/20*(-4*x+a 
*(5^(1/2)+1))*(50+10*5^(1/2))^(1/2)/a)*(10-2*5^(1/2))^(1/2)/a^4-1/10*arcta 
n((-4*x+a*(-5^(1/2)+1))/a/(10+2*5^(1/2))^(1/2))*(10+2*5^(1/2))^(1/2)/a^4
 

Mathematica [A] (verified)

Time = 0.10 (sec) , antiderivative size = 204, normalized size of antiderivative = 1.01 \[ \int \frac {1}{a^5+x^5} \, dx=-\frac {-2 \sqrt {2 \left (5+\sqrt {5}\right )} \arctan \left (\frac {\left (-1+\sqrt {5}\right ) a+4 x}{\sqrt {2 \left (5+\sqrt {5}\right )} a}\right )-2 \sqrt {10-2 \sqrt {5}} \arctan \left (\frac {-\left (\left (1+\sqrt {5}\right ) a\right )+4 x}{\sqrt {10-2 \sqrt {5}} a}\right )-4 \log (a+x)+\log \left (a^2+\frac {1}{2} \left (-1+\sqrt {5}\right ) a x+x^2\right )-\sqrt {5} \log \left (a^2+\frac {1}{2} \left (-1+\sqrt {5}\right ) a x+x^2\right )+\log \left (a^2-\frac {1}{2} \left (1+\sqrt {5}\right ) a x+x^2\right )+\sqrt {5} \log \left (a^2-\frac {1}{2} \left (1+\sqrt {5}\right ) a x+x^2\right )}{20 a^4} \] Input:

Integrate[(a^5 + x^5)^(-1),x]
 

Output:

-1/20*(-2*Sqrt[2*(5 + Sqrt[5])]*ArcTan[((-1 + Sqrt[5])*a + 4*x)/(Sqrt[2*(5 
 + Sqrt[5])]*a)] - 2*Sqrt[10 - 2*Sqrt[5]]*ArcTan[(-((1 + Sqrt[5])*a) + 4*x 
)/(Sqrt[10 - 2*Sqrt[5]]*a)] - 4*Log[a + x] + Log[a^2 + ((-1 + Sqrt[5])*a*x 
)/2 + x^2] - Sqrt[5]*Log[a^2 + ((-1 + Sqrt[5])*a*x)/2 + x^2] + Log[a^2 - ( 
(1 + Sqrt[5])*a*x)/2 + x^2] + Sqrt[5]*Log[a^2 - ((1 + Sqrt[5])*a*x)/2 + x^ 
2])/a^4
 

Rubi [A] (verified)

Time = 0.42 (sec) , antiderivative size = 202, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.889, Rules used = {751, 16, 27, 1142, 25, 1083, 217, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{a^5+x^5} \, dx\)

\(\Big \downarrow \) 751

\(\displaystyle \frac {\int \frac {1}{a+x}dx}{5 a^4}+\frac {2 \int \frac {4 a-\left (1-\sqrt {5}\right ) x}{2 \left (2 a^2-\left (1-\sqrt {5}\right ) x a+2 x^2\right )}dx}{5 a^4}+\frac {2 \int \frac {4 a-\left (1+\sqrt {5}\right ) x}{2 \left (2 a^2-\left (1+\sqrt {5}\right ) x a+2 x^2\right )}dx}{5 a^4}\)

\(\Big \downarrow \) 16

\(\displaystyle \frac {2 \int \frac {4 a-\left (1-\sqrt {5}\right ) x}{2 \left (2 a^2-\left (1-\sqrt {5}\right ) x a+2 x^2\right )}dx}{5 a^4}+\frac {2 \int \frac {4 a-\left (1+\sqrt {5}\right ) x}{2 \left (2 a^2-\left (1+\sqrt {5}\right ) x a+2 x^2\right )}dx}{5 a^4}+\frac {\log (a+x)}{5 a^4}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {4 a-\left (1-\sqrt {5}\right ) x}{2 a^2-\left (1-\sqrt {5}\right ) x a+2 x^2}dx}{5 a^4}+\frac {\int \frac {4 a-\left (1+\sqrt {5}\right ) x}{2 a^2-\left (1+\sqrt {5}\right ) x a+2 x^2}dx}{5 a^4}+\frac {\log (a+x)}{5 a^4}\)

