\(\int \frac {x}{a^5+x^5} \, dx\) [137]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [C] (verified)
Fricas [C] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [A] (verification not implemented)
Giac [A] (verification not implemented)
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 11, antiderivative size = 201 \[ \int \frac {x}{a^5+x^5} \, dx=\frac {\sqrt {\frac {1}{2} \left (5-\sqrt {5}\right )} \arctan \left (\frac {\left (1-\sqrt {5}\right ) a-4 x}{\sqrt {2 \left (5+\sqrt {5}\right )} a}\right )}{5 a^3}-\frac {\sqrt {\frac {1}{2} \left (5+\sqrt {5}\right )} \arctan \left (\frac {\sqrt {\frac {1}{10} \left (5+\sqrt {5}\right )} \left (\left (1+\sqrt {5}\right ) a-4 x\right )}{2 a}\right )}{5 a^3}-\frac {\log (a+x)}{5 a^3}+\frac {\left (1+\sqrt {5}\right ) \log \left (a^2-\frac {1}{2} \left (1-\sqrt {5}\right ) a x+x^2\right )}{20 a^3}+\frac {\left (1-\sqrt {5}\right ) \log \left (a^2-\frac {1}{2} \left (1+\sqrt {5}\right ) a x+x^2\right )}{20 a^3} \] Output:

-1/5*ln(a+x)/a^3+1/20*ln(a^2+x^2-1/2*a*x*(5^(1/2)+1))*(-5^(1/2)+1)/a^3+1/2 
0*ln(a^2+x^2-1/2*a*x*(-5^(1/2)+1))*(5^(1/2)+1)/a^3+1/10*arctan((-4*x+a*(-5 
^(1/2)+1))/a/(10+2*5^(1/2))^(1/2))*(10-2*5^(1/2))^(1/2)/a^3-1/10*arctan(1/ 
20*(-4*x+a*(5^(1/2)+1))*(50+10*5^(1/2))^(1/2)/a)*(10+2*5^(1/2))^(1/2)/a^3
 

Mathematica [A] (verified)

Time = 0.04 (sec) , antiderivative size = 204, normalized size of antiderivative = 1.01 \[ \int \frac {x}{a^5+x^5} \, dx=\frac {-2 \sqrt {10-2 \sqrt {5}} \arctan \left (\frac {\left (-1+\sqrt {5}\right ) a+4 x}{\sqrt {2 \left (5+\sqrt {5}\right )} a}\right )+2 \sqrt {2 \left (5+\sqrt {5}\right )} \arctan \left (\frac {-\left (\left (1+\sqrt {5}\right ) a\right )+4 x}{\sqrt {10-2 \sqrt {5}} a}\right )-4 \log (a+x)+\log \left (a^2+\frac {1}{2} \left (-1+\sqrt {5}\right ) a x+x^2\right )+\sqrt {5} \log \left (a^2+\frac {1}{2} \left (-1+\sqrt {5}\right ) a x+x^2\right )+\log \left (a^2-\frac {1}{2} \left (1+\sqrt {5}\right ) a x+x^2\right )-\sqrt {5} \log \left (a^2-\frac {1}{2} \left (1+\sqrt {5}\right ) a x+x^2\right )}{20 a^3} \] Input:

Integrate[x/(a^5 + x^5),x]
 

Output:

(-2*Sqrt[10 - 2*Sqrt[5]]*ArcTan[((-1 + Sqrt[5])*a + 4*x)/(Sqrt[2*(5 + Sqrt 
[5])]*a)] + 2*Sqrt[2*(5 + Sqrt[5])]*ArcTan[(-((1 + Sqrt[5])*a) + 4*x)/(Sqr 
t[10 - 2*Sqrt[5]]*a)] - 4*Log[a + x] + Log[a^2 + ((-1 + Sqrt[5])*a*x)/2 + 
x^2] + Sqrt[5]*Log[a^2 + ((-1 + Sqrt[5])*a*x)/2 + x^2] + Log[a^2 - ((1 + S 
qrt[5])*a*x)/2 + x^2] - Sqrt[5]*Log[a^2 - ((1 + Sqrt[5])*a*x)/2 + x^2])/(2 
0*a^3)
 

