\(\int \frac {(c+d x)^n (e+f x)^p}{\sqrt {b x}} \, dx\) [590]

Optimal result
Mathematica [A] (verified)
Rubi [A] (verified)
Maple [F]
Fricas [F]
Sympy [F]
Maxima [F]
Giac [F]
Mupad [F(-1)]
Reduce [F]

Optimal result

Integrand size = 22, antiderivative size = 77 \[ \int \frac {(c+d x)^n (e+f x)^p}{\sqrt {b x}} \, dx=\frac {2 \sqrt {b x} (c+d x)^n \left (1+\frac {d x}{c}\right )^{-n} (e+f x)^p \left (1+\frac {f x}{e}\right )^{-p} \operatorname {AppellF1}\left (\frac {1}{2},-n,-p,\frac {3}{2},-\frac {d x}{c},-\frac {f x}{e}\right )}{b} \] Output:

2*(b*x)^(1/2)*(d*x+c)^n*(f*x+e)^p*AppellF1(1/2,-n,-p,3/2,-d*x/c,-f*x/e)/b/ 
((1+d*x/c)^n)/((1+f*x/e)^p)
 

Mathematica [A] (verified)

Time = 0.24 (sec) , antiderivative size = 77, normalized size of antiderivative = 1.00 \[ \int \frac {(c+d x)^n (e+f x)^p}{\sqrt {b x}} \, dx=\frac {2 x (c+d x)^n \left (\frac {c+d x}{c}\right )^{-n} (e+f x)^p \left (\frac {e+f x}{e}\right )^{-p} \operatorname {AppellF1}\left (\frac {1}{2},-n,-p,\frac {3}{2},-\frac {d x}{c},-\frac {f x}{e}\right )}{\sqrt {b x}} \] Input:

Integrate[((c + d*x)^n*(e + f*x)^p)/Sqrt[b*x],x]
 

Output:

(2*x*(c + d*x)^n*(e + f*x)^p*AppellF1[1/2, -n, -p, 3/2, -((d*x)/c), -((f*x 
)/e)])/(Sqrt[b*x]*((c + d*x)/c)^n*((e + f*x)/e)^p)
 

Rubi [A] (verified)

Time = 0.24 (sec) , antiderivative size = 77, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.136, Rules used = {152, 152, 150}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(c+d x)^n (e+f x)^p}{\sqrt {b x}} \, dx\)

\(\Big \downarrow \) 152

\(\displaystyle (c+d x)^n \left (\frac {d x}{c}+1\right )^{-n} \int \frac {\left (\frac {d x}{c}+1\right )^n (e+f x)^p}{\sqrt {b x}}dx\)

\(\Big \downarrow \) 152

\(\displaystyle (c+d x)^n \left (\frac {d x}{c}+1\right )^{-n} (e+f x)^p \left (\frac {f x}{e}+1\right )^{-p} \int \frac {\left (\frac {d x}{c}+1\right )^n \left (\frac {f x}{e}+1\right )^p}{\sqrt {b x}}dx\)

\(\Big \downarrow \) 150

\(\displaystyle \frac {2 \sqrt {b x} (c+d x)^n \left (\frac {d x}{c}+1\right )^{-n} (e+f x)^p \left (\frac {f x}{e}+1\right )^{-p} \operatorname {AppellF1}\left (\frac {1}{2},-n,-p,\frac {3}{2},-\frac {d x}{c},-\frac {f x}{e}\right )}{b}\)

Input:

Int[((c + d*x)^n*(e + f*x)^p)/Sqrt[b*x],x]
 

Output:

(2*Sqrt[b*x]*(c + d*x)^n*(e + f*x)^p*AppellF1[1/2, -n, -p, 3/2, -((d*x)/c) 
, -((f*x)/e)])/(b*(1 + (d*x)/c)^n*(1 + (f*x)/e)^p)
 

Defintions of rubi rules used

rule 150
Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_)*((e_) + (f_.)*(x_))^(p_), x_ 
] :> Simp[c^n*e^p*((b*x)^(m + 1)/(b*(m + 1)))*AppellF1[m + 1, -n, -p, m + 2 
, (-d)*(x/c), (-f)*(x/e)], x] /; FreeQ[{b, c, d, e, f, m, n, p}, x] &&  !In 
tegerQ[m] &&  !IntegerQ[n] && GtQ[c, 0] && (IntegerQ[p] || GtQ[e, 0])
 

rule 152
Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_)*((e_) + (f_.)*(x_))^(p_), x_ 
] :> Simp[c^IntPart[n]*((c + d*x)^FracPart[n]/(1 + d*(x/c))^FracPart[n]) 
Int[(b*x)^m*(1 + d*(x/c))^n*(e + f*x)^p, x], x] /; FreeQ[{b, c, d, e, f, m, 
 n, p}, x] &&  !IntegerQ[m] &&  !IntegerQ[n] &&  !GtQ[c, 0]
 
Maple [F]

\[\int \frac {\left (x d +c \right )^{n} \left (f x +e \right )^{p}}{\sqrt {b x}}d x\]

Input:

int((d*x+c)^n*(f*x+e)^p/(b*x)^(1/2),x)
 

Output:

int((d*x+c)^n*(f*x+e)^p/(b*x)^(1/2),x)
 

Fricas [F]

\[ \int \frac {(c+d x)^n (e+f x)^p}{\sqrt {b x}} \, dx=\int { \frac {{\left (d x + c\right )}^{n} {\left (f x + e\right )}^{p}}{\sqrt {b x}} \,d x } \] Input:

integrate((d*x+c)^n*(f*x+e)^p/(b*x)^(1/2),x, algorithm="fricas")
 