\(\Big \downarrow \) 1142

\(\displaystyle \frac {\frac {1}{2} \left (5+\sqrt {5}\right ) a \int \frac {1}{2 a^2-\left (1-\sqrt {5}\right ) x a+2 x^2}dx-\frac {1}{4} \left (1-\sqrt {5}\right ) \int -\frac {\left (1-\sqrt {5}\right ) a-4 x}{2 a^2-\left (1-\sqrt {5}\right ) x a+2 x^2}dx}{5 a^4}+\frac {\frac {1}{2} \left (5-\sqrt {5}\right ) a \int \frac {1}{2 a^2-\left (1+\sqrt {5}\right ) x a+2 x^2}dx-\frac {1}{4} \left (1+\sqrt {5}\right ) \int -\frac {\left (1+\sqrt {5}\right ) a-4 x}{2 a^2-\left (1+\sqrt {5}\right ) x a+2 x^2}dx}{5 a^4}+\frac {\log (a+x)}{5 a^4}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\frac {1}{2} \left (5+\sqrt {5}\right ) a \int \frac {1}{2 a^2-\left (1-\sqrt {5}\right ) x a+2 x^2}dx+\frac {1}{4} \left (1-\sqrt {5}\right ) \int \frac {\left (1-\sqrt {5}\right ) a-4 x}{2 a^2-\left (1-\sqrt {5}\right ) x a+2 x^2}dx}{5 a^4}+\frac {\frac {1}{2} \left (5-\sqrt {5}\right ) a \int \frac {1}{2 a^2-\left (1+\sqrt {5}\right ) x a+2 x^2}dx+\frac {1}{4} \left (1+\sqrt {5}\right ) \int \frac {\left (1+\sqrt {5}\right ) a-4 x}{2 a^2-\left (1+\sqrt {5}\right ) x a+2 x^2}dx}{5 a^4}+\frac {\log (a+x)}{5 a^4}\)

\(\Big \downarrow \) 1083

\(\displaystyle \frac {\frac {1}{4} \left (1-\sqrt {5}\right ) \int \frac {\left (1-\sqrt {5}\right ) a-4 x}{2 a^2-\left (1-\sqrt {5}\right ) x a+2 x^2}dx-\left (5+\sqrt {5}\right ) a \int \frac {1}{-2 \left (5+\sqrt {5}\right ) a^2-\left (4 x-\left (1-\sqrt {5}\right ) a\right )^2}d\left (4 x-\left (1-\sqrt {5}\right ) a\right )}{5 a^4}+\frac {\frac {1}{4} \left (1+\sqrt {5}\right ) \int \frac {\left (1+\sqrt {5}\right ) a-4 x}{2 a^2-\left (1+\sqrt {5}\right ) x a+2 x^2}dx-\left (5-\sqrt {5}\right ) a \int \frac {1}{-2 \left (5-\sqrt {5}\right ) a^2-\left (4 x-\left (1+\sqrt {5}\right ) a\right )^2}d\left (4 x-\left (1+\sqrt {5}\right ) a\right )}{5 a^4}+\frac {\log (a+x)}{5 a^4}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {\frac {1}{4} \left (1-\sqrt {5}\right ) \int \frac {\left (1-\sqrt {5}\right ) a-4 x}{2 a^2-\left (1-\sqrt {5}\right ) x a+2 x^2}dx+\sqrt {\frac {1}{2} \left (5+\sqrt {5}\right )} \arctan \left (\frac {4 x-\left (1-\sqrt {5}\right ) a}{\sqrt {2 \left (5+\sqrt {5}\right )} a}\right )}{5 a^4}+\frac {\frac {1}{4} \left (1+\sqrt {5}\right ) \int \frac {\left (1+\sqrt {5}\right ) a-4 x}{2 a^2-\left (1+\sqrt {5}\right ) x a+2 x^2}dx+\sqrt {\frac {1}{2} \left (5-\sqrt {5}\right )} \arctan \left (\frac {4 x-\left (1+\sqrt {5}\right ) a}{\sqrt {2 \left (5-\sqrt {5}\right )} a}\right )}{5 a^4}+\frac {\log (a+x)}{5 a^4}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {\log (a+x)}{5 a^4}+\frac {\sqrt {\frac {1}{2} \left (5+\sqrt {5}\right )} \arctan \left (\frac {4 x-\left (1-\sqrt {5}\right ) a}{\sqrt {2 \left (5+\sqrt {5}\right )} a}\right )-\frac {1}{4} \left (1-\sqrt {5}\right ) \log \left (2 a^2-\left (1-\sqrt {5}\right ) a x+2 x^2\right )}{5 a^4}+\frac {\sqrt {\frac {1}{2} \left (5-\sqrt {5}\right )} \arctan \left (\frac {4 x-\left (1+\sqrt {5}\right ) a}{\sqrt {2 \left (5-\sqrt {5}\right )} a}\right )-\frac {1}{4} \left (1+\sqrt {5}\right ) \log \left (2 a^2-\left (1+\sqrt {5}\right ) a x+2 x^2\right )}{5 a^4}\)