Rubi [A] (verified)

Time = 0.39 (sec) , antiderivative size = 203, normalized size of antiderivative = 1.01, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.727, Rules used = {822, 16, 27, 1142, 25, 1083, 217, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x}{a^5+x^5} \, dx\)

\(\Big \downarrow \) 822

\(\displaystyle -\frac {\int \frac {1}{a+x}dx}{5 a^3}+\frac {2 \int \frac {\left (1-\sqrt {5}\right ) a+\left (1+\sqrt {5}\right ) x}{2 \left (2 a^2-\left (1-\sqrt {5}\right ) x a+2 x^2\right )}dx}{5 a^3}+\frac {2 \int \frac {\left (1+\sqrt {5}\right ) a+\left (1-\sqrt {5}\right ) x}{2 \left (2 a^2-\left (1+\sqrt {5}\right ) x a+2 x^2\right )}dx}{5 a^3}\)

\(\Big \downarrow \) 16

\(\displaystyle \frac {2 \int \frac {\left (1-\sqrt {5}\right ) a+\left (1+\sqrt {5}\right ) x}{2 \left (2 a^2-\left (1-\sqrt {5}\right ) x a+2 x^2\right )}dx}{5 a^3}+\frac {2 \int \frac {\left (1+\sqrt {5}\right ) a+\left (1-\sqrt {5}\right ) x}{2 \left (2 a^2-\left (1+\sqrt {5}\right ) x a+2 x^2\right )}dx}{5 a^3}-\frac {\log (a+x)}{5 a^3}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {\int \frac {\left (1-\sqrt {5}\right ) a+\left (1+\sqrt {5}\right ) x}{2 a^2-\left (1-\sqrt {5}\right ) x a+2 x^2}dx}{5 a^3}+\frac {\int \frac {\left (1+\sqrt {5}\right ) a+\left (1-\sqrt {5}\right ) x}{2 a^2-\left (1+\sqrt {5}\right ) x a+2 x^2}dx}{5 a^3}-\frac {\log (a+x)}{5 a^3}\)

\(\Big \downarrow \) 1142

\(\displaystyle \frac {\frac {1}{4} \left (1+\sqrt {5}\right ) \int -\frac {\left (1-\sqrt {5}\right ) a-4 x}{2 a^2-\left (1-\sqrt {5}\right ) x a+2 x^2}dx-\sqrt {5} a \int \frac {1}{2 a^2-\left (1-\sqrt {5}\right ) x a+2 x^2}dx}{5 a^3}+\frac {\sqrt {5} a \int \frac {1}{2 a^2-\left (1+\sqrt {5}\right ) x a+2 x^2}dx+\frac {1}{4} \left (1-\sqrt {5}\right ) \int -\frac {\left (1+\sqrt {5}\right ) a-4 x}{2 a^2-\left (1+\sqrt {5}\right ) x a+2 x^2}dx}{5 a^3}-\frac {\log (a+x)}{5 a^3}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {-\sqrt {5} a \int \frac {1}{2 a^2-\left (1-\sqrt {5}\right ) x a+2 x^2}dx-\frac {1}{4} \left (1+\sqrt {5}\right ) \int \frac {\left (1-\sqrt {5}\right ) a-4 x}{2 a^2-\left (1-\sqrt {5}\right ) x a+2 x^2}dx}{5 a^3}+\frac {\sqrt {5} a \int \frac {1}{2 a^2-\left (1+\sqrt {5}\right ) x a+2 x^2}dx-\frac {1}{4} \left (1-\sqrt {5}\right ) \int \frac {\left (1+\sqrt {5}\right ) a-4 x}{2 a^2-\left (1+\sqrt {5}\right ) x a+2 x^2}dx}{5 a^3}-\frac {\log (a+x)}{5 a^3}\)

