\(\int \frac {1}{(a+b x^3)^{3/2}} \, dx\) [224]

Optimal result
Mathematica [C] (verified)
Rubi [A] (verified)
Maple [A] (verified)
Fricas [A] (verification not implemented)
Sympy [A] (verification not implemented)
Maxima [F]
Giac [F]
Mupad [B] (verification not implemented)
Reduce [F]

Optimal result

Integrand size = 11, antiderivative size = 232 \[ \int \frac {1}{\left (a+b x^3\right )^{3/2}} \, dx=\frac {2 x}{3 a \sqrt {a+b x^3}}+\frac {2 \sqrt {2+\sqrt {3}} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\left (1-\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}{\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x}\right ),-7-4 \sqrt {3}\right )}{3 \sqrt [4]{3} a \sqrt [3]{b} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}} \] Output:

2/3*x/a/(b*x^3+a)^(1/2)+2/9*(1/2*6^(1/2)+1/2*2^(1/2))*(a^(1/3)+b^(1/3)*x)* 
((a^(2/3)-a^(1/3)*b^(1/3)*x+b^(2/3)*x^2)/((1+3^(1/2))*a^(1/3)+b^(1/3)*x)^2 
)^(1/2)*EllipticF(((1-3^(1/2))*a^(1/3)+b^(1/3)*x)/((1+3^(1/2))*a^(1/3)+b^( 
1/3)*x),I*3^(1/2)+2*I)*3^(3/4)/a/b^(1/3)/(a^(1/3)*(a^(1/3)+b^(1/3)*x)/((1+ 
3^(1/2))*a^(1/3)+b^(1/3)*x)^2)^(1/2)/(b*x^3+a)^(1/2)
 

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 0.01 (sec) , antiderivative size = 55, normalized size of antiderivative = 0.24 \[ \int \frac {1}{\left (a+b x^3\right )^{3/2}} \, dx=\frac {x \left (2+\sqrt {1+\frac {b x^3}{a}} \operatorname {Hypergeometric2F1}\left (\frac {1}{3},\frac {1}{2},\frac {4}{3},-\frac {b x^3}{a}\right )\right )}{3 a \sqrt {a+b x^3}} \] Input:

Integrate[(a + b*x^3)^(-3/2),x]
 

Output:

(x*(2 + Sqrt[1 + (b*x^3)/a]*Hypergeometric2F1[1/3, 1/2, 4/3, -((b*x^3)/a)] 
))/(3*a*Sqrt[a + b*x^3])
 

Rubi [A] (verified)

Time = 0.41 (sec) , antiderivative size = 232, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.182, Rules used = {749, 759}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\left (a+b x^3\right )^{3/2}} \, dx\)

\(\Big \downarrow \) 749

\(\displaystyle \frac {\int \frac {1}{\sqrt {b x^3+a}}dx}{3 a}+\frac {2 x}{3 a \sqrt {a+b x^3}}\)

\(\Big \downarrow \) 759

\(\displaystyle \frac {2 \sqrt {2+\sqrt {3}} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right ) \sqrt {\frac {a^{2/3}-\sqrt [3]{a} \sqrt [3]{b} x+b^{2/3} x^2}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt [3]{b} x+\left (1-\sqrt {3}\right ) \sqrt [3]{a}}{\sqrt [3]{b} x+\left (1+\sqrt {3}\right ) \sqrt [3]{a}}\right ),-7-4 \sqrt {3}\right )}{3 \sqrt [4]{3} a \sqrt [3]{b} \sqrt {\frac {\sqrt [3]{a} \left (\sqrt [3]{a}+\sqrt [3]{b} x\right )}{\left (\left (1+\sqrt {3}\right ) \sqrt [3]{a}+\sqrt [3]{b} x\right )^2}} \sqrt {a+b x^3}}+\frac {2 x}{3 a \sqrt {a+b x^3}}\)

Input:

Int[(a + b*x^3)^(-3/2),x]
 

Output:

(2*x)/(3*a*Sqrt[a + b*x^3]) + (2*Sqrt[2 + Sqrt[3]]*(a^(1/3) + b^(1/3)*x)*S 
qrt[(a^(2/3) - a^(1/3)*b^(1/3)*x + b^(2/3)*x^2)/((1 + Sqrt[3])*a^(1/3) + b 
^(1/3)*x)^2]*EllipticF[ArcSin[((1 - Sqrt[3])*a^(1/3) + b^(1/3)*x)/((1 + Sq 
rt[3])*a^(1/3) + b^(1/3)*x)], -7 - 4*Sqrt[3]])/(3*3^(1/4)*a*b^(1/3)*Sqrt[( 
a^(1/3)*(a^(1/3) + b^(1/3)*x))/((1 + Sqrt[3])*a^(1/3) + b^(1/3)*x)^2]*Sqrt 
[a + b*x^3])
 

Defintions of rubi rules used

rule 749
Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(-x)*((a + b*x^n)^(p + 
 1)/(a*n*(p + 1))), x] + Simp[(n*(p + 1) + 1)/(a*n*(p + 1))   Int[(a + b*x^ 
n)^(p + 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[p, -1] && (Inte 
gerQ[2*p] || Denominator[p + 1/n] < Denominator[p])
 

rule 759
Int[1/Sqrt[(a_) + (b_.)*(x_)^3], x_Symbol] :> With[{r = Numer[Rt[b/a, 3]], 
s = Denom[Rt[b/a, 3]]}, Simp[2*Sqrt[2 + Sqrt[3]]*(s + r*x)*(Sqrt[(s^2 - r*s 
*x + r^2*x^2)/((1 + Sqrt[3])*s + r*x)^2]/(3^(1/4)*r*Sqrt[a + b*x^3]*Sqrt[s* 
((s + r*x)/((1 + Sqrt[3])*s + r*x)^2)]))*EllipticF[ArcSin[((1 - Sqrt[3])*s 
+ r*x)/((1 + Sqrt[3])*s + r*x)], -7 - 4*Sqrt[3]], x]] /; FreeQ[{a, b}, x] & 
& PosQ[a]
 
Maple [A] (verified)

Time = 0.47 (sec) , antiderivative size = 306, normalized size of antiderivative = 1.32

method result size
default \(\frac {2 x}{3 a \sqrt {\left (x^{3}+\frac {a}{b}\right ) b}}-\frac {2 i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}} \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}}{-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}}}\, \sqrt {-\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \operatorname {EllipticF}\left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}}{3}, \sqrt {\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{b \left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}}\right )}{9 a b \sqrt {b \,x^{3}+a}}\) \(306\)
elliptic \(\frac {2 x}{3 a \sqrt {\left (x^{3}+\frac {a}{b}\right ) b}}-\frac {2 i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}} \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \sqrt {\frac {x -\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{b}}{-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}}}\, \sqrt {-\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}\, \operatorname {EllipticF}\left (\frac {\sqrt {3}\, \sqrt {\frac {i \left (x +\frac {\left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}-\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right ) \sqrt {3}\, b}{\left (-a \,b^{2}\right )^{\frac {1}{3}}}}}{3}, \sqrt {\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{b \left (-\frac {3 \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}+\frac {i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}}{2 b}\right )}}\right )}{9 a b \sqrt {b \,x^{3}+a}}\) \(306\)

Input:

int(1/(b*x^3+a)^(3/2),x,method=_RETURNVERBOSE)
 

Output:

2/3*x/a/((x^3+a/b)*b)^(1/2)-2/9*I/a*3^(1/2)/b*(-a*b^2)^(1/3)*(I*(x+1/2/b*( 
-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2)^(1/3))^(1 
/2)*((x-1/b*(-a*b^2)^(1/3))/(-3/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2 
)^(1/3)))^(1/2)*(-I*(x+1/2/b*(-a*b^2)^(1/3)+1/2*I*3^(1/2)/b*(-a*b^2)^(1/3) 
)*3^(1/2)*b/(-a*b^2)^(1/3))^(1/2)/(b*x^3+a)^(1/2)*EllipticF(1/3*3^(1/2)*(I 
*(x+1/2/b*(-a*b^2)^(1/3)-1/2*I*3^(1/2)/b*(-a*b^2)^(1/3))*3^(1/2)*b/(-a*b^2 
)^(1/3))^(1/2),(I*3^(1/2)/b*(-a*b^2)^(1/3)/(-3/2/b*(-a*b^2)^(1/3)+1/2*I*3^ 
(1/2)/b*(-a*b^2)^(1/3)))^(1/2))
 