Input:

Int[(a^5 + x^5)^(-1),x]
 

Output:

Log[a + x]/(5*a^4) + (Sqrt[(5 + Sqrt[5])/2]*ArcTan[(-((1 - Sqrt[5])*a) + 4 
*x)/(Sqrt[2*(5 + Sqrt[5])]*a)] - ((1 - Sqrt[5])*Log[2*a^2 - (1 - Sqrt[5])* 
a*x + 2*x^2])/4)/(5*a^4) + (Sqrt[(5 - Sqrt[5])/2]*ArcTan[(-((1 + Sqrt[5])* 
a) + 4*x)/(Sqrt[2*(5 - Sqrt[5])]*a)] - ((1 + Sqrt[5])*Log[2*a^2 - (1 + Sqr 
t[5])*a*x + 2*x^2])/4)/(5*a^4)
 

Defintions of rubi rules used

rule 16
Int[(c_.)/((a_.) + (b_.)*(x_)), x_Symbol] :> Simp[c*(Log[RemoveContent[a + 
b*x, x]]/b), x] /; FreeQ[{a, b, c}, x]
 

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 751
Int[((a_) + (b_.)*(x_)^(n_))^(-1), x_Symbol] :> Module[{r = Numerator[Rt[a/ 
b, n]], s = Denominator[Rt[a/b, n]], k, u}, Simp[u = Int[(r - s*Cos[(2*k - 
1)*(Pi/n)]*x)/(r^2 - 2*r*s*Cos[(2*k - 1)*(Pi/n)]*x + s^2*x^2), x]; r/(a*n) 
  Int[1/(r + s*x), x] + 2*(r/(a*n))   Sum[u, {k, 1, (n - 1)/2}], x]] /; Fre 
eQ[{a, b}, x] && IGtQ[(n - 3)/2, 0] && PosQ[a/b]
 

rule 1083
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Simp[-2   Subst[I 
nt[1/Simp[b^2 - 4*a*c - x^2, x], x], x, b + 2*c*x], x] /; FreeQ[{a, b, c}, 
x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1142
Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[(2*c*d - b*e)/(2*c)   Int[1/(a + b*x + c*x^2), x], x] + Simp[e/(2*c) 
Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.12 (sec) , antiderivative size = 55, normalized size of antiderivative = 0.27

method result size
risch \(\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (a^{16} \textit {\_Z}^{4}+a^{12} \textit {\_Z}^{3}+a^{8} \textit {\_Z}^{2}+a^{4} \textit {\_Z} +1\right )}{\sum }\textit {\_R} \ln \left (\textit {\_R} \,a^{5}+x \right )\right )}{5}+\frac {\ln \left (a +x \right )}{5 a^{4}}\) \(55\)
default \(\frac {\ln \left (a +x \right )}{5 a^{4}}+\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{4}-a \,\textit {\_Z}^{3}+\textit {\_Z}^{2} a^{2}-a^{3} \textit {\_Z} +a^{4}\right )}{\sum }\frac {\left (-\textit {\_R}^{3}+2 \textit {\_R}^{2} a -3 \textit {\_R} \,a^{2}+4 a^{3}\right ) \ln \left (x -\textit {\_R} \right )}{4 \textit {\_R}^{3}-3 \textit {\_R}^{2} a +2 \textit {\_R} \,a^{2}-a^{3}}}{5 a^{4}}\) \(101\)

Input:

int(1/(a^5+x^5),x,method=_RETURNVERBOSE)
 

Output:

1/5*sum(_R*ln(_R*a^5+x),_R=RootOf(_Z^4*a^16+_Z^3*a^12+_Z^2*a^8+_Z*a^4+1))+ 
1/5*ln(a+x)/a^4
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.72 (sec) , antiderivative size = 11094, normalized size of antiderivative = 55.19 \[ \int \frac {1}{a^5+x^5} \, dx=\text {Too large to display} \] Input:

integrate(1/(a^5+x^5),x, algorithm="fricas")
 

Output:

Too large to include
 

Sympy [A] (verification not implemented)

Time = 0.06 (sec) , antiderivative size = 39, normalized size of antiderivative = 0.19 \[ \int \frac {1}{a^5+x^5} \, dx=\frac {\frac {\log {\left (a + x \right )}}{5} + \operatorname {RootSum} {\left (625 t^{4} + 125 t^{3} + 25 t^{2} + 5 t + 1, \left ( t \mapsto t \log {\left (5 t a + x \right )} \right )\right )}}{a^{4}} \] Input:

integrate(1/(a**5+x**5),x)
 

Output:

(log(a + x)/5 + RootSum(625*_t**4 + 125*_t**3 + 25*_t**2 + 5*_t + 1, Lambd 
a(_t, _t*log(5*_t*a + x))))/a**4
 

Maxima [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 180, normalized size of antiderivative = 0.90 \[ \int \frac {1}{a^5+x^5} \, dx=\frac {\sqrt {5} {\left (\sqrt {5} + 1\right )} \arctan \left (\frac {a {\left (\sqrt {5} - 1\right )} + 4 \, x}{a \sqrt {2 \, \sqrt {5} + 10}}\right )}{5 \, a^{4} \sqrt {2 \, \sqrt {5} + 10}} + \frac {\sqrt {5} {\left (\sqrt {5} - 1\right )} \arctan \left (-\frac {a {\left (\sqrt {5} + 1\right )} - 4 \, x}{a \sqrt {-2 \, \sqrt {5} + 10}}\right )}{5 \, a^{4} \sqrt {-2 \, \sqrt {5} + 10}} - \frac {{\left (\sqrt {5} + 3\right )} \log \left (-a x {\left (\sqrt {5} + 1\right )} + 2 \, a^{2} + 2 \, x^{2}\right )}{10 \, a^{4} {\left (\sqrt {5} + 1\right )}} - \frac {{\left (\sqrt {5} - 3\right )} \log \left (a x {\left (\sqrt {5} - 1\right )} + 2 \, a^{2} + 2 \, x^{2}\right )}{10 \, a^{4} {\left (\sqrt {5} - 1\right )}} + \frac {\log \left (a + x\right )}{5 \, a^{4}} \] Input:

integrate(1/(a^5+x^5),x, algorithm="maxima")
 

Output:

1/5*sqrt(5)*(sqrt(5) + 1)*arctan((a*(sqrt(5) - 1) + 4*x)/(a*sqrt(2*sqrt(5) 
 + 10)))/(a^4*sqrt(2*sqrt(5) + 10)) + 1/5*sqrt(5)*(sqrt(5) - 1)*arctan(-(a 
*(sqrt(5) + 1) - 4*x)/(a*sqrt(-2*sqrt(5) + 10)))/(a^4*sqrt(-2*sqrt(5) + 10 
)) - 1/10*(sqrt(5) + 3)*log(-a*x*(sqrt(5) + 1) + 2*a^2 + 2*x^2)/(a^4*(sqrt 
(5) + 1)) - 1/10*(sqrt(5) - 3)*log(a*x*(sqrt(5) - 1) + 2*a^2 + 2*x^2)/(a^4 
*(sqrt(5) - 1)) + 1/5*log(a + x)/a^4
 