\(\Big \downarrow \) 1083

\(\displaystyle \frac {2 \sqrt {5} a \int \frac {1}{-2 \left (5+\sqrt {5}\right ) a^2-\left (4 x-\left (1-\sqrt {5}\right ) a\right )^2}d\left (4 x-\left (1-\sqrt {5}\right ) a\right )-\frac {1}{4} \left (1+\sqrt {5}\right ) \int \frac {\left (1-\sqrt {5}\right ) a-4 x}{2 a^2-\left (1-\sqrt {5}\right ) x a+2 x^2}dx}{5 a^3}+\frac {-\frac {1}{4} \left (1-\sqrt {5}\right ) \int \frac {\left (1+\sqrt {5}\right ) a-4 x}{2 a^2-\left (1+\sqrt {5}\right ) x a+2 x^2}dx-2 \sqrt {5} a \int \frac {1}{-2 \left (5-\sqrt {5}\right ) a^2-\left (4 x-\left (1+\sqrt {5}\right ) a\right )^2}d\left (4 x-\left (1+\sqrt {5}\right ) a\right )}{5 a^3}-\frac {\log (a+x)}{5 a^3}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {-\frac {1}{4} \left (1+\sqrt {5}\right ) \int \frac {\left (1-\sqrt {5}\right ) a-4 x}{2 a^2-\left (1-\sqrt {5}\right ) x a+2 x^2}dx-\sqrt {\frac {10}{5+\sqrt {5}}} \arctan \left (\frac {4 x-\left (1-\sqrt {5}\right ) a}{\sqrt {2 \left (5+\sqrt {5}\right )} a}\right )}{5 a^3}+\frac {\sqrt {\frac {10}{5-\sqrt {5}}} \arctan \left (\frac {4 x-\left (1+\sqrt {5}\right ) a}{\sqrt {2 \left (5-\sqrt {5}\right )} a}\right )-\frac {1}{4} \left (1-\sqrt {5}\right ) \int \frac {\left (1+\sqrt {5}\right ) a-4 x}{2 a^2-\left (1+\sqrt {5}\right ) x a+2 x^2}dx}{5 a^3}-\frac {\log (a+x)}{5 a^3}\)

\(\Big \downarrow \) 1103

\(\displaystyle -\frac {\log (a+x)}{5 a^3}+\frac {\frac {1}{4} \left (1+\sqrt {5}\right ) \log \left (2 a^2-\left (1-\sqrt {5}\right ) a x+2 x^2\right )-\sqrt {\frac {10}{5+\sqrt {5}}} \arctan \left (\frac {4 x-\left (1-\sqrt {5}\right ) a}{\sqrt {2 \left (5+\sqrt {5}\right )} a}\right )}{5 a^3}+\frac {\frac {1}{4} \left (1-\sqrt {5}\right ) \log \left (2 a^2-\left (1+\sqrt {5}\right ) a x+2 x^2\right )+\sqrt {\frac {10}{5-\sqrt {5}}} \arctan \left (\frac {4 x-\left (1+\sqrt {5}\right ) a}{\sqrt {2 \left (5-\sqrt {5}\right )} a}\right )}{5 a^3}\)

Input:

Int[x/(a^5 + x^5),x]
 

Output:

-1/5*Log[a + x]/a^3 + (-(Sqrt[10/(5 + Sqrt[5])]*ArcTan[(-((1 - Sqrt[5])*a) 
 + 4*x)/(Sqrt[2*(5 + Sqrt[5])]*a)]) + ((1 + Sqrt[5])*Log[2*a^2 - (1 - Sqrt 
[5])*a*x + 2*x^2])/4)/(5*a^3) + (Sqrt[10/(5 - Sqrt[5])]*ArcTan[(-((1 + Sqr 
t[5])*a) + 4*x)/(Sqrt[2*(5 - Sqrt[5])]*a)] + ((1 - Sqrt[5])*Log[2*a^2 - (1 
 + Sqrt[5])*a*x + 2*x^2])/4)/(5*a^3)
 