Fricas [A] (verification not implemented)

Time = 0.07 (sec) , antiderivative size = 51, normalized size of antiderivative = 0.22 \[ \int \frac {1}{\left (a+b x^3\right )^{3/2}} \, dx=\frac {2 \, {\left (\sqrt {b x^{3} + a} b x + {\left (b x^{3} + a\right )} \sqrt {b} {\rm weierstrassPInverse}\left (0, -\frac {4 \, a}{b}, x\right )\right )}}{3 \, {\left (a b^{2} x^{3} + a^{2} b\right )}} \] Input:

integrate(1/(b*x^3+a)^(3/2),x, algorithm="fricas")
 

Output:

2/3*(sqrt(b*x^3 + a)*b*x + (b*x^3 + a)*sqrt(b)*weierstrassPInverse(0, -4*a 
/b, x))/(a*b^2*x^3 + a^2*b)
 

Sympy [A] (verification not implemented)

Time = 0.51 (sec) , antiderivative size = 36, normalized size of antiderivative = 0.16 \[ \int \frac {1}{\left (a+b x^3\right )^{3/2}} \, dx=\frac {x \Gamma \left (\frac {1}{3}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{3}, \frac {3}{2} \\ \frac {4}{3} \end {matrix}\middle | {\frac {b x^{3} e^{i \pi }}{a}} \right )}}{3 a^{\frac {3}{2}} \Gamma \left (\frac {4}{3}\right )} \] Input:

integrate(1/(b*x**3+a)**(3/2),x)
 

Output:

x*gamma(1/3)*hyper((1/3, 3/2), (4/3,), b*x**3*exp_polar(I*pi)/a)/(3*a**(3/ 
2)*gamma(4/3))
 

Maxima [F]

\[ \int \frac {1}{\left (a+b x^3\right )^{3/2}} \, dx=\int { \frac {1}{{\left (b x^{3} + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(1/(b*x^3+a)^(3/2),x, algorithm="maxima")
 

Output:

integrate((b*x^3 + a)^(-3/2), x)
 

Giac [F]

\[ \int \frac {1}{\left (a+b x^3\right )^{3/2}} \, dx=\int { \frac {1}{{\left (b x^{3} + a\right )}^{\frac {3}{2}}} \,d x } \] Input:

integrate(1/(b*x^3+a)^(3/2),x, algorithm="giac")
 

Output:

integrate((b*x^3 + a)^(-3/2), x)
                                                                                    
                                                                                    
 

Mupad [B] (verification not implemented)

Time = 0.24 (sec) , antiderivative size = 37, normalized size of antiderivative = 0.16 \[ \int \frac {1}{\left (a+b x^3\right )^{3/2}} \, dx=\frac {x\,{\left (\frac {b\,x^3}{a}+1\right )}^{3/2}\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{3},\frac {3}{2};\ \frac {4}{3};\ -\frac {b\,x^3}{a}\right )}{{\left (b\,x^3+a\right )}^{3/2}} \] Input:

int(1/(a + b*x^3)^(3/2),x)
 

Output:

(x*((b*x^3)/a + 1)^(3/2)*hypergeom([1/3, 3/2], 4/3, -(b*x^3)/a))/(a + b*x^ 
3)^(3/2)
 

Reduce [F]

\[ \int \frac {1}{\left (a+b x^3\right )^{3/2}} \, dx=\int \frac {\sqrt {b \,x^{3}+a}}{b^{2} x^{6}+2 a b \,x^{3}+a^{2}}d x \] Input:

int(1/(b*x^3+a)^(3/2),x)
 

Output:

int(sqrt(a + b*x**3)/(a**2 + 2*a*b*x**3 + b**2*x**6),x)