Giac [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 177, normalized size of antiderivative = 0.88 \[ \int \frac {1}{a^5+x^5} \, dx=\frac {\sqrt {2 \, \sqrt {5} + 10} \arctan \left (\frac {a {\left (\sqrt {5} - 1\right )} + 4 \, x}{a \sqrt {2 \, \sqrt {5} + 10}}\right )}{10 \, a^{4}} + \frac {\sqrt {-2 \, \sqrt {5} + 10} \arctan \left (-\frac {a {\left (\sqrt {5} + 1\right )} - 4 \, x}{a \sqrt {-2 \, \sqrt {5} + 10}}\right )}{10 \, a^{4}} - \frac {\sqrt {5} \log \left (a^{2} - \frac {1}{2} \, {\left (\sqrt {5} a + a\right )} x + x^{2}\right )}{20 \, a^{4}} + \frac {\sqrt {5} \log \left (a^{2} + \frac {1}{2} \, {\left (\sqrt {5} a - a\right )} x + x^{2}\right )}{20 \, a^{4}} - \frac {\log \left ({\left | a^{4} - a^{3} x + a^{2} x^{2} - a x^{3} + x^{4} \right |}\right )}{20 \, a^{4}} + \frac {\log \left ({\left | a + x \right |}\right )}{5 \, a^{4}} \] Input:

integrate(1/(a^5+x^5),x, algorithm="giac")
 

Output:

1/10*sqrt(2*sqrt(5) + 10)*arctan((a*(sqrt(5) - 1) + 4*x)/(a*sqrt(2*sqrt(5) 
 + 10)))/a^4 + 1/10*sqrt(-2*sqrt(5) + 10)*arctan(-(a*(sqrt(5) + 1) - 4*x)/ 
(a*sqrt(-2*sqrt(5) + 10)))/a^4 - 1/20*sqrt(5)*log(a^2 - 1/2*(sqrt(5)*a + a 
)*x + x^2)/a^4 + 1/20*sqrt(5)*log(a^2 + 1/2*(sqrt(5)*a - a)*x + x^2)/a^4 - 
 1/20*log(abs(a^4 - a^3*x + a^2*x^2 - a*x^3 + x^4))/a^4 + 1/5*log(abs(a + 
x))/a^4
 

Mupad [B] (verification not implemented)

Time = 0.33 (sec) , antiderivative size = 174, normalized size of antiderivative = 0.87 \[ \int \frac {1}{a^5+x^5} \, dx=\frac {\ln \left (a+x\right )}{5\,a^4}-\frac {\ln \left (x-\frac {a\,\left (\sqrt {5}-\sqrt {2\,\sqrt {5}-10}+1\right )}{4}\right )\,\left (\sqrt {5}-\sqrt {2\,\sqrt {5}-10}+1\right )}{20\,a^4}-\frac {\ln \left (x-\frac {a\,\left (\sqrt {-2\,\sqrt {5}-10}-\sqrt {5}+1\right )}{4}\right )\,\left (\sqrt {-2\,\sqrt {5}-10}-\sqrt {5}+1\right )}{20\,a^4}+\frac {\ln \left (x+\frac {a\,\left (\sqrt {5}+\sqrt {-2\,\sqrt {5}-10}-1\right )}{4}\right )\,\left (\sqrt {5}+\sqrt {-2\,\sqrt {5}-10}-1\right )}{20\,a^4}-\frac {\ln \left (x-\frac {a\,\left (\sqrt {5}+\sqrt {2\,\sqrt {5}-10}+1\right )}{4}\right )\,\left (\sqrt {5}+\sqrt {2\,\sqrt {5}-10}+1\right )}{20\,a^4} \] Input:

int(1/(a^5 + x^5),x)
 

Output:

log(a + x)/(5*a^4) - (log(x - (a*(5^(1/2) - (2*5^(1/2) - 10)^(1/2) + 1))/4 
)*(5^(1/2) - (2*5^(1/2) - 10)^(1/2) + 1))/(20*a^4) - (log(x - (a*((- 2*5^( 
1/2) - 10)^(1/2) - 5^(1/2) + 1))/4)*((- 2*5^(1/2) - 10)^(1/2) - 5^(1/2) + 
1))/(20*a^4) + (log(x + (a*(5^(1/2) + (- 2*5^(1/2) - 10)^(1/2) - 1))/4)*(5 
^(1/2) + (- 2*5^(1/2) - 10)^(1/2) - 1))/(20*a^4) - (log(x - (a*(5^(1/2) + 
(2*5^(1/2) - 10)^(1/2) + 1))/4)*(5^(1/2) + (2*5^(1/2) - 10)^(1/2) + 1))/(2 
0*a^4)
 

Reduce [F]

\[ \int \frac {1}{a^5+x^5} \, dx=\int \frac {1}{a^{5}+x^{5}}d x \] Input:

int(1/(a^5+x^5),x)
 

Output:

int(1/(a**5 + x**5),x)