Defintions of rubi rules used

rule 16
Int[(c_.)/((a_.) + (b_.)*(x_)), x_Symbol] :> Simp[c*(Log[RemoveContent[a + 
b*x, x]]/b), x] /; FreeQ[{a, b, c}, x]
 

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 822
Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Module[{r = Numerator 
[Rt[a/b, n]], s = Denominator[Rt[a/b, n]], k, u}, Simp[u = Int[(r*Cos[(2*k 
- 1)*m*(Pi/n)] - s*Cos[(2*k - 1)*(m + 1)*(Pi/n)]*x)/(r^2 - 2*r*s*Cos[(2*k - 
 1)*(Pi/n)]*x + s^2*x^2), x]; -(-r)^(m + 1)/(a*n*s^m)   Int[1/(r + s*x), x] 
 + 2*(r^(m + 1)/(a*n*s^m))   Sum[u, {k, 1, (n - 1)/2}], x]] /; FreeQ[{a, b} 
, x] && IGtQ[(n - 1)/2, 0] && IGtQ[m, 0] && LtQ[m, n - 1] && PosQ[a/b]
 

rule 1083
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Simp[-2   Subst[I 
nt[1/Simp[b^2 - 4*a*c - x^2, x], x], x, b + 2*c*x], x] /; FreeQ[{a, b, c}, 
x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1142
Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[(2*c*d - b*e)/(2*c)   Int[1/(a + b*x + c*x^2), x], x] + Simp[e/(2*c) 
Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x]
 
Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.11 (sec) , antiderivative size = 60, normalized size of antiderivative = 0.30

method result size
risch \(-\frac {\ln \left (a +x \right )}{5 a^{3}}+\frac {\left (\munderset {\textit {\_R} =\operatorname {RootOf}\left (a^{12} \textit {\_Z}^{4}-a^{9} \textit {\_Z}^{3}+a^{6} \textit {\_Z}^{2}-a^{3} \textit {\_Z} +1\right )}{\sum }\textit {\_R} \ln \left (-a^{10} \textit {\_R}^{3}+x \right )\right )}{5}\) \(60\)
default \(-\frac {\ln \left (a +x \right )}{5 a^{3}}+\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (\textit {\_Z}^{4}-a \,\textit {\_Z}^{3}+\textit {\_Z}^{2} a^{2}-a^{3} \textit {\_Z} +a^{4}\right )}{\sum }\frac {\left (\textit {\_R}^{3}-2 \textit {\_R}^{2} a +3 \textit {\_R} \,a^{2}+a^{3}\right ) \ln \left (x -\textit {\_R} \right )}{4 \textit {\_R}^{3}-3 \textit {\_R}^{2} a +2 \textit {\_R} \,a^{2}-a^{3}}}{5 a^{3}}\) \(97\)

Input:

int(x/(a^5+x^5),x,method=_RETURNVERBOSE)
 

Output:

-1/5*ln(a+x)/a^3+1/5*sum(_R*ln(-_R^3*a^10+x),_R=RootOf(_Z^4*a^12-_Z^3*a^9+ 
_Z^2*a^6-_Z*a^3+1))
 

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.74 (sec) , antiderivative size = 18781, normalized size of antiderivative = 93.44 \[ \int \frac {x}{a^5+x^5} \, dx=\text {Too large to display} \] Input:

integrate(x/(a^5+x^5),x, algorithm="fricas")
 

Output:

Too large to include
 

Sympy [A] (verification not implemented)