Output:

integral(sqrt(b*x)*(d*x + c)^n*(f*x + e)^p/(b*x), x)
 

Sympy [F]

\[ \int \frac {(c+d x)^n (e+f x)^p}{\sqrt {b x}} \, dx=\int \frac {\left (c + d x\right )^{n} \left (e + f x\right )^{p}}{\sqrt {b x}}\, dx \] Input:

integrate((d*x+c)**n*(f*x+e)**p/(b*x)**(1/2),x)
 

Output:

Integral((c + d*x)**n*(e + f*x)**p/sqrt(b*x), x)
 

Maxima [F]

\[ \int \frac {(c+d x)^n (e+f x)^p}{\sqrt {b x}} \, dx=\int { \frac {{\left (d x + c\right )}^{n} {\left (f x + e\right )}^{p}}{\sqrt {b x}} \,d x } \] Input:

integrate((d*x+c)^n*(f*x+e)^p/(b*x)^(1/2),x, algorithm="maxima")
 

Output:

integrate((d*x + c)^n*(f*x + e)^p/sqrt(b*x), x)
 

Giac [F]

\[ \int \frac {(c+d x)^n (e+f x)^p}{\sqrt {b x}} \, dx=\int { \frac {{\left (d x + c\right )}^{n} {\left (f x + e\right )}^{p}}{\sqrt {b x}} \,d x } \] Input:

integrate((d*x+c)^n*(f*x+e)^p/(b*x)^(1/2),x, algorithm="giac")
 

Output:

integrate((d*x + c)^n*(f*x + e)^p/sqrt(b*x), x)
 

Mupad [F(-1)]

Timed out. \[ \int \frac {(c+d x)^n (e+f x)^p}{\sqrt {b x}} \, dx=\int \frac {{\left (e+f\,x\right )}^p\,{\left (c+d\,x\right )}^n}{\sqrt {b\,x}} \,d x \] Input:

int(((e + f*x)^p*(c + d*x)^n)/(b*x)^(1/2),x)
 

Output:

int(((e + f*x)^p*(c + d*x)^n)/(b*x)^(1/2), x)
 

Reduce [F]

\[ \int \frac {(c+d x)^n (e+f x)^p}{\sqrt {b x}} \, dx=\text {too large to display} \] Input:

int((d*x+c)^n*(f*x+e)^p/(b*x)^(1/2),x)
 

Output:

(2*sqrt(b)*(sqrt(x)*(e + f*x)**p*(c + d*x)**n*c*f + sqrt(x)*(e + f*x)**p*( 
c + d*x)**n*d*e - 2*int((sqrt(x)*(e + f*x)**p*(c + d*x)**n*x)/(2*c**2*e*f* 
p + c**2*e*f + 2*c**2*f**2*p*x + c**2*f**2*x + 2*c*d*e**2*n + c*d*e**2 + 2 
*c*d*e*f*n*x + 2*c*d*e*f*p*x + 2*c*d*e*f*x + 2*c*d*f**2*p*x**2 + c*d*f**2* 
x**2 + 2*d**2*e**2*n*x + d**2*e**2*x + 2*d**2*e*f*n*x**2 + d**2*e*f*x**2), 
x)*c**2*d*f**3*n*p - int((sqrt(x)*(e + f*x)**p*(c + d*x)**n*x)/(2*c**2*e*f 
*p + c**2*e*f + 2*c**2*f**2*p*x + c**2*f**2*x + 2*c*d*e**2*n + c*d*e**2 + 
2*c*d*e*f*n*x + 2*c*d*e*f*p*x + 2*c*d*e*f*x + 2*c*d*f**2*p*x**2 + c*d*f**2 
*x**2 + 2*d**2*e**2*n*x + d**2*e**2*x + 2*d**2*e*f*n*x**2 + d**2*e*f*x**2) 
,x)*c**2*d*f**3*n - 2*int((sqrt(x)*(e + f*x)**p*(c + d*x)**n*x)/(2*c**2*e* 
f*p + c**2*e*f + 2*c**2*f**2*p*x + c**2*f**2*x + 2*c*d*e**2*n + c*d*e**2 + 
 2*c*d*e*f*n*x + 2*c*d*e*f*p*x + 2*c*d*e*f*x + 2*c*d*f**2*p*x**2 + c*d*f** 
2*x**2 + 2*d**2*e**2*n*x + d**2*e**2*x + 2*d**2*e*f*n*x**2 + d**2*e*f*x**2 
),x)*c*d**2*e*f**2*n**2 - int((sqrt(x)*(e + f*x)**p*(c + d*x)**n*x)/(2*c** 
2*e*f*p + c**2*e*f + 2*c**2*f**2*p*x + c**2*f**2*x + 2*c*d*e**2*n + c*d*e* 
*2 + 2*c*d*e*f*n*x + 2*c*d*e*f*p*x + 2*c*d*e*f*x + 2*c*d*f**2*p*x**2 + c*d 
*f**2*x**2 + 2*d**2*e**2*n*x + d**2*e**2*x + 2*d**2*e*f*n*x**2 + d**2*e*f* 
x**2),x)*c*d**2*e*f**2*n - 2*int((sqrt(x)*(e + f*x)**p*(c + d*x)**n*x)/(2* 
c**2*e*f*p + c**2*e*f + 2*c**2*f**2*p*x + c**2*f**2*x + 2*c*d*e**2*n + c*d 
*e**2 + 2*c*d*e*f*n*x + 2*c*d*e*f*p*x + 2*c*d*e*f*x + 2*c*d*f**2*p*x**2...