Time = 0.05 (sec) , antiderivative size = 41, normalized size of antiderivative = 0.20 \[ \int \frac {x}{a^5+x^5} \, dx=\frac {- \frac {\log {\left (a + x \right )}}{5} + \operatorname {RootSum} {\left (625 t^{4} - 125 t^{3} + 25 t^{2} - 5 t + 1, \left ( t \mapsto t \log {\left (- 125 t^{3} a + x \right )} \right )\right )}}{a^{3}} \] Input:

integrate(x/(a**5+x**5),x)
 

Output:

(-log(a + x)/5 + RootSum(625*_t**4 - 125*_t**3 + 25*_t**2 - 5*_t + 1, Lamb 
da(_t, _t*log(-125*_t**3*a + x))))/a**3
 

Maxima [A] (verification not implemented)

Time = 0.11 (sec) , antiderivative size = 160, normalized size of antiderivative = 0.80 \[ \int \frac {x}{a^5+x^5} \, dx=-\frac {2 \, \sqrt {5} \arctan \left (\frac {a {\left (\sqrt {5} - 1\right )} + 4 \, x}{a \sqrt {2 \, \sqrt {5} + 10}}\right )}{5 \, a^{3} \sqrt {2 \, \sqrt {5} + 10}} + \frac {2 \, \sqrt {5} \arctan \left (-\frac {a {\left (\sqrt {5} + 1\right )} - 4 \, x}{a \sqrt {-2 \, \sqrt {5} + 10}}\right )}{5 \, a^{3} \sqrt {-2 \, \sqrt {5} + 10}} - \frac {\log \left (a + x\right )}{5 \, a^{3}} - \frac {\log \left (-a x {\left (\sqrt {5} + 1\right )} + 2 \, a^{2} + 2 \, x^{2}\right )}{5 \, a^{3} {\left (\sqrt {5} + 1\right )}} + \frac {\log \left (a x {\left (\sqrt {5} - 1\right )} + 2 \, a^{2} + 2 \, x^{2}\right )}{5 \, a^{3} {\left (\sqrt {5} - 1\right )}} \] Input:

integrate(x/(a^5+x^5),x, algorithm="maxima")
 

Output:

-2/5*sqrt(5)*arctan((a*(sqrt(5) - 1) + 4*x)/(a*sqrt(2*sqrt(5) + 10)))/(a^3 
*sqrt(2*sqrt(5) + 10)) + 2/5*sqrt(5)*arctan(-(a*(sqrt(5) + 1) - 4*x)/(a*sq 
rt(-2*sqrt(5) + 10)))/(a^3*sqrt(-2*sqrt(5) + 10)) - 1/5*log(a + x)/a^3 - 1 
/5*log(-a*x*(sqrt(5) + 1) + 2*a^2 + 2*x^2)/(a^3*(sqrt(5) + 1)) + 1/5*log(a 
*x*(sqrt(5) - 1) + 2*a^2 + 2*x^2)/(a^3*(sqrt(5) - 1))
 

Giac [A] (verification not implemented)

Time = 0.12 (sec) , antiderivative size = 177, normalized size of antiderivative = 0.88 \[ \int \frac {x}{a^5+x^5} \, dx=-\frac {\sqrt {-2 \, \sqrt {5} + 10} \arctan \left (\frac {a {\left (\sqrt {5} - 1\right )} + 4 \, x}{a \sqrt {2 \, \sqrt {5} + 10}}\right )}{10 \, a^{3}} + \frac {\sqrt {2 \, \sqrt {5} + 10} \arctan \left (-\frac {a {\left (\sqrt {5} + 1\right )} - 4 \, x}{a \sqrt {-2 \, \sqrt {5} + 10}}\right )}{10 \, a^{3}} - \frac {\sqrt {5} \log \left (a^{2} - \frac {1}{2} \, {\left (\sqrt {5} a + a\right )} x + x^{2}\right )}{20 \, a^{3}} + \frac {\sqrt {5} \log \left (a^{2} + \frac {1}{2} \, {\left (\sqrt {5} a - a\right )} x + x^{2}\right )}{20 \, a^{3}} + \frac {\log \left ({\left | a^{4} - a^{3} x + a^{2} x^{2} - a x^{3} + x^{4} \right |}\right )}{20 \, a^{3}} - \frac {\log \left ({\left | a + x \right |}\right )}{5 \, a^{3}} \] Input:

integrate(x/(a^5+x^5),x, algorithm="giac")
 

Output:

-1/10*sqrt(-2*sqrt(5) + 10)*arctan((a*(sqrt(5) - 1) + 4*x)/(a*sqrt(2*sqrt( 
5) + 10)))/a^3 + 1/10*sqrt(2*sqrt(5) + 10)*arctan(-(a*(sqrt(5) + 1) - 4*x) 
/(a*sqrt(-2*sqrt(5) + 10)))/a^3 - 1/20*sqrt(5)*log(a^2 - 1/2*(sqrt(5)*a + 
a)*x + x^2)/a^3 + 1/20*sqrt(5)*log(a^2 + 1/2*(sqrt(5)*a - a)*x + x^2)/a^3 
+ 1/20*log(abs(a^4 - a^3*x + a^2*x^2 - a*x^3 + x^4))/a^3 - 1/5*log(abs(a + 
 x))/a^3
 

Mupad [B] (verification not implemented)

Time = 0.33 (sec) , antiderivative size = 182, normalized size of antiderivative = 0.91 \[ \int \frac {x}{a^5+x^5} \, dx=\frac {\ln \left (x-\frac {a\,{\left (\sqrt {5}-\sqrt {2\,\sqrt {5}-10}+1\right )}^3}{64}\right )\,\left (\sqrt {5}-\sqrt {2\,\sqrt {5}-10}+1\right )}{20\,a^3}-\frac {\ln \left (a+x\right )}{5\,a^3}+\frac {\ln \left (x-\frac {a\,{\left (\sqrt {-2\,\sqrt {5}-10}-\sqrt {5}+1\right )}^3}{64}\right )\,\left (\sqrt {-2\,\sqrt {5}-10}-\sqrt {5}+1\right )}{20\,a^3}-\frac {\ln \left (x+\frac {a\,{\left (\sqrt {5}+\sqrt {-2\,\sqrt {5}-10}-1\right )}^3}{64}\right )\,\left (\sqrt {5}+\sqrt {-2\,\sqrt {5}-10}-1\right )}{20\,a^3}+\frac {\ln \left (x-\frac {a\,{\left (\sqrt {5}+\sqrt {2\,\sqrt {5}-10}+1\right )}^3}{64}\right )\,\left (\sqrt {5}+\sqrt {2\,\sqrt {5}-10}+1\right )}{20\,a^3} \] Input:

int(x/(a^5 + x^5),x)
 

Output:

(log(x - (a*(5^(1/2) - (2*5^(1/2) - 10)^(1/2) + 1)^3)/64)*(5^(1/2) - (2*5^ 
(1/2) - 10)^(1/2) + 1))/(20*a^3) - log(a + x)/(5*a^3) + (log(x - (a*((- 2* 
5^(1/2) - 10)^(1/2) - 5^(1/2) + 1)^3)/64)*((- 2*5^(1/2) - 10)^(1/2) - 5^(1 
/2) + 1))/(20*a^3) - (log(x + (a*(5^(1/2) + (- 2*5^(1/2) - 10)^(1/2) - 1)^ 
3)/64)*(5^(1/2) + (- 2*5^(1/2) - 10)^(1/2) - 1))/(20*a^3) + (log(x - (a*(5 
^(1/2) + (2*5^(1/2) - 10)^(1/2) + 1)^3)/64)*(5^(1/2) + (2*5^(1/2) - 10)^(1 
/2) + 1))/(20*a^3)
 

Reduce [F]

\[ \int \frac {x}{a^5+x^5} \, dx=\int \frac {x}{a^{5}+x^{5}}d x \] Input:

int(x/(a^5+x^5),x)
 

Output:

int(x/(a**5 + x**5),x)